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Abstract

This work aims to provide a scalable code for simulating compressible vis-
cous flows. Stabilized finite element methods for solving the compressible
Navier-Stokes equations have been implemented and assessed. For solving
these equations, two sets of variables have been used, namely the conserva-
tive and the entropy set. In any case, for the performed benchmarks both
sets of variables show similar accuracy. However, the entropy variables are
more amenable to parallel iterative solvers. For this latter set of variables,
a first order IMEX scheme has been implemented, and the arising algebraic
system of equations is solved with a BDDC preconditioned GMRES. This
combination shows high algorithmic scalability for thousands of processors.
In addition, several benchmarks have been run for the assessment, which
show a good behaviour of the code for the compressible Navier-Stokes equa-
tions in presence of shocks and boundary layers. Moreover, it has also been
tested for inviscid problems where also shows good behaviour.
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1 | Introduction

In the present work, a brief review of existing finite elements methods (FEM) for solving

the compressible Navier-Stokes equations, our implementation, and its assessment is

discussed.

The compressible Navier-Stokes equations model the behaviour of ideal Newtonian

gases. Several areas of science and many different industries deal with this kind of

flows, such as aerospace, automotive, aviation or chemical industry, for the design of

turbines, wind mills, compressors or pumps.

Most of these applications some simplifications to these equations can be applied.

Usually, the compressibility effects do not show up for low speed flows1, thus the equa-

tions can be greatly simplified. Sometimes, for high speed flows, since gases have very

low viscosities, its effect can be dropped and simplifications yield to the Euler equa-

tions, which are easier to approximate numerically than the compressible Navier-Stokes

equations.

However, for flows at high speed around structures with complex geometries or air-

foils with large angles of attack, neither the compressibility nor the viscosity can be

dropped. In these latter cases it is very important to provide highly accurate numer-

ical methods. Additionally, since boundary layers and shocks appear in this type of

problems, extensive regions of require very refined meshes. It might result in very large

algebraic systems of equations. Therefore, as well as accurate and stable methods, it is

also important to provide highly efficient parallel solvers.

Furthermore, it is important to develop efficient parallel methods for implicit time

integrators, because stability conditions arising from stiff terms can force us to solve

time scales much smaller than the ones of engineering or scientific interest, yielding to

a low efficiency performance when using explicit time integration.

1Lower velocities than a third of sound’s speed.
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1. INTRODUCTION

Making use of existing methods for solving the compressible Navier-Stokes equations

in combination with the latest developments in domain decomposition algorithms, the

present work aims to provide a code that fulfils all the previous requirements.

Finally it is worth to say that this work has been developed within the framework

of the FEMPAR library, adding to it the capability of solving the compressible Navier-

Stokes equations. FEMPAR is a library for the development of Finite Element Multi-

physics PARallel solvers. Which has been tested in the largest supercomputers in the

world showing scalability, i.e., efficient performance, for coercive problems up to almost

half a million cores. Hence, it becomes an excellent framework for our developments.

This work is divided into five main parts. In Chapter 2 a brief review of the current

state of the art is presented. In Chapter 3 the formulation, methods and techniques

implemented in the present work are elucidated. In Chapter 4 the result of several

numerical experiments are shown. In Chapter 5, the conclusions are drown and some

future work is proposed. Finally, the appendix A contains several definitions useful for

Chapter 3, particularly the definitions of the Euler Jacobian and coefficient matrices

for the compressible Navier-Stokes equations for both sets of variables, conservative

and entropy sets, and the definitions of the right eigenvectors that diagonalize a linear

combination of the Euler Jacobian matrices.
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2 | State of the Art

In this chapter, the current state-of-the-art in FE methods for solving the compress-

ible Navier-Stokes equations is presented. Solving these equations is one of the most

difficult areas of computational fluid dynamics, because most of the difficulties in CFD

appears here [1]. In order to solve this problem one must face the mixed hyperbolic-

parabolic governing equation, strong nonlinearities, convection dominated flows, shock

waves, boundary layers, wakes, and their interaction. However, several approaches and

methods have already been designed for tackling this problem.

The classical way of writing these equations arises from the particularization of the

balance of mass, momentum, and energy for a Newtonian fluid. Let us recall these

three conservation laws in non-conservative Eulerian form

∂ρ

∂t
+∇ ·(ρu) = 0,

ρ
∂u

∂t
+ ρ(u ·∇)u = ρb−∇ ·σ, (2.1)

ρ
∂e

∂t
+ ρu ·∇ e = σ : ∇u−∇ ·q,

where ρ is the density of the fluid, u, e, σ its velocity, total energy and stress tensor

respectively, b represents the body forces applied to the fluid and q the heat flow.

Then, particularizing to a Newtonian ideal fluid, the following constitutive model and

state equations close the system

e = i+
|u|2
2

= cvθ +
|u|2
2

(2.2)

p = (γ − 1)ρi (2.3)

σ = −pI+∇ ·τ = −pI+ λ(∇ ·u)I+ µ(∇u+∇
T u) (2.4)

q = −κ∇ θ (2.5)

3



2. STATE OF THE ART

where

� i, θ, p are the internal energy, the temperature and the pressure, respectively,

� cv is the specific heat capacity at constant volume,

� γ is the adiabatic index, also known as heat capacity ratio
(

γ =
cp
cv

)

, where cp is

the specific heat capacity at constant pressure,

� µ is the dynamic viscosity of the fluid,

� λ is the so-called compressible viscosity or second viscosity,

� κ is the conductivity of the fluid.

It is well known that the previous equations can be expressed in conservative form.

Defining the following vectors

U := ρ
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(2.6)

where U is the vector of conservative variables, Fi is the vector containing the Euler

fluxes (i.e., inviscid fluxes) and Fd
i is vector of viscous fluxes. The classical equations

(2.1) can be rearranged into its conservative form

U,t + Fi,i − Fd
i,i = F (2.7)

where , t means the temporal derivative and , i is the spatial derivative with respect

to xi. Note that in the previous expressions Einstein summation applies. Moreover,

defining

Ai =
∂Fi

∂U
, Kij

∂U

∂Xj
= Fd

i , (2.8)

the conservative form can be rewritten as a tensor convection–diffusion problem. Which

takes the form

U,t +AiU,i − (KijU,j),i = F. (2.9)
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2. STATE OF THE ART

Explicit definitions of the Euler flux Jacobian (Ai) and viscous matrices Kij can be

found at the appendix A.1.

The fact that the compressible Navier-Stokes equations can be written in conservative

form, tempts numerical analysts and engineers to use conservative methods, because

those methods satisfy exactly the bases of the balance equations: the conservation

of mass, momentum, and energy. Although this does not imply better accuracy, in

the engineering community the finite volume method (FVM) appears to be the most

popular for solving these equations. However, FVM lacks of a practical extension to

spatial high-order discretizations (more than second order). Hence, the finite element

method is preferred in that context [1].

Typically the starting point to derive schemes to solve the compressible Navier Stokes

equations are schemes for the Euler equations. This yields to methods still valid when

viscosity and conductivity vanishes, and ensures a well behaviour in the limit case when

these terms are low compared to others.

However the Euler equations have usually been solved with explicit integration scheme,

and the schemes developed for the viscous flows have followed the same direction. The

usage of the explicit schemes is completely justified for problems whose time scale of

interest are of the same order of the stability conditions. However, the viscosity is a stiff

term that adds a stringent stability condition. This means that the stability conditions

can become much smaller than the time scales of engineering interest. Thus, depend-

ing on the application problem it might be desirable to integrate implicitly rather than

reducing the time step. One example is the simulation of MHD using fluid models of

plasma,

Therefore, it is convenient to develop special implicit solvers able to deal with the

compressible Navier Stokes equations. First of all, a particular decision of this problem

is the usage of one set of unknowns or another. Usually, in other physical problems,

the numerical system of equation is formulated in the same unknowns as the governing

equations, i.e., in primitive variables. Whereas in this case there are different options,

namely the pressure, density, conservative, or entropy variables. Hauke and Hughes

[2] performed an analysis of the advantages and drawbacks of each choice, and the

main conclusion was that any set has much greater advantages over the rest, rather

depending on the problem it is better one set or another. Nonetheless, most of the

authors either use the conservative set of variables [3–8], an entropy set of variables

[2, 9–13], or both.

5



2. STATE OF THE ART

In the case of explicit solvers, clearly one should use the previously introduced set

of conservative variables, because in presence of shocks it is more robust than a set

of primitive variables –either pressure or density based– [2]. Furthermore, the explicit

scheme arising after symmetrization with entropy variables is still nonlinear. Hence,

for explicit schemes, the decision seems to be clear, but for implicit time integration

it is harder to choose. In the following sections we try to elucidate the advantages

and drawbacks of both sets of unknowns, while showing the previous works of other

authors. In addition, a third section about the parallelization aspects is included.

