
Procedural generation applied
to a video game level design.

Albert Carrión Dı́az

Director: Antonio Chica Calaf
Specialization: Computing

FIB UPC - Barcelona School of Informatics

Spring 2015

Bachelor’s Thesis. Albert Carrión Dı́az

Acknowledgements 1

Acknowledgements

My first words of gratitude are for Antonio Chica, the director and supervisor of
this project. He had the answers every time that I needed guidance and he basically
made possible this project helping me transform my original idea into this Bachelor’s
Thesis.

Secondly, I would like to thank everyone who supported me to finish my degree,
from family and friends to even teachers and classmates.

Finally, I have to thank the ten testers who helped me with the validation process
and were kind enough to do more than I asked:

◦ David Bigas
◦ Adrià Urgell
◦ Aitor Castella
◦ David Peribañez
◦ Sergio Cecilia

◦ Borja Herrerias
◦ Miguel Rodilla
◦ Joaquim Casals
◦ Daniel Garcia
◦ Álvaro Bru

Thank you all!

Bachelor’s Thesis. Albert Carrión Dı́az

Abstract (English) 2

Abstract (English)

The objective of this project was to create a 2D side-view platformer video game
with a huge focus on creating the levels with procedural generation instead of making
them by hand. By doing so, this project approaches a creative yet technical discipline
like level design in video games from an algorithmic approach.

This has resulted in a system that is able to automatically generate levels that can
be used by a game. These levels are as fun as levels created by level designers hands,
and we can generate an infinite amount of different levels by changing the various pa-
rameters that change the generation process.

The generation of levels takes into account: their feasibility, levels must have some
way to be completed; their difficulty, the challenge that the levels represent to the user;
and the game rules, the resulting designs must work with the gameplay, physics,. . .

Besides the level generating system, the project has resulted in a video game that
uses this generator and lets you play on those levels.

Bachelor’s Thesis. Albert Carrión Dı́az

Abstract (Catalan) 3

Abstract (Catalan)

L’objectiu d’aquest projecte era crear un v́ıdeo joc de plataformes 2D de visió lateral
donant molta importància a la creació dels nivells amb generació per procediments en
lloc de fer-los a mà. Fent això, el projecte aborda una disciplina creativa però tècnica
com el disseny de nivells als v́ıdeo jocs des d’un punt de vista algoŕısmic.

Això ha resultat en un sistema capaç de generar automàticament nivells que poden
ser utilitzats per un joc. Aquests nivells son tan divertits com els creats a mà per un
dissenyador de nivells i podem generar un nombre infinit de nivells diferents només
variant els diversos paràmetres que canvien el procés de generació.

La generació de nivells té en compte: la seva viabilitat, els nivells han de poder
ser completats d’alguna manera; la seva dificultat, el repte que els nivells suposen per
l’usuari; i les regles del joc, els nivells resultants han de funcionar amb el gameplay,
f́ısiques,...

Apart del sistema generador de nivells, el projecte ha resultat en un v́ıdeo joc que
utilitza aquest generador i permet jugar a aquests nivells.

Bachelor’s Thesis. Albert Carrión Dı́az

Abstract (Spanish) 4

Abstract (Spanish)

El objetivo de este proyecto era crear un video juego de plataformas 2D de visión
lateral dándole mucha importancia a la creación de niveles con generación por proced-
imientos en lugar de hacerlos a mano. Haciendo esto, el proyecto aborda una disciplina
creativa pero técnica como el diseño de niveles en los video juegos des de un punto de
vista algoŕıtmico.

Esto ha resultado en un sistema capaz de generar automáticamente niveles que
pueden ser utilizados por un juego. Estos niveles son tan divertidos como los creados
a mano por un diseñador de niveles y podemos generar un numero infinito de niveles
diferentes solo variando los diversos parámetros que cambian el proceso de generación.

La generación de niveles tiene en cuenta: su viabilidad, los niveles tienen que poder
ser completados de alguna manera; su dificultad, el reto que los niveles suponen para el
usuario; y las reglas del juego, los niveles resultantes deben funcionar con el gameplay,
f́ısicas,...

Aparte del sistema generador de niveles, el proyecto ha resultado en un video juego
que utiliza este generador y permite jugar a los niveles generados.

Bachelor’s Thesis. Albert Carrión Dı́az

CONTENTS 5

Contents

Acknowledgements 1

Abstracts 2

Contents 6

1 Introduction 10
1.1 Problem . 10
1.2 Scope of the project . 11

1.2.1 Solution and objectives . 11
1.2.2 Scope definition . 11

1.2.2.1 The map . 11
1.2.2.2 The rooms . 12
1.2.2.3 The game . 12

1.2.3 Methodology and validation . 12
1.2.4 Development tools . 13
1.2.5 Obstacles and risks . 14

1.3 Context and state of the art . 15
1.3.1 Context . 15
1.3.2 Actors . 18
1.3.3 State of the art . 19

1.3.3.1 Map generators . 19
1.3.3.2 Level generators . 21
1.3.3.3 Game engines . 22

1.3.4 Use of previous results . 24
1.3.4.1 Map generators . 24
1.3.4.2 Level generators . 24
1.3.4.3 Game engines . 24

2 Project Management 25
2.1 Temporal planning . 25

2.1.1 Tasks description . 25
2.1.1.1 Work previous to the project 25
2.1.1.2 Project planning . 25
2.1.1.3 Main development . 26
2.1.1.4 Validation process . 26
2.1.1.5 Final tasks . 27

2.1.2 Time table . 27
2.1.3 Resources . 27
2.1.4 Gantt chart . 28
2.1.5 Action plan . 28
2.1.6 Planning modifications . 29

2.1.6.1 Final time table . 29
2.1.6.2 Final Gantt chart . 30
2.1.6.3 Action Plan following 30

Bachelor’s Thesis. Albert Carrión Dı́az

CONTENTS 6

2.2 Budget and sustainability . 31
2.2.1 Budget estimation . 31

2.2.1.1 Material resources . 31
2.2.1.2 Human resources . 31
2.2.1.3 Total budget . 32

2.2.2 Budget control . 32
2.2.3 Budget modifications . 33
2.2.4 Sustainability . 33

2.2.4.1 Economic sustainability 33
2.2.4.2 Social sustainability . 34
2.2.4.3 Environmental sustainability 34
2.2.4.4 Sustainability evaluation 35
2.2.4.5 Sustainability reevaluation 35

3 Map generator 36
3.1 Design . 36
3.2 General implementation . 39

4 Room generator 41
4.1 Design . 41
4.2 Connections checking . 42
4.3 Random content generation . 43

5 Video game 45
5.1 Gameplay . 45
5.2 Generators . 45
5.3 Graphics . 47
5.4 Interface . 48
5.5 Audio . 48

6 Validation 49
6.1 Test explanation . 49
6.2 Results . 50
6.3 Conclusions . 53

7 Conclusions 55
7.1 Work done . 55
7.2 Possible improvements . 56

8 Annexes 57
8.1 Video game user test . 57
8.2 Development images log . 58
8.3 Game Design Document . 81

9 References 92

7

List of Figures

1.1 Rogue Legacy, inspiration and example of 2D side-view platformer.[1] . . 11
1.2 Diagram of my adaptation of the scrum methodology. [2] 13
1.3 Tools logos. [3] [4] [5] [6] [7] [8] . 14
1.4 Dwarf Fortress map part example. [9] 16
1.5 The Binding of Isaac map example. [10] 16
1.6 Rogue Legacy map example. [1] . 17
1.7 Spelunky room example. [11] . 17
1.8 Cloudberry Kingdom room example. [12] 18
1.9 Example of one of the algorithms. Initial graph and the recursive back-

tracker outcome. [13] . 19
1.10 Pro-D outcome examples.[14] . 20
1.11 Wang tiles application example. [15] . 21
1.12 Game Maker: Studio development windows examples. [16] 22
1.13 Unreal Engine project example. [17] . 23
1.14 Unity 3D project example. [3] [2] . 23

2.1 Gantt chart of the project. [2] . 28
2.2 Updated Gantt chart of the project.[2] 30

3.1 Original map idea example with a key, a lock, a treasure and the objec-
tive. [2] . 36

3.2 First change in the original map idea: Using rectangular tiles. [2] 37
3.3 Final design of the map example. [2] . 37
3.4 Trade-off between tiles size and the number of possible exits of a room. [2] 38
3.5 Example of depth and side depth parameters. [2] 38
3.6 Example of the map growing process. [2] 40

4.1 Connectivity of the room contents is expressed as a graph. [2] 41
4.2 Examples of the connections checking system on different platforms. [2] 42
4.3 Examples of the connections checking system trying if jumps are possible

between two platforms. [2] . 42
4.4 Example of how we use the connection checking system to build a room.

[2] . 44

5.1 Kenney assets diversity. [18] . 47
5.2 Somepx font preview. [19] . 47

6.1 Game showing the times of a tester who finished the game. 50
6.2 Example of how the first level (up) does not hide the rectangle shape

and other levels (down) do. 53

8.1 Development image 1. 58
8.2 Development image 2. 58
8.3 Development image 3. 59
8.4 Development image 4. 59

Bachelor’s Thesis. Albert Carrión Dı́az

LIST OF FIGURES 8

8.5 Development image 5. 60
8.6 Development image 6. 60
8.7 Development image 7. 61
8.8 Development image 8. 61
8.9 Development image 9. 62
8.10 Development image 10. 62
8.11 Development image 11. 63
8.12 Development image 12. 63
8.13 Development image 13. 64
8.14 Development image 14. 64
8.15 Development image 15. 65
8.16 Development image 16. 65
8.17 Development image 17. 66
8.18 Development image 18. 66
8.19 Development image 19. 67
8.20 Development image 20. 67
8.21 Development image 21. 68
8.22 Development image 22. 68
8.23 Development image 23. 69
8.24 Development image 24. 69
8.25 Development image 25. 70
8.26 Development image 26. 70
8.27 Development image 27. 70
8.28 Development image 28. 71
8.29 Development image 29. 71
8.30 Development image 30. 71
8.31 Development image 31. 72
8.32 Development image 32. 72
8.33 Development image 33. 73
8.34 Development image 34. 73
8.35 Development image 35. 74
8.36 Development image 36. 74
8.37 Development image 37. 75
8.38 Development image 38. 75
8.39 Development image 39. 76
8.40 Development image 40. 76
8.41 Development image 41. 77
8.42 Development image 42. 77
8.43 Development image 43. 78
8.44 Development image 44. 78
8.45 Development image 45. 78
8.46 Development image 46. 79
8.47 Development image 47. 79
8.48 Development image 48. 80
8.49 Development image 49. 80

Bachelor’s Thesis. Albert Carrión Dı́az

LIST OF TABLES 9

List of Tables

2.1 Estimations of the time spent in each group of tasks. [2] 27
2.2 Original estimations and real spent hours on the project. [2] 29
2.3 Material resources budget. [2] . 31
2.4 Human resources budget. [2] . 32
2.5 Total budget. [2] . 32
2.6 Final total budget. [2] . 33
2.7 Original marks of the different parts of the project’s sustainability. [2] . 35
2.8 Finl marks of the different parts of the project’s sustainability. [2] . . . 35

6.1 Answers to the first question of the test.[2] 50
6.2 Answers to the second question of the test.[2] 50
6.3 Answers to the third question of the test.[2] 50
6.4 Answers to the fourth question of the test.[2] 51
6.5 Times collected from the introduction level of the test.[2] 51
6.6 Times collected from the factory level of the test.[2] 52
6.7 Times collected from the pyramid level of the test.[2] 52
6.8 Times collected from the sky city level of the test.[2] 52
6.9 Times collected from the underwater level of the test.[2] 52
6.10 Times collected from the final level of the test.[2] 52
6.11 Total time collected of the test.[2] . 52

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 1. INTRODUCTION 10

1. Introduction

This document is going to show all the investigation, planning and work done on this
Bachelor’s Thesis. To do this, first we will explain the problem we are trying to solve
and everything we planned for the solution, from the objectives and way of working to
the context and state of the art of the project, in this introduction.
Then, we will show all the project management that includes the temporal planning
and the budget and sustainability estimations.
Later, we will disclose the technical details of the work done in different chapters.
Finally, we will explain the validation process and conclusions. Additionally, there will
be some annexes more directly related to the development that will help understand
the effort behind this project.

1.1 Problem

There is a well-recognized problem in the video games development field concerning
the constant increase on the number of assets a modern game needs. Each year, new
video games have better graphics, bigger maps, and, in general, more content that
needs artists or designers who make them. This big demand of assets problem has been
solved in two ways: making international companies like Ubisoft [20] which can afford
huge developers teams with lots of artists and designers, or, what is called procedural
generation, programming algorithms to do this job.

This project will focus on using the latter on the level design of a video game, which
would obviously dismiss any need of level designers for developing the game. However,
procedural generation is not a technique that can be used as a general solution for all
the cases, and needs to choose a specific problem to fully adapt the algorithm to create
something as a real designer could do. Given this condition, we decided to create a
2D side-view platformer game that welcomes players to fully explore the levels to give
more importance to the level design we will be working on.

