
RADIO: Managing the Performance of
Large, Distributed Storage Systems

Scott A. Brandt
and

Carlos Maltzahn, Anna Povzner, Roberto Pineiro,
Andrew Shewmaker, and Tim Kaldewey

Computer Science Department
University of California Santa Cruz

and
Richard Golding and Ted Wong, IBM Almaden Research Center

UPC—July 7, 2009

Who am I?

• Professor, Computer Science
Department, UC Santa Cruz

• Director, UCSC/LANL Institute
for Scalable Scientific Data
Management (ISSDM)

• Director, UCSC Systems
Research Laboratory (SRL)

• Background

• 1999 Ph.D. CS, Colorado

• 1987/1993 B. Math/MS CS, Minnesota

• 1982-1994 Programmer/Research
Scientist/VP, CPT, B-Tree, Honeywell
SRC, Theseus Research, Alliant
TechSystems RTS, Secure Computing

• My Research

• High-performance petascale
storage

• Real-time systems

• Performance management and
virtualization

• Active object-based storage

• Other Research

• Secure operating systems

• Asynchronous circuits

• Real-time image processing

Distributed systems need performance
guarantees

• Many distributed systems and applications need (or want) I/O
performance guarantees
• Multimedia, high-performance simulation, transaction processing,

virtual machines, service level agreements, real-time data capture,
sensor networks, ...

• Systems tasks like backup and recovery

• Even so-called best-effort applications

• Providing such guarantees is difficult because it involves:
• Multiple interacting resources

• Dynamic workloads

• Interference among workloads

• Non-commensurable metrics: CPU utilization, network
throughput, cache space, disk bandwidth

In a nutshell

• Big distributed systems
• Serve many users/jobs

• Process petabytes of
data

• Data center design
• Use rules of thumb

• Over-provision

• Isolate

• Ad hoc per formance management
approaches creates marginal storage systems
that cost more than necessary

• A better system would guarantee each user
the performance they need from the CPUs,
memory, disks, and network

Outline

1. Problem: Managing the performance of large,
distributed storage systems

2. Approach: End-to-end performance management

3. Model: RAD

4. Instances:
• Disk

• Network

• Buffer cache

5. Application: Data Center Performance Management
and Monitoring

End-to-end I/O performance guarantees

• Goal: Improve end-to-end performance management in
large distributed systems
• Manage performance

• Isolate traffic

• Provide high performance

• Targets: High-performance storage (LLNL), data centers
(LANL), satellite communications (IBM), virtual machines
(VMware), sensor networks, ...

• Approach:
1. Develop a uniform model for managing performance

2. Apply it to each resource

3. Integrate the solutions

Our current target

• High-performance I/O
• From client, across network, through server, to disk

• Up to hundreds of thousands of processing nodes

• Up to tens of thousands of I/O nodes

• Big, fat, network interconnect

• Up to thousands of storage nodes with cache and disk

• Challenges
• Interference between I/O streams, variability of

workloads, variety of resources, variety of applications,
legacy code, system management tasks, scale

Stages in the I/O path

client

cache

network

transport

disk
storage

cache

network

transport

flow
control
with one
client

connection
management
between
clients

IO selection
and head
scheduling

prefetch and
writeback
based on
utilization, QoS

app

app

I/O

scheduler

client

cache

network

transport

app

app

integration
between
client and
server cache

1. Disk I/O

2. Server cache

3. Flow control across network

• Within one client’s session and between clients

4. Client cache

System architecture

Client

Storage
Server

QoS
Broker

Storage
Server

Storage
Server

Storage
Server

Request

Reservation

Utilization
reservations

1

2

3

4

Network
Server Caches

Disks
• Client: Task, host, distributed

application, VM, file, ...

• Reservations made via broker

• Specify workload: throughput,
read/write ratio, burstiness, etc.