2.1 Conservative variables

The choice of conservative variables yields to easier schemes to implement and simpler

definitions for the stabilization and shock capturing parameters [4]. Nevertheless, this

choice does not affect greatly the accuracy of the results [2]. Furthermore, as previously

said for explicit schemes, in contrast to the entropy variables, it yields –as expected–

to a linear mass matrix.

For the Galerkin terms both sets yield to equivalent terms (see Sections 3.1 and

3.2). Greater differences appear for stabilization terms. For the conservative variables,

different definitions for the stabilization parameters have been developed in the recent

years. Firstly, Aliabadi and Tezduyar [3] adapted the definitions of [10] in entropy

variables to their formulation in conservative variables, which were later used by Kirk

and Carey [5] and Kotteda and Mittal [8]. More recently Tezduyar and Senga [4]

developed new and simpler definitions for the stabilization parameters in conservative

variables that were lately used by Sevilla et al. [7] too. These latter definitions have

been proved in [4] to yield to better stability than the originally developed formulation

by Aliabadi and Tezduyar [3].

Although each author uses different versions of the stabilization parameter, all of

them use it alongside SUPG. On the contrary, a completely different strategy is used

by Nazarov and Hoffman [6], who opt to drop the streamline stabilization and use only

a modified shock capturing based on an earlier one defined by Johnson et al. [9].

In any case, these formulations lack of a stability proof, which means that without

special treatments the Galerkin terms simply might not work, or might converge to

solution that do not satisfy the entropy production inequality, namely the second law

of thermodynamics.

6



2. STATE OF THE ART

Finally another drawback of conservative variables appears when integrating im-

plicitly in time and the resulting system is intended to be solved in parallel. In this

situation, the unawareness of the positive definiteness of the system of equations limits

the methods that can be used. However, conservative variables are preferred when in-

tegrating explicitly, because the system of equations that arises is linear SPD. Whereas

entropy variables yields to a nonlinear SPD system of equations.

2.2 Entropy variables

First of all, let us define the entropy set of variables, which arises from the symmetriza-

tion of the Navier Stokes system, written in quasi-linear form:

U,t +AiU,i − (KijU,j),i = F. (2.10)

The following theorems set the relationships between symmetric hyperbolic systems (as

the Euler equations, K = 0) and generalized entropy functions.

Theorem 1 (Godunov [14]) If a hyperbolic system can be symmetrized by introduc-

ing a change of variables, then a generalized entropy function and corresponding entropy

fluxes exist for this system.

Theorem 2 (Mock [15]) A hyperbolic system of conservation laws possessing a gen-

eralized entropy function becomes symmetric hyperbolic under the change of variables

Vt = H,U . (2.11)

Harten [16] proposed the family of entropy functions

H = −ρg(s), g′ > 0,
g′′

g′
< γ−1 (2.12)

for the Euler equations. Hughes [17] introduced restrictions on the definition of g(s) for

the Navier Stokes equations, where g must be an affine function of s in order to obtain

a symmetric diffusion matrix K̃. Particularly, the change of variables defined by [17]

takes H = −ρs. Nevertheless, other definitions of H can symmetrize the Navier Stokes

equations, for instance Wong et al. in [12] derived a change of variables that provides

better solutions for low Mach numbers. Indeed, its entropy variables converge to the

incompressible velocity and pressure variables as the Mach number decrease. Another

7



2. STATE OF THE ART

example of symmetrization –used in the present work– is the one derived by Barth in

[11], which takes H = −ρs/γ. This subtle modification yields to simplifications when

deriving the stabilization parameters, which will be shown later. For the particular

case of Barth’s symmetrization, the change of variables U → V takes the form

V :=
1

ρiγ























−U5 + ρi(γ + 1− s)

U2

U3

U4

−U1























(2.13)

where

s := ln

(

γρi

Uγ
1

)

and ρi := U5 −
1

2
(U2

2 + U2
3 + U2

4 )/U1 (2.14)

In addition, using any of the preceding symmetrizations, two significant results are

found. On the one hand, it can be proved that after symmetrization the matrix K̃ is

positive semi-definite and the Riemann metric tensor arising in the transient term from

the symmetrization is positive definite. This properties are very important during the

task of choosing a solver for the resulting discrete system of equations.

On the other hand, only a weak stability proof can be provided with the symmetric

version of the Navier Stokes equations. With this set of variables, it can be proved

that the second principle of thermodynamics is always satisfied by the Galerkin terms

without the need of special terms, which can be shown in few steps. Let us multiply

the symmetrized equation by vector of unknowns V,

V ·
(

Ã0V,t +AiÃ0V,i − (KijÃ0V,j),i − F

)

= 0. (2.15)

From this, several simplifications can be done. The transient term becomes

V · Ã0V,t = H,UU,V V,t = H,t. (2.16)

A property of generalized entropy functions states that H,UAi = σi,U , where σi are the

so-called entropy fluxes. For the Harten’s family of generalized entropy functions, these

8



2. STATE OF THE ART

entropy fluxes are computed as σi = Hui. Therefore, the Euler flux term becomes

V · ÃiV,i = H,UAiU,V V,i = σi,UU,V V,i = σi,i = (Hui),i. (2.17)

Moving V inside the derivative, the diffusive term reads

−V · (KijÃ0V,j),i = V,i · K̃ijV,j − (V · K̃ijV,j),i, (2.18)

where, by definition of the viscous fluxes, the latter term is just

V · K̃ijV,j = V · Fd
i =

qi
cvθγ

. (2.19)

Hence, the whole diffusive term reads

−V · (KijÃ0V,j),i = V,i · K̃ijV,j −
(

qi
cvθγ

)

,i

. (2.20)

Finally, by definition of the body force vector V · F is simply

V · F =
ρr

cvθγ
. (2.21)

Then

0 = H,t + (Hui),i −V,i · K̃ijV,j −
(

qi
cvθγ

)

,i

− ρr

cvθγ
. (2.22)

Now recalling that the physical entropy is η = scv, we get:

0 =
1

cvγ

(

−(ρη),t − (ρηui),i + cvγV,i · K̃ijV,j −
(qi
θ

)

,i
− ρr

θ

)

. (2.23)

Rearranging terms and recalling that K̃ is positive semi-definite, we obtain that the

Clausius-Duhem inequality is satisfied, i.e., the second law of thermodynamics is satis-

fied

(ρη),t + (ρηui),i +
(qi
θ

)

,i
− ρr

θ
= cvγV,i · K̃ijV,j ≥ 0. (2.24)

This is the basic nonlinear stability condition for the compressible Navier Stokes equa-

tions [10]. In any case, notice that for the Euler equations the entropy will be conserved,

which yields to oscillations in regions were entropy is produced, such as shocks.

Therefore, even with the Galerkin terms satisfying the previous stability condition,

further stabilization is required in convection-dominated flows as well as in shocks. For

9



2. STATE OF THE ART

the purpose of showing the main stabilization terms defined in the literature, let us

consider only the hyperbolic part for the moment, i.e., the Euler equations. In this

context, it is useful to recall the eigenvector scaling theorem, proved by Barth in [11].

Theorem 3 (Barth [11]) Let A ∈ R
n×n be an arbitrary diagonalizable matrix and S

the set of all right symmetrizers:

S = {B ∈ R
n×n| vBvT > 0 ∀v, B = BT , AB = (AB)T } (2.25)

Further, let R ∈ R
n×n denote the right eigenvector matrix which diagonalizes A

A = RΛR−1 (2.26)

with r different eigenvalues, Λ = diag(λ1Im1×m1
, λ2Im2×m2

, ..., λrImr×mr). Then for

each B ∈ S there exists a symmetric block diagonal matrix T = diag(λ1Im1×m1
,

λ2Im2×m2
, ..., λrImr×mr) that block scales columns of R, R̃ = RT , such that

B = R̃R̃T , A = R̃ΛR̃−1 (2.27)

which imply

AB = R̃ΛR̃T . (2.28)

Therefore an immediate result is that the convection matrices Ai or even an arbitrary

linear combination of it, A(n) = niAi with ‖n‖ = 1, can be symmetrized using Ã(n) :=

A(n)Ã0, such that

A(n) = R̃(n)ΛR̃−1(n), Ã0 = R̃(n)R̃T (n). (2.29)

Hence,

Ã(n) = R̃(n)ΛR̃T (n) (2.30)

furthermore, R̃(n) takes a simple analytical expression (see Appendix A.2). This result

is of special interest for the derivation of the stabilization parameters, because the ab-

solute value of the matrix needs to be computed for the stabilization parameter defined

by Barth [11]. Hence, the previous theorem allow us to compute it without solving any

eigensystem. On the contrary, the parameter defined by Shakib et al. [10] requires to

compute the square root inverse of a dense matrix instead of its absolute value. The

authors advocate Cayley-Hamilton theorem in [10], but this becomes cumbersome for

matrices of size 3 or larger.

