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A short note on passivity, complete passivity and virtual temperatures
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We give a simple and intuitive proof that the only states which are completely passive, i.e. those
states from which work cannot be extracted even with infinitely many copies, are Gibbs states at
positive temperatures. The proof makes use of the idea of virtual temperatures, i.e. the association
of temperatures to transitions. We show that (i) passive states are those where every transition is
at a positive temperature, and (ii) completely passive states are those where every transition is at
the same positive temperature.

INTRODUCTION

The notion of a passive state was introduced in the
seminal work of Pusz and Woronowicz [1] as a character-
isation of quantum states which cannot be processed to
extract work. That is, given a state ρ with Hamiltonian
H , we ask whether the average energy can be lowered by
a unitary transformation on the system, which is other-
wise isolated (which is equivalent to a cyclic Hamiltonian
process1). The change in average energy is denoted by
W and given by

W = max
U

tr
(

H
(

ρ− UρU †
))

, (1)

States for which W = 0, i.e. states from which no work
can be extracted, are referred to as passive states. On
the other hand, states for which W > 0 are termed active
states, and contain extractable work.
It is possible to show that passivity can be re-expressed

solely as a property of the state. Namely, a state ρ is pas-
sive if and only if it satisfies the following two properties:

• [ρ,H ] = 0, i.e. the state is (block) diagonal in the
energy eigenbasis of the Hamiltonian.

• Ei > Ej implies λi < λj , where Ei, Ej are energy
eigenvalues and λi and λj are the associated pop-
ulations of the state ρ. That is, the population of
levels is strictly decreasing as the energy increases.

In general one is not only interested in a single copy
of a system, but in multiple copies that can be processed
jointly. In particular, one may ask how much work can
be extracted from n copies of a state. Crucially, the
composition of passive systems may not remain passive,
hence exhibiting a form of activation. That is, there ex-
ist situations where a unitary U acting on n copies of a
system is able to lower the average energy of the total

1 i.e. we switch on a time-dependent interaction Hamiltonian V (t)
only during 0 ≤ t ≤ τ .

system, whilst if one had access to only n − 1 copies of
the system no such unitary exists. This then naturally
leads to the question of what is the class of states which
remain passive under composition, i.e. from which no
work can be extracted even from an infinite number of
copies. Such states are termed completely passive. The
celebrated result of [1] is to show that the set of com-
pletely passive states is exactly equivalent to the set of
thermal (or Gibbs) states

ρ =
1

Z
exp(−βH), (2)

where Z = tr(exp(−βH)) is the partition function and
β = 1/kBT is the inverse temperature. This result puts
on firm grounds the notion of a heat bath in the form of
an infinitely large Gibbs state, from which no work can be
extracted. The importance of these results in the context
of quantum thermodynamics has been highlighted, see
for instance [3–7].
This result was originally proven in the context of

C∗ algebras and shortly afterwards translated into the
framework of standard quantum mechanics by Lenard
[2]. In both cases although the end result is intuitive, the
proof of the result does not convey too much intuition.
In particular, it is not explicit why it is that passive but
not thermal states can be activated for work extraction.
In this short note we provide a simple and intuitive

proof based upon the idea of associating temperatures to
transitions. This is the idea behind the concept of virtual
temperatures and virtual qubits introduced in [8], and
further discussed in [9, 10]. Furthermore, our technique
illustrates explicitly how work can be extracted from a
sufficient number of copies of a passive but non-thermal
state, hence giving an upper bound on the number of
copies needed.

VIRTUAL TEMPERATURES

We start by discussing in more detail the idea of as-
signing a temperature to a transition. Consider a sys-
tem ρ with Hamiltonian H =

∑

k Ek|k〉〈k| comprised
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of d energy eigenstates |k〉, with energy eigenvalues Ek,
and assume ρ is diagonal in this basis. In total there
are d(d − 1)/2 transitions between energy levels. Con-
sider the transition between the energy states |i〉 and |j〉,
and let us assume without loss of generality that the gap
Ei − Ej > 02. Given populations λi and λj respectively,
we associate a virtual inverse temperature βv to the tran-
sition, given by

βv =
logλj − logλi

Ei − Ej

, (3)

which arises by identifying the ratio of the populations
with the Boltzman factor, λi/λj = e−βv(Ei−Ej). First we
note that in general the virtual inverse temperature de-
fined this way need not be positive. In particular, when-
ever λi > λj , i.e. the transition has a population inver-
sion, then the temperature will be negative. Second, the
reason for calling this a virtual temperature is because by
coupling an external system to this transition, one can
prepare physical systems at the virtual temperature, i.e.
it behaves in this respect like a real temperature [8].
It will also be important to us to understand how vir-

tual tempertures transform under composition. To that
end, consider now two systems. For the first system we
consider the transition between states |i〉1 and |j〉1, with
energy gap ∆1 = Ei − Ej , populations λi and λj and
virtual inverse temperature β1

v . Likewise for the second
system we consider transitions between the states |i′〉2
and |j′〉2, with gap ∆2 = Ei′ − Ej′ , populations λi′ , λj′

and virtual temperature β2
v .

