

Energy Geo-Structures and Storage of Thermal Energy in the Ground

Task Force 3 Position Paper Guney Olgun & Fleur Loveridge

Energy Geo-Structures and Thermal Energy Storage

figure courtesy of Tolga Ozudogru

Contents

- Introduction
- Experimental Studies
 - Piles
 - Walls & Tunnels
- Analytical Methods & Numerical Analyses
 - Piles
 - Walls & Tunnels
- Design Guidance
- Research Needs

Introduction

- Shallow storage of thermal energy in the ground
- With (or without) a heat pump
- Available energy:
 - How much?
 - What are the related temperature changes?
- Impact on geo-structure:
 - Stress changes?
 - Deformations?
 - Changes in available load capacity?

Experimental Studies - Piles

- Thermo-Mechanical Tests
 - Full-Scale Field Tests
 - Model Tests
- Thermal Response Tests

WirginiaTech

- EPFL Test, Switzerland
 - Laloui et al., 2006
 - Under building load
 - Thermal cycles after each floor completion
 - Restrained at pile toe due to sandstone
- Lambeth College, UK
 - Bourne-Webb et al., 2009
 - London Clay, semi-floating
 - Test Pile: Thermal cycles with load on top
 - Heat Sink Pile: No structural load on top

WirginiaTech

- Virginia Tech, Blacksburg, VA, U.S.
 - Olgun et al., 2012
 - Temperature cycles on end-bearing energy pile
- University of Colorado Boulder, U.S.
 - McCartney and Murphy, 2012
 - Long-term monitoring of energy piles (Denver, Colorado)
- Texas A&M University, U.S.
 - Akrouch et al., 2014
 - Effect of temperature on the creep rate of energy piles

- University of Melbourne, Australia
 - Colls, 2013
 - Factors affecting energy pile efficiency
- Monash University, Australia
 - Wang et al., 2015
 - Impact of thermo-mechanical loads on the shaft capacity
 - Load cycles with Osterberg-Cell

- Virginia Tech/EPFL/Cambridge Houston, TX, U.S.
 - Sutman et al., 2014
 - Effect of end-restraint conditions on energy pile behaviour
 - 2 test piles with end-bearing in dense sand layer
 - 1 test pile semi-floating in clay layer
 - Thermal cycles applied with/without mechanical load on top

WirginiaTech

Redrawn after Amatya et al., 2012, field test results from Sutman et al., 2014 are added.

2nd June 2015

Southampton

SEG2015

Model Tests

- University of Colorado, Boulder, U.S.
 - McCartney and Rosenberg, 2011
 - Centrifuge testing on scale-model energy piles
- Hong Kong University
 - Ng et al., 2014
 - Centrifuge tests on energy piles in sand and clay
- Ecole des Ponts ParisTech, France
 - Kalantidou et al., 2012
 - Temperature cycles on model-scale piles

Model Tests

- Texas A&M University, U.S.
 - Akrouch et al., 2015
 - Effect of unsaturated soil conditions on energy pile efficiency
- Pennsylvania State University, U.S.
 - Kramer and Basu, 2014
 - Model pile in sand bed subject to thermal cycles and mechanical loading

Thermal Response Tests

- Oklahoma State University, U.S.
 - Beier et al., 2011
 - Laboratory thermal response tests on boreholes
- Berkel, Houston, U.S.
 - Brettmann and Amis, 2011
 - Thermal conductivity tests on 3 CFA piles
- Virginia Tech, Blacksburg, VA, U.S.
 - Olgun et al., 2012
 - Thermal conductivity test on energy piles

2nd June 2015

Thermal Response Tests

- University of Southampton, UK
 - Loveridge et al., 2014 (Thermal response test on small diameter piles)
 - Loveridge and Powrie, 2013 (Long-term in-situ monitoring of pile heat exchangers)

2nd June 2015

Experimental Studies - Walls

Southampton

- Lainzer Tunnel (Markiewicz, 2004) bored pile wall
 - Monitoring temperature and stress-strain response
 - Viable for heating adjoining school
- U2 metro line D-walls (Markiewicz, 2004)
 - Monitoring installed, but outcomes not widely available

WirginiaTech

Experimental Studies - Tunnels

- Katzenbergtunnel High-Speed Rail Tunnel, Germany
 - 4-Phase Field Test:

Southampton

- Background temperature reading
- Thermal response test (heat charged into the ground through constant heat flux)
- Thermal relaxation of system (no heat flux imposed
- Operation of heat pump (heat extracted from the ground)

WirginiaTech

Thermal Analysis Approaches – Piles

- Thermal analysis approach:
 - Ground temperature response: at pile edge
 - Temperature change across pile: assumed steady
- Thermal analysis considerations
 - Heat transfer mechanisms: conduction & convection
 - Surface boundary condition
 - Infinite vs finite length
 - Interactions & superposition

2nd June 2015

PILESIM (Pahud, 2007)

- System design tool, including heat pump
- Validated against data from Zurich Airport
- Superposition of 3 models
 - Transfer between
 storage and
 surrounding ground
 - Pile to storage volume transfer
- Steady flux
 between fluid and
 pile edge
 2nd June 2015