10



2. STATE OF THE ART

Unfortunately, Barth’s definition [11] does not include the effect of viscosity in the

stabilization parameters. Yano and Darmofal introduced in [13] a correction in order

to include the viscosity effects on Barth’s stabilization parameters.

Apart form the definition of the stabilization parameters, the method mainly used is

the Galerkin Least-Squares. Only Wong et al. [12] use SUPG, but since they solve the

Euler equations both methods are equivalent.

Clearly, the drawback of the symmetrized formulation is that it becomes more in-

volved. However, it allows us to prove that Ã0 is symmetric positive-definite and K̃ is

symmetric positive semi-definite. Furthermore, entropy-stability is proved.

Finally, another advantage of the entropy variables is that the resulting algebraic

system of equations becomes more amenable for parallel iterative solvers. Although

Aliabadi and Tezduyar [3] have used parallel solvers with conservative variables, more

sophisticated methods used in large scale computing, such as BDDC, FETI or multigrid,

yield better performance and are optimal when solving SPD matrices. Hence the usage

of entropy variables for implicit time integration is advantageous in that case.

2.3 Parallelization

For both sets of variables it is important to develop parallel solvers in order to be able

to solve large problems. As previously stated, entropy variables yield to a system of

equations more amenable to iterative solvers. Hence only this set will be considered for

parallel implementations.

Several methods exist for solving the linear system of equations arising from the FEM

discretization of the compressible Navier Stokes, from parallel sparse direct solvers to

domain decomposition preconditioners for iterative solvers. Each of them show special

properties that make them suitable for different applications. In any case the scalability

of a parallel solver is decisive for large scale computing tests.

The scalability of a code measures its ability to efficiently exploit increasing compu-

tational resources. Two different scalability tests can be performed. On the one hand,

a code is said to be strongly scalable if for a fixed problem size, the CPU time decreases

proportionally to the inverse of the number of processors. On the other hand, a code is

weakly scalable if the CPU time does not increase as both problem size and processors

increase at the same rate.

11



2. STATE OF THE ART

A recently developed method is the balancing domain decomposition by constraints

(BDDC) [18], which in fact is usually used as a preconditioner in a Krylov subspace

iterative solver. This method has already been used for solving the compressible Navier

Stokes equations [13] and shows great scalability results for coercive problems [19, 20].

Very briefly, BDDC is based on, given a partitioned domain (see figure 2.1a), the

definition of another finite element space with relaxed continuity (see figure 2.1b),

and an injector operator from the so-called BDDC space to the original finite element

space. Moreover, the BDDC space is split into two subspaces, in such a way that they

are orthogonal to the problem in the BDDC space, namely it is split into a coarse

space (connecting all subdomains) and a fine space (containing the interior nodes of

all subdomains). Orthogonality allow us to solve in parallel for the coarse and the

fine solutions and to obtain the solution in the whole BDDC space as the direct sum

of both previous solutions. Furthermore, the way the fine space is defined results in

a set of uncoupled local problems for each subdomain. Therefore, the parallelism is

extracted from computing each local fine problem in parallel and, although the coarse

problem have to be solved globally, thanks to the relaxed continuity, its dimension is

small compared to the size of the local problems. This is true for a moderate number of

subdomains, of course for tens of thousands of subdomains the coarse problem becomes

larger than the locals ones. In fact this poses a limit the efficiency of two-level BDDC

algorithms. Finally, once the solution in the BDDC space is known, the last step

consists on injecting this solution into the original finite element space. Usually, this

process yields to an approximation of the solution, thus several iterations must be

performed in order to recover the actual solution of the problem. This is the reason

why BDDC is considered as a preconditioner for an iterative solver.

(a) (b)

Figure 2.1: Representation of the relaxed continuity in BDDC. (a) Partitioned
domain (dark lines represent the subdomain linmits), (b) Representation of the relaxed
continuity on the BDDC preconditioner.
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2. STATE OF THE ART

However, BDDC is only proved to converge in a bounded number of iterations for

coercive problems. Therefore special treatments are required for solving convection-

diffusion problems. Achdou et al. [21], in order to be able to apply efficiently domain

decomposition algorithms to convection-diffusion problems, enhanced the method im-

posing Robin boundary conditions on the local problems instead of Neumann ones.

This interface condition modifies the local problems to ensure its coercivity and thus

getting better scalability properties in these kind of algorithms. Yano and Darmofal

[13] generalized these conditions to systems of conservation laws and particularly to

the Euler equations.

Nevertheless, this is not the unique solution. Another option consists on integrating

implicitly only the coercive terms, namely the diffusion, shock capturing, and transient

terms. When the convective and its stabilization terms are integrated explicitly the

BDDC method can be used without the need of special interface conditions.

Furthermore, this second option results in an IMEX scheme [22], where the stiff terms

are treated implicitly and the non-stiff ones explicitly. Obviously, integrating some

terms explicitly implies that the scheme becomes conditionally stable. Nonetheless,

the stability condition is associated to the convective term and usually is of the same

order of the engineering time scales of interest. Moreover, since the stability condition

that must be satisfied is associated to the convective terms, this condition scales as

∆t ∼ h, where h is the characteristic mesh size. Clearly, this is a much weaker condition

than the one for the fully explicit scheme, which would scale as ∆t ∼ h2. Thus mesh

refinement does not affect dramatically the time steps required for stability.

13



3 | Formulation

In this chapter, the different strategies and techniques for solving the compressible

Navier-Stokes equations using the finite element method are explained. The first sec-

tions focus on the methods implemented using the set of conservative and entropy

variables. The last section contains the scheme used for the parallel implementation.

3.1 Conservative variables

As introduced in the previous chapter, applying the finite element method directly to

the equations written in its classical form (eq. (2.1)) is not the best practice, because the

usage of primitive variables is less stable in the presence of shocks (see [2] for details).

However, as commented in the preceding section, these equations can be rewritten in

quasilinear form as

U,t +AiU,i − (KijU,j),i = F. (3.1)

Applying the weighted residual method and integrating by parts the second order term

yields to the following weak form: find U in H1(Ω), with U = U on Γd, such that

∫

Ω
(W ·U,t +W ·AiU,i +W,i ·KijU,j) dΩ =

∫

Ω
W · F dΩ+

∫

Γn

W ·KijU,jni dΓ

(3.2)

for all W in H1
0 (Ω), where Γd is the part of the boundary where Dirichlet boundary

conditions are applied and Γn the part where Neumann boundary conditions are ap-

plied, and they satisfy that ∂Ω = Γd
⋃

Γn and Γd
⋂

Γn = ∅. Finally the functional

14



3. FORMULATION

spaces H1 and H1
0 are defined as

H1(Ω) :=

{

f(Ω)

∣

∣

∣

∣

∫

Ω
(∇ f)2 dΩ < ∞

}

(3.3)

H1
0 (Ω) := {f(Ω)|f(Ω) ∈ H1(Ω) s.t. f(Γd) = 0} (3.4)

Equation (3.2), contains the so-called Galerkin terms, which only yield nonoscillatory

solutions in particular cases. Therefore, it is essential to add stabilizing terms, for both

convective dominated flows and for solutions with discontinuities i.e., shocks.

On the one hand, for stabilizing the convective terms, as in [3–8], a SUPG method

has been implemented, which takes the well known form

n
∑

e=1

∫

Ωe

(AiW,i) τ (LU) dΩ, (3.5)

where W is the test function and L is the differential operator of the Navier Stokes

equation

L(·) := ∂(·)
∂t

+Ai
∂(·)
∂xi

− ∂

∂xi

(

Kij
∂(·)
∂xj

)

− F. (3.6)

In the present work, the stabilization parameter used is the one defined in [4] by Tez-

duyar and Senga. Particularly, τ , is defined as

τ := diag(τd, τu, τu, τe) in 2D, (3.7)

τ := diag(τd, τu, τu, τu, τe) in 3D (3.8)

and each scalar τ is defined as

τd :=

(

1

τ r1
+

1

τ r2

)
−1

r

, (3.9a)

τu :=

(

1

τ r1
+

1

τ r2
+

1

τ r3,u

)
−1

r

, (3.9b)

τe :=

(

1

τ r1
+

1

τ r2
+

1

τ r3,e

)
−1

r

, (3.9c)
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3. FORMULATION

where r is the “r-switch” parameter introduced by Tezduyar and Osawa [23] which can

be set to 1 or 2, and usually takes the value 2. Finally, τ1, τ2 and τ3 read

τ1 :=





nen
∑

j=1

(

c

||∇ ρ|| |∇ ρ ·∇Wj |+ |u ·∇Wj

)





−1

, (3.10a)

τ2 :=
∆t

2
, (3.10b)

τ3,u :=
ρ

µ ‖∇ ‖u‖‖2





nen
∑

j=1

|∇ ‖u‖ ·∇Wj |





−2

, (3.10c)

τ3,e :=
ρ

µPr ‖∇ ‖∇T‖‖2





nen
∑

j=1

|∇T ·∇Wj |





−2

. (3.10d)

where c is the sound speed, Pr is the Prandtl and nen is the number of nodes per

element.

