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Abstract 

 

This thesis explores the application of channel-compensation techniques in speaker 

verification and the posterior combination with deep learning technologies. The idea is to 

reduce the degradation of the performance due to mismatched environments when 

training and testing the system as well as increasing the accuracy and reliability of the 

speaker verification systems.  

To achieve the goals, state-of-the-art techniques such as i-vector modeling, PLDA and 

DNNs will be applied. In this thesis we propose channel-compensated i-vectors that are 

extracted using the PLDA technique called Beta vectors. We apply deep learning using a 

hybrid DBN-DNN architecture with these Beta vectors as an input.  

At the end, with the Beta vector proposal and scoring with the cosine metric we obtain a 

relative improvement of 21.4% and 21% in the EER and minDCF with respect the raw i-

vectors. If we change the classifier to the DNN the relative improvement increases to 

32.3% and 32.1%, respectively. Our Beta-DNN outperforms the i-vector-DNN baseline 

system with 18.9% and 25% relative improvement in ERR and minDCF. 
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Resum 

Aquesta tesis explora l’aplicació de tècniques de compensació de canal a l’àmbit de 

verificació de parlant i la seva combinació posterior amb deep learning. La idea és reduir 

la degradació del funcionament deguda a que els entrenaments i els tests produeixen en 

diferents ambients i alhora incrementar la precisió i fiabilitat dels sistemes de verificació 

de parlant.  

Per aconseguir els objectius aplicarem tècniques punteres com per exemple modelat 

amb i-vectors, PLDA, o DNNs. A aquesta tesis proposem uns i-vectors amb 

compensació de canal anomenats Beta vectors que són extrets utilitzant la tècnica del 

PLDA. Aplicarem deep learning amb una arquitectura híbrida DBN-DNN que tindrà com a 

entrada els Beta vectors proposats. 

Al final, amb la proposta dels Beta vectors i utilitzant la distància de cosinus com a 

mètrica obtenim una millora relativa de 21.4% i 21% en el EER i el minDCF amb 

respecte de els i-vectors sense processar. Si canviem el classificador i apliquem la DNN 

proposada la millora relativa incrementa fins a 32.3% and 32.1% respectivament. Si 

comparem el nostre sistema Beta-DNN amb el sistema i-vector-DNN de referència veiem 

que el superem amb una millora de 18.9% en EER i un 25% en minDCF. 
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Resumen 

 

Esta tesis explora la aplicación de técnicas de compensación de canal en el ámbito de 

verificación del hablante i su combinación posterior con deep learning. La idea es reducir 

la degradación del funcionamiento debida a que el entrenamiento y los test se realizan 

en diferentes ambientes y a la vez aumentar la precisión y fiabilidad de los sistemas de 

verificación del hablante.  

Para conseguir los objetivos utilizaremos técnicas punteras como por ejemplo modelado 

con i-vectors, PLDA o DNNs. En esta tesis proponemos unos i-vectors con 

compensación de canal llamados Beta vectors que son extraídos utilizando la técnica del 

PLDA. Aplicaremos deep learning con una arquitectura híbrida DBN-DNN que tendrá 

como entrada los Beta vectors propuestos.  

Al final, con la propuesta de los Beta vectors y utilizando la distancia de coseno como 

métrica obtenemos una mejora relativa de 21.4% i 21% en el EER i el minDCF con 

respecto a los i-vectors sin procesar. Si cambiamos el clasificador y aplicamos la DNN 

propuesta, la mejora relativa incrementa hasta un 32.3% y un 32.1% respectivamente. Si 

comparamos nuestro sistema Beta-DNN com el sistema i-vector-DNN de referencia 

vemos que lo superamos con una mejora de 18.9% en el EER y un 25% en el minDCF.  
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“El único lugar donde el éxito viene antes que trabajo 
es en el diccionario” 
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1. Introduction 

 

1.1. Motivation and Applications 

 

Numerous measurements and signals have been proposed and investigated for use in 

biometric recognition systems. Among the most popular measurements are fingerprint, 

face, and voice. While each has pros and cons relative to accuracy and deployment, 

there are two main factors that have made voice a compelling biometric. First, speech is 

a natural signal to produce that is not considered threatening by users to provide. In 

many applications, speech may be the main (or only, e.g., telephone transactions) 

modality, so users do not consider providing a speech sample for authentication as a 

separate or intrusive step. Second, the telephone system provides a ubiquitous, familiar 

network of sensors for obtaining and delivering the speech signal.  

The applications in which this technology can be applied cover almost all the areas where 

it is desirable to secure actions, transactions, or any type of interactions by identifying or 

authenticating the person making the transaction. Regardless of forensic applications 

(police, judicial and legal use), there are four areas where speaker verification can be 

used: access control to facilities, secured transactions, structuring audio information and 

games. Its low implementation cost and the acceptability by the end users is giving 

speech authentication more popularity these days.  

Most state-of the-art speaker verification systems perform well in controlled environments 

where data is collected from reasonably clean environments. However, acoustic 

mismatch due to different training and testing environments can severely deteriorate the 

performance of the speaker verification systems. Degradation of performance due to 

mismatched environments has been a barrier for deployment of speaker recognition 

technologies.  

Having seen the importance and applications of speaker recognition technologies and 

their drawbacks, in this project we aim to apply state-of-the-art techniques to compensate 

that channel effect and to classify the voice with the objective of increasing the accuracy 

and reliability of those systems. 
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1.2. Project Overview and Goals 

 

The project is carried out at the department of Signal Theory and Communications in the 

Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona (ETSETB). 

In the scenario of speaker recognition we can distinguish between three tasks: 

segmentation and clustering, identification and verification. This project is focused on the 

technologies behind the verification task. The objective of these systems is assuring that 

the speaker who is talking is the same as the one he claims to be.  

This project takes as a baseline the work of the PhD candidate Omid Ghahabi in the 

ambit of speaker verification where he applies deep learning for speaker verification [1] 

[2] [3] using Deep Neural Networks (DNNs) and modeling the speech audio signal using 

i-vectors. In order to outperform that baseline system, we will apply channel 

compensation techniques at feature and i-vector levels and we will try to find a 

combination that gives us suitable data for training the DNN. The project goals can be 

described as:  

1. Apply Channel compensation after the feature extraction part. Check the 

performance at feature level and at i-vector level. 

2. Apply Channel compensation at the i-vectors level. We will apply normalization to 

the raw i-vectors and the i-vectors obtained from the normalized feature vectors 

and we will study if there is an improvement that leads to combine them. 

3. Find suitable data as an input of the DNN among the previous experiments. Train, 

tune and test the DNN system.  

 

1.3. Work Plan 

 

Incidences 

 

In general the project has been developed as expected, there were some problems with 

the servers at the beginning but they were solved quickly. Due to length of processing 

time that spent some of the parts more things were done in parallel with respect to the 

first Proposal Plan as it is stated in the updated Gantt Diagram.  

The work packages and the milestones can be found at the appendix.  
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Gantt Diagram 

 

Fig. 1.1: Gantt Diagram 

 

1.4. Thesis Outline 

 

This thesis will be structured as follows: 

Introduction. Includes a general description of the project, the motivation, its objectives, 

the structure and the work plan carried out.  

