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Who am I?

• Professor, Computer Science 
Department, UC Santa Cruz

• Director, UCSC/LANL Institute 
for Scalable Scientific Data 
Management (ISSDM)

• Director, UCSC Systems 
Research Laboratory (SRL)

• Background

• 1999 Ph.D. CS, Colorado

• 1987/1993 B. Math/MS CS, Minnesota

• 1982-1994 Programmer/Research 
Scientist/VP, CPT, B-Tree, Honeywell 
SRC, Theseus Research, Alliant 
TechSystems RTS, Secure Computing

• My Research

• High-performance petascale 
storage

• Real-time systems

• Performance management and 
virtualization

• Active object-based storage

• Other Research

• Secure operating systems

• Asynchronous circuits

• Real-time image processing



Distributed systems need performance 
guarantees

• Many distributed systems and applications need (or want) I/O 
performance guarantees
• Multimedia, high-performance simulation, transaction processing, 

virtual machines, service level agreements, real-time data capture, 
sensor networks, ...

• Systems tasks like backup and recovery

• Even so-called best-effort applications

• Providing such guarantees is difficult because it involves:
• Multiple interacting resources

• Dynamic workloads

• Interference among workloads

• Non-commensurable metrics: CPU utilization, network 
throughput, cache space, disk bandwidth



In a nutshell

• Big distributed systems
• Serve many users/jobs

• Process petabytes of 
data

• Data center design
• Use rules of thumb

• Over-provision

• Isolate

• Ad hoc per formance management 
approaches creates marginal storage systems 
that cost more than necessary

• A better system would guarantee each user 
the performance they need from the CPUs, 
memory, disks, and network



Outline

1. Problem: Managing the performance of large, 
distributed storage systems

2. Approach: End-to-end performance management

3. Model: RAD

4. Instances: 
• Disk

• Network

• Buffer cache

5. Application: Data Center Performance Management 
and Monitoring



End-to-end I/O performance guarantees

• Goal: Improve end-to-end performance management in 
large distributed systems
• Manage performance

• Isolate traffic

• Provide high performance

• Targets: High-performance storage (LLNL), data centers 
(LANL), satellite communications (IBM), virtual machines 
(VMware), sensor networks, ...

• Approach:
1. Develop a uniform model for managing performance

2. Apply it to each resource

3. Integrate the solutions



Our current target

• High-performance I/O
• From client, across network, through server, to disk

• Up to hundreds of thousands of processing nodes

• Up to tens of thousands of I/O nodes

• Big, fat, network interconnect

• Up to thousands of storage nodes with cache and disk

• Challenges
• Interference between I/O streams, variability of 

workloads, variety of resources, variety of applications, 
legacy code, system management tasks, scale



Stages in the I/O path
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System architecture
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• Client: Task, host, distributed 

application, VM, file, ...

• Reservations made via broker

• Specify workload:  throughput, 
read/write ratio, burstiness, etc.

• Broker does admission control

• Requirements + workload are 
translated to utilization

• Utilizations are summed to see if 
they are feasible

• Once admitted, I/O streams are 
guaranteed (subject to workload 
adherence)

• Disk, caches, network 
controllers maintain guarantees

I/O



Achieving robust guaranteeable resources

• Goal: Unified resource management algorithms 
capable of providing
• Good performance

• Arbitrarily hard or soft performance guarantees with
• Arbitrary resource allocations

• Arbitrary timing / granularity

• Complete isolation between workloads 

• All resources: CPU, disk, network, server cache, client 
cache

➡Virtual resources indistinguishable from “real” 
resources with fractional performance



Isolation is key

• CPU
• 20% of a 3 Ghz CPU should be indistinguishable 

from a 600 Mhz CPU

• Running: compiler, editor, audio, video

• Disk
• 20% of a disk with 100 MB/second bandwidth 

should be indistinguishable from a disk with 20 
MB/second bandwidth

• Serving:1 stream, n streams, sequential, random



Scott’s epistemology of virtualization

• Virtual Machines and LUNs provide good HW 
virtualization

• Question: Given perfect HW virtualization, how 
can a process tell the difference between a virtual 
resource and a real resource?