• Broker does admission control

• Requirements + workload are
translated to utilization

• Utilizations are summed to see if
they are feasible

• Once admitted, I/O streams are
guaranteed (subject to workload
adherence)

• Disk, caches, network
controllers maintain guarantees

I/O

Achieving robust guaranteeable resources

• Goal: Unified resource management algorithms
capable of providing
• Good performance

• Arbitrarily hard or soft performance guarantees with
• Arbitrary resource allocations

• Arbitrary timing / granularity

• Complete isolation between workloads

• All resources: CPU, disk, network, server cache, client
cache

➡Virtual resources indistinguishable from “real”
resources with fractional performance

Isolation is key

• CPU
• 20% of a 3 Ghz CPU should be indistinguishable

from a 600 Mhz CPU

• Running: compiler, editor, audio, video

• Disk
• 20% of a disk with 100 MB/second bandwidth

should be indistinguishable from a disk with 20
MB/second bandwidth

• Serving:1 stream, n streams, sequential, random

Scott’s epistemology of virtualization

• Virtual Machines and LUNs provide good HW
virtualization

• Question: Given perfect HW virtualization, how
can a process tell the difference between a virtual
resource and a real resource?

• Answer: By not getting its share of the
resource when it needs it

Observation

• Resource management consists of two
distinct decisions
• Resource Allocation: How much resources to

allocate?
• Dispatching: When to provide the allocated

resources?

• Most resource managers conflate them
• Best-effort, proportional-share, real-time

Separating them is powerful!

• Separately managing
resource allocation
and dispatching
gives direct control
over the delivery of
resources to tasks

• Enables direct,
integrated support
of all types of
timeliness needs

R
es

ou
rc

e
A

llo
ca

tio
n

Missed
Deadline

SRT

Dispatching
unconstrained

un
co

ns
tra

in
ed

co
ns

tra
in

ed

Resource
Allocation

SRTSoft
Real-
Time

Best
Effort

CPU-
Bound

 I/O-
Bound

Hard
Real-
Time

Rate-Based

constrained

The resource allocation/dispatching
(RAD) scheduling model

Rate

Deadlines

Dispatcher
Series of
jobs w/

budgets and
deadlines

Share of
resources

Times at
which allocation
must equal share

Process

Supporting different timeliness
requirements with RAD

Hard
Real-time

Rate-
based

Best-
effort

Soft
Real-time

Rate

Deadlines

Dispatcher

Scheduling
Mechanism

Runtime
System

Rate
Bounds

Period
WCET

Period
ACET

Priority

PiPiPiPi

Set of
jobs w/

budgets and
deadlines

Scheduling
Policy

Rate-Based Earliest Deadline (RBED) CPU scheduler

Rate

Deadlines

EDF +
timers

Scheduling
Policy

Scheduling
Mechanism

Runtime
System

Set of
jobs w/

budgets and
deadlines

• Processes have rate & period
• ∑rates ≤ 100%

• Periods based on processing
characteristics, latency needs, etc.

• Jobs have budget & deadline
• budget = rate * period

• Deadlines based on period or
other characteristics

• Jobs dispatched via Earliest
Deadline First (EDF)
• Budgets enforced with timers

• Guarantees all budgets &
deadlines = all rates & periods

Adapting RAD to disk, network, and buffer cache

• Fahrrad—Guaranteed disk request
scheduling
Anna Povzner (UCSC)

• RADoN—Guaranteeing storage network
performance
Andrew Shewmaker (UCSC and LANL)

• Radium—Buffer management for I/O
guarantees
Roberto Pineiro (UCSC)

Disk

Guaranteed disk request scheduling

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Good I/O performance

• Challenging because disk I/O is:
• Stateful

• Non-deterministic

• Non-preemptable, and

• Best- and worst-case times vary by 3–4 orders of
magnitude

Fahrrad

• Manages disk time instead
of disk throughput

• Adapts RAD/RBED to
disk I/O

• Reorders aggressively to
provide good
performance, without
violating guarantees

A B C BE

Disk

I/O streams

Fahrrad

A bit more detail

• Reservations in terms of disk time utilization and
period (granularity)

• All I/Os feasible before the earliest deadline in the
system are moved to a Disk Scheduling Set (DSS)

• I/Os in the DSS are issued in the most efficient way

• I/O charging model is critical

• Overhead reservation ensures exact utilization
• 2 WCRTs per period for “context switches”

• 1 WCRT per period to ensure last I/Os

• 1 WCRT for the process with the shortest period due
to non-preemptability

Fahrrad outperforms Linux

• Workload
• Media 1: 400 sequential I/Os per second (20%)

• Media 2: 800 sequential I/Os per second, (40%)

