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Abstract 
 

Thin light-weight structures, such as inflatable aircraft hangars and temporary shelters, are 

becoming increasingly important nowadays. This type of structures can be affected by high 

wind pressures; also large displacements in the structure are produced. Conventional 

methods for studying inflatable structures do not take into account the interaction between 

the fluid and structure. Typically, purely computational structural dynamic simulations are 

performed assuming an approximate air pressure distribution. Due to the oversimplifications 

used in the conventional methods, the need for developing new robust and feasible 

approaches arises. In particular, the effects of unsteady flow cannot be represented without 

taking fluid-structure interaction in account. 

Body-fitted mesh methods, such as Arbitrary Lagrangian-Eulerian (ALE) approach have an 

important reputation for simulating fluid-structures interaction problems with moving and 

deforming structures. However, due to the large displacements produced in the light-weight 

structures, strong mesh distortion occurs, making ALE approach unfeasible for the problem 

of interest.  

The robustness of the non-body-fitted mesh approach and the nature of the problem at 

hand, referring to the interdependence between the structural deformation and the 

surrounding flow, inflatable structures call for a strong two-way coupling solution. 

A strong two-way coupling algorithm using embedded framework for the solution of light-

weight structures (developed at the International Center for Numerical Methods in 

Engineering �CIMNE- by Kratos Group), is presented in the present work. 

The thesis focuses on the verification of the proposed solution strategy and the posterior 

application in a real case. First attempt to analyze a thin light-weight structure using a 

strong two-way coupling simulation is carried out in this thesis. Several algorithms of 

improvements for increasing the robustness of the coupling are proposed. Also, comparisons 

with conventional methods are discussed. 
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Chapter 1:  

Introduction 
 

1.1 Wind tunnel testing 

The wind tunnel, in the context of aerodynamics, is a scaled experimental testing, or in a 

few cases in a real scale-one, used to assess the effects of a fluid moving past a solid object. 

The wind tunnels were developed towards the end of the 19th century, in the early days of 

the aeronautic research, with the aim to develop successful heavier-than-air flying machines 

and study the effects of the air into an aircraft, such as lift and drag. The success of the 

wind tunnel was possible due to contemplating the reversing of the usual paradigm, where 

it was envisioned that the same effect would be obtained if the object stood still and the air 

moved at speed past it, instead of the air standing still and an object moving at speed 

through it. In that way, it could be possible to study the flying object in action and 

measure the aerodynamic forces subjected on it by a stationary observer. 

The quest to measure lift, drag and various aspects of aviation theory does not come from 

the wind tunnel testing. It originates from the very first advances in aviation, when 

Benjamin Robins (1707-1751), an English mathematician, developed the whirling arm 

apparatus. It spun by a falling weight acting on a pulley and spindle, ranging low speeds 

(from 3 to 6 m/s). 

However, the whirling arm did not produce reliable results, it was difficult to measure the 

small forces exerted on the model when it was spinning at high speeds owing to centrifugal 

forces and the fact that the object is moving in its own wake. Furthermore, experiments, 

such as determination of the true relative velocities between the model and air were serious 

problems due to the large amount of turbulence. The first enclosed wind tunnel was 

designed in 1871, when Francis Herbert Wenham (1824-1908), a council of the Aeronautical 
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Society of Great Britain, addressed the issue by inventing, designing and operating the 

testing apparatus. This great achievement was rapidly extended, and after some of the 

experimental studies, it was discovered that wings could support substantial loads, making 

powered flight which seemed much more attainable than previously thought possible, owing 

to lift-to-drag ratios were very high.  

In a classic set of experiments, the professor Osborne Reynolds (1842-1912) of the 

University of Manchester demonstrated that the airflow pattern over the full-scale object 

could be studied in a scale model if a certain flow parameter, now known as the Reynolds 

number (Re), were the same in both cases. The Re comprises the central scientific 

justification for the use of models in wind tunnels to simulate real-life phenomena, and is a 

basic parameter for describing all fluid-flow situations, such as turbulence or the ease of 

heat transfer.  

However, Reynolds number is not the unique parameter to guarantee similarity between 

scale models. Satisfactory correspondences between the aerodynamic properties of a scaled 

model and a full-size object can be achieved by observing certain similarity rules. These 

similarity o dimensionless parameters vary according to the type of the test, but the most 

important conditions to satisfy are usually: 

- Geometric similarity: All dimensions of the object must be proportionally scaled. 

- Mach number (Ma): The ratio of the airspeed to the speed of sound should be 

identical for the scaled model and the actual object. 

- Reynolds number: The ratio of inertial forces to viscous forces should be kept.  

The development of wind tunnel was crucial during the Second World War for the 

development of the airplane, and large wind tunnels were built. Wind tunnel testing was 

considered of strategic importance during the Cold War development of supersonic aircraft 

and missiles. Later on, the use of wind tunnels became a very useful tool for different 

applications, such as civil engineering to calculate the effects of wind loads in tall buildings, 

cable suspended bridges or any infrastructure, as well as for the automobile field to 

determine ways to reduce the power required to move the vehicle on roadways at a given 

velocity.  



Virtual wind tunnel experiments using embedded FSI framework 3 

 

Nowadays, wind tunnels are well known and indispensable for its enormous amount of 

potential in a broad variation of applications. Consequently, there are different types of 

wind tunnels, and are designed for a specific purpose and speed range. One way to classify 

wind tunnels is based on the Speed Regime developed in test section relative to the speed of 

sound (Mach number �M�). 

Subsonic WT (M<0.8) 

Transonic WT (0.8<M<1.2) 

Supersonic WT (1.2<M<5) 

Hypersonic WT (M>5.) 

Also, maybe distinguished on the basis of their geometry, where wind tunnels are classified 

as Closed Circuit Wind Tunnel (CCWT) or Open Circuit Wind Tunnel (OCWT), see 

Figure 1.1. The CCWT�s have a closed circuit and the air re-circulates through the test 

section, while OCWT�s have opened both ends and draw air from the atmosphere into the 

test section. 

 

(a) Closed Circuit Wind Tunnel     (b) Open Circuit Wind Tunnel 

 
Figure 1.1. Classification of Wind Tunnel on basis of its Geometry as (a) CCWT and 

(b) OCWT 

 

1.2 Computational Fluid Dynamics 

Computational fluid dynamics (CFD) is the use of applied mathematics, physics and 

computational software to solve and analyse problems that involve fluid flows, and how 

those fluids affect objects as it flows past. Computational fluid dynamics is based on the 
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Navier-Stokes equations. These equations, which are explained more widely in section 2.2.1, 

describe how the velocity, pressure, temperature, and density of a moving fluid are related. 

In a more inappropriate way, CFD can be seen as virtual experiments to substitute physical 

experiments. Computational fluid dynamics has been around since the early 20th century, 

and it has found its way in a broad variety of engineering fields, such as aeronautics, 

chemical, civil or environmental. One of the most successful applications of CFD has been 

in the field of wind tunnels, usually known as a Virtual Wind Tunnel (VWT), and in which 

this thesis is focused.  

1.2.1 Computational Fluid Dynamics for wind tunnel simulations 

During last years, computational fluid dynamics has significantly replaced the wind tunnels, 

since computers have become more powerful and the science behind CFD has lived great 

improvements. These advancements, both in computers and CFD have made possible to use 

a Desktop computer, instead being limited on mainframe computers. However, wind tunnels 

are sometimes used to verify the CFD computer codes. 

Nowadays, everyone�s main focus is to save time, material and reduce costs. This fact gives 

another advantage to CFD against wind tunnel, since CFD has same or lower cost and 

quicker turnover times to conduct the modelling in most cases, as well as wind tunnel 

require large expensive equipment.  
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Table 1-1. Estimated cost for Wind Tunnel and CFD1 

Table 1-1 depicts the estimated costs for Wind Tunnel and Computational Fluid Dynamics 

in different years. As it can be observed, CFD has significantly reduced its costs during last 

10 years and consequently, it has gain a great importance in its use against physical testing. 

It is noteworthy the lower initial cost of the CFD and how the cost notably increase per 

data point, while Wind Tunnel Testing behaves oppositely, it has a high initial cost with a 

low increment per data point.   

The different parameters for estimating these costs are: 

o Computational fluid Dynamics: 

 Software Costs 

- Basic licensing fees 

- Cost per parallel process  

 Hardware Costs 

- Cost per physical cpu core 

 Operating Cost 

- Time to solution and time per solution 

- Power Cost 

                                         
1Estimated cost for Wind Tunnel and Computational Fluid Dynamics. Data obtained from 

Aeronautical Testing service, Inc. CFD and Wind Tunnel Testing: Complimetary Methods for 

Aircraft Design. 
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o Wind Tunnel Testing: 

 Model Cost 

- Complexity of model 

- Quality of CAD definition 

- Time from CAD delivery to model delivery 

 Wind Tunnel Costs 

- Cost per hour of wind tunnel time 

- Cost for non-standard instrumentation 

 Operating Costs 

- Design of the model 

- Efficiency of staff 

- Efficiency of wind tunnel equipment and data reduction tools 

- Power cost 

 

1.3 Inflatable structures 

Inflatable structures, also known as pneumatic structures, are flexible membranes which are 

prestressed with pressurised air, and sometimes stiffened with cables to support traction 

again the action of external loads. Pneumatic structures are characterized by being 

lightweight easy to manipulate and transport.  

1.3.1 Brief introduction to its history 

Inflatable structures are rather recent. In 1917, Sir Frederic Lanchester lay down the first 

patent in pneumatic construction in Europe. Afterwards, Walter Bird and his team 

achieved the construction of a 15m diameter pneumatic dome, the prototype for a series of 

large shelters, called �radomes�, to protect radars used at the end of the World War II. 

Walter Bird also pioneered in the commercial application of pneumatics, such as in sport 

facilities, swimming pools or covers for warehouses.  

The easy manipulation and transport of inflatable structures soon inspired their use in 

temporary and itinerant exhibitions. The use of these structures reached a peak in the 

EXPO�70 in Osaka, when all the pavilions in the exhibitions were built using inflatable 
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structures. They have been widely adopted in Japan ever since owing to the poor quality of 

the soil and high seismicity of the region. One of the most relevant pavilions was the Fuji, 

Figure 1.2, composed by 16 inflate arches and designed by architect Yutaka Murata. 

 

Figure 1.2. Fuji pavilion, 1970, Osaka 

Nowadays, inflatable structures have gained great importance in several other applications, 

in particular in aeronautics, where large inflatable airplane hangars, see Figure 1.3, are used 

to protect or repair aircrafts at arbitrary locations in case of emergency. Furthermore, 

companies such as BuildAir2, are doing important researches in other uses of pneumatics 

structures, among others, air-bridges for emergencies in natural disasters, see Figure 1.4 

 
Figure 1.3. Inflatable airplane hangar, BuildAir 

 

                                         
2 Buildair is an engineering and textile architecture company specialized in the design and 

development of large scale inflatable structures, such as Airplane aeronautical Hangars. CIMNE 

Tecnología SA, a company 100% owned by CIMNE, owns 5% of BUILDAIR. 

http://buildair.com/en/index.htm 
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Figure 1.4. Air bridge prototype designed by BuildAir 

 

1.3.2 Structural behaviour of inflatable structures 

Pneumatic structures can cover large surfaces without intermediate elements. They are 

manufactured with a textile structure, creating a uniform solid with membrane properties. 

The structure incorporates an action to the load system due to the internal pressure which 

is subjected onto the structural elements. The inflatable structures only resists against 

traction stresses. The membrane, under any load condition, must be kept tensioned, hence, 

the structure have to be subjected to an enough internal pressure to bear these load 

conditions. Typically, continuous air feeding via pressure pumps is supplied. 

 

1.4 State-of-the-art in the computational modelling of inflatable 

structures 

Nowadays, computational fluid dynamics is a widely developed tool for a wide range of 

problems. However, there exist several challenging fields requiring further development. One 

of these cases is the fluid-structure interaction, when light-weight solid is subjected to large 

displacements, as it is the case in inflatable structures due to the wind loads. Different 

attempts have been carried out in order to analyze these problems.  

Until now, the industry market solves these problems separately. First, the pressures 

generated by a wind are calculated over a rigid body in a CFD model. Afterwards, the 

pressure distribution obtained from CFD is applied to the elastic body, representing the 

inflatable structures, in a traditional Computational Structural Dynamics (CSD) solver. 
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This method is a rough way to analyze this problem since, thin light-weight structures are 

subjected to large displacements and therefore, fluid has different behaviour. 

Given the importance that the inflatable structures are having over the last years, the need 

arises to deeply study them behaviour, with the objective to analyze, asset and optimize the 

construction of these structures. The interdependence between the structural deformation 

and the surrounding flow calls for a strongly coupled solutions. 

Monolithic approaches have been used to study the behaviour of FSI involving thin light-

weight structures. However, the difficulty to describe the fluid in terms of displacements 

without using the pressure as a primary variable leads to a badly conditioned system 

matrices. Furthermore, the discrete equation system describing the problem is too large and 

therefore, high computational cost is arisen. 

The aim of this project is to carry out a study of a light-weight structure of Buildair using a 

strong two-way coupling algorithm developed by Kratos Group, a research team of CIMNE. 

The algorithm allows analyzing a partitioned approach for fluid-structure interaction 

involving thin light-weight structures. Structure domain is embedded in the fluid domain. 

This type of approach relies on the independent solution of the fluid and the structural 

domain, hence the best available solvers for each sub-domain can be chosen. Also, 

partitioned approaches are cheaper than the monolithic ones. The embedded setting 

investigated in the present work allows avoiding the deficiencies (strong mesh distortions) 

experienced by the Arbitrary Lagrangian-Eulerian (ALE) methods when facing large 

deformation of the structure. 

The successful application of the framework will be an important advance for computational 

methods in fluid-structure interaction problems involving thin light-weight structures 

subjected to large displacements. In addition, further analysis of them behaviour could be 

carried out, since the physical experiments in these structures are highly complicated and 

expensive.   
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Chapter 2:  

Fluid-Structure Interaction 
 

2.1 Brief introduction to Fluid-structure interaction 

Fluid-structure interaction (FSI) is a class of problems which describe a certain physical 

phenomena with mutual dependence between the fluid and structural mechanics models. 

The flow behaviour depends on the shape of the structure and its motion, and the motion 

and deformation of the structure depend on the fluid mechanics forces acting on the 

structure. This interaction between both systems, fluid and structure, is encountered almost 

everywhere in engineering, sciences and medicine. In some engineering projects, FSI plays 

an important role and influences the decisions in the design stage of projects of interest. 