On the other hand, for stabilizing the solution in the vicinity of shocks the following

term below has been added
n
∑

e=1

∫

Ωe

νsW,iU,i dΩ, (3.11)

where n is the total number of elements and νs takes the form defined by Tezduyar

and Senga in [4], which reads

νs := νsI, (3.12)

where I is the identity matrix and

νs := ‖Y −1Z‖
(

nsd
∑

i=1

∥

∥

∥

∥

Y −1∂U

∂xi

∥

∥

∥

∥

2
)β/2−1





1

‖∇ ρ‖

nen
∑

j=1

‖∇ ρ ·∇Wj‖





−2

. (3.13)

Y is a matrix of reference values Y = diag(ρref , ρrefuref , ρreferef ), Z is the residual

of the Navier Stokes equations Z = LU, nsd is the number of spatial dimensions, and

β is a parameter that can be set to 1 or 2. Clearly β = 1 yields to smaller νs, thus the

solution will present sharper shocks and smoother solutions taking β = 2. In addition,

Tezduyar and Senga showed in [4] that choosing the average value of νs taking β = 1

and β = 2 yields to better solutions.
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3. FORMULATION

After adding both stabilization terms the complete weak form is: find U in H1(Ω),

with U = U on Γd, such that

∫

Ω
(W ·U,t +W ·AiU,i +W,i ·KijU,j) dΩ

+
n
∑

e=1

∫

Ωe

(AiW,i) τ (LU) dΩ+
n
∑

e=1

∫

Ωe

νsW,iU,i dΩ (3.14)

=

∫

Ω
W · F dΩ+

∫

Γn

W ·KijU,jni dΓ

for all W in H1
0 (Ω).

Once the complete weak form is obtained it is discretized in space with continuous

finite elements, and in time, with first order implicit finite differences, i.e., using the

backward Euler time integration. In this work, the same interpolation is used for all

variables and the shape functions are used as test functions. Hence the solution can be

expressed as

U(x, t) ≈
n
∑

j=1

Wj(x)Uh(t) (3.15)

Let us recall that A(Uh), K(Uh), τ (Uh) and νs(Uh) are nonlinear. In this case,

for the linearization of these terms a Picard method is applied. Hence, these terms are

computed using the last available solution.

Finally, imposing some boundary conditions might not be as direct as when solving

for the primitive set of variables, because fixing the temperature at a boundary trans-

lates into imposing the value of the total energy. However, this is straightforward only

if the values of the density and the velocities are already known. From

E = ρe = ρ

(

cvθ +
‖u‖2
2

)

, (3.16)

it is clear to see that fixing θ = θ implies fixing the nonlinear boundary condition

E = E(ρ,u, θ). Similarly, as in Shakib et al. [10], for imposing nonlinear boundary

conditions when using entropy variables, a non-optimal solution consists on linearizing

such boundary conditions using Picard’s method.

Nevertheless, when simulating inviscid flows (setting K = 0) imposing the no pene-

tration boundary condition is only straightforward if the wall norm coincides with one

of the reference directions. For any other case a penalty method is used, which consist
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3. FORMULATION

on adding the following term at the left-hand side of the weak form defined at (3.14)

α

∫

Γns

n ·wn · ũ dΓ, (3.17)

where α is the penalty parameter, w is the test functions for the momentum equations,

and ũ is the vector (0,u, 0)T . In fact, on the left-hand side another boundary integral

should be added, integrating the test function against the prescribed value, but for

this particular case, since the normal velocity is set to zero, the right hand side term

vanishes.

This method has been chosen due to its simplicity, as a preliminary solution for

imposing the free-slip boundary condition. However, notice that the penalty parameter

α depends on the mesh and the flow properties, thus it has to be manually tuned for

each problem. Therefore, it remains to be implemented a properly scaled Nitsche’s

method.

3.2 Entropy variables

In this section, the entropy variables implementation is presented. As elucidated in

Chapter 2, this formulation allow us to symmetrize equation (2.9) using the change of

variables described in equation (2.13).

Applying the change of variables (2.13) to (2.9) yields

U,V V,t +AiU,V V,i − (KijU,V V,j),i = F. (3.18)

Defining

Ã0 := U,V , (3.19a)

Ãi := AiÃ0, (3.19b)

K̃ij := KijÃ0, (3.19c)

the equation takes a form quite similar to the one used for conservative variables:

Ã0V,t + ÃiV,i − (K̃ijV,j),i = F. (3.20)
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3. FORMULATION

In that case, the weak from reads: find V in H1(Ω), with U = U on Γd, such that

∫

Ω

(

W · Ã0V,t +W · ÃiV,i +W,i · K̃ijV,j

)

dΩ =

∫

Ω
W ·F dΩ+

∫

Γn

W ·K̃ijV,jni dΓ,

(3.21)

for all W in H1
0 (Ω).

As showed in Section 2.2, stabilization is essential. Therefore, we proceed as before,

defining a SUPG method for stabilizing convective dominated flows and a discontinuity

capturing term that adds crosswind diffusion in the vicinity of shocks.

The SUPG term reads almost as before

n
∑

e=1

∫

Ωe

(

ÃiW,i

)

τ̃

(

L̃V
)

dΩ (3.22)

where W is the test function and L̃ is the differential operator of the Navier Stokes

equation for the entropy variables

L̃(·) := Ã0
∂(·)
∂t

+ Ãi
∂(·)
∂xi

− ∂

∂xi

(

K̃ij
∂(·)
∂xj

)

− F. (3.23)

However, for the entropy variables the definition of the stabilization parameter is more

involved than for the conservative ones. In this case, the parameter is defined as [11],

τ̃ c := ‖B̃‖−1

1,Ã0

, (3.24)

where

B̃i := ‖∇ ξi‖





nsd
∑

j=1

ni
jAj



 Ã0, (3.25)

and n := ∇ ξi/‖∇ ξi‖. Hence τ̃ can be computed as

τ̃ c =





Ã0

∆t
+

n
∑

i=1

‖∇ ξi‖

∣

∣

∣

∣

∣

∣





nsd
∑

j=1

ni
jAj



 Ã0

∣

∣

∣

∣

∣

∣





−1

. (3.26)

Furthermore, in virtue of the eigenvector scaling theorem (see Theorem 3),

τ̃ c =

[

Ã0

∆t
+

n
∑

i=1

‖∇ ξi‖R̃(ni)|Λ(ni)|R̃T (ni)

]−1

, (3.27)
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3. FORMULATION

where the right eigenvectors, R̃(ni), and the eigenvalues, Λ(ni), take a particular simple

analytical expression (see Appendix A.2)

However, notice that the stabilization term only depends on the convection. Whereas

it is known that for a convection-diffusion problem the stabilization parameter should

scale as

τ ∼ O(h/|β|) Pe ≫ 1, (3.28)

τ ∼ O(h2/κ) Pe ≪ 1, (3.29)

if convergence optimality wants to be preserved, where Pe is the Peclet number, β is

the characteristic convection and κ is the characteristic diffusion of the problem. Hence

Yano and Darmofal introduced in [13] the following modification to include the effect

of the diffusion

τ
−1 = τ

−1
c + τ

−1
d (3.30)

where τ
−1
d is defined as

τ
−1
d :=

p2

h2s
Kii (3.31)

On the other hand, the shock-capturing term is based on the second order shock-

capturing term defined by Shakib et al. [10], which reads

n
∑

e=1

∫

Ωe

ν̃sW,iÃ0V,i dΩ, (3.32)

where

ν̃s := 2
(L̃V)T τ̃ L̃V

V.iÃ0V,i

. (3.33)

Finally, after including both stabilization terms, the complete weak form reads: find V

in H1(Ω), with U = U on Γd, such that

∫

Ω

(

W · Ã0V,t +W · ÃiV,i +W,i · K̃ijV,j

)

dΩ

+

n
∑

e=1

∫

Ωe

(

ÃiW,i

)

τ̃

(

L̃V
)

dΩ+

n
∑

e=1

∫

Ωe

ν̃sW,iÃ0V,i dΩ (3.34)

=

∫

Ω
W · F dΩ+

∫

Γn

W · K̃ijV,jni dΓ,

for all W in H1
0 (Ω).
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3. FORMULATION

At this point, the discretizations in time and space are exactly as the ones used in

the preceding section for the conservative set of variables. However, it remains to define

how Dirichlet boundary conditions are imposed, because this is only straightforward

when all primitive variables are constrained. In any other case, it becomes cumbersome,

due to the fact that entropy variables and primitive variables have a highly nonlinear

dependence.

In order to tackle this issue, a similar strategy developed by Shakib et al. [10] is

used in this work. This consists in two main steps. On the one hand, the boundary

conditions are linearized using Picard’s method and imposed in a specific order. On

the other hand, special weighting functions, tangent to the space of the solution, are

derived. The elimination of this last step can degrade the convergence rates of predictor

multi-corrector algorithms (see [10] for details).