• Transaction: short bursts of random I/Os at random times (30%)

• Background: random (10%)

• Result: Better isolation AND better throughput

Linux Linux w/Fahrrad

New work: virtual disks

• Provide workload-independent performance
guarantees

• Isolate from other workloads concurrently
accessing the device

• LUNs virtualize
storage capacity

• Fahrrad virtualizes
storage
performance

Fahrrad virtual disks

• Implemented with the Fahrrad real-time I/O
scheduler

• Guarantee reserved and isolated share of the
time on storage device
• Hard guarantees on performance isolation

• Virtual disk throughput same as equivalent
standalone throughput

• Amount of data transferred:
• ∀i, Di(x%, t) = Di(100%, x%·t)

Share of
disk

Time Share of
disk

Time

Guaranteeing performance isolation

• Virtual disk reservation: disk share (utilization)
and time granularity (period)
• Account for all extra (inter-stream) seeks

• Reserve overhead utilization to do them

• Charge each I/O stream for all of the time it uses,
including inter- and intra-stream seeks

• Reservation = Disk Share + Overhead utilization

25%, 1 sec

30%, 250 ms

19%, 1 min

Disk time

Extra seeks

• Intra-stream seeks caused by workload

• Inter-stream seeks caused by reservations
• Low time granularity causes more frequent seeks

• At most two extra seeks per stream per period
• To and away from the stream to meet deadlines

➡Extra seeks caused by un-queued requests

Charging model and reservations

• Charge streams responsible for inter-stream seeking
• From overhead: for seeks caused by reservations

• From reservation: for seeks caused by bursty behavior

• Overhead utilization needed for hard guarantees

• Overhead utilization = WCRT/p + 2*WCRT/p + WCRT/p

• We can trade-off hard guarantees for lower overhead
by assuming less than worst-case request time

Guarantee
reserved
utilization

Account for
inter-stream

seeks

Maintain 2
outstanding

requests

• Throughput is determined by reservation and
workload

 0

 100

 200

 300

 400

 500

 0.01 0.1 1 10 100 1000

A
m

o
u

n
t
o
f

d
a
ta

 t
ra

n
sf

e
re

d
 [

M
B

]

Run length of semi-sequential stream [MB]

Sequential, virtual disk (20% share, 150s)
Semi-sequential, virtual disk (20% share, 150s)

Random, virtual disk (20% share, 150s)

Each virtual disk
reserves 20%
with 1 second

granularity

Performance: guaranteeing throughput

• Throughput is determined by reservation and
workload

Each virtual disk
reserves 20%
with 1 second

granularity

 0

 100

 200

 300

 400

 500

 0.01 0.1 1 10 100 1000

A
m

o
u

n
t
o
f

d
a
ta

 t
ra

n
sf

e
re

d
 [

M
B

]

Run length of semi-sequential stream [MB]

Sequential, virtual disk (20% share, 150s)
Semi-sequential, virtual disk (20% share, 150s)

Random, virtual disk (20% share, 150s)
Sequential, standalone (100%, 30s)

Semi-sequential, standalone (100%, 30s)
Random, standalone (100%, 30s)

Performance: guaranteeing throughput

Performance: Controlling throughput

• Each virtual disk is isolated from the other

• Performance is fully determined by the
reservation and workload

Reserved share for sequential stream Reserved share for sequential stream

D
at

a
tr

an
sf

er
re

d
(M

B)

D
is

k
tim

e
re

se
rv

at
io

n
(%

)

Performance: Controlling latency

• Reservation granularity bounds latency:
• period = latency/2

• Virtual device serves periodic semi-sequential stream and shares storage with
random background stream. Four experiments for different period reservations.

Upper bounds

Fr
ac

tio
n

of
 I/

O
s

Latency Period of virtual disk

U
til

iz
at

io
n

Performance: Isolation guarantees

• Hard guarantees require high overhead
(proportional to reservation granularity)

• Three virtual disks each serving one sequential stream with many
outstanding I/Os share a storage system with a random background stream.

D
is

k
tim

e
re

se
rv

at
io

n
(%

)

Period of virtual disk 3Period of virtual disk 3

D
at

a
tr

an
sf

er
re

d
(M

B)

Performance: Soft guarantees w/isolation

• Overhead based on less than worst-case I/O time

• Increased short term throughput variation
• Virtual disk (10%, 1 sec) runs one sequential stream with 400 IO/sec arrival rate

and shares the system with 5 virtual disks each running one random stream.

