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ABSTRACT 

There is a wide variety of stainless steel alloys, but all are characterized by a rounded stress-

strain response with no sharply defined yield point. This behaviour can be represented 

analytically by different material models, the most popular of which are based on the Ramberg-

Osgood formulations or extensions thereof. The degree of roundedness, the level of strain 

hardening, the strain at ultimate stress and the ductility at fracture of the material all vary 

between grades, and need to be suitably captured for an accurate representation of the material 

to be achieved. The aim of the present study is to provide values and predictive expressions for 

the key parameters in existing stainless steel material models based on the analysis of a 

comprehensive experimental database. The database comprises experimental stress-strain 

curves collected from the literature, supplemented by some tensile tests on austenitic, ferritic 

and duplex stainless steel coupons conducted herein. It covers a range of stainless steel alloys, 

annealed and cold-worked material, and data from the rolling and transverse directions. In total, 

more than 600 measured stress-strain curves have been collected from 15 international research 

groups. Each curve from the database has been analysed in order to obtain the key material 

parameters through a curve fitting process based on least squares adjustment techniques. These 

parameter values have been compared to those calculated from existing predictive models, the 
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accuracy of which could therefore be evaluated. Revised expressions providing more accurate 

parameter predictions have been proposed where necessary. Finally, a second set of results, 

containing material parameters reported directly by others, with information of more than 400 

specimens, has also been collected from the literature. Although these experimental results 

were not accessible as measured raw data, they enabled further confirmation of the suitability 

of the proposed equations. 

KEYWORDS 

Constitutive law, material modelling, nonlinear stress-strain behaviour, stress-strain curves, 

stainless steel, tensile tests 

HIGHLIGHTS 

 Tensile tests on austenitic, ferritic and duplex stainless steel coupons are presented.

 A database of over 600 stainless steel stress-strain curves has been collected.

 Key material parameters for different stainless steel families have been obtained.

 Existing equations for the determination of material parameters have been assessed.

 Revised expressions providing more accurate material parameter predictions have been

proposed and verified.

1. INTRODUCTION

Stainless steel is gaining increasingly widespread usage in a range of engineering applications. 

The material is characterized by a nonlinear stress-strain curve which differs from that typically 

exhibited by hot-finished carbon steel, but shows similarities with other construction materials 

such as cold-worked steel and aluminium. Different material models describing this nonlinear 

stress-strain behaviour have been developed in the last few decades, the most widely used of 

which are based on the expression originally proposed by Ramberg and Osgood [1] and 

modified by Hill [2]. An accurate description of the stress-strain behaviour of stainless steel is 

essential for use in structural design codes, and advanced analytical and numerical models, 

whose applications may include the simulation of section forming, the structural behaviour of 

members and connections, the response of structures under extreme loads, and so on. 

Existing material models require certain key material parameters to be defined. Values for these 

parameters can be obtained from measured stress-strain curves, but are also provided in 
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Standards, such as EN 1993-1-4 [3] through tables and predictive expressions. However, recent 

research by Real et al. [4], Arrayago et al. [5] and Afshan et al. [6] has shown that the 

parameter values derived from EN 1993-1-4 are not always accurate. Hence, this paper presents 

a detailed evaluation of predictive expressions for the key material parameters, gathered both 

from current design codes and proposed in the literature against a comprehensive database of 

stainless steel stress-strain curves. A range of stainless steel grades, production routes, section 

types, direction of testing with respect to the rolling direction and sample thicknesses have been 

considered. 

2. EXISTING MATERIAL MODELS, STANDARDS AND PREVIOUS WORK

2.1 Existing material models 

The nonlinear stress-strain behaviour exhibited by the different stainless steel grades can be 

analytically described by various material models. The most widely used are based on the 

general expression originally proposed by Ramberg and Osgood [1] and modified by Hill [2], 

as given by Eq. (1), where E is the Young’s modulus, 0.2 is the 0.2% proof stress 

conventionally considered as the yield stress, and n is the strain hardening exponent, usually 

calculated from Eq. (2).  
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where 0.01 is the 0.01% proof stress. The basic Ramberg-Osgood formulation has been shown 

to be capable of accurately representing different regions of the stress-strain curve, depending 

on the choice of the n parameter, but to be generally incapable of accurately representing the 

full stress-strain curve with a single value of n. This observation led to the development of 

various two stage Ramberg-Osgood models that were capable of providing a single continuous 

representation of the stress-strain curve of stainless steel from the onset of loading to the 

ultimate tensile stress. Mirambell and Real [7] proposed a two stage model based on the 

Ramberg-Osgood expression, but defining a second curve for stresses above the 0.2% proof 

stress, with a new reference system, denoted **   and presented in Figure 1, where the 
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transformation of the variables to the new reference system from the original one is defined in 

Eq. (3) and (4), where 0.2 is the total strain at the 0.2% proof stress. 

2.0
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Hence, the second curve can be defined as established in Eq. (5) in terms of the new ( **  ) 

reference system and according to Eq. (6) if the general (  ) system is considered, with an 

additional strain hardening exponent, m, for the second stage.  Eq. (1) continued to apply for 

stresses less than or equal to the 0.2% proof stress. 
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where E0.2 is the tangent modulus at the 0.2% proof stress, given by Eq. (7), *
u  and *

up  are the 

ultimate strength and ultimate plastic strain according to the new reference system, u and u  

are the ultimate strength and total strain in terms of the general system and 2.0 is the total strain 

at the 0.2% proof stress. 
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Figure 1 shows a typical stainless steel stress-strain curve where both the general (  ) and the 

new ( **  ) reference systems are plotted, together with the key symbols used in the material 

modelling expressions. The parameter up is the ultimate plastic strain and f is the strain at 

fracture, both expressed in the general reference system. The remaining symbols are as 

previously defined.    
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Figure 1. Typical stress-strain curve with definitions of key material parameters. 

 

In order to reduce the number of required input parameters, the two-stage Ramberg-Osgood 

model was simplified by Rasmussen [8], leading to the revised expression for > 0.2 given by 

Eq. (8). This equation assumes that the ultimate plastic strain *
up  in terms of the second 

reference system is equal to the general ultimate total strain u, as expressed in Eq. (9). 

Rasmussen [8] also developed predictive expressions for the determination of the second strain 

hardening parameter m, the ultimate strain and the ultimate strength, as given by Eqs. (10)-(12) 

respectively, effectively reducing the number of required input parameters to the three basic 

Ramberg-Osgood parameters (E, 0.2 and n). This proposal was included in EN 1993-1-4, 

Annex C [3] for the modelling of stainless steel material behaviour. 
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The material model proposed by Mirambell and Real [7] was also modified by Gardner and 

Ashraf [9] in order to improve the accuracy of the model at low strains (less than approximately 

10%) and to allow the model to be applied also to the description of compressive stress-strain 

behaviour. The modifications involved use of the 1% proof stress instead of the ultimate stress 

in the second stage of the model, leading to Eq. (13). Hence, the revised curve passes through 

the 1% proof stress 1.0 and corresponding total strain 1.0, but strains are not limited to 1.0 and 

the model provides excellent agreement with experimental stress-strain data for strains up to 

about 10% both in tension and compression. The second strain hardening exponent was 

denoted n0.2,1.0. A further two-stage model was also proposed by Gardner et al. [10] for 

application to stainless steel material modelling in fire. In the proposal, the second stage of the 

curve passed through the stress at 2% total strain, since this strength is widely used in structural 

fire design. 
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For certain modelling scenarios, such as representing cold-forming processes and connection 

behaviour, an accurate material description up to very high strains is often required. This 

requirement led to the development of three stage versions of the Ramberg-Osgood 

formulation: Quach et al. [11] proposed a material model that uses the basic Ramberg-Osgood 

curve (Eq. (1)) for the first stage, covering stresses up to the 0.2% proof stress, the Gardner and 

Ashraf [9]  model (Eq. (13)) for the second stage covering stresses up to the 2% proof stress 

and a straight line from the  2% proof stress to the ultimate strength for the third stage. More 

recently, Hradil et al. [12] proposed an alternative three stage model which uses the Ramberg-

Osgood equation for every stage, but with different reference systems.  