We will explain in detail how we planned to solve this problem (including an scope,
temporal and budget planning) and how we finally tackled the problem in this docu-
ment.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 1. INTRODUCTION 11

1.2 Scope of the project

This section is going to describe how the problem we have introduced in the previous
section is going to be tackled. Then, the scope and possibilities of the project are going
to be defined more clearly. What is more, the methodology behind all the work is
going to be explained, and monitoring and validation tools or methods are going to be
disclosed too. After that, problems and risks of the project are going to be described.

1.2.1 Solution and objectives

As we said in the problem introduction, the project will be developing a 2D side-
view platformer video game. And in this game we will use knowledge from the degree
together with investigation we will do to achieve an innovative automatic level design.
The idea to choose this project was inspired by now popular games like Rogue Legacy
[1], Spelunky [11] and Cloudberry Kingdom [12]

Figure 1.1: Rogue Legacy, inspiration and example of 2D side-view platformer.[1]

Therefore, the objectives for this project are creating a system that creates levels for
this kind of game, and then creating a video game that works with those procedurally
generated levels. The video game will be developed to show that levels , which will be
a result of the investigation, are fun. We will define fun as the validation factor of the
quality of the project and the levels taking into account: their feasibility, levels must
have some way to be completed; their difficulty, the challenge that levels represent to the
user; and the game rules, resulting designs must work with the gameplay, physics,. . .

1.2.2 Scope definition

Defining a scope for a video game can always be a difficult because you can always add
more features easily, but taking into account the limited time and big focus that will
go into level design, a decision has been made. This decision, that will have to adapt to
reality as the project advances, consists on making a system that creates maps made of
rooms for the game, another one that designs the interior of rooms and finally building
a game that works around those maps and rooms that will make possible to check the
quality of those levels for players.

1.2.2.1 The map

Creating the map will be translated into creating a graph where each node will be a
room and arcs between them represent adjacency, and those nodes will contain all the

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 1. INTRODUCTION 12

information needed for creating the inside room such as if there is a key inside or if
any special power is needed to beat the room interior. The creation of this map will
let the game designer (in this case me) see how the resulting map will be with some
parameters. For example the depth of paths in the map or the shape of the map should
be something possible to control.

1.2.2.2 The rooms

The creation of the interior of rooms will be a more difficult task where, in a similar
fashion to the map, a graph will be made. In this case though, each node will be the
platforms where the player’s character can stand and arcs between them will represent
if they are reachable from one to the other. This graph should let the game designer (me
again) control with some parameters things like the difficulty to reach the platforms or
the abilities needed to do so.

1.2.2.3 The game

The video game will try to be as simple as possible, almost as if it is just to let players
try the work made on level design. However, this part will still be a really big portion of
the project because it represents obtaining (or creating) a lot of art assets, programming
physics and gameplay, ... Even if this represents an even bigger effort, the plan is to
make the game have the basics controls for a 2D game of its genre (moving and jumping)
and extra mechanics (double jump, dropping,...), enemies, items, etc. that will make
the game closer to a real commercial product. This closeness to a market product will
help in evaluating the level design.
In addition, the target platform will be Windows PCs as it is the easiest option too.

1.2.3 Methodology and validation

Some agile software development method will be used to adapt the work load this
project represents to limited time and the type of project. This is also an usual ap-
proach to video game development because it is difficult to totally define the final game
before starting the development, and it is easy to have the need to evolve the require-
ments and solutions of the problem through the development.
Using this type of methodology will help too with the fact that parts of the project
will implement algorithms that we are currently investigating or we do not fully know
yet, and these algorithms may work differently than what we expect. With the obvious
changes to which the problem should adapt.
Being more specific we will use an adaptation of the scrum methodology [21] to my work-
ing conditions. This will translate into the director of the project being the product
owner and me being the whole development team and my own scrum master. More-
over, sprints (or iterations) will be of minimum a week and maximum of three weeks
to let me combine the work load of the project with the work load of other university
duties like exams. Meetings at the start and end of each sprint will be mainly done
virtually and my director and I will meet face-to-face when needed (when deep subjects
or difficult problems as the scope definition arise). Therefore, the daily scrum meeting
will just be a ten minutes thinking on my previous work and keeping up a little written
discussion with my log and it will be done every two days instead of one.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 1. INTRODUCTION 13

Figure 1.2: Diagram of my adaptation of the scrum methodology. [2]

Furthermore, as explained in the scope section, the project has three big parts that will
be developed overlapping and that will work independently at the first sprints. And
because evaluating of the quality of the level design can only be validated by humans,
as long as the map creation, the rooms creation and the video game are not working
together, the validation of each part will be done by us and the director of the project.
Once the three parts start working together, a little group of around ten people will
be gathered to work as testers of the project and will give simple feedback to confirm
that the work done is correct.
The mechanism for receiving feedback will be separated into two parts. First, objec-
tive feedback that will be data recorded from testers playing the project, and second,
subjective feedback that will be obtained with some little surveys to the testers after
they have played with the project.

1.2.4 Development tools

The main tools for the development of the project are going to be Unity 3D [3], which
is a great game engine for quick development, and Mono Develop [4], that is the default
IDE for programming with C# (the chosen language from the ones compatible with
Unity 3D).
Git [5] and Bitbucket [6] are going to be the tools used for version control and tracking
the development.
Many other tools, such as Gimp [7] and Audacity [8] for preparing the graphics and
audio for the game, will be used but in comparison to the ones already shown they will
play a relatively small part in the project development.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 1. INTRODUCTION 14

Figure 1.3: Tools logos. [3] [4] [5] [6] [7] [8]

1.2.5 Obstacles and risks

First, the main risk in the planning of this project is the really tight schedule that will
result of such an ambitious project. The obvious consequence is then that big setbacks
that slow down our work could prove to be fatal to the quality of the final result.
Specially to the video game wrapping around the level design which will be the last
part to be completed and which would be more affected by a cut in its development
time, probably resulting in a variation of what the validation tests show. For instance,
the level design could be pretty solid but the limitations on the game to test it would
occlude the way to seeing it.
Another big risk are errors in the code or the implementation, not detected because
the small number of testers and the fact that randomness can play an important part
in the procedural generation of the levels, which may lead to unexpected and incorrect
outcomes in the final delivery of the project.

In a smaller magnitude we find risks like implementing algorithms or systems too slow
for a video game which is a type of application really critical with the efficiency. For
example, the generation of the rooms of the map should not interfere with the game
being able to produce more than 30 frames per second.
One more risk is not being able to find an ideal solution, as part of the level design
evaluation is subjective and it may happen that during the development the implemen-
tation does not go into the right direction to make levels liked by players (or in our
case testers).

Lastly, other minor risks may be having problems to find enough testers for the valida-
tion of the results or not being able to find good graphics or audio for the video game.
However, those aren’t big problems because for the former the search for testers will
be for a very reduced number of people, and for the latter it can be solved by using
really simple art created by us with the minimum requirements to let the players focus
on the levels.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 1. INTRODUCTION 15

1.3 Context and state of the art

This section is going to describe the areas of interest the project is about, which actors
are going to be affected by the development and the state of the art of the fields the
project is going to touch. This will result in a general idea of what are some similar
commercial projects made in the past and what we can expect this project to add to
the current knowledge.

1.3.1 Context

This project has three big areas of interest that are not totally independent between
them. First, we have the level design field, which studies and tries to improve the
structure, organization and content of the levels to make challenges for the player. The
second area we have is procedural generation and more specifically procedural gener-
ation of levels, which attempts to create algorithms and methods that automatically
create the levels instead of designing them by hand. Third, we have the video games
that use procedural generation, being the ones that use procedural generation of levels
to create experiences that do not repeat the main focus because they are the most
similar to this project.

Let’s see in detail the three areas in the next lines.

Level Design. As the title of the thesis says we are going to apply procedural gener-
ation to level design, so before we can do it, we need to have a good understanding on
what level design is and how level design works on video games.
Level design is the discipline of games development that takes care of creating the sce-
narios, environments and stages of the game. This means creating where the action of
the game is happening and it usually includes deciding where the challenges (puzzles,
enemies, etc) await the player. This discipline is a mix of artistic (as it creates a great
part of what the player is going to see) and technical (besides looking good the lev-
els must work with the rest of the game, for instance the physics of the game) processes.

The level design of a game, as explained by professional experts and communities (such
ones as the references authors [22], books [23] [24] [25] [26] and websites [27] [28]),
is closely related to its parent discipline, game design, and consists of creating and
balancing the challenges and experiences of the player with the game’s world. This is
usually done with few metrics and a lot of playing experience of the levels (we can see
this explained by authors of games with an important level design like Super Meat Boy
[29]). It is also work frequently done by the level designer with some tools (usually
software) specially created for the game.

However, relying in the subjectivity of a designer and having to create some tools for
him are exactly what we want to avoid in this project as we want to make the level
design an automatic process.

Automatic level generation. As a solution or alternative to having a level designer,
game developers have created many methods to have a lot of stages generated using
random or pseudo-random generators and lists of rules to control this generation. As

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 1. INTRODUCTION 16

there is a enormous number of kind of games and consequently a lot of kinds of levels
(for instance, levels for a side-view platformer with double jump and levels for a top-
down-view hack and slash are really different), there are many methods that adapt to
the different solutions we may be looking for. We decided to study the automatic level
generators that work with maps and 2D platformers stages, and to create a mix that
brings something new to this area of interest. For this purpose, we must know a lot of
examples of other projects that have tried this, and we must take the ideas that can
be useful and simplify them for the mix.
This need of ideas is what brings us to the next area of interest.

Video games using the previous areas of interest. As stated before, not only
seeing this area of interest shows us the context of the project, but it is also an impor-
tant part of the research to decide what are some good ideas to develop in our project.
Therefore, let’s take a look into the games we found most relevant that use procedural
generation into the creation of their levels:

Dwarf Fortress [9] is a game where almost everything (including the map, enemies and
even legends for example) is created by procedural generation. Everything is on a grid
and then represented by text, giving us the idea that making the representation simple
and the content very variable is liked by many players.

Figure 1.4: Dwarf Fortress map part example. [9]

The Binding of Isaac [10] is an RPG (Role Playing Game) roguelike game where the
hero has to explore dungeons of rooms with challenges. The map and order of the
rooms is procedurally generated, but the rooms are only selected from a long list of
available ones depending on some conditions like the position in the map. The main
idea we got from this game is the importance of having an objective in the map and
how to decorate the rooms that are not indispensable.

Figure 1.5: The Binding of Isaac map example. [10]

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 1. INTRODUCTION 17

Rogue Legacy [1] is a 2D side-view platformer based on the exploration of a castle. As
in The Binding of Isaac, the map is made of rooms, but in this case the rooms can be
of different sizes and are combinations of pre-made elements. This game gave us the
idea of letting the map take more freedom in its construction while it does not break
the rules we create, and it is the most similar to the project expected outcome.

Figure 1.6: Rogue Legacy map example. [1]

Spelunky [11] is a 2D side-view platformer. This game has no map as there are only dif-
ferent stages which can be considered big rooms. Those rooms are totally procedurally
generated with almost none pre-made patterns. We decided to learn how to divide the
room generation into smaller problems from this game.

Figure 1.7: Spelunky room example. [11]

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 1. INTRODUCTION 18

Cloudberry Kingdom [12] is a 2D side-view platformer. In this game, like in Spelunky,
there are only rooms and no map. The interesting part of the rooms in this game is that
not only they are procedurally generated, they can also adapt from a lot of conditions
such as if the player can jump, run or many other abilities and parameters by having
a system that checks if the room is playable. This idea of room adaptation is what we
mostly got from this game for our project.

Figure 1.8: Cloudberry Kingdom room example. [12]

Many others games could be looked at, but these five are the most influential in the
direction of the project and are, most of them, currently well-known (although we used
images from old versions instead of the famous current remakes of some of them).

1.3.2 Actors

The development of the project involves the following described actors.

Project developer. I am the only developer of this project. This implies I am going
to take care of the planning, the documentation, the design, the coding and the vali-
dation process of the project. As the only developer I will also be responsible of any
marketing, advertising and distribution of the result of the project after its development.

Project director. Antonio Chica Calaf, Assistant Professor from the Computer Sci-
ence department of Universitat Politècnica de Catalunya, is the director of this project.
He is guiding me, the project developer, whenever I have doubts or difficulties with the
project.

Testers. These will be a little number of people who will play the video game result-
ing from the project. Their playtime will result in some objective data (like finishing
time and some other metrics), and they will also answer a survey for some subjective
answers about the game. The objective and subjective results will be used to validate
the quality of the outcome of the project.

Users. The aim of the project is to create a game that can be played by anyone and
that they have fun with it. Therefore, the users will be any player who decides to play

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 1. INTRODUCTION 19

the video game resulting from the project, and they will be the only beneficiaries of
the project if they have fun with it.

1.3.3 State of the art

In this section, we are going to explain the state of the art of the main parts of the
project development. The parts are the three we have been talking about in the scope
and what mainly define the temporal planning of the project, which are the following:
map generation, level generation and video game development.
With these three parts we have to take a look into the following tools and methods
for getting an idea of the state of the art of our project. Most of the more technical
concepts will be referenced, not exclusively, from the Procedural Content Generation
Wiki [30] for a more in detail easy, yet technical, explanation.