In the present work, the entropy variables are prescribed in the following order using

the nonlinear expressions below

θ : V5 =
−1
cvγθ

(3.35)

ui : Vi+1 =
−ui

V5
(3.36)

ρ : V1 =
(

V 2
2 + V 2

3 + V 2
4

)

/(2V5) +
γ
γ + ln ρ+ ln(−V5)

γ (3.37)

p : V1 =
(

V 2
2 + V 2

3 + V 2
4

)

/(2V5) +
γ
γ + ln p

γ + ln(−V5p). (3.38)

Notice that the previous relations are defined for a 3D problem, but its particulariza-

tion to 2D is obvious. Moreover, see that both the density and the pressure constrain

V1. Clearly only one of them can be imposed at the same time.

3.3 Solvers

In the previous sections the formulation details in order to get a discrete linear system

of equations have been developed. Now, let us focus on how to solve the resulting linear

system of equations.

In the present work, two methods, already implemented in FEMPAR, have been used

for solving the resulting system of equations.

On the one hand, a sparse direct solver is used for solving the system in serial.

FEMPAR implementation of this technique relies on the well known MKL library,

which is a hand-optimized version of the Lapack library for Intel processors [24].
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3. FORMULATION

On the other hand, a BDDC-preconditioned GMRES is used in the parallel imple-

mentation of the code. As presented in Section 2.3, either an IMEX method or special

interface conditions must be derived in order to get a scalable solver.

In the present work, an IMEX method based on a first order backward-forward Euler

has been implemented, where the shock-capturing and the diffusive terms are integrated

implicitly, while the convection and its stabilization term is integrated explicitly. For

the sake of completeness, let us rewrite the resulting scheme

(

M̃(Un+1
k )

∆t
+ K̃(Un+1

k ) + SC(Un+1
k )

)

Un+1
k+1 =

F + Srhs(U
n) +

M̃(Un+1
k )

∆t
Un−

(

Ã(Un) + S(Un)
)

Un (3.39)

where n is the time step, k is the nonlinear iteration, M̃(U) is the symmetrized mass

matrix, K̃(U) is the diffusive term, SC(U) is the shock capturing term, F is the force

vector, Ã(U) is the convective term, S(U) is the stabilization term, and Srhs(U) is the

right-hand side term arising form the SUPG stabilization.
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4 | Numerical Results

In this chapter, all the numerical experiments performed are shown. It includes, the

ones done in order to assess the implementation of the code and more complex bench-

marks to show the good behaviour of the code developed in this work. Finally, some

scalability tests are presented.

4.1 Convergence analysis

Below, two convergence tests are presented in order to check the correctness of the

implemented code for both the Euler equations and the compressible Navier-Stokes

equations. The tests have been computed using a square domain Ω = [0, 1] × [0, 1],

with a manufactured solution. Both the L2 norm and the H1 semi-norm of the error

are computed as the mesh is refined. Six mesh sizes have been used, ranging from

∆x = 0.25 to ∆x = 0.00390625, which corresponds to meshes of 4 to 256 elements in

each direction.

Let us recall that the L2 norm of the relative error is defined as

‖Uh −U‖
‖U‖ :=

√

√

√

√

√

√

√

∫

Ω
(Uh −U)2 dΩ
∫

Ω
U2 dΩ

, (4.1)

while the H1 semi-norm of the relative error is defined as

‖∇Uh −∇U‖
‖∇U‖ :=

√

√

√

√

√

√

√

∫

Ω
(∇Uh −∇U) : (∇Uh −∇U) dΩ

∫

Ω
(∇U : ∇U) dΩ

. (4.2)
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4. NUMERICAL RESULTS

(a) (b)

Figure 4.1: Convergence tests for the Euler equations. (a) L2 norm of the error
and (b) H1 seminorm of the error converge for each set of variables.

(a) (b)

Figure 4.2: Convergence tests for the Navier-Stokes equations. (a) L2 norm of
the error and (b) H1 seminorm of the error converge for each set of variables.

At the figures above, for the conservative variables optimal convergence rates are

observed. For the entropy variables, the convergence rates observed are almost optimal

in the case of the Euler equations and optimal for the H1 semi-norm of the error in the

case of Navier-Stokes equations. However, the L2 error convergence rate shows slight

degradation.
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4.2 Oblique shock

In this section the behaviour of the code in presence of an oblique shock is analysed.

This benchmark consists on a 2-dimensional square domain Ω = [0, 1] × [0, 1], where

a M = 2 inviscid flow is prescribed at the inflow. The flow enters at an angle of -10o

with respect to the horizontal axis, which leads to an oblique shock beginning at the

bottom left corner with an angle of 29.3o (see the scheme in figure 4.3).

Figure 4.3: Oblique shock benchmark scheme. Here the dotted line at x = 0.9 is
the position where the results are analysed.

In particular, the boundary conditions have been prescribed as follows: on Γ1 all

variables are prescribed, ρ = 1 Kgm−3, v = (cos 10, − sin 10) m s−1 and e = 0.9475 J.

On Γfs the velocity normal to the wall is set to 0 and on Γo no boundary condition is

prescribed. The fluid is assumed to be ideal with a specific heat at constant volume,

cv, of 720 J kg−1K−1.

This configuration results in an exact solution with the following flow properties after

the shock: a Mach of 1.64052, a density of 1.45843 Kgm−3, a velocity of (0.88731, 0)

m s−1 and a pressure of 0.30475 Pa.
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4. NUMERICAL RESULTS

(a) Mach (b) Pressure

Figure 4.4: Oblique shock benchmark results.

For the simulation of this benchmark as in [4, 10] a 20 by 20 element mesh have been

used. In Figure 4.4, the resulting Mach number and the pressure are depicted. Clearly,

the results show great agreement with scheme at Figure 4.3.

However, in order to analyse better the results, let us plot the density along x = 0.9.

Figure 4.5a shows the obtained results using different parameters for computing the

shock capturing term and Figure 4.5b show a comparison with others authors. Clearly,

in Figure 4.5a the three solutions behave as expected. As shown in Section 3.1, the

discontinuity capturing term depends on the parameter β, which can be set to 1 or to

2. The former choice gives sharper shocks, while the latter yields to smoother ones.

Additionally Tezduyar and Senga in [4] proposed to use the average of both choices.

From Figure 4.4a, it is clear to see that averaging the value of νs yields to better

solutions, therefore this is the option used for all the following benchmarks.

Moreover, a high agreement with the results by Tezduyar and Senga [4], and Shakib

et al. [10] is observed in Figure 4.5b. Furthermore, the usage of the shock-capturing

technique derived from the stabilization defined at Section 3.2 yield to the best results.

Furthermore, the observations by Tezduyar and Senga in [4] are also evident. They

stated that their definition of the stabilization terms are much simpler than the ones

used by Barth [11] or Shakib et al. [10], while its accuracy is not dramatically degraded.
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(a) (b)

Figure 4.5: Oblique shock density results at x = 0.9. At (a), the density is depicted
for different choices of the β parameter. At (b), the results of Tezduyar and Senga [4], and
Shakib et al. [10] are compared with ours.

4.3 Reflected shock

In this section the behaviour of the code in a shock reflection is analysed. This bench-

mark consists on a 2-dimensional rectangular domain Ω = [0, 4.1] × [0, 1], where an

inviscid flow enters from the left and top boundaries. The flow enters horizontally at

M = 2.9 from the left boundary and at a M = 2.378 with an angle of -11o from the

top. These conditions lead to an oblique shock that starts at the top left boundary and

reflects at x = 1.804 on the lower boundary (see the scheme in Figure 4.6).

Figure 4.6: Reflected shock benchmark scheme. Here the dotted line at y = 0.25 is
the position where the results are analysed.

Particularly, the conditions prescribed at each boundary are: on Γ1 all variables are

prescribed, ρ = 1 Kgm−3, v = (2.9, 0.0) m s−1, and e = 5.99075 J. On Γ2 all variables

are prescribed, ρ = 1.7 Kgm−3, v = (2.619, −0.506) m s−1, and e = 5.8046 J. On Γfs

free-slip boundary conditions are prescribed, i.e., the velocity normal to the wall is set

to 0. On Γo no boundary condition is prescribed. The fluid is assumed to be ideal with
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Table 4.1: Exact solution at each of the three regions of the reflected shock benchmark.

Region Density [Kgm−3] Velocity [m s−1] Energy [J]

a© 1 (2.9, 0) 5.99075

b© 1.7 (2.619,−0.506) 5.8046

c© 2.687 (2.401, 0) 5.6122

a specific heat at constant volume, cv, of 720 J kg−1K−1. This configuration results in

three different regions where the flux properties at each one are:

(a) Density (b) Mach

Figure 4.7: Reflected shock benchmark results.

In this benchmark, as the reference authors [4, 10], a 60 by 20 element mesh is used.

Figure 4.7 shows the density and mach results, which clearly agree with the expected

results described previously.

As in the preceding benchmark, in order to analyse and compare our results with

the reference authors the density along y = 0.25 is depicted in Figure 4.8. Although all

results show really close solutions, the implementation with entropy variables yields to

a slightly better solution.
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Figure 4.8: Reflected shock density results at y = 0.25. The results of Tezduyar
and Senga [4], and Shakib et al. [10] are compared with ours.

4.4 Carter’s flat plate

In this section the behaviour of the code in presence of a shock and a boundary layer

is analysed. This benchmark consists on a 2-dimensional rectangular domain Ω =

[−0.2, 1.2]× [0, 0.8], where a viscous flow enters horizontally from the left boundary at

M = 3, Re = 1000. The leading edge of the flat plate is placed at x = 0, which leads

to a shock and a boundary layer arising from there (see Figure 4.9).

Figure 4.9: Carter’s flat plate benchmark scheme.

Particularly, the prescribed boundary conditions are: on Γ1 all variables are fixed,

the density is 1 kgm−3, the velocity is (1, 0) m s−1, and the temperature is 2.769 · 10−4

K. On Γ2 homogeneous Neumann boundary conditions are prescribed. On Γns no-slip
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boundary conditions and a stagnation temperature of 7, 754 · 10−4 K are prescribed.

On Γo free-stream boundary conditions are imposed. In this problem, the Sutherland

viscosity law µ = 0.0906 θ1.5/(θ + 1.406 · 10−4) Pa s is employed, κ is set to 1.344

Wkg−1m−1, and cv is 720 J kg−1K−1.

(a) Density (b) Mach

(c) Temperature (d) Pressure

Figure 4.10: Carter’s flat plate benchmark results.

For this benchmark, as in [10], a 112×64 element mesh have been used. At the figure

above, the main results are shown. Clearly, both the shock and the boundary layer are

placed as predicted in the scheme in Figure 4.9. However, comparing this results above

to the ones of other authors is difficult. Thus, the friction coefficient at the plate have

been computed and its depicted in figure 4.11 alongside literature results. The friction

coefficient reads

Cf =
τwall

1
2ρ∞u2∞

, (4.3)

where τwall are the parallel tractions to the wall, ρ∞ is the density at the inlet, and u∞

is the velocity at the inlet.
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The results in the figure below show a great agreement between the present work

and literature results. However, small differences appear at the end of the plate. These

differences are the product of an incorrect treatment of the outflow boundary conditions,

which in the present work are treated as traction-free boundary conditions. Shakib

et al. introduce in [10] a special treatment for avoiding oscillations near the outflow

boundaries that clearly improves the solution. Nonetheless, in this particular test the

oscillations are only significant for the conservative variables.

Figure 4.11: Friction coefficient at the flat plate.

It is also worth to mention that for imposing boundary conditions on Γns, only the

first step described by Shakib et al. in [10] have been used, i.e., no special test functions

have been derived (see Section 3.2). However, no dramatic convergence degradation

has been observed.

4.5 Mach 3 compression corner

In this section the behaviour of the code in a compression corner is analysed. This

test, consists on a 2-dimensional domain with a rectangular part [−0.2, 1] × [0, 0.575]

and a 10o sloped part [1, 1.8]× [(x− 1) tan 10, (x− 1) tan 10 + 0.575]. Where a M = 3,

Re = 16800 flow enters horizontally from the left and top boundaries. The leading edge

is located at x = 0, where a shock and a boundary layer arises from there. In addition,

these conditions lead to a boundary layer separation in the vicinity of the corner (see

a scheme in Figure 4.12).
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Figure 4.12: Mach 3 compression corner benchmark scheme.

Particularly, the conditions prescribed at each boundary are: on Γ1 all variables are

prescribed, the density is set to 1 kgm−3, the velocity to (1, 0) m s−1, and the temper-

ature is fixed to 2.769 · 10−4 K. On Γ2 homogeneous Neumann boundary conditions

are prescribed. On Γns no-slip boundary conditions and a stagnation temperature of

7.754 · 10−4 are prescribed. On Γo free-stream boundary conditions are imposed. In

this problem, the Sutherland viscosity law µ = 0.00539θ1.5/(θ + 1.406 · 10−4) Pa s is

employed, κ is set to 1.344 Wkg−1m−1 and cv is 720 J kg−1K−1.

(a) Density (b) Mach

(c) Temperature (d) Pressure

Figure 4.13: Mach 3 compression corner benchmark results.

32



4. NUMERICAL RESULTS

In this benchmark a 4056 element mesh, refined at the lower boundary, have been

used. In this benchmark only the conservative variables have been used. At the figure

above, the main results are shown. Clearly, both the shock and the boundary layer are

placed as predicted in the scheme in Figure 4.12.

In order to compare and analyse the results, in Figure 4.14 the friction coefficient

along the plate is depicted. In this particular case, two great differences can be observed.

On the one hand, at the beginning of the plate spurious oscillations appear, pointing

out that the shock capturing term is not adding enough diffusion. On the other hand,

at the end of the domain, the same oscillations observed in the preceding benchmark

are observed again. In any case, the solution in the rest of the domain remains quite

accurate, in fact the location of the boundary layer separation and its reattachment is

accurately computed, see Table 4.2.

Figure 4.14: Friction coefficient at the compression corner.

Table 4.2: Separation and reattachment locations of the boundary layer. Data
extracted from Shakib et al. [10].

Calculation Separation point Reattachment

Shakib 0.88 1.17

Hung and MacCormack [25] 0.89 1.18

Carter [26] 0.84 1.22

Present work 0.89 1.17
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4.6 Inviscid flow around a cylinder

In this benchmark, the inviscid flow around a cylinder in a channel is analysed. This

problem consists on a rectangular domain Ω = [0, 3] × [0, 2] with a circle of radius 0.2

at (0.8, 1), with an horizontal M = 2.52 inflow at the left boundary (see Figure 4.15).

Figure 4.15: Inviscid flow around a cylinder benchmark scheme.

Particularly, the conditions prescribed at each boundary are: on ΓI all variables

are prescribed, the density is set to 1 kgm−3, the velocity to (2.52, 0) m s−1, and

the temperature is fixed to 2.48 · 10−3 K. On Γfs free-slip boundary conditions are

imposed. On Γo free-stream boundary conditions are imposed. In this problem, a cv

of 720 J kg−1K−1 is used.

In order to make solutions comparable to the ones by Nazarov and Hoffman [6], a

6000 element mesh have been used. Figure 4.16 shows the solution at three noteworthy

time steps. At t = 0.6, see Figure 4.16a, the solution obtained is clearly in agreement

with the solution by the reference authors. Figure 4.16c shows one of the last time

steps where the Rayleigh instability still do not appear and the obtained results are

really close to the ones reported in [6]. However, the results in this work seem to be

more diffusive than the ones in [6], because the shocks are less marked as it can be

observed in the depicted results. In any case, they are placed in the same position and

the Rayleigh instability is slightly captured (see figure 4.16e), which imply that the

code is accurate enough to capture this instability even using a coarse mesh. Notice

that Nazarov and Hoffman [6] required an almost 100 000 element mesh for capturing

this instability accurately. while for their computations with the coarse mesh that

instability it is not captured.
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(a) t = 0.6. (b) t = 0.6, with coarse mesh.

(c) t = 7.85. (d) t = 15, with coarse mesh.

(e) t = 15. (f) t = 15, with fine mesh.

Figure 4.16: Density results of the inviscid flow around a cylinder benchmark.
At left, the results of the present work, and at right, the results of [6].
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4.7 Scalability tests

In this section, the parallel performance of the code is evaluated. As introduced in

Section 2.3, this performance is assessed with the help of scalability tests. In this

particular case, a similar problem to the oblique shock benchmark is used (see Section

4.2). However, this problem have been modified in order to include the viscous term

and test the IMEX method proposed. Hence, a viscosity based on the Sutherland law

µ = 0.04428θ1.5/(θ + 3.113 · 10−5) Pa s and a conductivity κ = 1.344 have been added

to the original problem.

For the modified problem, two weak scaling tests have been performed. In these

tests, the coarsest mesh used is 60× 60 elements, solved in a 2× 2 (N = 4) partitioned

domain, while the finest is 1920 × 1920 elements, solved in a 64 × 64 (N = 4096)

partitioned domain. A constant ratio H/h = 30 has been used for all tests, where h is

the characteristic mesh size and H is the characteristic subdomain size. The difference

in these two tests lies on the definition of the time step, which for one test it has been

kept constant (0.001 s), while for the other a constant CFL is used, thus ∆t /hx is

kept constant to 0.3. The characteristic mesh length has been chosen to be only in x

direction because the flow in this benchmark is almost horizontal.

