

Scalable Software Architecture for the Android Beyond

the Stratosphere Satellite Network

A Degree Thesis
Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de
Barcelona

Universitat Politècnica de Catalunya
by

Arnau Prat Sala

In partial fulfilment
of the requirements for the degree in

ENGINYERIA DE SISTEMES ELECTRÒNICS

Advisors:
Elisenda Bou-Balust
Carles Araguz López

Reporting advisor (ponent): Eduard Alarcón

Barcelona, July 2015

 ii

Abstract

The aim of is project was to conceive, design and develop part of the software for the
Android Beyond the Stratosphere project, which is being developed at the Technical
University of Catalonia UPC BarcelonaTech, aiming to design a nano-satellite system
based on an Android phone. This thesis has focused on the design and implementation
of the ABS software architecture and the development of a Software Development Kit
(SDK) for this platform. This SDK will allow for apps being uploaded to the satellite while
in orbit. These apps, developed by the community, will run on the top of the custom
software architecture and will have all the necessary interfaces to the smartphone
hardware and on-board payloads. An Arduino Mega ADK board (open-source hardware)
will interface the different payloads with the phone, being a low-cost, highly-configurable,
fast-development platform for nano-satellites. The software has been designed for the
current platform (1 phone) but it has been taken into account modularity and scalability to
enable multiple-unit architectures such as satellite constellations or fractionated-
spacecrafts.

 iii

Resum

L’objectiu d’aquest projecte era concebre, dissenyar i desenvolupar part del software pel
projecte Android Beyond the Stratosphere que està sent desenvolupat a la Universitat
Politècnica de Catalunya i que aspira a dissenyar un nanosatèl·lit basat en un mòbil
Android. Aquesta tesis s’ha centrat en el disseny i desenvolupament d’una arquitectura
de software y el desenvolupament d’un Software Development Kit (SDK) per aquesta
plataforma. Aquest SDK permetrà pujar aplicacions al satèl·lit mentres aquest estigui en
òrbita. Aquestes aplicacions, desenvolupades per la comunitat, s’executaran a sobre de
la nostra arquitectura de software i tindrà totes les connexions necessàries amb el
hardware del telèfon i càrregues útils. Un Arduino Mega ADK (hardware de codi obert)
connectarà les diferents càrregues útils amb el telèfon, essent una plataforma de baix
cost i altament configurable. El software s’ha dissenyat per la plataforma actual (1
telèfon) però s’ha tingut en compte modularitat i escalabilitat per permetre múltiples
unitats tals com constel·lacions de satèl·lits o satèl·lits fraccionats.

 iv

Resumen

El objetivo de este proyecto fue concebir, diseñar y desarrollar parte del software para el
proyecto Android Beyond the Stratosphere que está siendo desarrollado en la
Universidad Politécnica de Cataluña y que aspira a diseñar un nanosatélite basado en un
móvil Android. Esta tesis se ha centrado en el diseño y desarrollo de una arquitectura de
software y el desarrollo de un Software Development Kit (SDK) para esta plataforma.
Este SDK permitirá subir aplicaciones al satélite mientras éste esté en órbita. Estas
aplicaciones, desarrolladas por la comunidad, se ejecutarán sobre nuestra arquitectura
de software y tendrá todas las conexiones necesarias con el hardware del teléfono y
cargas útiles. Un Arduino Mega ADK (hardware de código abierto) conectará las
diferentes cargas útiles con el teléfono, siendo una plataforma de bajo coste y altamente
configurable. El software ha sido diseñado para la plataforma actual (1 teléfono), pero se
ha tenido en cuenta la modularidad y escalabilidad para permitir múltiples unidades tales
como constelaciones de satélites o satélites fraccionados.

 v

 vi

Acknowledgements

I would like to thank all the people that made this work possible. Foremost, I would like to
express my sincere gratitude to Prof. Eduard Alarcón, Elisenda Bou and Carles Araguz
for being the advisors of my project and giving me advice every time I need it. Also Marc
Marí, from which I learned a lot. Also Miquel Vaquero, for helping me testing the SDK,
and the rest of PAE students who have collaborated with the project. Finally I also want to
thank my family and my friends for giving me support when I needed it.

 vii

Revision history and approval record

Revision Date Purpose

0 05/05/2015 Document creation

1 20/06/2015 Document revision

2 06/07/2015 Document revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Arnau Prat arnauprat1@gmail.com

Eduard Alarcón eduard.alarcon@upc.edu

Elisenda Bou elisenda.bou@upc.edu

Carles Araguz carles.araguz@gmail.com

Written by: Reviewed and approved by:

Date 08/07/2015 Date 08/07/2015

Name Arnau Prat Name Eduard Alarcón

Position Project Author Position Project Supervisor

 viii

Table of contents

Abstract .. ii

Resum .. iii

Resumen ... iv

Acknowledgements ... vi

Revision history and approval record .. vii

Table of contents .. viii

List of Figures ... x

List of Tables ... xi

1. Introduction .. 1

1.1. Context: Android Beyond the Stratosphere project ... 1

1.2. Project Background ... 1

1.3. Objectives ... 2

1.4. State of the art .. 2

2. ABS Software Architecture .. 4

2.1. Introduction ... 4

2.2. System Data Bus .. 6

2.2.1. MCS Packets and SDB router ... 6

2.2.2. SDB USB (USB daemon) .. 6

2.2.3. System States database ... 7

2.2.4. Result Files database .. 8

2.3. PayloadApp SDK .. 10

2.3.1. PayloadApp API .. 10

2.3.2. PayloadApp framework ... 12

2.4. Arduino firmware ... 16

2.4.1. Protocol ... 16

2.4.2. Firmware ... 17

2.4.3. USB communication .. 19

2.5. App_ctrl library (Appmods) ... 20

2.5.1. Introduction ... 20

2.5.2. Implementation .. 20

2.5.3. Application permission database .. 22

3. Results .. 24

4. Conclusions and future extension ... 26

 ix

Bibliography .. 27

Annexes ... 28

Glossary ... 31

 x

List of Figures

Figure 1: Subsystems on the architecture .. 4	

Figure 2: ABS software architecture ... 5	

Figure 3: System Data Bus block diagram ... 6	

Figure 4: Example configuration System State .. 8	

Figure 5: Functions SystemStates abs_db library .. 8	

Figure 6: File state evolution .. 9	

Figure 7: Functions ResultFile abs_db library .. 9	

Figure 8:Communication Android applications - ABS Architecture 10	

Figure 9: Internal implementation "readSPI" function ... 11	

Figure 10: Screenshot of the PayloadAPP SDK project ... 12	

Figure 11: Functions SDK framework .. 13	

Figure 12: State diagram functions SDK framework .. 13	

Figure 13: PayloadApp SDK UML diagram .. 15	

Figure 14: USB packets basic structure ... 16	

Figure 15: Arduino firmware workflow .. 18	

Figure 16: Example of USB packet .. 19	

Figure 17 APP_ctrl library in context of the architecture .. 20	

Figure 18: Android Manifest with custom permissions ... 21	

Figure 19: Steps to extract permissions from manifest .. 21	

Figure 20: Functions App_ctrl library .. 22	

Figure 21: Functions App_ctrl abs_db .. 23	

Figure 22: Path followed by the command analogRead ... 24	

Figure 23: Latency histogram 1 service ... 24	

Figure 24: Latency multiple services .. 25	

Figure 25: Test application for ABS .. 25	

 xi

List of Tables

Table 1 SystemState database table ... 7	

Table 2: ResultFiles database table ... 9	

Table 3: Methods SDB class .. 11	

Table 4: USB packets structure .. 17	

Table 5: Basic structure of the ApplicationPermissions table ... 22

 1

1. Introduction

In this section, the Android Beyond the Stratosphere project in the context of which this
work is frameworked will be introduced. After that, the project background and its
objectives will be stated. Finally, a survey of the current state of the Art on this topic will
presented, to motivate the interest and impact of the project.

1.1. Context: Android Beyond the Stratosphere project

The aim of the Android Beyond the Stratosphere (ABS) project is to develop an open-
source, standardized, modular nano-satellite platform based on commercial of the shelf
components and open standards. The project seeks to explore the satellite-on-a-phone
architecture to enable a low cost modular nano-satellite based on an Android phone.

The final goal of the ABS project is to develop the whole system, with especial efforts on
the software (since the hardware is already been given, and minor modifications have to
be done to enable a smartphone with the extra capabilities of a nano-satellite). The
software has been designed for a single satellite-mission but modularity and scalability
have been taken into account in order to enable multiple-unit architectures such as
satellite constellations or fractionated spacecrafts.

Keeping the operating system (OS) on the phone (Android OS) will allow for apps being
uploaded to the satellite while in orbit. These apps, developed by the community, will run
on the top of the custom software architecture and will have all the necessary interfaces
to both the smartphone hardware and mission payloads.

An Arduino Mega ADK board (open-source hardware) will interface the different payloads
with the phone. Such board is a low-cost, highly-configurable, fast-development platform
enabling to add payloads and hardware modules to the phone.

Towards the objective to allow developers and users to create their own applications and
test them on the satellite, it has been developed an SDK that will enable Android
developers access the different satellite payloads and subsystems in an easy way.

1.2. Project Background

The Android Beyond the Stratosphere project follows the previous work carried out at the
Laboratory of Small Satellites and Payloads of the Technical University of Catalonia UPC
BarcelonaTech, and is encompassed under the Conceive Design Implement and Operate
(CDIO) initiative where different groups of students, collaborate in the development
process of CubeSat nanosatellites.

The project officially started on fall 2013, when the project proposal presented by Prof.
Eduard Alarcón and the PhD candidate Elisenda Bou, was awarded with one of the
Google Faculty Research Awards.

I joined the project as an Advance Engineering Project student the following semester,
helping the team with the development of an Android Real-Time OS and the conception
of the ABS software architecture. After finishing the course, I was offered the opportunity
to continue with the task of developing the software architecture along with the

 2

implementation of an SDK for the Android platform as a senior student.

The tasks presented in this work were decided with my supervisors and me before
starting the project and were designed as a result of my previous development activities.

1.3. Objectives

The ABS software architecture is based on the existing 3Cat1 architecture [1] (the first
nano-satellite developed at the UPC), but seeks to take a step beyond and use its
predecessor’s flexibility to work together with Android.

Most of the previous architecture has had to be revisited and redesigned, while other
parts have had to be built from the scratch. Most of these parts are related with Android
and Arduino, where this project has been more focused on.

The objective of this work has been to develop and design part of the software for the
ABS project. Focusing on 1) design and implementation of the ABS software architecture
and 2) design and implementation of an SDK for this platform, which will allow to develop
Android applications to control payload platforms.