State of the Art. This part contains a review of the related work relevant to the thesis.   

Project Development. Throughout this chapter the reader can find the theoretical 

framework behind the experiments done. 

Experimental Part. This part contains the description of the experimental set up and all 

the experiments that have been carried out with the final results explained in detail.  

Budget. This is the economic part of the project; here an estimation of the project cost will 

be done. 

Conclusions and Future Development. This part concludes the thesis with the final 

commentaries as well as it opens a way for future work in the same topic.  
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2. State of the art 

 

2.1. Text-independent Speaker Verification Systems 

 

In the world of speaker verification we can make a distinction between text-

independent/dependent systems [2]. Text-dependent systems are used in applications 

based on scenarios with cooperative users. It implies fixed digit string passwords or 

repeating prompted phrases from a small vocabulary. Such constraints are quite 

reasonable and can greatly improve the accuracy of a system. A text-independent system 

provides a more flexible recognition system able to operate without explicit user 

cooperation and independent of the spoken utterance.  

A speaker verification system is composed of two distinct phases, a training phase and a 

test phase. Each of them can be seen as a succession of independent modules.  

 

Fig. 2.1: Module representation of the training phase of a speaker verification system 

 

 

 

Fig. 2.2: Module representation of the test phase of a speaker verification system 

 

Fig. 2.1 shows a modular representation of the training phase of a speaker verification 

system. The first step consists in extracting parameters from the speech signal to obtain 

a representation suitable for statistical modeling. The second step consists in obtaining a 
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statistical model from the parameters. 

Fig. 2.2 shows a modular representation of the test phase of a speaker verification 

system. The entries of the system are a claimed identity and the speech samples 

pronounced by an unknown speaker. First, speech parameters are extracted from the 

speech signal using exactly the same module as for the training phase. Then, the 

speaker model corresponding to the claimed identity is extracted from the set of statistical 

models calculated during the training phase. Finally, the last module computes some 

scores, normalizes them, and makes an acceptance or a rejection decision. 

2.2.  Feature Extraction 

 

Feature extraction consists in transforming the speech signal to a set of feature vectors. 

The aim of this transformation is to obtain a new representation, which is more compact, 

less redundant, and more suitable for statistical modeling and the calculation of a 

distance or any other kind of score. Most of the speech parameterizations used in 

speaker verification systems relies on a cepstral representation of speech. Two cepstral 

representations have been proposed: Filterbank-based cepstral parameters (Fig. 2.3) and 

LPC-based cepstral parameters (Fig. 2.4). Both approaches are explained in [4]. 

 

Fig. 2.3: Modular representation of a filterbank-based cepstral parameterization [4] 

 

Fig. 2.4: Modular representation of an LPC-based cepstral parameterization [4] 

 

After the cepstral coefficients have been calculated, we also incorporate in the vectors 

some dynamic information, that is, some information about the way these vectors vary in 

time. This is classically done by using the ∆ and ∆∆ parameters, which are polynomial 

approximations of the first and second derivatives [5]. At this step, one can choose 
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whether to incorporate the log energy and the ∆ log energy in the feature vectors or not. 

In practice, the former one is often discarded and the latter one is kept.  

Once all the feature vectors have been computed, in order to achieve a better 

performance in recognition, the last step that is done is keeping the vectors 

corresponding to speech portions of the signal and removing those corresponding to 

silence or background noise [4].  

 

2.3. Feature Normalization 

 

Feature normalization strategies are employed in speaker recognition systems to 

compensate for the effects of environmental mismatch. These techniques are preferred 

because a priori knowledge and adaptation are not required under any environment. Most 

of the normalization techniques are applied as a post-processing scheme on the Mel-

frequency cepstral coefficient (MFCC) speech features.  

 

Fig 2.5: Module representation of the feature normalization stage 

 

Normalization techniques can be classified as model-based or data distribution-based 

techniques. In model-based normalization techniques, certain statistical properties of 

speech such as mean, variance, moments, are normalized to reduce the residual 

mismatch in feature vectors. Data distribution-based techniques aim at normalizing the 

feature distribution towards a target distribution. 

Several techniques have been proposed such as Mean and Variance Normalization 

(MVN) [6], feature warping [7], RelAtive SpecTrA (RASTA) [8], Short Time 

Gaussianization (STG) [9]. In this thesis we will apply and analyze the contribution in 

different stages of the system of including the techniques of MVN (model-based), feature 

warping (distribution-based) and a combination of both.  
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MVN 

 

MVN is performed over the whole utterance with the assumption that the channel effect is 

constant over the entire utterance [6]. It includes Cepstral Mean Substraction (CMS) and 

variance normalization. Being  𝑥𝑟𝑎𝑤 the raw feature vector and 𝑥𝑛𝑜𝑟𝑚 the processed one: 

 𝑥𝑛𝑜𝑟𝑚 =
𝑥𝑟𝑎𝑤 − 𝑥𝑟𝑎𝑤̅̅ ̅̅ ̅̅

𝜎𝑥𝑟𝑎𝑤

 (2.1) 

The motivation for CMS is to remove from the cepstrum the contribution of slowly varying 

convolutive noises and the objective of the variance normalization is to decrease the 

range of values that the feature vectors can take as we aim to have normalized feature 

vectors with a Gaussian distribution and unit variance. 

Feature Warping 

 

The aim of feature warping is to construct a more robust representation of each cepstral 

feature distribution. This is achieved by conditioning and conforming the individual 

cepstral feature streams such that they follow a specific target distribution over a window 

of speech frames [7].  

Once we have the set of cepstral coefficients, the process of warping begins by analyzing 

them independently as a separate feature stream over time for use in the warping 

process. A window of features is extracted from the feature stream and processed in the 

warping algorithm to determine a mapped feature for the initial cepstral feature in the 

middle of the window. A single frame shifts the sliding window each time and the analysis 

is repeated. 

 

Fig. 2.6: Block diagram of the feature warping process. [7] 

For speech, the true distribution of a feature is speaker dependent and multi-modal in 

nature. However, various channel and additive noise influences can corrupt this 

distribution. We aim to perform a mapping that will condition the feature distribution. To 
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simplify the mapping we assume that the target speaker features conform to a particular 

distribution type. Intuitively, this method compensates in part for the linear channel in that 

the short-term mean is removed, and attempts to conform the distributive shape and 

spread to limit additive noise effects.  