Hence, reliable predictive FSI methods, which help address these problems of interest, are in 

high demand in research laboratories, space explorations, industry and many other 

contexts.  

While analytical methods are used to some extent in solution of fluid-only or structure-only 

problems, only a handful of cases in solution of FSI problems have been solved analytically. 

Simplified assumptions (often, unrealistic) have been invoked to arrive at closed-form 

solutions of the underlying partial differential equations (PDE). The nonlinearity and time-

dependent nature of FSI makes it very difficult to use analytical methods in this class of 

problems. On the other hand, there have been significant advances in computational FSI 

research during the last decades (see for instance, Tezduyar, 2003a, b [1], [2]; Michler et al., 

2003 [3], 2004 [4]; van Brummelen and de Borst, 2005 [5]; Oñate et al., 2006 [6]; Ryzhakov 

et al., 2007 [7]; Idelsohn et al., 2008a [8],b [9]; Takizawa and Tezduyar, 2012b [10]). In the 

context of numerical methods, FSI involves a combination of Computation Fluid Dynamics 

(CFD) and Computational Structural Dynamics (CSD). 
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Fluid-structure interaction problems are concerned with mainly two types of interaction, 

Momentum interaction and interaction of Energy. Furthermore, inside the momentum 

interaction, the movement of the structure because of momentum exchange with the fluid 

can occur in two different ways (see Figure 2.1), by a local deformation of the solid body, or 

by a rigid body motion. This project is concerned with interaction of forces and the 

corresponding movement of the interface. The structure studied in this project is a flexible 

light-weight structure; therefore, it will be characterized by large displacements. Hence a 

local deformation will be necessarily analyzed. 

 

 

 

 

 

Figure 2.1. FSI categories 

 

The development of computational FSI frameworks involved different challenges categorize 

into three areas: problem formulation, numerical discretization, and fluid-structure coupling. 

These challenges areas are explained in next sections.  

 

2.2 Problem formulation 

The problem formulation takes place at the continuous level, before discretization. However 

the chosen continuous model has implications for the numerical discretization that are most 

suitable for the case at hand. The situation for a FSI problem is more complicated than for 

a single-field mechanics problem, such as a fluid-only or structure-only problem, where it 

consists of with a set of governing differential equations in the problem domain and a set of 

boundary conditions at the domain boundary. In FSI, the sets of differential equations and 

boundary conditions associated to the fluid and structure domains must be satisfied 

simultaneously and respect the interface between both domains. The domains must not 

FSI 

Momentum interaction 

Interaction of Energy 

Rigid body motion 

Local deformation 
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overlap, and the two systems must be coupled at the fluid-structure interface, which 

requires a set of physically meaningful interface conditions. These coupling conditions are 

the compatibility of the kinematics and tractions at the fluid-structure interface. 

Conservation laws can be expressed in two alternative ways. The first one considers the 

motion of all matter passing through a fixed spatial location. This description is generally 

used in Fluid Mechanics, where one is interested in properties, such as velocity, pressure, 

temperature, and so on, of the matter that instantly occupies the fixed spatial location. 

This description is known as the Eulerian description. The second description, known as 

Lagrangian description, focuses the attention on a set of fixed material particles, 

irrespective of their spatial locations. This alternative is commonly used in Solid Mechanics, 

and one has interest in the relative displacements of these particles and the stress caused by 

external forces and temperature.     

In the following the mathematical models which describe the behaviour of FSI problems is 

presented. 

Let us consider a solid body Ɓ which is �embedded� inside a fluid domain Ωf with external 

boundaries ∂Ω of the domain and ∂Ɓ boundary of Ɓ (see Figure 2.2). A mathematical model 

for this FSI problem involves:  

 governing equations for the fluid domain Ωf(t) ϵ ℝ3 

 governing structural dynamic equations for the solid domain Ɓ(t) ϵ ℝ3 

 transmission conditions at the fluid-structure interface ∂Ɓ(t) 

 Dirichlet and Neumann boundary conditions at the remaining structural and 

fluid domain boundaries 

 Initial conditions (t=0) for the fluid and structural state vectors 

Herein, it the fluid and structural problems will be described separately and then the 

interaction modelling of those sub problems across the interface will be introduced. 
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Figure 2.2. Representation of a solid body Ɓ immersed in a domain Ωf
t, with the 

respective boundary, ∂Ɓ and ∂Ω 

 

2.2.1 Governing equations of fluid mechanics 

Fluid flow is described by differential equations representing the interrelationship between 

the flow variables and their evolution in time and space. The laws of motion (mass, 

momentum and energy conservation) that apply to continuum solids are valid for all matter 

including liquids and gases. However, the main feature which distinguishes a fluid from a 

solid is the incapacity to resist shear stresses when remaining at rest. A fluid can resist 

shear stresses only when it is in motion. Hence, the shear stresses in a fluid are proportional 

to the time rate of strain. Thereby, independent variable is the velocity v (m/s), and the 

proportionality parameter is the viscosity μ (Kg·m-1·s-1). 

Motion of fluid is governed by the so-called Navier-Stokes equation. In the problem of 

interest and in many of civil engineering applications, air can be modelled as a viscous 

incompressible flow in the Navier-Stokes equations. 

2.2.1.1 Conservation of Mass 

Applying the continuity equation3 to the density of fluid ρf (kg/m3), one obtains: 

                                         
3The continuity equation is an equation which describes the change of an intensive property L, and is 

representing as 
ܮ݀
ݐ݀

+ સ · ࢜ ܮ) + ܳ = 0) 

where u and Q are the velocity and the sink term respectively. 

Ω 

∂Ω 

Ɓ 

∂Ɓ 
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 ∂ρ୤

∂t
+ સ · ൫ρ୤ܞ൯ + Q = 0 (2.1) 

REMARK 2.1 The sink term it will not be considered as the project will be concerned with a 

constant control volume, with no sources or sinks of mass (Q=0). 

Hence, the equation of conservation of mass, can be represented as 

 ∂ρ୤ 
∂t

+ સ · ൫ρ୤ܞ൯ = 0 (2.2) 

It is worth mentioning that in fluid mechanics modelling, the control volume fixed in space 

is typically considered. This is known as the Eulirian formulation. Therefore, the material 

derivative or Eulirian derivative operator D/Dt must be introduce. 

 
D
Dt

=
∂
∂t

+ ܞ · સ (2.3) 

Applying the Eulirian derivative to equation (2.2), the conservation of mass can be 

expressed in the alternative form 

 Dρ୤

Dt
+ ρસ · ܞ = 0 (2.4) 

When the density changes following a fluid particle are negligible, the fluid continuum is 

termed incompressible fluid. Setting the derivative of density equal to zero Dρf/Dt=0, the 

conservation of mass (2.4) becomes 

 સ · ܞ = 0 (2.5) 

2.2.1.2  Conservation of Momentum: Equation of Motion 

The derivation of conservation of momentum equations can be done using Newton�s laws 

and applying the chain rule. Basic physics dictates that 

 ۴ = m(2.6) ܉ 
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  Allowing for the body force ⃗ܨ = ሬܾ⃗  and substituting density for mass, since it is operating 

with a fixed control volume and infinitesimal fluid parcels, it is obtained the similar 

equation 

܊  = ρ୤ ∂
∂t

,x)ܞ y, z, t) (2.7) 

 Applying the chain rule to the derivative of velocity 

܊  = ρ୤ ൬
ܞ∂
∂t

+ 
ܞ∂
∂x

∂x
∂t

+
ܞ∂
∂y

∂y
∂t

+
ܞ∂
∂z

∂z
∂t

൰ (2.8) 

Equivalently, 

܊  = ρ୤ ቀபܞ
ப୲

+ ܞ · સܞቁ  (2.9) 

Hence, substituting the value in parentheses in equation (2.9) for the definition of the 

Eulerian derivative, the equation can be expressed as 

 ρ୤ Dܞ
Dt

=  (2.10) ܊

By adding few assumptions about the forces and the behaviour of fluids, the conservation of 

Momentum derived above leads to the equations of motion for fluids. It is assumed that the 

body force on the fluid parcels is owing to two components, fluid stresses and other external 

forces. 

܊  = સ · ો܎ +  (2.11) ܎

Hence, the principle of conservation of linear momentum (or Newton�s Second Law of 

motion) can be written as 

 ρ୤ Dܞ
Dt

= સ · ો܎ +  (2.12) ܎
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where σf is the Cauchy stress tensor (N/m2) and f is the body force vector, measured per 

unit of mass.  

The Navier-Stokes equation (2.12) is an equation which can be used to determine the 

velocity vector field that applies to a fluid, given some initial conditions. They arise from 

the conservation of momentum in combination with a constitutive law for fluid stress (due 

to viscosity) and a pressure term.  

2.2.1.3 Constitutive equations 

The Cauchy stress tensor σ commented above is often, for incompressible fluids, 

decomposed into two terms. These two terms are the volumetric stress tensor, and the 

stress deviator tensor, or also termed as the hydrostatic and viscous part respectively: 

 ો܎ = −p۷ + ૌ (2.13a) 

or in matrix notation 

 σ୤ = ൭
σ୶୶ τ୶୷ τ୶୸
τ୷୶ σ୷୷ τ୷୸
τ୸୶ τ୸୷ σ୸୸

൱ = − ൭
p 0 0
0 p 0
0 0 p

൱ + ቌ
σ୶୶ + p τ୶୷ τ୶୸

τ୷୶ σ୷୷ + p τ୷୸
τ୸୶ τ୸୷ σ୸୸ + p

ቍ (2.15b) 

 

where P is the hydrostatic pressure, I is the unit tensor and τ is the viscous stress tensor. 

Applying this form of the Cauchy stress tensor into the equation of the continuum 

momentum (2.12), the most general form of the Navier-Stokes equation can be expressed as 

 ρ୤ Dܞ
Dt

= −સp + સ · ૌ +  (2.14) ܎

 ρ୤ ୈܞ
ୈ୲

: Represents the inertia. 

 −સp: Is the pressure gradient term, which prevents motion due to normal stresses. 

The fluid presses against itself and keeps it from shrinking in volume. 

 સ · ૌ: Is the viscous stress term, which causes motion due to horizontal friction and 

shear stresses. The shear stress causes turbulence and viscous flows. 

 ܎: Represents the force term which is acting on every single fluid particle. 



18 Chapter 2: Fluid-Structure Interaction 

 

The equation (2.14) is the general form of the Navier-Stokes equation for incompressible 

fluids.  

For Newtonian Fluids, such as e.g. air, the basis of the assumptions is about the nature of 

the viscous stress tensor τ. The stress is proportional to the rate of deformation 

 τ୧୨ = μ ቆ
∂v୧

∂x୨
+

∂v୨

∂x୧
ቇ (2.15) 

The proportionality constant μ is the viscosity, mentioned in the beginning of the section 

2.2.1 of this chapter, and it defines how easily the fluid flows when is subjected to body 

forces. 

Applying the expression (2.15) in the term of the divergence of the viscous stress tensor in 

the equation (2.14), it is obtained the vector Laplacian 

 સ · ૌ = μસଶ(2.16) ܞ 

Finally, the Navier-Stokes equation for an incompressible Newtonian fluid, in the convective 

form, can be written as 

 ρ୤ Dܞ
Dt

= −સp + μસଶܞ +  (2.17) ܎

2.2.2 Governing equations of structural mechanics 

The behaviour of the structural domain Ɓ (Figure 2.2) is generally described using a 

Lagrangian description. The momentum equation governing the motion of the body is 

௦࢛̈ߩ  = સ · ોୱ + ρୱ(2.18) ܎ 

where y is the displacement, σs is the Cauchy stress tensor of the structure and f the 

external body force per unit of mass. 

REMARK 2.2: Note the emphasis dot over the displacements (̈ݑ) represents the second 

partial derivative respect to time ቀ డమ

డ௧మቁ, so ̈ݑ represents the structural acceleration.  

The compatibility conditions are expressed as 
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t୨ = n୧σ୧୨ = t఩ഥ      on   ∂ℬ୲  ⊂  ∂ℬ, 

σ୧୨ = σ୨୧ 

ε୧୨ =
1
2

ቆ
∂u୨

∂u୧
+

∂u୧

∂u୨
ቇ 

u୨ = u୨        on   ∂ℬ୳  ⊂  ∂ℬ 

  

(2.19) 

where σji is the Cauchy stress tensor, xi=[x1, x2, x3] the Cartesian coordinates of a given 

point of the underformed body, ݑത௝ the displacement imposed on the Dirichlet boundary ∂Ɓu, 

tj the surface tractions (ݐ௝̅ is the surface traction applied on the Neumann boundary ∂Ɓt, ni 

the outward normal vector of the surface and ߝ௜௝ is the strain tensor. 

2.2.2.1 Constitutive law 

A constitutive law that expresses the stress tensor in terms of displacement or velocity is 

required. The structures considered in this thesis can be modelled using linear elasticity, 

since permanent deformations are negligible 

 σ୧୨ = C୧୨୩୪ ε୩୪ (2.20) 

where Cijkl is the constitutive material matrix. 

 C୧୨୩୪ =

⎣
⎢
⎢
⎢
⎡

Eଵ
(1 − νଵଶνଶଵ)

νଶଵEଵ
(1 − νଵଶνଶଵ) 0

νଵଶEଶ

1 − νଵଶνଶଵ

Eଶ
(1 − νଵଶνଶଵ) 0

0 0 Gଵଶ⎦
⎥
⎥
⎥
⎤

 (2.21) 

Here, E1 and E2 are the Young�s moduli in the directions defined by the local basis vectors, 

ଵܧଶଵߥ ଶଵ are the Poisson�s ratios, G12 is the sehar modulus, andߥ ଵଶ andߥ =  ଶ in order toܧଵଶߥ

ensure the symmetry of the constitutive material matrix. In the case of an isotropic 

material, ܧଵ = ଶܧ = ଶଵݒ ,ܧ = ଵଶߥ = ଵଶܩ and ,ߥ = 1)2)/ܧ +  .((ߥ

2.2.3 Interface conditions 

To describe and model the interaction between the external fluid domain Ωf and the 

immersed structural body Ɓ, a set of interface conditions must be enforced on the boundary 

∂Ɓ. The main coupling conditions to satisfy the interaction are the dynamic and kinematic 
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compatibility. No mass flow across the interface is assumed and a viscous fluid is 

considered. Hence the normal and tangential velocities have to match the following 

continuity conditions: 

ܞ  · ୤ܖ = ܝ̇− · ∋ ܠ∀         ୱܖ  ∂ऌ  (2.22) 

ܞ  = ∋ ܠ∀         ܝ̇  ∂ऌ  (2.23) 

The equilibrium condition requires the surface traction to be equal as 

 ો୤ · ୤ܖ = ોୱ ·  ୱ (2.24)ܖ

 

Figure 2.3. Matching interface conditions for a fluid-structure interaction 

 

2.3 Body fitted and non-body fitted meshes 

Let us consider now the issues related to the relative motion of the computational domains 

in the FSI problem. Let us consider (at a conceptual level) the two computational meshes 

and corresponding formulations: one for the structure, and another one for the fluid. 