The comparative study presented in [4] highlighted that three-stage models provide the most 

accurate fit to experimental stress-strain curves at high strains, although a high number of 

parameters are needed for their definition. Therefore, considering that two-stage models 

representing full stainless steel stress-strain curves up to u [7]-[8] also showed excellent 

agreement with experimental results, it was concluded that two-stage models with a reduced 

number of material parameters offered the best balance between accuracy and practicality.  

 

2.2 EN 1993-1-4 material model and proposed modifications 

The material model provided in Annex C of EN 1993-1-4 [3] for the analytical description of 

the stress-strain behaviour of stainless steel is based on the model proposed by Rasmussen [8] 
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and described by Eqs. (1) and (8). The additional expressions developed by Rasmussen for the 

determination of some of the material parameters are also given, including Eq. (10) for the 

second strain hardening parameter m and Eq. (11) for the ultimate strain. The strain hardening 

exponent n can be obtained either from experimental data by means of Eq. (2) or from Table 

2.1 of EN 1993-1-4 [3]. 

 

Recent studies (Real et al. [4], Arrayago et al. [5], Afshan et al. [6]) have confirmed the general 

accuracy of the form of the EN 1993-1-4 material model, but have identified some limitations 

in the predictive expressions for the key material parameters. These are highlighted in the 

present paper.  

3. EXPERIMENTAL DATA: TESTS AND COLLECTION 

In this section, experimental data are collected in order to evaluate the predictive models for the 

key material parameters given in Annex C of EN 1993-1-4, and to provide revised proposals in 

instances where shortcomings are identified. Additional stress-strain data are also generated 

herein, as described in Sections 3.1 and 3.2. 

 

3.1 Tensile coupon tests 

Tensile coupon tests were conducted on selected stainless steel grades in order to supplement 

the existing database of results. The coupons were cut from sheet material and tested in the 

rolling direction at the Universitat Politècnica de Catalunya (UPC). A total of 42 tensile tests 

were conducted; 14 on austenitic grade 1.4301 material, 14 on ferritic grade 1.4016 material 

and 14 on duplex grade 1.4462 material. Material properties, including Young’s modulus E, 

various proof stresses (0.01, 0.05, 0.2 and 1.0), the ultimate tensile stress u, the corresponding 

strain u and the strain at fracture f, measured over the standard gauge length of cA65.5 where 

Ac is the cross-sectional area of the coupon, were recorded. 

All tested coupons had a nominal thickness of 3mm and a nominal width of 12mm in the 

necked region. A gauge length of 50mm was adopted in accordance with ISO 6892-1 [13]. 

Figure 2 shows a typical coupon prior to and subsequent to testing. The tensile tests were 

conducted under strain control in an INSTRON 8805 500kN machine. The strain rates were 

defined in accordance with ISO 6892-1 [13]: 0.1mm/min for the initial part of the tests, up to 

approximately 1% strain increasing to 2.2mm/min thereafter.  
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Figure 2. Austenitic stainless steel coupons before and after testing. 

The longitudinal strain was measured using an MTS extensometer with two contact points, and 

was mounted directly onto the coupons (see Figure 3). Two additional linear electrical 

resistance strain gauges were attached to the centre part of each specimen, in order to ensure an 

accurate measurement of the Young’s modulus and to confirm the data obtained from the 

extensometer in the initial part of the tests.  

The mean values of the key measured material parameters for the different studied stainless 

steel grades are reported in Table 1. An example of a measured stress-strain curve for each of 

the tested stainless steel grades is shown in Figure 4. Further details of the tensile coupon tests 

and results are reported in Arrayago et al. [5]. 

 

Figure 3. Coupon in INSTRON tensile testing machine. 
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Figure 4. Measured stress-strain curves for each of the studied stainless steel grades. 

For some of the specimens, repeat coupon tests were performed, for corroboration purposes, at 

Imperial College London (IC). These tests were carried out in a 150kN INSTRON machine, 

shown in Figure 5, under displacement control and using similar testing procedures to those 

described above. The reference (UPC) and corroborating (IC) test results are compared in Table 

1 and Figure 6, where a maximum discrepancy between the measured strengths of less than 3% 

may be observed. The influence of the testing machine may therefore be considered to be 

small. Similar conclusions were reached by Huang and Young [14] in recent research. 

 

Figure 5. Tensile coupon tests conducted at Imperial College London. 
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Table 1. Average experimental material properties from reference and corroborating tests. 

  E 

(MPa) 
0.1 

(MPa) 
0.2 

(MPa) 
u 

(MPa) 
u 

(%) 
f 

(%) 

Reference tests (UPC) 

Austenitic 207600 280 295 668 56.1 68.2 

Ferritic 213800 301 316 502 15.6 29.7 

Duplex 213600 589 634 830 21.8 40.7 

Corroborating tests 

(IC) 

Austenitic 202900 285 302 653 -- 67.3 

Ferritic 213300 303 324 520 -- 27.8 

Duplex 208800 611 652 854 -- 41.3 

 

 

Figure 6. Comparison of measured stress-strain curves up to 1% strain for the three stainless 

steel families. 

3.2 Additional data collected from the literature 

In previous recent studies conducted by the authors (Real et al. [4], Arrayago et al. [5] and 

Afshan et al. [6]) experimental stress-strain data on austenitic, ferritic and duplex stainless steel 

material were generated and preliminary assessments of the material modelling provisions of 

EN 1993-1-4 were made. The need for further work was also highlighted. Hence, in order to 

enable an extensive analysis of the current provisions, a comprehensive database of 

experimental results has been assembled from the literature. The database, referred to as 

Database I in the paper to differentiate it from a second database introduced later, consists of 

more than six hundred measured stress-strain curves, supplied as raw data by international 

Austenitic 

Ferritic 

Duplex 
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research groups, and covering a range of stainless steel grades and products. Note that the 

majority of the collected results were from coupons tested in the rolling direction (RD) but a 

limited number were tested in the transverse and 45º directions (TD and 45º respectively); both 

tensile (T) and compressive (C) behaviour of the material was also considered. A summary of 

the assembled results is given in Table 2. Note also that when “cold-formed” is specified as the 

type of material in Table 2, this covers both flat and corner coupons extracted from cold-

formed sections.  

Table 2. Summary of assembled experimental stress-strain curves (Database I). 

Family Grade 

No. 

of 

curve

s 

Product 

type 
RD/TD/45º T/C 

Thickness 

range 

(mm) 

Reference 

Austenitic 

1.4301 14 Sheet RD T 3 Current paper 

1.4301 6 Sheet RD T 4-8 

Estrada et al. 

(2005)* 

Real et al. 