In Figure 4.17 the results of the previous tests are depicted. Firstly, Figure 4.17a

shows the total solver iterations performed during ten time steps and up to five non-

linear iterations as a function of the number of processors. Note that, the number

of nonlinear iterations performed can affect greatly to the results. Therefore, Figure

4.17b shows the sum of the mean number of iterations per time step as a function of

the number of processors. Notice that for the constant time step, the test is stopped

at 512 processors in order to keep the CFL lower than 1, because the usage of a large

CFL may yield to inconsistent results due to the instability of the method.

Focusing on the results at figure 4.17, for less than 512 processors the code do not

seem to be weakly scalable neither for constant ∆t nor for constant CFL. However,

for constant CFL the code shows good weak scalability for thousands of processors.

Similar behaviour is observed in Figure 4.18, which shows the solver iterations for first

nonlinear iteration at the first time step.
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(a) (b)

Figure 4.17: Weak scalability result for 20 time steps and up to 5 nonlinear
iterations.

Figure 4.18: Weak scalability for only the first solver call of the results at 4.17.

In any case, testing weak scalability for a nonlinear time dependent problem becomes

cumbersome due to the many factors that can perturb the results. On the preceding

tests, the initial conditions (U0) and the initial solution guess (U1
0) are equal. However,

if one uses an initial solution guess different from the initial conditions, the scalability

for the first nonlinear iteration at the first time step changes dramatically. Indeed, it

shows optimal scalability results (see figure 4.19a). In addition, in Figure 4.19b the code

shows acceptable scalability in terms of wall clock time even without using the most

efficient implementation of BDDC in [19], where fine and coarse tasks are overlapped

yielding to a much better time scalability. Note that for the time measurements, the

preprocessing and postprocessing tasks have not been included.
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(a) (b)

Figure 4.19: Weak scalability results for only one solver call.

In Figure 4.20 it can be observed that the code also shows appropriate strong scala-

bility results. The strong scalability tests have been performed on a 240× 240 element

mesh, using the same test described in at the beginning with an initial solution guess

different from the initial conditions. For the time measurements, the preprocessing and

postprocessing tasks have not been included and only the first iteration of the first time

step has been considered. Let us recall that the speed-up is computed as t1
tn
, where tn is

the time measured using n processors and t1 is the time for measured for one processor.

Figure 4.20: Strong scalability results for only one solver call.

As in Figure 4.19b, in Figure 4.20 the drawbacks of non-overlapping coarse and fine

tasks are also observed. For the overlapped implementation described in [19], the mea-

sured time is highly influenced by the time spent in solving the fine problems, which

are solved using a direct method. Thus, super-linear speed-up is expected because the

numerical complexity of direct methods is of O(n2), where n is the leading dimension
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of the matrix. However, when the coarse problem becomes larger than the fine ones, it

influences the measured time and the speed-up gets greatly degraded. In our implemen-

tation, since the coarse and fine tasks are not overlapped, the measured time is always

influenced by both the coarse and the fine tasks, thus the speed-up gets degraded after

the usage of few processors.
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In the preceding chapters, a brief review of the state of the art, the formulation used,

and its assessment have been shown. Let us now draw some conclusions.

Both the conservative set of variables and the entropy set attain similar levels of

accuracy. No remarkable differences have been observed the numerical tests performed.

Nonetheless, the implementation for the entropy variables yield slightly better accuracy

around shocks. On the contrary, the conservative variables show better convergence

rates.

The stabilization terms are very important in order to obtain non-oscillatory solu-

tions. Moreover, it becomes even more important in our case, in which we are solving

for variables that are strictly positive, or negative. Although no one of the stabilization

terms implemented satisfy the DMP condition, for the performed benchmarks, it has

not posed any problem.

Only the entropy variables can be proved to be entropy stable. Furthermore, this

set yield to algebraic systems of equations more amenable to iterative solvers. Thus, it

is clearly a better option if one aims to solve implicitly the compressible Navier-Stokes

equations with a parallel domain decomposition algorithm.

The previous fact has allowed us to implement a first order IMEX scheme showing

high algorithmic scalability up to more than four thousand cores. Although scalability

in time seems to perform worse, it is due to the fact that the coarse solver is not

executed in parallel in a dedicated node, but after solving the fine problems. Thus, the

total execution time grows as the coarse solver is increased.

Finally, it is worth to mention some enhancements left for future works.

1. An important unsolved issue is to provide a shock capturing term that satisfies

the DMP condition.
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2. The extension and assessment of the present implementation to high order dis-

cretizations, both in space and time.

3. The implementation of an enhanced method for imposing boundary conditions

weakly.

4. The addition of an special treatment for outlet boundary conditions, similar to

the one by Shakib et al. [10].

5. Provide Robin interface conditions in order to solve the equations efficiently in

parallel and fully implicitly.

6. Lastly and more ambitiously, adding adaptivity would increase greatly the perfor-

mance of the current implementation. However adaptivity in parallel is a research

topic itself.
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A | Appendix

A.1 Jacobian Matrices

In this appendix the Euler Jacobian matrices and viscous matrices are defined for both

sets of variables, the conservative and the entropy ones.

A.1.1 Conservative variables

Firstly, let us recall the definition of the following variables

γ := γ − 1, (A.1)

χ :=
4

3
µ, (A.2)

where γ is the heat capacity ratio and µ is the dynamic viscosity. Furthermore, let us

recall that for an ideal gas the pressure can be computed as

p = γρ

(

e− ‖u‖2
2

)

, (A.3)

where ρ is the density, e is the total energy, and u is the velocity. The Euler Jacobians,

Ai, for a 2-dimensional problem read

A1 :=

















0 1 0 0

−u21 +
u2

2 γ u1(2− γ) −u2γ γ

−u1u2 u2 u1 0

−
(

e+ p
ρ

)

u1 + γ u2

2 u1 e+ p
d − γu21 −γu1u2 u1γ

















, (A.4a)
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A2 :=

















0 0 1 0

−u1u2 u2 u1 0

−u22 +
u2

2 γ −u1γ u2(2− γ) γ

−
(

e+ p
ρ

)

u2 + γ u2

2 u2 −γu1u2 e+ p
ρ − γu22 u2γ

















. (A.4b)

Whereas, for a 3-dimensional problem they are defined as

A1 :=

























0 1 0 0 0

−u21 +
u2

2 γ u1(2− γ) −u2γ −u3γ γ

−u1u2 u2 u1 0 0

−u1u3 u3 0 u1 0

−
(

e+ p
ρ

)

u1 + γ u2

2 u1 e+ p
d − γu21 −γu1u2 −γu1u3 u1γ

























, (A.5a)

A2 :=























0 0 1 0 0

−u1u2 u2 u1 0 0

−u22 +
u2

2 γ −u1γ u2(2− γ) −u3γ γ

−u2u3 0 u3 u2 0

−
(

e+ p
d

)

u2 + γ u2

2 u2 −u1u2γ e+ p
d − γu22 −u2u3γ u2γ























, (A.5b)

A3 :=























0 0 0 1 0

−u1u3 u3 0 u1 0

−u2u3 0 u3 u2 0

−u23 +
u2

2 γ −u1γ −u2γ u3(2− γ) γ

−
(

e+ p
d

)

u3 + γ u2

2 u3 −u1u3γ −u2u3γ e+ p
d − γu23 u3 ∗ γ























. (A.5c)

The viscous matrices, Ki,j , for a 2-dimensional problem read

K1,1 :=
1

ρ

















0 0 0 0

−χu1 χ 0 0

−µu2 0 µ 0

−µu2 − µu1

3 + u2−e
cv

κ
(

χ− κ
cv

)

u1

(

µ− κ
cv

)

u2
κ
cv

















, (A.6a)
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K1,2 :=
1

ρ

















0 0 0 0

2
3µu2 0 −2

3 µ 0

−µu1 µ 0 0

−1
3µu1u2 µu2

−2
3 µu1 0

















, (A.6b)

K2,1 :=
1

ρ

















0 0 0 0

−µu2 0 µ 0

2
3µu1

−2
3 µ 0 0

−1
3µu1u2

−2
3 µu2 µu1 0

















, (A.6c)

K2,2 :=
1

ρ

















0 0 0 0

−µu1 µ 0 0

−χu2 0 χ 0

−µu2 − µu2

3 + u2−e
cv

κ
(

µ− κ
cv

)

u1

(

χ− κ
cv

)

u2
κ
cv

















. (A.6d)

Whereas, for a 3-dimensional problem are defined as

K1,1 :=
1

ρ

























0 0 0 0 0

−χu1 χ 0 0 0

−µu2 0 µ 0 0

−µu3 0 0 µ 0

−µu2 − µ−u2

1

3 + u2−e
cv

κ
(

χ− κ
cv

)

u1

(

µ− κ
cv

)

u2

(

µ− κ
cv

)

u3
κ
cv

























,

(A.7a)