The structural domain, typically described in the Lagrangian framework, follows the 

material particles belonging to the structure. This is known as the Lagrangian description of 

the structural motion. The shape of the fluid domain has to change in order to conform to 

the motion of the structure, as the solid deforms in space. On the other hand, in the 
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Eulerian description, which is widely used in fluid dynamics, the mesh remains fixed and 

the continuum moves with respect to the grid. 

There are two major classes of methods to account for the interfaces bodies moving inside 

the fluid domain. These methods are known in the discrete setting as the Body-fitted mesh 

(BF) methods and the Non-body-fitted mesh (NBF) methods.  

It is worth noting that this thesis deals with an embedded approach, a Non-body fitted 

method.  

2.3.1 Body-fitted mesh 

The main feature of the BF mesh methods is that they operate on dynamic, body-

conforming CFD grids and a particular algorithm takes care of the mesh motion 

(deformation) to accommodate the body motion and maintain a conformal CFD wet surface 

of the solid body. 

2.3.1.1 Moving mesh method 

The moving mesh method is based on a Lagrangian flow formulation, and dynamic finite 

element meshes. The dynamic wet interface is treated with a material flow description to 

avoid the additional tracking of the moving boundaries. However, the dynamic meshes that 

propagate with the flow become distorted and should be regenerated at each time step. It 

relocates grid points in a mesh having a fixed number of nodes in such a way that the nodes 

remain concentrated in regions of rapid variation of the solution. This approach becomes 

impractical for high Reynolds number problems that require large and fine meshes. The 

method requires, at each time step, a remeshing procedure which has an expensive 

computational cost.  For extensive reviews in this approach see Tao Tang [11]; Andrew A. 

Johnson [12]; R. Radovitzky, M. Ortiz [13] and [14]. 

2.3.1.2 The Arbitrary Lagrangian-Eulerian (ALE) method 

The Arbitrary Lagrangian-Eulerian is a method in which the computational system is 

neither fixed in space (Eulerian description) nor attached to material particles (Lagrangian 

description). ALE is a method which combines the advantages of the classical kinematical 

descriptions, a well defined interface and facility in imposing the boundary conditions 

(Lagrangian description) and the possibility of handling deformation (Eulerian description).  
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In this approach, the continuum moves relative to the mesh as in Eulerian framework, but 

in the Fluid-structure interface, also known as the wet interface, the grid is controlled by 

the boundary conditions of the problem as in a Lagrangian formulation.  

The main disadvantage of this approach is that for large deformation and topological 

changes, some pseudo-structural edges can penetrate their neighbouring triangles and 

produce negative volume elements, in these occasions it is produced numerical errors. 

ALE methods can be equipped with the re-meshing technique similarly to the Lagrangian 

methods. However, it greatly impacts the computational cost of the method. 

2.3.2 Non body-fitted mesh (NBF) 

Non body-fitted mesh differs from the BF in that the grids do not conform to the surface of 

the body (see Figure 2.4). The whole domain is discretized by a Cartesian grid, extending 

through solid walls within the computational domain. This transforms the problem from 

conforming the meshing to the surface into a characterizing and computing the intersection 

between the Cartesian grid and the surface geometry. Hence, the cells of the mesh are 

flagged in three different groups: solid cells, if they belong inside the embedded body where 

no flow computations will take place, flow cells, if they belong to the region where the flow 

computations take place, and boundary cells, for those cells where the solid boundary 

intersects the mesh, see Figure 2.5.  

(a)                                                      (b) 

 
Figure 2.4. Representation of a Body-fitted mesh (a), and a Non Body-fitted mesh (b) 
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Figure 2.5. Interface elements. Solid cells: elements inside the black polyline. Boundary 

cells: elements represented in colour grey. Flow cells: elements outside black polyline 

and belonging to the fluid domain Ωf  

 

What distinguishes one type of NBF method from the other is the way boundary conditions 

are treated. Modifications of the governing equations are needed in the vicinity of the 

boundary cells to assign the appropriate boundary conditions. One approach is to impose 

boundary conditions using a forcing function and extrapolation of the variables. For more 

details see (R. Glowinski et al [15]; J. Mohd-Yosuf [16]; Y.H. Tseng, J.H. Ferziger [17]; or 

A. Gertenberger, W.A. Wall [18]). 

 

2.4 Fluid-structure coupling 

There exist two different approaches to face FSI coupling problems: monolithic and 

partitioned. 

In the Monolithic approach the equations of fluid, structure and interface are solved 

simultaneously at every time step. The monolithic solution is more robust, a main 

advantage for adopting this approach. However, some complications arise when dealing with 

monolithic approach. The variables describing the fluid and the solid are of different nature, 

which generally leads tobadly conditioned system matrices. Furthermore, the single discrete 

equation system describing the FSI problem is larger than the subsystem (fluid and 

structure) of the problem. Success of the monolithic approaches greatly depends on the 
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availability of efficient preconditioners capable of accelerating the solution of large, 

heterogeneous and poorly conditioned linear systems  

Partitioned approaches rely on the decomposition of the problem into different sub-

problems. In FSI the problem is decomposed into fluid and structure subdomains. Each one 

is independently solved and the data is interchanged between them through the interface 

boundary. Hence, the best available solver for each sub-problem can be chosen. 

Nevertheless, though partitioned approach works well and is very efficient for several 

problems, it may suffer from stability problems (convergence difficulties are encountered). 

These difficulties most-commonly arise when the structure is light and the fluid is heavy. 

The interaction between the subdomains can be performed in two different ways. If there is 

not feedback between fluid and structure, the interaction is called one-way coupling, while if 

there is feedback between subsystems the interaction is called two-way coupling. Figure 2.6 

depicts a scheme of the different ways to deal with the interaction between both 

subdomains. Weak one-way coupling neglects the effect of the structural motion upon the 

flow. This is generally valid assumption for heavy rigid structures undergoing minor 

motions. However, for light-weight structures in which large deformation in the structure 

are produced, the motion of the structure has a non-negligible effect upon the flow of the 

air. Here, is when the application of a two-way coupling approach makes sense. 

 

Figure 2.64. Two different approach for interaction between subdomains: (a) One-way 

coupling (b) two-way coupling 

 

                                         
4 Figure reprint from class notes of Synthesis Tools for Structural Dynamics and Partitioned Analysis 

of Coupled Systems, C.A. Felippa and K.C. Park, University of Colorado at Boulder. 
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In the present work we shall analyze whether two-way coupling is necessary for the 

simulation involving light-weight structures by comparing one-way and two-way coupled 

solutions.  
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Chapter 3:  

Two-way FSI coupling algorithm 
 

In this chapter the algorithm implemented for modelling and simulation of light-weight 

structures subjected to wind loads will be presented in detail. First, a description of the 

overall framework will be introduced. Afterwards, the discrete formulations and related 

solution procedure used for the fluid and the structure domains are explained. Finally, the 

coupling will be described. 

As commented in previous chapters, this thesis is concerned with inflatable structures and 

wind loads. Hence, membrane elements are used to model the structure domain, and 

incompressible viscous fluid is assumed for the fluid domain. 

The code of the corresponding algorithms is presented in Annex I. 

 

3.1 Overall embedded solution 

The problem of interest is a FSI related to light-weight structures. These types of structures 

are known for undergoing large displacements due to wind loads. A partitioned coupling 

approach is implemented in order to obtain a computationally efficient simulation tool. The 

two sub-problems analyzed in the partitioned approach are the fluid domain, which is 

modelled in an Eulerian description, and the structure domain, modelled by a Lagrangian 

one. 

In the present problem, the solid body moves inside a fluid domain. Large deformations are 

expected at the interface, thus precluding the use of the mesh-fitted methods. Hence, an 

embedded approach is used for the discretization of the fluid and structure domain. In that 

way, mesh distortions due to large displacements and remeshing will be avoid, keeping the 

system far from numerical errors and reducing computational cost.  
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Since the structure domain moves inside the fluid domain, the fluid must deform according 

to the immersed body motion. The position of the Lagrangian domain within the Eulerian 

mesh, along time, defines the location of the fluid-structure interface at every time step; see 

Figure 3.1 for a graphical representation. From now on let us call the representation of the 

solid within the Eulerian domain as the Lagrangian image.  

 
  (a) Lagrangian domain -2D                   (b) Eulerian domain and Lagrangian image -2D 

 

(c) Eulerian domain and Lagrangian image � 3D representation 

Figure 3.1. Embedded approach: movement of the Lagrangian domain and its image 

within the Eulerian mesh from time step ࢚࢔ to ࢚࢔ା૚ 

 

The representation of the Lagrangian domain within the Eulerian mesh leads to a 

differentiation of the fluid domain into two parts. The part of the Eulerian domain lying 

inside of the Lagrangian image, which is referred to as �fictitious Eulerian domain Ω୉୤� with 

its corresponding nodes �fictitious nodes�, and the part representing the fluid which is 

called �real Eulerian domain Ωா௥� and the corresponding nodes �real nodes�, see Figure 

3.1.a. The interface which divides the Eulerian domain into two parts is the boundary of 

the Lagrangian image ∂Ɓ. The elements cut by the Lagrangian image boundary ∂Ɓ are also 

distinguished from the other elements. Those elements contain both real and fictitious 

nodes.  Figure 3.1.b depicts a graphical representation, where the boundary ∂Ɓ is 
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represented as a black polyline, the interface elements are shown in grey, fictitious and real 

nodes are indicated by black and grey dots respectively.  

          
   (a) Lagrangian image                                 (b) Interface elements 

Figure 3.2. Embedded setting: real, fictitious and interface parts of the Eulerian domain5 

 The Lagrangian image in the fluid model is obtained by using space-search techniques 

(quad or oct-tress) and subsequent ray casting, see de Berg M et al [19], Yang S. et al [20] 

and Baumgartner D. and Wolf J. [21] for a wide description of the methods and their 

implementation. These techniques allows to described a signed distance function defined 

over the Eulerian mesh which distinguish the nodes lying outside and inside the Lagrangian 

image with positive and negative values on the prescribed distance variable, respectively. 

The position of the interface ∂Ɓ is defined by those nodes containing a zero value in the 

distance function.  

The fictitious nodes of the interface elements are used exclusively for imposing the Dirichlet 

boundary condition representing the effect of the structural velocity. Fully fictitious 

elements are �switched off� thus enabling for natural representation of the pressure 

discontinuity across the interface. 

Following, the model for the fluid and the structure are going to be presented, as well as 

the coupling scheme for boundaries conditions.   

                                         
5 Figure reprint from P.B. Ryzhakov, A. Jarauta. �An embedded approach for immiscible multi-fluid 

problems�,  International Journal for Numerical Methods in Fluids, 00: 1-33, 2015 
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3.2 Model for the fluid 

The laws governing the flow of viscous incompressible Newtonian fluids, in the Eulerian 

form, have been described in the previous chapter (2.2.1). Nevertheless, they are 

represented here in ordert to facilitate the reading of the derivation of the discrete 

equations. 

Conservation of mass: 

 સ · ܞ = ૙ (3.1) 

Conservation of Momentum: 

 ρ
ܞ∂
∂t

+ ρܞ · સܞ + સp − સ · ቀμસ୘(ܞ)ቁ − ρ܏ = 0 (3.2) 

where v denotes the velocity vector, ρ the density, p the pressure, µ the dynamic viscosity 

and g the body force. 

The boundary conditions are given by 

ܞ  =  ୴       on Γ୴ (3.3)܎

 ૌ = ો · ෝܖ =  த      on  Γத (3.4)܎

where τ is the viscous stress tensor, σ is the total stress tensor, ො݊ is the outward unit normal 

to the boundary, fv and fτ are specific functions for standard situations on the Dirichlet (Γ୴) 

and Neumann (Γఛ) boundaries, respectively. With Γ௙ = Γ௩ ⋃ Γఛ, being Γ௙ the total boundary 

enclosing the fluid domain, Ωf. 

The development of the finite element model for the continuity equation (Eq. (3.1)) and 

Navier-Stokes equation (Eq. (3.2)), which is used to construct the weak form is the so-called 

mixed model. This model mixes the velocity variables with the force-like variable �pressure-, 

and both types of variables are retained in a single formulation.  
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To obtain the weak form, the equations (3.1) and (3.2) are multiplied by a weight 

functions. The weight-integral statements of the two equations over a typical element Ωe 

are given by 

 න Qસ · dΩୣ ܞ

 

ஐ౛

 (3.5) 

 න w · ൤ߩ
߲࢜
ݐ߲

+ ࢜ߩ · સ࢜ + સ݌ − સ · ൫ߤસ்(࢜)൯ − ൨ࢍߩ  dΩୣ

 

ஐ౛

 (3.6) 

where Q and w are the weight functions, which will be equated to the interpolation 

functions used for p and v respectively, in the Ritz-Galerkin finite element modelling. 

Integration-by-parts, to equally distribute integration between the dependent variables and 

the weight functions, is used to obtain the weak form of the Navier-Stoke equation (3.2). 

However, no integration-by-parts is used in the conservation of mass equation (3.1) due to 

no relaxation of differentiability on v can be accomplished. Hence, developing equations 

(3.5) and (3.6), the complete develop weak form can be described 

  0 = න Qસ · dΩୣ ܞ

 

ஐ౛

 (3.7) 

 
0 = න [ρ(w · ܝ̇∇ + w ܞ · (ܞ∇ + ∇w (−pI + μ(∇ · (ܞ − ρw܎] dΩୣ

 

ஐ౛

− ර wૌ
 

୻౛

 dΓୣ  

   

(3.8) 

3.2.1 Spatial discretization       

Developing the Ritz-Galerkin finite element model, and supposing that the dependent 

variables (vi, p) are approximated with a liner interpolation 

 v୧(ܠ, t) = ෍ N୫(x)v୧
୫(t) = ୴ۼ

୘ܞ
୫ୀଵ

 
(3.9) 

  p(x, t) = ෍ N୪
୘(x)p୪(t) = ୮ۼ

୘ܘ
୪ୀଵ

    

(3.10) 
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where Nv and Np are column vectors of shape functions for velocity and pressure, 

respectively, and ഥ࢜ and ࢖ഥ are vectors of nodal values of velocity components and pressure, 

respectively. 

Substituting equations (3.9) and (3.10) into equations (3.1) and (3.2), the finite element 

equations are stated as follow 

Conservation of mass (Continuity): 

 − ቂ∫ ୘ dΩୣۼસ ۼ
 

ஐ౛
ቃ തܞ =0 (3.11) 

i-th Momentum: 

 
ቈρ න ୘ dΩୣۼۼ

 

ஐ౛

቉
dܞത
dt

 + ቈρ න തܞ)ۼ · dΩୣ (ۼ∇

 

ஐ౛

቉ തܞ + ቈμ න સۼ સۼ୘ dΩୣ

 

ஐ౛

቉ തܞ

− ቈන સۼۼ dΩୣ

 

ஐ౛

቉ ഥܘ = ቈρ න f ̅dΩୣۼ

 

ஐ౛

቉ + ቊර ૌത
 

୻౛

dΓୣ ۼ ቋ 
(3.12) 

where the superscript (·)T denotes a transpose of the enclosed vector or matrix. The above 

equations (3.11) and (3.12) can be expressed in matrix form as 

Continuity: 

തܞ۲  = 0 (3.13) 

Momentum: 

ۻ 
dܞത
dt

+ തܞ(തܞ)۹ + μܞۺത + ഥܘ۵ = ۴ (3.14) 

where M is de mass matrix, ۹(ܞത) is the nonlinear convection operator, L is the Laplacian 

matrix, G is the gradient matrix, ܞത and ܘഥ are the velocity and pressure, respectively, and F 

is the body force vector. 

The assembled matrices shown in Eq. (3.13) and (3.14) are defined as 

ۻ  = ρ න ୘ dΩୣۼۼ

 

ஐ౛

 (3.15) 
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(ା૚ܖതܞ)۹  = ρ න തܞ)ۼ · dΩୣ (ۼ∇

 

ஐ౛

 (3.16) 

ۺ  = න સۼ સۼ୘ dΩୣ

 

ஐ౛

 (3.17) 

 ۵ = − න સۼۼ dΩୣ

 

ஐ౛

 (3.18) 

 ۴ = ቈρ න f ̅dΩୣۼ

 

ஐ౛

቉ + ቊර ૌത
 

୻౛

dΓୣ ۼ ቋ (3.19) 

 ۲ = −۵୘ (3.20) 

N stands for the vector of standard linear shape functions, and Ωe is the element integration 

domain. 

The system can be written in the matrix form as 

 ൭
ۻ
dt

+ (തܞ)۹ + μۺ ۵

۲ 0
൱ ൬dܞത

dܘഥ൰ = ൬̅ܚ୫
ୡܚ̅

൰ (3.21) 

where ത࢘௠ and ത࢘௖ are the residual of the momentum equation and continuity equation. 

୫ܚ̅  = ۴ −
ۻ
dt

(dܞത) − തܞ(തܞ)۹ − μܞۺത −  ഥ (3.22)ܘ۵

ୡܚ̅  =  ത (3.23)ܞ۲−

The application of the residual form is convenient for the implementation of a general 

Newton-Raphson procedure for solving nonlinear systems of equations. For the system 

presented herein, the nonlinearity of the system is exclusively present in the convection 

term. Computing the velocity obtained from the previous iteration and using the convective 

operator, Newton-Raphson�s procedure coincides with a fixed-point method. 
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3.2.2 Time discretization 

Equation (3.22) represents a discrete in space and continuous in time, approximation to the 

original system of partial differential equations. Due to the implicit nature of the 

incompressible Navier-Stokes equations, an implicit scheme is needed for the time 

discretization. Herein, an implicit Backward Euler time integration is chosen to replace the 

continuous time derivative with an approximation for the history of the dependent variables 

over a small portion of the problem time scale. Though, implicit integration method is more 

computationally expensive, it is desirable due to its increased stability and the consistent 

treatment of the pressure. 

Writing the time derivative terms of the Eq. (3.22) on the left-hand side and the other in 

the right-hand side, it can be described as 

 
ۻ
Δt

ቆ
ۻ
dt

(dܞത)ቇ = ୫ܚ̅− + ۴ − തܞ(തܞ)۹ − μܞۺത −  ഥ (3.24)ܘ۵

Applying the Backward Euler method to Eq.(3.24), the implicit method yields 

ା૚ܖതܞۻ 
ܑ = ܖതܞۻ + Δt୬[−̅ܚ୫ܖା૚ + ା૚ܖ۴ − ۹൫ܞതܖା૚

ܑ ൯ܞതܖା૚
୧ − μܞۺതܖା૚

୧ − ഥ୬ାଵܘ۵
୧ ] (3.25) 

  or in a form more suitable for computation 

 ൤
1

Δt୬
ۻ + ۹൫ܞതܖା૚

ܑ ൯ + μۺ +൨ ା૚ܖതܞ
ܑ + ഥ୬ାଵܘ۵

୧ =
1

Δt୬
ܖതܞۻ − ା૚ܖ୫ܚ̅ +  ା૚ (3.26)ܖ۴

 With the discretiazation of the time derivative, the Eq (3.26) represents a set of nonlinear 

algebraic equations for the solution vector. 

 

3.3 Model for the structure 

Prior describing the formulation used for the structure, it is worth noting that this thesis 

restricts to membrane elements due to the nature of the problem of interest. Also, only 

triangular shapes elements will be considered.  
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3.3.1 Membrane element 

The behaviour of the textile material used for manufacturing inflatable structures can be 

modelled by a membrane theory of shells. A membrane can be seen as a 2D shell element 

interacting in a 3D environment which has no flexural stiffness. They resist only tensile 

forces. Hence, membranes resist external forces by deforming and �finding� the best shape 

to resist such forces.  

The finite element model of a membrane is based on the assumptions: 

 No bending resistance 

 Plane stress state (ߪଷଷ = 0) 

 Sections keep planar and normal to the mid-plane of the membrane 

3.3.1.1 Three Dimensional approach 

Let�s consider a set of points representing a membrane continuum in a 3D space. It is 

possible to describe the position of any arbitrary point inside this continuum as 

 x(ξ, η, ζ) = N୍(ξ, η)୍ܠ +
t
2

ζ(3.27) ܖ 

where ࢞ூ = ூݔ} , ூݕ ,  ;ூ}் represents the position vector of the I-th node in the Cartesian spaceݖ

ூܰ(ߦ,  the value of the shape function centred on node I on the point of local coordinates (ߟ

,ߦ)  .n represents the normal to the 3D plane and t is the membrane thickness ;(ߟ

The first term of the right-hand side in Eq. (3.27) contains a set of points representing the 

position of the mid-plane of the membrane, while the second term represents the position 

along the thickness. 

The coordinate Jacobian J can be derived from 1.2 giving 

 J =

⎝

⎜
⎜
⎜
⎛

∂N୍

∂ξ
xଵ୍

∂N୍

∂η
xଵ୍ ൬

t
2

∂ζܖ
∂ζ

൰
ଵ

∂N୍

∂ξ
xଶ୍

∂N୍

∂η
xଶ୍ ൬

t
2

∂ζܖ
∂ζ

൰
ଶ

∂N୍

∂ξ
xଷ୍

∂N୍

∂η
xଷ୍ ൬

t
2

∂ζܖ
∂ζ

൰
ଷ⎠

⎟
⎟
⎟
⎞

 (3.28) 
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Taking into account the assumption on the membrane behaviour related to forces, which 

states that the normal is the same through the thickness ൫࢔ = ,ߦ)࢔  ൯, the Jacobian matrix(ߟ

can be described as: 

 j =

⎝

⎜
⎜
⎜
⎛

∂N୍

∂ξ
ଵ୍ܠ + ൬

t
2

∂ζܖ
∂ζ

൰
ଵ

∂N୍

∂η
ଵ୍ܠ + ൬

t
2

∂ζܖ
∂ζ

൰
ଵ

൬
t
2

൰ܖ
ଵ

∂N୍

∂ξ
ଶ୍ܠ + ൬

t
2

∂ζܖ
∂ζ

൰
ଶ

∂N୍

∂η
ଶ୍ܠ + ൬

t
2

∂ζܖ
∂ζ

൰
ଶ

൬
t
2

൰ܖ
ଶ

∂N୍

∂ξ
ଷ୍ܠ + ൬

t
2

∂ζܖ
∂ζ

൰
ଷ

∂N୍

∂η
ଷ୍ܠ + ൬

t
2

∂ζܖ
∂ζ

൰
ଷ

൬
t
2

൰ܖ
ଷ⎠

⎟
⎟
⎟
⎞

 (3.29) 

 

 

 J =

⎝

⎜
⎜
⎜
⎛

∂N୍

∂ξ
ଵ୍܆ + ൬

t
2

∂ζܖ
∂ζ

൰
ଵ

∂N୍

∂η
ଵ୍܆ + ൬

t
2

∂ζܖ
∂ζ

൰
ଵ

൬
t
2

൰ۼ
ଵ

∂N୍

∂ξ
ଶ୍܆ + ൬

t
2

∂ζܖ
∂ζ

൰
ଶ

∂N୍

∂η
ଶ୍܆ + ൬

t
2

∂ζܖ
∂ζ

൰
ଶ

൬
t
2

൰ۼ
ଶ

∂N୍

∂ξ
ଷ୍܆ + ൬

t
2

∂ζܖ
∂ζ

൰
ଷ

∂N୍

∂η
ଷ୍܆ + ൬

t
2

∂ζܖ
∂ζ

൰
ଷ

൬
t
2

൰ۼ
ଷ⎠

⎟
⎟
⎟
⎞

 (3.30) 

where J0 and j represents de Jacobian matrices in the current and reference configuration 

respectively. In the same way, vectors designed with capital letters (X, N) correspond to 

the current configuration, while vectors designed with small letters (x, n) to the reference 

configuration. 

On the other hand, assuming constant deformation over the thickness, the coordinate 

Jacobians can be calculated on the middle surface (ߞ = 0). This assumptions allows to 

simplify the problem by removing the dependence of the solution on the local derivatives of 

the normal at ߦ and ߟ. 

Introducing the two vectors 

 फ૆
ଷ×ଵ = ൜

,ξ)୍ۼ∂ η)
∂ξ

 ൠ (3.31)୍ܠ

 फ஗
ଷ×ଵ = ൜

,ξ)୍ۼ∂ η)
∂η

 ൠ (3.32)୍ܠ

which are tangent to the membrane�s mid-plane, the normal can be calculated as 
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ଷ×ଵܖ  =
फஞ × फ஗

ฮफஞ × फ஗ฮ
 

(3.33) 

And express the Jacobian gradient as 

 Jଷ×ଷ = ൬फஞ फ஗
t
2

 ൰ (3.34)ܖ

The assumption of plane stress (ߪଷଷ = 0) provides an extra condition which relates the 

thickness variation with the in-plane strain. However, it is possible to calculate the 

Jacobian keeping constant the thickness of the membrane if an appropriate form for the 

elasticity tensor is chosen (see Vitaliani et al [22]). The elasticity tensor for membranes 

initially lying in the XY plane is represented as 

 D୧ୱ୭ =
E

1 − νଶ  

⎝

⎜
⎜
⎜
⎛

1 ν 0
ν 1 0

0 0 0
0 0 0

0 0
1 − ν

2
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0⎠

⎟
⎟
⎟
⎞

 (3.35) 

 which can effectively been used for the calculation assuming a constant thickness, since any 

strain in the Z direction does not take relevance, while the other terms match the 

corresponding plane stress isotropic elasticity tensor  

 Dଶୈ =
E

1 − νଶ ൮

1 ν 0
ν 1 0

0 0
1 − ν

2

൲ (3.36) 

When reference configuration for the membrane and the XY plane do no coincide, the 

thickness stretch does not coincide with the Ezz Green Lagrange strain. In this case the 

same elasticity tensor is given in the tangent system of coordinates and needs to be brought 

back to the global coordinate system. This can be done by rotating (on each Gauss 

integration point) the elasticity tensor in Eq. (3.35) from tangent coordinate system to the 

global coordinate system. Hence, the effective constant elastic modulus can be expressed 

൧܍ܞܑܜ܋܍܎܎܍۲ൣ  =  (3.37)  [܂]୘[۲][܂]

where T represents the rotation matrix, see Ricardo Rossi [23]. 
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With the definition of the constitutive law, the membrane can be considered as a normal 

3D total Lagrangian element. Thereby, it can be introduced using standard techniques for 

total Lagrangian elements. 

3.3.2 Spatial discretization 

The strong form of the structural mechanics boundary value problem may be written as 

 ρ · ܝ̈ − ∇ો − ρ܎ = 0 (3.38) 

ܝ  = ഥ         on Γୢܝ  (3.39) 

 ો · ܖ =  on Γ஢  (3.40)     ܏

As it is commonly used for structure problems, a virtual work is used in Eq. (3.38) to 

obtain the weak form of the structural domain.  

The membrane structure may suffer of large displacements from the first to the final 

position. From numerical point of view, this behaviour can lead the membrane system to an 

ill-conditioned or even of singularity of the tangent stiffness matrix. To avoid these 

problems, a linear damping term is included for the purposes in getting initially stable 

solutions. Only first time derivatives of time will occur if the inertial loading based on ̈ݑ is 

ignored. Thereby, the weak form, using a virtual work expression for the membrane may be 

written by 

 − න t δ۳: dΩୱ ܁
 

ஐ౩
= න ૑ · ρ(̈ܝ − dΩୱ (܎

 

ஐ౩
+ න ૑ · c୭ ̇ܝ dΩୱ

 

ஐ౩
− න ૑ · dΓୱ ܐ

 

(୻౩)౞ 
 (3.41) 

where the left-hand side represents the internal work, and the right-hand side the external 

work. Also, ࡱߜ is the variation of the Green-Lagrange strain tensor referred to the virtual 

strain, S is the second Piloa-Kirchhoff stress tensor, which is symmetric and work-conjugate 

to E, t is the membrane thickness, ࣓ is a virtual displacement, c0 is a linear damping 

coefficient in the reference configuration, and h is the external traction vector applied on 

the subset (Γ௦)௛, where traction values are specified of the total boundary Γ௦. 

Eq. (3.41) may be written in component form as 
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 න ω୧ · ρ(uన̈ − f୧) dΩୱ
 

ஐ౩
+ න ω୧ · c୭ u̇୧ dΩୱ

 

ஐ౩
+ න t δE୍୎S୍୎ dΩୱ

 

ஐ౩
− න ω୧ · h୧ dΓୱ

 

(୻౩)౞ 
 (3.42) 

Using the definition of the Cauchy-Green deformation tensor 

 ۱ = ۴୘۴ = ܗ۸
ܗ۸ܒ܂ܒ܂ି

ି૚ =  (3.43) ۵܏܂۵

Where F is the deformation gradient  

 ۴ =
ܠ∂

଴ܠ∂
 (3.44) 

and G is used to denote the invers of J. In component form the Cauchy-Green deformation 

tensor is written as 

 C = G୧୍ g୧୨ G୨J         for   i, j = 1,2  and  I, J = 1,2  (3.45) 

where 

 Gଵଵ =
1

Jଵଵ
  ;   Gଶଶ =

1
Jଶଶ

  ;   Gଵଶ =
1

Jଵଶ
  ;   Gଶଶ = 0 (3.46) 

The integrant of the internal work in Eq. (3.42) may be written as 

 δC୧୨ S୍୎ = G୧୍ δg୧୨ G୨୎ S୍୎ =  δg୧୨ s୧୨ (3.47) 

Where the stress like variable ݏ௜௝ is defined by 

 s୧୨ = G୧୍ G୨୎ S୍୎ (3.48) 

or in matrix form 

 s =  (3.49) ܁ ୘ۿ

in which  
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 Qୟୠ ≡ G୧୨ G୨୎ (3.50) 

where the index map is performed according to (Table 3-1), yielding the result 

ۿ  = ቎
Gଵଵ

ଶ 0 0
Gଵଶ

ଶ Gଶଶ
ଶ GଵଶGଶଶ

2GଵଵGଵଶ 0 GଵଵGଶଶ

቏ (3.51) 

 

Table 3-1. Index map for Q array 

Indices Values 

a 

I,J 

1    2         3 

1,1  2,2  1,2 & 2,1 

b 

i, j 

1    2         3 

1,1  2,2  1,2 & 2,1 

 

With the assumption of taken the thickness constant over each element, the results for the 

stresses are constant, since the deformation tensor is also constant over each element and, 

thus, the surface integral for the first term leads to the simple expression 

 න t δE୍୎S୍୎ dΩୱ
 

ஐ౩
= න

t
2

 δC୍୎S୍୎ dΩୱ
 

ஐ౩
= න

t
2

 δg୧୨s୧୨ dΩୱ
 

ஐ౩
=

t
2

δg୧୨s୧୨A (3.52) 

 where A is the reference area for the element. 

In addition, the strain-displacement matrix for the variation of E, ࡱߜ =  ෤, may beݔߜ࢈ࡽ

described as (see E. Oñate and Bern Kröplin [24]) 

 ۰ =  (3.53) ܊ۿ

where b is the strain-displacement matrix 

܊  = ቎
−(Δx෤ଶଵ)୘ (Δx෤ଶଵ)୘ 0
−(Δx෤ଷଵ)୘ 0 (Δx෤ ଷଵ)୘

−(Δx෤ଶଵ + Δx෤ଷଵ)୘ (Δx෤ଷଵ)୘ (Δx෤ ଶଵ)୘
቏

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ଷ×ଽ

 
(3.54) 
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in which 

 Δx෤ ୧୨ = x෤ ୧ − x෤ ୨ (3.55) 

The residual form for each element may be written as 

 ൝
૚܀

ଶ܀

ଷ܀
ൡ = ൝

૚܎

ଶ܎

ଷ܎
ൡ − [ୣۻ] ൝

෥̈૚ܝ

෥̈ଶܝ

෥̈ଷܝ
ൡ − [۱ୣ] ൝

෥̇૚ܝ

෥̇ଶܝ

෥̇ଷܝ
ൡ − tA[۰]୘   (3.56) 

where [ୣۻ] and [۱ୣ] are the element mass and damping matrices given by 

[ୣۻ]  = ൥
Mଵଵ Mଵଶ Mଵଷ

Mଶଵ Mଶଶ Mଶଷ

Mଷଵ Mଷଶ Mଷଷ
൩      ;       [۱ୣ] = ൥

Cଵଵ Cଵଶ Cଵଷ

Cଶଵ Cଶଶ Cଶଷ

Cଷଵ Cଷଶ Cଷଷ
൩  (3.57) 

with  

 

஑ஒۻ = න ρ t ξ஑ ξஒ dΩୱ
 

ஐ౩
 ۷ 

۱஑ஒ = න c୭ t ξ஑ ξஒ dΩୱ
 

ஐ౩
 ۷   

(3.58) 

 For membranes subjected to internal pressure, the finite element nodal forces must be 

computed based on the deformed current configuration. Thereby, the nodal forces must be 

computed for each triangle element as 

 ω෥ ஑,୘ ܎஑ = ω෥ ஑,୘ න  ξ஑ (p ܖ) dΩୱ
 

ஐ౩
  (3.59) 

Assuming a triangular element and a constant pressure over the element, the normal vector 

n is also constant, the integral term of the nodal forces yields 

஑܎  =
1
3

 pୣ ܖ Aୣ (3.60) 

where pe is the constant pressure over the element. 

Finally, the weak form for the implementation of the Finite Element Method can be 

described as 
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୬܀ 
஑ = ୬܎

஑ − ෍ ୣۻ
஑ஒ

 

ୣ

୬ܝ̈ 
ஒ − ෍ ۱ୣ

஑ஒ
 

ୣ

୬ܝ̇ 
ஒ − ෍൫tୣAୣ۰܍

஑,୘ୣ܁൯
୬

 

ୣ

 (3.61) 

where 

 

஑ஒۻ = න ρ t ξ஑ ξஒ dΩୱ
 

ஐ౩
 ۷ 

۱஑ஒ = න c୭ t ξ஑ ξஒ dΩୱ
 

ஐ౩
 ۷   

஑܎ =
1
3

 pୣ ܖ Aୣ 

 

(3.62) 

3.3.3 Time discretization 

In the same manner as the fluid domain, an implicit method for the time discretization of 

the structure is used. Hence, an iterative solution scheme at each time step is necessary to 

solve a sequence of linear, algebraic problem. Herein, it is only presented the results for the 

St. Venant-Kirchhoff material model and the normal internal pressure. Thereby, the 

implicit Newmark method may be written as 

 
u୬ = u୬ିଵ + Δt୬ u̇୬ିଵ + ൬

1
2

− β൰ Δt୬
ଶ  ü୬ିଵ + β Δt୬

ଶ  ü୬ 

u̇୬ = u̇୬ିଵ + (1 − γ)Δt୬ ü୬ିଵ + γΔt୬ ü୬ 
(3.63) 

 Using the implicit Newmark method (Eq.(3.63)) to the Eq. (3.61) a iterative Newton 

Raphson Method must be used to solve the system. In this process, the nonlinear residual 

equations are linearized about a given set of nodal positions ݔ෤௡
௞ corresponding to known 

values at some iteration stage k. The result is written as 

୬܀ 
୩ାଵ ≈ ୬܀

୩ + ୬܀∂�

∂u෤
ฬ

୩

du෤୬
୩ = 0 (3.64) 

defining the tangent (jacobian) matrix A as 

ۯ  = −
܀∂
∂u෤

 (3.65) 

the Eq. (3.64), as a set of linear algebraic equations to be solved at each iteration yields 



Virtual wind tunnel experiments using embedded FSI framework 43 

 

୬ۯ 
୩ du෤୬

୩ = ୬܀
୩  (3.66) 

The solution may be updated using 

 u୬
୩ାଵ = u୬

୩ + du෤୬
୩ (3.67) 

For transients applications the use of the specified time stepping algorithm is required to 

compute the tangent matrix. Hence, the computation for the transient term is described as 

 

ۯ = −
܀∂
∂u෤

−
܀∂
∂u෤̇

∂u෤̇
∂u෤

−
܀∂
∂u෤̈

∂u෤̈
∂u෤

 

or 

ۯ = cଵ۹ + cଶ۱ + cଷۻ 

(3.68) 

where the ci result from any differentiation of the nodal vectors with respect to the solution 

vector. For the Newmark method the result from Eq. (3.61) gives ܿଵ = 1 and from Eq. 

(3.63) it is obtained 

 ∂u෤
∂u෤̈

= β Δt୬
ଶ۷       ;     

∂u෤̇
∂u෤̈

= β Δt୬
ଶ۷        (3.69) 

 Hence, 

 cଶ =
γ

βΔt୬
        ;      cଷ =

1
βΔt୬

ଶ (3.70) 

3.3.3.1 Membrane tangent matrix 

To compute the element stiffness matrix it is necessary to determine the change in stress 

due to an incremental change in the motion. In accordance the St. Venant-Kirchhoff model 

it is obtained 

 dୣ܁ = ऎd۳ୣ (3.71) 

where 
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 d۳ୣ =  ෤ୣ (3.72)ܠdୣ܊ୣۿ

The element stiffness matrix is given by 

 ۹ୣ = ൫tA۰୬
୲ ऎ୬۰୬ + ۹୥൯

ୣ
 (3.73) 

where Kg is a geometric stiffness may be written as 

 ۹୥ = tୣAୣ ቎
(sଵଵ + 2sଵଶ + sଶଶ)I −(sଵଵ + sଵଶ)۷ −(sଶଶ + sଵଶ)۷

−(sଵଵ + sଵଶ)۷ sଵଵ۷ sଵଶ۷
−(sଶଶ + sଵଶ)۷ sଵଶ۷ sଶଶ۷

቏ (3.74) 

 

3.4 Coupling scheme 

The coupling scheme used in Kratos framework for FSI problems in light-weight structures 

is an embedded approach which treats the fluid and the structure in a partitioned way. The 

formulation for fluid and structure presented above must be completed with a coupling 

strategy. 

The coupling between the Eulerian and Lagrangian domains consists in finding the positions 

of the Lagrangian image within the fixed Eulerian mesh, which splits the Eulerian domain 

into real and fictitious parts. In addition to the interchange of boundary conditions between 

the Lagrandian and Eulerian parts. The interchange of boundary condition is prescribed as: 

 The velocity of the Lagrangian domain boundary provides an �interface� Dirichlet 

condition for the fluid. 

 The fluid pressure provides a Neumann condition for the solid surface. 

3.4.1 Boundary conditions 

The interaction between the sub-domains must be ensured by imposing constraints at the 

interface. These constraints are imposed in the Dirichlet and the Neumann boundaries. 

3.4.1.1 Dirichlet coupling 

In Dirichlet boundary conditions, the imposed constraint must ensure, since the fluid is 

viscous, a continuity of all the velocity components. 
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୻౅ܞ  = ࢛̇୻ಽ (3.75) 

being ܞ୻ు and ࢛̇୻ಽ, the velocity of the Eularian and Lagrangian domain at the interface Γூ, 

respectively.  

The Lagrangian image Γூ not necessarily intersects the Eulerian mesh at the nodes. Hence, 

the interface Dirichlet boundary conditions is applied by minimizing the difference between 

the velocity Lagrangian image and the velocity field of the Eulerian fluid. See P.B. 

Ryzhakov and A. Jarauta [25], for an implementation of this strategy. 

3.4.1.2 Neumann coupling 

In Neumann boundary conditions the imposed constraint must satisfy the continuity of the 

normal component of the stress σ. The approximation of considering only the continuity of 

normal stresses and no continuity in tangential stresses is commonly accepted for the fluids 

with low viscosity such as the case of the air. This approximation ensures the conservation 

of momentum at the interface: 

ߪ)  · ಶ்(࢔ ಽ்݌(  (3.76) 

Considering that the Lagrangian surface is enterily embedded into the Eulerian mesh, the 

pressure from the Eulerian mesh can be simply projected onto Lagrangian nodes using 

direct interpolation. The pressure value at a Lagrangian node i encountered inside the 

Eulerian element ABC, see    , is computed as, see again P.B. Ryzhakov and A. Jarauta 

[25] for an example of the implementation of this technique: 

 p୉
௜ = N୅(x୧)p୅ + N୆(x୧)p୆ + Nେ(x୧)pେ (3.77) 

 
Figure 3.3. Interpolation technique for Neumann boundary conditions coupling 
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3.5 Solution Algorithm 

At this point, the required arguments for describing the embedded Eulerian-Lagrangian 

(fluid-structure) formulation have been described. Following, a pseudo-code of the coupled 

fluid-structure problem is presented.    

Let us consider that the velocity ܞത and pressure ܘഥ at time tn is known in both domains, 

fluid Ωf and structure Ɓ.  Table 3-2 describes the algorithm implemented to find the velocity 

and pressure fields at tn+1:  

Table 3-2. Solution algorithm of the coupled fluid-structure problem. 

1. Solve the structure problem 

 Output: new position of the Lagrangian domain, ܝഥ୬ାଵ
ୱ  and ܞത୬ାଵ

ୱ in Ɓ. 

2. Identify the position of the Lagrangian Domain within the Eulerian one 

 Output: Lagrangian image ∂Ɓ. 

3. Represent structural velocity on the fixed mesh 

 Solve the minimization problem at the interface boundary conditions.  

 Apply interface Dirichlet boundary conditions. 

 Output: ܞത୬ାଵ
பƁ  and ܘഥ୬ାଵ

பƁ  in the interface elements 

4. Solve the fluid problem 

 Output: ܞത୬ାଵ
୤  and ܘഥ୬ାଵ

୤  in Ωf 

5. Map fluid pressure onto structure surface 

 Projection pressure from ܘഥ୬ାଵ
பƁ  at Lagrangian image onto Ɓ, as a Neumann boundary 

condition, compute the corresponding force term for the momentum equation of the 

structure. 

6.   Repeat steps 1 to 5 

 Iterative solution for a strong two-way coupling problem. Iterative process is carried out 

until convergence in terms of the displacements of the Lagrangian domain is achieved. 

7. Go to next time step 
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Chapter 4:  

Implementation Issues 
 

Dynamic analysis of structural (membrane) and fluid dynamic problems requires several 

time steps to reach stable solution. Hence, an immediate application of a strong two-way 

coupling solution for the first time step of the problem typically leads to a divergent 

solution. 

In order to obtain a robust and efficient implementation, stable fluid and structure solution 

must be guaranteed prior to the application of a strong two-way coupling. This is achieved 

by the inclusion of several preliminary stages. A scheme of the overall solution is 

summarized in Table 4-1: 

Table 4-1. Scheme of the overall solution strategy in the solution of a two-way coupling 

interaction 

1. Start fluid solver 

 100 Stokes steps are performed to obtain initial divergence-free solution in the fluid 

domain. 

2. Uncoupled Fluid and Structure solution 

 Fluid and structure are solved separately without performing the coupled fluid-structure 

problem. This is done until the both domains reach static equilibrium solution. 

3. One-way coupling interaction 

 Fluid and structure are solved using one-way coupling interaction. Fluid pressure is 

mapped onto the structure domain and used as Neumann boundary condition. 

4. Two-way coupling interaction 

 Fluid and structure are solved using a strong two-way coupling interaction. Iterative 

solution in the coupling process is carried out.     

 

Following, a deeper explanation of the different stages for the overall solution is presented. 
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4.1    Overall solution strategy 

In order to obtain a preliminary divergence-free flow pattern in the whole fluid domain, few 

steps of the fluid simulation with a very small time-step are solved considering Stokes 

problem and a fixed rigid structure. This stage allows obtaining a preliminary solution on 

the fluid domain.  

Once the preliminary solution of the fluid is obtained, the uncoupled fluid-structure solution 

is performed. In each time-step of this stage, identification of the position of the Lagrangian 

domain within fixed fluid mesh is carried out an embedded approach is carried out, but no 

coupling boundary conditions take place. The uncoupled fluid-structure solution must be 

solved until both, fluid and structure domains reach a stable static solution. Observing the 

structural dynamic response due to self-weight and a constant internal pressure represented 

in Figure 4.1, one can appreciate that if the coupling was carried out at the beginning of 

the solution, the coupled problem could typically lead to a divergent solution, since large 

variation of displacements (and velocity) in the structure domains are produced. 

 
Figure 4.1. Structural dynamic response due to self-weight and constant internal 

pressure 

 

When stable solution in both domains is obtained, the coupling process takes place. First, a 

one-way coupling is applied to obtain initial approximation of the coupling solution. 
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Afterwards, a strong two-way coupling is applied where properties �velocity and pressure � 

between both domain are interchanged thanks the solution of iterative coupling boundary 

problem. The interaction is carried out in two directions; fluid solution is transferred to the 

structure and inversely. 

At the instant in which the fluid pressure is applied to the flexible structure for the first 

time, large displacements and, consequently large velocities in the structure domain arise. 

Figure 4.2 depicts the structural velocity response in an arbitrary node at time of the 

coupling solution for an inlet fluid velocity of 35m/s.  

 

Figure 4.2. Structural velocity response due to an inlet fluid velocity of 35m/s 

    

It is worth noting that these instantaneous large velocities are a numerical artefact. Hence, 

it is obvious that a premature application of the strong two-way coupling solution could 

present a divergent solution (large velocities in structure domain would disturb fluid 

velocities when minimizing Dirichlet coupling boundaries conditions).   

Finally, two-way coupling is applied in order to obtain the final solution of the problem. 
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4.1.1    Optimal time duration of preliminary stages 

Different stages on the solution strategy have been presented in the previous section of the 

chapter. Identification of the time when the analysis should change from one stage to the 

next one has an important impact in the solution of the simulation. As previously 

commented, one must ensure that structure reaches a static equilibrium prior to apply the 

necessary and final conditions of the problem in order to avoid divergent solutions. In this 

work an algorithm for automatic identification of the necessary time for each stage has been 

implemented in order to reduce computational cost. Otherwise, the user would have to 

estimate these times in a �trial-and-error� way, leading to the possible divergent solution of 

the model or computing unnecessary time spent in the different stages.  

In the following, we present two different codes implemented. First one, for the 

identification of the necessary time in the uncoupled fluid and structure solution (2)6.  The 

other is implemented to identify the time necessary in the one-way coupling strategy (3).  

4.1.1.1 Identification of the uncoupled solution time 

The first algorithm takes into account the relative error of the current total average 

displacement, and the average displacement of the last three time steps. Table 4-2 shows a 

pseudo-code of the algorithm implementation. It was detected that fluid domain needs few 

steps for reaching the equilibrium solution due to the previous solution of the Stokes steps 

carried out in stage (1). Hence, the idea consists of determining the static equilibrium 

solution of the structure by analysing the displacements along the time. Small variability in 

the displacement guarantees the static solution. Observing again Figure 4.1, one can see 

that after four seconds the structure tends to a static solution, since small variability of 

displacement is detected.  

 In order to avoid unexpected time identification due to small time step (Δt), the 

requirement precise error has been determined in function of Δt. 

                                         
6 The number in parenthesis indicates the stage number represented in Table 4-1. Scheme of the 

overall solution strategy in the solution of a two-way coupling interaction 
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Table 4-2. Pseudo-code of the implementation in the algorithm for the uncoupled time 

solution  identification  

Uncoupled simulation: 

For each new time step n+1 

    Compute structural solver 

    Compute fluid solver 

    if structure did not converge in previous time step 

        for all the nodes of the Lagrangian image 

            get the value of the displacement in the previous three steps and the current step 

            calculate norm of the displacements in the 4 steps taken into account  

           displacement error (Δt) = abs ൭
୳ഥ౪౟ି

౫ഥ౪౟శ౫ഥ౪౟షభశ౫ഥ౪౟షమశ౫ഥ౪౟షయ
ర

୳ഥ౪౟
൱ 

        if displacement error is bigger than the tolerance 

            structure does not converge 

        elif displacement error is less than the tolerance 

            structure do converge 

            go to uncoupled fluid and structure solve stage 

        next time step  

time= uncoupled_time    

 

Similarly, in the second approach, a relative error has been estimated. However, at the 

coupled solution, velocity is the property value that takes place in the embedded coupling 

strategy. Hence, the total average velocity has been taken into account instead of the 

displacement. The algorithm implementation for the identification of the one-way coupling 

time is presented below: 

Table 4-3. Pseudo-code of the implementation in the algorithm for the one-way 

coupling time identification 

One-way coupling simulation: 

For each new time step n+1 

    Compute One way coupling interaction solver 

    if velocity did not converge in previous time step 

        for all the nodes of the Lagrangian image 

            get the value of the velocity in the previous three steps and the current step 

        calculate norm of the velocity in the 4 steps taken into account  
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    velocity error = abs ൭
୴ഥ౪౟ି

౬ഥ౪౟శ౬ഥ౪౟షభశ౬ഥ౪౟షమశ౬ഥ౪౟షయ
ర

୴ഥ౪౟
൱ 

        if velocity error is bigger than the tolerance 

            velocity does not converge 

        elif velocity error is less than the tolerance 

            velocity do converge 

            go to two-way coupling interaction stage 

        next time step 

time=OWC_time     

 

4.1.2 Incremental pressure application 

It is worth noting that high inlet velocities lead to high pressures on the boundary surfaces. 

The immediate application of these pressures at the beginning of the coupling process may 

lead to a divergent solution of the structure. In order to avoid this numerical error, an 

incremental application of pressure has been implemented. The pressure field obtained in 

the fluid domain is mapped onto the structure. However, the pressure is applied in an 

incremental manner over the general time steps following a sinusoidal function. Table 4-4 

shows the implemented algorithm for the incremental pressure application: 

Table 4-4. Pseudo-code of the implementation of the algorithm for the incremental 

pressure technique  

Performing incremental pressure 

    Starting incremental pressure 

        Structure solver 

        Fluid solver 

        Find Lagrangian image into the Fluid domain 

        for all the nodes in the interface boundary 

            Full positive pressure: Get the solution of the fluid pressure 

            Multiply the pressure value by a low number in the sinusoidal equation 

            Initial positive pressure: Set the reduced pressure value onto the structure 

        go to next step (Solving the incremental pressure)  

    Solving the incremental pressure 
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        Structure solver 

        Fluid solver 

        Find Lagrangian image into the Fluid domain 

        for all the nodes in the interface boundary 

            Get the pressure applied in the previous step (p_prev) 

            Set the new positive pressure onto the structure surface by a sinusoidal equation 

        next time step 

       go to One way coupling interaction 

 

Figure 4.3 depicts an example of the application of the incremental pressure technique. The 

pressure corresponds to an inlet velocity of 10m/s. 

 

Figure 4.3. Application of the incremental pressure technique for an inlet velocity of 

10m/s 

 

4.2 Final comments 

Two-way coupling is the most realistic way to represent the behaviour of the fluid-structure 

interaction problems, since the response of a domain involves the solution of the other 

domain, and reversely. Hence, for FSI problems involving large solid deformation, as the 

example of thin light-weight structures, two-way coupling solutions seem to be the most 

realistic simulation. Furthermore, it was discovered that for large air velocities, one-way 

coupling process leads to spurious or divergent solutions.  
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Strong two-way coupling solution needs preliminary stages in order to obtain a robust and 

efficient implementation. Automatic identifications of the time of preliminary stages have 

been successfully implemented.   

As a consequence, the optimal time duration of preliminary stages (uncoupled_time and 

OWC_time) are determined. 

An example of the different stages of the coupled simulation taking into account the above-

explained methodology is shown in Figure 4.4. 

 

 
Figure 4.4. Overall graphic example of the different steps taking part in the algorithm 

solution  

 

In Annex I identification time implementations algorithm are presented, as well as the full 

algorithm for the two-way partitioned fluid-structure coupling involving thin-wall light-

weight structures. 
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Chapter 5:  

Wind tunnel simulation 
 

In this chapter, an application of the algorithm presented in the previous chapter will be 

applied to the simulation of a thin light-weight structure embedded in a wind tunnel. First, 

conventional methods for the analysis of this type of structure are simulated. The 

conventional methods consist of obtaining the air pressure distribution along the structure 

surface using a simplified method, such the norm EN 1991-1-4: 2005 and a purely CFD 

simulation with a rigid body. Once the pressure distribution is obtained, this is applied into 

a flexible solid and a purely CSD is performed. 

The results obtained from the conventional methods will be compared with those obtained 

from the algorithm subject of the present work (strong two-way coupling method) in order 

to analyze the importance of this method when dealing with structures undergoing large 

displacements due to wind loads.   

5.1 Model 

The overall model consists of an inflatable aircraft hangar, a light-weight structure, placed 

into a virtual wind tunnel represented by a parallelepiped fluid domain. A constant velocity 

is prescribed at the inlet of the virtual wind tunnel. Structural model 

A tutorial which explains the different steps to model the structural and fluid model has 

been created and included in Anex II. 
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5.1.1 Structural model 

5.1.1.1 Geometry and material 

The structure considered in this simulation is an inflatable structure with the geometry 

depicted in Figure 5.1. This structure simulates the standard module developed by BuildAir 

Company, entitled �H20 hangar�. 

The dimensions for the H20 inflatable hangar are shown in Table 5-1: 

Table 5-1. Dimensions of H20 inflatable hangar 

Element Dimension Units 

Clear-span width 20.00 m 

Total width 25.48 m 

Clear standard height 10.00 m 

Standard length 6.34 m 

Nominal diameter of a tube 2.74 m 

 

     (a)                                 (b) 

 
(c) 

 

Figure 5.1. Geometry of the inflatable H20 hangar- (a) front elevation (b) lateral 

elevation (c) three-dimensional view 
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The whole structure is composed of an elastic textile material, PLASTEL 8820. Properties 

of the PLASTEL 8820 are defined in Table 5-2. 

Table 5-2. PLASTEL 8820 properties 

Property Value Units 

Density (ρ) 1250 Kg/m3 

Young modulus (E) 0.31 GPa 

Poisson ratio (ߥ) 0.3 - 

Thickness (t) 0.6 mm 

5.1.1.2 Load case 

The analysis of the behaviour of the hangar exposed to wind loads is the objective of the 

simulation. Hence, only external pressure due to wind will be considered as a variable force 

in the simulation.  

Thereby, the load cases of the model are: 

Permanent loads: 

 Self-weight of the membrane PLASTEL 8820 material. 

 Constant internal pressure: In order to provide stiffness to the structure, inflatable 

structures are subjected to an internal pressure. 

Variable load: 

 External pressure due to wind: The external pressure is obtained from the strong 

two-way coupling presented in this thesis. Examples of 10, 20 and 35m/s of the inlet 

velocity will be analysed. 

Table 5-3 shows the load case of the model, and Figure 5.2 shows a representation of the 

load case taken into account in the model simulation. 

Table 5-3. Load case 

Load Value Units 

Interna pressure  (Pint) 2000 Pa 

Self-weight7  (SW)  N/m2 

External pressure (P(v))  P(v) Pa 

                                         
7 The self-weight of the structure is obtained directly from the properties of the material and the 

geometry. 
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Figure 5.2. Representation of the load case 

 

5.1.1.3 Boundary conditions 

The structure is anchored on the ground; hence the displacements in all directions are fixed 

over the lines in the base of the structure, see red lines in Figure 5.2.  

5.1.1.4 Structural mesh 

In order to obtain reliable results in the structure, a convergence analysis is performed. 

 

 

Table 5-4. Data of different meshes for convergence analysis 

mean size nodes Maximum displacement (m) 

1,5 701 0,105 

1 1515 0,111 

0,75 2599 0,112 

0,5 5277 0,1125 
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Figure 5.3. Convergence analysis for the structural mesh 

A mean element size of 0.5 meters can be estimated to be a reasonable size for the analysis 

as it is depicted in Figure 5.3. 

5.1.2 Fluid model 

Fluid model is automatically generated by assigning the coordinates of the boundaries. 

Furthermore, the number of divisions for each direction and the distance and level of 

refinement in the area of interest must be also defined.  

Fluid flow, in addition of the velocity, is function of the viscosity and density of the fluid. 

Properties of the fluid are presented in Table 5-5. 

Table 5-5. Fluid properties 

Property Values Units 

Dynamic viscosity (ߤ) 10-5·1.5 Kg/(m·s) 

Density (ߩ) 1.21 Kg/m3 

 

5.1.2.1 Wind tunnel size 

Flow could be affected if the size of the wind tunnel is too small. The walls of the wind 

tunnel constrict and artificially accelerate the flow around the model. It also prevents the 

formation and shedding of vortices downstream of the model. 
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For obtaining best results, the distance between the structure and the fluid mesh 

boundaries can be estimated with the relations shown in Figure 5.4. 

 
Figure 5.4. Dimension relations for a wind tunnel size 

 

However, in order to optimize the computational cost, a study of the flow with respect to 

the principal direction of the velocity (longitudinal direction) has been carried out. A 

distance of 3L downstream of the structure has been studied. 

 
Figure 5.5. Flow analysis of the distance downstream of the structure 

  

Table 5-6. Data resulting from the flow analysis 

Downstream distance 

(m) 

frequency 

f(Hz) 

Maximum pressure 

(Pa) 

Minimum pressure 

(Pa) 

102 (4L) 0.52 263 -163 

76.5 (3L) 0.5 263 -160 
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From Figure 5.5 and Table 5-6 we can justify that the distance of 3L downstream of the 

structure gives sufficient reasonable results, since the frequency shown in both cases are 

practically equal and the difference between the corresponding pressures are insignificant. 

Thereby, the wind tunnel size modelled for the analysis is as defined in Table 5-7: 

Table 5-7. Wind tunnel dimensions 

Reference Distance (m) Total length (m) 

L= 25.48 152 

H= 12.74 39.50 

W= 6.34 45 

 

 
Figure 5.6. Wind tunnel dimensions 

 

5.1.2.2 Wind tunnel mesh 

The wind tunnel domain is discretized by tetrahedral elements. The subdivisions of the box 

must be small enough for not disturbing the results but big enough in order to reduce 

computational cost. Furthermore, the mesh is refined around the structure so as to ensure 

accurate results in the area of interest.  

In accordance with the experience of the algorithm developers, best way to set the wind 

tunnel mesh is ensuring that the size elements in the refinement area must be similar to the 

size of the structure element. Following, a picture depicting the refinement fluid mesh 

around the structure is shown. 
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Figure 5.7. Refined distance around the Lagrangian image 

Wind tunnel subdivisions and parameters of the refinement area are defined in Table 5-8. X 

direction is the longitudinal length in which the inlet velocity is applied, Y direction the 

box width and Z the height. The number of tetrahedral elements in X, Y and Z directions 

are defined by nX, nY and nZ, respectively. The refinement element size is defined by the 

size of the tetrahedral size element divided by 2n, where n is the value of refinement level. 

The area of refinement is created in a refined distance R around the structure.  

 

Table 5-8. Parametric properties of wind tunnel domain 

Subdivions 

nX 45 

nY 15 

nZ 14 

Parameters of 

refinement area 

Refinement level, n 3 

Refinement distance (m), R 2 

 

Figure 5.8 depicts the final size of the wind tunnel domain with a representation of the 

embedded structure. 

Figure 1.1 

 
Figure 5.8. Wind tunnel mesh and size of the box 
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5.2 Wind action loads due to EN 1991-1-4: 2005 simplifications 

The simulation consists in the application of a static air pressure onto the structure surface 

according to the norm EN 1991-1-4:2005 for the analysis of wind actions loads. The 

simplified air pressure distribution is applied onto the flexible structural model and a purely 

CSD will be performed, thus fluid model is not used for this simulation. 

5.2.1 Variable actions due to wind 

The norm specifies that the wind action is represented by a simplified set of pressures 

whose effects are equivalent to the external dynamics effects of the turbulent wind. The 

effect of the wind on the structure depends on the size, shape and dynamic properties of the 

structure.  

The norm defines a design peak velocity depending on the wind climate, the terrain 

roughness and orography, and the reference height. However, these aspects have not been 

taken into account, since this is not the interests of the project. A design peak velocity of 

35m/s has been considered for the simulation in order to compare later the results obtained 

with a strong two-way coupling simulation. 

For circular cylindrical roof and domes the norm defines three zones for the distributions of 

the pressures acting over the structure depending on the intensity or direction of the 

pressure. Figure 5.9 shows a scheme of the geometrical parameter and pressure distributions 

for circular cylindrical roofs and domes. Geometrical parameters for the structure of interest 

are defined in Table 5-9. 

 

Figure 5.9. Geometric parameters and pressure distribution over cylindrical roof and 

domes 
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Table 5-9. Geometrical parameters 

Geometric parameter Length (m) 

l 6.34 

d 25.48 

h 0 

f 12.74 

 

The equivalent static pressure (Qd) is obtained using the Bernoulli equation modified by an 

exposure coefficient (Ce). This coefficient depends of the height of the structure (z) and the 

type of ground where the structure is placed. However, these parameters have not been 

taken into account in the coupling simulation, and the consideration of such parameters in 

this analysis would alter the results of interest. Hence, a unitary value of Ce is considered in 

this analysis.  

Thereby, the equivalent static pressure (Qd) according to EN 1991-1-4:2005, considering a 

velocity of 35m/s and a fluid density of 1.21 Kg/m3 is: 

Qୢ =
1
2

ρvୢ
ଶ · Cୣ = 741.12 Pa 

This value leads to the pressure applied in any of the three areas represented in Figure 5.9 

by using the coefficients which depends on the geometric parameters (f/d and h/d). These 

coefficients can be determined using the abacus represented in Figure 5.10. 

 
Figure 5.10. Abacus for external pressure coefficient 
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Table 5-10 summarizes the parameters obtained in Figure 5.10 to determine the three wind 

pressures over the inflatable structure in terms of equivalent static pressure. Positive values 

of pressure define compressions on the structures while negative values imply suction 

effects. 

Table 5-10. Parameters for wind loads calculation 

Magnitude Value 

Relation f/d 0.5 

Relation h/d 0 

coefficient A/ Pressure A 0.80 593 Pa 

coefficient B/ Pressure B -1.20 -889 Pa 

coefficient C/ Pressure C -0.40 -297 Pa 

 

Figure 5.11. shows a graphical representation of the air pressure distribution according to 

norm EN 1991-1-4:2005   

 

Figure 5.11. Air pressure values and areas of application. 
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5.2.2 Results 

A CSD is carried out for the inflatable structure due to self-weight, internal pressure of 

2000 Pa and the air pressure according to norm EN 1991-1-4:2005. In this simulation only 

the displacement solution will be discussed. It is worth noting that no displacement 

evolution is shown since, due to the constant distribution of applied forces, a steady 

solution is obtained. Figure 5.12 depicts the displacement solution for the distribution of 

pressure obtained in the calculations of the Eurocodes. Large displacements can be observed 

on the top of the structure. These displacements are caused by the large negative pressure 

applied on the top of the structure. 

 

Figure 5.12. Displacements obtained in the simplified method according to Eurocode 1. 

 

Table 5-11. Summary of values according to EN 1991-1-4:2005 (vd=35m/s) 

parameters Values 

Outlet  

Max. Pressure 593 Pa 

Min. Pressure -889 Pa 

Back. Pressure -297 Pa 

Inlet  Max. Displacement 174.8 cm 
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5.3 Simplified CFD 

A computational fluid dynamics simulation is carried out with a rigid body solid inside the 

fluid domain. The simulation of a CFD allows us to obtain a pressure distribution over the 

rigid body solid. Figure 5.9 represents the pressure field obtained in a CFD simulation with 

an inlet velocity of 35m/s. The pressure distribution over the rigid body is applied onto a 

flexible structure as it is shown in Figure 5.14. 

 
Figure 5.13. Pressure field obtained in a CFD simulation with an inlet velocity of 

35m/s. 

 

 

 
Figure 5.14. Pressure distribution obtained in the CFD simulation 

 

5.3.1 Results 

A computational structural dynamics is carried out considering the self-weigh, internal 

pressure and the distribution of pressures obtained in the CFD simulation. Incremental 

pressure in the CSD is taken into account in order to provide stiffness to the structure. 

Figure 5.15 depicts the pressure in an arbitrary node of the maximum pressure area for a 

simulation of 10, 20 and 35 m/s of the inlet velocity.  
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Figure 5.15. Time-pressure graph applied in a CSD for different inlet velocities. 

 

An analytical solution for pressure values exerted by a fluid in movement can be estimated 

by the Bernoulli equation: 

ܲ =
ଶݒߩ

2
 

It is worth noting that this expression is an approximate solution for the pressure in a static 

rigid body. Solutions of the analytical expression with the same fluid parameters and inlet 

velocities studied in this model are presented in Table 5-12. 

Table 5-12. Analytical pressure solutions 

Velocity (m/s) Pressure (Pa) 

10 60.5 

20 242 

35 741 

 

One can observed that values of the pressure are similar to the values obtained with the 

analytical solution as it is represent in Table 5-12.  

Displacements obtained in the CSD due to the air pressure are shown in Figure 5.16. 

Furthermore, Figure 5.17 represents an evolution on time of the displacements obtained in 

the CSD simulation due to the air pressure. Due to the constant pressure applied, steady 

solutions are obtained for the three velocities.  
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Figure 5.16. Displacements obtained in a CSD after application of air pressure 

distribution. 

 

 
Figure 5.17. Displacement evolution due to a constant air pressure. 

 

Following, a summary of the results obtained from a purely CSD simulation, with a 

previous CFD simulation with a rigid body in order to obtain the air pressure distribution, 

is presented: 

Table 5-13. Summary of values according to a simplified CFD analysis 

Inlet velocity (m/s)  Max. Pressure (Pa) Max. Displacement (cm) 

10 83 15.33 

20 270 23.73 

35 695 44.98 
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5.4 Strong two-way coupling simulation 

The algorithm presented in the present work is applied in next simulation in order to study 

and analyze the fluid-structure interaction in a strong-two way coupling.  

5.4.1 Results 

Inlet velocities of 10, 20 and 35 m/s are applied in different simulation in order to analyze 

the motion of the structure when different Reynolds numbers are applied. The results 

obtained with the strong two-way coupling method are presented below: 

5.4.1.1 Displacements 

Following, the results of displacements for different inlet velocities are shown. Figure 5.18 

(a) represents the displacement produced by the internal pressure and the self-weight prior 

to applying the fluid pressure. Figure 5.18 (b) (c) and (d) depict the displacements 

produced in the structure due to the pressure exerted by a wind velocity of 10, 20 and 35 

m/s, respectively. It is possible to observe how the structure tends to deform to the sense of 

the wind direction, and also, how the displacements increase as the velocity increases. 

Furthermore, shape deformation changes owing to the increase of velocities, obtaining large 

displacements on the upstream side of the structure, see Figure 5.18 (d).  

The deformation produced due to wind velocity of 20m/s is represented in Figure 5.19. The 

structure deforms towards the direction of the wind with a maximum displacement of 

around 22cm. Furthermore, a lift is produced on the top of the structure.  

A graphic representation on time of the displacements for the different velocities is depicted 

in Figure 5.20. In first seconds of the analysis, the displacement are the same, due to there 

is no coupling interaction. Close to 9.5 seconds, the coupling takes place and large 

instantaneous displacement is observed. At around 11 seconds the structural displacement 

becomes stable due to the two-way coupling process.  
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   (a)                                                          (b) 

 
       (c)                                                       (d) 

 
Figure 5.18. (a) Displacement on the static solution of the structure (b) Displacement 

produced by an inlet velocity of 10m/s (c) Displacements due to a velocity of 20 m/s 

(d) Displacements due to an inlet velocity of 35 m/s  

                                                      

 

Figure 5.19. Deformed shape of the structure due to an inlet velocity of 20m/s 

 

In order to analyse in detail the behaviour of the different velocities, a zoom on the two-

way coupling process is done, see Figure 5.21. Low velocities (10m/s) tend to a steady 

solution, while high velocities (20 and 35 m/s) tend to an oscillatory solution. Furthermore, 

as the velocity increases the amplitude of the spectrum increases. The oscillatory behaviour 

is produced by the unsteady flow induced by high velocities around the structure. In other 

words, as Reynolds number increases unsteady flow around the structure occurs, producing 

an oscillatory motion of the structure. 
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Figure 5.20. Graphic representation on time of the displacements produced by different 

inlet velocities 

In order to analyse the displacements for the different velocities, a significant displacement 

is calculated for each inlet velocity. Due to the similarity behaviour between the observed 

displacements and the oceanic wave spectrum, the significant displacement has been 

obtained with the mean of the highest third of the peak displacements, see Walter Munk 

[26]. Significant displacements are represented in Figure 5.21 as dashed lines. Table 5-14 

presents the values of significant displacements and Reynolds number for each velocity.  

 
Figure 5.21. Zoom in the two-way coupling process of Figure 5.20 
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Table 5-14. Significant displacements and Reynolds number for different velocities 

Inlet Velocity (m/s) Sign. displacement (cm) Re  (106) f(Hz) 

10 13.45 100.8 Steady solution 

20 20.66 201.7 1.4 

35 37.48 352.9 1.1 

 

5.4.1.2 Positive face pressure 

Following the results of pressure over the fluid and structure domains are presented. First, 

some step results over the fluid domain of one second time-step are presented in Table 5-15. 

Results correspond to an inlet velocity of 20m/s.  

Times of 7.50 and 8.50 seconds represent the fluid solution on the uncoupled process. In 

these steps solution of the fluid are no yet correct. Large values in minimum pressure are 

obtained and fluid needs to stabilize.  

Times of 9.50 and 10.50 seconds represent the one-way coupling process. Times of 11.50 and 

12.50 represent the fluid solution of the two-way coupling process. Pressure values are not 

predictive and have a �random� behaviour due to the unsteady flow. However a range of 

values can be established.  

Table 5-15. Fluid results over time steps for an inlet velocity of 20m/s 

Time 
(s) Velocity Results 

(m/s) Pressure Results 
(Pa) 

7.50 

 

Max. 
28.51 

 

Max. 
213 
Min. 
-721 

8.50 

 

Max. 
28.22 

 

Max. 
221 
Min. 
-701 

9.50 

 

Max. 
29.97 

 

Max. 
272 
Min. 
-574 

10.50 

 

Max. 
28.63 

 

Max. 
405 
Min. 
-380 
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11.50 

 

Max. 
27.91 

 

Max. 
537 
Min. 
-474 

12.50 

 

Max. 
29.11 

 

Max. 
541 
Min. 
-254 

 

Pressures obtained on the fluid solution are mapped onto the structure domain in each time 

step and following the strong two-way coupling method presented in Table 3-2. Figure 5.22 

depicts air pressure distributions over the surface of the structure at time=19s for three 

inlet velocities. Figure 5.22 (a) represents the pressure with an inlet velocity of 10 m/s. 

Image in the left side shows the upstream side, while right image the downstream side. 

Maxim pressures are obtained on the front of the upstream side. Minimum values of 

pressure are obtained at the top of the structure; negative values of pressure represent 

suction effects of the fluid.  Figure 5.22 (b) and (c) represent the values for velocities of 20 

and 30 m/s. Also, maximum pressures take place on the front of the upstream side. 

However, although suction effect is also presented on the top of the structure, minimum 

values are obtained on sides of the upstream area � red dot market in Figure 5.22 (b) -. In 

Table 5-15 it is possible to observe vortices behind the upstream surface, fact that caused 

these values at the area of minimum pressures.     

(a) 

 

(b) 
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(c) 

 

Figure 5.22. Pressure configuration over the structure at time=19s. (a) v=10m/s (b) 

v=20 m/s (c) v=35m/s 

 

As expected, pressure increases as the velocity does. Furthermore, negative values of 

pressure are present on the top of the structure, fact that demonstrates the lift effect on the 

deformed shape. Also, the increase of pressure on the front side, for high velocities, explains 

the displacement occurred on that area. Maximum pressure takes relevance against the 

internal pressure, and the structure suffers large displacements in the front side of the 

upstream surface.  