(2007)* 

1.4301, 

1.4435, 

1.4541, 

1.4307 

18 Sheet RD T 1-3 Outokumpu* 

1.4301 8 Cold-formed RD T 3-4 Nip et al. (2010) 

1.4301 9 Sheet RD T 2-5 
Xu and Szalyga 

(2011) 

1.4301, 

1.4571, 

1.4404 

42 Cold-formed RD T 2-8 
Afshan et al. 

(2013) 

1.4301 59 Cold-formed RD T 2-8 

Gardner (2002) 

Gardner and 

Nethercot 

(2004) 

1.4301 57 

Cold-

formed, 

sheet 

RD C 2-8 

Gardner (2002) 

Gardner and 

Nethercot 

(2004) 

1.4301 52 Cold-formed RD T 2-6 
Talja 

(1997a,b,c) 

1.4318, 

1.4301 
87 Cold-formed RD T 3 Talja (2002) 

1.4301 8 Cold-formed RD T 2-5 
Zhou and 

Young (2007) 

HSA 4 Cold-formed RD T 2-5 
Zhou and 

Young (2007) 

Ferritic 

1.4016 15 Sheet RD T 3 Current paper 

1.4003, 

1.4016, 
30 Sheet RD T 1.5-3.5 

Manninen 

(2011)* 
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1.4509, 

1.4521 

1.4003, 

1.4016, 

1.4509, 

1.4521 

27 Sheet TD T 1.5-3.5 
Manninen 

(2011) 

1.4003 10 

Cold-

formed, 

sheet 

RD T 0.8 
Real et al. 

(2012b) 

1.4003, 

1.4509 
20 Cold-formed RD T 3 

Afshan and 

Gardner (2013) 

1.4003, 

1.4509 
14 Cold-formed RD T 2-8 

Afshan et al. 

(2013) 

1.4003 9 Sheet 
RD, TD, 

45º 
T 1.5 Rossi (2010) 

 1.4509 21 Cold-formed RD T 1-3 
Talja and Hradil 

(2011) 

Duplex and 

lean duplex 

1.4462 14 Sheet RD T 3 Current paper 

1.4462 7 Cold-formed RD T 2-8 
Afshan et al. 

(2013) 

1.4462 6 Cold-formed RD T 2-6 Talja (1997a) 

1.4462 5 Cold-formed RD T 2-5 
Zhou and 

Young (2007) 

1.4162 18 Cold-formed RD T 3-4 
Theofanous and 

Gardner (2010) 

1.4162 25 Sheet RD, TD T, C 4-20 
Saliba and 

Gardner (2013a) 

1.4162 23 Sheet RD, TD T, C 6-12 
Saliba and 

Gardner (2013b) 

1.4162 12 Cold-formed RD T 1.5-2.5 
Huang and 

Young (2012) 

*: Experimental curves included in Real et al. (2012a)                         

RD: Rolling direction, TD: Transverse direction, 45º: 45º from the rolling direction            

T: Tension, C: Compression                                                                                                                     

HSA: High Strength Austenitic 

 

4. ANALYSIS OF RESULTS AND RECOMMENDATIONS 

The aforementioned data are analysed in this section in order to obtain the key material and 

strain hardening parameters for different stainless steel families and material types, after which 

the accuracy of the different expressions set out in EN 1993-1-4 and proposed in previous 

research for the determination of the key parameters, is assessed.  
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4.1 Analysis approach 

Full stress-strain curves were not available for all the supplied data, since in some cases only 

strain gauge measurements up to about 1% strain were provided. For the calculation of the 

material parameters related to the initial part of the stress-strain behaviour (i.e. Young’s 

modulus E, first strain hardening exponent n and initial proof stresses 0.01, 0.05, 0.2), all the 

collected curves (denoted Group I) have been analysed. However, when the ultimate 

characteristics of the material (i.e. second strain hardening parameter m, ultimate strain u, 

ultimate strength u) were under consideration, only the curves reaching the ultimate strain 

have been utilised in the analysis; these curves are denoted Group II. Table 3 shows the number 

of experimental stress-strain curves considered in the different analyses for the studied stainless 

steel families.  

Table 3. Number of curves considered in the different analyses for Database I. 

 

 

 

 

With the aim of simplifying the calculation of the material parameters from every analysed 

experimental stress-strain curve and moreover, carry out the complex calculation needed for the 

optimization of the strain hardening exponents n and m, a programme which automates all the 

required processes was developed. Although the key features of the programme are discussed 

in this paper, more extensive and detailed information can be found in Real et al. [4] and 

Westeel [35].  

 

The programme first obtains the Young’s modulus for each experimental curve from a linear 

regression analysis of a representative set of data. This data set has to be carefully defined, 

since the elastic modulus is sensitive to the range of data considered. Hence, the initial data 

recorded during the machine-coupon settlement, as well as any points on the nonlinear branch 

of the curves are removed. The proof stresses, including the 0.2% proof stress 0.2, which is 

conventionally used as the yield stress, corresponding to a plastic strain p p are then obtained 

by determining the intersection point between a line with the same slope as the initial Young’s 

 Group I Group II 

Austenitic 367 171 

Ferritic 126 94 

Duplex and 

lean duplex 
110 50 

TOTAL 603 315 
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modulus but passing through the offset strain p and the measured stress-strain curve. The 

ultimate strength u and the corresponding ultimate strain u are also captured. 

 

Determination of the strain hardening exponents is carried out by a least square adjustment 

approach, providing values of n and m that closely match the experimental curves to the 

considered material model by minimizing the error between the two. A similar approach was 

employed by Afshan et al. [6]. Since the calculated values of the strain hardening parameters 

depend on the considered material model, assessment of two-stage models is presented in the 

next section in order to determine the most appropriate for further analysis. 

 

4.2 General assessment of two-stage models 

As established in Section 2, different approaches are available for the modelling of stainless 

steel material behaviour. The two-stage models that can represent full stainless steel stress-

strain curves up to u are those of Mirambell and Real [7] and Rasmussen [8]. The main 

difference between these two models is the simplification that the latter considers, presented in 

Eq. (9), which assumes that the ultimate plastic strain in the second reference system *
up  is 

equal to the total ultimate strain u , by neglecting the 
2.0

2.0
2.0

E

u 



  term. This simplification 

is likely to be reasonable for the more ductile stainless steel grades (austenitic and duplex) 

where the neglected term is small compared to u, which were originally studied by Rasmussen 

[8], but needs to be assessed for the less ductile ferritic grades, particularly if the material has 

been cold-worked. Table 4 evaluates the implications of the simplification defined in Eq. (9) 

for the different stainless steel families by presenting the mean, minimum and maximum values 

of the ratio of ultimate strains with and without the neglected term. Mean values of ultimate 

strain u for the different stainless steel families are also presented. 

Table 4. Assessment of Eq. (9) for the different stainless steel families. 

 u

(mm/mm)
 2.0

2.0u
2.0

E




(mm/mm)
 













 


 2.0

2.0u
2.0u

u E

1
 

 
Mean Mean Mean Min Max 

Austenitic 0.42 0.018 1.04 1.02 1.08 

Ferritic 0.13 0.015 1.20 1.02 1.81 

Duplex and 

lean duplex 
0.20 0.012 1.05 1.03 1.19 
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Comparisons of the Mirambell-Real (MR) model and Rasmussen (R) model with measured 

stress-strain curves of austenitic and (cold-formed) ferritic stainless steel are shown in Figures 

7 and 8, respectively. The figures show that while the ultimate experimental stress and strain 

(u,exp and u,exp) coincide precisely with the ultimate stress and strain u,MR in the case of 

Mirambell-Real model, this is not the case for the Rasmussen model. In the later model, the 

ultimate strain u,R will always be greater than the experimental values, and by a larger 

proportion of the full curve for the less ductile materials, as indicated in Table 4. However, 

both models may be seen to accurately capture the overall stress-strain response of the two 

materials, and the discrepancies associated with the approximation of ultimate strain in the 

Rasmussen model are restricted to the latter portion of the curves. It is therefore concluded that 

both models are applicable to all stainless steel grades. It may also be noted that if the 

Rasmussen model is curtailed at u,exp and the corresponding stress, which will be marginally 

below u,exp, improved accuracy in the prediction of the ultimate region of the stress-strain 

response is achieved. 

