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ABSTRACT 

During the last decades the use of fiber reinforced polymers (FRP) has been introduced in the 

field of structural engineering, first as external reinforcement and later as passive and active 

reinforcement. The emergent interest in this material is due to its many advantages compared 

with the steel: it is more resistant and durable against corrosion, as well as, lighter and 

magnetically inert. These qualities allow decreasing the complexity complex and cost of the 

reinforcement construction tasks while allowing the service life of structures to increase. 

Nowadays, general shear resistance mechanisms in reinforced concrete are still under 

discussion. Specifically the use of FRP as shear reinforcement for concrete structures has not 

yet been deeply studied and the currently available data are insufficient to formulate rational 

design guidelines. 

The effects of  shear  on the response of concrete beams with longitudinal and transversal FRP 

reinforcement is numerically studied in this  work through  a 1D non-linear fiber model 

accounting for the axial–bending–shear interaction. Experimental data from FRP RC beams 

available in literature, are compared with the numerical results. As this beam model is shear 

sensitive, the effects of shear in the structural response are evaluated. A good correlation in 

terms of ultimate loads, deflections, strains in the concrete and reinforcement is observed 

between the experimental data and the computed results. The numerical model is also able to 

reproduce the cracking widths and pattern when increasing the applied load. 

Once the model is validated, it can be used to assess the accuracy of the analytical expressions 

present in the current codes of practice and contribute for their enhancement. 

Keywords: nonlinear numerical modeling, shear, FRP stirrups, reinforced concrete. 
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1 Introduction 

1.1 Problem statement 

Fiber reinforced polymer (FRP) bars can be an advantageous alternative to steel bars for 

internal reinforcement of concrete structures, especially in environments exposed to corrosion. 

In these type of environments, the use of FRP stirrups, that are normally located as an outer 

reinforcement, has even more sense as it can be more susceptible to severe environmental 

effects, due to the minimum concrete cover provided. 

The use of FRP as reinforcement for concrete structures has increased rapidly over the last 

years. FRP reinforcement is made from high-tensile-strength fibers, such as carbon, glass, 

aramid and others, embedded in polymeric matrices and produced in the form of bars, strands, 

ropes, tendons and grids, in a wide variety of shapes and characteristics. FRP reinforcement is 

used as prestressed, non-prestressed, longitudinal and transversal reinforcement for concrete 

structures.  

While flexural mechanisms are clearly established, there is not a consensus among the 

engineers and scientists about how to predict, for design purposes, the shear strength of FRP 

reinforced concrete beams. 

In relation to the mechanical properties of the FRP reinforcement, the main differences in 

comparison with steel, are the lower modulus of elasticity and a linear elastic behaviour up to 

failure which implies a lack of plasticity and a brittle behaviour in failure. It also presents a 

reduced elasticity modulus that can compromise its use in terms of deflection limitations in 

service limit states. 

Precisely due to this difference in the mechanical properties of both materials, the failure 

modes that commonly occur in reinforced FRP elements are different from those with 

conventional steel. This indicates the need for a new design methodology that is specific for the 

study of FRP reinforced concrete elements, able to reproduce the various sources that 

contribute to the shear resistance mechanism. Numerical models able to reproduce the 
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nonlinear response of such elements, from elastic to cracked and ultimate phases, allow to 

study in detail the structural response. In fact, numerical models, after being verified and 

validated with experimental benchmarks, can contribute to enhancing the models present in 

the codes of practice. 

Regarding large-scale structural analysis, the use of complex 2D or 3D finite element (FE) 

programs can be impracticable due to the inherent computational costs, the difficulty to 

evaluate the many input variables required by the model and the demanding task of analyzing 

the vast amount of output data. Instead, fiber beam models represent may attain a good 

compromise between simplicity and accuracy allowing for complex nonlinear analysis without 

the need of a great computational cost and permitting a more straightforward results 

interpretation. 

 

1.2 Objectives 

The main objective of the thesis is to improve the knowledge related to the behaviour and 

performance of beams reinforced with longitudinal and transversal FRP. 

For this purpose, an experimental campaign was numerically simulated with a FE model. . To 

perform these, an extended review of the state of the art was firstly performed in order to 

choose an existing experimental program that is well-documented and presents relevant 

results. 

The numerical analysis were carried out with  a non-linear shear sensitive fiber beam model 

implemented into the computer program CONSHEAR (Ferreira et al. 2013).  

The numerical model was validated by comparing the computed results with the experimental 

data available in the literature. This study aimed to check the validity of the model to analyze 

FRP reinforced concrete specimens. 

After validating the model, it is used to study more deeply the structural response by analyzing 

variables related with shear, such as, distortions, flow of strains in the stirrups. This aims to be a 
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contribution to the understanding of the shear mechanism in FRP reinforced concrete 

elements.  

Another goal of the work is to compare the experimentally ultimate strain in the bent zone with 

the predicted results from the numerical approach and also with the proposed limit strain in 

the guidelines.  

It is also aimed that, after being validated, the model is ready to be used in analysis of real scale 

structures, as a continuation of the present work. 

 

1.3 Structure of the thesis 

The thesis is divided in 5 chapters. 

Chapter 1 is the present introduction where the current problems regarding the use of 

longitudinal and transversal FRP reinforcement and the objectives of the thesis are presented 

and contextualized. 

Chapter 2 describes the main characteristics of FRP as a composite material, the different 

existing experimental programs detailing the failure modes of the tested specimens, and the 

main existing theoretical models that predict the shear strength of reinforced concrete 

elements with transversal FRP reinforcement. 

Chapter 3 resumes the theoretical background of the computer program used in this thesis 

(CONSHEAR). 

Chapter 4  describes the experimental campaign studied in this work - specimens tested by 

(Kurth 2012). It also presents the numerical model, and a comparison between the available 

experimental data and the numerical results. Finally, further numerical results related with 

shear response are presented and discussed. 

Chapter 5 points out the main conclusions obtained from this work and describe several 

proposals for future lines of research to complement and continue this thesis.   
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2 Beams reinforced with longitudinal and 

transversal FRP bars 

2.1 FRP bars 

2.1.1 Properties of the constituent materials  

The mechanical properties of FRP bars are different from those of steel bars and depend mainly 

on both on the type of matrix and fibers, as well as, on their volume fraction. Generally FRP 

bars present lower weight, lower Young’s modulus and higher ultimate strength than steel. The 

most commonly used fiber types in structural engineering are the carbon (CFRP), the glass 

(GFRP) and the aramid (AFRP) fibers. 

The combination of both materials, fibers and matrix, results in a composite with enhanced 

properties (Figure 1). The fibers provide rigidity and strength while the matrix ensures bound to 

the compound and allows the correct distribution of stresses between the fibers and the 

bonding surface, also preventing corrosion.  

Figure 1: Basic material components that are combined to create an FRP composite (BaNthia et 

al. 2006) 

The mechanical properties of the compound are obtained by the rule of mixtures and depend 

on the quality of the fibers and their orientation, as well as, the adhesion to the matrix and the 
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volumetric amount of materials. In the direction perpendicular to the fibers laminate, the 

mechanical properties may be lower than those of its components. 

In Figure 2 can be observed the high strain capacity of the matrix comparing with the fibers. 

Figure 2: Diagram stress-strain of FRP (BaNthia et al. 2006) 

Matrix 

The main functions of the matrix within the compound are maintaining cohesion between the 

fibers, ensuring uniform distribution of stresses, providing the geometric configuration of the 

material and protect it from external agents that can damage or compromise its mechanical 

properties. Furthermore, it presents a good behaviour in compression and shear, thus 

improving the properties of the composite. 

The choice of matrix material will determine the properties of the new material, which must be 

considered, in each case, the best option according to the objectives to pursue. 

Matrix materials for FRPs can be grouped into two broad categories: thermoplastics and 

thermosetting resins.  

Thermoplastics include such polymer compounds as polyethylene, nylon and polyamides. 
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Thermosetting are the most common in civil engineering because they have less loss of rigidity 

at high temperatures. Typically are polyesters, vinyl esters or epoxy resins, which are the most 

used due to enhanced strength and rigidity; but are more expensive. 

Generally, these resins have a linear-elastic response until failure, but with a much lower 

modulus of elasticity than fibers.  

Due to the non-structural importance of the resins, as well as their high cost, a minimum resin 

volume ratio is always desirable. However, the maximum fiber ratio that can be achieved is 

normally below 70%. 

Table 1  indicates the common values for the mechanical properties of the different type of 

materials that can be used as composite matrix of the FRP. 

Material 
 

Modulus of 
elasticity    (GPa) 

Tensile Strength  
(MPa) 

Ultimate strain 
(%) 

Density    (kg/m3) 

Polyester 2.1-4.1 20-100 1.0-6.5 1000-1450 
Vinylester 3.2 80-90 4.0-5.0 - 
Epoxy 2.5-4.1 55-130 1.5-9.1 1100-1300 

Table 1: Properties of the composite matrix (Alzate 2012) 

 

Fibers 

The fibers provide the strength and stiffness of an FRP. Due to the fact that fibers used in most 

structural FRP applications are continuous and are oriented in specified directions, FRPs present 

orthotropic mechanical behaviour, and they are much stronger and stiffer in the fiber 

direction(s).  

Fibers are generally selected to have high stiffness, high ultimate strength, low variation of 

strength between individual fibers, stability during handling and uniform diameter.  

Many different types of fibers are available, presenting specific advantages and 

disadvantages. In civil engineering applications, the three most commonly used fiber types 

are glass, carbon (graphite), and to a lesser extent, aramid. The suitability of the various 
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fibers for specific applications depends on a number of factors including the required 

strength, the stiffness, durability considerations, cost constraints, and the availability of 

component materials. 

Figure 3 shows typical stress-strain curves for various types of fibers. Note that these curves are 

for the pure fibers only, and they do not include the effects of the polymer matrix. 

Figure 3: Stress-strain properties of typical fibers.(BaNthia et al. 2006) 

It can be observed that FRP materials, unlike steel, do not offer plasticity, and have a linear-

elastic behaviour till rupture; also present a higher ultimate strength than conventional steel. 

As can be observed in Figure 3, the modulus of elasticity of the glass and aramid fibers is lower 

than that of steel; the standard carbon and high-modulus carbon fibers present very similar 

elasticity modulus, and ultra-high modulus carbon is clearly superior. It can also be seen that, 

while the ultimate strength of aramid, glass and ultra-high modulus carbon fibers are very 

similar, the standard carbon fibers strength is far superior. 

Contrasting with the ductile response exhibited by steel, FRP fibers do not yield before failure, 

presenting small deformations near failure; this is the reason why most codes and analytical 

models limit the deformation of FRP to avoid brittle failures. 
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Typical FRP reinforcement products are grids, bars, fabrics, and ropes. The bars have various 

types of cross-sectional shapes (square, round, solid, and hollow) and deformation systems 

(exterior wound fibers, sand coatings, and separately formed deformations). 

Subsequently, the 3 types of fiber studied are presented in more detail. 

o Glass fibers  

Glass fibers are the most economical, and consequently the most commonly used fibers in 

structural engineering applications. They are characterized by their high strength, low thermal 

conductivity and low stiffness that can lead to excessive deformations in structures reinforced 

with this type of material. 

There are several different grades available, but the most common are E-glass and the more 

expensive, but stronger, R-glass. 

Table 2 shows the typical range of values of the mechanical properties of these types of fiber. 

Type Modulus of elasticity 
(GPa) 

Tensile Strength (GPa) Ultimate strain (%) 

E 70 1.9 – 3.0 3.0 – 4.5 
S 85-90 3.5 – 4.8 4.5 – 5.5 

Table 2: Properties of the glass fibers (Feldman 1989, Kim 1995) 

 

o Carbon fibers  

The carbon fibers have a very high ultimate strength, and are used to replace glass in those 

cases where the stiffness of the latter are insufficient, since the elastic modulus of the carbon 

fibers is considerably greater. This material has a high price due to the difficulty and cost of its 

production process.  

It presents a good resistance to thermal, chemical, and environmental effects, also good fatigue 

behaviour. 

Carbon fibers are an ideal choice for structures which are weight and/or deflection sensitive.   
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There are 2 types of carbon fiber: the high resistance (RH) and high modulus (HM) whose 

characteristics are shown in Table 3. 

Type Modulus of elasticity 
(GPa) 

Tensile Strength (GPa) Ultimate strain (%) 

HR 215 – 235  3.5 – 4.8  1.4 – 2.0  
HM 350 – 500  2.5 – 3.1  0.5 – 0.9  

Table 3: Properties of the carbon fibers (Feldman, 1989) 

 

o Aramid 

Aramid fibers are characterized by high strength and good fatigue behaviour. They have a high 

modulus of elasticity, showing little deformation at failure. However, despite having a high 

tensile resistance, the compressive behaviour is not linear and ductile. 

They have an anisotropic structure, which have better performance in the direction of the fiber 

and are industrially available in both continuous and discontinuous form. This material presents 

resistance to chemical attacks, but has low resistance to ultraviolet radiation. Its common 

mechanical characteristics are indicated in Table 4. 

 
Type Modulus of elasticity 

(GPa)  
Tensile Strength 
(GPa) 

Ultimate strain (%) 

High module 115 – 130 3.5 – 4.0 2.5 – 3.5 
Low module 70 – 80 3.5 – 4.1 4.3 – 5.0 

Table 4: Properties of the aramid fibers (Feldman, 1989) 
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2.1.2 Properties of composite materials 

The properties of the resulting composite material will be conditioned by the type of matrix and 

the type of fiber chosen and by the volumetric amount and orientation. 

 Thereof the modulus of elasticity of the composite material can be obtained by applying the 

so-called "rule of mixtures", which allows to express the properties of a compound according to 

the properties of materials that comprise it (in this case the matrix and fibers) and their volume 

fractions. This requires making the assumption that the bond between the fiber and the matrix 

is perfect, so there is no discontinuity in the deformation ε through the interface when a tensile 

or compressive load is applied in the direction parallel of the fibers. Hence, compatibility of 

deformations is assumed: 

 
(2.1) 

If the materials are considered perfectly elastic, the stresses σ can be calculated as: 

 
(2.2) 

 
(2.3) 

The load supported by the composite Fc can be expressed as the sum of the loads carried by the 

matrix Fm and the fibers Ff, according to the following expression: 

 
(2.4) 

In terms of stress σ: 

 
(2.5) 

With Ac , Am , Af representing respectively the sectional areas of the composite , the matrix , 

and fiber. 
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Dividing equation (2.5) by Ac results in: 

 

(2.6) 

Where the following expression of volume fractions V can be set as: 

 
(2.7) 

 
(2.8) 

Rewriting equation (2.6) comes: 

 
(2.9) 

Where Ec is the elastic modulus of the composite, Em the elastic modulus of the matrix, and Ef 

the elastic modulus of the fiber. 

And, since the volume of the matrix Vm plus the volume of the fibers Vf is equal to 1: 

 
(2.10) 

Equation (9) can be rewritten as: 

 
(2.11) 

Consequently the elastic modulus of FRP composite material can be obtained as the sum of the 

modulus of elasticity multiplied by their volume fractions components. 

FRP products are characterized by having an elastic behaviour to failure, and to develop a high 

tensile strength (greater than steel) in the direction of the fibers. This anisotropy considerably 

affect the shear strength, which is very small compared to the tensile strength. 
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In summary, the main advantages of FRP as structural reinforcement material are: 

o High resistance to corrosion; 

o Lightweight; 

o High tensile resistance; 

o reduced installation time and cost; 

o Low maintenance; 

o Good behaviour to fatigue. 

There are also some disadvantages that must be taken into account in the design in order to 

avoid inadequate structural response, such as: 

o Brittle failure because there is no plastic branch and therefore no ductility; 

o Lower modulus of elasticity or similar to steel, that may lead to high deformations; 

o High cost; 

o High vulnerability of the matrix at elevated temperatures. 

The reduced weight of the fibers compared to steel and concrete and their high resistance / 

weight ratio is one of the characteristics that make them more attractive to structural 

applications. This allows not only significant savings in material (which is very significant 

because of its high cost) but also facilitates the construction process. 

Table 5 summarizes the main characteristics of composite materials FRP. 

Unidirectional 
composite materials 

Fiber weight       
(%) 

Density         
(kg/m3) 

Tensile elastic 
module (GPa) 

Tensile Strength 
(GPa) 

Glass-Polyester(GFRP) 50-80 1600-2000 20-55 400-1800 

Carbon-Epoxy (CFRP) 65-75 1600-1900 120-250 1200-2250 

Aramid-Epoxy(AFRP) 60-70 1050-1250 40-125 1000-1800 

Table 5: Properties of fiber reinforced polymers 
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2.2 Existing experimental programs of shear tests on concrete 

beams reinforced with longitudinal and transversal FRP  

 

The use of FRP as reinforcing material in structural concrete is relatively new. Several research 

groups worldwide are recently dedicated to the experimental and numerical study of the 

structural behaviour of concrete elements reinforced with FRP. As bending behaviour in RC is 

seen as solved by the actual state-of-the-art, the main concern now is shear. This is the reason 

why this work is focused on shear tests. 

In conventionally steel RC beams, there are different failure modes depending on the 

longitudinal and transversal reinforcement ratios and on the shear span to depth ratio. FRP RC 

beams with FRP stirrups present different failure modes due to the linear elastic behaviour of 

the FRP reinforcement.  

In steel RC beams, if the longitudinal reinforcement ratio is low, failure may be often due to a 

flexural-shear mechanism. Usually, first flexural cracks initiate, and subsequently develop 

inclined through the web. As the load increases, damage concentrates around the so-called 

shear critical crack. After increasing the applied load, a second branch of the crack develops 

inside the concrete chord, eventually connecting the first crack and the point where the load is 

applied, producing failure. For this type of failure, the increment of tensile force in the 

longitudinal reinforcement due to the inclined crack, which depends on the shear force, will 

commonly produce yielding of the longitudinal reinforcement.  

This is not the case for FRP longitudinal reinforcement, which is linear elastic up to failure, and 

which has an ultimate tensile strength higher than the steel yielding stress. In addition, 

designers are often required to use FRP longitudinal reinforcement ratios higher than the 

balanced reinforcement ratios to meet the serviceability criteria.  

If the longitudinal reinforcement ratio is high enough, the transversal steel stirrups of steel RC 

beams might yield, and concrete chord crushing can be observed (brittle shear failure). This 
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type of failure can also develop in FRP RC beams with FRP stirrups. However, in this case, 

concrete crushing will occur if the FRP stirrups do not have previously failed locally in the bent 

zone. 

Finally, in thin-walled beams, the web of the beam can crush if the inclined compressive 

stresses exceed the concrete strength. 

The failure modes of some of the existing experimental programs have been analysed to 

evaluate the shear behaviour of FRP RC beams with FRP stirrups. As experimentally observed, 

the main difference of the shear behaviour of beams with FRP stirrups compared to 

conventional beams with steel stirrups is that stirrups do not yield, and they usually fail in their 

bottom bent zone. This type of failure can be explained by the fact that bending of the FRP bars 

into the stirrups configuration, significantly reduces its strength at the bent portions, due to 

their unidirectional characteristics.  

A summary of the response and failure modes of some of the existing experimental programs is 

presented in the following. 

 

o (Nagasaka et al. 1933) 

(Nagasaka et al. 1933), tested 35 half-scale rectangular beams with different type (CFRP, GFRP, 

AFRP, Hybrid, steel) and ratio (0, 0.5, 1.0 and 1.5%) of transversal reinforcement, different 

concrete strengths and clear span. Half of the specimens with FRP stirrups (12 out of 24 tests) 

failed due to breaking of the stirrups at the bent zone and the rest of the specimens failed due 

to the crushing of concrete struts formed between two adjacent diagonal cracks or by crushing 

from flexural-compression. 

  

14 

 



o (Ahmed et al. 2010) 

The experimental campaign by Ahmed et al. (2010) consisted on 3 beams with T-shape section 

with CFRP stirrups of 9.5mm diameter with different spacings. The tensile strength of the 

stirrups was around ftu = 1538 N/mm2 and their bend strength was 712 N/mm2 (46%•ftu). 

Two of the three beams failed in diagonal tension failure due to the rupture of the stirrups 

initiated at the bent part, and the remaining one failed in flexure. 

 

o (Shehata et al. 2000) 

Tests conducted by (Shehata et al. 2000) consisted on 10 beams with T-shape cross section 

critical to shear: 4 with CFRP stirrups, 4 with GFRP stirrups, 1 with steel stirrups and 1 without 

shear reinforcement. The test variables were the material properties and spacing of stirrups, 

and the type of flexural reinforcement (8 specimens with steel strands, 2 specimens with CFRP 

strands).  

All beams failed in shear before yielding or rupture of the longitudinal reinforcement. In the 8 

beams with FRP stirrups, shear failure was initiated by rupture of the FRP stirrups at the bent 

zone (6 beams) or by crushing of the concrete in the shear span (2 beams). According to the 

experimental results, the effective stress in the stirrups at failure was as low as 50% of the 

strength parallel to the fibers provided that shear failure occurs due to the rupture of the 

stirrups. For closely spaced stirrups, a lower contribution of the stirrups was obtained. It might 

be because the chance for the diagonal crack to intersect the bent zone of the stirrups is 

higher.(Zhao et al. 1995) 

 

o (Bentz et al. 2010) 

The experimental program conducted by (Bentz et al. 2010) consisted on 11 shear tests of FRP 

RC beams, 5 of them with and 6 without GFRP stirrups. The beams presented different 

longitudinal GFRP reinforcement ratios and different transversal GFRP reinforcement ratios. 
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In relation to the failure mode of the tests with stirrups, beam L05-1 failed in shear by stirrup 

rupture at the bottom bent zone with a maximum measured strain at mid-height of the beam 

of 55% the bare-bar rupture strain. Beam L05-2 failed in flexure, even though shear failure was 

imminent. Beam L20-1 failed by sliding along a large diagonal crack, showing the rupture of the 

stirrups at failure. Beam L20-2 failed in flexure by concrete crushing with the rupture of some 

stirrups.  

One of the conclusions was that with multiple layers of longitudinal bars, the stirrups rupture 

did not occur at the bent location (as in beam L05-1) but near the end of the lap-splice (L20-2). 

 

 

Figure 4: failure in stirrups at the bent zone of L05-1 
(Bentz et al. 2010) 

 

Figure 5: Flexural compression failure in constant 
moment region of L20-2(Bentz et al. 2010) 

 

o (Niewels 2008) 

(Niewels 2008) carried out an experimental program with 4 concrete beams with FRP flexural 

and shear reinforcement tested in shear in two phases. The variables of the tests were the type 

of longitudinal bars and stirrups and the amount of transversal reinforcement. The beams with 

stirrups failed in the shear compression zone due to overstress in shear and compression. 

Stirrups strains above 10‰ were measured. However, the stirrups did not fail due to 

concentration of stresses at the bent zone. 
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o (Spadea 2010) 

The experimental program of (Spadea 2010) consisted of 40 beams (8 series of 5 identical 

specimens) with GFRP or CFRP longitudinal and transversal reinforcement tested in a 4 point-

bending configuration. Shear failure was observed in almost all tests. 

In the I and III series, diagonal shear crack opened near the load application point with an 

inclination angle of about 70 °(Figure a).In the remaining beams, the shear crack opens at mid 

shear span with angles ranging between 41º and 65º. A shear failure with the critical crack 

closer to the load application point or at mid shear span was observed in Series I, III, V and VII 

(Figure b). Series II, IV, VI and VIII failed due to concrete crushing at the compression chord 

produced by the combined shear-flexural effect (Figure c).Figure d is represents the ultimate 

crushing of the concrete, which was in some beams of the IV and VIII series. 

 

Figure 6: Types of shear failure in experimental trials(Spadea 2010) 
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o (Kurth 2012) 

The test program made by (Kurth 2012) included 24 shear tests on 12 I-beams with three types 

of FRP transversal reinforcement and different  ratios and two concrete classes. 

The beams presented different failure modes depending on the shear reinforcement ratio; the 

most common one was due to shear compression (10 beams), stirrup failure (9 beams, 3 beams 

failed the double headed bolt of the stirrup).For the stirrups the failure occurred always in the 

bent zone. 

This experimental campaign was deeply studied in this work by means of a numerical model. 

This choice was related with the quantity and quality of the information available and the 

relevance of the results obtained experimentally.   

This work will be presented in chapter 4. 
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2.3 Analytical formulations for shear resistance of FRP 

reinforced concrete elements 

Due to the specific mechanical properties of FRP reinforcement and especially their inherent 

lack of plasticity, FRP RC structures have a peculiar behaviour that is generally governed by 

brittle and undesirable modes of failure. Based on these considerations, it appears evident that 

both construction techniques and design philosophy need to be carefully reassessed (Pilakoutas 

2000). 

Therefore, in beams with longitudinal and transversal FRP reinforcement, it can be considered 

that the shear forces are resisted by the same mechanisms as for conventionally RC beams with 

steel stirrups: 

a) The shear resisted by the concrete compressed chord; 

b) The friction forces developed along the crack length, which are contrary to the relative 

displacement of both crack faces (aggregate interlock);  

c) The residual tensile strength existing between inclined cracks; 

d) The shear strength provided by the longitudinal reinforcement (dowel action); 

e) The shear strength provided by the transverse reinforcement (if it exists).  

 

However, due to the lower modulus of elasticity of the FRP compared to steel, wider and 

deeper cracks develop, and all the shear resisting components that are related with concrete 

are lower in comparison to conventionally steel RC beams. Consequently, the overall shear 

capacity of concrete members reinforced with FRP bars is lower than that of elements 

reinforced with steel bars (El-Sayed & Soudki 2011). 
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The existing design equations of reinforced concrete beams with FRP are from: 

Design guidelines: 

o ACI-440.1R-06 (American Concrete Institute) 

o CNR-DT 204/2006 (National Research Council –Italy) 

o CSA S806-12 (Canadian Standards Association) 

o JSCE 1997 (Japan Society of Civil Engineers) 

Other authors: 

o (Fico et al. 2008) 

o (Nehdi et al. 2007) 

o (Hegger et al. 2009) 

According to all of them the shear strength of FRP RC structures with FRP stirrups is the sum of 

the concrete and the transversal FRP reinforcement contributions.  

The modification of the existing code equations are based on the following approaches: 

The strain approach 

The fundamental principle underlying the strain approach is that, assuming perfect bond, the 

concrete section experiences forces and strains that are independent of the type of 

reinforcement utilized. Hence, if a design model using FRP reinforcement maintains the same 

strain as when conventional steel is used (εFRP = εs) and the same design forces are developed 

(FFRP = Fs), then that design solution, by definition, will lead to the same safe result. 

According to the strain approach, the required amount of FRP shear reinforcement is 

determined by limiting the maximum strain that it can develop. In some formulations, a 

maximum limit of 0.0025, which is the value that corresponds to the yielding strain of 

conventional steel bars, is suggested by (Clarke 1996). By imposing this limit, however, FRP links 

will only be stressed to a fraction of their potential and thus the benefits of using such materials 

are not taken to their maximum mechanical and economic advantage (Figure 7). 
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Figure 7: Limiting strain according to the Strain Approach(Clarke 1996) 

 

The stress approach 

The stress approach was developed for research purposes at the University of Sheffield (El-

Ghandour et al. 1998).According to this approach, the forces derived from the strength of the 

materials, Fs (design force for steel) and FFRP (design force for FRP), are considered to be the 

same, however, a restriction on the strain developed in the reinforcement is not imposed (i.e. 

εFRP ≠ εs). 

The shear resistance predicted by this approach is normally higher than the values obtained 

during testing and consequently, this formulation is only used as a research tool and it is not 

intended to be used for the development of design recommendations. 

The modified approach 

Researchers at Sheffield (El-Ghandour et al. 1999), proposed a modified version of the strain 

approach for the design of FRP RC flat slabs. The proposed approach was based on an 

experimental investigation of punching shear behaviour of FRP RC flat slabs and takes partial 

advantage of the force that can be developed in the FRP reinforcement when strain values 

beyond the strain limit imposed by the strain approach develop in the bars. 
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2.3.1 (ACI-440.1R-06)  

The total resistance of shear beams reinforced with FRP stirrups is obtained as the sum of the 

concrete contribution, VRd,c ,and the transversal FRP reinforcement, VRd,frp , calculated using the 

analogy of strut and tie: 

, ,Rd Rd c Rd frpV V V= +  (2.1) 

The contribution of the concrete resistance to shear can be calculated with the equation: 

,
2
5Rd c c wV f b k d= ⋅ ⋅ ⋅ ⋅  (2.2) 

Where fc is the compressive concrete strength, bw the web width, d the effective depth, and k is 

calculated as: 

( )2
2 f fl f fl f flk n n nρ ρ ρ= ⋅ ⋅ + ⋅ − ⋅  (2.3) 

f fl cn E E=  (2.4) 

Efl is the modulus of elasticity of the longitudinal reinforcement and Ec is the modulus of 

elasticity of the concrete. 

ρfl is the longitudinal reinforcement ratio that can be calculated with: 

fl
fl

w

A
b d

ρ =
⋅

 
(2.5) 

Where, Afl is the area of longitudinal reinforcement. 

The resistance to shear provided by the transversal FRP reinforcement: 

, ,
,

frp v frp v
Rd frp

A f
V d

s
⋅

= ⋅  (2.6) 

Afrp,v represents the amount of shear reinforcement within spacing s, ffrp,v is the tensile strength 

of the transversal FRP stirrup, and d the effective depth. 
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The tension in the FRP reinforcement should be limited to control the depth of shear cracks and 

maintain the integrity of the concrete, and to prevent failure in the bent zone of the transversal 

reinforcement. 

, 0.004frp v fv fbf E f= ≤  (2.7) 

Where, Efv is the modulus of elasticity of the transversal FRP reinforcement and ffb represents 

the strength of bent portion of FRP bar. 

,0.05 0.30b
fb frp u

b

rf f
d

 
= ⋅ + ⋅ 
 

 (2.8) 

Where rb and db represents the internal radius, respectively equivalent diameter of the bent, 

and ffrp,u the ultimate tensile strength of the transversal FRP stirrup. 

 

2.3.2 (CNR-DT 204/2006) 

The total shear resistance of the reinforced concrete element with FRP stirrups can be 

calculated with the following formula: 

( ), , , maxmin ;Rd Rd c Rd frp Rd cV V V V= +  (2.9) 

Where, VRdc,max is the concrete contribution corresponding to failure due to crushing of the 

diagonal compression concrete strut in the web. 

The contribution of the concrete resistance to shear can be calculated with the equation: 

( )
1
3

, 1.3 1.2 40fl
Rd c rd d fl w

s

E
V k b d

E
τ ρ

 
= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ 

 
 2.10 

Where, Es is the modulus of elasticity of the steel, and τrd is the design shear stress calculated 

with: 

,0.050.25rd ctkfτ = ⋅  (2.11) 

Where fctk,0.05 is the characteristic concrete tensile strength (5%fractile). 
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fl
fl

w

A
b d

ρ =
⋅

 (2.12) 

kd is a coefficient that  can take the following values 

o kd = 1.0 in members where more than 50% of the reinforcement is interrupted;  

o other cases kd=1.6-d ≥ 1.0 

The resistance to shear provided by the transversal FRP reinforcement: 

, ,
,

frp v frp v
Rd frp

A f d
V

s
⋅ ⋅

=  (2.13) 

, ,frp v frp u ff f φγ=  (2.14) 

Where ffrp,v is the reduce tensile strength of the transversal reinforcement and γfφ is a partial 

factor to account for bending effect equal to: 

o 2 when no specific experimental tests are performed  

o ffu/ffbd  

Where, ffu is the strength of an FRP bar and ffbd the design strength of the bending area of the 

FRP. 

The maximum shear force absorbed by the diagonal compression concrete strut in the web is 

determined as: 

, max 0.5 0.9Rd c c wV f b dν= ⋅ ⋅ ⋅ ⋅ ⋅  (2.15) 

0.7 200 0.5cfν = − ≥  (2.16) 

 

2.3.3 (JSCE 1997) 

The total shear resistance of the reinforced concrete element with FRP stirrups can be 

calculated as: 

, ,Rd Rd c Rd frpV V V= +  (2.17) 
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 The shear resistance of concrete is: 

Where: 

1
30.2 0.72vcd cf f= ⋅ ≤  N/mm2 (2.19) 

1
41000 1.5d d

β  = ≤ 
 

 (2.20) 

1
3

1000 1.5f f
p

s

E
E

ρ
β

⋅ 
= ⋅ ≤ 
 

 (2.21) 

1nβ =  (No axial forces) (2.22) 

The shear resistance of the transversal FRP reinforcement is: 

, , ,
,

frp v frp v frp v
Rd frp

A E
V z

s
ε⋅ ⋅

= ⋅  (2.23) 

1
10 4

,
, ,

10
0.3

frp frp
frp v c

frp v frp v

Eh f
E

ρ
ε

ρ

−
−⋅ = ⋅ ⋅ ⋅  ⋅ 

 (2.24) 

Where, εfrp,v is the design deformation of the transversal FRP reinforcement and h the height of 

the beam. 

 

2.3.4  (CSA S806-12) 

The total shear resistance of the reinforced concrete element with FRP stirrups can be 

calculated with the following formula, where the left term represents the resistance of the 

compressed strut. 

, , 0.22 c w vRd Rd c Rd frpV V V f b d= + ≤ ⋅ ⋅ ⋅  (2.25) 

  

,Rd c d p n vcd wV f b dβ β β= ⋅ ⋅ ⋅ ⋅ ⋅  (2.18) 
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The shear resistance of concrete is given by: 

( )
1
3

, 0.05Rd c c m r c w vV k k f b dλ φ= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  (2.26) 

,0.11 0.2c w Rd c c wf b d V f b d⋅ ⋅ ⋅ ≤ ≤ ⋅ ⋅ ⋅  (2.27) 

Where: 

λ is concrete density factor , equal to 1.0 for normal concrete. 

φc is the concrete resistance factor 

260cf N mm≤  , is the compressive concrete strength. 

0.9vd d= ⋅  (2.28) 

( )
1
2

mk V d M= ⋅  
(2.29) 

( )
1
31r rk E ρ= + ⋅  

(2.30) 

o If a/d < 2.5, VRd,c shall be multiplied by ka 

2.5ak V d M= ⋅ ⋅ ,     1.0 2.5ak≤ ≤  (2.31) 

o If d>300 mm and At<At,min, VRd,c shall be multiplied by ks   

750 1.0
450sk

d
 = ≤ + 

 (2.32) 

The shear resistance of the transversal FRP reinforcement is: 

, ,
,

cotfrp v frp v v
Rd frp

A f d
V

s
θ⋅ ⋅ ⋅

=  (2.33) 

( )30 7000 xθ ε= + ⋅  (2.34) 

0.5
2x

f f

M d V N
E A

ε + + ⋅
=

⋅ ⋅
 (2.35) 

( )2
, , , ,min 0.005 ; 0.4 ;1200frp v frp v frp bend frp uf E f f N mm= ⋅ = ⋅  (2.36) 
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2.3.5 Proposal by (Fico et al. 2008) 

In consistency with the experimental results of (Nagasaka et al. 1933) where the average stress 

of FRP stirrups was only half of the breaking strength of bent portions, (Fico et al. 2008) 

suggested a limit strain value,εf,lim ,for the stirrups contribution depending on the fiber type, 

that can be observed in Table 6. 

In addition, a limit of the transverse stirrups ratio of 1% was recommended for more reliable 

predictions. 

Type of fiber εf,lim 

CFRP 0.0035 

AFRP 0.0070 

GFRP 0.0085 

Table 6: Limit strain value(Fico et al. 2008) 

The shear resistance of the reinforce concrete element with transversal stirrups is calculated 

according to (CNR-DT 204/2006): 

( ), , , maxmin ;Rd Rd c Rd frp Rd cV V V V= +  (2.9) 

Where VRd,c , VRd,frp and VRdc,max are the same as in(CNR-DT 204/2006) guideline. 

The formulation proposed by the (CNR-DT 204/2006) guideline for the contribution of the shear 

transversal FRP reinforcement VRd,frp is modified to take into account the strain limitation for 

each type of fiber. 

, , , , ,
,

, ,

frp v frp v u frp v b
Rd frp

frp v u

A f d f
V

s f
⋅ ⋅

= ⋅  (2.37) 

, , , ,limfrp v b frp v frpf E ε= ⋅  (2.38) 

Equation (2.37) can be rewritten as: 

, ,lim ,
,

frp v f frp v
Rd frp

A E d
V

s
ε⋅ ⋅ ⋅

= ⋅  (2.39) 
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2.3.6 Proposal by (Nehdi et al. 2007) 

The total shear resistance of the reinforced concrete element with FRP stirrups is given by: 

, ,Rd Rd c Rd frpV V V= +  

The shear resistance of concrete depends on the a/d relation, where a is the shear span. 

o For a/d > 2.5: 

0.3

, 2.1 fc
Rd ct

s

Ef dV
a E
ρ ⋅ ⋅

= ⋅ 
 

 (2.40) 

o For a/d < 2.5: 

0.3

,
2.52.1 fc

Rd ct
s

Ef d dV
a E a
ρ ⋅ ⋅

= ⋅ ⋅ 
 

 (2.41) 

The shear resistance of the transversal FRP reinforcement: 

( )0.5

, , , ,0.5Rd frp frp v frp v u wV A f b d= ⋅ ⋅ ⋅ ⋅  (2.42) 

 

2.3.7  Proposal by (Hegger et al. 2009) 

(Hegger et al. 2009) developed a shear design equation where the concrete shear strength 

contribution is based on Eurocode and the contribution of FRP shear reinforcement depends on 

a strain limit obtained from existing experimental work. 

The total shear resistance of the reinforced concrete element with FRP stirrups: 

, ,Rd Rd c Rd frpV V V= +   

The shear resistance of concrete: 

1
3

, 0.205 100 r
Rd c f ck w

s

EV k f b d
E

β κ ρ
 

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 

 (2.43) 

28 

 



,
,1 10 frp v

f frp v
c

E
k

E
ρ= − ⋅ ⋅  (2.44) 

3 d aβ = ⋅  (2.45) 

1 200 dκ = +  (2.46) 

Where: 

β factor that increases the shear strength of the concrete near the supports. 

The shear resistance of the transversal FRP reinforcement: 

, ,
,

cot 1min ;
cot tan

frp v frp v
Rd frp w c cm

A f z
V b z f

s
θ

α
θ θ

⋅ ⋅ ⋅ 
= ⋅ ⋅ ⋅ ⋅ + 

 (2.47) 

0.9z d=  (2.48) 

( ), , , , ,limmin 0.4 ;frp v frp u frp v frp vf f E ε= ⋅ ⋅  (2.49) 

( ) 0
, ,lim , , 003 0.015frp v frp v frp v cE Eε ρ= + ⋅  (2.50) 

Where:  

αc =0.2 

ϴ is the truss angle 

ffrp,u is the ultimate tensile strength of FRP 

ffrp,v is the design value of the tensile strength of FRP reinforcement 
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3 Non-linear shear-sensitive fiber beam model 

 

The present work used the program CONSHEAR to analyze the behaviour of the beams tested 

by (Kurth 2012). 

CONSHEAR (Ferreira 2013) is a computer program for the nonlinear analysis of reinforced and 

prestressed concrete frame structures by means of the fiber beam element approach and 

accounting for axial force-shear-bending interaction. The numerical model implemented in 

CONSHEAR is based on a previous model founded on the Finite Element Method (FEM) and on 

the Bernoulli’s beam theory that is implemented in the computer program CONS (Marı ́2000). 

In general, its main characteristics are: the Timoshenko beam theory is assumed at the element 

level; a hybrid sectional formulation, in which input variables comprises both kinematical and 

force quantities, links the plane section theory with the assumption of a constant shear stress 

flow. The multiaxial constitutive behaviour of concrete is assumed through a smeared crack 

approach with full rotating cracks; compression weakening (softening) and tensile tension 

stiffening effects are included. Longitudinal reinforcement is simulated through the use of steel 

filaments while transversal reinforcement is considered smeared in the concrete fibers. 

In the following, a brief insight into the fundamental of the numerical model that is 

implemented into the computer code CONSHEAR is offered. 

 

3.1.1 Structural scheme 

In numerical simulations by means of the FEM using 1D fiber beam models the structure is 

divided into elements interconnected by nodes and the material nonlinearities are introduced 

at each control section that is discretized into longitudinal fiber as observed in Figure 8. 

30 

 



Figure 8: General characteristics of the fiber beam models (Ferreira 2013) 

3.1.2 Finite element 

A 2-noded Timoshenko finite element with linear shape functions is used in the model. 

For the 2D case, the displacement field is a function of two displacements, axial u and vertical 

w, and a rotation θy. In the Timoshenko beam theory it is assumed that undeformed plane 

sections perpendicular to the beam axis remain plane but not necessarily normal to the 

longitudinal axis after deformation. An average rotation of the section due to distortion is 

considered in order to maintain valid the plane section assumption. 

Figure 9: Fiber beam model in CONSHEAR: a) general characteristics b) finite element for the      

2D case (Ferreira 2013) 
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3.1.3 Sectional level 

The cross-section is discretized into two types of fibers, as presented in Figure 3: the non-shear 

resistant ones, submitted to 1D axial stresses only, and the shear resistant fibers, submitted to 

a multiaxial stress-strain state. Axial force and bending moment are resisted by the entire cross-

section; shear forces and interaction with normal forces are only considered in the shear 

resistant fibers. 

This fiber subdivision is an input of the model related to the shape of the cross section: for 

rectangular, T-shape and I-shape, the fibers that pertain to the web (disregarding the bottom 

cover area) are considered shear resistant. Particularly for the T-shape and I-shapes cross 

sections, if there is strong evidence that compressive flanges contribute to the shear-resistance 

mechanism, an effective area of the flange beff determined according to (Zararis et al. 2006) can 

be considered as 2D fibers. 

Figure 10: Assumptions of the model at the section level (Ferreira 2013) 

3.1.4 Material models 

Cracked concrete is assumed as a homogeneous material with orthotropic behaviour (Figure 

11(a)). The constitutive model is formulated in terms of average principal strains ε12= [ε1 ε2] T 

and stresses σ12= [σ1 σ2] T between the undamaged and cracked areas. . In this formulation 
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subscripts “1” and “2” denote the maximum and minimum principal strains and stresses, 

respectively. 

The equation considered for concrete in compression is presented in Figure 11(b): εp is the 

strain at peak stress fp and εp2 is the plastic strain after unloading by means of the initial 

stiffness E0.For concrete in tension (Figure 11(c)) a linear response is considered before cracking 

and remaining stresses in the cracked stage: ft and εcr are respectively the maximum tensile 

stress and strain of concrete for which cracking appears. After cracking tensile softening is 

represented by (Cervenka 1985) curve  

Figure 11: Constitutive model for the concrete: (a) smeared crack, (b) compression, (c) tension 

(Ferreira 2013) 

Longitudinal (passive) and transversal (passive or active) reinforcements are considered under 

1D stress-strain states by means of a bilinear uniaxial constitutive equation with kinematic 

hardening (Figure 12): fsy and εsy correspond to the yielding strength and strain and fsu and εsu to 

the ultimate strength and strain of the reinforcement material (e.g. steel, FRP, etc.) 

 

Figure 12: Constitutive model for the reinforcement 

(Ferreira 2013) 
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3.1.5 Representation of cracks  

Cracking patterns are graphically represented in post-process by means of an external 

algorithm written in MATLAB. As at each Gauss point the principal strains and directions are 

known (they are outputs of the numerical model), when the principle tensile strain in each fiber 

reaches the critical strain (ε1> εcr), an orthogonal line with the inclination of the correspondent 

principal direction is printed. 

Due to the non-verticality of the cracks, the information of the strain state in the location of the 

crack path does not correspond to a single Gauss point. Consequently, as schematically 

represented in Figure 13, the strain state corresponding to the location of a crack is obtained 

using a linear interpolation between the strain states of the two close-most Gauss points. 

Figure 13: Scheme of the post-processing method for the representation of the cracks (Ferreira 

2013) 
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4 Numerical analysis of FRP RC beams 

4.1 Description of the experimental campaign 

4.1.1 General 

The test program made by (Kurth 2012) included 24 shear tests on 12 I-beams with three types 

of FRP Shear reinforcement and different reinforcement ratio and two concrete classes.  

One of the objectives of this experimental study was to determine the shear resistance of the 

reinforced specimens with FRP and the failure location in the stirrups. 

The beams presented 3 different failure modes depending on the shear reinforcement ratio: i) 

diagonal tension failure, ii) rupture of the shear reinforcement or iii) web crushing failure of 

concrete. Stirrups failure always occurred at the bent zone because the tensile strength there is 

significantly reduced due to the bending of the FRP bars into stirrup configuration. 

Figure 14 represents one of the studied specimens.  

Figure 14: Experimental tests on the beam (Kurth 2012) 
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4.1.2 Materials 

All the beams are reinforced with Fiberglass plastics (FRP) both longitudinal and transversally. 

As longitudinal reinforcement, there were two different Rod types (type I and II). The nominal 

diameter of the bending reinforcement was df = 32 mm. Bars with the nominal diameter df = 16 

mm served as structural reinforcement for fixing the stirrup in the pressure zone. 

There was no data available on experimental tensile testes  for determining the mechanical 

properties of the  longitudinal reinforcement ; hence, the elastic modules and tensile strengths 

were considered the same as in preliminary experiments (Niewels 2008) in the numerical 

model. The properties of the longitudinal reinforcement are listed in Table 7. 

As shear reinforcement, there were three different types (A, B and C). Types A and B had a 

nominal diameter of df = 12 mm. The shear reinforcement type C consisted of a straight FRP rod 

df = 16 mm and at its extremities are connected with double-headed bolts (DHB). The 

properties of the transversal reinforcement are listed in Table 8. 

The FRP reinforcement were provided by three manufacturers. The longitudinal reinforcement 

type I and the shear reinforcement type A are products of a manufacturer. The reinforcement 

types II, B and C are produced by a second manufacturer. 

The concrete strength classes are C30 / 37 and C60 / 75. The cube compressive strength fcm, 

cylinder compressive strength fcm, the concrete tensile strength fctm, and the modulus of 

elasticity Ecm were measured on cubes with an edge length of 150 mm and cylinders with the 

height of 300 mm and a diameter of 150 mm determined on each test day. 

 

Reinforcement Diameter                         
df [mm] 

Modulus of 
elasticity            Efl 

[N/mm2] 

Tensile Strength         
ffl  [N/mm2] 

Typ l 32 590001) 11241) 
Type ll 32 626002) >10003) 
1) Preliminary; 2) /Niewels08/; 3) Manufacturer specifications 

Table 7: Characteristics of longitudinal reinforcement (Kurth 2012) 
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Reinforcement Diameter        
df[mm] 

Modulus of 
elasticity             
Efl [N/mm2] 

Tensile Strength         
ffl  [N/mm2] 

Typ A 12 56200 382 

Typ B 12 57000 770 
Typ C 16 63400 611 

Table 8: Characteristics of transversal reinforcement (Kurth 2012) 

 

4.1.3 Geometry 

The beams have an I-shape cross-section with a 10 cm narrow web, length of 7.0 m with 3 

sections that have different reinforcement percentages. 

Each beam was tested in twice, in different setups. The right-span of the beam has a lower 

shear reinforcement percentage provided or no shear reinforcement at all. The left-span is 

highly reinforced. In the central portion where a bending failure should be excluded, steel 

reinforcement BST500 was used. 

For longitudinal reinforcement was used six or eight ø32 mm FRP ((ρl=8.5% and 11.5%), for the 

bending critical zone were additionally provided two BST500 ø25 mm rebar rods. 

As shear reinforcement the reinforcement types A, B and C were used, and two small closed 

stirrups along the perimeter of the section and tension zone. 

4Figure 15 shows the distribution of longitudinal and transversal reinforcement and  

Figure 16 shows the type of stirrups used in the different beams. 
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4Figure 15: Reinforcement drawing (Kurth 2012) 

Figure 16: Type of stirrups (Kurth 2012)  
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4.1.4 Experimental setup for shear tests 

The experimental setup is illustrated in Figure 17. 

Two shear tests were performed per specimen with different load and support positions. 

The first part of the experiment is a 4 -point bending test; the failure was produced on the right 

side where the weaker shear reinforcement (or no shear reinforcement) is located. 

The second part of the experiment was a 3-point bending test. Here, failure occurred in the left 

part of the beam that was higher transversally reinforced. 

Figure 17: Experimental set-up of shear tests (Kurth 2012) 

 

The load was applied to about 50% of the loading cell capacity and controlled with 5 kN / min 

and 10 kN / min and the displacement controlled at 0.5 mm / min and 1.0 mm / min. 

The tests were stopped four to seven times, at constant load or constant deformation, 

to carry out crack width measurements. 

The following sensors were used to record the experimental data and its position can be seen in 

Figure 14. 

o Concrete longitudinal strains in compression (strain gages = DMS) B1 ... B14 

o longitudinal strains in concrete in the tension / compression zone (transducer) D1 ... D3 

o reinforcement slip on the beam ends (sensor) E1 and E2 
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o Strains in concrete in the shear field (transducer Rosette) R1 ... R6 

o shear crack width (sensor) S1 S2 ... 

o displacements (displacement transducer) W1 W5 ... 

o strains in the longitudinal reinforcement (DMS) LG1 ... LG7 

o stains in the shear reinforcement (DMS) SG1 ... SG30 

The basic arrangement of the metrological devices for concrete are in Figure 18 and for 

reinforcement are in Figure 19 

Figure 18: Metrology of concrete (Kurth 2012) 
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Figure 19: Metrology of reinforcement (Kurth 2012) 

 

4.1.5 Failure modes 

Stirrup failure 

The specimens with lower shear reinforcement ratios (ρw = 0.45 and 0.75%) and medium  shear 

reinforcement ratios (ρw=1.26%) and for high concrete strengths (fcm = 75.7 and 82.0 N / mm²) 

presented failure of the transversal  reinforcement, due to a combined shear-tensile stress 

locally present in the region of the main  shear crack(Figure 20). 

 

Figure 20: Cracking at failure in experimental S4AH-0.8-7 (rw = 0.75%, fcm =42.2 N/mm2 (Kurth 
2012) 
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Figure 21 shows the damaged stirrups types A and B after the failure in the test S4AH-0.8-7 and 

S6BN-0.8-11. In contrast, the reinforcement type C presented a local failure in the connections 

as the FRP rod was pulled out of the polymer concrete anchor head (Figure 22 ). 

S4AH-0.8-7 
(ρw = 0,75 %,fcm = 42,2 N/mm²) 

S6BN-0.8-11 
(ρw = 0,75 %, fcm = 30,4 N/mm²) 

  

Figure 21: Damaged stirrups (Type A and B) after failure in experiments with a shear 

reinforcement degrees ρw of 0.75% (Kurth 2012) 

Longitudinal cracked DHB (double headed 
bolt) 

Extract of the polymer anchor head 

  

Figure 22: Damaged double headed bolt (type C) after failure while trying S12CH-0.7-23 (ρw = 

0.75%, fcm = 73.1 N / mm²)(Kurth 2012) 
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Diagonal compression failure 

In the experiments with high shear reinforcement ratios, from ρw = 2.22% rto ρw = 2.26%, and 

medium shear reinforcement degrees (ρw = 1.26%) with the lower concrete strengths (fcm≤ 73.1 

N/mm²) failure occurred by crushing of concrete in the web (diagonal compression shear failure) 

 

Figure 23: Cracking at failure in experimental S6BN-2.3-12 (ρw = 2.26%, fcm = 30.7 N / 

mm²)(Kurth 2012) 

 

Figure 24: Cracking at failure in experimental S2AN-2.3-4 (ρw = 2.26%, fcm = 33.5 N / 

mm²)(Kurth 2012) 

When compression struts fail different failure images were observed. In Experiments S2AN-2.3-

4 and 2.3-8-S6BN-2.3-12 was almost completely blown off the concrete cover in the web area 

at failure of the concrete strut (Figure 24). 
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In Table 9 are presented, for each specimen, the different types of failure along with the 

transversal reinforcement ratio ρw , concrete strength fcm , average shear crack angle at failure 

βr and the ultimate shear force Vu. 

 

Test ρw                         

[%] 
fcm 
[N/mm2] 

βr             
[ᵒ] 

Vu         
[kN] 

Failure type 

S1AN-1.3-2 1,20 38,4 40 427 diagonal tension failure 
S2AN-0.8-3 0,75 34,1 30 332 stirrup failure 
S2AN-2.3-4 2,26 33,5 36 486 diagonal tension failure 
S3AH-1.3-6 1,26 82,0 31 571 stirrup failure 
S4AN-0.8-7 0,75 42,2 32 326 stirrup failure 
S4AH-2.3-8 2,26 42,6 34 544 diagonal tension failure 
S5BN-1.3-10 1,26 42,8 37 439 diagonal tension failure 
S6BN-0.8-11 0,75 30,4 33 302 stirrup failure 
S6BN-2.3-12 2,26 30,7 37 448 diagonal tension failure 
S7BH-1.3-14 1,26 75,7 31 626 stirrup failure 
S8BH-0.8-15 0,75 72,7 27 439 stirrup failure 
S8BH-2.3-16 2,26 69,9 33 581 diagonal tension failure 
S9CN-1.3-18 1,26 37,7 36 410 diagonal tension failure 
S10CN-0.7-19 0,75 32,0 23 304 failure of DHB head 
S10CN-2.2-20 2,22 33,6 34 484 diagonal tension failure 
S11CH-0.4-21 0,45 67,6 28 374 failure of DHB head 
S11CH-1.3-22 1,26 71,0 33 621 diagonal tension failure 
S12CH-0.7-23 0,75 73,1 32 441 failure of DHB head 
S12CH-2.2-24 2,22 73,9 36 742 diagonal tension failure 

Table 9: Types of failure for the experimental beams 
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 In the present work, 5 beams were considered to be simulated with CONSHEAR S2AN-0.8-3, 

S4AH-0.8-7, S6BN-0.8-11, S8BH-0.8-15, S10CN-0.7-19 - that are loaded in 2-point bending 

configuration, in the first phase of testing  

This choice was motivated by the fact that the second test is influenced by the damage brought 

from the first test, which could only be well captured by a phased analysis, which is out of the 

aims of this work. Also, experimental data from test 1 are more reliable to be compared with 

the numerical results, as they are less influenced by the previous testing and consequent 

damage.  

 

Table 10  lists the characteristics of the beams under study. The dimensions are the same for all 

the beams, 3 beams (S2AN-0.8-3, S6BN-0.8-11 and S10CN-0.7-19) are reinforced with 6ø32 mm 

FRP, having the longitudinal ratio ρl of 8.5% and 2 with 8ø32 (S4AH-0.8-7 and S8BH-0.8-15) 

having the longitudinal ratio ρl of 11.5%. For transversal reinforcement there are 3 types of 

stirrups used with 2 different diameters ø12 (S2AN-0.8-3, S4AH-0.8-7, S6BN-0.8-11, S8BH-0.8-

15) and ø16 (S10CN-0.7-19).  
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Table 10: Beam dimensions, concrete properties, longitudinal reinforcement, and transversal reinforcement(Kurth 2012) 

 

 

Tr
ia

l 

Ty
pe

 re
in

f 

b 
[m

m
] 

b w
 [m

m
] 

h 
[m

m
] 

E c
   [

N
/m

m
2 ] 

f cm
 [N

/m
m

2 ] 

f ct
m

 [N
/m

m
2 ] 

Φ
/s

 [m
m

] 

ρ w
 [%

] 

E f
w

 [N
/m

m
2 ] 

f fw
,e

xp
 

[N
/m

m
2 ] 

ε u
, t 

ρ l
 [%

] 

E f
l [N

/m
m

2 ] 

f fl
 [N

/m
m

2 ] 

ε u
, l 

S2
AN
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0.
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A , l 400 100 650 25600 34 2,70 Ø12/ 
300 

0,75 56200 382 0.0068 8,52 59000 1000 0.017 

S4
AH

-
0.

8-
7 

A , l 400 100 650 25500 42 2,31 Ø12/ 
300 

0,75 56200 382 0.0068 11,57 59000 1000 0.017 

S6
BN

-
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8-
11

 B , ll 400 100 650 24600 30 2,32 Ø12/ 
300 

0,75 57000 770 0.0135 8,44 62600 1000 0.016 

S8
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-
0.

8-
15

 B , ll 400 100 650 33400 73 3,56 Ø12/ 
300 

0,75 57000 770 0.0135 11,47 62600 1000 0.016 

S1
0C

N
-
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0,74 63400 611 0.0096 8,44 62600 1000 0.016 
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4.2 Numerical model 

The first objective of the numerical analysis is the validation of the computer program for the 

case of FRP RC beams by comparing the numerical results with the experimental data captured in 

local points by the sensors.After validating the model, the second objective is to perform a 

deeper analysis of the structural behaviour of the beams.  

The following sensors were considered to perform the comparison with the numerical outputs:  

for the concrete strain compression (B4-right side of the beam);, displacement transducer (W3-

middle of the beam); strain in the longitudinal reinforcement (LG1, LG2, LG3 ,LG4 ,LG5 ,LG6 ,LG7); 

strain in the shear reinforcement ( SG17…SG26- right side of the beam) and shear crack width (S1 

– right side of the beam) . This was all the data available in the original reference by (Kurth 2012) . 

Since the numerical model is based on the finite element method, it is necessary to discretize the 

beam to be analyzed into a mesh. As shown in Figure 27, the beam was simulated using 28 bar 

type elements of equal length, generating 29 nodes. Nodes 3 and 27 correspond to the simply 

supported points, while the node 15 coincides with the center-beam section. In turn, the cross 

section has been divided into 8 trapeziums that are discretized into filaments as observed in 

Figure 25(Ferreira 2013). 

Longitudinal rebars were modeled in their real position in the cross-section. Furthermore in 

Figure 26, it is considered a shear resistant zone that is composed of the web and the effective 

width of the flange (beff=340mm) which was calculated using the formulas in (Zararis et al. 2006). 

 

Figure 25: Discretization of the cross section 

 

Figure 26: Shear resistant zone 
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Figure 27: Discretization of the beam 

The model with CONSHEAR is the same for all the beams since they have the same length L=7 m 

and same cross-section dimensions b=400mm, bw=100mm, h=650mm. 

The difference between the beams are only related with the reinforcement configurations, as can 

be observed in Figure 28 for longitudinal reinforcement and in Figure 29 for transversal 

reinforcement. 

The specimens S2AN-0.8-3 and S4AH-0.8-7 have the same transversal reinforcement (ø12 FRP at 

a pace of 300 mm) on the right side of the beam and a tensile strength of ffw= 382 N/mm2 .The 

difference between them is the longitudinal reinforcement- S2AN-0.8-3 has 6 ø32 while S4AH-

0.8-7 has 8 ø32 both have an elastic modulus of Efl= 5900 N/mm2.Also the concrete 

characteristics differ; S2AN-0.8-3 has a compressive strength of fcm=34 N/mm2 and S4AH-0.8-7 of  

fcm=42 N/mm2 . 

The specimens S6BN-0.8-11 and S8BH-0.8-15 are reinforced transversally with ø12 FRP at a pace 

of 300 mm with a tensile strength of ffw= 770 N/mm2. Longitudinally S6BN-0.8-11 is reinforced 

with 6 ø32 and S8BH-0.8-15 with 8 ø32, both with elastic modulus of Efl=62600 N/mm2.The 

compressive strength of concrete is of fcm=30 N/mm2 for S6BN-0.8-11 and of fcm=73 N/mm2 for 

S8BH-0.8-15. 

Beam test S10CN-0.7-19 is reinforced transversally with ø16 FRP at a pace of 270 mm with a 

tensile strength of ffw=611 N/mm2; the longitudinal reinforcement is of 6ø32 with an elastic 

modulus of Efl=62600 N/mm2; the strength of concrete is fcm=32 N/mm2. 

The specimen S6BN-0.8-11 is compared in detail with the experimental results and discussed 

deeply in the following section, as it presents the best fitting with the experimental data. The 

results of the other simulated beams are treated with less detail and presented in a separate 

section at the end of the present chapter.  
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Figure 28: Longitudinal and transversal reinforcement of the test beams(Kurth 2012) 

Reinforcement extract of FRP stirrups 
S2AN-0.8-3 , S4AH-0.8-7, S6BN-0.8-11, S8BH-0.8-15 S10CN-0.7-19 

 
 

Figure 29: FRP stirrups configurations (Kurth 2012) 
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4.3 Comparison of numerical and experimental results 

4.3.1 Test beam: S6BN-0.8-11 

In the experimental test, the total load applied to the beam is 604 kN, corresponding to a shear 

force of 302 kN. 

In the modeling in order to resemble the mode of application of the load and also to observe the 

nonlinear behaviour of the beam throughout the experiment, 100 load steps with a load step 

increment of 1 kN and 0.5 kN were used. The lower loading step of 0.5 kN is applied to higher 

load levels near failure to determine the breaking load more accurately.  

Figure 30 shows the plan of reinforcement and Figure 31 shows the 2 different cross-sections of 

the beam. 

Figure 30: Plan of reinforcement for test beam: S6BN-0.8-11(Kurth 2012) 

Figure 31: Beam cross-sections for test beam: S6BN-0.8-11(Kurth 2012)  
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In Figure 32 and Figure 33 the sensors used for comparison with the numerical results are 

highlighted; this includes data from strains in concrete, FRP longitudinal reinforcement, and FRP 

transversal reinforcement FRP.  

Figure 32: Metrology of concrete and sensors considered for comparison with the numerical 

results (Kurth 2012) 

Figure 33: Metrology of reinforcement and sensors considered for comparison with the numerical 

results(Kurth 2012)  
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4.3.1.1 Load vs. displacement 

In the Figure 34 the obtained deflection in the center of the beam through CONSHEAR and is 

presented and compared with the experimental results obtained by (Kurth 2012) 

Figure 34: Experimental and numerical deflection in the center of the beam for test S6BN-0.8-11 

 

As shown in Figure 34 the prediction of the model is similar to the experimental results. 

However after cracking the results differ, this mismatch might be due to an overestimation of the 

concrete tensile strength (difficult to measure) and elasticity modulus. 

After cracking the “tension stiffening” effect takes place which is the concrete contribution in the 

tension zone between the cracks. In the CONSHEAR model, tension-stiffening phenomenon is 

taken into account by the empirical equation of (Cervenka 1985) 

The model is stiffer than the experimental test. The assumed smeared cracking approach ignores 

localized crack behaviour, such as slip between crack boundaries and bond-slip of the tension 

chord, which can also be a cause for this difference. Also, other factors related with the 

experimental tests such as deformation and pre-cracking of the beams due to shrinkage/creep or 

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70

Sh
ea

r (
KN

)

S6BN-0.8-11
center of the beam

experimental

numerical

52 

 



other residual stress effects (that are not include in the numerical model) may contribute to this 

difference. 

The model overestimated the ultimate load, predicting failure for a load level of about 420 kN, 

while the experimental is of 300 kN. 

In relation to the deformation the model presents good fitting with the experimental results with 

a total displacement of about 65mm. 

 

4.3.1.2 Strains in the FRP longitudinal reinforcement 

Figure 35 presents the strains in the longitudinal reinforcement in 7 different sections along the 

beam , both experimental by (Kurth 2012) and those obtained numerically by the CONSHEAR 

model. The results shown correspond to different load levels. 

Figure 35: Experimental and numerical results for the strains in longitudinal FRP reinforcement for 

test S6BN-0.8-11 

 

An overall correct fitting between numerical and experimental results is observed. It can 

observed that the model prediction at smaller loads (V=100kN) is under the experimental strain 
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results, this is because the beam tested had a concrete tensile strength lower than the one 

considered in the model, although for higher loads the model fits better.  

 

4.3.1.3 Strains in the FRP transversal reinforcement 

Figure 36 represents the deformation of the stirrups that are situated in the right side of the beam; 

the location of the sensors are presented in the metrology of reinforcement in Figure 19. 

 

Figure 36 : Experimental and numerical results of Strains in stirrups along the length of the beam 

for test S6BN-0.8-11 

Considering that this is a very local parameter that is being compared, and very influenced by the 

position of the cracks, a general acceptable fitting can be observed between the numerical and 

experimental results. The order of magnitude of the numerical results are in correspondence with 

average experimental measurements for each load level. The strain peaks observed in 

experimentation relate to crack interference (when a crack intersects the transversal 

reinforcement in the position of a sensor, it will cause a peak of deformation) and are not 

possible to be captured by a numerical model that is based on the smeared crack approach. 
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Other sources of damage in the experimental testing that can contribute to the difference are the 

possible damage due to shrinkage, creep and transportation. This would diminish the 

contribution of concrete resistance, thus making the load be absorbed more by the FRP stirrups. 

 

4.3.1.4 Longitudinal strains in concrete 

Figure 37 presents the concrete strains in the mid span of the beam for different load levels. 

Figure 37: Experimental and numerical results of concrete deformation for test S6BN-0.8-11 

 

As can be seen, the predicted results show a great similarity with the experimental ones. Only a 

small difference is seen in the load level (V=100kN). The experimental deformations are of 1.25‰ 

(1.25 * 10-3) in the bottom part (tension) for shear value V=100 kN, and our numerical results in 

the bottom part are 1.6‰ (1.6*10-3). This is, again, due to the possibility that the beam was pre-

cracked, causing a decrease in tensile strength of the concrete. For higher load levels, the fitting 

is very good. 
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4.3.1.5 Transversal strain in the concrete web 

Transversal strains in the concrete web measured by the strain rossette are compared with the 

numerical results in Figure 32.  

Figure 38: Shear-strain of concrete numerical and experimental results for test S6BN-0.8-11 

 

The numerical approach overestimates the start of concrete cracking with about 100 kN. This is 

again due to our model being stiffer. Even though it can be observed that the model represents 

the experimental data, being capable of capturing the start of the diagonal cracking that 

corresponds to the load level for which the strains increase abruptly. Again, experimental 

measurements in this location (web of the beam) are very vulnerable to the effects of cracking.  

 

4.3.1.6 Crack patterns 

The crack development on the two beams was numerically predicted by the use of the discrete 

representation algorithm presented in chapter 3.1.5. Table 11 represents the development of 

cracking with increasing load predicted by the model and the comparison with the experimental 

observations for the ultimate load state. Numerical predictions, in terms of crack propagation 

and inclinations, show a fairly good agreement with the experimental evidence. It is interesting to 
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observe that the cracks develop more in the shear critical zone (right span of the beam). The 

beam reached an ultimate shear force V=302kN and has a stirrup failure. 

 

Cracking patterns Shear force 

 

V=100kN 

 

V=200kN 

 

V=250kN 

 

V=302kN 

 

Experimental 

results 

Table 11: Cracking patterns at different load levels for test S6BN-0.8-11   
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Figure 39 represents the crack width in the shear critical area with increase load (experimental 

and numerical results).  