Values on time of the air pressure applied onto the structure are presented in Figure 5.23. 

Pressures due to low velocities consolidate the steady flow of the solution. Furthermore, 

values of the pressure are close to the values for the analytical solution presented in Table 

5-12. For high velocities, in which fluid flow presents unsteady solution, pressure values 

present a spectrum with large amplitudes. A reason for high values on pressure arises due to 

the movement of the structure towards the initial position. The frequency of the structure is 

different to the frequency of the air flow. The structure moves against the air direction, due 

to the oscillatory motion of the structure, causing an additional pressure on the surface. On 

the other hand, when the structure tends to deform towards the direction of the wind, lower 

pressures are expected. For these cases, analytical pressure solutions are not accurate 

enough, presenting large difference in the solutions.  

Figure 5.24 shows the results of the pressure at the strong-two way stage of the simulation. 

With the same criteria for obtaining the significant displacement, minimum and maximum 

significant pressures have been obtained. Dashed lines represent the minimum significant 

pressures and point lines the maximum ones. Table 5-16 presents the maximum and 

minimum significant values for pressure as well as the amplitude of the pressure spectrum.  
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Figure 5.23. Evolution on time of the air pressure applied onto the structure surface 

 

 
Figure 5.24. Pressure solution at the strong two-way coupling stage 

 

Table 5-16. Significant pressures and amplitude of the pressure spectrum 

Inlet Velocity (m/s) Max. pressure (Pa) Min. pressure (Pa) Amplitude (Pa) 

10 65 65 Steady solution 

20 480 253 227 

35 716 547 169 

 

Unexpected solution are obtained, since amplitude obtained for an inlet velocity of 35m/s is 

smaller than the amplitude obtained in the simulation with an inlet velocity of 20m/s. 

However, in order to analyze this solution, a further analysis to study the frequency of the 

fluid flow and the natural frequency of the structure would be required.  
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5.4.1.3 Stresses 

From the classical theory of arches, tensile forces, T can be estimated for a circular shape of 

radius R being subjected to a constant pressure q, see Figure 5.25 for a representation of 

the problem. The expression that provides the tensile force is: 

ܶ = ݍ · ܴ 

 

Figure 5.25. Tensile force in a circular element 

 

This expression allows us to estimate the stresses produced in the structure studied in this 

project due to the applied internal pressure of 2000Pa. The nominal diameter of the tube is 

2.74m. Hence, the expected stresses should be: 

σ୍ =
T
e

=
R · q

e
=

1.37 · 2000
0.0006

= 4.6e + 06 Pa 

Principal maximum stresses solution due to self-weight and internal pressure is presented in 

Figure 5.26. Field stress along the surface presents a uniform distribution with a value in a 

range between 5e+06 and 7e+06 Pa, values of the same order of magnitude that the value 

obtained from the classical theory of arches.  

Figure 5.27 depicts the distribution of the principal maximum stresses obtained at an 

arbitrary instant of the two-way coupling process for an inlet velocity of 35m/s. In this 

case, the flied stress does not present a uniform distribution due to the applied air pressure. 

Surfaces where positive pressures are applied, present a decrease of stresses, since air 

pressures have opposite direction to the internal pressure. By contrast, stresses increases 

where suction effects appear. 
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Figure 5.26. Principal maximum stress due to self-weight and internal pressure 

 
Figure 5.27. Principal maximum stresses due to self-weight, internal pressure and the 

air pressure 

 

5.5 Summary and comparison of the results 

In this section, a summary of the results obtained with the three methods will be presented. 

Furthermore, a comparison between simplified methods and the strong two-way formulation 

will be discussed. 

5.5.1 Two-way coupling VS Simplified CFD 

Table 5-17. Summary of the results for two-way coupling and Simplified CFD solutions 

Magnitude 

Inlet velocity 

(m/s) 

Two-way coupling Simplified CFD 

Displacements (cm) 

10 13.45 15.33 

20 20.66 23.73 

35 37.48 44.98 
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Pressure (Pa) 

10 56 83 

20 481 270 

35 780 695 

 

Low inlet velocities in a two-way coupling simulation present a steady solution. Hence 

similar results with a simplified CFD method are obtained. For high velocities the flow 

presents an unsteady solution and vortices appears close the structure surface. Due to the 

unsteady flow, large oscillations on the structure displacement occur with the consequently 

variation of pressure surfaces, that show large amplitudes in the oscillatory spectrum.  

5.5.2 Two-way coupling VS EN 1991-1-4:2005 

Table 5-18. Summary of the results for two-way coupling and EN 1991-1-4:2005 

solutions 

Magnitude Two-way coupling EN 1991-1-4:2005 

Displacement (cm) 37.48 174.83 

 

EN 1991-1-4:2005 defines the wind action load by a simplified set of pressures with the 

objective to represent the equivalent external dynamics effects of the turbulent wind. The 

obtained distribution of pressure over the structure surface according to EN 1991-1-4:2005 

has a significant variation with this obtained from a computational fluid dynamics. 

Distribution of the pressure according to Eurocode has a significant conservative form, 

leading to large variation of the displacement solution between both simulations.    

 

5.6 Engineering observations 

In this section of the chapter, engineering observations related to industrial issues will be 

presented. Engineering companies engaged to the study of inflatable aircraft hangars have 

to deal with the restrictive values of the safety distance between the deformed structure and 

the aircrafts. These restrictive values come from the uncertainty of the conventional 

methods of analysis.   
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Different strategies with the objective of reducing the displacements and optimize the 

structure are presented. It is worth noting that no economic issues have been taken into 

account on the optimization solution due to this is not the purpose of the present work. 

5.6.1 Stiffening straps 

The idea is to provide stiffness to the structure by assembling stiffening straps around the 

structure. Two groups of straps are assembled, one group in the longitudinal direction and 

the other group in the transversal one. Figure 5.28 shows the structure modelled with the 

stiffening straps.  

 
Figure 5.28. Stiffened structure with straps in longitudinal and transversal direction 

 

Properties of the materials are shown in Table 5-19: 

Table 5-19. PLASTEL 8820 and straps properties 

Property PLASTEL 8820 Straps Units 

Density (ρ) 1250 796 Kg/m3 

Young modulus (E) 0.31 0.5 GPa 

Poisson ratio (ߥ) 0.3 0.3 - 

Thickness (t) 0.6 0.9 mm 

Width  - 300 mm 
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Following, displacements and principal stresses results are presented. Figure 5.29 represents 

the results obtained at the uncoupled stage, where structure is undergoing to the self-weight 

and the internal pressure, while Figure 5.30 represents the results at the strong two-way 

coupling stage. At this stage the structure is undergoing to self-weight, internal pressure 

and pressure exerted by the wind flowing around the structure. The applied inlet velocity 

for these solutions is of 35m/s.  

 
Figure 5.29. Displacements and Principal Stresses due to self-weight and internal 

pressure 

 

 
Figure 5.30. Displacements and Principal Stresses at time of the two-way coupling 

process 

 

In order to compare the results, Figure 5.31 depicts the displacements evolution on time of 

the original and the stiffened structure that take place at the strong two-way coupling 

process. Also, in Table 5-20 the significant displacement of each model are summarized.  

It is observed that the assembling of straps onto the structure provide stiffness to the 

structure, with the consequence reduction of displacements. For an inlet velocity of 35m/s 

and an inflatable structure of 20m of span undergoing to an internal pressure of 2000 Pa, 

around of 14% of displacement reduction is achieved. 

Furthermore, straps take an important effect on the stresses. Due to the larger Young 

Modulus of the straps compared to the Plastel 8820 material, the straps bear an important 
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amount of stresses, lighten the stresses produced at the main structure due to the applied 

pressures. Observing the stresses results of Figure 5.29 and Figure 5.30, one can observe 

that transversal straps lighten the stresses produced by the inflating of the structure 

(internal pressure), while longitudinal straps reduce the stresses occurred at the main 

structure due to the displacements consequent of the wind pressure.  

 
Figure 5.31. Stiffened and original structure time-displacement evolution at the two-

way coupling stage 

 

Table 5-20. Summary displacement for original and stiffened model 

 

 

 

It is worth noting that presented results are indicative due to the rude mesh of the model. 

Membrane elements require a uniform Lagrangian mesh for a robust solution. Thus, the 

assembling of straps, with a surface much smaller than the area of the main structure, 

requires a very small mean element size, with the consequence of large number of elements 

as well as the reduction of the time step for calculations that imply a high computational 

cost. 
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Original structure 37.48 cm 

Stiffened structure 32.42 cm 
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5.6.2 Internal pressure 

A different manner to provide stiffness to the structure is by the increasing the value of the 

internal pressure. Following, different solutions with internal pressures of 1000, 2000 and 

3000 Pa are presented: 

                          (a)                                                       (b) 

 
Figure 5.32. Displacements due to 1000Pa internal pressure (a) S-W and internal 

pressure (b) S-W, internal pressure and air pressure due to inlet velocity of 35m/s 

                          (a)                                                       (b) 

 
Figure 5.33. Displacements due to 2000Pa internal pressure (a) S-W and internal 

pressure (b) S-W, internal pressure and air pressure due to inlet velocity of 35m/s 

                          (a)                                                       (b) 

 
Figure 5.34 Displacements due to 3000Pa internal pressure (a) S-W and internal 

pressure (b) S-W, internal pressure and air pressure due to inlet velocity of 35m/s 

One can observe that internal pressure has a great impact in the solution of the 

displacements occurred in an inflatable structure. Internal pressure provides stiffness to the 

structure. However, the displacements of the structure are not linear with the applied 

internal pressure. A low internal pressure (1000Pa) does not provide enough stiffness to the 
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structure and large displacements take place when wind loads act onto the structure. Also, 

for high pressures (3000Pa) large displacements appear. Internal pressure, at the top of the 

structure, acts in the same direction than the suction effect exerted by the wind load, thus 

the internal pressure at this area has an unfavourable component. It is worth noting that 

PLASTEL 8820 material is an elastic material and large initial displacements due to the 

high internal pressure can be noticed. 

Nevertheless, internal pressure of 3000 strengthens the structure against the positive 

pressure at the front side of the upstream flow direction. Decrease of the relative 

displacement between initial displacements and finals displacements can be observed.  

Table 5-21. Displacement comparison due to different internal pressure (cm) 

Internal pressure  

 

S-W & internal 

pressure 

S-W, internal pressure & 

Wind load 

1000 (Pa) 8.2 57.7 

2000 (Pa) 11.7 37.8 

3000 (Pa) 17.8 56.7 
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Summary and Conclusions 

 
The presented strong two-way coupling algorithm for fluid-structure interaction has been 

applied to simulate a real thin light-weight inflatable structure. The objective of the thesis 

has been the verification of the solution strategy and the application of the algorithm to a 

real case. First attempt of simulating light-weight structures in a virtual wind tunnel using 

a strongly coupled algorithm has been carried out in this thesis. 

For obtaining a robust and efficient implementation of the solution strategy, several 

preliminary stages for the application of the two-way coupling must be defined. Immediate 

application of the two-way coupling leads to a divergent solution of the problem. Suitable 

algorithmic improvements have been implemented in Chapter 4:. These include the 

uncoupled and weakly coupled stages, and the determination of their optimal duration. 

Also, an incremental air pressure application algorithm at the first steps of the coupling has 

been proposed and implemented. 

The core of this work has been the application of a two-way coupling simulation of a thin 

light-weight structure exposed to wind pressures. Furthermore, conventional simplified 

methods have been used in order to compare the obtained results.  

The structure subject of these simulations was the inflatable aircraft hangar �H20� of the 

Buildair Company, which has a span of 20m. Average structural displacements of 13, 20 

and 37 cm for wind inlet velocities of 10, 20 and 35m/s respectively were observed. The 

application of the ALE method for such displacements would have led to strong mesh 

distortion and consequently to a divergent solution. 

Low values of the inlet velocity lead to an almost steady solution, and similar results 

compared with the conventional simplified CFD model were obtained. Hence, two-way 

coupling in these cases is not obligatory. High inlet velocities lead to unsteady flows 

characterized by strong vortices. The unsteady flow generates oscillatory movements in the 

structure. Nevertheless, for the cases analyzed, the discrepance between the displacements 
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observed for both methods, two-way coupling and the conventional simplified CFD, was 

considerably minor. Possibly, in order to observe considerable differences, finer mesh 

resolutions must be used. However, this would require excessive computational time, not 

feasible in the framework of this master thesis. 

Maximum pressures of 481 and 780 Pa with amplitudes of 227 and 169 Pa were obtained 

for inlet velocities of 20 and 35m/s, respectively.  

The oscillations in the motion and the pressure spectrum, in turn, affect the flow, such 

behaviour cannot be accounted for in a simplified weakly coupled models. Both the 

amplitude and the frequency of the forced oscillation have impacted upon the structural 

stability, and thus should be considered and compared with the eigen-frequency of the 

structure to identify dangerous resonance problems.  

Solutions for reducing the displacements in the structure have been analyzed. Although 

internal pressure shows an unfavourable behaviour against maximum displacements at the 

top of the structure, it decreases the displacements produced at the lateral wall due to 

positive air pressure. 

Nevertheless, the disposal of stiffening straps onto the structure has shown an excellent 

performance against displacements and stresses. Reductions of 14% in the solution with a 

wind inlet velocity of 35m/s were achieved. Also, lightening on the stresses of the main 

material of the structure was observed, since the straps absorb the stresses undergone by 

the exerted pressures and the consequent deformation. This reduction of stresses may 

increase the PLASTEL 88200 end-of-life.    

Future works 

Interesting results have been obtained at the first attempt of applying a strong two-way 

coupling to simulate a thin light-weight structure immersed in a virtual wind tunnel. 

Differences in the results and in the motion of the structure compared to the conventional 

methods used nowadays in the simulation of this kind of structure have been obtained. 

However, further studies must be carried out in order to observe considerable differences, 

and strengthen the use of a strong two-way coupling simulation in thin light-weight 

structures involving large displacements due to exerted wind pressures. 



88 Summary and Conclusions 

 

High wind velocities surrounding inflatable structures produce oscillatory movements to the 

structure. However, detailed analysis on the eigen frequency of the structure was not 

performed. The deep analysis of the interaction between the air frequency and the eigen 

frequency of the structure is a new and open line of research. The study of this topic would 

provide essential information to understand the motion of the structure due to wind 

pressures.  

The addition of a cable element in the structural model would allow the modelling of straps 

with this new element, allowing the creation of uniform meshes in the structural model. 

Thereby, potential errors due to the membrane self-contact would be avoided.  
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