 

Figure 7. Comparison of Mirambell-Real (MR) and Rasmussen (R) material models with an 

experimental austenitic stainless steel stress-strain curve. 

𝜎𝑢,𝑒𝑥𝑝 

𝜀𝑢,𝑀𝑅 = 𝜀𝑢,𝑒𝑥𝑝 

𝜀𝑢,𝑅 = 𝜀𝑢,𝑒𝑥𝑝 + 𝜀0.2 +
𝜎𝑢 − 𝜎0.2
𝐸0.2
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Figure 8. Comparison of Mirambell-Real (MR) and Rasmussen (R) material models with an 

experimental ferritic stainless steel stress-strain curve. 

4.3 Analysis of first strain hardening exponent n 

The accuracy of the classical expression proposed by Ramberg-Osgood [1] for the first strain 

hardening exponent n, as given by Eq. (2), is assessed herein. This constant is traditionally 

calculated by imposing that the analytical curve passes through the 0.01% and the 0.2% proof 

stresses. This is also the approach recommended in EN 1993-1-4. Different authors (Mirambell 

and Real [7], Rasmussen and Hancock [36], Real et al. [4] and Arrayago et al. [5]) have already 

suggested that using the 0.05% proof stress instead of 0.01%, as given by Eq. (14), may 

provide a better representation of stainless steel experimental stress-strain curves.  

Assessment of the two expressions (Eq. (2) and Eq. (14)) for the determination of n is presented 

in Figures 9-11 and Table 5, where comparisons with the values of obtained from experimental 

curves are shown. The predicted values of n are referred to as npred, while those obtained from 

the experiments through the described least squares optimisation process are denoted nexp. The 

results clearly demonstrate that Eq. (14) provides considerably more accurate predictions of the 

measured n values than Eq. (2), which is currently specified in Annex C of EN 1993-1-4. It is 
















05.0

2.0log

4log




n  

(14) 

𝜎𝑢,𝑒𝑥𝑝 

𝜀𝑢,𝑀𝑅 = 𝜀𝑢,𝑒𝑥𝑝 𝜀𝑢,𝑅 = 𝜀𝑢,𝑒𝑥𝑝 + 𝜀0.2 +
𝜎𝑢 − 𝜎0.2
𝐸0.2
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therefore recommended that EN1993-1-4 is modified to reflect this finding and that authors 

report the 0.05% proof stress 0.05 from their experimental studies in the future. 

 

Figure 9. Prediction of strain hardening parameter n for austenitic stainless steels. 

 

Figure 10. Prediction of strain hardening parameter n for ferritic stainless steels. 
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Figure 11. Prediction of strain hardening parameter n for duplex and lean duplex stainless 

steels. 

Table 5. Prediction of strain hardening exponent n for different stainless steel families. 

  
nexp/npred 

(Eq. 2) 
nexp/npred 

 (Eq. 14) 

Austenitic 
Mean 1.19 1.02 

COV. 0.224 0.080 

Ferritic 
Mean 1.35 0.95 

COV. 0.171 0.133 

Duplex and 

lean duplex 

Mean 1.47 1.05 

COV. 1.301 0.146 

All 
Mean 1.28 1.01 

COV. 0.661 0.113 

 

The mean values of the measured strain hardening parameters (n and m) for different stainless 

steel grades, section types and testing directions are presented in Table 6. The lowest n values 

were obtained for the austenitic and duplex grades, reflecting the more rounded stress-strain 

behaviour, while the ferritic grades exhibited the sharpest yield response and therefore the 

highest n values. The results also showed that the n values generally decrease as the level of 

cold-work increases, and that higher n values arose for material tested in the transverse 

direction than the longitudinal direction. 
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Table 6. Summary of measured strain hardening exponents (n and m) for Database I. 

Family Grade 
Product 

type 
RD/TD/45º T/C n m 

Austenitic 

1.4301 Sheet RD T 10.2 2.2 

 Sheet RD C 11.8 --- 

 
Cold-

formed 
RD T 7.9 3.7 

 
Cold-

formed 
RD C 4.8 --- 

1.4435 Sheet RD T 11.8 2.6 

1.4541 Sheet RD T 10.7 2.3 

1.4307 Sheet RD T 11.8 2.5 

1.4571 
Cold-

formed 
RD T 6.8 3.2 

1.4404 
Cold-

formed 
RD T 7.2 3.7 

1.4318 
Cold-

formed 
RD T 5.2 --- 

Ferritic 

1.4016 Sheet RD T 13.6 3.0 

 Sheet TD T 17.8 2.6 

1.4003 Sheet RD T 17.4 2.7 

 Sheet TD T 16.9 2.6 

 
Cold-

formed 
RD T 9.8 4.8 

1.4509 Sheet RD T 15.5 2.8 

 Sheet TD T 21.6 2.9 

 
Cold-

formed 
RD T 11.8 --- 

1.4521 Sheet RD T 18.5 2.6 

Duplex and 

lean duplex 

1.4462 Sheet RD T 8.1 3.9 

 
Cold-

formed 
RD T 6.9 3.9 

1.4162 Sheet RD T 9.6 3.5 

 Sheet TD T 10.6 3.4 

 
Cold-

formed 
RD T 8.3 4.7 

 Sheet RD C 7.2 --- 

 Sheet TD C 7.9 --- 

 

As noted earlier, in addition to providing formulae for the determination of n from 

experimental - data, the various stainless steel design Standards (EN 1993-1-4 [3], AS/NZS 

4673 [37] and SEI/ASCE-8-02 [38]) also provide numeric values for n for the different 

stainless steel grades. Differentiation is sometimes made between the material type (annealed 

or cold-formed), orientation of loading (rolling direction or transverse direction) and sense of 

loading (tension and compression). While EN 1993-1-4 only distinguishes between transverse 

or longitudinal directions, the Australian/New Zealand standard considers both the orientation 

of loading (transverse or longitudinal) and the sense of loading (tension or compression). The 



20 

 

North American specification considers not only the loading sense and orientation, but also the 

material’s level of cold-work. Following careful analysis of the collated n values, 

recommendations for values of the n parameter are presented in Table 7, where the number of 

curves from which the recommended values have been derived is also provided. These 

recommended values are close to those proposed by Afshan et al. [6], but benefit from a larger 

database of results, including all those considered by [6]. Note that the n values proposed 

herein are slightly higher than those recommended by Afshan et al. [6]. This is attributed to the 

different data sets that were analysed and the fact that the data set considered herein included a 

higher proportion of sheet material. This is relevant because cold-working of the sheet material, 

which would be experienced in the cold-forming of structural sections, produces a slightly 

more rounded stress-strain response i.e. lower n values. 

 

It should also be noted that it is proposed that no distinction is made between loading directions 

(transverse or longitudinal), sense of loading (tension or compression) or cold-worked level in 

assigning the values of n. This is for the following reasons: (1) simplicity, (2) there are 

insufficient data to enable a meaningful distinction to be drawn for many grades, (3) influence 

of the above parameters is generally relatively small in terms of the effect on the shape of the 

stress-strain curve, (4) a designer will not typically know whether the material will be 

orientated in the transverse or longitudinal direction, (5) the same structural element can be 

subjected to tension and compression depending on the load case under consideration, and (6) 

the level of cold-work (i.e. the amount of plastic strain to which the material has been 

subjected) will depend on the section geometry, the forming process and so on. 