Alternatives to the Steady State Assumption

- Javed & Claesson (2011) analytical two material radial borehole model
- Composite medium line source theory (Li & Lai, 2011)
- CaRM electrical analogy model, with circuit of resistances and capacitances (Zarella et al., 2013)
- Transient temperature response functions (Loveridge & Powrie, 2014)

SEG2015

2D Numerical Simulation of Pile Thermal Behaviour

• 2D slice models

Southampton

- Loveridge & Powrie (2013)
- Validated to ±6% in boreholes by Cui et al (2008)
- 2D radial symmetric models
 - Annular model of Ghasemi-Fare & Basu (2013)
 - Superposition Borehole Model (SBM) of Eskilson (1987) & similar approach of Loveridge & Powrie (2013)

3D Numerical Simulation of Pile Thermal Behaviour

- Special pipe elements
 - Choi et al., 2011; Ozudogru et al.,
 2014; Cecinato & Loveridge, 2015
- Heat exchanger elements
 - Accurate to 1°C, Al-Khoury & Bonnier, 2006
- Full numerical simulation
 - e.g in COMSOL, Bidarmaghz,
 2014

Transient nature of pile concrete, e.g., Lee & Lam, 2013

Load Transfer Methods for Thermo-Mechanical Response of Piles

• Based on adapting t-z curves to describe:

Southampton

- Mobilised shaft friction & base resistance
- May include spring for building or ground restraint
- Knellwolf et al., 2011, calibrated against field tests
- McCartney & Rosenberg, 2011, against centrifuge

Load Transfer Methods for Thermo-Mechanical Response of Piles

- Suryatriyastuti et al., 2014, added cyclic degradation of pile interface
- But all assume:

Southampton

- Uniform pile temperature
- Inert ground not changing volume

Example strain ratcheting

2D Pile Thermo-Mechanical Simulations

• 2D axisymmetric models:

Southampton

Simplified pile temperature boundary

WirginiaTech

- Laloui et al., 2006 & Ma et al., 2011:
 - Thermo-elastic, qualitative match to field data
- Bodas-Freitas et al., 2013:
 - Examined ratio of CTE, with implications for load transfer method

In heating for different CTE ratios

28

3D Pile Thermo-Mechanical Simulations

Batini et al., 2015 have begun to examine the effect of the thermal design on the thermo-mechanical response

Pile Group Thermo-Mechanical Simulations

SEG2015

• 2D model of regular pile group (Dupray et al., 2014)

Southampton

- Response depends on which piles are heated (non heated piles provide restraint)
- Changes in effective stress related to permeability

Thermally Active Retaining Walls

- 4 notable case studies:
 - Lainzer tunnel (Brandl, 2006)
 - Keble College (Suckling & Smith, 2002)
 - Vienna U2 Metro (Adam, 2008)
 - Bulgari Hotel, London (Amis et al., 2010)
- Recent resistance based thermal design methods by Sun et al. (2013) & Kurten et al. (2015)
 - verified against limited field data and full numerical simulation, respectively

Numerical Simulation of Walls

- Station box D walls: Soga et al. (2014):
 - 3D model for thermal analysis: heat mainly comes from inside the station box
 - 2D model for THM response: very small wall movements predicted
- 2D plane strains for shallow cut & cover structure: Bourne-Webb et al. (2015)
 - Tunnel side dominated heat flow >> boundary condition very important
 - Negligible impact of thermo-mechanical response

WirginiaTech

Geothermal Tunnels

- Notable trials in Austria:
 - Lainzer tunnel (Adam & Markiewicz, 2009)
 - Jenbach Tunnel (Franzius & Pralle, 2011)
- Operational case in U2 Vienna (Unterberger et al, 2014)
- Very limited use of analytical solutions, e.g. Schlosser et al., 2007 – thermal resistance model

Numerical Simulation of Tunnels

- Franzius & Pralle, 2011, used 1D axisymmetric model for thermal analysis
- Thermal & thermo-mechanical analysis was carried out by Arup (Nicholson et al., 2013)
 - 7% increase in hoop stress
- Key assumption is tunnel internal boundary conditions

Design Guidance

- VDI 4640
 - No detailed information for energy geo-structures
- SIA D0190
 - Guidance for thermal piles, especially thermal capacity and construction. No details for other structures
- GSHPA Thermal Pile Standard
 - A best practice guide, also considering construction processes. Design guidance limited.

Research Needs 1

- Consideration of laterally loaded piles & pile groups
- Analysis and design approaches for walls, tunnels and other structures
 - Internal boundary conditions
- Development and validation of design tools
 - Long term validation datasets
 - Integration with building physics software

Research Needs 2

- Investigation of cyclic effects
- Reducing capital costs and increasing energy efficiency
- Long term sustainability and potential for long term interactions in cities
- Guidance for analysis and design of all geostructures

Acknowledgements

- Peter Bourne-Webb, Sebastien Burlon, Sylvia Kuerten, Saqib Javed
- Melis Sutman