 

Fig. 2.7: Warping of features according to a target distribution shape. [7] 

 

2.4. Statistical Modeling 

 

Once we have all the feature vectors, the next step is carrying out a statistical modeling 

of them to find an approximation of their distribution. In speaker verification a lot of 

models have been used and proposed. The ones that have been applied in this thesis will 

be stated below: 

Gaussian Mixture Model (GMM)  

GMMs are a probabilistic model that assumes all the data points are generated from a 

mixture of a finite number of Gaussian distributions with unknown parameters. It applies 

the Expectation Maximization (EM) algorithm to estimate the maximum likelihood model 

parameters. The most successful implementation [10] uses a Universal Background 

Model (UBM) to represent the speaker-independent distribution of features and then 

performs adaptation to train the target models. The scoring is carried out computing a 

log-likelihood ratio test.  
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i-Vectors  

They are based on the JFA framework [11] were the speaker and channel factors consist 

in defining two distinct spaces: the speaker space and the channel space. In i-vectors we 

only define a single space [12]. This new space, which is referred to as total variability 

space contains the speaker and channel variabilities that appear in training utterances 

simultaneously. It is defined by the total variability matrix 𝐓 , which contains the 

eigenvectors with the largest eigenvalues of the total variability covariance matrix. Given 

the centralized Baum-Welch statistics from all available speech utterances, the low rank 

T is trained in an iterative process. The training process assumes that an utterance can 

be represented by the GMM mean supervector,  

 𝐌 =  𝝁 + 𝐓𝐰 (2.2) 

 

where 𝝁 is the speaker and session independent mean supervector from the UBM, and 𝐰 

is a low rank vector referred to as the identity vector or i-vector. The supervector M is 

assumed to be normally distributed with mean 𝝁 and covariance 𝐓𝐓T, and the i-vectors 

have a standard normal distribution 𝑁 (0,1). Furthermore, in [12] cosine distance is 

proposed as a successful metric to make the scoring between the target and test i-

vectors and some channel-compensation techniques are suggested. The first one is 

Linear Discriminant Analysis (LDA) and the second one is Within Class Covariance 

Normalization (WCCN).  

WCCN  

The idea behind it is to minimize the expected error rate of false acceptances and false 

rejections during the training step. The WCCN algorithm uses the within-class covariance 

matrix to normalize the cosine kernel functions in order to compensate for intersession 

variability, while guaranteeing conservation of directions in space in contrast with LDA 

[12]. 

We assume that all utterances of a given speaker belong to one class. The within class 

covariance matrix is computed as follows: 

 𝑊 =  
1

𝑆
∑

1

𝑛𝒔
∑(𝒘𝒊 − 𝒘̅𝒔)(𝒘𝒊 − 𝒘̅𝒔)𝑡

𝒏𝒔

𝒊=𝟏

𝑺

𝒔=𝟏

 (2.3) 
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where  𝒘𝑠̅̅ ̅̅ =  
𝟏

𝑛𝒔
∑ (𝒘𝒊)

𝑛𝑠
𝒊=𝟏  is the mean of i-vectors for each speaker, 𝑆 is the number total 

of speakers and 𝑛𝒔 is the number of utterances per speaker. In order to preserve the 

inner-product form of the cosine kernel, a feature-mapping function can be defined as 

follows: 

 𝜑(𝒘) =  𝑩𝑡𝒘  (2.4) 

 𝒘𝒏𝒐𝒓𝒎 = 𝑩𝒕 𝒘𝒓𝒂𝒘 (2.5) 

where 𝑩 is obtained through Cholesky decomposition of matrix 𝑾−1 = 𝑩𝑩𝑡. 

 

Probabilistic Linear Discriminant Analysis (PLDA) 

PLDA is a probabilistic generative model that can accomplish a wide variety of 

recognition tasks. In our case, it carries out the modeling of the speaker and session 

variability [13] [14] [15] [16] [17]. This model will be explained with detail in section 3, as it 

has been very important during the thesis development.  

 

Deep Learning  

Deep learning refers to a rather wide class of machine learning techniques and 

architectures, with the hallmark of using many layers of non-linear information processing 

that are hierarchical in nature. Their power relies in that they can model complex non-

linear relationships. According to [18] we can classify the deep learning architectures and 

techniques depending on their final function. We have three categories: 

 Deep networks for unsupervised or generative learning, which are intended to 

capture high order correlation of the observed or visible data for pattern analysis 

or synthesis purposes when no information about target class labels is available.  

 Deep networks for supervised learning, which are intended to directly provide 

discriminative power for pattern classification purposes, often by characterizing 

the posterior distributions of classes conditioned on the visible data. Target label 

data are always available in direct or indirect forms for such supervised learning.  

 Hybrid deep networks, where the goal is discrimination. The network is assisted, 

often in a significant way, with the outcomes of generative or unsupervised deep 

networks.  
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2.5. Evaluation 

 

In a speaker verification system there two types of error can occur: false rejection and 

false acceptance. A false rejection (or non-detection) error happens when a valid identity 

claim is rejected. A false acceptance (or false alarm) error consists in accepting an 

identity claim from an impostor. Both types of error depend on the threshold θ used in the 

decision making process [4].  

The performance of a system can be represented plotting the false acceptance rate 𝑃𝑓𝑎 

as a function of the false rejection rate 𝑃𝑓𝑟. This curve (Fig. 2.8) is known as the Detection 

Error Trade-off (DET) curve and it is monotonous and decreasing. This curve shows all 

the operating points. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.8: Example of a DET curve [4] 

There are other measures to summarize the performance in one single figure, the two 

more popular are the Equal Error Rate (EER) and the Minimum Decision Cost Function 

(minDCF). The EER corresponds to the operating point where Pfa = Pfr and it measures 

the ability of a system to separate impostors from true speakers. The minDCF 

corresponds to the value that minimizes the cost function: 

 𝐶 = 𝐶𝑓𝑎𝑃𝑓𝑎(1 − 𝑃𝑡𝑎𝑟𝑔𝑒𝑡) + 𝐶𝑓𝑟𝑃𝑓𝑟𝑃𝑡𝑎𝑟𝑔𝑒𝑡 (2.6) 

where 𝐶𝑓𝑎  and 𝐶𝑓𝑟 are the costs given to false acceptances and rejections and 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 is 

the a priori probability of the target speaker [19]. The values of those variables depend on 

the application.   
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3. Project Development 

 

With the objective of improving the baseline system proposed in [2], in this project we will 

use channel-compensation techniques to reduce the environmental mismatch and find a 

better input for the DNN stage. First we will see that it is not worth applying channel-

compensation techniques at feature vectors level, because using the recent i-vector 

framework [12] on raw feature vectors and performing i-vector channel-compensation at 

this point totally outperforms those techniques.  

Then, once we are working with i-vectors we want to assess the different methods to 

reduce the environmental mismatch. In this scenario, we observe that applying PLDA 

stands out among all the other methods of normalization (LDA, WCCN). It turns out to be 

the technique that gives us the best results. Given that fact, we want to extract from 

PLDA the channel-compensated i-vectors and give them as an input to the DNN.  

In this part we explain PLDA in depth and the process of obtaining channel-compensated 

vectors. We also explain how we apply deep learning in the subject of speaker 

verification, showing our network’s architecture, how it is trained and how we compute the 

scoring. 

 

3.1. Probabilistic Linear Discriminant Analysis 

 

We have seen before that linear dimensionality reduction methods such as LDA are often 

used in object recognition for feature extraction, but they don’t address the problem of 

how to use the features for recognition. PLDA does both: extract features and combine 

them for recognition. As it is probabilistic it gives more weight to the most discriminative 

features (more impact on recognition). We can also perform dimensionality reduction with 

PLDA, by imposing an upper limit on the rank of the between-class variance.  

The main advantage against other methods is that allows us to make inference about the 

classes not present during training. This is useful in speaker verification because the 

system have to deal with examples of novel individuals when testing.  