 

Table 7. Codified and recommended values for strain hardening parameter n. 

Family Grade RD/TD T/C 

Codified n 

Recommended 

n 
EN 1993-

1-4 

(2006) 

AS/NZS-

4673 

(2001) 

SEI/ASCE-

8 (2002) 

Austenitic 

1.4301 RD T 6 7.5 8.3 7 

 RD C 6 4.0 4.1  

1.4435 RD T 7 --- ---  

1.4541 RD T 6 --- ---  

1.4307 RD T 6 7.5 ---  

1.4571 RD T 7 --- ---  

1.4404 RD T 7 7.5 ---  

1.4318 RD T 6 --- ---  

No. of curves: 367     

Ferritic 
1.4016 RD T 6 8.5 8.4 14 

1.4003 RD T 7 9.0 ---  
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1.4509 RD T --- --- ---  

1.4521 RD T --- 11.0 ---  

No. of curves: 117     

1.4016 TD T 14 14.0 14.1  

1.4003 TD T 11 11.5 ---  

1.4509 TD T --- --- ---  

No. of curves: 32     

Duplex 

and 

lean 

duplex 

1.4462 RD T 5 5.5 --- 8 

1.4162 RD T --- --- ---  

 RD C --- --- ---  

No. of curves: 92     

 TD T --- --- ---  

 TD C --- --- ---  

No. of curves: 22     

 

4.4 Analysis of second strain hardening exponent m 

Eq. (10) is provided in Annex C of EN 1993-1-4 for the determination of the second strain 

hardening exponent m. Recent studies involving the examination of austenitic and ferritic 

stainless steel stress-strain curves (Real et al. [4]; Arrayago et al. [5]) found that this expression 

provides higher values for the second strain hardening exponent m than those obtained from 

curve fitting. This issue is explored further herein, utilising the assembled database. Figure 12 

shows the experimental strain hardening exponents (obtained through the described curve 

fitting process) plotted against 0.2/u for the different stainless steel grades. Table 8 presents 

the mean experimental to predicted ratios of the second strain hardening parameters mexp/mpred 

for all the studied stainless steel stress-strain curves that reached the ultimate strain, referred to 

as Group II in Table 3. The mean mexp/mpred ratios are low for the majority of the analysed data, 

particularly the austenitic and ferritic grades. A revised expression, given by Eq. (15), was 

therefore proposed for all stainless steel grades, based on least squares regression.  

Table 8. Assessment of strain hardening exponent m for different stainless steel families. 

  EN1993-1-4, Annex C Proposed 

  
mexp/mpred 

(Eq. 10) 
mexp/mpred 

(Eq. 15) 

Austenitic 
Mean 0.84 0.98 

COV. 0.196 0.196 

Ferritic 
Mean 0.79 0.93 

COV. 0.153 0.150 

Duplex and 

lean duplex 

Mean 1.03 1.19 

COV. 0.264 0.148 

All 
Mean 0.85 1.00 

COV. 0.191 0.193 
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Figure 12. Assessment of strain hardening parameter m for different stainless steel families. 

Overall, the new proposal provides more accurate predictions for the second strain hardening 

parameter m than the existing formula (Eq. (10)) and is therefore recommended for code 

inclusion. 

4.5 Analysis of u 

Rasmussen [8] developed an expression to predict u in terms of two of the basic Ramberg-

Osgood parameters, 0.2 and E. The accuracy of this expression is assessed herein against the 

assembled test data, as shown in Figure 13, where 0.2u ratios have been plotted against 0.2E 

for the Group II data.  The experimental results have been compared to different predictive 

models: Eq. (12a) proposed by Rasmussen [8] for the austenitic and duplex grades and Eq. (16) 

proposed by Real et al. [4] for the ferritic grades.  

Figure 13 and Table 9 show that the original expression for the determination of u for 

austenitic, duplex and lean duplex stainless steels proposed by Rasmussen [8] provides very 

u

2.08.21m





 

(15) 

E
14546.0 2.0

u

2.0 





 (16) 
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good predictions of the assembled data set, so the validity of Eq. (12a) is confirmed. However, 

for ferritic stainless steels, Eq. (12b), which was proposed by Rasmussen for all stainless steel 

grades, provides inaccurate results. The accuracy of the revised expression proposed by Real et 

al. [4] for the ferritic grades has been confirmed by the experimental data analysed in Arrayago 

et al. [5] and the additional data studied herein.  

 

Figure 13. Assessment of ultimate strength u for different stainless steel families. 

Table 9. Assessment of ultimate strengthu for different stainless steel families. 

  
u, exp/u, pred 

  
Rasmussen (2003) Proposed 

  Eq. (12a) for austenitic,                                 

duplex, lean duplex 

Eq. (12b) for ferritics 

Eq. (12a) for austenitic, 

duplex, lean duplex 

Eq. (16) for ferritics 

Austenitic 
Mean 1.03 1.03 

COV. 0.126 0.126 

Ferritic 
Mean 2.35 0.97 

COV. 6.867 0.109 

Duplex and 

lean duplex 

Mean 0.98 0.98 

COV. 0.067 0.067 
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4.6 Analysis of u 

Assessment of the predictive expressions for ultimate strain is presented in Figure 14, where 

the experimental ultimate strain u is plotted against 0.2u ratios for data from 171 austenitic, 

94 ferritic and 50 duplex and lean duplex stainless steel tensile tests. Together with the 

experimental data, the expression for the determination of the ultimate strain provided in Annex 

C of EN 1993-1-4, given by Eq. (11), is also plotted. From Figure 14, this expression may be 

seen to provide very good predictions for the austenitic, duplex and lean duplex materials, so its 

accuracy is confirmed for these stainless steel families. However, as found in previous material 

modelling studies (Real et al. [4]; Arrayago et al. [5]; Bock et al. [39]), ferritic stainless steels 

exhibit less ductile behaviour than the austenitic and duplex grades, and Eq. (11) yields 

unconservative predictions of u. Bock et al. [39] conducted a detailed study of the prediction 

of u for ferritic stainless steel, and proposed a revised expression, described by Eq. (17). As 

shown in Figure 14 and Table 10, Eq. (17) also provides good predictions for the ferritic 

stainless steel data set assembled herein.  




















u

2.0

u
16.0  (17) 

 

Figure 14. Assessment of ultimate strain u for different stainless steel families. 
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Table 10. Assessment of ultimate strain u for different stainless steel families. 

  
u, exp/u, pred 

  
EN1993-1-4, Annex C Proposed 

  
Eq. (11) 

 

Eq. (11) for austenitic, 

duplex, lean duplex 

Eq. (17) for ferritics 

Austenitic 
Mean 1.09 1.09 

COV. 0.280 0.280 

Ferritic 
Mean 0.59 0.98 

COV. 0.565 0.565 

Duplex and 

lean duplex 

Mean 0.96 0.96 

COV. 0.275 0.275 

 

5. ADDITIONAL VALIDATION AND SUMMARY OF PROPOSALS 

5.1 Additional validation of the proposals 

This section presents an evaluation of the proposed equations through an independent 

experimental database gathered from the literature. In addition to the experimental results 

summarised in Table 2, which were available to the authors to analyse in the form of raw data, 

further results reported and analysed by others were also collected. This additional collection of 

results, referred to as Database II, is presented in Table 11 and consists of more than 400 tests. 

The results in this second database show a higher dispersion than Database I since the 

methodology for the calculation of the parameters will differ slightly between authors. The 

database comprises tests on different stainless steel families, cross-sectional shapes, thicknesses 

and testing directions.  Not all material parameters were reported for all specimens, so some 

expressions could only be evaluated against a sub-set of the database. 