This report includes the design and implementation of four of the modules of the ABS
architecture. All the details about the design and implementation of these modules along
with the architecture are explained in the next chapter.

Modules designed and implemented in this thesis are, namely:

1) Software Architecture:

- System Data Bus: System command router and data transfer arbitrator that
interfaces the rest of modules.

- Arduino firmware: Firmware for Arduino, which interfaces the Android phone
with the attached payloads.

- App_ctrl library: Library used by the modules on the custom architecture to
control Android applications.

2) PayloadApp SDK.

1.4. State of the art

The development costs and time of a conventional satellite can be very high, and hence,
recently, many efforts have been made to minimize the cost by developing smaller
satellites. These small satellites serve as low-mass platforms that can be sent to space,
allowing corporations, universities and even individuals low-cost access to space. These
“miniaturized satellites” can be classified based on their mass, where the most popular
classes are: nano-satellite (1 Kg to 10 Kg) and pico-satellite (100g to 1Kg) [2].

To help with the design process of these satellites, CubeSat standard [3] was developed
in California Polytechnic State University and Stanford University. This standard defines a

 3

cube-shaped satellite with a nominal length of 10 cm per side and a mass of no more
than 1.33 Kg, which typically uses commercial components for its electronics.

Recently, various projects have appeared with the vision of building CubeSats based on
mobile phones, known as PhoneSats [4]. Nowadays, smartphones are incredible pieces
of engineering capable of a lot of things: communications, built-in sensors, computing,
energy management…

Android has also become a very attractive platform for space applications [5], because
it’s an open source platform, which makes it very easy to customize the software. For
example, NASA has an on going project [6], which uses a Nexus S phone running
Android OS as on-board computer. However, achieving a complete autonomy system is
still a far fetch objective and the results only showed the foundation of such architectures.

In this project, the phone is loaded with special experimental Android apps, which act as
the brain of the satellite. In this approach, the custom software runs on top of the Android
layer, while in the ABS case, the custom software architecture is built on top of the Linux
Kernel and runs side by side with Android, being a more reliable solution.

These projects have been mainly focused hitherto on the hardware, while it has been
scarcely approached from the software perspective. There is almost no previous work in
general-purpose software architectures targeting these platforms and no previous work
has been found on platforms that allow developers to create their own applications
oriented for space, such as the Software Development Kit (SDK) presented in this work.

The use of Arduino in space is not new either. Some projects have also appeared with
the idea of using it (e.g. Ardusat [7]). However in the ABS project it plays a secondary
role, using it as a platform to interface the phone with the attached payloads.

 4

2. ABS Software Architecture

2.1. Introduction

The ABS software architecture is the main controlling software of an ABS module/satellite.
It comprises several processes and libraries where each of them is devoted to a
particular task. While most parts of the ABS architecture have been developed in C/C++,
taking advantage of the fact that Android is a Linux-based OS, others parts have been
developed in Java (PayloadApp SDK) and Arduino language (Arduino firmware).

This custom architecture is deployed on top of the Linux OS and operates together with
Android components, which run on top of a Java Virtual Machine (JVM) named Dalvik
Virtual Machine (VM), which execute the phone’s functionalities and Android apps.

The architecture can be divided in three main parts: 1) The PayloadApp SDK: interface
the apps running on top of the Android layer with the ABS architecture. 2) The Arduino
firmware: interfaces the attached payloads with the ABS architecture. 3) The ABS system
manager: is in charge of managing the system and controls safety rules.

Communication between the ABS architecture and the Arduino firmware is performed
through USB. While the communication between the PayloadApp SDK and the rest of the
inner processes on the ABS architecture is performed through sockets.

Below is a diagram of the different parts/subsystems of the architecture:

Figure 1: Subsystems on the architecture

The software architecture has been designed separating the different processes and
libraries that conforms it in modules. Considering the modules as black boxes makes the
software much more changeable, maintainable and minimizes error propagation. It also
enables scalability and makes the software general-purpose.

 5

During the design of the software architecture, this has suffered numerous changes,
involving many design decisions. This caused that the design stage of the project
required slightly more time than envisaged. This was not critical since providing a better
software design helped reducing the implementation time.

On top of the architecture (ABS system manager) are the System Core, which manages
the system at its highest level and the Process Manager, which converts the high-level
goals in low-level processes. Next are the System Data Bus and SDB USB, which
interface the different modules on the architecture between them. Following, we have the
Hardware-dependent modules (HWmods) and the Distributed System Layer, which
connects the architecture with the hardware on the phone and other satellites. Finally, the
PayloadApp SDK and the Arduino firmware, interface the architecture with the apps
running on top of the Android layer and the attached payloads respectively.

Below is the final design of the ABS software architecture:

Figure 2: ABS software architecture

The final ABS software architecture (SA) is composed of a total of eight modules. Next
sections detail the design and development of four of the modules addressed in this
thesis: System Data Bus, PayloadApp SDK, Arduino firmware and App_ctrl library.

 6

2.2. System Data Bus

The System Data Bus is used as a data router or distributor, to send commands to one
module to another. In addition to this, the SDB also manages the communication with the
Arduino subsystem (SDB USB) and handles global persistent data stored in the System
State and Result Files databases. All this is described below.