1.3.3.1 Map generators

Map generation and specially dungeon generation (a labyrinth made of different rooms
connected) is one of the most used parts of procedural generation in video games, and
it is also a frequent topic for investigation [31] [32] [33]. The most common ways nowa-
days of obtaining maps with procedural generation are:

Simple maze generation algorithms based on grids. These are the most simple
algorithms that having a graph with equal nodes representing a grid, can create a
maze [34] that explores all the nodes and connects them if there is a path from one to
the other. Some of these algorithms are: the recursive backtracker, Eller’s algorithm,
Kruskal’s algorithm, Prim’s algorithm, the recursive division algorithm, Aldous-Broder
algorithm, The Hunt-and-Kill algorithm, the Growing Tree algorithm, the Binary Tree
algorithm, the Sidewinder algorithm and many more. This great diversity of solutions
plays with the length, shape and number of the corridors of the outcome while balancing
the implementation difficulty, the efficiency and the comprehension of the algorithm.
All the mentioned algorithms can be found over different references but are really well
explained in detail in Jamis Buck’s blog [13].

Figure 1.9: Example of one of the algorithms. Initial graph and the recursive backtracker
outcome. [13]

Cellular automata. In an attempt to create organic looking maps, this method works
with the same grid as the previous algorithms but from another point of view. Every
node knows some rules and has a state and depending on the rules and the states of its
neighbor nodes it changes its own state. There are many ways to apply this method as

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 1. INTRODUCTION 20

we can see in the references [35] but the most common use in dungeon generation can
be seen in this video from Nathan Williams [36].

Binary Space Partition. This method is similar to the recursive division algorithm
but it does not work with a grid so it gives some more freedom to the outcome. We
can see this in another video of Nathan Williams [37].

Using a Delaunay Triangulation. Taking advantage of some random generation
of the rooms and then working from there with a Delaunay Triangulation to create
the corridors and a nice map is the main idea of this method. We can clearly see how
it works in yet another video of Nathan Williams [38] or the video game TinyKeep [39].

Genetic algorithms, Generative Grammars, Occupancy Regulated Exten-
sion, Constraint-Based and others. As we can see in the references there are
many more options but they are farther from the direction the map generator of the
project is expected to take. For example, genetic algorithms lack control over some
aspects such as the resulting shape, which made us discard them as an option.

Combinations of different map generators. At the end, each method has its
advantages so really good map generators mix different methods and let you select what
you need each time you use them. A great example of this kind of generator is the Pro-
D Total [14] map generator, an already made tool that lets developers generate maps.
Moreover, with the long development of Pro-D Total, the generator has even included
AI (Artificial Intelligence) methods such as path-finding in the maps it generates.

Figure 1.10: Pro-D outcome examples.[14]

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 1. INTRODUCTION 21

1.3.3.2 Level generators

Level generation is a much more difficult area, and it is less common to find information
of how developers have used it [40] or as an investigation topic [41]. Some common
ways (although most of them have been mainly used for generating levels for games
like Super Mario Bros [42] and not rooms like the ones we expect to develop in the
project) to solve this problem are:

Combining pre-made parts. This is the simplest and most used method to generate
levels. We just have some pre-made parts we know work with the game and repeat
them in a more or less complex way. We can do from the most basic repetition where
the patterns are obvious to the most complex random selection that is controlled by
some rules. One of the ideas we liked the most in this kind of method is the concept
of Wang tiles to hide the patterns of using pre-made parts. The easiest to understand
basic explanation of this concept is at Wikipedia [15] and there are even variants of it
[43]. Moreover, there are many other methods, such as Occupancy-Regulated Extension
[44], to combine pre-made chunks in more complex ways.

Figure 1.11: Wang tiles application example. [15]

Rhythm based. Some levels generators, such as Launchpad [45], play with what they
call the rhythm of a level to divide the generation problem into smaller pieces. These
smaller pieces are usually solved by using pre-made parts (smaller than the ones used
by Occupancy-Regulated Extension for example, but still pre-made) but could be solved
with smaller generators too. The division of the problem is then the important part
of this method, and works like the division of a music piece that is clearly marked by
some rhythm. But instead of defining the rhythm of a song with beats we define the
rhythm of a level with the player actions (for example jumps) following the rules and
metrics we have implemented. This a really interesting group of solutions for this level
generation problem, but it works best in long levels and not in small rooms like the
ones in our project.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 1. INTRODUCTION 22

AI based. The most complicated method is based on the idea of creating some kind of
AI that can play the level you randomly generate and that gives feedback. This feedback
may include if the level can be completed, if it is difficult, if it is long, etc. It is the most
complex and least efficient, but it is possible the most versatile method we have seen.
Furthermore, used with iterations of random generation and other variations, it can
almost guarantee no repetition and there are no observable patterns on the outcome.
However, there is few detailed documentation on how this can be implemented, as each
level generator that uses this must be developed with the final game in mind. Looking
at this article [40] from the Cloudberry Kingdom lead programmer can give us a quick
view of his method.

1.3.3.3 Game engines

The main tool to create a video game is a game engine and there are two options, cre-
ating your own engine for the video game you want to make or using a general purpose
game engine already made. As the main objective of the project is to focus on the
procedural generation in the level design, a general purpose game engine is going to
be used for developing the video game and saving time. Let’s see three of the most
popular game engines that have free versions:

Game Maker: Studio. [16] This engine is specialized in 2D games development and
includes many tools to simplify the quick development of games (like Spelunky) and
prototypes. This simplification may be a problem for developing or for guaranteeing
efficiency of some complex ideas.

Figure 1.12: Game Maker: Studio development windows examples. [16]

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 1. INTRODUCTION 23

Unreal Engine.[17] Made by Epic Games [46], it is probably the most powerful free
game engine of the market. A lot of tools for high quality games development are
included, but it is not the easiest game engine to learn.

Figure 1.13: Unreal Engine project example. [17]

Unity 3D. [3] It is a game engine that is really easy to use, but it still maintains a lot
of features and tools that help in game development. Unity 3D is good too at accepting
lots of formats for the assets without too much problems.

Figure 1.14: Unity 3D project example. [3] [2]

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 1. INTRODUCTION 24

1.3.4 Use of previous results

1.3.4.1 Map generators

As we have seen in the previous section, there are a lot of already made methods for
generating maps, but we will not use any previous implementation. From all the ideas
gathered from the investigated methods, we will develop a map generator specially
created for a 2D side-view platformer. The biggest influences will be the recursive
backtracker and the cellular automata, making the resulting graph a kind of a tree that
grows following rules.
The decision to make our own generator is mainly due to the fact that most of the
previous research was not done having in mind a side-view platformer as the target
(ignoring for example the gravity our game will have), and due to the feeling of wanting
to create our own innovative system.

1.3.4.2 Level generators

The idea of procedurally creating little challenges in rooms instead of using pre-made
patterns seems that has not been investigated too much, so we will implement our
own method (which is expected to have an outcome a lot less repetitive than other
easier methods we have seen) taking big references in the level generation of Cloudberry
Kingdom.

1.3.4.3 Game engines

Unity 3D is going to be the game engine used in the video game development as it
versatile enough to let us use procedural generation without complications, and it is
simple enough to not waste time on learning how it works. Furthermore, we already
have experience developing video games with Unity 3D.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 2. PROJECT MANAGEMENT 25

2. Project Management

2.1 Temporal planning

This section is going to describe the planning of the time and resources spent on the
project. The project officially started on the 22nd of January when it was accepted by
the FIB administration, and it must be delivered before the 22nd of June.
The planning explained in the next pages is the ideal effort distribution for the 5 month
time between the start and end of the project, but we have to take a realist point of
view and consider that the work time will probably have to adapt to the development
(and this isn’t necessarily something bad).

2.1.1 Tasks description

Although the project will be following an implementation of the Scrum agile develop-
ment methodology, and this implies the tasks will be defined at each sprint, a previous
definition of all, or at least groups of, tasks is needed for making a temporal planning.
The agile development will let the development adapt and search for alternatives in
many cases but those are the groups of task that must happen for the project to reach
an end:

2.1.1.1 Work previous to the project

This subsection gathers all the tasks that were made before the official start of the
project. These tasks are, including but not limited to, the following:

• Investigating the contexts and states of the art of interesting topics.

• Investigating the viability and effort required for the different options.

• Choosing the best option.

• Defining the initial name and description of the problem.

• Applying to the FIB administration process.

• Trying some really small prototypes.

All these tasks were made with the help of the project director and even if they are not
part of the project, they were decisions that lead to the development of this project.
Furthermore, they would also help in future tasks such as the description of the state
of the art in the project planning.

2.1.1.2 Project planning

This subsection is the point of the project where we currently are. All the tasks in this
group are essentially everything that is covered in the GEP course and are:

• Scope definition.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 2. PROJECT MANAGEMENT 26

• Temporal planning.

• Economic and sustainability management.

• Preliminary presentation.

• Context and bibliography.

• Specialization justification

• Planning presentation and final document.

This is the part of the project with the most control on the time for every task because
there is a compulsory planning with deliveries, such as this, every five days.

2.1.1.3 Main development

The tasks in this subsection are the ones that will need the biggest effort and time
of all the project. They are also the most sensitive tasks to be changed and affected
by alternatives while developing the project. They can be mainly divided in three big
parts.

• The map generator. The development of this generator can be divided in the
investigation and analysis of different known algorithms, and the implementation
and adaptation of these algorithms to the desired solution for the video game we
design.

• The room generator. As in the map generator, the room generator can be
divided too in investigation and implementation of an algorithm.

• The video game. This part has many different tasks composing it such as:
the game design, the implementation of the generators in the game, the physics,
the gameplay, the graphics, the audio, the user interface and the the analytics
functions.

These three big parts are explained in the scope section of the planning too but it is
important to highlight how the two generators are mainly independents one from the
other, but the video game needs them both to work. Taking this into account, the
development of the generators will be, as the whole project, an iterative development,
and the video game will start developing as soon as there are working generators (even
if they are really primitive).
This iterative way of working makes leaving some time for refactoring the code after its
development a really good idea. The code refactoring may lead to some optimization,
but more importantly to improve the code readability and reduce its complexity for a
better maintainability and reuse in the future.

2.1.1.4 Validation process

This is an important part of the development as it will evaluate the quality and results
of the project. The tasks in this subsection are mainly divided like this (in order of
frequency):

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 2. PROJECT MANAGEMENT 27

• Own tests. These will be done over all the project to make sure everything we
develop works as expected and to check the quality of the results by our own
standards.

• Director supervision. This is translated into all the communication and meet-
ings where the director of the project is able to give us feedback seeing the changes
on the project.

• Testers evaluation. This includes making the surveys, finding the testers, let-
ting them play the game and answer the survey, and analyzing the results ob-
tained.

2.1.1.5 Final tasks

This group of tasks represents all the tasks needed to complete the documentation, to
take care of any unfinished work and prepare the final presentation of the project. It is
also the time for solving any last problem found while checking if everything is correct.

2.1.2 Time table

As this project is done only by one person (me), we only need the table 2.1 that shows
the time needed for each task defined before.

Task Time spent (hours)

Viability investigation and first prototypes 30

Project planning 65

Map generator 80

Room generator 80

Video game 140

Validation process 50

Final tasks 30

Total 475

Table 2.1: Estimations of the time spent in each group of tasks. [2]

2.1.3 Resources

As for the resources needed for the project, only time with my PC and some software
will be needed. The PC works on Windows 8.1 and has the following specifications:
Intel Core 2 Duo E8400 at 3.00 GHz, 3 GB of RAM, NVIDIA GeForce GTX 650.
All the other resources needed are software that can be obtained for free: Unity 3D [3],
MonoDevelop[4], Git [5] (using a Bitbucket [6] account), Gimp[7], Audacity [8] and La-
TeX [47].

The PC will be used for all the tasks, Unity 3D will be used for the video game creation
and the validation process, MonoDevelop will be used in the main development (explic-
itly for all the code in the generators and the game), Git will be used for controlling
versions and having a back up of all the project, Gimp and Audacity will only be used

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 2. PROJECT MANAGEMENT 28

in the video game development and LaTeX will be used for all the documentation of
the project.

2.1.4 Gantt chart

Following the estimations and the ideal time distribution, a Gantt chart showing all
the schedule has been made.

Figure 2.1: Gantt chart of the project. [2]

2.1.5 Action plan

Finally, an explanation of how is the plan going to be followed is needed.

The initial idea is to work following the schedule seen in the Gantt chart, but there are
always obstacles and unexpected setbacks in projects so we must be ready to prioritize
objectives. First of all, if the limited time ends falling short for the development, parts
of the schedule like the refactoring of the code will be cut because they improve the
quality of the project but they are not totally necessary for it to work.
The next part to be cut would be the quality of the video game graphics, audio and
user interface as they are really time consuming and are not a technical part of the
project.
In the worst case scenario, the last part to be cut would be the analytics implementa-
tion, which would leave the testers evaluation as something subjective only.
If even then the time was not enough, the planning would have been totally wrong

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 2. PROJECT MANAGEMENT 29

and instead of decreasing more the project quality, a new plan using the next semester
would be done.

As explained in the methodology section of the previous delivery, we are going to try
to arrange meetings with the project director every time there is an important topic
to discuss (hopefully at least once a month) and we are going to keep communicating
virtually.