Table 11. Summary of additional experimental results (Database II). 

Family Grade 

No. of 

curve

s 

Product 

type 
RD/TD/45º T/C 

Thickness 

range (mm) 
Reference 

Austenitic 

1.4301 4 
Cold-

formed 
RD, TD, 45 T, C 2 

Becque and 

Rasmussen 

(2009a) 

1.4301 6 
Cold-

formed 
RD, TD, 45 T, C 8.5 

Becque and 

Rasmussen 

(2009b) 

1.4301 7 
Cold-

formed 
RD T, C 1.2-2 

Niu and 

Rasmussen (2014) 
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1.4301, 

1.4435 
139 Sheets RD, TD T, C 2-10 Rasmussen (2001) 

1.4301 8 
Cold-

formed 
RD T, C 3 

Rasmussen and 

Hancock (1993a) 

1.4301 2 
Cold-

formed 
RD T 3 

Rasmussen and 

Hasham (2001) 

1.4301 3 
Cold-

formed 
RD T 3 

Rasmussen and 

Young (2001) 

1.4301 2 
Cold-

formed 
RD T 5 

Yousuf et al. 

(2013) 

1.4301 16 
Cold-

formed 
RD T 2-3 Fan et al. (2014) 

1.4301 12 
Cold-

formed 
RD T 1.2-4.8 Uy et al. (2011) 

1.4301 3 
Cold-

formed 
RD T 5 Han et al. (2013) 

1.4401 6 
Cold-

formed 
RD T 2-3 

Theofanous et al. 

(2009) 

1.4301 2 
Cold-

formed 
RD T 2 

Liu and Young 

(2003) 

Ferritic 

1.4003 18 
Cold-

formed 
RD, TD, 45 T, C 1-2 

Becque and 

Rasmussen 

(2009a) 

404 6 
Cold-

formed 
RD, TD, 45 T, C 1.2 

Becque and 

Rasmussen 

(2009b) 

1.4003, 

1.4016 
8 

Cold-

formed 
RD, TD T, C 1.2-2 

Lecce and 

Rasmussen (2006) 

1.4521 7 
Cold-

formed 
RD T, C 1.2-2 

Niu and 

Rasmussen (2014) 

1.4003 12 Sheet RD T 2-10 Rasmussen (2001) 

1.4003 2 
Cold-

formed 
RD T 3 

Tondini et al. 

(2013) 

1.4003 5 
Cold-

formed 
RD T 3-4 

Islam and Young 

(2012) 

 1.4509 21 
Cold-

formed 
RD T 1-3 

Talja and Hradil 

(2001) 

Duplex and 

lean duplex 

1.4462 93 Sheets RD, TD T, C 2-12 Rasmussen (2001) 

1.4462 6 Sheets RD T, C 3 
Rasmussen et al. 

(2003) 

HSD 8 
Cold-

formed 
RD T 1.5-3 

Ellobody and 

Young (2005) 

1.4462 5 
Cold-

formed 
RD T 3-6 

Ellobody and 

Young (2006) 

HSD 4 
Cold-

formed 
RD T 2-3 

Young and Lui 

(2006) 

1.4162 7 
Cold-

formed 
RD T, C 1.5 

Niu and 

Rasmussen (2014) 

RD: Rolling direction, TD: Transverse direction, 45º: 45º from the rolling direction            

T: Tension, C: Compression 

HSD: High Strength Duplex 
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Tables 12 to 14 compare the mean experimental to predicted ratios for the experimental results 

of Database II for m, u and u respectively, where the accuracy of the recommended 

expressions is assessed. 

Table 12. Assessment of the second strain hardening exponent m for different stainless steel 

families for Database II. 

  EN1993-1-4, Annex C Proposed 

  
mexp/mpred 

(Eq. 10) 
mexp/mpred 

(Eq. 15) 

Austenitic 
Mean 0.92 1.06 

COV. 0.186 0.190 

Ferritic 
Mean 0.67 0.78 

COV. 0.458 0.456 

Duplex and 

lean duplex 

Mean 
--- --- 

COV. 

 

Table 13. Assessment of the ultimate strength u for different stainless steel families for 

Database II. 

  
u, exp/u, pred 

  
Rasmussen (2003) Proposed 

  Eq. (12a) for austenitic,                                 

duplex, lean duplex 

Eq. (12b) for ferritics 

Eq. (12a) for austenitic, 

duplex, lean duplex 

Eq. (16) for ferritics 

Austenitic 
Mean 1.03 1.03 

COV. 0.097 0.097 

Ferritic 
Mean 1.28 0.98 

COV. 0.620 0.093 

Duplex and 

lean duplex 

Mean 0.99 0.99 

COV. 0.064 0.064 
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Table 14. Assessment of the ultimate strain u for different stainless steel families for Database 

II. 

  
u, exp/u, pred 

  EN1993-1-4, Annex 

C 
Proposed 

  
Eq. (11) 

 

Eq. (11) for austenitic, 

duplex, lean duplex 

Eq. (17) for ferritics 

Austenitic 
Mean 1.02 1.02 

COV. 0.253 0.253 

Ferritic 
Mean 0.71 1.06 

COV. 0.335 0.237 

Duplex and 

lean duplex 

Mean 1.04 1.04 

COV. 0.298 0.298 

 

The results show that the prediction of the key material parameters is more accurate when the 

proposals (when relevant) are considered, as the mean experimental to predicted ratios get 

closer to the unity, although the scatter of the data is generally maintained, in line with the 

dispersion presented by the analysed data. The new expressions proposed in Section 4 are 

found to accurately predict the material parameters reported by other authors: the strain 

hardening exponent m for austenitic and ferritic stainless steels and the ultimate strength and 

strain for ferritics. The original expressions seem to correctly estimate the experimental values 

of m, u and u for the other grades. 

5.2 Summary of proposals 

Based on the described analyses, the proposed predictive expressions and the recommended 

modifications to made to Annex C of EN1993-1-4 are summarised as follows: 
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for austenitic, duplex and 

lean duplex 
(11) 

for ferritic grades (17) 

Additionally, the revised values for the first strain hardening parameter n, presented in Table 7, 

are recommended for inclusion in EN1993-1-4. The numeric values of Young’s modulus for 

stainless steel proposed by Afshan et al. [6] are also recommended herein. 

6. CONCLUSIONS 

A comprehensive study into the nonlinear stress-strain response of stainless steel alloys and the 

modelling thereof is presented in this paper. A total of over 600 experimental stress-strain 

curves, including austenitic, ferritic and duplex grades has been collected and analysed. The 

collected data have been used for the assessment of existing two-stage material models and the 

expressions for the prediction of the key material parameters. The material model proposed by 

Rasmussen [8], and currently included in Annex C of EN 1993-1-4, was found to accurately 

represent the measured stress-strain curves for the different stainless steel grades and material 

types, including ferritic stainless steels for which the model had not previously been fully 

verified.  

Based on the assembled data set, values and predictive expressions for the key material 

parameters of the Rasmussen model were re-evaluated. A revised predictive equation and 

revised numeric values for the strain hardening parameter n have been recommended for all 

stainless steel families. A new expression for the prediction of the second strain hardening 

parameter m for all stainless steel grades has also been proposed. Finally, revised predictive 

expressions for ultimate tensile stress and strain for ferritic stainless steels have been proposed. 

It is recommended that the above proposals are incorporated into future revisions of EN 1993-

1-4. 

7. ACKNOWLEDGEMENTS 

The tested coupons presented in this work were provided by Acerinox, and the experiments 

were funded by the Ministerio de Economía y Competitividad (Spain) under the Project BIA 

2012-36373. The first author would like to acknowledge the financial support given by UPC. 