Figure 3: System Data Bus block diagram

2.2.1. MCS Packets and SDB router

The SDB Modular Command System (MCS) is a custom specification, which allows to
define the packets (commands) that the SDB accepts. All the SDB commands are
defined in a system configuration file, which is processed by the MCS to automatically
generate the necessary functions, structures and definitions at compile-time.

These commands can then be used at many levels of the SA and constitutes an
important part of the ABS project. The implementation of the MCS and the design of the
SDB core have been carried out by Marc Marí and is not covered in this work.

2.2.2. SDB USB (USB daemon)

The SDB USB is the sub module of the SDB that manages the communication with the
Arduino subsystem. Its task is to forward those commands that have to go to the Arduino,
converting MCSPackets into USBPackets and then sending them through the USB.

The SDB USB should not only send the packets by their order of arrival (first come, first
served) but also has to take into account the priority of these packets (the priority
depends on the module that sends the packet). This allows critical commands (e.g.
system control) to be sent before than the regular ones (e.g. sensor data retrieval).

 7

A priority queue has been implemented which sorts the commands waiting to be sent by
their order of priority. As shown on the Arduino Firmware section, this implements a
request-reply communication model, hence before sending a new command the SDB
USB needs to wait for the response to the previous one, convert it into an MCS Packet
and send it to the request module. Once this is done, the next command is sent.

In order to establish the communication with the Arduino board, the same protocol used
by the firmware had to be implement on the SDB USB (Android Open Accessories
protocol). In a normal situation this communication would be performed using the
standard APIs for Android. However, these APIs can only be used from Android, and the
communication had to be done writing and reading (sending and receiving) directly to the
driver that controls the USB accessory communication: /dev/usb_accessory [8].

2.2.3. System States database

System States are values or measures generated by a module or sensor on the
Architecture, which are of interest to the mission, such as the value of a temperature
sensor or the battery state. The System States will be stored in the SystemState
database. Table 1 shows the basic structure of a System State in the database.

Every System State (e.g., temperature, battery state…) will have their own table and will
contain an entry for each of the measures taken so far. Keeping all the measures will
allow, for example, study the evolution of a certain state over a certain period of time.

Table 1 SystemState database table

Note that each table can have more than one Value column (e.g., the table of the System
State Gyroscope would have 3 Value columns for components X, Y and Z respectively).
The type of the values can also be different for each column (although in the gyroscope
example the three of them could be of type Real).

New System States can be defined making use of the Modular Command System
mentioned before. To add a new System State, it has to be define the name of the
measure, the number of values, the units, expire time of the measure, update function…

Below is an example of how to create a new System State called “temperature_arduino”,
which will contain the value of a temperature sensor on the Arduino board (in Kelvins). In
this example in can also be seen how this state would only be accessible by the System

Column Allowed types Description

ID Integer Pirmary key for the table

Value 1 Integer/Real/Text Value 1

Value … Integer/Real/Text Value …

Value N Integer/Real/Text Value N

Time Integer UNIX time at which the value was stored

 8

Core ("expire_group" : [{"Syscore”}]) and the command that will be used to update the
State will be reading the analog pin 1 on the Arduino board (command analogRead(1)).

Figure 4: Example configuration System State

The access to the database by the different modules is provided by the abs_db library
functions listed below:

Figure 5: Functions SystemStates abs_db library

2.2.4. Result Files database

The ResultFiles database keeps track of the different files that could be generated in the
system. This database stores information about the files stored in the satellite keeping
track of their name, owner or state (i.e. the file has been sent (Sent), the file has just been
received (New received), the file has been deleted (Deleted), etc.) Table 2 shows the
table that defines this database.

/* Add a system value */

MCSPacket addSystemStates(MCSPacket *pkg);

/* Get a system value */

MCSPacket getSystemStates(MCSPacket *pkg);

{

 "name" : "temperature_arduino",

 "description" : "Get temperature from the sensor in the Arduino board",

 "nargs" : 1,

 "raw_data" : false,

 "type" : "state",

 "config" : {

 "update_function" : "analogRead(1)",

 "dimensions" : 1,

 "return_type" : "float",

 "unit" : "K",

 "dimension_name" : null,

 "expire_group" : [{"Syscore"}]

 }

}

 9

Table 2: ResultFiles database table

Below is a finite state diagram of the field State of the ResultFiles database, which
indicates the file State evolution of a file.

Figure 6: File state evolution

The access to the database by the different modules is also provided by the abs_db
library, which will specify the following functions:

Figure 7: Functions ResultFile abs_db library

Column Type Description

Path Text Path of the File

Owner Text Module owner of the file

Time Integer Time when file created

State Integer Current State

Priority Integer Priority

Expire_time Integer Expiring time

/* Add a result file */

int addResultFile(abs_file *file);

/* Get a result file */

ABSFile *getResultFile(char *filename);

 10

2.3. PayloadApp SDK

The PayloadApp SDK is a developer framework, which will allow the future community of
developers to build Android apps that make use of the payloads and resources on the
satellite. The PayloadApp SDK sits between the Android applications and the ABS
architecture and connects both of them.

Figure 8:Communication Android applications - ABS Architecture

The SDK presented in this report implements more than 50 functions arranged in different
classes (e.g., Arduino, Attitude, Energy, Orbital State, etc.) providing high-level definition
functions to control the spacecraft. Also it provides a complete framework for developers
to build their own Android applications for nano-satellite platforms.

The full list of functions implemented on the SDK can be found on Annex 1.