K1,2 :=
1

ρ























0 0 0 0 0

2
3µu2 0 −2

3µ 0 0

−µu1 µ 0 0 0

0 0 0 0 0

−1
3µu1u2 µu2 −2

3u1 0 0























, (A.7b)
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K1,3 :=
1

ρ























0 0 0 0 0

2
3µu3 0 0 −2

3µ 0

0 0 0 0 0

−µu1 µ 0 0 0

−1
3µu1u3 µu3 0 −2

3u1 0























, (A.7c)

K2,1 :=
1

ρ























0 0 0 0 0

−µu2 0 µ 0 0

2
3µu3 −2

3µ 0 0 0

0 0 0 0 0

−1
3µu1u2 −2

3u2 µu1 0 0























, (A.7d)

K2,2 :=
1

ρ

























0 0 0 0 0

−µu1 µ 0 0 0

−χu2 0 χ 0 0

−µu3 0 0 µ 0

−µu2 − µ−u2

2

3 + u2−e
cv

κ
(

µ− κ
cv

)

u1

(

χ− κ
cv

)

u2

(

µ− κ
cv

)

u3
κ
cv

























,

(A.7e)

K2,3 :=
1

ρ























0 0 0 0 0

0 0 0 0 0

2
3µu3 0 0 −2

3µ 0

−µu2 0 µ 0 0

−1
3µu2u3 0 µu3 −2

3u2 0























, (A.7f)

K3,1 :=
1

ρ























0 0 0 0 0

−µu3 0 0 µ 0

0 0 0 0 0

2
3µu3 −2

3µ 0 0 0

−1
3µu1u3 −2

3u3 0 µu1 0























, (A.7g)
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K3,2 :=
1

ρ























0 0 0 0 0

0 0 0 0 0

−µu3 0 0 µ 0

2
3µu2 0 −2

3µ 0 0

−1
3µu2u3 0 −2

3u3 µu2 0























, (A.7h)

K3,3 :=
1

ρ

























0 0 0 0 0

−µu1 µ 0 0 0

−µu2 0 µ 0 0

−χu3 0 0 χ 0

−µu2 − µ−u2

3

3 + u2−e
cv

κ
(

µ− κ
cv

)

u1

(

µ− κ
cv

)

u2

(

χ− κ
cv

)

u3
κ
cv

























,

(A.7i)

where κ is the conductivity and cv is the specific heat capacity at constant volume.

A.1.2 Entropy variables

Firstly, let us define the following variables that will greatly simplify the subsequent

definitions

k1 :=
V 2
2 + V 2

3 + V 2
4

2V5
k2 := k1 − γ

γ k3 := k21 −
2γ

γ

k4 := k2 − 1 k5 := k22 − (k1 + k2)

c1 := V5 − V 2
2 d1 := −V2V3 e1 := V2V5

c2 := V5 − V 2
3 d2 := −V2V4 e2 := V3V5

c3 := V5 − V 2
4 d3 := −V3V4 e3 := V4V5

The Riemann metric tensor, ∂U
∂V , used in the symmetrization is defined as

Ã0 :=
ρiγ

V5























−V 2
5 e1 e2 e3 V5(1− k1)

c1 d1 d2 V2k2

c2 d3 V3k2

Symm. c3 V4k2

−k3























(A.8)
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The symmetrized Euler Jacobians, Ãi, for a 2-dimensional problem read

Ã1 :=
ρiγ

V 2
5

















e1V5 c1V5 d1V5 k2e1

−(c1 + 2V5)V2 −c1V3 c1k2 + V 2
2

Symm. −c2V2 k4d1

k5V2

















, (A.9a)

Ã2 :=
ρiγ

V 2
5

















e2V5 d1V5 c2V5 k2e2

−c1V3 −c2V2 k4d1

Symm. −(c2 + 2V5)V3 c2k2 + V 2
3

k5V3

















. (A.9b)

Whereas, for a 3-dimensional problem

Ã1 :=
ρiγ

V 2
5























e1V5 c1V5 d1V5 d2V5 k2e1

−(c1 + 2V5)V2 −c1V3 c1V4 c1k2 + V 2
2

−c2V2 −d1V4 k4d1

Symm. −c3V2 k4d2

k5V2























, (A.10a)

Ã2 :=
ρiγ

V 2
5























e2V5 d1V5 c2V5 d3V5 k2e2

−c1V3 −c2V2 d1d4 k4d1

−(c2 + 2V5)V3 −c2V4 c2k2 + V 2
3

Symm. −c3V3 k4d3

k5V3























, (A.10b)

Ã3 :=
ρiγ

V 2
5























e3V5 d2V5 d3V5 c3V5 k2e3

−c1V4 −d2V3 c3V2 k4d2

−c2V4 −c3V3 k4d3

Symm. −(c3 + 2V5)V4 c3k2 + V 2
4

k5V4























. (A.10c)
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The symmetric viscous matrices, K̃i,j , for a 2-dimensional problem read

K̃1,1 :=
1

V 3
5

















0 0 0 0

−χV 2
5 0 χe1

Symm. −µV 2
5 µe2

−χV 2
2 − µV 2

3 + κ
cvγ

















, (A.11a)

K̃2,2 :=
1

V 3
5

















0 0 0 0

−µV 2
5 0 µe1

Symm. −χV 2
5 χe2

−χV 2
3 − µV 2

2 + κ
cvγ

















, (A.11b)

K̃1,2 := K̃T
2,1 =

1

V 3
5

















0 0 0 0

0 0 −λV 2
5 λe2

0 −µV 2
5 0 µe1

0 µe2 λe1 (λ+ µ)d1

















. (A.11c)

Whereas, for a 3-dimensional problem they are defined as

K̃1,1 :=
1

V 3
5























0 0 0 0 0

−χV 2
5 0 0 χe1

−µV 2
5 0 µe2

Symm. −µV 2
5 µe3

−χV 2
2 − µ(V 2

3 + V 2
4 ) +

κ
cvγ























, (A.12a)

K̃2,2 :=
1

V 3
5























0 0 0 0 0

−µV 2
5 0 0 µe1

−χV 2
5 0 χe2

Symm. −µV 2
5 µe3

−χV 2
3 − µ(V 2

2 + V 2
4 ) +

κ
cvγ























, (A.12b)
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K̃3,3 :=
1

V 3
5























0 0 0 0 0

−µV 2
5 0 0 µe1

−µV 2
5 0 µe2

Symm. −χV 2
5 χe3

−χV 2
4 − µ(V 2

2 + V 2
3 ) +

κ
cvγ























, (A.12c)

K̃1,2 := K̃T
2,1 =

1

V 3
5























0 0 0 0 0

0 0 −λV 2
5 0 λe2

0 −µV 2
5 0 0 µe1

0 0 0 0 0

0 µe2 λe1 0 (λ+ µ)d1























, (A.12d)

K̃1,3 := K̃T
3,1 =

1

V 3
5























0 0 0 0 0

0 0 0 −λV 2
5 λe3

0 0 0 0 0

0 −µV 2
5 0 0 µe1

0 µe3 0 λe1 (λ+ µ)d2























, (A.12e)

K̃2,3 := K̃T
3,2 =

1

V 3
5























0 0 0 0 0

0 0 0 0 0

0 0 0 −λV 2
5 λe3

0 0 −µV 2
5 0 µe2

0 0 µe3 λe2 (λ+ µ)d3























. (A.12f)
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A.2 Right scaled eigenvectors

In this appendix, the right scaled eigenvectors definitions that diagonalise Aini are

presented. On the one hand for a 2-dimensional problem

R̃ =

√

ρ

2γ

















√
2γ 0 1 1

√
2γ u1 −c

√
2n2 u1 + n1c u1 − n1c

√
2γ u2 c

√
2n1 u2 + n2c u2 − n2c

√
2γ ‖u‖2

2 c
√
2(−n2u1 + n1u2)

‖u‖2

2 + unc+
c2

γ
‖u‖2

2 − unc+
c2

γ

















,

(A.13)

with the eigenvalues: λ1,2 = u · n, λ3 = u · n + c and λ4 = u · n − c. Where, u is

the velocity, γ is the heat capacity ratio, c is the sound speed, ρ is the density, un is

computed as u · n, and γ is computed as γ − 1.

On the other hand, for a 3-dimensional problem the scaled eigenvectors for primitive

variables read

r̃ :=

√

1

2γρ























√
2γ ρn1

√
2γ ρn2

√
2γ ρn3 ρ ρ

0 c
√
2n3 −c

√
2n2 cn1 −cn1

−c
√
2n3 0 c

√
2n1 cn2 −cn2

c
√
2n2 −c

√
2n1 0 cn3 −cn3

0 0 0 ρc2 ρc2























(A.14)

and applying the change of variables R̃ := u,wr̃, the ones for the entropy variables are

obtained, where u,w is defined as

u,w :=























1 0 0 0 0

u1 ρ 0 0 0

u2 0 ρ 0 0

u3 0 0 ρ 0

‖u‖2

2 ρu1 ρu2 ρu3
1
γ























, (A.15)

and the eigenvalues are: λ1,2,3 = u · n, λ4 = u · n+ c and λ5 = u · n− c.
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