• Answer: By not getting its share of the 
resource when it needs it



Observation

• Resource management consists of two 
distinct decisions
• Resource Allocation: How much resources to 

allocate?
• Dispatching: When to provide the allocated 

resources?

• Most resource managers conflate them
• Best-effort, proportional-share, real-time



Separating them is powerful!

• Separately managing 
resource allocation 
and dispatching 
gives direct control 
over the delivery of 
resources to tasks

• Enables direct, 
integrated support 
of all types of 
timeliness needs
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The resource allocation/dispatching 
(RAD) scheduling model
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Supporting different timeliness 
requirements with RAD
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Rate-Based Earliest Deadline (RBED) CPU scheduler

Rate

Deadlines

EDF + 
timers

Scheduling
Policy

Scheduling
Mechanism

Runtime
System

Set of 
jobs w/

budgets and 
deadlines

• Processes have rate & period
• ∑rates ≤ 100%

• Periods based on processing 
characteristics, latency needs, etc.

• Jobs have budget & deadline
• budget = rate * period

• Deadlines based on period or 
other characteristics

• Jobs dispatched via Earliest 
Deadline First (EDF)
• Budgets enforced with timers 

• Guarantees all budgets & 
deadlines = all rates & periods



Adapting RAD to disk, network, and buffer cache

• Fahrrad—Guaranteed disk request 
scheduling
Anna Povzner (UCSC)

• RADoN—Guaranteeing storage network 
performance
Andrew Shewmaker (UCSC and LANL) 

• Radium—Buffer management for I/O 
guarantees
Roberto Pineiro (UCSC)

Disk



Guaranteed disk request scheduling

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Good I/O performance

• Challenging because disk I/O is:
• Stateful

• Non-deterministic

• Non-preemptable, and

• Best- and worst-case times vary by 3–4 orders of 
magnitude



Fahrrad

• Manages disk time instead 
of disk throughput

• Adapts RAD/RBED to 
disk I/O

• Reorders aggressively to 
provide good 
performance, without 
violating guarantees

A B C BE 

Disk 

I/O streams 

Fahrrad 



A bit more detail

• Reservations in terms of disk time utilization and 
period (granularity)

• All I/Os feasible before the earliest deadline in the 
system are moved to a Disk Scheduling Set (DSS)

• I/Os in the DSS are issued in the most efficient way

• I/O charging model is critical

• Overhead reservation ensures exact utilization
• 2 WCRTs per period for “context switches”

• 1 WCRT per period to ensure last I/Os

• 1 WCRT for the process with the shortest period due 
to non-preemptability



Fahrrad outperforms Linux

• Workload
• Media 1: 400 sequential I/Os per second (20%)

• Media 2: 800 sequential I/Os per second, (40%)

• Transaction: short bursts of random I/Os at random times (30%)

• Background: random (10%)

• Result: Better isolation AND better throughput

Linux Linux w/Fahrrad



New work: virtual disks

• Provide workload-independent performance 
guarantees

• Isolate from other workloads concurrently 
accessing the device

• LUNs virtualize 
storage capacity

• Fahrrad virtualizes 
storage 
performance



Fahrrad virtual disks

• Implemented with the Fahrrad real-time I/O 
scheduler

• Guarantee reserved and isolated share of the 
time on storage device
• Hard guarantees on performance isolation 

• Virtual disk throughput same as equivalent 
standalone throughput

• Amount of data transferred:
• ∀i,  Di(x%, t)   =   Di(100%, x%·t)

Share of
disk

Time Share of
disk

Time



Guaranteeing performance isolation

• Virtual disk reservation: disk share (utilization) 
and time granularity (period) 
• Account for all extra (inter-stream) seeks

• Reserve overhead utilization to do them

• Charge each I/O stream for all of the time it uses, 
including inter- and intra-stream seeks

• Reservation =  Disk Share + Overhead utilization

  

25%, 1 sec

30%, 250 ms 

19%, 1 min

Disk time



Extra seeks

• Intra-stream seeks caused by workload

• Inter-stream seeks caused by reservations
• Low time granularity causes more frequent seeks

• At most two extra seeks per stream per period
• To and away from the stream to meet deadlines

➡Extra seeks caused by un-queued requests



Charging model and reservations

• Charge streams responsible for inter-stream seeking
• From overhead: for seeks caused by reservations