The authors would also like to recognize all the people and institutions that have provided the 

experimental curves for this research, the European Community's Research Fund for Coal and 

Steel (RFCS) under Grant Agreement No. RFSR-CT-2010-00026, and the Ministerio de 



30 

 

Ciencia e Innovación (Spain) under the Project BIA2010-11876-E “Acciones 

complementarias”. Finally, the authors would also like to thank all those who assisted during 

the tensile tests, especially Francisco Gonzalez. 

 

8. REFERENCES 

[1] Ramberg W and Osgood W R. (1943). Description of stress-strain curves by three 

parameters. Technical Note No. 902. Washington, D.C., USA: National Advisory Committee 

for Aeronautics, 1943. 

[2] Hill HN. (1944). Determination of stress-strain relations from "offset" yield strength values, 

Technical Note No. 927; 1944.  

[3] European Committee for Standardization Eurocode 3. (2006). Design of steel structures. 

Part 1-4: General rules. Supplementary rules for stainless steels. Brussels, Belgium; 2006. 

[4] Real E, Arrayago I, Mirambell E and Westeel R. (2014). Comparative study of analytical 

expressions for the modelling of stainless steel behaviour. Thin-Walled Structures 83, 2-11. 

[5] Arrayago I, Real E, Mirambell E. Constitutive equations for stainless steels: experimental 

tests and new proposal. Proceedings of The Fifth International Conference on Structural 

Engineering, Mechanics and Computation. Cape Town, South Africa, 2013; 1435–1440. 

[6] Afshan S, Rossi B, Gardner L. (2013). Strength enhancements in cold-formed structural 

sections – Part I: Material testing. Journal of Constructional Steel Research 83, 177–188. 

[7] Mirambell E and Real E. (2000). On the calculation of deflections in structural stainless 

steel beams: an experimental and numerical investigation. Journal of Constructional Steel 

Research 54(4), 109-133. 

[8] Rasmussen KJR. (2003). Full-range stress–strain curves for stainless steel alloys. Journal of 

Constructional Steel Research 59(1), 47-61. 

[9] Gardner L and Ashraf M. (2006). Structural design for non-linear metallic materials. 

Engineering Structures 28(6), 926-934.  

[10] Gardner L, Insausti A, Ng K T and Ashraf M. (2010). Elevated temperature material 

properties of stainless steel alloys. Journal of Constructional Steel Research. 66(5), 634-647. 

[11] Quach, W.M, Teng, J. G and Chung, K. F. (2008). Three-Stage Full-Range Stress-Strain 

Model for Stainless Steels. Journal of Structural Engineering ASCE 134(9), 1518-1527.  

[12] Hradil P, Talja A, Real E, Mirambell E and Rossi B. (2013). Generalized multistage 

mechanical model for nonlinear metallic materials. Thin-Walled Structures 63, 63–69. 



31 

 

[13] EN ISO 6892-1. 2009. (2009). Metallic materials - Tensile testing - Part 1: Method of test 

at room temperature. Brussels: European Committee for Standardization (CEN); 2009. 

[14] Huang Y and Young B. (2014). The art of coupon tests. Journal of Constructional Steel 

Research 96, 159-175.  

[15] Estrada I, Real E, Mirambell E. (2005). Stainless steel girders longitudinally stiffened: 

behaviour in shear. Experimental and numerical analysis. Eurosteel 2005, 4th European 

Conference on Steel and Composite Structures. Maastrich, Netherlands, 2005; 1.4: 215-220. 

[16] Real E, Mirambell E, Estrada I. (2007). Shear response of stainless steel plate girders. 

Engineering Structures 29(7), 1626–1640. 

[17] Nip KH, Gardner L, Elghazouli AY. (2010). Cyclic testing and numerical modelling of 

carbon steel and stainless steel tubular bracing members. Engineering Structures 32(2), 424-

441. 

[18] Xu M. and Szalyga M. (2011). Comparative investigations on the load-bearing behaviour 

of single lap joints with bolts stressed in shear and bearing-experimental and simulation. Master 

Project. University of Duisburg-Essen, Institute for Metal and Lightweight Structures, 2011.  

[19] Gardner L. (2002). A New Approach to Structural Stainless Steel Design. Doctoral Thesis. 

Imperial College  London. 

[20] Gardner L and Nethercot D. (2004). Experiments on stainless steel hollow sections - Part 

1: Material and cross-sectional behaviour. Journal of Constructional Steel Research 60(9), 

1291-1318. 

[21] Talja A. (1997). Development of the use of stainless steel in construction. Test report on 

welded I and CHS beams, columns and beam-columns. WP 3.1, 3.2 and 3.3. Final Report. VTT 

Technical Research Centre of Finland. December 1997. 

[22] Talja A. (1997). Development of the use of stainless steel in construction. Test report on Z 

sections restrained by sheeting. WP 3.1, 3.2 and 3.3. Final Report. VTT Technical Research 

Centre of Finland. August 1997. 

[23] Talja A. (1997). Development of the use of stainless steel in construction. Test report on 

sheeting. WP 3.1, 3.2 and 3.3. Final Report. VTT Technical Research Centre of Finland. 

August 1997. 

[24] Talja A. (2002). Structural design of cold-worked austenitic stainless steel. Test results of 

RHS, top-hat and sheeting profiles. WP 3.1, 3.2 and 3.3. Final Report. VTT Technical Research 

Centre of Finland. December 2002. 

http://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC4QFjAA&url=http%3A%2F%2Fwww.vtt.fi%2F%3Flang%3Den&ei=5AozUrOADPLH7AaH-IDABw&usg=AFQjCNEWq58JoeyGg5pwFiQ7IpzK7XjMkA&sig2=PbjDrsaGgy0cLGOXh2aUjw&bvm=bv.52164340,d.ZGU
http://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC4QFjAA&url=http%3A%2F%2Fwww.vtt.fi%2F%3Flang%3Den&ei=5AozUrOADPLH7AaH-IDABw&usg=AFQjCNEWq58JoeyGg5pwFiQ7IpzK7XjMkA&sig2=PbjDrsaGgy0cLGOXh2aUjw&bvm=bv.52164340,d.ZGU
http://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC4QFjAA&url=http%3A%2F%2Fwww.vtt.fi%2F%3Flang%3Den&ei=5AozUrOADPLH7AaH-IDABw&usg=AFQjCNEWq58JoeyGg5pwFiQ7IpzK7XjMkA&sig2=PbjDrsaGgy0cLGOXh2aUjw&bvm=bv.52164340,d.ZGU
http://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC4QFjAA&url=http%3A%2F%2Fwww.vtt.fi%2F%3Flang%3Den&ei=5AozUrOADPLH7AaH-IDABw&usg=AFQjCNEWq58JoeyGg5pwFiQ7IpzK7XjMkA&sig2=PbjDrsaGgy0cLGOXh2aUjw&bvm=bv.52164340,d.ZGU
http://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC4QFjAA&url=http%3A%2F%2Fwww.vtt.fi%2F%3Flang%3Den&ei=5AozUrOADPLH7AaH-IDABw&usg=AFQjCNEWq58JoeyGg5pwFiQ7IpzK7XjMkA&sig2=PbjDrsaGgy0cLGOXh2aUjw&bvm=bv.52164340,d.ZGU
http://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC4QFjAA&url=http%3A%2F%2Fwww.vtt.fi%2F%3Flang%3Den&ei=5AozUrOADPLH7AaH-IDABw&usg=AFQjCNEWq58JoeyGg5pwFiQ7IpzK7XjMkA&sig2=PbjDrsaGgy0cLGOXh2aUjw&bvm=bv.52164340,d.ZGU
http://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC4QFjAA&url=http%3A%2F%2Fwww.vtt.fi%2F%3Flang%3Den&ei=5AozUrOADPLH7AaH-IDABw&usg=AFQjCNEWq58JoeyGg5pwFiQ7IpzK7XjMkA&sig2=PbjDrsaGgy0cLGOXh2aUjw&bvm=bv.52164340,d.ZGU


32 

 

[25] Zhou F and Young B. (2007). Experimental and numerical investigations of cold-formed 

stainless steel tubular sections subjected to concentrated bearing load. Journal of Constructional 

Steel Research 63, 1452-1466. 

