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Abstract 
 

The principal objectives of the thesis are two: firstly to study the accuracy of the satellite 

rainfall products in climatologically distinctive places at different scales and secondly to find 

the possibility of using satellite-rain gauge blended rainfall products for hydrological 

purposes. 

 

Three case study areas Catalunya, Bangladesh, and South Africa have been chosen for the 

analysis using the satellite rainfall products (TMPA) and rain gauge records for the period 

from January 2005 to December 2009. The areal pattern of rainfall has been presented using 

satellite rainfall products over the case study areas. Both daily and monthly products are 

showing good agreement with rain gauge records although it is highly variable with space and 

seasonality. From the results, it can be shown that TRMM satellite identified the seasonal 

variability of rainfall. Moreover, the mean TRMM rainfall products show same pattern as like 

mean rain gauge observations in daily and monthly scale in all case study areas. 

 

Finally, a blending technique is applied (originally used for radar-rain gauge blending) to 

conform satellite rainfall products to rain gauge observations. This blended product is also 

tested against the rain gauge records to verify the improvement of the blended rainfall 

products over the original satellite products. Results of blended rainfall products enlightens 

few aspects or issues that should consider before applying blending technique including 

density of rain gauge network and resolution of TRMM pixel.	  
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Precipitation is the natural starting point for the hydrologic cycle and main input to the 

hydrologic systems and plays a significant role in weather research, monitoring, and 

predictions. Improving our understanding of weather and climate, along with the development 

of reliable and uninterrupted measurements, are essential for proper assessment of weather 

conditions. Currently, in-situ and radar-based precipitation observations are the major input 

for stream flow forecasts, flash flood warnings, and weather observations around the world. 

However, in many parts of the globe (except in a few developed countries), radar installations 

for precipitation measurements are not available and poor spatial sampling of rain gauge 

networks makes them inadequate to monitoring, detection, and forecast studies. Clearly, the 

lack of ground-based precipitation measuring networks hampers the development and use of 

flood and drought warning models, hydrological models, and extreme weather monitoring and 

decision-making systems. Therefore, there exists the need to achieve alternative estimates of 

precipitation with sufficient sampling density, reliability, and accuracy to enable utilization of 

data for operational applications. 

 

Satellite-derived precipitation estimates have the potential to improve precipitation 

observation at a global scale. In recent years, the National Aeronautics and Space 

Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA), 

and many other international satellite missions have led to an increase in available 

precipitation data. These remotely sensed data have several advantages over in situ 

measurements, including higher spatial resolution and uninterrupted coverage. However, 

these data have not yet been fully integrated into hydrologic and water resources management 

and decision-making system, mainly because of undetermined uncertainties associated with 

satellite rainfall / precipitation estimates. 

 

Currently, many efforts are being made by many scientists around the world to utilize space-

borne precipitation data as a supplementary and / or key decisive (for ungauged basins) source 

of information for weather monitoring and detection, forecasting, and water resources 

management. The emergence of various satellite-based precipitation products with high 

special resolution and global coverage could be considered good alternatives or complement 
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to in situ measurements. For example, Li	  and	  Shao	  (2010) studied to merge satellite rainfall 

estimates and rain gauge data to estimate the areal precipitation where the rain gauge network 

is sparse in Australia, especially for local convective events, AghaKouchak et al. (2011) 

evaluated the performance of different satellite-retrieved precipitation products to detect 

extreme precipitation rates across the central United States, Bitew and Gebremichael (2011) 

assessed the suitability of satellite rainfall products for stream flow simulation in medium 

watersheds of Ethiopian highlands and also studied the accuracy through hydrologic 

simulation in a fully distributed hydrologic model [Bitew and Gebremichael (2011)], Duncan 

and Biggs (2012) assessed the accuracy and applied use of satellite-derived precipitation 

estimates over Nepal, Haile et al. (2013) inter-compared different satellite rainfall products 

for representing rainfall diurnal cycle over the Nile basin. 

	  

1.2. Satellite measurement of precipitation in ungauged basins 

Many hydrologic simulation studies, whether related to climate change scenarios, flood 

forecasting, or water management, depend heavily on the availability of good-quality 

precipitation estimates. Difficulties in estimating precipitation arise in many remote parts of 

the world and particularly in developing countries where ground-based measurement 

networks (rain gauges or weather radar) are either sparse or nonexistent, mainly due to the 

high costs of establishing and maintaining infrastructure. For rivers that cross international 

boundaries, inconsistencies in instrumentation, and administrative limitations to data access 

further hamper the effective use of hydrological models in support of reliable flood and 

drought diagnosis and prediction [Su et al. (2008)]. These situations impose an important 

limitation on the possibility and reliability of hydrologic forecasting and early warning 

systems in these regions. For example, monsoon flooding (June–July 2004) in Bangladesh 

caused massive damage to the land, infrastructure, and economy and affected more than 23 

million people [Yilmaz et al. (2005)].  