Two different implementations have been proposed: Gaussian PLDA (G-PLDA) in [13] 

and Heavy Tailored PLDA (HT-PLDA) in [16]. The results presented in [15] [16] showed 

superior performance of the HT-PLDA model over G-PLDA. This provides strong 

empirical evidence of non-Gaussian behaviour of speaker and channel effects in i-vector 
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representations. In our project we have chosen to implement G-PLDA because is more 

efficient computationally and also since we can perform a length normalization 

transformation as in [14] to the i-vectors to reduce the Gaussian behaviour and close the 

gap between HT-PLDA and G-PLDA. 

3.1.1 Model Characterization 

 

The i-vector of the jth session of the ith speaker (𝒘𝒊,𝒋) can be represented as: 

 𝒘𝒊,𝒋 = 𝒎 +  𝚽 𝜷𝒊 +  𝚪𝜶𝒊,𝒋 + 𝝐𝒊,𝒋 (3.1) 

where 

𝒎 denotes the global mean 

𝚽 𝜷𝒊 is the speaker-specific part and describes the between-speaker variability and does 

not depend on the particular utterance.  

𝚽 is the Eigenvoices matrix (speaker-specific subspace). 

 𝜷𝒊 is a latent identity vector. It has a standard normal distribution N~(0,1). 

𝚪𝜶𝒊,𝒋 + 𝝐𝒊,𝒋  is the channel component part which is utterance dependent and describes 

the within-speaker variability.  

𝚪 is the Eigenchannel matrix (channel-specific subspace).  

𝜶𝒊,𝒋 is a latent identity vector. It has a standard normal distribution N~(0,1). 

𝝐𝒊,𝒋  is a residual term vector, assumed to be Gaussian with zero mean and diagonal 

covariance 𝚺. 

𝑁𝚽 ∶ is the rank of Eigenvoices matrix. 

𝑁𝚪 ∶ is the rank of Eigenchannel matrix. 

Since the i-vectors we are dealing with in our experiments are of sufficiently low-

dimension (400) we can assume that 𝚺  is a full covariance matrix, and remove the 

Eigenchannels 𝚪 from eq. (3.1) [14].  
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So our final model for the G-PLDA is as follows:  

 𝒘𝒊,𝒋 = 𝒎 +  𝚽 𝜷𝒊 + 𝝐𝒊,𝒋 (2.1) 

 

Training 

In this step, we aim to take a set of data points 𝒘𝒊,𝒋 (i-vectors) and find the parameters 

𝜃 = {𝒎, 𝚽, 𝚺} under which the data is more likely. We use the Expectation-Maximization 

algorithm to estimate the two sets of parameters in a way that likelihood is guaranteed to 

increase at each iteration.  

E step: We compute a full posterior distribution over the latent variable  𝜷𝒊  

For a speaker i with number of sessions𝑵𝒔𝒊, we can rewrite the model as follows: 

 [

𝒘𝒊,𝟏

𝒘𝒊,𝟐

⋮
𝒘𝒊,𝑵𝒔𝒊

] = [

𝒎
𝒎
⋮

𝒎

] + [

𝚽
𝚽
⋮

𝚽

]  𝜷𝒊 + [

𝝐𝒊,𝟏

𝝐𝒊,𝟐

⋮
𝝐𝒊,𝑵𝒔𝒊

] (3.3) 

We can write these supervectors as:  

 𝒘𝒊
′ = 𝒎′ + 𝚽′ 𝜷𝒊 + 𝝐𝒊,′  (3.4) 

 

  

And we can compute the conditional probabilities as [13]:  

 Pr  (𝒘𝒊
′ |  𝜷𝒊 , 𝜽 ) = 𝑵𝒘𝒊

′ [𝚽′ 𝜷𝒊 , 𝚺′ ] (3.5) 

 Pr(𝜷𝒊) =  𝑵𝜷𝒊
 [𝟎 , 𝐈 ] (3.6) 

where 

𝚺′ =  [

𝚺 𝟎 ··· 𝟎
𝟎 𝚺 ⋱ ⋮
⋮ ⋱ ⋱ 𝟎
𝟎 ··· 𝟎 𝚺

]  

This has a form of a standard factor analyser whose likelihood is: 

 Pr  ( 𝒘𝒊
′ ) = 𝑵𝒘𝒊

′  [𝐦′, 𝚽′𝚽′𝑻
+ 𝚺′ ] (3.7) 
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If we apply Bayes Rule:  

 Pr  (𝜷𝒊 |  𝒘𝒊
′, 𝜽 )  ∝  Pr  (𝒘𝒊

′ |  𝜷𝒊 , 𝜽 ) Pr(𝜷𝒊) (3.8) 

 

  

Since both terms on the right are Gaussian, the term on the left must be Gaussian. In fact, 

it can be shown that the first two moments of this Gaussian are:  

 𝐸[𝜷𝒊] =  (𝚽′𝑻
 𝚺′−𝟏

 𝚽 + 𝑰)−𝟏 𝚽′𝑻
 𝚺′−𝟏

(𝒘𝒊
′ − 𝒎′) (3.9) 

 𝐸[𝜷𝒊𝜷𝒊
𝑻] =  (𝚽′𝑻

 𝚺′−𝟏
 𝚽 + 𝑰)−𝟏 𝐸[𝜷𝒊]𝐸[𝜷𝒊]𝑻 (3.10) 

 

M step: Update the values of the parameters 𝜃 = {𝒎, 𝚽, 𝚺} 

We recall eq. 3.2: 

 𝒘𝒊,𝒋 = 𝒎 +  𝚽 𝜷𝒊 + 𝝐𝒊,𝒋 (3.2) 

We optimize: 

𝑄(𝜃𝑡, 𝜃𝑡−1) =  ∑ ∑ ∫ Pr (

𝑵𝒔𝒊

𝑗

𝐼

𝑖

 𝜷𝒊 | 𝒘𝒊,𝟏, … 𝒘𝒊,𝑵𝒔𝒊
, 𝜃𝑡−1) log[Pr  (𝒘𝒊

′ |  𝜷𝒊 ) 𝑃𝑟( 𝜷𝒊)] 𝑑𝜷𝒊 (3.11) 

where t is the iteration index. 

Taking derivatives of these equations with respect to 𝚽 and 𝚺, equating them to zero and 

after some algebra [13], we get the following update rules: 

 
𝒎 =  

1

𝑁𝑡𝑜𝑡𝑎𝑙
∑ 𝒘𝒊,𝒋

𝑖,𝑗

 (3.12) 

 𝚽 = (∑ (𝒘𝒊,𝒋 − 𝒎 )𝑖,𝑗 𝐸[𝜷𝒊]𝑻)(∑ 𝐸[𝜷𝒊𝜷𝒊
𝑻]𝒊,𝒋 )−𝟏  (3.13) 

 
𝚺 =  

1

𝑁𝑡𝑜𝑡𝑎𝑙
∑ 𝐷𝑖𝑎𝑔[(𝒘𝒊,𝒋 − 𝒎 )(𝒘𝒊,𝒋 − 𝒎 )

𝑇
− 𝚽 𝐸[𝜷𝒊](𝒘𝒊,𝒋 − 𝒎 )

𝑇
] 

𝑖,𝑗

 (3.14) 

 
𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑁𝒔𝒊

𝑖

 (3.15) 

being 𝑁𝑡𝑜𝑡𝑎𝑙 the sum of all the sessions of all the speakers. 
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Scoring 

For the speaker verification task, given the two i-vectors 𝒘𝒎 and 𝒘𝒕 involved in a trial, we 

are interested in testing two alternative hypotheses: 

- 𝐻𝑠: Both i-vectors share the same speaker identity latent variable 𝜷. 