In total, as it can be seen in the time table, the project should take approximately 475
hours. Taking into account the 22 weeks we have to develop the project, about 20-25
hours per week will be needed to finish it in time. The time spent each week will not
be something totally exact as we have to consider other factors like the two subjects I
am currently enrolled at the FIB.

2.1.6 Planning modifications

This section is going to describe how the planning of the time and resources has been
followed and how it has been changed. There is no need to repeat the tasks definitions
because they are still the same as in the original plan, but we will show again the time
table with each task and the original planned hours for it, the real number of hours
done until the follow-up meeting and an estimation of how finished the task was, and
the real number of hours done at the end. After that, we will compare the original
Gantt chart to the updated one.

2.1.6.1 Final time table

Here we can see how the different groups of tasks have been going in a quick to under-
stand table:

Task Original Hours Estimated Hours
estimated spent percentage spent

hours (follow-up) (follow-up) (final)

Viability investigation and 30 30 100 % 30
first prototypes

Project planning 65 70 90% 72

Map generator 80 70 95% 72

Room generator 80 85 95% 90

Video game 140 30 15% 140

Validation process 50 20 25% 50

Final tasks 30 0 0% 30

Total 475 305 66% 484

Table 2.2: Original estimations and real spent hours on the project. [2]

Looking at the table we can see that on the follow-up meeting the two first big parts
(the generators) were practically finished and there was only one big part left that
was the game and the finishing tasks, such as ending the validation process or the

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 2. PROJECT MANAGEMENT 30

documentation. The project was pretty much following the original plan before June
and this allowed to finish without any big problem.

2.1.6.2 Final Gantt chart

Thanks to the agile development methodology and the fact that the original estimations
were tight but were pretty flexible, the temporal planning has been followed nicely and
as we can see in the updated Gantt chart there was no need for too many changes.

Figure 2.2: Updated Gantt chart of the project.[2]

Green means finished as planned and yellow finished with more time than expected.

We can observe that the main changes in the temporal planning are the extra time
we did on the generators investigations, which was specially useful to see how different
the project is from other common approaches to the same problems, and the fact that
the refactoring phase is still not finished because I am still not satisfied with the code
of the project. Furthermore, there is another unexpected change in the planning that
is the soon level implementation in the game. This was a consequence of realizing we
could do this task while creating the generators more easily than if we left it for later.
Taking this changes into consideration we decide to plan some more days for the other
parts of the game just in case.
The last little change in the planning was adding 5 more days to the time assigned to
doing the test because some testers could not meet on the scheduled week.

2.1.6.3 Action Plan following

The action plan remained the same all the project as we thought maintaining the
work rhythm we planned would lead to finishing the project on time while being able
to handle other curricular and extracurricular projects. We were right and even with

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 2. PROJECT MANAGEMENT 31

different setbacks and obstacles we only did have to sacrifice a bit of the time scheduled
for code refactoring.

2.2 Budget and sustainability

This section is going to describe the planning of the resources (including material and
human resources) spent on the project, and it is going to evaluate the sustainability of
the project too.
This will result in a total budget and some marks for sustainability aspects.

2.2.1 Budget estimation

This subsection will show the original evaluation of the resources usage and costs, and
it will obtain a total budget from this evaluation. The resources will be divided into
material resources (hardware and software) and human resources, and then they will
be joined.

2.2.1.1 Material resources

These are the hardware and software resources that will be needed for the project de-
velopment.

The amortisation of the material resources will be calculated following the Spanish law
and taking into account the useful life of the products used (4 years for hardware and
3 for software at most) and the five month length of the project.

Product Price Useful Life Amortisation

PC 700.00e 48 months 72.92e
Computer peripherals 200.00e 48 months 20.83e

Windows 8.1 [48] 119.00e 36 months 16.53e
Unity 5 Personal Edition 0.00e 36 months 0.00e

MonoDevelop 0.00e 36 months 0.00e
Git 0.00e 36 months 0.00e

BitBucket 0.00e 36 months 0.00e
GIMP 0.00e 36 months 0.00e

Audacity 0.00e 36 months 0.00e
LaTeX 0.00e 36 months 0.00e

Total 1019.00e - 110.28e

Table 2.3: Material resources budget. [2]

As we can see in table 2.3, we are going to use many software tools with no cost.
Moreover, Git, GIMP and Audacity are open source too.

2.2.1.2 Human resources

These are the costs originally estimated from all the work hours that would go into the
project development.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 2. PROJECT MANAGEMENT 32

We must differentiate between two kind of testers (both part of the validation process):
the software tester who evaluates all the software while knowing how it works and how
it should work, and the game tester who only will play the resulting game of the project
and will provide us feedback. It is important to notice that the game tester will be
the only work we will not be doing ourselves, as we explicitly need feedback from other
people.

Role Price per hour Time People Cost

Project Manager 50.00e 115 hours 1 5750.00e
Software Designer 35.00e 85 hours 1 2975.00e

Software Programmer 25.00e 225 hours 1 5625.00e
Software Tester 20.00e 50 hours 1 1000.00e

Game Tester 20.00e 1 hour 10 200.00e

Total - - - 15550.00e

Table 2.4: Human resources budget. [2]

The salaries of table 2.4 have been taken from real salary surveys [49] as if it was the
first year of experience of all the roles.

2.2.1.3 Total budget

Taking into account the costs that were shown in the previous sections, the total budget
can be calculated without ignoring the taxes that would apply to a project of this kind
(in Spain a 21% of IVA for video games which is what this would be considered).

Concept Cost

Material resources 110.28e
Human resources 15550.00e

Total 15660.28e
IVA 21%

Total with taxes 18948.94e

Table 2.5: Total budget. [2]

2.2.2 Budget control

As it can be seen in the previous sections, most of the cost of the project comes from
human resources. This means that any big change in the hours needed for any part of
the development is the biggest threat to our budget, and we should be careful about
following the planning.

On the other hand, the material resources represent a non-significant part of the cost,
as very few hardware and software is needed. So during the development, finding any
new requirement (like some non-free software that would improve the project) would

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 2. PROJECT MANAGEMENT 33

not be a problem and could be included easily.

The last risk for the budget would be not being able to obtain free graphics and audio
for the game, which would lead into buying them already done or paying someone to
make them (it could be me working as an artist). But this is a really small threat as
there are plenty of free and open assets we can use on the Internet.

2.2.3 Budget modifications

In the follow-up meeting we had some costs because human resources and we did some
new estimations. We had to add 5 extra hours that went into the project planning
which is the group of tasks mainly done by the project manager and we estimated even
10 hours more to finish it, which was a totally correct decision we have been able to
achieve. We also estimated that even if there were some unexpected hours in the gen-
erators tasks, at the end everything would finish with a correct balance of hours taking
into account that some other parts were expected to be finished with less hours, as it
has been. Therefore, we just have to add again the changes we did for the follow-up
meeting. This makes a total of: 15 hours x 50.00e/hour of the project manager =
750eto add to the budget.

Just adding the new costs creates the final budget estimation (which was already cor-
rectly estimated on the follow-up meeting).

Concept Cost

Material resources 110.28e
Human resources 15550.00e

Extra human resources 750.00e

Total 16410.28e
IVA 21%

Total with taxes 19856.44e

Table 2.6: Final total budget. [2]

2.2.4 Sustainability

This section will analyze the sustainability of the project in three different areas: eco-
nomic, social and environmental.

2.2.4.1 Economic sustainability

After evaluating the resources costs, we have to consider some more things about the
project. For instance, if after finishing the planned development there will be updates
or any other working. If the project had a real commercial objective there would be
updates for sure, but as the final resulting video game will only be for academic pur-
poses and validating the procedural generators investigation there will be no need for
further work.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 2. PROJECT MANAGEMENT 34

However, the viability of the budget if this had to be a competitive project has to
be evaluated anyway. For this evaluation, we have considered that the budget was as
cheap as possible because all the working hours will be needed and there is nothing that
could be cut. If the video game was the only purpose of the project there could have
been alternatives like using already developed map generators to save a lot of money.
There are really cheap and good solutions such as Pro-D Total [14] which only costs 75
dollars instead of creating our own map generator that costs more than 2000 euros just
in human resources, but that would defeat the purpose of the project to investigate
and create our own version. Moreover, any other kind of shortcut has been discarded
too for the same reasons.

We have to consider too that the working hours of the project are relative to the im-
portance of the tasks and that they are already quite exact, so there is no room for
saving money cutting some hours.

Even after taking into account all this, and knowing there would be no external support
for the project such as any kind of collaboration with a company for example, we be-
lieve the budget is a cheap one for a video game (which is the easiest part of the project
to be sold and make the project viable). Proof of this is the popularity and economic
success of many games of the genre like the ones inspiring this project. Taking a look
into one of the most successful games from the list of inspirations, we find the story of
Rogue Legacy [50] which had a cheap budget too and became profitable really easily.
We couldn’t expect for our game to be that successful. But just seeing that selling the
game for 15 euros and having 1% of the sales Rogue Legacy had in one month during
all the commercial lifetime of my game would result in some profits, makes it easier to
imagine the economic viability of the project.

Therefore, we award a 7 in economic sustainability as we consider the budget is realis-
tic and cheap which makes it viable with a big effort to make a profit if there was an
intention to go commercial.

2.2.4.2 Social sustainability

The result of the project development is just a video game without any kind of ulterior
motive than entertaining. Therefore, we will only take into account the state of the
video games sector which is really healthy and is always welcoming new attempts at
creating something fun and has no real impact in any person’s life. Everyone that uses
the resulting product will not be using it for need but just entertainment so we award
a 5 in social sustainability as the project will not be doing anything good or bad for
society.

2.2.4.3 Environmental sustainability

The usage of resources is extremely little and will be limited to all the time the computer
used in the development is running.
Knowing that this means 475 hours, we can estimate that, if the computer consumes
about 300W while running, the energy spent on the project is around 142.5 kWh.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 2. PROJECT MANAGEMENT 35

These 142.5 kWh could be translated into around 48 kg of CO2, which is quite a
bit but nothing compared to what we produce in any other daily activity and that is
inevitable. Thus, we award a 10 in environmental sustainability. We considered this
mark because there is absolutely no direct usage of resources for making the product
(as it is digital), there is no dismantling waste, there is no other pollution than the
energy consumption explained, and the map generator and room generator may be
recycled for future projects.

2.2.4.4 Sustainability evaluation

As we have seen in the previous sections, those are the marks we originally awarded
the different sustainability areas:

Sustainability Economic Social Environmental

Planning 7 5 10

Table 2.7: Original marks of the different parts of the project’s sustainability. [2]

2.2.4.5 Sustainability reevaluation

However, after finishing this project, we must reevaluate these marks with the com-
plete sustainability matrix. This means revisiting the three sustainability areas and
comparing with a mark (from -10 to 10) the expected results with the actual ones, and
giving a mark (from -20 to 0) to the risks to the different sustainability types.
We must give a bad mark to the economic results because we finally had to add some
more money to the original budget, but we just had adapt the budget once and with
not much so the mark will be only a little under 0. We must also give another little bad
mark to the economic risks as now there are even more games in the over-saturated
market and some of them like Cavern Kings [51] and Pixel Dungeon [52] would be
direct competition to our game.
On the other hand, we give a perfect score in results and risks to social and environ-
mental sustainabilities because nothing has changed from the original evaluation.

Sustainability Economic Social Environmental

Planning 7 5 10

Results -2 10 10

Risks -5 0 0

Total 0 15 20

Table 2.8: Finl marks of the different parts of the project’s sustainability. [2]

This gives a total mark of 35 (in a scale that goes from -90 to 60) to the sustainability
of this project.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 3. MAP GENERATOR 36

3. Map generator

3.1 Design

As we have previously defined in the scope section of this document, the map we want
to generate is in fact a simple graph where each node will be a room and arcs between
them represent adjacency.
Moreover, each node (or room) has all the information needed to create its inside (which
will be the job of the room generator). This information, that we call parameters, will
include details such as if the room has a key, a special treasure or a power-up. And the
other way around too, the parameters also include if the room needs a key to open a
door or if there are special challenges that need a certain power-up to be feasible.
The first design decisions that were made were that the game would have a final ob-
jective at each level/map, so another parameter was added that said if the room had
the objective or not, and that the graph would not have cycles (therefore, it would be
a tree from the initial room).

Figure 3.1: Original map idea example with a key, a lock, a treasure and the objective. [2]

This original idea was a little transformed for its implementation as we decided to create
the map having each room as a rectangular tile (with no overlapping) that would make
the process of knowing where a room is much easier.
This had many other advantages such as being impossible for two rooms to collide on
space or obtaining faster the nearest rooms to the actual one.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 3. MAP GENERATOR 37

Figure 3.2: First change in the original map idea: Using rectangular tiles. [2]

While prototyping and investigating (as we see in figure 8.4), we quickly noticed that
having every room be of the same size would cut the diversity of the rooms (which
is something really important for the project) too much and that it would also make
difficult to create more than one exit on each wall of the rectangular room.