•

D
is

k
tim

e
re

se
rv

at
io

n
(%

)

Percentile of observed service timesPercentile of observed service times

D
at

a
tr

an
sf

er
re

d
(%

)

Performance: Soft guarantees w/isolation

• Linux fails to support Cello99 (variation up to 30% from standalone)

• Fahrrad Virtual Disks provide Cello99 and OpenMail performance
close to standalone

• Cello99 and OpenMail virtual disks share the system with random background stream.
•

T
hr

ou
gh

pu
t

(I/
O

s
pe

r
se

co
nd

)

TimeTime

Linux Fahrrad Virtual Disks

Fahrrad Virtual Disks

1. Guarantee throughput by accounting for
overhead and guaranteeing utilization

2. Guarantee isolation between workloads by
accurately accounting for all disk time

3. Provide high throughput (w/guarantees) by
minimizing interference between workloads

4. Result: performance of virtual disk depends
only on reservation, workload, and
performance of device

Guaranteeing storage network performance

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Good I/O performance

• Challenging because network I/O is:
• Distributed

• Non-deterministic (due to collisions or switch
queue overflows)

• Non-preemptable

• Assumption: closed network

What we want

Client

Client

Client

Server

Server

Server

30%

50%

20%

What we have

• Switched fat tree w/full bisection bandwidth

• Issue 1: Capacity of shared links

• Issue 2: Switch queue contention

Congestion in a simple switch model

• Each transmit port
on the switch is a
collision domain

tx/rx
ports

shared

FIFO

switch fabric

1

2

3

4

5

6

7

8

Congestion in a simple switch model

• One of the packets
arriving at the
same switch
transmit port is
delayed on the
queue

switch fabric

1 and 2
congest1

2

3

4

5

6

7

8

1 and 2
send to 5

Congestion in a simple switch model

• Delayed packets
from unrelated
streams affect each
other on the
queue

switch fabric

1 and 2
congest1

2

3

4
3 and 4
congest

2 and 4
congest

5

6

7

8

1 and 2
send to 5

3 and 4
send to 8

TCP

• Those who do not understand TCP are
destined to reimplement it

• Jon Postel

• Ack-clocked flow control

• Packet loss based congestion control

• Sawtooth throughput

• Incast throughput collapse

Network resource usage measurements

• Round trip time RTTi = Ci - Si

• Combines queueing effects on forward and
reverse path + response time

Clock 1

S
i

C
i

Clock 2

Network resource usage measurements

• One-way delay OWDi = Ri - Si

• Isolates queueing affects on forward path, but

• Requires synchronized clocks

Clock 1

S
i

R
i

Clock 2

Network resource usage measurements

• Relative forward delay RFDi,j = (Rj - Ri) - (Sj - Si)

• Isolates queueing affects on forward path, and

• Does not require synchronized clocks
• But they must be relatively stable

Clock 1
S

i

R
i

R
j

S
j

Clock 2

RADoN

• A reservation has a network share (utilization)
and a time granularity (period)

• Two real-time scheduling algorithms
• Earliest Deadline First (EDF) - absolute deadlines

• Least Laxity First (LLF) - relative laxities

now deadline
laxity

release

Approximating optimal scheduling

• Flow control - throttling senders
• Execution time (per period) e = utilization /

period

• Budget in packets m = e / packets_per_second

• Congestion control - avoiding switch
contention (adjust wait time between packets)
• Percent budget %budget = (1 - %laxity) = e/(d-t)

• Packet wait time w = wmin / %budget

• Size change w∆ = -|wi - wmin|/2

• New wait time wi+1 = min(wmax, max(wmin, w∆))

Queue modeling: single network stream

• No contention: 765 Mbps w/no lost packets

 0

 5

 10

 15

 20

 25

 30

 35

 0 5000 10000 15000 20000 25000

Q
u
e
u
e
 D

e
p
th

 (
p
a
c
k
e
ts

)

Packet Sequence Number

basic model
median-filter model

pathload model

Queue modeling: punctuated stream

• Contention: 5 bursts of 250 Mbps

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5000 10000 15000 20000 25000