- 𝐻𝑑: The i-vectors were generated using different identity variables 𝜷𝒎 and 𝜷𝒕. 

The verification score can now be computed as the log- likelihood ratio for this hypothesis 

test as: 

 𝑠𝑐𝑜𝑟𝑒 =  
Pr(𝒘𝒎, 𝒘𝒕 | 𝐻𝑠)

Pr(𝒘𝒎 |  𝐻𝑑) Pr(𝒘𝒕 |  𝐻𝑑)
 (3.16) 

For the G-PLDA case, this log-likelihood ratio is easily computed in closed-form solution 

since the marginal likelihoods (i.e., the evidence) are Gaussian. That is,  

 𝑠𝑐𝑜𝑟𝑒 = log 𝑁([
𝒘𝒎

𝒘𝒕
] ; [

𝒎
𝒎

] , [
𝚺𝒕𝒐𝒕 𝚺𝒂𝒄

𝚺𝒂𝒄 𝚺𝒕𝒐𝒕
]) −  log 𝑁([

𝒘𝒎

𝒘𝒕
] ; [

𝒎
𝒎

] , [
𝚺𝒕𝒐𝒕 𝟎

𝟎 𝚺𝒕𝒐𝒕
])  (3.17) 

 𝚺𝒕𝒐𝒕 =  𝚽𝚽𝑻 +  𝚺 (3.18) 

 𝚺𝒂𝒄 =  𝚽𝚽𝑻 (3.19) 

Moreover by setting m = 0 (since it is a global offset that can be precomputed and 

removed from all the i-vectors) and expanding we get: 

 𝑠𝑐𝑜𝑟𝑒 =  𝒘𝒎
𝑻𝑸 𝒘𝒎 + 𝒘𝒕

𝑻𝑸 𝒘𝒕 + 𝟐𝒘𝒎
𝑻𝑷 𝒘𝒕  (3.20) 

 𝑸 =  𝚺𝒕𝒐𝒕
−𝟏 − ( 𝚺𝒕𝒐𝒕 − 𝚺𝒂𝒄 𝚺𝒕𝒐𝒕

−𝟏 𝚺𝒂𝒄)−𝟏 (3.21) 

 𝑷 =  𝚺𝒕𝒐𝒕
−𝟏𝚺𝒂𝒄 − ( 𝚺𝒕𝒐𝒕 − 𝚺𝒂𝒄 𝚺𝒕𝒐𝒕

−𝟏 𝚺𝒂𝒄)−𝟏 (3.22) 

Even though not immediately apparent, it can be shown that P and Q both and have rank 

equal to the rank of 𝚽. This opens the door for a fast computation of the score. Based on 

the symmetry of P and assuming that 𝚽 ∈  ℝ𝐷𝑥𝐾 𝑤𝑖𝑡ℎ 𝐾 < 𝐷 (Being K the rank of the 

Eigenvoices matrix =  𝑁Φ and D the i-vectors dimension) 

𝑷 = [𝑼𝑲 |𝑼𝑫−𝑲] 𝑑𝑖𝑎𝑔 ([𝜆1, … , 𝜆𝑘 , 0, … , 0]) [𝑼𝑲 |𝑼𝑫−𝑲] 𝑇 𝑼𝑲𝑑𝑖𝑎𝑔 ([𝜆1, … , 𝜆𝑘])𝑼𝑲
𝑇 

(3.23) 

Where the K columns of 𝑼𝐾 are orthonormal, the vector [𝜆1, … , 𝜆𝑘]contains the non-zero 

eigenvalues of P and the operator diag(·) places the entries of its argument in the 

diagonal of a matrix.  
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If we define:  

 𝚲 = 𝑑𝑖𝑎𝑔 ([𝜆1, … , 𝜆𝑘]) (3.24) 

 𝑸̃ =  𝑼𝑲
𝑇𝑸 𝑼𝑲 (3.25) 

 𝒘̃𝒎 =  𝑼𝑲
𝑇 𝒘𝒎 (3.26) 

 𝒘̃𝒕 =  𝑼𝑲
𝑇 𝒘𝒕 (3.27) 

Now, the score can be computed as:  

 𝑠𝑐𝑜𝑟𝑒 =  𝒘̃𝒎
𝑻𝑸̃𝒘̃𝒎 + 𝒘̃𝒕

𝑻𝑸̃𝒘̃𝒕 + 𝟐𝒘̃𝒎
𝑻𝚲𝒘̃𝒕  (3.28) 

Note that 𝑄̃ and 𝒘̃𝒎 (the enrolled model) can be precomputed and at verification time, 

and after projecting the test i-vector 𝒘̃𝒕, all the remaining computations are performed in a 

lower dimensional space. The computational advantage becomes more significant as the 

ratio K/D decreases.  

 

3.1.2. Beta Vectors Extraction 

 

When we arrive the experimental results we will see that G-PLDA is a very powerful 

technique to channel-compensate the i-vectors and perform the scoring. So we found in it 

a really good scenario to find suitable input data for the DNN. However, G-PLDA does not 

give explicitly normalized i-vectors as an output, as the transformations are made at the 

moment of scoring.  

Following the analogy of the i-vectors and GMMs we choose the identity latent variable 𝜷 

as our channel-compensated i-vector. After computing the G-PLDA matrix with the 

background i-vectors, we have the values of 𝚽, 𝚺, 𝒎. Using this equation, the values of 

the normalized i-vectors of the speaker ith, 𝜷𝒊, can be extracted (Fig. 3.1). 

 𝜷𝒊 = (𝚽𝑻 𝚺−𝟏 𝚽 + 𝑰)−𝟏𝚽𝑻 𝚺−𝟏 (𝒘𝒊 − 𝒎) (3.29) 

From now on, we will call these vectors “Beta vectors”. After extracting all the vectors for 

models and trials we can make an assessment of the performance using the cosine 

distance metric and the neural network proposed later.   
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Fig. 3.1: Beta vectors extraction 

 

3.2.  Deep Learning for Speaker Verification  

 

The main objective is to model discriminatively the target and impostor i-vectors. We are 

using the same deep learning architecture proposed in [2]. It consists in a hybrid DBN-

DNN structure where first a DBN called Universal DBN is trained unsupervisingly using 

restricted Boltzmann Machines (RBMs), then is adapted and finally it is used to initialize 

the DNN. It has been shown that this unsupervised pre-training can set the weights of the 

network to be closer to a good solution than random initialization and, therefore, avoids 

local minima when using supervised gradient descent. Once the DNN is initialized we can 

train it discriminatively using the backpropagation algorithm. 

 

 

 

 

 

Fig. 3.2: Architecture of the DBN-DNN system 

As can be seen in Fig 3.2 we can divide the structure in three steps: balanced training, 

adaptation and fine-tuning.  