2.3.1. PayloadApp API

The PayloadApp API is a collection of functions and classes (see UML diagram on page
25), which enables Android apps to execute system-commands on the architecture
through wrapper functions (e.g., getAttitude, getOrbitalState, readSPI, digitalRead etc.),
often named the same as the command they invoke.

Internally, the SDK does not implement any of these commands per se. Instead, when
the SDK needs to execute a command, it sends a message to the Architecture requesting
to do it (similar to a Kernel System Call on Unix).

These calls are invoked by wrapper functions and are the ones that the users will
ultimately use. For security reasons, the developers cannot send commands directly to
the architecture and must always use these functions.

Following is an example of the internal implementation of one of these functions:

 11

Figure 9: Internal implementation "readSPI" function

For this to work, the PayloadApp SDK must be able to communicate with the custom
architecture. A class called SDB (System Data Bus) is in charge of managing the
communication. The list of methods of this class are shown below:

Table 3: Methods SDB class

Although previous versions of this class implemented these methods entirely in Java, the
final implementation uses calls to a library written in native code. This design choice was
motivated by the following reasons:

1) Simplicity: it can be reused the same libraries that were developed to communicate the
rest of the modules of the architecture between them.

2) Consistency: By doing this it avoids to implement the same code for Java and C,
eliminating code duplicity and thus minimizing errors.

To include native code in the SDK it was used the Android NDK [9] (Native Development
Kit), which enables the use of native code on an Android project, and JNI [10] (Java
Native Interface), which defines a way for Java to interact with native code.

The screenshot below shows the PayloadApp SDK project implemented using Android
Studio [11]. On the left side the different classes and files that form the project are shown,
which combine Java (Java) and native code (JNI). The right side shows part of the code
of the native function send of the SDB class, where it can be seen how JNI used to obtain
the variables of a Java object of the class SDBPacket in C.

Method Description

- connect It connects to the ABS architecture.

-disconnect It disconnects from the ABS architecture.

+send Sends a packet to the system and waits for another packet in response.

+register Register a callback function that will be executed when certain pkt arrive.

Byte[] readSPI(int slaveSelectPin)

{

 /* Create the SDBpacket to be sent */

 SDBPacket pkg = new SDBPacket(READ_SPI, slaveSelectPin, NULL);

 /* Send packet and wait for a response */

 SDBPacket res = sdb.send(pkg);

 /* Return the data of the response packet */

 return res.getData();

}

 12

Figure 10: Screenshot of the PayloadAPP SDK project

2.3.2. PayloadApp framework

The PayloadApp SDK provides a framework for final developers, which allows them to
build their own applications to control mission-specific payloads. These apps will extend
the custom class PayloadApp, which, at the same time extends from the class Service.

A Service [12] is an Android application component that runs in background to perform
long operations and has no user interface (UI). Since 1) no UI is need it in space and 2)
the Android OS will only destroy a Service in a critical situation, it was decided that these
apps will be build around a Service.

An example of a Payload App could be an app that takes pictures of the Earth if the
satellite is at a certain position (e.g. takes photos when it passes over Barcelona), making
use of a GPS attached to the Arduino.

To create a Payload App, the first step is to import the PayloadAPP SDK into our Android
project (File -> Module -> Import PayloadApp.aar). Once this is done, it can be created a
class that extends from com.abs.payloadsk.PayloadAPP. At this point, the developer will
have access to all the functions and classes mentioned above and four public methods,
where our code should be written (check, init, run and halt).

Each of these 4 functions have different functionalities and are executed at different
points in time by the ABS architecture. The table below lists the Payload App basic
interface and describes the meaning of each function, and a state diagram of the order in
which the ABS architecture (Process Manager) can execute these functions.

 13

Function Description

Check Check the state of the hardware and software used in the run.

Init Initialize the hardware and software for the run.

Run Start performing the routines.

Halt Stop all routines and reset devices.

Figure 11: Functions SDK framework

Figure 12: State diagram functions SDK framework

Below is an example of a Payload App application. When this app runs continuously
checks a temperature sensor in the Arduino board and, if it is greater than certain
threshold turns on an LED and if it is below it turns it off.

The function check will determine whether the sensor is working properly or not. The
function init will set the LED in its initial state. The function run will perform the main
routine commented before. Finally the function halt will set the LED into its initial state.

 14

package com.abs.payloadapp;

/* The class needs to extend from PayloadApp */
public class MyPayloadApp extends PayloadApp {

 Arduino arduino;
 private static final int TEMPERATURE_SENSOR = 10; // Definitions
 private static final int LED = 5, LOW = 0, HIGH = 1;

 public MyPayloadApp()
 {
 arduino = this.getArduino(); // Get arduino object
 }

 @Override
 public int check() // Check the state of all
 {
 if(!arduino.analogRead(TEMP_SENSOR)) { //Check if temp sensor is working
 return -1; //Check failed (return -1)
 } else {
 return 0; //Check passed (return 0)
 }
 }

 @Override
 public int init() // Initialize all for run
 {
 arduino.digitalWrite(LED, HIGH); // Put LED initial state (ON)
 return 0; // Always need to return 0
 }

 @Override
 public int run() // Start main routine
 {

while(1) { // If temp sensor above threshold
 if(arduino.analogRead(TEMPERATURE_SENSOR) > 100) {
 arduino.digitalWrite(LED, HIGH); // Turn on the LED
 } else {
 arduino.digitalWrite(LED, LOW); // Turn off the LED
 }
 }
 return 0; // Always need to return 0
 }

 @Override
 public int halt() // Stop main routine and reset
 {
 arduino.digitalWrite(LED, LOW); // Put LED on orig state (OFF)
 return 0; // Always need to return 0
 }
}

 15

Figure 13: PayloadApp SDK UML diagram

 16

2.4. Arduino firmware

One of the main parts of the ABS project is the Arduino subsystem. This part is in charge
of the communication between the phone and the different payloads, where the Arduino
platform acts as an interface Payloads-Phone (1 phone - N payloads).