[26] Manninen, T. (2011). Structural Applications of Ferritic Stainless Steels (SAFSS): WP1 

End-user Requirements and Material Performance. Task 1.3 Characterization of stress-strain 

behaviour: Technical Specifications for Room-Temperature: Tensile and Compression Testing. 

November, 2011. 

[27] Real E, Mirambell E, Arrayago I, Marimon F. (2012). Structural Application of Ferritic 

Stainless Steels (SAFSS): WP3: Structural and thermal performance of steel-concrete 

composite floor systems. Task 3.2: Decking tests in the construction stage. Internal report. 

November 2012. 

[28] Afshan S, Gardner L. (2013). Experimental study of cold-formed ferritic stainless steel 

hollow sections. Journal of Structural Engineering ASCE 139(5), 717-728.  

[29] Rossi B. (2010). Mechanical behaviour of ferritic grade 3Cr12 stainless steel. Part 1: 

Experimental investigations. Thin-Walled Structures 48, 553–560. 

[30] Talja A and Hradil P. (2011). Structural performance of steel members: Model calibration 

tests. SAFSSWP2 Internal Report. 

[31] Theofanous M and Gardner L. (2010). Experimental and numerical studies of lean duplex 

stainless steel beams. Journal of Constructional Steel Research 66, 816-825.  

[32] Saliba N and Gardner L. (2013). Experimental study of the shear response of lean duplex 

stainless steel plate girders. Engineering Structures 46, 375-391. 

[33] Saliba N and Gardner L. (2013). Cross-section stability of lean duplex stainless steel 

welded I-sections. Journal of Constructional Steel Research 80, 1-14. 

[34] Huang Y and Young B. (2012). Material properties of cold-formed lean duplex stainless 

steel sections. Thin-Walled Structures 54, 72–81. 

[35] Westeel, R. (2012). Análisis comparativo de expresiones analíticas para modelizar el 

comportamiento tenso-deformacional no lineal del acero inoxidable. Tesina de especialidad. 

ETSECCPB, Universitat Politècnica de Catalunya, 2012.  

[36] Rasmussen KJR and Hancock GJ. (1993). Design of cold-formed stainless steel tubular 

members II: Beams. Journal of Structural Engineering ASCE 119(8), 2368-2386. 

[37] AS/NZS 4673. (2001). Cold-formed stainless steel structures. Sydney: Standards 

Australia; 2001. 

[38] SEI/ASCE 8-02. (2002). Specification for the design of cold-formed stainless steel 

structural members. Reston: American Society of Civil Engineers (ASCE); 2002. 



33 

 

[39] Bock M, Gardner L and Real E. (2014). Material and local buckling response of ferritic 

stainless steel sections. Thin-Walled Structures, submitted. 

[40] Becque J and Rasmussen KJR. (2009). Experimental investigation of local-overall 

interaction buckling of stainless steel lipped channel columns. Journal of Constructional Steel 

Research 65, 1677-1684. 

[41] Becque J and Rasmussen KJR. (2009). Experimental investigation of the interaction of 

local and overall buckling of stainless steel I-columns. Journal of Structural Engineering ASCE 

135(11), 1340-1348. 

[42] Niu S, Rasmussen KJR and Fan F. (2014). Distortional–global interaction buckling of 

stainless steel C-beams: Part I: Experimental investigation. Journal of Constructional Steel 

Research 96, 127–139. 

[43] Rasmussen KJR. (2001). Full-range stress-strain curves for stainless steel alloys. Research 

report No. R811.  Department of Civil Engineering. The University of Sydney. 

[44] Rasmussen KJR and Hancock GJ. (1993). Design of cold-formed stainless steel tubular 

members. I: Columns. Journal of Structural Engineering ASCE 119(8), 2349-2367. 

[45] Rasmussen KJR and Hasham AS. (2001). Tests of X- and K- joints in CHS stainless steel 

tubes. Journal of Structural Engineering ASCE 127(10), 1183-1189. 

[46] Rasmussen KJR and Young B. (2001). Tests of X- and K- joints in SHS stainless steel 

tubes. Journal of Structural Engineering ASCE 127(10), 1173-1182. 

[47] Yousuf M, Uy B, Tao Z, Remennikov A and Liew JYR. (2013). Transverse impact 

resistance of hollow and concrete filled stainless steel columns. Journal of Constructional Steel 

Research 82, 177–189. 

[48] Fan S, Liu F, Zheng B, Shu G and Tao Y. (2014). Experimental study on bearing capacity 

of stainless steel lipped C section stub columns. Thin-Walled Structures 83, 70-84. 

[49] Uy B, Tao Z and Han LH. (2011). Behaviour of short and slender concrete-filled stainless 

steel tubular columns. Journal of Constructional Steel Research 67, 360–378. 

[50] Han LH, Chen F, Liao FY, Tao Z and Uy B. (2013). Fire performance of concrete filled 

stainless steel tubular columns. Engineering Structures 56, 165–181. 

[51] Theofanous M, Chan TM and Gardner L. (2009). Structural response of stainless steel oval 

hollow section compression members. Engineering Structures 31, 922-934. 

[52] Liu Y and Young B. (2003). Buckling of stainless steel square hollow section compression 

members. Journal of Constructional Steel Research 59, 165–177. 

[53] Lecce M and Rasmussen KJR. (2006). Distortional buckling of cold-formed stainless steel 

sections: experimental investigation. Journal of Structural Engineering ASCE, 132(4), 497-504. 



34 

 

[54] Tondini N, Rossi B and Franssen JM. (2013). Experimental investigation on ferritic 

stainless steel columns in fire. Fire Safety Journal 62, 238–248. 

[55] Islam SMZ and Young B. (2012). Ferritic stainless steel tubular members strengthened 

with high modulus CFRP plate subjected to web crippling. Journal of Constructional Steel 

Research 77, 107–118. 

[56] Rasmussen KJR, Burns T, Bezkorovainy P and Bambach MR. (2003). Numerical 

modelling of stainless steel plates in compression. Journal of Constructional Steel Research 59, 

1345–1362. 

[57] Ellobody E and Young B. (2005). Structural performance of cold-formed high strength 

stainless steel columns. Journal of Constructional Steel Research 61, 1631–1649. 

[58] Ellobody E and Young B. (2006). Experimental investigation of concrete-filled cold-

formed high strength stainless steel tube columns. Journal of Constructional Steel Research 62, 

484–492. 

[59] Young B and Lui WM. (2006). Tests of cold-formed high strength stainless steel 

compression members. Thin-Walled Structures 44, 224–234. 

 


	ADPAE66.tmp
	UPCommons
	Portal del coneixement obert de la UPC
	7TUhttp://upcommons.upc.edu/e-prints
	Aquesta és una còpia de la versió author’s final draft d'un article publicat a la revista [Títol de la revista].
	URL d'aquest document a UPCommons E-prints: 7TUhttp://hdl.handle.net/xxxx/xxxxxU7T
	Article publicatP0F P / Published paper:




