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basat en raonament fuzzy de Tipus-2.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
joelqv8@gmail.com


Contents

English Abstract i

Spanish Abstract ii

Catalan Abstract iii

List of Figures vi

List of Tables vii

Abbreviations viii

Symbols ix

1 Introduction 1

1.1 Practical problem involved . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 HER2 positive breast cancer . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Diagnostic procedure for HER2 cancer . . . . . . . . . . . . . . . . 2

1.2 System function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Problem and formulation of the concept 4

2.1 Proposition to solve the problem . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Image feature extractor . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Fuzzyfication interface . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Pawlak’s Information System . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Inference Mechanism for 2-Type Fuzzy Sets . . . . . . . . . . . . . 7

2.2 Conceptual scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Theoretical background 9

3.1 Fuzzy sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Type-1 Fuzzy sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1.1 Formulation of fuzzy sets . . . . . . . . . . . . . . . . . . 9

3.1.1.2 Fuzzy logic systems . . . . . . . . . . . . . . . . . . . . . 10

3.1.2 Type-2 Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2.1 Interval Type-2 Fuzzy Sets . . . . . . . . . . . . . . . . . 11

3.1.2.2 Interval Type-2 Fuzzy Logic Systems . . . . . . . . . . . 12

3.2 Rough sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iv



Contents v

4 Description of the proposed concept 20

4.1 Method applied in UCI dataset . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Method applied in HER-2 histopathology images . . . . . . . . . . . . . . 24

5 Experiments and results 27

5.1 Parameters of Logistic Function . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Conclusions and further research 31

Bibliography 33



List of Figures

1.1 Normal expression of HER2 . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overexpression of HER2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Rule extraction process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Decision making process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 T1 FS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 FLS scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 IT2 FS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 IT2 FS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 HER-2/neu histopathology image . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Logit and Logistic functions . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Steepness and midpoint parameters . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Results with k=0.2 and k=0.6 . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Results with k=1.0, k=1.4 and k=2.0 . . . . . . . . . . . . . . . . . . . . 30

vi



List of Tables

1.1 Categorical classification system based on staining intensity . . . . . . . . 2

4.1 Wisconsin Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 HER-2/neu Dataset Description . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Cells classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 System accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



Abbreviations

HER2 Human Epidermal Growth factor 2

FISH Fluorescence In Situ Hybridisation

RGB Red Green Blue colour model

HSV Hue Saturation Value colour model

T1 FS Type-1 Fuzzy Set

IT2 FS Interval Type-2 Fuzzy Set

AI Artificial Intelligence

FLS Fuzzy Logic Sytem

viii



Symbols

σ standard deviation

x0 expected value

e Euler’s number 2.71828

ix



Chapter 1

Introduction

A clinical decision-support system is any computer program designed to help health-

care professionals to make clinical decisions. In a sense, any computer system that deals

with clinical data or knowledge is intended to provide decision support.[1]

In this thesis a clinical decision support system, designed to assist physicians and other

health professionals with decision making tasks of establishing a diagnosis on the basis

of patient histopathology images, is presented.

1.1 Practical problem involved

Breast cancer is considered as the most common cancer in women and is the first cause

of morbidity due to cancer in women age 20 to 59 years. In approximately 20% of

the diagnosed breast cancers, an overexpression of Human Epidermal Growth Factor

Receptor 2 (HER2/neu) is noted.

1.1.1 HER2 positive breast cancer

HER2-positive breast cancer is a breast cancer that tests positive for a protein called

human epidermal growth factor receptor 2 (HER2), which promotes the growth of cancer

cells.

In about 1 of every 5 breast cancers, the cancer cells have a gene mutation that makes

an excess of the HER2 protein. HER2-positive breast cancers tend to be more aggressive

1
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Figure 1.1: Normal expression
of HER2

Figure 1.2: Overexpression of
HER2

than other types of breast cancer. They are less likely to be sensitive to hormone therapy,

though many people with HER2-positive breast cancer can still benefit from hormone

therapy.[2]

Treatments that specifically target HER2 are very effective. These treatments are so

effective that the prognosis for HER2-positive breast cancer is actually quite good. Main

example for this kind of treatments is trastuzumab.

1.1.2 Diagnostic procedure for HER2 cancer

In the last years a routine diagnostic procedure based on immunohistochemical (IHC)

and fluorescent in situ hybridization techniques (FISH) was established to identify po-

tential responders to trastuzumab therapy, which in numerous studies was shown to

reduce the risk of recurrence and mortality rate in early and advanced stage breast

cancer.

In routine clinical practice, a two-step diagnostic procedure is used for evaluation of

HER2 expression status. At first, in IHC HER2 preparations of paraffin-embedded

breast cancer specimens a visual semi-quantitative examination of membranous cell

staining in tumor cells under a light microscope is performed. For this purpose a cat-

egorical classification system based on staining intensity and its pattern is utilized and

briefly encoded as shown in Table 1.1.

Encoding Meaning

0 no staining
1+ weak membrane staining
2+ nonuniform complete membrane staining
3+ intense membrane staining

Table 1.1: Categorical classification system based on staining intensity
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For trastuzumab treatment cases scored 3+ in the IHC preparations are classified for

the therapy, whereas cases scored 2+ are subjected to further testing with costly FISH

examination to finally determine HER2 expression status. Therefore, it is extremely

needed to introduce less expensive diagnostic process for correct recognition of the

corresponding HER-2/neu classes.

This thesis tries to give a solution to such a problem with the development of a clin-

ical support system tested over over real clinical data of HER-2/neu breast cancer

histopathology images.

1.2 System function

Decision-support programs generally fall into two categories: those that assist healthcare

workers with determining what is true about a patient (usually what the correct diagnosis

is) and those that assist with decisions about what to do for the patient (usually what

test to order, whether to treat).

This research is focused in helping the clinicians about what to do for the patient. In

our case, to decide whether a patient is appropriate for trastuzumab treatment or not.

We would like to introduce the specification of a histopathology decision making support

system, based on Pawlak’s information system concept in combination with Type2-fuzzy

reasoning.

Given breast cancer histopathology images a image feature extractor is used to extract

important features from them and to build a dataset. This dataset has crisp values

(features as red, green and blue from the image given). Therefore, as we want these

values to be fuzzy, a generalisation is used to transform these values into fuzzy values.

Over such a decision table, Pawlak’s data mining concept is applied (which involves

rough sets) in order to generate the optimal set of decision rules.

Next, the so generated decision rules will be transformed into fuzzy rules and exploited

in fuzzy reasoning.

The proposed system is planned to support the recognition process of HER-2/neu

histopathology preparations through microscopy image information analysis.



Chapter 2

Problem and formulation of the

concept

This research tries to give a solution to a classical Data Mining problem. Data Mining

is defined as the procedure of extracting information from huge sets of data. In other

words, we can say that data mining is mining knowledge from data. There are two

forms of data analysis that can be used for extracting models describing important

classes or to predict future data trends. These two forms are as follows: classification

and prediction. Classification models predict categorical class labels; and prediction

models predict continuous valued functions. For example, we can build a classification

model to categorize bank loan applications as either safe or risky, or a prediction model

to predict the expenditures in dollars of potential customers on computer equipment

given their income and occupation.

In our case, we are trying to extract knowledge from clinical data of HER-2/neu breast

cancer histopathology images. This knowledge is used by an inference mechanism to

given a new HER-2/neu breast cancer histopathology image decide the treatment that

should be used in a patient. Therefore, we are dealing with a classification problem.

2.1 Proposition to solve the problem

This research is focused on create an Intelligent Support System using rough sets and

2-Type Fuzzy sets. An Image Feature Extractor is needed to get the most important

4
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features from HER-2/neu breast cancer histopathology images. Therefore, we can divide

the implementation of our system in four different interfaces:

1. Image feature extractor. Extracts the corresponding image features from HER-

2/neu breast cancer histopathology images.

2. Fuzzyfication Interface. Fuzzifies our image features. Generates the corre-

sponding decision table assuming:

• Cells as objects.

• Image features as attributes.

• Attribute values as fuzzy sets (including the decision attribute).

3. Pawlak’s Information System. Eliminates object conflicts, generate attributes

reduct and generates the optimal set of decision rules.

4. Inference mechanism. Define common output of the system interpretable as a

decision making support.

Following subsections explain in more detail these interfaces. However, we will not get

so much into detail with the theory involved. Deep explanation of the theory involved

on it will be followed in next chapters.

2.1.1 Image feature extractor

In the presented system, the input is a set of histopathology images. Each hispathology

image contains different cells. These cells are classified in two different classes regarding

their aggressiveness: low aggressiveness and high aggressiveness. All the information

regarding to the cells (coordinates and relation between axis) is provided. This interface

is used to build a dataset that contains cells as a objects and image feature as attributes

of these cells.

2.1.2 Fuzzyfication interface

This interface is designed to convert controller inputs into information that the inference

mechanism can easily use to activate and apply rules.
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The input of this interface is the dataset given by the Image feature extractor mentioned

above. This dataset has crisp values. Instead, we would like to have linguistic variables,

concretely we use three different linguistic values: low, normal and high to describe all

our features.

We use the following fuzzification concept: for every image feature over the considered

learning set, a Gaussian distribution was generated, which was used to define the fuzzy

set ’medium’ over each image feature:

µmedium = e
−(x−x0)

2

2σ2 ± offset (2.1)

Next, the fuzzy sets ’low’ and ’high’ were defined as follows:

µlow =

 1− e
−(x−x0)

2

2σ2 ± offset : x < x0

0± offset : x ≥ x0

(2.2)

µhigh =

 0± offset : x ≤ x0

1− e
−(x−x0)

2

2σ2 ± offset : x > x0

(2.3)

Notice that the membership function give us a interval. This means that we are using

2-Type Fuzzy Sets.

2.1.3 Pawlak’s Information System

Pawlak’s Information Systems Theory, based on rough sets concepts is applied in this

interface.

This interface has three main functions:

• Eliminate object conflicts, using some kind of approximation - we will talk about

it in next chapters.

• Generate the attributes reduct. Special algorithm for this will be used.

• Generate the minimal set of decision rules that correctly cover the decision prob-

lem. This means excluding the undifferentiating attributes and/or attribute values

and combining information with respect to the decision attribute.
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The rules generated by this interface will be used by our Inference Mechanism in order

to classify our new data (test dataset). Deeper explanation of the methods used for it

are written in following chapters.

2.1.4 Inference Mechanism for 2-Type Fuzzy Sets

Finally, the knowledge achieved from our Learning Dataset will be used by the Inference

Mechanism. When we talk about knowledge we are refering to the rules that has been

generated by our Pawlak’s Information System. Fuzzy control of type 2 are used in our

interface. Therefore, special algorithms for this kind of fuzzy sets are performed. They

will be explained in more detail in following chapters.

2.2 Conceptual scheme

This section provides a conceptual scheme to help the reader understand how works our

system.

The scheme is divided in two: one for the process performed over the Learning Dataset

to get our knowledge database, and another one for the process performed over the

Test/Validation Dataset. The image feature extractor interface is skipped in this place.

We assume that we already have a dataset splitted in two datasets: Learning and Test

Dataset.

Figure 2.1 shows the process performed in our Learning Dataset. The process is per-

formed in two different interfaces: Fuzzyfication Interface and Pawlak’s Information

System Interface. As an output we get the optimal set of rules regarding our data.

Next, the so-generated rules are used by our Inference Mechanism in order to predict the

HER2 overexpression of new cells. As shown in 2.2 the input in this case is a validation

(test) dataset. Through a process that will be explained in more detail in next chapters

our system is able to give a crisp output (a real number). This output is interpretable

as a decision making support.
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Figure 2.1: Rule extraction process

Figure 2.2: Decision making process



Chapter 3

Theoretical background

In this chapter, the preliminaries of fuzzy sets, fuzzy control of Type-2 and rough sets

are described.

3.1 Fuzzy sets

A fuzzy set is a class of objects with a continuum of grades of membership. Such a set

is characterized by a membership (characteristic) function which assigns to each object

a grade of membership ranging between zero and one. The notions of inclusion, union,

intersection, complement, relation, convexity, etc., are extended to such sets, and various

properties of these notions in the context of fuzzy sets are established. In particular, a

separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets

be disjoint.[5]

3.1.1 Type-1 Fuzzy sets

Type-1 fuzzy set (T1 FS) theory was first introduced by Zadeh in 1965 and has been

successfully applied in many areas including modeling and control[7], data mining, etc.

3.1.1.1 Formulation of fuzzy sets

Let X = {x1, x2, ..., xn} ⊆ R be some finite set of elements (domain), then we shall call

’A’ the fuzzy subset of X, if and only if: A = {(x, µA(x))|x ∈ X}, where µA is a function

9
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that maps X onto the real unit interval [0,1], i.e. µA : X → [0, 1]. The function µA is

also known as the membership function of the fuzzy set A, as its values represents the

grade of membership of the elements of X to the fuzzy set A. Here the idea is that we

can use membership functions, as characteristic functions (any crisp set can be defined

by its characteristic function) for fuzzy, imprecisely described sets. Let A and B be two

fuzzy subsets of X, then the basic set operations: union and intersection of A and B,

are defined as follows: µA∪B(x) = max{µA(x), µB(x)}, µA∩B(x) = min{µA(x), µB(x)}.

An example of a T1 FS, X, is shown in Figure 3.1. When only integer numbers are

considered in the x domain, the T1 FS can be represented as {0/2, 0.5/3, 1/4, 1/5,

0.67/6, 0.33/7, 0/8}, where 0/2 means that number 2 has a membership degree of 0 in

the T1 FS X, 0.5/3 means number 3 has a membership degree of 0.5 in the T1 FS X,

etc.

Figure 3.1: T1 FS

3.1.1.2 Fuzzy logic systems

A FLS maps crisp inputs into crisp outputs. It contains four components:

• Rules. Rules may be provided by experts (in our case doctors) or can be ex-

tracted from numerical data. In either case, rules are expressed as a collection

of IF-THEN statements, e.g., IF red is high and green is low THEN cancer is

aggressive.

• Fuzzifier. The fuzzifier maps crisp numbers into fuzzy sets. It is needed in order

to activate rules which are in terms of linguistic variables, which have fuzzy sets

associated with them.

• Inference Engine. The inference engine of the FLS maps fuzzy sets into fuzzy

sets. It handles the way in which rules are combined.
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• Defuzzifier. The defuzzifer maps output sets into crisp numbers. In our case for

example, high values can refer to high cancer HER overexpression.

A Type-1 FLS is depicted in 3.2.[8]

Figure 3.2: FLS scheme

3.1.2 Type-2 Fuzzy Sets

From the very beginning of fuzzy sets, criticism was made about the fact that the mem-

bership function of a type-1 fuzzy set has no uncertainty associated with it, something

that seems to contradict the word fuzzy, since that word has the connotation of lots of

uncertainty.[4]

This thesis is especially focused in Interval Type-2 Fuzzy Sets. Therefore, explicitly for-

mulations of general Type-2 Fuzzy sets will be avoided. For the reader that is interested

in learning about general Type-2 Fuzzy Sets following references are useful. [9–11]

3.1.2.1 Interval Type-2 Fuzzy Sets

Computations using general T2 FSs are very costly. Interval type-2 (IT2) FS , a special

case of type-2 FS, are currently the most widely used for their reduced computational

cost.

An example of an IT2 FS, X̃, is shown in 3.3. Observe that unlike a T1 FS, whose

membership for each x is a number, the membership of an IT2 FS is an interval. For
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example, the membership of number 3 is [0.25, 1], and the membership of number 5 is

[0.75, 1].

Observe also that an IT2 FS is bounded from the above and below by IT2 FSs are

particularly useful when it is difficult to determine the exact MF, or in modeling the

diverse opinions from different individuals. The MFs can be constructed from surveys, or

using optimization algorithms, which are called upper MF (UMF) and lower MF (LMF),

respectively. The area between X and X is the footprint of uncertainty (FOU).[3]

Figure 3.3: IT2 FS

3.1.2.2 Interval Type-2 Fuzzy Logic Systems

A general T2 FLS is depicted in 3.4. It is very similar to the T1 FLS in 3.2, the major

structural difference being that the defuzzifier block of a T1 FLS is replaced by the

output processing block in a T2 FLS.[6]

Figure 3.4: IT2 FS

In practice the computations in an IT2 FLS can be significantly simplified. Consider

the rulebase of an IT2 FLS consisting of N rules assuming the following form:
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Rn: IF xi is X̃n
1 and · · · and xI is X̃n

I , THEN y is Y n n = 1,2,...,N

where X̃n
i (i = 1, . . . , I ) are IT2 FSs, and Y n=[yn, yn] is an interval.

Assume the input vector is x’ = (x′1, x
′
2, . . . , x′I ). Typical computations in an IT2

FLS involve the following steps:

1. Compute the membership of x′i on each Xi
n, [µXn

i
(x′i), µXn

i
(x′i)], i = 1, 2, . . . , I,

n = 1, 2, . . . , N .

2. Compute the firing interval of the nth rule, Fn(x’):

Fn(x’) = [µXn
1
(x′1)×· · ·×µXn

I
(x′I), µXn

1
(x′1)×· · ·×µXn

I
(x′I)] ≡ [fn, f

n
], n = 1, . . . , N

(3.1)

Instead of the product the operator mininum could be used in 3.1. In this research

minimum and maximum operators have been used for AND and OR operators

respectively.

3. Perform type-reduction to combine Fn(x’) and the corresponding rule consequents.

The most commonly used method is the center-of-sets type-reducer. [12]

Ycos(x’) =
⋃

fn∈Fn(x’)
yn∈Y n

∑N
n=1 f

nyn∑N
n=1 f

n
= [yl, yr] (3.2)

It has been show that [12]:

yl = min
k∈[1,N−1]

∑k
n=1 f

n
yn +

∑N
n=k+1 f

nyn∑k
n=1 f

n
+
∑N

n=k+1 f
n
≡
∑L

n=1 f
n
yn +

∑N
n=L+1 f

nyn∑L
n=1 f

n
+
∑N

n=L+1 f
n

(3.3)

yr = min
k∈[1,N−1]

∑k
n=1 f

nyn +
∑N

n=k+1 f
n
yn∑k

n=1 f
n +

∑N
n=k+1 f

n ≡
∑R

n=1 f
nyn +

∑N
n=R+1 f

n
yn∑R

n=1 f
n +

∑N
n=R+1 f

n (3.4)

where the switch points L and R are dtermined by

yL ≤ yl ≤ yL+1 (3.5)
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yR ≤ yr ≤ yR+1 (3.6)

and {yn} and {yn} have been sorted in ascending order, respectively. In order to

compute yl and yr Karnik-Mendel (KM) algorithms [12] are performed as follows:

KM Algorithm for Computing yl:

(a) Sort yn (n = 1, 2, . . . , N) in increasing order and call the sorted yn by the

same name, but now y1 ≤ y2 · · · ≤ yN . Match the weights Fn(x’) with

their respective yn and renumber them so that their index corresponds to the

renumbered yn.

(b) Initialize fn by setting

fn =
fn + f

n

2
(3.7)

and then compute

y =

∑N
n=1 y

nfn∑N
n=1 fn

(3.8)

(c) Find switch point k (1 ≤ k ≤ N − 1) such that

yk ≤ y ≤ yk+1 (3.9)

(d) Set

fn =

 f
n

if n ≤ k

fn if n > k
(3.10)

and compute

y′ =

∑N
n=1 y

nfn∑N
n=1 f

n
(3.11)

(e) Check if y′ = y. If yes, stop and set yl = y and L = k. If no, go to Step f).

(f) Set y = y′ and go to Step c).
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KM Algorithm for Computing yr:

(a) Sort yn (n = 1, 2, . . . , N) in increasing order and call the sorted yn by the

same name, but now y1 ≤ y2 · · · ≤ yN . Match the weights Fn(x’) with

their respective yn and renumber them so that their index corresponds to the

renumbered yn.

(b) Initialize fn by setting

fn =
fn + f

n

2
(3.12)

and then compute

y =

∑N
n=1 y

nfn∑N
n=1 fn

(3.13)

(c) Find switch point k (1 ≤ k ≤ N − 1) such that

yk ≤ y ≤ yk+1 (3.14)

(d) Set

fn =

 fn if n ≤ k

f
n

if n > k
(3.15)

and compute

y′ =

∑N
n=1 y

nfn∑N
n=1 f

n
(3.16)

(e) Check if y′ = y. If yes, stop and set yl = y and R = k. If no, go to Step f).

(f) Set y = y′ and go to Step c).

4. Compute the defuzzified output as:

y =
yl + yr

2
(3.17)

[4, 6, 12]
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3.2 Rough sets

Rough set theory is a new mathematical approach to imperfect knowledge. Rough set

theory has found many interesting applications. The rough set approach seems to be of

fundamental importance to AI and cognitive sciences, especially in the areas of machine

learning, knowledge acquisition, decision analysis, knowledge discovery from databases,

expert systems, inductive reasoning and pattern recognition. [13]

In this research rough set theory is used in the same way as in [14], to identify the reduct

and the optimal set of decision rules, derived from a decision table.

A rough set is interpreted as a formal approximation of a crisp set, by a pair of sets,

which give the so called lower and upper approximation of the original set. Let con-

sider the classical Pawlak’s information system: IS =df (U,A, V, f), where: U is some

universe, A is a set of attributes, V is the attributes domain set V =df
⋃

a∈A Va,

Va - is the domain of the ath attribute (a ∈ A) and f is the information function -

f : U × A → V , ∀x∈U,a∈Af(u, a) ∈ Va. Regarding to the following equivalence relation:

IND(B) =df (x, y) ∈ U × U : ∀a∈Bf(x, a) = f(y, a), where B ⊆ A, the lower and the

upper approximation of a subset of U can be introduced as follows:

B ↓ X =df {x ∈ U : [x]IND ⊆ X}, (3.18)

B ↑ X =df {x ∈ U : [x]IND ∩X 6= ∅},where X ⊆ U and B ⊆ A. (3.19)

The above information system can be interpreted and realized as a classical decision

table (assuming a decision attribute). Using the mathematical apparatus defined for

rough sets, there is possible to identify the reduct and the optimal set of decision rules,

derived from a given decision table. The reduct gives the minimal set of attributes that

fully characterize the knowledge represented in the equivalence class structure. Next,

over the derived reduct, the minimal set of decision rules that cover the corresponding

decision problem, can be generated. Also, if there is data with conflict objects - i.e. two

objects are conflicting when they are characterized by the same values of all attributes,

but they belong to different decision classes, the lower and the upper approximation
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precision can be used to eliminate decision table inconsistency. In our work, we have

used the rough sets to extract optimal set of decision rules, in the following sequence:

1. Design a decision table, regarding to the considered problem (identify the set of

objects, attributes and decision classes).

2. Eliminate object conflicts, using the lower approximation precision: let X ⊆

U(X 6= ∅) and B ⊆ A(B 6= ∅), then the lower approximation precision of the set

X regarding to the ubset B is defined as follows:

γB(X) =df
|B ↓ X|
|U |

(3.20)

3. Generate the attributes reduct: generate discernibility matrix ( M(IS) - discerni-

bility matrix for information system IS: M(IS) =df [mi,j ]i,j=1,...n = {a ∈ A :

f(xi, a) 6= f(xj , a)},where n = |U |) and next apply the Johnson heuristic algo-

rithm for rough set reduction, applied to find single reduct (subset of attibutes).

4. Generate the minimal set of decision rules that correctly cover the decision problem

(see algorithm below).

Algorithm 1 (rule extraction):

To generate the optimal set of rules over adecision table, the folowing steps should be

taken:

Step 1 : Generate the ’Mk’ matrixes (matrixes derived over M(IS), which are used to

define the so called implicants of the considered objects) from the discernibility matrix.

Step 2 : Define the object implicants.

Step 3 : Define the target set of rules.

Step 1:

(k = 1, ..., n = |U |) Let cij are the elements of M(IS), ĉij are the elements of Mk (with

respect to k) and a* is the decision attribute. Then:

For each k = 1, ..., n:

1) If i 6= k then ĉij =df ∅

2) If (ckj 6= ∅) and (dBa ) ∗ (xj) 6= {a∗(xi)}) then ĉij =df ckj ∩B else ĉij =df ∅,

where B ⊆ A and dAa ∗ (xk) =df {v ∈ Va∗|∃y∈U (xi IND y) ∧ a∗(y) = v}
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Example 1: Let consider the following decision table (extended with the corresponding

dA
a * values; A = B = {a,b,c}):

Object a b c a∗ dA
a *

x1 1 0 1 0 {0}

x2 0 0 0 1 {1}

x3 2 0 1 0 {0}

x4 0 0 1 2 {2}

x5 1 1 1 0 {0}

The corresponding discernibility matrix (it has the symmetric property) takes the form:

M(SI) =



∅ · · · · · · · · · · · ·

{a, c} ∅ · · · · · · · · ·

{a} {a, c} ∅ · · · · · ·

{a} {c} {a} ∅ · · ·

{b} {a, b, c} {a, b} {a, b} ∅


Next, applying the Algorithm 1 for k = 1, we can generate the matrix M1:

M1 =
(
∅ {a, c} ∅ {a} ∅

)
as:

dAa ∗(x2), dAa ∗(x4) 6= {0} (j=2,4), thus ĉij = cij∩A(j = 2, 4), so : {a, c}∩A = {a, c}, {a}∩

A = {a}.

Similarly, we can generate the matrixes: M2, M3, M4, M5.

Step 2:

Next, we can determine the set of ’object implicants’ from each matrix:

Implicant 1 : from M1 : x1 ⇒ (a∨ c)∧a (we can simplify, assuming Boolean algebra and

using the corresponding Boolean algebra reduction rules: x∧x = x = x∨x;x∧(x∨y) = x

and x ∨ (x ∧ y) = x) : x1 ⇒ a,

Implicant 2 : from M2: x2 ⇒ c,

Implicant 3 : from M3: x3 ⇒ a,

Implicant 4 : from M4: x4 ⇒ a ∧ c,
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Implicant 5 : from M5: x5 ⇒ a ∨ b.

(intuitively, the object implicants can be considered as indication concerning which at-

tributes are strongly related to which objects).

Step 3:

Finally, using the above implicants, we can generate the target set of rules, derived from

the considered decision table. Each rule concern one decision value and it is derived as

a sum of the object implicants related to that decision, i.e.:

Rule1 : f(x1, a
∗) = f(x3, a

∗) = f(x5, a
∗) = 0: f(x1, a)∨f(x3, a)∨ (f(x5, a)∨f(x5, b))⇒

(decision : 0),

Rule2: f(x2, c)⇒ (decision : 1),

Rule3: f(x4, a) ∧ f(x4, c)⇒ (decision : 2).



Chapter 4

Description of the proposed

concept

The clue of the decision support method presented in this thesis, is our proposition to

combine rough sets and Type-2 fuzzy control, by interpreting the corresponding features,

derived from HER-2/neu histopathology images, as domains over which fuzzy sets are

defined. This allows to use the fuzzy control concept to generate numerical outputs and

then decision values.

However, our system can work in several different kinds of data due that the feature

extractor interface is independent from the fuzzyfier and inference interface. This re-

search is mainly focused in demonstrate that the combination of rough sets to obtain

the optimal set of rules and Type-2 fuzzy control as a inference mechanism can be used

as a decision making support system. This chapter, is divided in two different sections.

The first one is independent from the feature extractor interface. We used data from [15]

that has been already tested and demonstrated that can be used in classification tasks.

The second one, is focused in the application of the whole procedure using HER-2/neu

histopathology images as input.

4.1 Method applied in UCI dataset

In order the test the effectiveness of rough sets and Type-2 fuzzy control a data set from

UCI repository has been chosen. Breast Cancer Wisconsin (Diagnostic) Dataset [16] has

20
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# Attribute Domain

1 Sample Code Number id number
2 Clump Thickness 1-10
3 Uniformity of Cell Size 1-10
4 Uniformity of Cell Shape 1-10
5 Marginal Adhesion 1-10
6 Single Epithelial Cell Size 1-10
7 Bare Nuclei 1-10
8 Bland Chromatin 1-10
9 Normal Nucleoli 1-10
10 Mitoses 1-10
11 Class: 0-bening, 1-malignant

Table 4.1: Wisconsin Dataset Description

been chosen as our dataset due to the similarities (clinical purpose) with our real input

data - HER-2/neu histopathology images. The dataset consists in 699 instances with 10

attributes each:

The distribution between the classes is: Benign: 458 instances (65.5%), Malignant: 241

(34.5%).

The dataset has been divided in two: Learning Dataset and Validation Dataset. As

explained in Chapter 2 different procedures are applied for each dataset. The main

objective with our Learning Dataset is to extract knowledge (in our case fuzzy rules).

This fuzzy rules will be used by our inference mechanism to predict the decision value

in our validation set.

As shown in 2.1 our input is a crisp dataset. We need to transform this crisp dataset

into a fuzzy dataset.

We use the following fuzzification concept: for every feature over the considered learn-

ing set, a Gaussian distribution was generated, which was used to define the fuzzy set

medium over each feature: µmedium = e
−(x−x0)

2

2σ2 , where x0 is the expected value and σ

is the standard deviation. Next, the fuzzy sets ’low’ and ’high’ were defined as follows:

µlow =

 1− e
−(x−x0)

2

2σ2 : x < x0

0 : x ≥ x0

, µhigh =

 0 : x ≤ x0

1− e
−(x−x0)

2

2σ2 : x > x0
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For instance, let 1000025 be the Sample Code Number of one of our objects and Thick-

ness(1000025)=5 the value of the attribute Thickness for our object. Then, f(1000025,

Thickness)=’medium’ if and only if µmedium(x1000025) > max(µlow(x1000025), µhigh(x1000025)).

One of the most important factors in classifying a tumor as benign or malignant is

its invasive potential. Therefore, we can consider the decision attributes as fuzzy sets

regarding the invasive potential of the tumour. The decision attribute benign will be

represented as a fuzzy set that means ’low invasive potential’ and the decision attribute

malignant will be represented as a fuzzy set meaning ’high invasive potential’. This fuzzy

sets will be used in our conclusions using the well-known Logistic function. Therefore,

we define the membership of the fuzzyset ’high invasive potential’ as µhighINV = 1
1+e−x

and the membership of the fuzzy set ’low invasive potential’ as µlowINV = 1− 1
1+e−x . The

process for the object confliction elimination, the attributes reduction and the generation

of optimal set of rules has been already explained in chapter 3. Next, the generated fuzzy

rules were exploited by our inference mechanism. In order to test the improvement that

Type-2 fuzzy control can achieve both Mamdani reasoning and Type-2 fuzzy control

using KM algorithms explained in previous chapters were implemented and tested.

For better explanation, let consider next example:

Example:

Let suppose that we have the following learning dataset:

Object feature1 feature2 Decision

C1 medium large D2

C2 small medium D1

C3 large medium D2

We have three different fuzzy sets: {small, medium, large} defined over the domain of

the considered features.

Then we propose the following interpretation of information functions:

f(C1, feature1) =′ small′ ⇐⇒ ’feature of C1 is small.

i.e. µsmall(xC1) > max{µmedium(xC1), µlarge(xC1)}, x ∈ feature1.

Next, let suppose that we have generated the following set of decision rules over the

decision table:
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- f(C1, feature1) ∨ f(C2, feature2)→ decision: D1

- f(C3, feature1) ∧ f(C3, feature2)→ decision: D2

Thus, we propose the following interpretation of the above rules in terms of fuzzy rules:

- IF (feature1 is ’medium’) ⊕ (feature2 is ’medium’) THEN (decision is D1)

- IF (feature1 is ’large’) ⊗ (feature2 is ’medium’) THEN (decision is D2)

where ⊗, ⊕ are assumed as the Zadeh’s triangular norms.

Once, if we derive the set of fuzzy rules that correspond to the considered problem, we

are able to apply Type 2 fuzzy logic reasoning.

For better understanding an input example is shown.

The input for the inference mechanism is the validation dataset. The validation data

set contains different objects. Same process to give a decision value is applied for all of

them. Let consider an example:

Object feature1 feature2 Decision

T1 233 26 D2

T2 111 233 D1

We need to compute the membership of each value to the corresponding fuzzy sets.

Remember that Gaussian distribution with an offset number is used to model our fuzzy

sets. Let assume that we get these values for the object T1:

1. [µsmall(feature1), µsmall(feature1)] = [0.2, 0.3]

2. [µmedium(feature1), µmedium(feature1)] = [0.45, 0.55]

3. [µlarge(feature1), µlarge(feature1)] = [0.9, 1.0]

4. [µsmall(feature2), µsmall(feature2)] = [0.77, 0.87]

5. [µmedium(feature2), µmedium(feature2)] = [0.23, 0.33]

6. [µlarge(feature2), µlarge(feature2)] = [0.05, 0.15]

Then we need to compute the firing intervals of the two rules:

1. R1 → [f1, f
1
] = [max(0.45, 0.23), max(0.55, 0.33)] = [0.45,0.33]
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2. R2 → [f2, f
2
] = [min(0.9, 0.23), min(1.0, 0.33)] = [0.23,0.33]

Finally, getting the corresponding interval consequents using the appropiate function

-Logit function in our case- we can apply KM algorithms to generate a crisp output.

The experiment in this case was quite simple but enough to show the success of applying

Type-2 fuzzy control. The dataset for validation consisted on 233 objects, the rest were

used as a learning dataset. With the optimal threshold value the results were 78% in the

case of Mamdani Reasoning and 98% in the case of Type-2 control. Note that the theory

for Mamdani Reasoning has been avoided in this thesis. For more information about

Mamdani check [17] or [14] where the research was focused in this kind of reasoning.

4.2 Method applied in HER-2 histopathology images

From the very beginning we wanted to apply the specificated methodology in real clinical

data of HER-2/neu breast cancer histopathology images. Therefore, in this case our

input is not already a prepared dataset but images. A feature extractor is needed in

order to extract to corresponding features of these images. An example of an HER-2/neu

breast cancer histopathology is shown in 4.1

Figure 4.1: HER-2/neu histopathology image

Specific cells have been chosen by experts to be analysed (those that were more difficult

to determine whether they were aggressive or not). In order to extract the corresponding

features of these cells a text file was provided with the coordinates of the cells and all the

information needed to determine whether a pixel belonged to a determined cell or not.

With all this information the feature extractor is used to build a dataset considering
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each cell an object and the features of the cells as attributes. The dataset is composed

in the following way:

Attr name Definition Domain

I Intensity [0,255]
R R Mean Red Value (RGB Model) [0,255]
R G Mean Green Value [0,255]
R B Mean Blue Value [0,255]
E R Mean Amount of Red R
E G Mean Amount of Green R
E B Mean Amount of Blue R
V Mean Value Value (HSV Model) [0,255]
S Mean Saturation Value [0,255]
H Mean Hue Value [0,255]

*Class Level of aggressiveness of the cell {1,2}

Table 4.2: HER-2/neu Dataset Description

The built database consists in more than 1,500 objects (cells), each of them with a deci-

sion value that give us the aggressiveness of the cell regarding to HER-2 overexpression.

These decision are given by experts, previously diagnosed by FISH examination.

The fuzzification of the considered image features is applied in the same way as in the

UCI Dataset. Actually, all the procedure from now and on is the same as in the UCI

Dataset. Therefore, we have defined three fuzzy sets: small, medium and large over

any feature image. We can consider the decision attributes as fuzzy sets regarding the

invasive potential of the tumour.

The conclusions of the rules will be intervals defined by the logistic function (as previ-

ously). Let us explain this deeper. In order to have intervals from the domain of our

logistic functions following procedure is performed:

• Computation of the firing intervals for each rule. The intervals will belong

to [0, 1]2 due the codomain of our antecedents (Gaussian density function).

• Logit function. We compute the logit function with our firing intervals. This

will give us the domain of the Logistic function.

Y n = [yn, yn] = [Logit(fn), Logit(f
n
)]

Fig 4.2 show logit and logistic function respectively. Blue plot represents the conclusion

’high aggressiveness’ and red plot represents ’low aggressiveness’ conclusion.
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Once we have our intervals defined KM algorithms explained in Chapter 3 are used to

compute an output.

Figure 4.2: Logit and Logistic functions

These values can be interpretable as a decision making support. The way we have defined

the conclusions mean that high output values refer to high cancer HER overexpression

and thus appropriate for trastuzumab treatment. The HER2 overexpression is related

(in terms of histopathology HER2 image information) to darker cell membrane staining.

So, the HER2 overexpresion is related to high system output values, which is very

important information for physicians. This can be also used for decision making in

quantitative manner, i.e. IF most of the cell values of a considered HER2 image are

≤ T (where T is a priori given threshold value), THEN classify as appropriate for

trastuzumab treatment ELSE classify as not appropriate for trastuzumab treatment.



Chapter 5

Experiments and results

In order to test the accuracy of our system we have tried to predict the aggressiveness

of the cells. To do this, a reasonable threshold value has been chosen to differentiate

the output between different classes, i.e. IF output ≤ T =⇒ aggressiveness is low,

ELSE =⇒ aggressiveness is high. Some results for specific marked cells are shown

in 5.1. It is clear that a threshold value can be used to differentiate between the two

different classes.

A simple cross validation has been used, concretely 5-fold validation. The original sample

was partitioned into 5 equal sized subsamples. Of the 5 subsamples, a single subsample

is retained as the validation data for testing the model, and the remaining 4 subsamples

were used as training data. The cross-validation process is then repeated 5 times (the

folds), with each of the 5 subsamples used exactly once as the validation data. The

results achieved are shown in 5.2.

It should be noticed that different parameters are possible to change in case of Type-2

fuzzy control. In our case we have used an offset (for the membership of Type-2 fuzzy

sets) and a threshold value chosen by us, i.e. not optimization method has been in-

volved to test optimal offset and threshold values. Furthermore, different functions in

antecedents and in consequents could be implemented. In this case, we have generalized

our image features using Gaussian density functions and our conclusions using Logis-

tic functions (Gaussian in Mamdani conclusions, Logistic in type-2) but this is not a

constraint, some other functions can be tested.

27
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Histopathology image and FISH diagnose Marked cell zoom and system output

High aggressiveness System output: 3.1275

High aggressiveness System output: 2.50797

Low aggressiveness System output: -0.731943

Low aggressiveness System output: -0.976381

Table 5.1: Cells classification

5.1 Parameters of Logistic Function

Previous experiments were performed with the most basic Logistic Function: f(x) =

1
1+e−t . However, this function can be extended using two new parameters:
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f(x) =
1

1 + e−k(x−x0)
(5.1)

where x0 is the x-value of the sigmoid’s midpoint and k is the steepness of the curve.

Figure 5.1: Steepness and midpoint parameters

Figure 5.1 shows how different parameters for Logistic Function. Notice how steepness

change the slope of the curve, it makes it smoother the curve while decreasing the

value. And, the parameter midpoint change the crossing point in the x-axis between the

functions.

Several experiments with different parameters were performed. In order to automatise

the process the threshold value to decide whether a cell is aggressive or not is automati-

cally calculated as: T = (y0+y2)
2 , where y0 and y2 are the mean of the defuzzified values

in decision value 0 and 2 respectively. The dataset partition used for this experiment is

the #1 in Table 5.2. The results are shown in Figs. 5.2 and 5.3.

It has been shown that the accuracy of the system can be extremely different with

different parameters. Therefore, an optimization method to find the optimal crossing

# Mamdani Reasoning (%) Type-2 fuzzy control (%)

1 75.37 74.16
2 77.20 74.77
3 76.29 74.77
4 65.88 65.80
5 65.65 67.17

Table 5.2: System accuracy
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Figure 5.2: Results with k=0.2 and k=0.6

Figure 5.3: Results with k=1.0, k=1.4 and k=2.0

point and the optimal steepness of the curve could arise the accuracy of the system.



Chapter 6

Conclusions and further research

The contemporary for breast cancer diagnosis is visual examination of microscopic biopsy

images. Nevertheless, manual expert classification is both inefficient and ineffective,

hence more robust and automatic approach is needed. In this thesis, an histopathology

decision making support system, based on rough sets and type-2 fuzzy control for HER-

2/neu image analysis is presented.

In presented solution, preprocess phase enables to focus on the most crucial parts of

biopsy image, the cells themselves. Applying fuzzy sets to features vector helps to

reflect fuzzy characteristic of image attributes, providing more appropriate description

then crisp value. The rough sets successfully helped to reduce features vector and remove

conflicting objects from dataset, providing foundation for more efficient classification.

Lastly, fuzzy rules and fuzzy control system along with Mamdani reasoning leads to

precise classification. System accuracy is estimated as 70% concordance with conclusive

FISH test. However, our results with UCI dataset were around 98% which means that

the approach is good but the current vector features is not enough good.

There are several ways to improve the presented work. Mainly, a better feature vector

should be provided, i.e. improving the feature extractor interface. Currently it only

give us colour-related attributes. There are many other features important to decide

the HER2 overexpression of a cell such as shape related attributes, texture analysis, etc.

Secondly, we have used a narrow range of values for offset and threshold parameters and

we selected specific functions. A further research in what functions are more appropiate

to use both in rules’ antecedents and consequents would be useful as well as the use

31



Problem and formulation of the concept 32

of optimization methods to find optimal parameters. Finally, the dataset used in this

research should be enlarged to provide more accurate results, which would be essential

to test presented approach before using the system in clinical settings.
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