Now, the joint system features 2 non-trivial transitions
(i) between the pair of levels |i〉1|j

′〉2 and |j〉1|i
′〉2, and

(ii) between |i〉1|i
′〉2 and |j〉1|j

′〉2. For case (i), the popu-
lation of the first level is λiλj′ , the second λjλi′ , and the

gap is ∆̃ = ∆2−∆1 (where we have assumed without loss
of generality that ∆2 > ∆1). From (3) the inverse virtual
temperature β̃v of the composed transition is given by

β̃v =
log(λiλj′ )− log(λjλi′ )

∆2 −∆1

=
(logλj′ − logλi′)− (logλj − logλi)

∆2 −∆1

=
β2
v∆2 − β1

v∆1

∆2 −∆1
(4)

where we have used equation (3) in the final step. Note
that we obtain the same expression in the case ∆1 > ∆2

(i.e. the formula is insensitive to the sign of the gap). For
case (ii) the populations are now λiλi′ and λjλj′ , gap is

∆̃′ = ∆2 + ∆1, and a similar analysis shows that the

2 We do not define virtual temperatures for degenerate transitions.
Since no work can ever be extracted from such transitions we will
never need such a concept.

inverse virtual temperature β̃′
v of the transition is given

by

β̃′
v =

β2
v∆2 + β1

v∆1

∆2 +∆1
(5)

Hence we see that the inverse virtual temperatures com-
pose linearly in both cases. Finally, we note that β̃′

v is
always in between the composed temperatures β1

v and
β2
v , while β̃v is in fact always larger than the biggest or

smaller than the smallest temperature.

PASSIVITY

The notions introduced above will now allow us to re-
express the notion of passivity in simple terms. Specif-
ically the second requirement for a state to be passive,
i.e. that Ei > Ej implies λi < λj , is rephrased in the
language of virtual temperatures as saying that the vir-
tual temperature of every transition is positive. On the
contrary, if the state has one or more negative virtual
temperatures, work can be extracted by exploiting the
associated population inversion.

COMPLETE PASSIVITY

We have seen above that passive states are those where
every transition is at a positive temperature. We are
now going to show that completely passive states are
those where every transition is at the same positive tem-
perature. The proof works by showing that whenever
a system has two (or more) transitions at different vir-
tual temperatures, then by composing sufficiently many
copies, the combined system always has a transition at a
negative temperature, and is therefore not passive.

Consider again a system ρ with d levels and consider
first a transition between states |i〉 and |j〉, with gap
∆1 = Ei − Ej and virtual inverse temperature β1

v . Let
us consider n copies of ρ, and the same transition in each
system. Now, by applying the composition rule (5) n− 1
times, it is straightforward to see that the joint system
has a transition between the states |i〉⊗n and |j〉⊗n with
gap n∆1 and the same virtual inverse temperature β1

v .
Similarly, consider another transition of ρ between the
states |i′〉 and |j′〉, with gap ∆2 = Ei′ − Ej′ and virtual
inverse temperature β2

v > β1
v , without loss of generality.

Now consider another k copies of ρ. Exactly as above,
the joint system has a transition between the states |i′〉⊗k

and |j′〉⊗k with gap k∆2 and the virtual inverse temper-
ature β2

v .
Finally, for the n + k copies of ρ together, consider

the transition between the states |i〉⊗n ⊗ |j′〉⊗k and
|j〉⊗n ⊗ |i′〉⊗k. This transition has an energy gap of
n∆1 − k∆2, and from the composition rule (4), it has
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the inverse virtual temperature

βv =
β1
vn∆1 − β2

vk∆2

n∆1 − k∆2
(6)

Now, since β2
v > β1

v , i.e. the two transitions are at dif-
ferent virtual temperatures, then it is always possible to
find a negative βv, by choosing an appropriate number
of copies n and k such that the numerator of (6) is neg-
ative, whilst the denominator is positive. In particular,
choosing

∆2

∆1
<

n

k
<

∆2

∆1

β2
v

β1
v

(7)

ensures that βv < 0. Thus, any passive state with two
virtual temperatures is not completely passive. The only
possibility for a completely passive state is thus one con-
taining only a single virtual temperature, which is pre-
cisely the defining property of a thermal state.

Finally, it is worth noting that (7) provides a sufficient
condition for finitely many copies of a state to become
non-passive: One has to find the smallest number n + k
such that (7) is satified for any possible pair of virtual
temperatures in the system.

CONCLUSIONS

In summary, we have presented what we believe is a
simply and insightful alternative proof that the only com-
pletely passive states are thermal states. The only no-
tion that our proof relies upon is the association of vir-
tual temperatures to transitions in a system via Gibbs
weights, and can be simply stated as the only completely
passive states are those which contain a single virtual
temperature. To show this we proved that every passive
but not completely passive state has the property that

upon composition one can find a transition at a nega-
tive virtual temperature, from which work can then be
extracted.
This statement is intuitive from the perspective of ther-

mal machines, where having access to two baths at dif-
fering temperatures is all that is required to build a work
extracting machine.
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