 

Figure 39: Cracking width for test S6BN-0.8-11 

 

In relation to experimental results, Crack 1 and 2 represent the average crack width results 

measured experimentally with fiber optical sensors. The numerical results (as it is based on the 

smeared cracked approach and is not possible to monitor one single crack) correspond to average 

crack widths of different scanned areas; x distance measured in m from the left support of the 

beam until the left support (Figure 40) 

 

Figure 40: Location of measured cracks 
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Experimentally (Kurth 2012) obtained an average crack width of 1.2mm and a maximum crack 

width of 2mm which is similar with our numerical results that show a maximum crack width of 

2.4mm at the ultimate shear force, and an average crack width of 1.5mm. 

In the shear critical zone the biggest crack width forms. 

It can be observed that the numerical results are consistent with the experimental observations, 

for all levels of damage. 

It is difficult to compare the results because, in reality the discrete crack was measured with an 

optical sensor (ARAMIS), and the numerical results are obtained with a model based on the 

smeared crack approach that considers an average distribution of the crack in the element. Even 

though, the results present agree with the experimental ones in terms of order of magnitude and 

tendencies. 

 

4.3.1.7 Other numerical results 

Figure 41 presents the strains in transversal reinforcement for different heights in the cross 

section.  

 

 

Figure 41: Strain in the stirrups for different positions of the sensors test S6BN-0.8-11 
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The up and down sensors corresponds to the ones described in  (Kurth 2012) 

Figure 33 (SG19 and SG20) which are situated at the middle of the stirrup, and the sensor in the 

bent zone is added by us to measure the strains in the failure zone of the stirrup. 

As can be observed the strain in the bent zone is bigger 9.21‰ compared to 7.91 ‰ down, and 

6.73‰ up, that is because the stirrups are more loaded when there is more damage, which is the 

bottom of the beam. When the cracking propagates to the top, the stirrups start to carry load. 

 

Figure 42 represents the flow of strains in transversal reinforcement along the shear critical cross 

section for a load level of V= 302 kN. 

 

Figure 42: Strains in stirrup height at the bent zone for testS6BN-0.8-11 

The same can be seen here. The bottom parts of the stirrups are more loaded than the top parts, 

and this is because we have more damage at the bottom and the top part in under compression, 
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4.3.2 Other tests beams 

The results of the other test beams S2AN-0.8-3, S4AH-0.8-7, S8BH-0.8-15 and S10CN-0.7-19 are 

presented together in the following. This results present different tendencies and issues as the 

ones discussed in detail before; so no discussion is made specifically for these cases.  

 

4.3.2.1 Load vs displacement 

  

  

Figure 43: Experimental and numerical deflection in the center of the beam for tests S2AN-0.8-3, 

S4AH-0.8-7, S8BH-0.8-15 and S10CN-0.7-19 
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4.3.2.2 Strains in the FRP longitudinal reinforcement 

 

  

  

Figure 44: Experimental and numerical results of strains in the FRP longitudinal reinforcmenet for 

tests S2AN-0.8-3, S4AH-0.8-7, S8BH-0.8-15 and S10CN-0.7-19 

  

-2

0

2

4

6

8

0 1 2 3 4 5 6

ε 
[‰

 ]

L [m]

S2AN-0.8-3

V= 100 kN numerical V= 100 kN experimental

V= 200 kN numerical V= 200 kN experimental

V= 300 kN numerical V= 300 kN experimental

V= 326 kN numerical V= 326 kN experimental

-1

0

1

2

3

4

5

0 1 2 3 4 5 6

ε 
[‰

 ]

L [m]

S4AH-0.8-7

V= 100 kN numerical V= 100 kN experimental

V= 200 kN numerical V= 200 kN experimental

V= 300 kN numerical V= 300 kN experimental

V= 326 kN numerical V= 326 kN experimental

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6

ε 
[‰

 ]

L[m]

S8BH-0.8-15

V= 100 kN numerical V= 100 kN experimental

V= 250 kN numerical V= 250 kN experimental

V= 400 kN numerical V= 400 kN experimental

V= 439 kN numerical V= 439 kN experimental

-1

0

1

2

3

4

5

0 1 2 3 4 5 6

ε 
[‰

 ]

L [m]

S10CN-0.7-19

V= 100 kN numerical V= 100 kN experimental

V= 200 kN numerical V= 200 kN experimental

V= 250 kN numerical V= 250 kN experimental

V= 304 kN numerical V= 304 kN experimental

62 

 



4.3.2.3 Strains in the FRP transversal reinforcement 
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Figure 45: Experimental and numerical results of strains in stirrups along the length of the beam for 

tests S2AN-0.8-3, S4AH-0.8-7, S8BH-0.8-15 and S10CN-0.7-19 
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4.3.2.4 Longitudinal strains in concrete 

 

  

  

Figure 46: Experimental and numerical results of longitudinal concrete deformation for tests S2AN-

0.8-3, S4AH-0.8-7, S8BH-0.8-15 and S10CN-0.7-19 
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4.3.2.5 Transversal strain in the concrete web 

 

  

  

Figure 47: Numerical and experimental of transversal strain in the concrete web results for tests 

S2AN-0.8-3, S4AH-0.8-7, S8BH-0.8-15 and S10CN-0.7-19 
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5 Conclusions 

This work was motivated by the increasing popularity of FRP composites in the field of structural 

engineering. The advantages offered by the FRP as passive reinforcement lies largely in its 

resistance to corrosion, high strength and stiffness and low weight when compared to steel. 

However the application of this material in construction is still limited by the lack of experimental 

and numerical investigations that can support reliable codes of practice. This is especially 

problematic in the shear mechanisms, as this problem is not even yet solved for traditionally 

reinforced concrete structures with steel.  

Experimental works allied to numerical simulations can contribute to a better understanding of 

this specific structural problem. 

This thesis provides a discussion of the state of the art on the problematic of FRP reinforcement 

and the resistance of shear. An experimental campaign available in literature, with concrete 

specimens with longitudinal and transversal reinforcement, tested in shear, was simulated 

numerically by means of FE model.  

Concerning the overall experimental results reported in the literature, FRP RC beams present 

different shear failure modes when compared with the traditional RC beams: either present 

failure due to rupture of the FRP stirrups in the bent zone or fail due to concrete crushing of the 

struts between inclined shear cracks or due to crushing at the concrete chord. These failure 

mechanisms observed in the experiments should be considered in the formulation of the 

theoretical models to evaluate the shear strength of FRP RC beams with FRP stirrups. In this 

sense, numerical models can bring an important contribution. 

In this thesis, the numerical results obtained through the use of 1D fiber model, CONSHEAR, were 

compared to the experimental ones conducted by (Kurth 2012) in terms of ultimate load, 

displacements, strains in the concrete, longitudinal and transversal FRP reinforcement and 

diagonal cracking pattern 

  

67 

 



The following conclusions can be drawn from the studies performed: 
 

1. The 1D model reproduces with reasonable accuracy the ultimate load, the load–deflection 

behaviour, the longitudinal and transversal strains in the concrete, the strains in the 

longitudinal FRP reinforcement with increasing load.  

2. Regarding the strains in the transversal FRP reinforcement a general acceptable fitting 

resulted, considering that the strain peaks are not possible to be captured by a numerical 

model that is based on the smeared crack approach.  

3. As observed the numerical results of shear deflections at mid-span present higher 

estimations of shear displacement, this might be due to an overestimation of the concrete 

tensile strength that is difficult to measure and elasticity modulus. Another cause for this 

overestimation is the fact that the program is based on the smeared crack approach 

which ignores localized crack behaviour such as slip between crack boundaries and bond-

slip of the tension chord.  

4. The cracking behaviour was obtained in terms of crack width and cracking patterns for 

different load levels. The model slightly overestimates the maximum and the average 

crack widths. The model is capable to obtain the development of damage with increasing 

load in terms of number, inclination and height of cracks. 

5. Regarding the failure modes in the experiments with high shear reinforcement ratios, 

from ρw = 2.22% to ρw = 2.26%, failure occurred by crushing of concrete in the web. The 

specimens with lower shear reinforcement ratios (ρw = 0.45 and 0.75%) and presented 

failure of the transversal  reinforcement, due to a combined shear-tensile stress locally 

present in the region of the main  shear crack, and the specimens with medium shear 

reinforcement ratios (ρw=1.26%) presented both types of failure. 

6. The failure of the tested FRP stirrups always occurred at the bent zone due to the bending 

of the FRP bars into the stirrups configuration, significantly reduces its strength at the 

bent portions, due to their unidirectional characteristics. 
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7. In case that a local rupture of the stirrups at the bent zone does not occur, and due to the 

high strength of the FRP rebars, a concrete crushing failure at the compression chord can 

develop at the load application point  

8. The strain in the bent zone is bigger 9.21‰ compared to 7.91 ‰ down, and 6.73‰ up, 

that is because the stirrups are more loaded when there is more damage, which is the 

bottom of the beam. When the cracking propagates to the top, the stirrups start to carry 

load. 

9. Regarding the strains in the longitudinal reinforcement, a good fit is obtained for lower 

and high load levels. It should be noted that a good correspondence between the 

experimental and numerical results is only possible to work with models that take into 

account the shear, so that the increase in deformation of the longitudinal reinforcement 

because of the shear effect is considered. 

10. Referring to the strains in the concrete the numerical model is capable of capturing the 

start of the diagonal cracking that corresponds to the load level for which the strains 

increase abruptly, tough slightly overestimates the starting crack force. 

This work opened the following future lines of work: 

- Validate the numerical model more deeply by simulating more tests from the 

experimental database of (Kurth 2012) and others  

- Compare the second test of this experimental campaign using a phased analysis to 

capture the damage produced by the first set of tests. 

- Analyze the influence of the effective flange width in the shear resistance predicted by the 

numerical model by comparing several numerical analysis with different areas of the 

compressed flange contributing to the shear resistance. 

- Compare the maximum strains in FRP in the bent zone with the limits imposed by actual 

codes and proposals and discuss if these are over-conservative and contribute to a more 

efficient determination of this limitation. 

- Use the validated numerical model to develop new analytical equations for design.  
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