The idea is to be able to control the Arduino (and therefore the attached Payloads)
directly from the phone without writing code from the Arduino. Instead, a very generic
firmware interprets and executes the commands sent by the phone.

Next section details how the firmware works and the protocol designed to communicate
the Android phone and the Arduino via USB.

2.4.1. Protocol

The protocol aims to be as generic as possible, allowing creating any type of command.
With the same packet structure one can start an I2C communication, read the value from
a digital pin or even create an event to read a pin every N milliseconds.

This uses a request-reply communication model, the phone sends a command to the
Arduino board, which receives and processes, and ultimately, returns a message in
response. This response packet can be of the type: ok, ok_data or error.

The protocol also allows the firmware to send messages to the phone without a previous
request, although this is restricted to very special events (e.g. if a critical error occurs in
the Arduino ADK board and it has to be notified to the Android phone.)

The basic structure for the USB packets is shown below:

Figure 14: USB packets basic structure

 17

Table 4: USB packets structure

2.4.2. Firmware

The Arduino firmware waits for commands on the USB port. After receiving a command,
the firmware executes it. This operation is done over and over again and constitutes the
main loop of the Arduino firmware.

In addition are the so-called events. Events are actions that are executed at very
specifically timed intervals. These actions are managed independently from the main loop
and are controlled by a timer interrupt. Events can be created from the phone with the
command createEvent along with the action and its repetition time.

Since the execution of an event inside an interrupt routine could be susceptible of nested
interrupts, these actions are performed within the main loop and the event routine only
decides when they should be executed. When the event routine determines that the time
that has elapsed since the last execution of an event is greater or equal than the
specified repetition time, it signals it setting a flag up. Then, the main loop knows that
needs to execute the event in the next iteration.

The firmware also allows having events triggered by a change in a pin state (external
event). This can be used to notify the system if there has been any Latch up (a type of
short circuit which can occur in an integrated circuit in space due to radiation) or any
other critical event that can occur on the system.

By default, the firmware does not support all the pins to be configured as a trigger, and
they should be programmed according to the mission before the launch. This fact is
caused by the Arduino microcontroller not being able to configure new pin change
interrupts during runtime. This should not constitute a problem, since the pins, which can
trigger an event, are known before the launch.

Below is a simplified flow chart of the Arduino firmware:

Name # bits Description

CMD 3 bits Defines the type of command to be performed.

Parameter
s

4 bits Defines the specific command to be performed.

CMD Args 14 bits Arguments that a command takes (arg0, arg1).

Data Size 14 bits Size in bytes of the field Data.

Data # bytes Data that a command takes.

Packet ID 7 bits Packet identifier.

End 1 bit Indicates the end of a packet. 0 in the last, 1 the rest.

 18

Figure 15: Arduino firmware workflow

A key function here is the process command function. This interprets the packets and
executes them. Internally this function is implemented as a switch statement, where it has
been programmed what to do for each of the commands. Note that this function is the
same for commands and events.

The only difference is that in the first case, the commands to execute are encode in the
USB packet and in the events, the commands (actions) are stored in a struct, which every
event has, as a byte array. This struct also contains the interval of repetition and the ID of
a buffer on the SD for that event.

Those buffers are used to store the data that an event could generate (imagine an event
which samples the value of a sensor every 2 seconds). This data can be later retrieve
with the command dumpBuffer.

The action that an event performs is specified in the same command that creates the
event itself. This action, which will be decoded by the execute command block is encoded
inside the data field of the create event packet.

The example below shows a packet which creates an event that blinks a LED (toggles a
digital PIN) every 0.5 seconds (2 times the basic frequency).

 19

Figure 16: Example of USB packet

The list of actions that an event can perform can be found on Annex 2.

2.4.3. USB communication

The communication between the firmware and the phone is through USB and uses the
Android Open Accessory (AOA) protocol [13]. The AOA is used to overcome the problem
of connecting to an Android-powered device with an external device and that otherwise
would be very complex to do, such as the communication with the Arduino.

When the communication is established, the Android phone enters to what is known as
“accessory mode”. In this mode, the Arduino becomes the master and the Android device
the slave (accessory). For this to work, the Arduino must have a USB host interface [14].

 20

2.5. App_ctrl library (Appmods)

2.5.1. Introduction

The App_ctrl library was originally conceived as a set of processes (called APPmods) in
charge of controlling the applications running on top of the Android layer. The Process
Manager would be performing this tasks and the App_ctrl library would encapsulate the
functionalities related with the control of the Android applications, which are the following:
install, uninstall, launch and exit a given Android application.

In this scenario the Process Manager performs the monitoring of the Android applications
and when some action has to be carried out on these, it calls the corresponding function
on the App_ctrl library (e.g. if the Process Manager determines that an app needs to be
installed, it will call the function install on the App_ctrl library).