 

3.2.1. Balanced Training 

 

Like other discriminative methods, DNNs need also balanced positive and negative input 

data to achieve their best results. However, the problem is that the amount of positive 

and negative data is not balanced in this case. There are a few i-vectors (in our case we 
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have 8 per speaker in multi-session) as the positive sample and there are many impostor 

i-vectors as the negative ones. Training a network with such highly unbalanced data will 

yield overfitting.  

The balanced training part tries to use the information of all available impostors and 

decrease their population in a reasonable way. The decreasing is carried out in two steps, 

selecting the most informative ones and clustering. We use the impostor selection 

method proposed in [1]. 

Firstly, we select the most informative one among all. It can be observed in the next 

pseudocode: 

1. For each client i-vector 𝒔𝒕 ∈ 𝑺  

1.1. Compute 𝑠𝑐𝑜𝑟𝑒(𝒔𝑡 , 𝒃𝑚| 𝑚=1
𝑀 ) 

1.2. Choose the first n highest scores and add their corresponding 

impostor indexes to a set named H  

2. Compute the histogram of H and sort it descendingly,  

3. Choose the first k impostors as the selected ones.  

where 𝑠𝑐𝑜𝑟𝑒(𝒔𝑡 , 𝒃𝑚| 𝑚=1
𝑀 ) is the cosine score between 𝒔𝑡 and all impostors in the large 

dataset B. The parameters n and k represent, respectively, the number of the closest 

impostors to each target and the statistically closest ones to all available targets. They 

will be determined experimentally in section 4.  

Secondly, as the number of selected impostors is still high in comparison to the number 

of target i-vectors, they are clustered by the k-means algorithm using the cosine distance 

criterion. The centroids of the clusters are used as the final negative samples.  

On the other hand, the target i-vector is replicated as many as the number of impostor 

centroids. The replicated target i-vectors will not act exactly the same as each other due 

to the sampling noise created in the pre-training process of the network [20]. Moreover, in 

both adaptation and supervised learning stages, the replicated versions make the target 

and impostor classes having the same weights when the network parameters are being 

updated. Once the number of positive and negative samples is balanced, they are divided 

equally among minibatches. The optimum numbers of impostor clusters and minibatches 

will be determined experimentally. 



 

 29 

3.2.2.  Adaptation 

 

DBNs are originally probabilistic generative models with multiple layers of stochastic 

hidden units above a layer of visible variables (Fig 3.3a). There is an efficient greedy 

layer-wise algorithm for training DBNs [21]. The algorithm treats every two adjacent 

layers as an RBM (Fig. 3.3b). The output of each RBM is considered as the input to its 

above RBM. RBMs are constructed from a layer of binary stochastic hidden units and a 

layer of stochastic visible units (Figs. 3.4a, 3.4b).  

 

Fig. 3.3: DBN structure (a) and the DBN training (b) [2] 

 

Fig. 3.4: RBM (a) and RBM training (b) [2] 

Training an RBM is based on an approximated version of the Contrastive Divergence 

(CD) algorithm [21] [22] which consists of three steps (Fig. 3.4b). At first, hidden states 

(h) are computed given visible states (v), then given h, v is reconstructed, and in the third 

step h is updated given the reconstructed v. Finally, the change of connection weights is 

given as follows,  

𝑤𝑖,𝑗  ≈  −𝛼(⟨𝑣𝑖ℎ𝑗⟩𝑑𝑎𝑡𝑎 − ⟨𝑣𝑖ℎ𝑗⟩𝑟𝑒𝑐𝑜𝑛) 

where 𝛼 is the learning rate, 𝑤𝑖,𝑗  represents the weight between the visible unit i and the 

hidden unit j, ⟨.⟩data and ⟨.⟩recon denote the expectations when the hidden state values 

are driven respectively from the input visible data and the reconstructed data. Actually, 

(a) 

 

(b) 

 

(a) 

 

(b) 
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the training process tries to minimize the reconstruction error between the actual input 

data and the reconstructed one. The parameter updating process is iterated until the 

algorithm converges. Each iteration is called an epoch. It is possible to perform the above 

parameter update after processing each training example, but it is often more efficient to 

divide the whole input data (batch) into smaller size batches (minibatch) and to do the 

parameter update by an average over each minibatch.  

Our global model UDBN is trained layer by layer using RBMs as explained above using 

all the background vectors as feeding data. As we have said before, in general, neural 

network parameters are initialized randomly but it has been shown [21] that the pre-

trained parameters can be a better initialization for training a network. However, when a 

few numbers of input samples are available, just pre-training will not be enough to 

achieve a good model. In this case we have to adapt the UDBN parameters to each 

speaker’s new data including both target and impostor samples. The adaptation is carried 

out by pre-training each network initialized by the UDBN parameters. To pre-train, only a 

few numbers of epochs are used, otherwise the network will be led to overfitting.  

 

3.2.3.  Fine-Tuning 

 

Once the adaptation process is completed, a label layer is added on the top of the 

network (Fig 3.5) and the stochastic gradient descent backpropagation is carried out on 

each minibatch as the fine-tuning process. The softmax and the logistic sigmoid will be 

the activation functions of the top label layer and the rest hidden layer units, respectively.  

 

Fig. 3.5: DNN structure [2] 
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If the input labels in the training phase are chosen as (𝑙1 = 1, 𝑙2 = 0) and (𝑙1 = 0, 𝑙2 = 1) 

for target and impostor i-vectors respectively, the final output score in the testing phase 

will be computed in a Log Likelihood Ratio (LLR) form as follows,  

𝐿𝐿𝑅 = log(𝑜1) − log (𝑜2) 

where 𝑜1 and 𝑜2 represent the output of the first and the second units of the top layer. 

LLR computation helps to gaussianize the true and false score distributions which can be 

useful for score fusion. In addition, to make the fine-tuning process more efficient a 

momentum factor is used to smooth out the updates, and the weight decay method is 

used to penalize large weights.   
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4. Experimental Results 

 

The experiments have been divided in two parts: single-session and multi-session. Single 

session means that we only have one utterance per target speaker while multi-session 

means that we have more than one. The first part will be related to feature normalization 

and i-vector normalization while the multi-session part will be focused to the deep 

learning stage. All the experiments explained are stated chronologically.  

 

4.1. Experimental Setup  

 

Databases: All the databases used are provided by the National Institute of Standards 

and Technology Speaker Recognition Evaluation series (NIST SRE). As a background 

vectors we use more than 6,000 speech files collected from NIST 2004 and 2005 SRE 

corpora. It is worth noting that in the case of NIST 2005 only the speech files of those 

speakers that do not appear in NIST 2006 database are collected. For the Single-session 

test part we use the whole core test condition of the NIST 2006 SRE. It includes 816 

target models and 51,068 trials. For the Multi-session test part we use the NIST 2006 

Multi-session task (8 samples per each target speaker) and consists in 699 targets and 

31080 trials. All the signals have around two minutes of speech.  

Software: All the experiments and computations for the feature normalization part, i-

vectors framework and i-vectors normalization have been carried out using the ALIZE 

Toolkit in combination with the LIA_RAL libraries [23]. All the beta vectors extraction 

process and the DNN modeling have been done with MATLAB and UPC developed 

codes. 

Hardware: All the experiments have been carried out in the Speech Processing Group 

servers.  

Feature vectors: The features used in the experiments are Frequency Filtering (FF) 

features extracted every 10 ms using a 30 ms Hamming window. The number of static FF 

features is 16 and together with delta FF and delta energy, they make 33-dimensional 

feature vectors. Before feature extraction, speech signals are subjected to an energy-

based silence removal process.  
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 I-vectors’ framework: All the i-vectors in the experiments are 400-dimensional vectors. 

The UBM and the T matrix have been computed using all the background vectors. The 

gender-independent UBM is represented as a diagonal covariance, 512-component GMM.  

Assessment: The performance of every system is evaluated using the figures of the EER 

and the minDCF calculated using 𝐶𝑓𝑟 = 10, 𝐶𝑓𝑎 = 1 and 𝑃𝑡 = 0.01.  

 

4.2. Single-session Experiments 

 

In our first experiment we want to see the effects of applying feature normalization, we 

will measure the performance at three points as can be seen in Fig. 4.1. In point A we will 

measure the contribution of feature normalization after modeling with GMM-UBM, in point 

B we after modeling with i-vectors and in C after applying i-vector channel compensation 

techniques. 

 

 

 

Fig. 4.1: Block scheme of the features normalization experiment 

 

MVN has been computed globally in each utterance. Its implementation follows eq. 2.1. 

To compute the feature warping and according to the general implementation and the 

experiments carried out in [7] we have decided to use a sliding window of 3 seconds and 

a Gaussian target distribution N~(0,1). 

By looking at the Table 4.1 we can observe that the contribution of feature normalization 

is very high at GMM-UBM level, comparing with the use of raw features we obtain a 

maximum relative improvement of a 40.2% and 26.7% in EER and minDCF respectively 

with the feature warping normalization. 

Feature Normalization EER (%) minDCF 

- 19.26 0.0737 

MVN 11.61 0.0539 

Warping 11.50 0.0540 

Warping + MVN 11.56 0.0541 

Table 4.1: Contribution of feature normalization at GMM-UBM level. (A) 
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Table 4.2 shows that the contribution of feature normalization after the i-vector modeling 

has decreased but it is still a bit better than the baseline (i-vector modeling of raw 

features). If we compare with the previous GMM-based results we can observe the power 

of modelling with i-vectors and the reason it has become a very popular technique in the 

speaker recognition area.  

 

Feature Normalization EER (%) minDCF 

- 7.17 0.0324 

MVN  7.00 0.0324 

Warping  7.00 0.0322 

Warping + MVN 6.99 0.0320 

Table 4.2: Contribution of feature normalization after i-vector modeling. (B) 

 

After the i-vector modeling, we have applied LDA and WCCN as channel compensation 

tecniques and we have assessed the performance with the cosine scoring metric. The 

results with LDA were worse than the ones with WCCN so we are only showing the last 

ones (Table 4.3). We can see that applying feature normalization before modeling with i-

vector decreases the performance after the application of WCCN while the best result is 

obtained with raw features.  

Feature Normalization EER (%) minDCF 

-  6.42 0.0321 

MVN  6.60 0.0335 

Warping 6.66 0.0325 

Warping + MVN  6.66 0.0325 

Table 4.3: Contribution of feature normalization after applying WCCN. (C) 

 

In Table 4.4 we can see the results after applying PLDA. Before applying that technique, 

we length normalize all the vectors as seen in [14] to increase the performance. When 

applying PLDA there are two parameters we can optimize: the rank of the Eigenvoices 

matrix (𝑁𝚽) and the number of iterations (𝑁𝐼) of the EM algorithm for training the model. 

The optimum configuration to obtain the minimum EER was set experimentally (𝑁𝚽=250 

and 𝑁𝐼=20).As with WCCN, the best result is achieved over raw i-vectors. After seeing 

that results we decided not continue using feature normalization in the next experiments. 

Feature Normalization 𝑵𝚽 𝑵𝐈 EER (%) minDCF 

- 250 20 4.67 0.0243 

Warping + MVN  250 20 4.88 0.0258 

Table 4.4: Contribution of feature normalization after applying PLDA 
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4.3. Multi-session Experiments 

 

For this experiments we have eight speech utterances per speaker model, which is very 

good because we have more information for training and discriminate. We know that the 

performance of DNNs increases as the data grows so we decided to use them since we 

will have better results in comparison with single-session.  

The first thing we do is extracting the i-vectors from the speech samples. Once we have 

them, we train the PLDA matrix (𝑁𝚽=250 and 𝑁𝐼=20) and we also perform PLDA scoring. 

We use the trained PLDA matrix to extract the Beta vectors, which will be the input for the 

DNN. These vectors have reduced its dimension from 400 (i-vectors) to 250. Before 

training the DNN, the Beta vectors are mean and variance normalized to achieve better 

performance when using the network.  

The baseline work [2] uses raw i-vectors as input data for a 3 layer DNN. In our 

implementation we will also use a 3 layer DNN but the parameters of our new network will 

be different because now the input data has changed. The number of hidden units will be 

300 as the dimension of our vectors is smaller. For the balanced training stage, the 

number of minibatches and the number of impostor clusters are set experimentally to 3 

and 24. Each minibatch will include 8 impostor centroids and 8 target samples. The eight 

samples will be replicated 2 times in order to be used in the different minibatches. The 

impostor selection is carried out with the method explained in section 3.2.2. By setting 

n=50 we look for the value of k that minimizes the EER, in Fig 4.2 can be seen that this 

parameter is k=800.  

 

Fig. 4.2: Determination of k for Impostor Selection. 

 

UDBN is trained with the same background i-vectors of the impostor database. As the 
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input Beta vectors are real-valued, a Gaussian-Bernoulli RBM [20] [24] is employed. The 

learning rate (α), number of epochs (NofE), momentum, and weight decay are set 

respectively to 0.005, 200, 0.9, and 0.0002 

The generative parts of the speaker models are initialized by the UDBN parameters and 

then are adapted with α = 0.0015 and NofE = 10. The momentum and weight decay 

values are kept the same as in UDBN. The whole backpropagation is carried out with   

α = 0.1, NofE = 500, and a fixed momentum of 0.9. The weight decay for both top layer 

pre-training and the whole backpropagation is set to 0.0012.  

In Table 4.5 we can see how the DNN results improve when applying the impostor 

selection and the adaptation methods proposed before. We can observe a relative 

improvement of 12% in the EER and 12.8% in the minDCF between the initial and the 

final implementation.  

 EER (%) minDCF 

DNN  3.23 0.0148 

DNN + Impostor Selection 2.97 0.0131 

DNN + Impostor Selection + Adaptation 2.84 0.0129 

Table 4.5: Comparison of DNN implementations 

In the next figure (Fig 4.3) we can observe the final performance in the form of a DET 

curve of the baseline systems and the systems implemented in this thesis, which include 

channel-compensation.  

 

 

Fig. 4.3: DET Curve of all the implementations 
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With the Beta vector proposal and scoring with the cosine metric we have obtained a 

relative improvement of 21.4% and 21% in the EER and minDCF with respect the raw i-

vectors. If we change the classifier to the DNN the relative improvement increases to 

32.3% and 32.1% respectively. If we compare the two DNNs systems we find that Beta-

DNN outperforms the baseline DNN with 18.9% and 25% relative improvement in ERR 

and minDCF. However, the best result has been obtained modeling and scoring with 

PLDA directly using raw i-vectors (Section 3.1.1), being the relative improvement of 

45.9% in EER and 44.7% in minDCF with respect to the raw i-vectors. These final 

numerical results can be seen in Table 4.6. 

 

 EER (%) minDCF 

i-vectors + Cosine 4.20 0.0190 

i-vectors + DNN  3.50 0.0172 

Beta vectors + Cosine 3.30 0.0150 

Beta vectors + DNN  2.84 0.0129 

i-vectors + PLDA 2.27 0.0105 

Table 4.6: Comparison of all the implementations 
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5. Budget 

The length of the project has been 12 ECTS, which correspond approximately to 360h. 

The average salary of a junior engineer is around 15€/h. 

 

𝐶𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟 =
15€

ℎ
 360 ℎ = 5400 € 

 

The majority of the project has been carried out at home, using the university servers’ 

resources. The software used has been the ALIZE toolkit and MATLAB. The first one is 

free, but the second one has a paying license. Considering that the servers and MATLAB 

are used by a lot of projects and students it is very difficult to compute the real cost and 

its amortization. We will consider an approximate cost of 1600€ for all the duration of the 

project.  

At the end, the total budget is:  

 

𝐶𝑝𝑟𝑜𝑗𝑒𝑐𝑡 =  𝐶𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟 + 𝐶𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 + 𝐶ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = 7000 €  
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6. Conclusions and future development  

In this project we aim to combine channel-compensation techniques with deep learning 

for speaker recognition and outperform the baseline system given. We have proposed 

channel-compensated i-vectors called Beta vectors as an input for our DBN-DNN hybrid 

deep learning system.  

In section 4.2 we have seen that the contribution of feature normalization is not very 

useful once we apply i-vector modeling and i-vector channel-compensation techniques. In 

section 4.3 we have seen that with the Beta vector proposal and scoring with the cosine 

metric we obtain a relative improvement of 21.4% and 21% in the EER and minDCF with 

respect the raw i-vectors. If we change the classifier to the DNN the relative improvement 

increases to 32.3% and 32.1% respectively. Our Beta-DNN outperforms the i-vector-DNN 

baseline system with 18.9% and 25% relative improvement in ERR and minDCF. So we 

can state that with our contribution we have achieved the goals proposed at the start of 

the thesis.  

However, although the final results with the DNN are very good compared with the 

baseline, there is a gap between DNN and the PLDA performance. Maybe with the use of 

a database with more data available we could exploit more the DNN strengths and close 

the gap between them. Anyway, this shows that there is still work to do in the ambit of 

deep learning for speaker recognition and the door is open for future new 

implementations and refinements.  

 

This work was successfully published in the form of a poster in the Red Temática de 

Tecnologias del Habla (RTTH) Summer School in July of 2015 held in Barcelona.  
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Glossary 

DBN: Deep Belief Network. 

DCF: Decision Cost Function. 

DET: Detection-Error Trade-off. 

DNN: Deep Neural Network. 

EER: Equal Error Rate. 

FF: Frequency Filtering 

GMM: Gaussian Mixture Model. 

LDA: Linear Discriminant Analysis. 

MVN: Mean and Variance Normalization. 

NIST: National Institute of Standards and Technology. 

PLDA: Probabilistic Linear Discriminant Analysis. 

RBM: Restricted Boltzmann Machine. 

SRE: Speaker Recognition Evaluation. 

UBM: Universal Background Model.  

UDBN: Universal Deep Belief Network. 

WCCN: Within Class Covariance Normalization. 
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Appendices 

Work Packages 

 

Project: Documentation WP ref: DC 

Major constituent: Documents Sheet 1 of 6 

Short description: 

It is all the documentation that state the progress, 

information and results of the project. 

 

Planned start date: 16/02/15 

Planned end date: 10/07/15 

Start event: 

End event: 

Internal task T1: Project Plan Proposal & WorkPlan 

 

Internal task T2: Critical Design Review 

 

Internal task T3: Final Memory 

Deliverables: 

Every task 

has his own 

deliverable 

Dates: 

 

Project: Initial Research and Background Learning WP ref: IRBL 

Major constituent: Documents Sheet 2 of 6 

Short description: 

Obtain the background knowledge needed to reach the 

goals when realizing the project.  

 

Planned start date: 16/02/15 

Planned end date: 06/03/15 

Start event: 

End event: 

Internal task T1: Theory of text-independent speaker 

verification and feature vectors post-processing techniques 

 

Internal task T2: The i-vector methodology inside speaker 

recognition and i-vector post-processing techniques 

 

Internal task T3: Theory about deep learning and about its 

implementation in speaker verification systems 

Deliverables: 

Every task 

has his own 

deliverable 

Dates: 
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Project: Baseline Experiment WP ref: BE 

Major constituent: Simulation Sheet 3 of 6 

Short description: 

First experiment to obtain the initial results of the system. 

 

Planned start date: 09/03/15 

Planned end date: 27/03/15 

Start event: 

End event: 

Internal task T1: Development of the experiment 

 

Internal task T2: Experiment set up  

 

Internal task T3: Analysis of the results 

 

Deliverables: Dates: 

 

Project: Feature Vectors Post-Processing Experiment WP ref: FVPPE 

Major constituent: Simulation Sheet 4 of 6 

Short description: 

Design the feature vector post-processing module, 

integrate it in the system, simulate the whole system and 

check the performance.  

 

Planned start date: 30/03/15 

Planned end date: 15/05/15 

Start event: 

End event: 

Internal task T1: Design of the features post-processing 

module 

 

Internal task T2: System integration 

 

Internal task T3: Development of the experiment 

 

Internal task T4: Analysis of the results 

Deliverables: Dates: 

 

Project: I-Vectors Post-Processing Experiment WP ref: IVPPE 

Major constituent: Simulation Sheet 5 of 6 
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Short description: 

Design the i-vector post-processing module, integrate it 

in the system, simulate the whole system and check the 

performance.  

 

Planned start date:08/04/15 

Planned end date:05/06/15 

Start event: 

End event: 

Internal task T1: Design of the features post-processing 

module 

 

Internal task T2: System integration 

 

Internal task T3: Development of the experiment 

 

Internal task T4: Analysis of the results 

Deliverables: Dates: 

 

Project:  Integration into Deep Belief Network WP ref: DBN 

Major constituent: Simulation Sheet 6 of 6 

Short description: 

Integrate the post-processing stages in the Deep Belief 

Network system. Tune the network, test and check the 

performance.   

Planned start date: 08/06/15 

Planned end date: 06/07/15 

Start event: 

End event: 

Internal task T1: System integration 

Internal task T2: Development and testing 

Internal task T3: Analysis of the results 

Deliverables: Dates: 

 

Milestones 

WP# Task# Short title Milestone / deliverable Date (week) 

DC T1 Project Proposal & WorkPlan Document 06/03/15 

DC T2 Critical Design Review Document 20/04/15 

DC T3 Final Memory Document 10/07/15 

 