Q
u
e
u
e
 D

e
p
th

 (
p
a
c
k
e
ts

)

Packet Sequence Number

basic model
median-filter model

pathload model
lost packets

Median filter detects
congestion before
packet loss and
decreasing queue
size after congestion

Queue modeling: punctuated adaptive stream

• Contention: 5 bursts of 250 Mbps

Adapting to median-
filter model decreases
packet loss

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000

Q
u
e
u
e
 D

e
p
th

 (
p
a
c
k
e
ts

)

Packet Sequence Number

basic model
median-filter model

pathload model
lost packets

Userspace RADoN prototype

• Detects congestion using Relative Forward
Delay

• Responds to congestion using RAD real-time
theory

• Decreases packet loss significantly

• Improves goodput

• Requires no global knowledge or
synchronization

• Ongoing: RADoN kernel implementation

Buffer management for I/O guarantees

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Improved I/O performance

• Challenging because:
• Buffer is space-shared rather than time-shared

• Space limits time guarantees

• Best- and worst-case are opposite of disk

• Buffering affects performance in non-obvious ways

Disk

Guarantees in the buffer cache

• Role

• Improve
performance

• Preserve & enhance
guarantees

• App-specific
guarantees:

• Hard at core

• Soft when possible

• Predictable

• Hard isolation

• Device time
utilization

Resource
Broker

App 1

Disk Scheduler

Buffer-Cache

Disk

App 2 App n

App 1 App 2 App n

Dsk

Disk

Buffering roles in storage servers

• Staging and de-staging data
• Decouples sender and receiver

• Speed matching
• Allows slower and faster devices to communicate

• Traffic shaping
• Shapes traffic to optimize performance of

interfacing devices

• Assumption: reuse primarily occurs at the
client

Disk

Radium

• I/O into and out of buffer have rates and
time granularities (periods)

• Period transformation: period into cache may
be shorter than from cache to disk

• Rate transformation: rate into cache may be
higher than disk can support

• Partition cache based on I/O
characteristics and performance
requirements

• Cache policies enhance performance
within constraints determined by I/O
requirements
• Use slack to prefetch reads and delay

writes

Disk

App 1

Disk Scheduler

Buffer-Cache

Disk

App 2 App 3

Enhancing guarantees in the buffer cache

• Reclaim unused resources (e.g., unused overhead)
• Use slack to prefetch reads and delay writes

• Allow more unguaranteed services

• Resource redistribution (buffer swapping)
accommodates burstiness

• Period transformation: period into cache may be
shorter than from cache to disk

• Rate transformation: rate into cache may be
higher than disk can support

Disk

Managing a sequential workload

 0

 3

 6

 9

 12

 15

no-cachemonolithic

Th
ro

ug
hp

ut
 [t

ho
us

an
d

I/O
 p

er
 s

ec
]

Sequential workload
executed in isolation

target performancereservation

 0

 3

 6

 9

 12

 15

no-cache monolithic Radium

Sequential workload
combined with random workload

 (with reservations)

target performancereservation

fifo
noop

deadline
anticipatory

cfq(50%/50%)
quanta(50%/50%, 2 sec)

RAD(50%/50%, 2 sec)

Managing a random workload

 0

 3

 6

 9

 12

 15

no-cachemonolithic

Th
ro

ug
hp

ut
 [t

en
s

of
 I/

O
 p

er
 s

ec
]

Random workload
executed in isolation

target performancereservation

 0

 3

 6

 9

 12

 15

no-cache monolithic Radium

Random workload
combined with sequential workload

(with reservations)

target performancereservation

fifo
noop

deadline
anticipatory

cfq(50%/50%)
quanta(50%/50%, 2 sec)

RAD(50%/50%, 2 sec)