The App_ctrl library does not decide which Android application runs at a certain point in
time (since this is a job for the Process Manager). However it can ultimately refuse to
launch an application if certain requirements are not met.

Imagine an application, which is using a specific pin on the Arduino board that can only
be used by one application at a time. Now imagine that the Process Manager requests to
launch a second application, which also need to use that same pin. In this case the
App_ctrl will not launch the app until the resource is freed.

As has been seen in the example, the App_ctrl library needs to implement a certain level
of control in order to keep track of which resources/permissions are being used by each
Android application and if it is necessary act accordingly.

Figure 17 APP_ctrl library in context of the architecture

2.5.2. Implementation

As has been said, the App_ctrl library needs to keep track of which resources are being
used and which will need to be used during runtime. As outlined below, the solution to the
problem lies in a file, which all Android apps already have.

 21

Every Android application needs to have an AndroidManifest.xml file which presents
essential information about the Android application. It has been taken advantage of this
fact and it has been used this document to store our own permission.

Below is an example of an AndroidManifest.xml from an application, which uses two of
our custom permissions (I2C and SPI communication).

Figure 18: Android Manifest with custom permissions

Before executing the app, the App_ctrl library will extract the AndroidManifest.xml from
the Android Application Package (APK) and from this file it will get the list of necessary
resources. Next is a diagram with the process.

Figure 19: Steps to extract permissions from manifest

Once it has a list of all the resources needed by the app, the App_ctrl library will check if
any of those resources are already in use. If not, it will update a database, which has
searched before for existing permissions, with the new resources and it will launch it.
Otherwise, it will send an error code to the controlling module and will not initiate the app.

Likewise, when an application needs to be closed, the App_ctrl library will delete those
resources that were being used by the app before closing it. In the case of install and
uninstall functions, no additional action will be performed.

The functions implemented by the App_ctr library are shown below:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="..." package="com.abs.payloadapp" >

<permission android:name="com.i2c" android:label="i2c"></permission>
<permission android:name="com.spi" android:label="spi"></permission>
<application>
…

 </application>
</manifest>

 22

Figure 20: Functions App_ctrl library

Extract the resources needed by the app from its APK was not an easy task. Several
solutions can be found (apktools, appt…) [15] which extracts the manifest from an APK
and parse it, but they where either too complex or they were not implemented in C. So
the chosen solution has been to implement a custom routine from scratch.

To extract the AndroidManifest.xml from the APK it was used the zlib library, which allows
us to deflate the APK (Application Package File) and retrieve their files (identical to
unpacking a ZIP file). At this point, the AndroidManifest.xml file has been extracted, but
needs to be decoded since is in binary format. To do this, it was re-implemented in C a
function for Java found on Internet, which did this (decode an XML file). Finally, the file
can be parsed and decoded (using regex) and the permissions can be extracted.

2.5.3. Application permission database

The ApplicationPermissions database will keep track of which permissions are being
used by each application at a given time. This is being used by the App_ctrl library to
decide whether to perform an action over a certain Android app or not.

Table 2 shows the structure for the ApplicationPermissions table:

Table 5: Basic structure of the ApplicationPermissions table

Column Type Description

Permission_name Text Name of the permission

Application_name Text Name of the app using the permission

Register_time Integer Time which permission (app) starts to be used

Expire_time Integer Time which permission (app) stops to be used

/* Initiate app_ctrl library */

int init_appctrl();

/* Install a given application */

int app_install(char *filename);

/* Uninstall a given application */

int app_uninstall(char *filename);

/* Launch a given application */

int app_launch(char *filename);

/* Exit a given application */

int app_exit(char *filename);

 23

The library abs_db will provide the following functions:

Figure 21: Functions App_ctrl abs_db

To create the database presented in this report it has been used SQLite. This database,
along with the App_ctrl library, has been implemented and tested.

Int addPermission(char *permissionName, char, char *appname, time_t
exp_t);

Int deletePermission(char *permissionName);

Int deleteAppPermission(char *appName);

char *findPermission(char *permissionName);

int findApplication(char *appName);

 24

3. Results

In order to verify the functional behaviour of the software implemented, it has been done
a series of tests to evaluate the performance of the different parts of the architecture. The
tests presented below, try to assess the performance when an app continuously sends a
command to the ABS architecture to sense the value of a specific pin on the Arduino.

This test allows us to check the performance of the PayloadApp SDK, System Data Bus,
SDB Bus USB and Arduino firmware, since it requires of all this modules to work (see
figure below). In this tests it has been measured the latency when one or more apps try to
access the same resource at the same time.

Figure 22: Path followed by the command analogRead

1) Latency test:

In this test, an application call 500 times the command analogRead with an interval of 0
milliseconds between calls, while it measures the time in performing the action. The
results showed a mean of 5,09 ms, which it is a moderably good result despite all the
round trip. And a standard deviation of 3,12 ms, which is also correct, although it shows
that the latencies have some random component. Some errors are also seen (2,20%).

Figure 23: Latency histogram 1 service

 25

Ideally, the histogram should be a single peak as further to the left as possible, meaning
that the time of performing a command is fast and predictable. Finally, there should not
be any error and it will need to be found the cause of the errors detected.

2) Stress test:

In this test, multiple services call the same function, while the latency is measured on one
of the services and on the Arduino. The test shows that the latency on an app grows
exponentially when more services are added, but the time of performing the action on the
Arduino remain stable. This is due to the Arduino can only process one packet at a time
and when are more apps running, the commands need to wait on the priority queue on
the SDB USB to be executed by the Arduino.

