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Abstract. Simulation of crowd behavior has been approached through
many different methodologies, but the problem of mimicking human de-
cisions and reactions remains a challenge for all. We propose an alterna-
tive model for simulation of pedestrian movements using Reinforcement
Learning. Taking the approach of microscopic models, we train an agent
to move towards a goal while avoiding obstacles. Once one agent has
learned, its knowledge is transferred to the rest of the members of the
group by sharing the resulting Q-Table. This results in individual behav-
ior leading to emergent group behavior. We present a framework with
states, actions and reward functions general enough to easily adapt to
different environment configurations.
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1 Introduction

The basic requirement for most crowd simulation applications, is to model pedes-
trian movements with perception and placement. The perception encloses all
knowledge the agent has about the environment including the situation of the
other agents and its own status, while placement defines the desired position for
an agent given the perception. Perception and placement could be defined as
state and action.

Traditional microscopic methods specify each individual behavior and obtain
emergent behavior from their autonomous interactions [1]. Data driven methods
[2] imitate human movement patterns, but there is no learning involved. In con-
trast, reinforcement learning approaches aim at allowing the agents to learn indi-
vidual behaviors based on what they experience [3]. Torrey [4] proposes reinforce-
ment learning as a viable alternative method for crowd simulation. Cuayáhuitl
et al. [5] presented an approach for inducing adaptive behavior of route instruc-
tions. Mart́ınez et al. [6] propose a new methodology that uses different iterative
learning strategies, combining a vector quantization with Q-Learning algorithm.

We present a Reinforcement Learning (RL) approach where by training one
agent and transferring its knowledge to a group of agents, we can achieve emer-
gent behavior while reducing the training time. We discuss in detail the main
challenges when designing crowd behavior based on RL and provide ideas for
future work in this field.
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2 Reinforcement Learning for agent simulation

We start with one agent that learns to walk avoiding static obstacles to reach
a goal position. This knowledge is then transferred to the rest of the agents, so
that they can either use it as it is or further build upon it.

Our method is based on Q-Learning with ε-greedy policy. At each time step t,
the agent receives some representation of the environment state, st ∈ S, where S
is the set of possible states, and on that basis selects an action, at ∈ A(st), where
A(st) is the set of actions available in state st. After performing the action, the
agent receives a reward, rt+1 ∈ R, and moves to a new state, st+1. The agent
seeks to maximize the Rt which is defined as a function of the reward sequence
rt+1, rt+2, rt+3, ....

The behavior learned by an agent is stored in a Q-table of n×m entries, where
n = |S| and m = |A|. Each cell of this table contains the value learned for each
pair (s, a). Once this table is filled with learned behaviors, it can be transferred
to other agents. Therefore the other agents do not need to learn from scratch,
but can still continue the learning process by using small ε > 0. This provides
heterogeneity in behaviors while still allowing fast learning for groups of agents.

3 Learning problem definition

The action set defines the movements the agents can make during the simula-
tion and it is discretized in 8 possible directions. The states encode the nearby
environment and we evaluated two approaches: nearest obstacle and occupancy
code. Depending on the state definition, we also need to define different reward
functions which must be carefully chosen with two principles in mind: collision
must be punished, and moving towards the goal has to be rewarded positively.

Nearest obstacle: The states are defined by the goal position Sgoal (in
range [0, 7], figure 1a) , the distance to the nearest obstacle Sdobs (in range [0, 2],
figure 1b), and the relative position of this obstacle Spobs (figure 1c). The obstacle
position state is encoded with seven values for the front half of the circle (which
simulates human perception) and one value for the back half.

The number of states is S = |Sgoal| × |Sdobs| × |S
p
obs| (192 states). Since the

Q-table is small, the learning process is very fast, but there are several problems
with such simple approach: (i) it only considers the nearest object at each time
step, which can cause instabilities and local minima when several obstacles are
too close to the agent and ii) there is no knowledge about the size of obstacles.

Occupancy code: The code is defined by |Spobs| values, where each value of
the code o[i] with i ∈ [0,Spobs−1] indicates the distance to an obstacle according
to |Sdobs| (distance states). Figure 1d shows graphically this distribution of space
with an example of occupancy code. The upper row depicts the number of angle
interval and the bottom row shows the occupancy level of each interval. Note
how obstacle size is represented by the number of regions being occupied. This
representation also correctly encodes gaps between obstacles and aids the agent
to learn whether it can walk through or needs to walk around a set of obstacles.
The number of states is: S = |Sgoal| × |Sdobs||S

p
obs| (52,488 states).
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Fig. 1: Goal state definition (a), distance to obstacle state (b), and goal position
states for the two approaches: nearest obstacle (c) and occupancy code (d).

Reward Function The reward function is calculated as: r(st, at) = rg + ro,
where rg represents the positive reward gained by moving towards the goal and
ro the negative reward obtained from moving towards an obstacle. We tested two
different rg functions, (i) based on distance gained, and (ii) based on velocity
vector being close to the goal direction. We observed that the second one resulted
in straighter trajectories. Since the occupancy code encodes obstacles better we
will focus only on the reward function for this case:

ro(t) =

{
0, if do > τ2

−
∑|Sd

obs|−1
i=0

10
10(o[i]−1)∗2 , otherwise

(1)

where do is the distance between the agent and the obstacle.

4 Results

In this work we presented an RL approach to train one agent, and then apply
knowledge transfer to the rest of the individuals in the crowd. The other agents
can further learn during the simulation phase, by keeping a small ε > 0 to leave
room for some exploration. This allows us to reduce the time needed to train
groups of agents, by separating the learning phase from the size of the simulated
crowd.

During the training phase, we have one agent moving towards a goal and
an obstacle somewhere in the scenario. Avoiding obstacles successfully depends
on having an accurate state representation and finding a good equilibrium in
the reward function between the positive feedback of moving towards the goal
and the negative feedback of a collision. Our approach based on occupancy code
better captures the complexity of the environment, and it is able to successfully
reach the goal despite encountering more challenging situations (figure 2 top).
Once the knowledge is transferred to several agents, we can simulate a group
of agents reaching their individual goals while avoiding each other (figure 2
(bottom)). Note how agents are able to avoid moving obstacles (i.e. other agents),
despite the training being done with static obstacles.
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Fig. 2: Results of agents’ reaching their goals while avoiding obstacles and agents.

Our preliminary results look promising, as we manage to have a group of
agents wandering a virtual environment avoiding moving obstacles and reach-
ing their destinations. But this work has also shown the challenges regarding
choosing the right state representation and more importantly the right reward
function. The goal of this research was to escape the cumbersome work of tweak-
ing parameters in crowd simulation models, and while we had success with this,
we did encounter a number of challenges in finding and tuning reward functions.
Future work will focus on partially automating this selection process by incor-
porating inverse reinforcement learning techniques.
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