Managing combined workloads

 0

 1

 2

 3

 4

 5

fifonoop
deadline

anticipatory

cfqquanta
RADTh

ro
ug

hp
ut

 [t
ho

us
an

d
I/O

 p
er

 s
ec

] no cache

target performance

Combined throughput of rand.(top) and seq.(bottom) workloads

 0

 1

 2

 3

 4

 5

fifonoop
deadline

anticipatory

cfqquanta
RAD

Monolithic

target performance

Combined throughput of rand.(top) and seq.(bottom) workloads

 0

 1

 2

 3

 4

 5

fifonoop
deadline

anticipatory

cfqquanta
RAD

Radium

target performance

Combined throughput of rand.(top) and seq.(bottom) workloads

Controlling throughput w/mixed workloads

 0
 1000
 2000
 3000
 4000
 5000
 6000

 1500 2500 3500 4500

 677 815 953 1091 1229

Target throughput
 [I/Os per sec]

Radium+RAD

 0
 1000
 2000
 3000
 4000
 5000
 6000

 1500 2500 3500 4500

 677 815 953 1091 1229

Target throughput
 [I/Os per sec]

Radium+CFQ

 0
 1000
 2000
 3000
 4000
 5000
 6000

 1500 2500 3500 4500

 677 815 953 1091 1229

Target throughput
 [I/Os per sec]

Radium+Anticipatory

 0
 1000
 2000
 3000
 4000
 5000
 6000

 1500 2500 3500 4500

 677 815 953 1091 1229

Target throughput
 [I/Os per sec]

Radium+deadline

 0
 1000
 2000
 3000
 4000
 5000
 6000

 1500 2500 3500 4500

 677 815 953 1091 1229

Ac
tu

al
 th

ro
ug

hp
ut

 [I
/O

s
pe

r s
ec

]

Target throughput
 [I/Os per sec]

Radium+FIFO

stream 1, 2 sec
stream 2, 2 sec
Ideal stream 1
Ideal stream 2

 0
 1000
 2000
 3000
 4000
 5000
 6000

 1500 2500 3500 4500

 677 815 953 1091 1229

Ac
tu

al
 th

ro
ug

hp
ut

 [I
/O

s
pe

r s
ec

]

Target throughput
 [I/Os per sec]

Radium+NOOP

Consistent and predictable throughput for arbitrary reservations

Controlling latency w/mixed workloads

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 250 500 750

Cu
m

ul
at

ive
 d

ist
rib

ut
io

n[
%

]

Latency [ms]

Radium+CFQ

Upper boundsUpper bounds

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 250 500 750
Latency [ms]

Radium+RAD

Upper boundsUpper bounds

period 1 sec
 750 ms
 500 ms
 250 ms

Precise control over the service times of each stream

Results w/complex workloads

 0

 20

 40

 60

 80

 100

 0 15 30 45 60 75 90

Av
g.

 th
ro

ug
hp

ut
 [I

O
s

pe
r s

ec
]

Time [sec]

Radium+CFQ

 0

 20

 40

 60

 80

 100

 0 15 30 45 60 75 90
Time [sec]

Radium+RAD
Soft stream 1, period 500 ms
Soft stream 2, period 500 ms

Hard stream 3, period 500 ms
Greedy stream 4, period 1 sec
Greedy stream 5, period 1 sec

Reasonable control with complex workloads

Data center performance management

• Big distributed systems
• Serve many users/jobs

• Process petabytes of
data

• Data center design
• Use rules of thumb

• Over-provision

• Isolate

• Ad hoc performance management creates
marginal storage systems that cost more
than necessary

• A better system would guarantee each user
the performance they need from the CPUs,
memory, disks, and network

Data center performance mgmt. goals

1. A first-principles model for data center perf. mgmt.

2. Full-system performance metrics for client processing
nodes, buffer cache, network, server buffer cache, and
disk

3. Performance visualization by application, client node,
reservation, or device

4. Application workload profiling and modeling

5. Full system performance provisioning and
management based on all of the above

6. Online machine-learning based performance
monitoring for real-time diagnostics

RADIX

• $1 million from UC Lab Fee program

• Based on schedulers and workload-independent
utilization metrics from our E2E QoS research

• Plan
1.Performance model and metrics

2.Tools for profiling, prediction, and planning

3.Operating systems components

4.Performance monitors and visualization tools

• Case study: LANL data centers

Conclusion

• Distributed I/O performance management requires
management of many separate components

• An integrated approach is needed

• RAD provides the basis for a solution

• It has been successfully applied to several
resources: CPU, disk, network, and buffer cache

• We are on our way to an integrated solution

• There are many useful applications: Data center
performance management, full storage
virtualization, ...