This made us adapt the idea once again by using the tiles and the tileset (tileset as
in grid of tiles) in a total different way. Instead of being rooms, each tile would be
an indivisible part of the room that could have walls, exits or nothing at each of the
4 sides, and each tile will have a reference to its room to quickly know if it is being
used or not and by what room it is being used if it is not empty. This new version
of the idea that combines the graph with a tileset has all the advantages of the graph
(for instance, navigation through the map and searches are really easy to do), all the
advantages of using tiles (no room collisions and quick situational context of a room
for example), and yet we get rid of many limitations from the previous design (rooms
can having different sizes is almost trivial and we can control the exits of the rooms
easier).
However, we decided to put a limitation by ourselves on this new design, all rooms must
have rectangular shapes. This limit was decided to make easier the map implemen-
tation, but specially to not make the room generators job too difficult before starting
it.

Figure 3.3: Final design of the map example. [2]

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 3. MAP GENERATOR 38

As we can see in the figure 3.3, we used this new design as a chance to simplify how
putting exits in a room would be by only putting exits in the middle of the tiles sides.
This way exits from different rooms will always connect, and we are not limiting too
much our map generator because we can decide to have big or small tiles to play with
the number of possible exits our rooms have.

Figure 3.4: Trade-off between tiles size and the number of possible exits of a room. [2]

Finally, there are some other parameters we must highlight. These are the distances in
the graph,mainly being used the distance from each room to the initial room and the
distance from each room to the correct path. We have named these parameters depth
and side depth and they will be important for the implementation explanations of the
next sections.

Figure 3.5: Example of depth and side depth parameters. [2]

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 3. MAP GENERATOR 39

3.2 General implementation

Once we had the idea of what should be the result of the map generator and we were
sure we could implement it thanks to the investigation and prototyping, we started
the real implementation of the map generator. This meant as we have explained in
the introduction that we would create an algorithm that would create a map from a
single room with all the information of the map. This map as we have explained in
the previous section will translate into a tree graph where every room will have the
connections to its previous (or parent) room and to its next (or children) rooms.

Inspired by the recursive backtracker and the cellular automata, the map generator
works like a plant seed that has in its DNA all the information about how it is going
to grow when it becomes a tree. This idea became our algorithm, where we create an
initial room that has the following parameters: the maximum depth of the map, the
maximum side depth of the map, the maximum size of the rooms, the number of locks
in the map, the power-ups we can obtain in the map, the power-ups we will need to
complete a map, the treasure probabilities, the shape of the map and the seed for the
pseudo-random generator.

Keeping the tree metaphor, the algorithm works by making the tree (map) grow its
different branches (paths of rooms) until some parameter tells them to stop. Basically,
the process just goes to the most important room (the nearest to the objective) and
using the parameters this room has and the information of its context from the tileset
(mainly if there is free adjacent space or not), decides if there should be some next
rooms to this one, how many next rooms and what adjacent tiles they will need. When
creating these next rooms, it also decides by random (following some probabilities we
can change) how the parameters are inherited. For example, we may have a room that
in its parameters has that this branch needs to have a key so when it creates the next
rooms it has to decide if the key will be part of the room own content or if one of the
next rooms inherits the responsibility to put this key on the map. This makes that
while growing, the graph leaves trail of most of the decisions that happened when the
rooms create their children.

Therefore, all this results in a map we can navigate following the connections or quickly
access to a certain position through the tiles of the tileset. The nodes/rooms of the
map also have where everything is and has a trail of the path of how to get there that
could be used in many ways (such as in an ingame map or compass).
Moreover, we must explain that almost every decision is done by having different prob-
abilities (that change with the parameters, for example if a room’s depth is over the
max depth the probability of this path to keep growing will be zero) for each option,
and then we get a number from a pseudo-random number generator and combine this
number with the probabilities to choose. This allows us to make all the process pre-
dictable if we have the seed of the pseudo-random generator and saving a map is just
a matter of saving the number that we use as a seed.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 3. MAP GENERATOR 40

Figure 3.6: Example of the map growing process. [2]

We can observe how the most important room is marked with a !
in every step and that this room has its possible exits indicated.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 4. ROOM GENERATOR 41

4. Room generator

4.1 Design

With the idea of procedurally creating little challenges in rooms instead of using pre-
made patterns we designed a graph plan that would help to create the content of the
rooms and to check that it works for our game. We chose a directed graph, where the
graph’s nodes are the different platforms and obstacles that we can find in a room, and
the edges are the movement connections between these platforms.
The platforms and obstacles only have their type and their position and space, but
connections are a bit more complex as they have information about the platform from
where you start, the platform where you end, the initial position for the movement,
the final position where the movement leaves you and what type of movement this
connection is (walking, jumping or dropping down). This kind of graph lets us easily

Figure 4.1: Connectivity of the room contents is expressed as a graph. [2]

check if the level is feasible by checking if there is a path between all the exits in
the room. However, we should also check if the whole graph is connected to be sure
that there are no places where the player could get stuck or that there are no useless
platforms with no way to them.
Once the idea of using these graphs for the room contents was decided, we only had to
choose how to create them. As we did not want to use pre-made patterns, we finally
went with the idea of creating a system that checks a room for those connections we
have described. In fact, we decided to make an iterative system where every time we
added a node or platform, we would check all the previous nodes with the new one to
see if there was any new connection. Which leads us to the next section.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 4. ROOM GENERATOR 42

4.2 Connections checking

We implemented a system that given two platforms and the context of those (rest of the
content of the room where they will be), the system updates the connections between
the two platforms with at least one of the possible movements it finds possible to do.
For example, if we have two adjacent platforms it will detect that we can walk or jump
from one to the other in both directions.

Figure 4.2: Examples of the connections checking system on different platforms. [2]

To do so, the system checks the different distances between the platforms and compares
them to the player parameters like its jump height and length. In addition to expected
parameters like the jump distances there are a couple of parameters that represent
margins of error which are useful for making the jumps easier or more difficult. Once
we know the movement we are trying would be possible with the parameters that the
game has, we create an interpolation of the path this movement would do with the
character hit-box and check if there are any collisions with any obstacle.

Figure 4.3: Examples of the connections checking system trying if jumps are possible between
two platforms. [2]

In the current implementation we have implemented five different types of movements
for the connections: walking, jumping, falling, dropping (which is jumping down from

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 4. ROOM GENERATOR 43

a platform) and double jumping.
With this system and our idea of working with the graph connectivity we are ready to
start creating rooms procedurally.

4.3 Random content generation

We have a system that lets us add floors, ceilings and platforms in general to the room
content and after each addition check for different information like the feasibility of the
room challenge or if every platform is connected. With this it was only a matter of
selecting strategies to build our rooms. We could choose to use little patterns, random
buildings or have some kind of heuristic function that tells us which should be the next
piece. We chose the random buildings, as it is the method that would give us more
diversity and that should be impossible to predict like the patterns and most probably
the heuristic function (there is a chance that we could make a randomize heuristic func-
tion that would be interesting too but that would go to far from our original scope).
Our strategy with the random building is just to start by adding to the content some
pre-made pieces we know that work without problem (floor and ceiling or even only the
exits) and then use one of the many functions we have created to build rooms. Some
of those functions are:

◦ A function that adds an exact number of random platforms in the room.
◦ A function that adds random platforms in a limited space of the room.
◦ A function that fills the room with random platforms until it is a feasible room.
◦ A function that fills the room with random platforms until all the platforms are

connected.
◦ The same but with a minimum distance between platforms.
◦ The same again but with a minimum distance between platforms that reduces over

time.
◦ A function that hides the rectangular shape of the rooms.
◦ A function that adds interesting shapes like a doughnut in the room.
◦ Etcetera.

Basically we always add content to the room until the level is at least feasible no matter
what functions we use.
After finishing the part of the process where we add floors and platforms and we have
the shape of the room, we add the objects (like keys), items (like money) and monsters
to the room. We get a random number from the room parameters and we just put
them randomly on different platforms. In a similar fashion, if the room parameters say
that a power-up is needed in the room, we just take a random number of platforms and
change their type to the type that needs that power-up (for example we activate the
fire type on a platform).

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 4. ROOM GENERATOR 44

Figure 4.4: Example of how we use the connection checking system to build a room. [2]

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 5. VIDEO GAME 45

5. Video game

This section will explain many parts that were designed and implemented in the video
game of the project. For getting a complete idea of how the game was designed without
looking at the implementation, the game design document has been attached as an
annex in section 8.3.

5.1 Gameplay

We created a character for the player to control that is always the focus of the game.
The character can be controlled to run, jump, duck, drop from platforms and double
jump, and the camera will always follow him as he explores the levels which are created
by the map and room generators.
The character can also kill the enemies on the levels by jumping on them and collect
objects and items by touching them.

The character we implemented mainly works by checking the input from the player,
and checking what is happening by trying to find any collision of its hit-box1 with the
content of the room. For example if it collides from below with the floor it will stand,
but if it collides with an item the character will collect the item.

It is important to highlight that we implemented the jump of the character to be easily
adapted to a desired jump height (and in consequence jump length) so the character
would jump exactly what we told the generator it would do.

5.2 Generators

Once implemented, both generators were easily used in the video game as they were
developed with that goal in mind. Most of the work done was making that everything
the room generator created had a hit-box, so everything could be detected and work
with the player’s character.
Moreover, we prepared different sets of parameters for the different levels in the game,
which try to add diversity and have different environments. The six defined sets of
parameters are:

◦ Initial level.
The depth and max depth are low so we create a short level.
There are no keys and locks.
There is the first power-up (double jump).
The challenges do not need any power-up.
The rooms have rectangular shapes and there is no attempt to hide it.
The rooms have a maximum size of 2 tiles of length and 2 tiles of height.

1a rectangle defining its space and its collision area

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 5. VIDEO GAME 46

◦ Factory level.
The depth and max depth are higher than the initial level and increase with each
completed level.
There is a red key and a red lock.
There is the second power-up (fire resistance).
Some challenges need the second power-up.
The rooms hide their real rectangular shape with different kind of walls and
interesting shapes inside the rooms.
The rooms have a maximum size of 3 tiles of length and 3 tiles of height.

◦ Pyramid level.
The depth and max depth are higher than the initial level and increase with each
completed level.
There is a yellow key and a yellow lock.
There is the third power-up (spikes resistance).
Some challenges need the third power-up.
The rooms are tunnel shaped.
The rooms are 1 tile long and 1 tile tall to make even smaller tunnels.

◦ Sky city level.
The depth and max depth are higher than the initial level and increase with each
completed level.
There is a blue key and a blue lock.
There is the fourth power-up (feather-weight).
Some challenges need the fourth power-up.
The rooms have no walls and the map can be explored in unexpected ways.
The rooms have a maximum size of 3 tiles of length and 3 tiles of height.

◦ Underwater level.
The depth and max depth are higher than the initial level and increase with each
completed level.
There is a green key and a green lock.
There is the fifth power-up (anti-sticky jump).
Some challenges need the fifth power-up.
The rooms hide their real rectangular shape with different kind of walls and
interesting shapes inside the rooms. They also are a little adapted to the fact
that the player has infinite jumps in the underwater level.
The rooms have a maximum size of 3 tiles of length and 3 tiles of height.

◦ Final level.
The depth and max depth are higher than any previous level.
There is a black key and a black lock.
There is no power-up.
Some challenges may need any previous power-up (except the double jump).
The rooms hide their real rectangular shape with different kind of walls and
interesting shapes inside the rooms.
The rooms have a maximum size of 3 tiles of length and 3 tiles of height.
There are more treasures.

As we can see in the sets, there is no level that requires the double jump power-up
because after testing it, levels that required this power-up were not as interesting.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 5. VIDEO GAME 47

5.3 Graphics

We obtained graphics from mainly three sources: Kenney assets [18], Eeve Somepx’s
fonts [19] and our own content [2].
Kenney assets were great as they were of public domain and were really diverse (there
was even an special set of graphics for 2d side-view platformers like ours). Therefore,
we could use them and modify them without problem and we could add some diversity
to the levels without paying anything.

Figure 5.1: Kenney assets diversity. [18]

As we had many different graphics, we made the graphics change for each level to add
diversity and try to differentiate the environments of each level.
Eeve Somepx [19] font Eleven, which has a CC-BY license[53], was really useful for
creating the interface with an alternative to the usual boring fonts and gave the game
a more professional look.

Figure 5.2: Somepx font preview. [19]

Finally, our own content is really little but was needed as some graphics (like the
power-up platforms) were too specific to find online and for free.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 5. VIDEO GAME 48

5.4 Interface

We can divide the interface implemented in mainly three parts: the main menu, the
level selection screen and the HUD2.
For the main menu, we just implemented some important buttons and panels:

◦ Play button. It leads to the level selection.
◦ Options button. It opens the panel that controls the music and sound volumes, and

that resets the game state.
◦ Instructions button. It opens the panel with the instructions text.
◦ Credits button. It opens the panel with the credits of the graphics, the font used

(important due to the CC-BY license) and the project.
◦ Exit button. It leads to the leaving decision.

The level selection screen is a simple menu where there is a button for each level un-
locked where the powers and objectives obtained are also shown.

The HUD shows the health of the game character, the money collected and notification
texts when the player collects an object or an item. Moreover, the interface in the game
screen also includes the map. The map can be shown anytime by pressing a button an
it shows different information depending on the upgrades the player has collected:

◦ Without upgrades: The map shows every room visited.
◦ 1 upgrade: The map shows every room visited or not.
◦ 2 upgrades: The map shows where the map upgrades are.
◦ 3 upgrades: The map shows where the power-ups are.
◦ 4 upgrades: The map shows where the keys are.
◦ 5 upgrades: The map shows where the stars are.

5.5 Audio

We decided to use some procedurally generated music and sounds for the game. This
way we would not find any licenses problems. Luckily, nowadays there are simple
online solutions for this task, so using Abundant-music[54] for the music and Bfxr [55]
for the sounds, we tried to create the most fitting audio for our game. We can specially
hear this attempt at using fitting audio in the different songs for each level, where for
instance the music for the pyramid level tries to simulate Arabic music.

2Heads-up display, which is mainly the interface that goes with the gameplay part

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 6. VALIDATION 49

6. Validation

6.1 Test explanation

As we have mentioned before, we did not think our own opinion would be enough to
validate the results of the projects, so a test with people outside the project was de-
signed. The test chosen was playing the resulting game because validating the game
also involves validating the two generators that are inside of it. Added to playing for a
while (which was finally decided to be at least 10 minutes so it could be enough to get a
nice idea of the game, but not too much to be a burden for the testers), some feedback
would be collected. As explained in previous chapters, this feedback has two parts:
subjective answers collected with a simple survey, and objective data collected by the
game without the player noticing. Besides this feedback, the test was established to be
done by the tester in front of us so we could obtain our own conclusions about their
way of playing.

For the subjective feedback we decided to ask, with a score from 1 to 5, about if testers
thought the game was fun (the ultimate goal of a video game and what should validate
if our levels are good), there was diversity between levels, the fact that levels hide the
real rectangle shape of the rooms and the innovation of the levels compared to other
games they have played. This four questions were mainly asked to validate different
aspects of the resulting video game of our project, but we also decided to include three
free questions about what did the testers liked most, what did they liked least and what
errors did they find to know how to improve or fix the game. You can check the exact
questions and how they were explained in the video game user test on this document
annexes.

For the objective data we finally decided to only collect the time spent in each level.
Although there were many other things we could measure too, we decided to collect
the level times as these would give us some objective feedback of how difficult the levels
were and if they were as long as we tried to make them. The game was designed to be
finished in about 25 minutes (and less than 30 minutes for sure), giving an average of
less than 5 minutes per level (taking into account the first levels are easier and would
be finished in less time, but the difficulty increases with each level finished and the
later level would be finished in more time).

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 6. VALIDATION 50

Figure 6.1: Game showing the times of a tester who finished the game.

6.2 Results

Was the game fun? Average answer: 3.8

1 2 3 4 5

0 0 3 6 1

Table 6.1: Answers to the first question of the test.[2]

Did you find diversity between the levels? Average answer: 3.1

1 2 3 4 5

0 3 4 2 1

Table 6.2: Answers to the second question of the test.[2]

Did you find that this* was well concealed? Average answer: 4.1

1 2 3 4 5

0 1 2 2 5

Table 6.3: Answers to the third question of the test.[2]

Did you find the levels to be different from levels of other games you have
previously played? Average answer: 2.7

Things people liked most: (ordered from most mentioned to least)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 6. VALIDATION 51

1 2 3 4 5

0 5 3 2 0

Table 6.4: Answers to the fourth question of the test.[2]

The jump and jumping around.
The feeling of collecting lots of things.
Map upgrades.
The character.
The infinite jumps power up.
The simplicity of the controls.

Thing people liked least: (ordered from most mentioned to least)
Last level being too long.
The map.
Dropping from platforms.
Slow movement.
Not needing enough your powers.
Needing your powers too much.
Lack of backgrounds and better graphics.
Exiting level without confirmation.
Lack of better story.
No health replenishment items.

Errors found:1 (ordered from most mentioned to least)
Collision errors.
Monsters not dying.
Not being able to leave sky city.
Not being able to read the notifications.
Not dying when you fall in sky city.
Never landing if you keep the jump pressed.
Animation errors.
Being trapped in a room with the star.
Being able to move after dying.

Times collected:
Introduction level: Average time: 3 minutes and 52 seconds.

< 2 min < 4 min < 6 min < 8 min > 8 min

1 5 3 1 0

Table 6.5: Times collected from the introduction level of the test.[2]

Factory level: Average time: 6 minutes and 21 seconds.

1Most of these errors where later discovered to be caused by using the Unity default ”Fastest”
graphics configuration which for example called the collisions checks less than the minimum needed

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 6. VALIDATION 52

< 2 min < 4 min < 6 min < 8 min > 8 min

0 2 4 1 3

Table 6.6: Times collected from the factory level of the test.[2]

Pyramid level: Average time: 4 minutes and 58 seconds.

< 2 min < 4 min < 6 min < 8 min > 8 min

0 4 3 2 1

Table 6.7: Times collected from the pyramid level of the test.[2]

Sky city level: Average time: 5 minutes and 12 seconds.

< 2 min < 4 min < 6 min < 8 min > 8 min

0 3 4 2 1

Table 6.8: Times collected from the sky city level of the test.[2]

Underwater level: Average time: 6 minutes and 35 seconds.

< 2 min < 4 min < 6 min < 8 min > 8 min

0 2 5 1 2

Table 6.9: Times collected from the underwater level of the test.[2]

Final level: Average time: 8 minutes and 39 seconds.

< 2 min < 4 min < 6 min < 8 min > 8 min

0 0 1 4 5

Table 6.10: Times collected from the final level of the test.[2]

Total: Average time: 35 minutes 37 seconds

< 20 min < 24 min < 28 min < 32 min > 32 min

0 1 0 4 5

Table 6.11: Total time collected of the test.[2]

trying to get a better performance.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 6. VALIDATION 53

6.3 Conclusions

With the average answers we have seen for the first four questions of the test, we
consider the results to be a success. The main fact that leads to this conclusion is that
the testers considered the game to be fun even with the lack of important elements and
only playing with the levels alone almost. We are also happy about how most of the
testers did not notice the rectangle shape of the rooms until they learnt about it on
the survey and most thought it was a nice way to hide the real shape of the rooms.

Figure 6.2: Example of how the first level (up) does not hide the rectangle shape and other
levels (down) do.

However, we are not surprised about the second question not getting such a good score
because even if there was some attempts at bringing diversity with different powers
and shapes for each level, the idea behind all of them is the same and the art limi-
tations do not help. On the other hand, we are a little disappointed about the last
question as we thought we were bringing some innovation (at least to get a pass on
the average score) to the levels compared to other games, but testers thought differently.

We are happy about the feedback on the questions with free answer as the testers
showed they really liked the concept of exploring interesting levels and they also liked
how the character and controls worked, although most of them were not happy with
some small details. The tests were also really helpful for detecting a lot of errors and for
seeing possible improvements in many places, which were used to improve and fix the
game as we can see in the final version of the game. We must also note that some of the
testers feedback was contradictory with the feedback of other testers (for example some
felt there were not enough platforms needing powers and other thought there were too
many, or there was some discussion about the levels length too), which showed many
aspects of the game were just subjective to each player and would be impossible to
please everyone.

Finally, when analysing the times collected something obvious was detected quickly:
players were much slower than what we expected. We were used to the times we did

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 6. VALIDATION 54

when trying for ourselves the game and did not take into account that players such as
the testers would have to learn and did not know how the game worked from the inside
like us. This was specially painfully visible in the last level were many testers got lost
and found too long and difficult as they said themselves on the list of things that they
did not like. But another conclusion was reached and that was that the testers played
without thinking about the minimum 10 minutes and played the whole game. Even if
the testers were acquaintances, we can not ignore most of them stated they thought
they had been playing for less time than what they saw at the end when I collected
their times, which concurs with the positive fun score we got in the survey. Therefore,
just the length and difficulty of the final level were adjusted and the ideal time for the
game went from 25 minutes to 30, which is closer to the testers average time too.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 7. CONCLUSIONS 55

7. Conclusions

In this chapter we will talk about the different conclusions we have after all the project
development.

7.1 Work done

So first of all, we want to talk about the obstacles and risks we were afraid of at the
planning stage and how real they were. As we have explained in more than one of the
previous sections, the tight schedule and setbacks were an obvious risk and obstacle
that we managed to overcome thanks to the methodology we chose. Then, the fear of
using slow algorithms or methods for the demanding videogames software was a true
concern at first when due to some bad ideas and some bugs the map creation was slow,
but at the end the chosen methods have proven to work nicely. Furthermore, tests
have shown how the generators can create levels with more than 400 rooms (which is a
number far greater than the actual game will need) in less than 10 seconds for example.
The last important risks considered were possible errors in the code, which can still be
a threat even after all the fixings done thanks to the validation, and the possibility of
the solution we have found to be biased to our personal tastes in games, that until the
validation process with testers we were not be able to refute.

The next conclusion we would like to discuss is how the investigation of other works has
been much more important than we thought at first. The context and state-of-the-art
of the game helped to understand much better what we were trying to solve, to see
different approaches other people have tried and to get great ideas for creating our own
method. We think that our approach may be quite unique and even if other ways may
have worked better against this problem, we have investigated something new and we
will be able to show what we have learnt from it.

Consequently to these conclusions and the good results of the validation process, we
would like to say that this project has been a success at achieving what we planned.
So we have a project that approaches some not too investigated topics, tries new ways
to solve the selected problem nicely (if we accept the results of our little validation
process as good) and creates the base for some really interesting possibilities. We
also want to admit that the project is limited by the selected scope and the develop-
ment time, but we are truly happy about the result we achieved under these conditions.

After explaining our conclusions about the work done, we would like to show in the next
section the interesting possibilities of improvement and future work for this project.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 7. CONCLUSIONS 56

7.2 Possible improvements

First, we would like to explain the obvious improvements that would make the game
better but we consider that would not be too interesting. We mean improvements like:

◦ Better graphics, including better textures, better animations and more visual feed-
back.

◦ More audio diversity, specially in sounds where we only have 4 different ones for all
the action in the game.

◦ More enemies, with different behaviors and even final bosses for the levels.
◦ More items, like potions and shields.
◦ More map and other upgrades.
◦ Utility for the gold, being able to buy other upgrades for example.
◦ Better story, not just an excuse to explore the levels.
◦ More simple mechanics, like being able to sprint.
◦ Making a mobile version of the game.

On the other hand, there are some improvements and new paths of work for the project
to get better levels and interesting results. Many of those are already prepared in the
code to be worked on but were not started because of the scope and the time as we
said. Those improvements would be:

◦ Adding cycles to the map graph and its generation so there could be multiple paths
that still followed the rules like having the key before the lock.

◦ Not using rectangular rooms. For instance a room could have 3 tiles and an L shape.
◦ More kind of movements, like using stairs or climbing walls.
◦ More metrics for knowing how a room is being created. The current project mainly

checks if the exits are connected or if every platform is connected, but we could also
check the number of different paths between exits or the number of connections in
those paths to play with how the rooms are created.

◦ A companion or enemy that follows the player using the movements graph of the
room contents. Any kind of automatic playing (this could also be a tutorial or a
power-up for the player) using all the information in the connections to move around
on the platforms would be interesting.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 57

8. Annexes

8.1 Video game user test

Test number:
Tester name:

Context: (please read before playing)

This is the user test for the result of my Bachelor Thesis on “Procedural generation
applied to a video game level design”. This test will have two parts: the video game
test (that consists in playing for at least 10 minutes) and the survey about the test.
Before playing the game, let us explain a bit of context of it. As the Thesis title shows,
this game is the result of an investigation on creating levels automatically. Therefore,
it tries to be fun but it may lack in some aspects (such as the graphics for example)
because it is not a professional video game. Moreover, this is not the final version of
the game and still has some placeholder elements like the music and sounds.
Now, you can proceed to playing the game for at least 10 minutes, so you can answer
the following survey and help validate the results of the project.

Survey: (please do not read before playing)

Answer the first four questions with a score from 1 (not at all) to 5 (very much).

Was the game fun to play?
Did you find diversity between the levels?
All rooms are really rectangles and the game tries to hide this fact (the first level does
not try to hide it so do not think about it when you answer). Did you find that this
was well concealed?
Did you find the levels to be different from levels of other games you have previously
played?

If there was anything you enjoyed, what was the thing you liked the most?

If there was anything that bothered you, what was the thing you liked the least?

Any errors you have found?

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 58

8.2 Development images log

Here you can see in images how the project followed the plan and how everything was
implemented.

Figure 8.1: Development image 1.

Initial 2 rooms created with wall detections. (February)

Figure 8.2: Development image 2.

Moving hero created for exploring the rooms graph. (February)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 59

Figure 8.3: Development image 3.

First labyrinth with rooms of size 1 and 1 entry and 1 exit. (February)

Figure 8.4: Development image 4.

Detection of entries on walls and first labyrinth with more than 1 exit. (February)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 60

Figure 8.5: Development image 5.

Rooms with different sizes implemented but just in one direction. (February)

Figure 8.6: Development image 6.

Labyrinth limited to depth 5. Rooms with different sizes and paths in all directions,
random number of entries and exits between 1 and the limit of the room. Some

obvious bugs can be observed like. (March)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 61

Figure 8.7: Development image 7.

Labyrinth limited to depth 8. Without bugs and bigger walls. (March)

Figure 8.8: Development image 8.

Limited depth to 5. First steps on inheritance of room parameters. (March)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 62

Figure 8.9: Development image 9.

Limited depth to 10. Starting to cut branches when they aren’t going to the
objective. Inheritance has some more logic now. Added getting and needing a power
to the inheritance. Purple is for getting a power, yellow for a key, brown for a door,

blue for the objective. (March)

Figure 8.10: Development image 10.

Limited depth to 10. Added MaxSideDepth, which is the depth from the main
path.(March)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 63

Figure 8.11: Development image 11.

Limited depth and sidedepth to 50. Less than 2 seconds generating and showing the
map. (March)

Figure 8.12: Development image 12.

Testing bigger rooms (10x10 tiles maximum). (March)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 64

Figure 8.13: Development image 13.

Added treasures to the map. Improved the test images of the map to fit better. Tiles
new ratio of 25:15 (March)

Figure 8.14: Development image 14.

Visiting a room for the first time saves the time when you entered. (March)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 65

Figure 8.15: Development image 15.

First prototype of the room content generator. It generates and draws the hitboxes of
the basic walls. In brown we can see walls and in red the platforms. (March)

Figure 8.16: Development image 16.

Room content generator advancing. After generating the basic as before it checks how
to go from one wall/platform to another. This is a test where we can see the green

hitboxes seeing the character can jump from a side to the other of the holes because
there are some obstacles I put myself before. (April)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 66

Figure 8.17: Development image 17.

New connections detected. We can still see the green hitboxes for the checking and we
can see some connections drawn. Red lines are Jump connections, blue are Walk

connections, green are Drop and yellow are Fall. (April)

Figure 8.18: Development image 18.

Example room with all the connections detected. Red lines are Jump connections,
blue are Walk connections, green are Drop and yellow are Fall. (April)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 67

Figure 8.19: Development image 19.

Same connections detected but drawn by turns for a better understanding. (April)

Figure 8.20: Development image 20.

First content generator. Really simple: base walls + totally random inside with an
arbitrary number of platforms that we only check to not collide between themselves.

Exit accesibility (or room feasibility) is not checked yet. (April)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 68

Figure 8.21: Development image 21.

Inside generator off. Playing with irregular constants for the base proves that the base
patterns can be hidden a little. In this case for example, pits were created! (April)

Figure 8.22: Development image 22.

Inside generator still off. Adding some randomness to the basic wall generation
creates some cool unexpected shapes. (April)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 69

Figure 8.23: Development image 23.

Random content generator that takes exit accesibility (or room feasibility) into
account, although rooms are not interesting they can be completed. Test on simple

walls. (April)

Figure 8.24: Development image 24.

Same test as in 23 with randomness to the basic wall generation. (April)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 70

Figure 8.25: Development image 25.

Playing with the idea of a level with no walls and the generator works (maybe even
better than with walls). (April)

Figure 8.26: Development image 26.

Now only the visible rooms for the camera are rendered and active. This image shows
from another point of view how to the left (new) we can only see some rooms while in
the right (old) all the rooms were active and rendered. We can still see all the rooms

with a debug button. (April)

Figure 8.27: Development image 27.

Random content generator already using basic parts such as the donut to create more
interesting rooms. Some zones are difficult to see that they are still rectangles, which

is great! (to aid this effect the different wall colors was deactivated) (April)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 71

Figure 8.28: Development image 28.

Finally completed the double jump connection detection. Even if it works well it
doesn’t seem to help making interesting levels. It will be easy to activate but for now

it will be disabled as levels without it seem more fun. And even if it can’t be seen.
The different platforms that depend on power-ups have been implemented too in the

content generation. (April)

Figure 8.29: Development image 29.

Different types of levels have been implemented. The next images will be the first
tests of those different types. This is the factory level for example (it has lots of weird

shaped rooms). (April)

Figure 8.30: Development image 30.

This is an underwater level (it has a lot of space). (April)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 72

Figure 8.31: Development image 31.

This is a labyrinth level (it is completely made of tunnels). (April)

Figure 8.32: Development image 32.

This is a aerial level (it does not have walls around rooms). (April)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 73

Figure 8.33: Development image 33.

Added the level shapes for different levels. This is an examples of the pyramid shape
forced into labyrinth levels. (May)

Figure 8.34: Development image 34.

Graphics implementation. Walls have textures and the hero is an animated sprite.
(May)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 74

Figure 8.35: Development image 35.

First items implemented. 7 different types of money items added. (May)

Figure 8.36: Development image 36.

Different types of levels have different types of graphics. (May)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 75

Figure 8.37: Development image 37.

Labyrinth levels have a light around the character for a better ambient. (May)

Figure 8.38: Development image 38.

First menu graphics implemented. (May)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 76

Figure 8.39: Development image 39.

And a level selection screen has been created too. (May)

Figure 8.40: Development image 40.

Key items implemented.(May)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 77

Figure 8.41: Development image 41.

Locks that unlock when you collect the level key implemented. And powers started its
implementation here even if you can not see it. (May)

Figure 8.42: Development image 42.

Added a notification text that tells you what items you collect. +50 on money has
been just collected here as example. (May)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 78

Figure 8.43: Development image 43.

HUD added showing your six lives (half a heart per life) and the money you have
collected so far. (May)

Figure 8.44: Development image 44.

First enemy added. Just a slime that walks a little bit. You can kill him by jumping
on him. (May)

Figure 8.45: Development image 45.

Flying enemies added. They are bees on most of the levels but they transform into
fishes in the underwater level. (May)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 79

Figure 8.46: Development image 46.

Powers totally implemented. In this image you can see a red box that gets you the
fire resistance power when you collect it. (May)

Figure 8.47: Development image 47.

Story transitions implemented. (May)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 80

Figure 8.48: Development image 48.

Testers version finished. It collects the time played in each level automatically. (May)

Figure 8.49: Development image 49.

Game finished. (June)

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8. ANNEXES 81

8.3 Game Design Document

A game design document is a living design document made specially for a video game.
It is created during the development of the video game and changes over time, but
it always organizes everything that has already been thought and puts together the
effort and ideas of all the development team so it is written down and clear. It is really
important to use one to maintain the cohesion and consistency around the game.

In the following pages, we will show the game design document that was made to plan
the video game part of the project. This document was made when the map and level
generators were almost finished and has been changed while developing, as new ideas
became part of the project.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8: ANNEXES 82

Procedural generation applied
to a video game level design.

Game Design Document

Albert Carrión Dı́az

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8: ANNEXES 83

A. Introduction

This game is the result of a Bachelor Thesis trying to apply procedural generation
to video game level design.

A.1 Synopsis

The player starts at a room where he is pointed to go find a treasure. When he finds
the treasure, the real adventure begins on some procedural generated levels.

A.2 Genre

The game will be 2D side-view platformer. With really simple controls and mechanics,
it will strongly focus on the levels exploration and obtaining the requirements (like new
powers or keys) to access new zones and advance.

A.3 Inspiration

This game has some big influences from the games ”Rogue Legacy” and ”Cloudberry
Kingdom”. ”The binding of Isaac”, ”Spelunky” and ”Unepic” have been other places
where the inspiration for some ideas came from.

A.4 Purpose and target audience

The real purpose is to create a fun game that will take advantage of all the work on
the procedurally generated levels. The target audience will be mainly fans of dungeon
exploration and simple recollection platformers with experience with video games, but
I will try to make the difficulty of the game depend on the challenge the player is
searching.

A.5 Game flow

You start in an introduction level and fight till the first objective and get to know
the story. Then you play in a random order the different levels of the different zones
collecting at the end of each one a star od a different color to unlock the final zone.

A.6 Style

The style of the game will be non-serious or even cartoon graphics and audio, nothing
realistic or complex because we are just trying to do something fun. With this objective
the player will have to search different unexplored zones full of enemies and treasures.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8: ANNEXES 84

A.7 Objective

Finishing each level that will be like a small labyrinth with doors and such. All to
collect the star at end of each level that lets you find the legendary white star and
become a legend yourself.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8: ANNEXES 85

B. Gameplay and mechanics

B.1 Gameplay

B.1.1 Adventure progression

You explore a forest for a great treasure and when you touch the treasure you see it is
fake and start your real adventure. You must find the different stars to discover where
the real treasure is. Each objective is in a final room of the levels, getting one finishes
the level and getting them all takes you to the final level. The levels are 4 and you go
to them in whatever order you choose:
-A factory.
-A sky city.
-An underwater level.
-The interior of a pyramid (labyrinth).
After the four different levels you go to a final dark level.

B.1.2 Difficult progression

Every level you play is larger and has more to explore with more enemies.

B.1.3 Adventure objective

You want to become a legend by finding the incredible white star of some really old
stories.

B.1.4 Game flow

You start only being able to play the introduction level. When you get the fake white
star of this level you unlock the next for levels. When you get the final star of each of
the 4 levels you unlock the final level. When you get the real white star of the final
level you have finished the game.

B.2 Controls

You can walk to both sides and jump as usual in platformers with a button for each of
these actions. There is another button for crouching and then dropping from platforms.

B.3 Mechanics

B.3.1 Movement

You can walk and crouch but not at the same time. You can jump up and move while
you are in the air. You can jump down from platforms while crouching. There will be
a power-up that allows you to jump again on the air.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8: ANNEXES 86

B.3.2 Combat

You can only hit enemies by jumping on them.

B.3.3 Items

There are coins and other little treasures to collect for money (for now only points).
There are map upgrades (which make the exploration a lot easier) and the elemen-
tal power-ups that let you use platforms that had obstacles before (for example fire
platforms hurt you unless you have the fire power).

B.3.4 Powers

Double jump and the elemental power-ups that let the hero use more platforms:
-Fire power-up to step on fire without damage.
-Wind power-up to step on clouds.
-Water power-up to jump on sticky platforms.
-Earth power-up to step on spikes without damage.

B.4 Enemies

Simple walking monsters that move horizontally, some others that move vertically and
then the flying monsters that move in any direction.

B.5 Physics

Only ”simple gravity simulation”.

B.6 Map

You can check the map at any moment and see a layout of what you have explored by
pressing pause. This map shows with each level of upgrade:
0. Where have you been.
1. All the rooms.
2. Where are the other map upgrades.
3. Where are the power upgrades.
4. Where are the keys of the level locks.
5. Where are the stars.

B.7 Rooms

Rooms is how the map is divided but we try to hide this fact by using different shapes
and non-recognizable patterns.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8: ANNEXES 87

C. Interface

C.1 HUD

You just see your lives, the money you collected and the game itself.

C.2 Screens flow

Figure C.1: Designs of the 4 screens of the game.[?]

Green means finished as planned and yellow finished with more time than expected.

C.3 Screens description

Main menu: Lets you select what to do (Play, options, instructions, credits or exit).
Options: Lets you change the configuration of the game, such as the music and sound
or reseting your game progress.
Game screen: Where you play the actual game.
Story screen: Shows the story as you discover it or events like a game over screen when
you die.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8: ANNEXES 88

D. Story

D.1 Background story

You are a regular adventurer that wants to become famous.

D.2 Current world

You discover that the white star hides more mysteries than what you thought and that
this could be the adventure of your life.

D.3 Objectives

Get the white star

D.4 Characters

Hero
White star

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8: ANNEXES 89

E. Technical decisions

E.1 Target hardware

PC.

E.2 Development hardware and software

+5 year old PC with Windows 8.1.

E.3 Development methodology

Own variation of the scrum methodology.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8: ANNEXES 90

F. Graphics decisions

F.1 Style

Cartoon and not realistic graphics. Really simple.

F.2 Graphics needed

Hero spritesheet.
Walking enemy spritesheet.
Verical enemy spritesheet.
Flying enemy spritesheet.
Coins and money.
Platforms and walls graphics.
Upgrades graphics.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 8: ANNEXES 91

G. Audio decisions

G.1 Style

There is no style for all the game. Whatever goes with each level will be used. For
example, Arabic music could go well in the pyramid level.

G.2 Sounds needed

Walking sound.
Jumping sound.
Attack sound.
Getting hurt sound.
Getting item.

G.3 Music needed

Menu.
Introduction level.
4 levels.
Final level.

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 9. REFERENCES 92

9. References

[1] Cellar Door Games. Rogue legacy. http://roguelegacy.com, 2014, retrieved on
02/03/2015.

[2] Albert Carrión Dı́az. Own generated content, 2015.

[3] Unity Technologies. Unity 3d. http://unity3d.com/unity, 2015, retrieved on
02/03/2015.

[4] MonoDevelop Project. Monodevelop. http://www.monodevelop.com, 2015, re-
trieved on 02/03/2015.

[5] Linus Torvalds. Git. http://git-scm.com, 2015, retrieved on 02/03/2015.

[6] Atlassian. Bitbucket. http://git-scm.com, 2015, retrieved on 02/03/2015.

[7] The Gimp Team. Gimp. http://www.gimp.org/, 2014, retrieved on 02/03/2015.

[8] Audacity. Audacity. http://audacity.sourceforge.net, 2015, retrieved on
02/03/2015.

[9] Bay 12 games. Dwarf fortress. http://www.bay12games.com/dwarves, 2015, re-
trieved on 13/03/2015.

[10] Edmund McMillen and Florian Himsl. The binding of isaac. http://

bindingofisaac.com, 2015, retrieved on 02/03/2015.

[11] Mossmouth. Spelunky. http://www.spelunkyworld.com, 2013, retrieved on
02/03/2015.

[12] Pwnee Studios. Cloudberry kingdom website. http://www.pwnee.com, 2013, re-
trieved on 02/03/2015.

[13] Jamis Buck. Maze generation: Algorithm recap. http://weblog.jamisbuck.org/
2011/2/7/maze-generation-algorithm-recap#article_body, 2011, retrieved
on 13/03/2015.

[14] Gray Lake Studios. Pro-d total - procedural dungeon generator total.
https://www.assetstore.unity3d.com/en/#!/content/8553, 2015, retrieved
on 02/03/2015.

[15] Wikipedia. Wang tile - wikipedia, the free encyclopedia. http://en.wikipedia.
org/wiki/Wang_tile, 2015, retrieved on 13/03/2015.

[16] YoYoGame. Gamemaker: Studio. https://www.yoyogames.com/studio, 2015,
retrieved on 02/03/2015.

[17] Epic Games Inc. Unreal engine. https://www.unrealengine.com, 2015, retrieved
on 02/03/2015.

http://roguelegacy.com
http://unity3d.com/unity
http://www.monodevelop.com
http://git-scm.com
http://git-scm.com
http://www.gimp.org/
http://audacity.sourceforge.net
http://www.bay12games.com/dwarves
http://bindingofisaac.com
http://bindingofisaac.com
http://www.spelunkyworld.com
http://www.pwnee.com
http://weblog.jamisbuck.org/2011/2/7/maze-generation-algorithm-recap#article_body
http://weblog.jamisbuck.org/2011/2/7/maze-generation-algorithm-recap#article_body
https://www.assetstore.unity3d.com/en/#!/content/8553
http://en.wikipedia.org/wiki/Wang_tile
http://en.wikipedia.org/wiki/Wang_tile
https://www.yoyogames.com/studio
https://www.unrealengine.com

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 9. REFERENCES 93

[18] Kenney. Kenney assets. http://kenney.nl/assets, 2015, retrieved on
10/06/2015.

[19] Eeve Somepx. Eeve somepx fonts. http://somepx.itch.io/pixel-fonts, 2015,
retrieved on 10/06/2015.

[20] Ubisoft Entertainment. Ubisoft company website. https://www.ubisoft.com/

en-US/company/overview.aspx, 2012, retrieved on 02/03/2015.

[21] Wikipedia. Scrum. http://en.wikipedia.org/wiki/Scrum_%28software_

development%29, 2015, retrieved on 02/03/2015.

[22] Raph Koster. Raph koster’s website. http://www.raphkoster.com, 2015, re-
trieved on 13/03/2015.

[23] Raph Koster. Theory of fun for game design 1st ed. (ISBN-13: 978-1932111972)
2004.

[24] Raph Koster. Theory of fun for game design’s website. http://www.theoryoffun.
com, 2015, retrieved on 13/03/2015.

[25] Alex Galuzin. Ultimate Level Design Guide. (eBook) 2011.

[26] Steve Swink. Game Feel: A Game Designer’s Guide to Virtual Sensation 1st ed.
(ISBN-13: 978-0123743282) 2008.

[27] Alex Galuzin. World of level design. http://www.worldofleveldesign.com,
2015, retrieved on 13/03/2015.

[28] Mateusz Piaskiewicz. Level design.org knowledge base. http://level-design.

org/wiki/index.php?title=Main_Page, 2015, retrieved on 13/03/2015.

[29] Team Meat. Super meat boy! blog. http://supermeatboy.com, 2015, retrieved
on 13/03/2015.

[30] Andrew Doull. Procedural content generation wiki. http://pcg.wikidot.com/,
2014, retrieved on 13/03/2015.

[31] Nathan Williams. An investigation into dungeon generation. http://www.

nathanmwilliams.com/files/AnInvestigationIntoDungeonGeneration.pdf,
2014, retrieved on 13/03/2015.

[32] David Adams. Automatic generation of dungeons for computer games.
http://www.dcs.shef.ac.uk/intranet/teaching/public/projects/

archive/ug2002/pdf/u9da.pdf, 2002, retrieved on 13/03/2015.

[33] Roland van der Linden. Designing procedurally gener-
ated levels. http://repository.tudelft.nl/view/ir/uuid%

3A1e24b455-728d-42c0-82c5-e55f64956161, 2013, retrieved on 13/03/2015.

[34] Procedural Content Generation Wiki. Mazes. http://pcg.wikidot.com/

pcg-algorithm:maze, 2012, retrieved on 13/03/2015.

http://kenney.nl/assets
http://somepx.itch.io/pixel-fonts
https://www.ubisoft.com/en-US/company/overview.aspx
https://www.ubisoft.com/en-US/company/overview.aspx
http://en.wikipedia.org/wiki/Scrum_%28software_development%29
http://en.wikipedia.org/wiki/Scrum_%28software_development%29
http://www.raphkoster.com
http://www.theoryoffun.com
http://www.theoryoffun.com
http://www.worldofleveldesign.com
http://level-design.org/wiki/index.php?title=Main_Page
http://level-design.org/wiki/index.php?title=Main_Page
http://supermeatboy.com
http://pcg.wikidot.com/
http://www.nathanmwilliams.com/files/AnInvestigationIntoDungeonGeneration.pdf
http://www.nathanmwilliams.com/files/AnInvestigationIntoDungeonGeneration.pdf
http://www.dcs.shef.ac.uk/intranet/teaching/public/projects/archive/ug2002/pdf/u9da.pdf
http://www.dcs.shef.ac.uk/intranet/teaching/public/projects/archive/ug2002/pdf/u9da.pdf
http://repository.tudelft.nl/view/ir/uuid%3A1e24b455-728d-42c0-82c5-e55f64956161
http://repository.tudelft.nl/view/ir/uuid%3A1e24b455-728d-42c0-82c5-e55f64956161
http://pcg.wikidot.com/pcg-algorithm:maze
http://pcg.wikidot.com/pcg-algorithm:maze

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 9. REFERENCES 94

[35] Procedural Content Generation Wiki. Cellular automata. http://pcg.wikidot.

com/pcg-algorithm:maze, 2014, retrieved on 13/03/2015.

[36] Nathan Williams. Youtube - cellular automata dungeon generation. https://

youtu.be/sFP8TuAt_Jc, 2014, retrieved on 13/03/2015.

[37] Nathan Williams. Youtube - binary space partition dungeon generation. https:

//youtu.be/AUJx3xYM4n4?list=UU4i6i-HBjQzBC_pC7l8GB1A, 2014, retrieved on
13/03/2015.

[38] Nathan Williams. Youtube - delaunay triangulation dungeon generation. https:

//youtu.be/CaI6edoGbFY, 2014, retrieved on 13/03/2015.

[39] Phigame. Tinykeep. http://tinykeep.com, 2014, retrieved on 13/03/2015.

[40] Jordan Fisher. How to make insane, procedural platformer levels.
http://www.gamasutra.com/view/feature/170049/how_to_make_insane_

procedural_.php, 2012, retrieved on 13/03/2015.

[41] Julian Togelius. A comparative evaluation of procedural level generators in the
mario ai framework. http://julian.togelius.com/Horn2014Comparative.pdf,
2014, retrieved on 13/03/2015.

[42] Wikipedia. Super mario bros. - wikipedia, the free encyclopedia. http://en.

wikipedia.org/wiki/Super_Mario_Bros., 2015, retrieved on 13/03/2015.

[43] Sean Barrett. Herringbone wang tiles. http://nothings.org/gamedev/

herringbone, 2012, retrieved on 13/03/2015.

[44] Peter Mawhorter and Michael Mateas. Procedural level generation
using occupancy-regulated extension. https://games.soe.ucsc.edu/

procedural-level-generation-using-occupancy-regulated-extension,
2010, retrieved on 13/03/2015.

[45] Gillian Smith. Launchpad: A rhythm-based level generator for 2-d platform-
ers. http://sokath.com/main/files/1/smith-launchpad-tciaig.pdf, 2011,
retrieved on 13/03/2015.

[46] Epic Games Inc. Epic games website. http://epicgames.com, 2015, retrieved on
13/03/2015.

[47] LaTeX Project. Latex. http://www.latex-project.org, 2014, retrieved on
02/03/2015.

[48] Microsoft. Windows 8.1 price in spain. http://www.microsoftstore.com/

store/mseea/es_ES/cat/Windows-8/categoryID.66227200, 2015, retrieved on
02/03/2015.

[49] PayScale Inc. Payscale - salary comparison, salary survey, search wages. http:

//www.payscale.com, 2015, retrieved on 13/03/2015.

http://pcg.wikidot.com/pcg-algorithm:maze
http://pcg.wikidot.com/pcg-algorithm:maze
https://youtu.be/sFP8TuAt_Jc
https://youtu.be/sFP8TuAt_Jc
https://youtu.be/AUJx3xYM4n4?list=UU4i6i-HBjQzBC_pC7l8GB1A
https://youtu.be/AUJx3xYM4n4?list=UU4i6i-HBjQzBC_pC7l8GB1A
https://youtu.be/CaI6edoGbFY
https://youtu.be/CaI6edoGbFY
http://tinykeep.com
http://www.gamasutra.com/view/feature/170049/how_to_make_insane_procedural_.php
http://www.gamasutra.com/view/feature/170049/how_to_make_insane_procedural_.php
http://julian.togelius.com/Horn2014Comparative.pdf
http://en.wikipedia.org/wiki/Super_Mario_Bros.
http://en.wikipedia.org/wiki/Super_Mario_Bros.
http://nothings.org/gamedev/herringbone
http://nothings.org/gamedev/herringbone
https://games.soe.ucsc.edu/procedural-level-generation-using-occupancy-regulated-extension
https://games.soe.ucsc.edu/procedural-level-generation-using-occupancy-regulated-extension
http://sokath.com/main/files/1/smith-launchpad-tciaig.pdf
http://epicgames.com
http://www.latex-project.org
http://www.microsoftstore.com/store/mseea/es_ES/cat/Windows-8/categoryID.66227200
http://www.microsoftstore.com/store/mseea/es_ES/cat/Windows-8/categoryID.66227200
http://www.payscale.com
http://www.payscale.com

Bachelor’s Thesis. Albert Carrión Dı́az

CHAPTER 9. REFERENCES 95

[50] Hamza Aziz (Destructoid). Rogue legacy became profitable
within its first hour on sale. http://www.destructoid.com/

rogue-legacy-became-profitable-within-its-first-hour-on-sale-272074.

phtml, 2014, retrieved on 27/02/2015.

[51] Vine. Cavern kings. http://www.cavernkings.com/, 2015, retrieved on
10/06/2015.

[52] Retronic Games. Pixel dungeon on steam. http://store.steampowered.com/

app/365900/, 2015, retrieved on 1/06/2015.

[53] Creative Commons Corporation. Creative commons by 4.0 license. https://

creativecommons.org/licenses/by/4.0, 2015, retrieved on 10/06/2015.

[54] Per Nyblom. Abundant-music. http://www.abundant-music.com, 2015, retrieved
on 10/06/2015.

[55] Increpare. Bfxr. http://www.bfxr.net, 2015, retrieved on 10/06/2015.

http://www.destructoid.com/rogue-legacy-became-profitable-within-its-first-hour-on-sale-272074.phtml
http://www.destructoid.com/rogue-legacy-became-profitable-within-its-first-hour-on-sale-272074.phtml
http://www.destructoid.com/rogue-legacy-became-profitable-within-its-first-hour-on-sale-272074.phtml
http://www.cavernkings.com/
http://store.steampowered.com/app/365900/
http://store.steampowered.com/app/365900/
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
http://www.abundant-music.com
http://www.bfxr.net

	Acknowledgements
	Abstracts
	Contents
	Introduction
	Problem
	Scope of the project
	Solution and objectives
	Scope definition
	The map
	The rooms
	The game

	Methodology and validation
	Development tools
	Obstacles and risks

	Context and state of the art
	Context
	Actors
	State of the art
	Map generators
	Level generators
	Game engines

	Use of previous results
	Map generators
	Level generators
	Game engines

	Project Management
	Temporal planning
	Tasks description
	Work previous to the project
	Project planning
	Main development
	Validation process
	Final tasks

	Time table
	Resources
	Gantt chart
	Action plan
	Planning modifications
	Final time table
	Final Gantt chart
	Action Plan following

	Budget and sustainability
	Budget estimation
	Material resources
	Human resources
	Total budget

	Budget control
	Budget modifications
	Sustainability
	Economic sustainability
	Social sustainability
	Environmental sustainability
	Sustainability evaluation
	Sustainability reevaluation

	Map generator
	Design
	General implementation

	Room generator
	Design
	Connections checking
	Random content generation

	Video game
	Gameplay
	Generators
	Graphics
	Interface
	Audio

	Validation
	Test explanation
	Results
	Conclusions

	Conclusions
	Work done
	Possible improvements

	Annexes
	Video game user test
	Development images log
	Game Design Document

	References