• From reservation: for seeks caused by bursty behavior

• Overhead utilization needed for hard guarantees

• Overhead utilization = WCRT/p + 2*WCRT/p + WCRT/p

• We can trade-off hard guarantees for lower overhead 
by assuming less than worst-case request time

Guarantee
reserved
utilization

Account for 
inter-stream

seeks

Maintain 2
outstanding

requests



• Throughput is determined by reservation and 
workload
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• Throughput is determined by reservation and 
workload

Each virtual disk 
reserves 20% 
with 1 second 

granularity
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Performance: Controlling throughput

• Each virtual disk is isolated from the other

• Performance is fully determined by the 
reservation and workload

Reserved share for sequential stream Reserved share for sequential stream
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Performance: Controlling latency

• Reservation granularity bounds latency: 
• period = latency/2

• Virtual device serves periodic semi-sequential stream and shares storage with 
random background stream. Four experiments for different period reservations.
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Performance: Isolation guarantees

• Hard guarantees require high overhead 
(proportional to reservation granularity)

• Three virtual disks each serving one sequential stream with many 
outstanding I/Os share a storage system with a random background stream.

D
is

k 
tim

e 
re

se
rv

at
io

n 
(%

)

Period of virtual disk 3Period of virtual disk 3

D
at

a 
tr

an
sf

er
re

d 
(M

B)



Performance: Soft guarantees w/isolation

• Overhead based on less than worst-case I/O time

• Increased short term throughput variation
• Virtual disk (10%, 1 sec) runs one sequential stream with 400 IO/sec arrival rate 

and shares the system with 5 virtual disks each running one random stream.

•
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Performance: Soft guarantees w/isolation

• Linux fails to support Cello99 (variation up to 30% from standalone)

• Fahrrad Virtual Disks provide Cello99 and OpenMail performance 
close to standalone

• Cello99 and OpenMail virtual disks share the system with random background stream.
•
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Fahrrad Virtual Disks

1. Guarantee throughput by accounting for 
overhead and guaranteeing utilization

2.  Guarantee isolation between workloads by 
accurately accounting for all disk time

3. Provide high throughput (w/guarantees) by 
minimizing interference between workloads

4. Result: performance of virtual disk depends 
only on reservation, workload, and 
performance of device



Guaranteeing storage network performance

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Good I/O performance

• Challenging because network I/O is:
• Distributed

• Non-deterministic (due to collisions or switch 
queue overflows)

• Non-preemptable

• Assumption: closed network
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What we have

• Switched fat tree w/full bisection bandwidth

• Issue 1: Capacity of shared links

• Issue 2: Switch queue contention



Congestion in a simple switch model

• Each transmit port 
on the switch is a 
collision domain
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Congestion in a simple switch model

• One of the packets 
arriving at the 
same switch 
transmit port is 
delayed on the 
queue

switch fabric
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Congestion in a simple switch model

• Delayed packets 
from unrelated 
streams affect each 
other on the 
queue

switch fabric
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TCP

• Those who do not understand TCP are 
destined to reimplement it

• Jon Postel 

• Ack-clocked flow control 

• Packet loss based congestion control 

• Sawtooth throughput 

• Incast throughput collapse 



Network resource usage measurements

• Round trip time RTTi = Ci - Si

• Combines queueing effects on forward and 
reverse path + response time
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Network resource usage measurements

• One-way delay OWDi = Ri - Si

• Isolates queueing affects on forward path, but

• Requires synchronized clocks
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Network resource usage measurements

• Relative forward delay RFDi,j = (Rj - Ri) - (Sj - Si)

• Isolates queueing affects on forward path, and

• Does not require synchronized clocks
• But they must be relatively stable
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RADoN

• A reservation has a network share (utilization) 
and a time granularity (period)

• Two real-time scheduling algorithms
• Earliest Deadline First (EDF) - absolute deadlines

• Least Laxity First (LLF) - relative laxities

now deadline
laxity

release



Approximating optimal scheduling

• Flow control - throttling senders
• Execution time (per period) e = utilization / 

period

• Budget in packets m = e / packets_per_second

• Congestion control - avoiding switch 
contention (adjust wait time between packets)
• Percent budget %budget = (1 - %laxity) = e/(d-t)