Figure 24: Latency multiple services

Finally, other tests have been executed to check the correct functioning of the different
modules implemented. Also, a general-purpose Android application has been developed
by a member of the ABS team, Miquel Vaquero, to execute all this tests (the screenshot
below shows the main windows panels of this app).

Figure 25: Test application for ABS

 26

4. Conclusions and future extension

This thesis has presented the work conducted on the design and development of part of
the software for the ABS Google PhoneSat project. Chapter 1 provided an overview of
the ABS project and the objectives of this thesis. Chapter 2 presented the ABS software
architecture and its subsystems and it explains in detail the modules implemented. Finally
in Chapter 3 some results with the performance of the system were shown.

The purpose of this work has been twofold: on the one hand the design of a software
architecture targeted for a nano-satellite system based on an Android phone, along with
the implementation and design of three of its modules: Arduino Firmware (interfaces the
phone with the attached payloads), System Data Bus (SDB) (interfaces the different
modules on the architecture between them), and App_ctrl library (controls the apps
running on top of the Android layer.)

On the other hand, this work has shown the design and implementation of an SDK, which
will allow for apps being uploaded to the satellite while in orbit. This SDK provides a
complete framework and more than 50 functions (commands) giving the bases for in
space applications development.

Concluding this report, it is worth mentioning that the objectives specified on the
Preliminary Design Review have been fulfilled, and the basis for a fully functional
architecture has been established.

Besides this, there are still parts to implement and some of the implemented parts have
still some ground for improvement, but the design presented have been build on a very
scalable and robust foundation.

A future extension would be to migrate from a single satellite-mission to new mission
architectures involving large constellations of nano-satellites. This will allow to create a
public access space station (Open Space Station) conformed by swarms of Android-
based nano-satellites which will allow the users to interact with its resources through the
execution of Android applications.

 27

Bibliography

[1] C. Araguz. "Towards a modular nano-satellite software platform". M.S. thesis, Department of Electrical
Engineering Universitat Politècnica de Catalunya, Barcelona, Spain, 2014. [Online] Available:
http://hdl.handle.net/2099.1/22545. [Accessed: 2 June 2015].

[2] Nasa, “Small Spaceraft Technology State of the Art 2014” [Online] Available:
http://www.nasa.gov/sites/default/files/files/Small_Spacecraft_Technology_State_of_the_Art_2014.pdf
[Accessed: 2 June 2015].

[3] Wikipedia, “CubeSat” [Online] Available: https://en.wikipedia.org/wiki/CubeSat [Accessed: 2 June 2015].
[4] Wikipedia, “Phonesat” [Online] Available: https://en.wikipedia.org/wiki/PhoneSat [Accessed: 2 June 2015].
[5] J. Guo, J. Chu and E. Gil. "Onboard autonomy of CubeSat clusters based on smartphone technology". In

5th International Conference on Spacecraft Formation Flying Mission and Technologies, Munich, 2013.
[6] eoPortal, “Phonesat-1 and 2” [Online] Available: https://directory.eoportal.org/web/eoportal/satellite-

missions/p/phonesat-1-2 [Accessed: 2 June 2015].
[7] Ardusat, “Ardusat” [Online] Available: https://www.ardusat.com/ [Accessed: 2 June 2015].
[8] R. Regupathy. Unboxing Android USB: A hands on approach with real world examples, 1st ed. New York,

USA: Apress, 2014.
[9] Android Dev., “Android NDK” [Online] Available: https://developer.android.com/tools/sdk/ndk/index.html

[Accessed: 1 June 2015].
[10] Oracle Java SE documentation, “Java Native Interface 6.0 Specifications - Content” [Online] Available:

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html [Accessed: 1 June 2015].
[11] Android Dev., “Android Studio IDE” [Online] Available: https://developer.android.com/sdk/index.html

[Accessed: 2 June 2015].
[12] Android, “AOA Protocol” [Online] Available: https://source.android.com/accessories/protocol.html

[Accessed: 2 June 2015].
[13] Android, “Service” [Online] Available: http://developer.android.com/reference/android/app/Service.html

[Accessed: 2 June 2015].
[14] Arduino, “Arduino Mega ADK” [Online] Available: http://www.arduino.cc/en/Main/ArduinoBoardMegaADK

[Accessed: 2 June 2015].
[15] Apktool, “A tool for reverse engineering Android apk files” [Online] Available:

http://ibotpeaches.githb.com/Apktool [Accessed: 2 June 2015].

 28

Annexes

Annex 1: Function list PayloadApp SDK

 29

 30

Annex 2: Commands list Arduino Firmware

 31

Glossary
3Cat1 First nano-satellite developed at Tech. Univ. of Catalonia

ABS Android Beyond the Stratosphere

ADK Android Development Kit

AOA Android Open Accessories

API Application Programming Interface

APK Android Application Package

I2C Inter-Integrated Circuits

JNI Java Native Interface

JVM Java Virtual Machine

MCS Modular Command System

NASA National Aeronautics and Space Administration.

NDK Native Development Kit

OS Operating System

RT Real Time

SA Software Architecture

SDB System Data Bus

SDK Software Development Kit

SPI Serial Peripheral Interface Bus

UPC Universitat Politècnica de Catalunya

USB Universal Serial Bus

VM Virtual Machine

 32