• Packet wait time w = wmin / %budget

• Size change w∆ = -|wi - wmin|/2

• New wait time wi+1 = min(wmax, max(wmin, w∆))



Queue modeling: single network stream

• No contention: 765 Mbps w/no lost packets
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Queue modeling: punctuated stream

• Contention: 5 bursts of 250 Mbps
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Queue modeling: punctuated adaptive stream

• Contention: 5 bursts of 250 Mbps

Adapting to median-
filter model decreases 
packet loss
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Userspace RADoN prototype

• Detects congestion using Relative Forward 
Delay 

• Responds to congestion using RAD real-time 
theory 

• Decreases packet loss significantly

• Improves goodput 

• Requires no global knowledge or 
synchronization

• Ongoing: RADoN kernel implementation



Buffer management for I/O guarantees

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Improved I/O performance

• Challenging because:
• Buffer is space-shared rather than time-shared

• Space limits time guarantees

• Best- and worst-case are opposite of disk

• Buffering affects performance in non-obvious ways

Disk



Guarantees in the buffer cache

• Role

• Improve 
performance

• Preserve & enhance 
guarantees

• App-specific 
guarantees:

• Hard at core

• Soft when possible

• Predictable

• Hard isolation

• Device time 
utilization

Resource
Broker

App 1

Disk Scheduler

Buffer-Cache

Disk

App 2 App n

App 1 App 2 App n

Dsk

Disk



Buffering roles in storage servers

• Staging and de-staging data
• Decouples sender and receiver

• Speed matching
• Allows slower and faster devices to communicate

• Traffic shaping
• Shapes traffic to optimize performance of 

interfacing devices

• Assumption: reuse primarily occurs at the 
client

Disk



Radium

• I/O into and out of buffer have rates and 
time granularities (periods)

• Period transformation: period into cache may 
be shorter than from cache to disk

• Rate transformation: rate into cache may be 
higher than disk can support

• Partition cache based on I/O 
characteristics and performance 
requirements

• Cache policies enhance performance 
within constraints determined by I/O 
requirements
• Use slack to prefetch reads and delay 

writes

Disk

App 1

Disk Scheduler

Buffer-Cache

Disk

App 2 App 3



Enhancing guarantees in the buffer cache

• Reclaim unused resources (e.g., unused overhead)
• Use slack to prefetch reads and delay writes

• Allow more unguaranteed services

• Resource redistribution (buffer swapping) 
accommodates burstiness

• Period transformation: period into cache may be 
shorter than from cache to disk

• Rate transformation: rate into cache may be 
higher than disk can support

Disk



Managing a sequential workload
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Managing a random workload
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Managing combined workloads
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Controlling throughput w/mixed workloads
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Controlling latency w/mixed workloads
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Results w/complex workloads
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Data center performance management

• Big distributed systems
• Serve many users/jobs

• Process petabytes of 
data

• Data center design
• Use rules of thumb

• Over-provision

• Isolate

• Ad hoc performance management creates 
marginal storage systems that cost more 
than necessary

• A better system would guarantee each user 
the performance they need from the CPUs, 
memory, disks, and network



Data center performance mgmt. goals

1. A first-principles model for data center perf. mgmt. 

2. Full-system performance metrics for client processing 
nodes, buffer cache, network, server buffer cache, and 
disk

3. Performance visualization by application, client node, 
reservation, or device

4. Application workload profiling and modeling

5. Full system performance provisioning and 
management based on all of the above

6. Online machine-learning based performance 
monitoring for real-time diagnostics



RADIX

• $1 million from UC Lab Fee program

• Based on schedulers and workload-independent 
utilization metrics from our E2E QoS research

• Plan
1.Performance model and metrics

2.Tools for profiling, prediction, and planning

3.Operating systems components

4.Performance monitors and visualization tools

• Case study: LANL data centers



Conclusion

• Distributed I/O performance management requires 
management of many separate components

• An integrated approach is needed

• RAD provides the basis for a solution

• It has been successfully applied to several 
resources: CPU, disk, network, and buffer cache

• We are on our way to an integrated solution

• There are many useful applications: Data center 
performance management, full storage 
virtualization, ...