 

The International Association of Hydrological Sciences (IAHS) launched an initiative called 

the Decade on Predictions in Ungauged Basins (PUB), aimed at achieving major advances in 

the capacity to make reliable predictions in “ungauged” basins [Sivapalan et al. (2003)]. 

Ungauged is used to indicate locations where measurements of the variables of interest are 

either too few or too poor in quality, or not available at all. In particular, where measurements 
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of the system response (e.g., streamflow) are lacking, prior estimates of the model parameters 

cannot be improved via calibration [Gupta et al. (2005)]. However, where measurements of 

the system input (e.g., precipitation) are missing, the model cannot even be driven to provide 

forecasts. 

 

Whether measured directly by rain gauges or indirectly by remote sensing techniques, all 

precipitation estimates contain uncertainty. While rain gauges provide a direct measurement 

of precipitation reaching the ground, they may contain significant bias arising from coarse 

spatial resolution (yielding underestimation especially during events with low spatial 

coherency, i.e., convective showers), location, wind, and mechanical errors among others 

[Groisman and Legates (1994)]. According to Legates and DeLiberty (1993) rain gauges may 

underestimate the true precipitation by about 5%. Radar estimates hold promise for 

hydrologic studies by providing data at high spatial and temporal resolution over extended 

areas but suffer from bias due to several factors including hardware calibration, uncertain Z–R 

relationships [Winchell et al. (1998); Morin et al. (2003)], ground clutter, brightband 

contamination, mountain blockage, anomalous propagation, and range-dependent bias [Smith 

et al. (1996)]. Recent advances in satellite-based remote sensing have enabled scientists to 

develop precipitation estimates having near-global coverage, thereby providing data for 

regions where ground-based networks are sparse or unavailable [Sorooshian et al. (2000)]. 

However, this advantage is offset by the indirect nature of the satellite observables (e.g., 

cloud-top reflectance or thermal radiance) as measures of surface precipitation intensity [Petty 

and Krajewski (1996)]. 

 

In general, satellite-based precipitation estimation algorithms use information from two 

primary sources. The infrared (IR) channels from geosynchronous satellites are used to 

establish a relationship between cloud top conditions and rainfall rate at the base of the cloud. 

This relationship can be developed at relatively high spatial (∼ 4 km Χ 4 km) and temporal 

(30 min) resolution. The microwave (MW) channels from low-orbiting satellites are used to 

more directly infer precipitation rates by penetrating the cloud, but a low-orbiting satellite can 

retrieve only one or two samples per day. The relative strengths and weaknesses of various 

sources have been exploited in the development of algorithms that combine and make the best 

use of each source [Yilmaz et al. (2005)]. 
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Numerous satellite precipitation validation studies (e.g., “ground truthing”) have been 

implemented with a view to providing both users and providers information about the quality 

of satellite precipitation estimates [Krajewski et al. (2000); Adler et al. (2001); McCollum et 

al. (2002); Gottschalck et al. (2005); Brown (2006); Ebert et al. (2007)]. Comparatively little 

work has been done to evaluate the suitability of existing satellite precipitation products as 

input for hydrologic models. Yilmaz et al. (2005) investigated the use of the Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks 

(PERSIANN) satellite precipitation algorithm [Sorooshian et al. (2000)] in streamflow 

forecasting with a lumped hydrologic model over several medium-size basins in the 

southeastern United States. Artan et al. (2007) evaluated a satellite rainfall product for 

streamflow modeling with a spatially distributed hydrologic model over four sub-basins of the 

Nile and Mekong Rivers. Both studies demonstrated improved performance of remotely 

sensed precipitation data in hydrologic modeling when the hydrologic model was calibrated 

with satellite data. Other studies have been conducted either over very small basins [Hossain 

and Anagnostou (2004)] or with satellite products that are not widely available [Tsintikidis et 

al. (1999); Grimes and Diop (2003); Wilk et al. (2006)]. 

 

1.3. The TRMM mission 

With the advent of meteorological satellites in the 1970s, great efforts have been directed to 

estimating precipitation from satellite images, which cover most of the Globe. The Tropical 

Rainfall Measuring Mission (TRMM), a joint project by the National Aeronautics and Space 

Administration (NASA) of the United States of America (USA) and the Japan Aerospace 

Exploration Agency (JAXA, formerly, NASDA) launched on November 27th, 1997, provides 

a wealth of information on global tropical rainfall [Kummerow et al. (2000)]. As the first 

satellite with a precipitation radar (built by the Communication Research Laboratory in Japan) 

dedicated to rainfall measurement, TRMM indirectly estimates precipitation with the 

deployment of several passive microwave sensors. Due to the limitations in weight, power 

and size, and the need for narrow beams in order to get an acceptable resolution at ground 

level, TRMM-PR operates at Ku band. This makes its measurement seriously affected by 

attenuation due to the scatter of the hydrometeors. The basic principle of TRMM precipitation 

estimates is based on the relationship between microwave radiation and the amount of water 

in the cloud through Planck’s law [Li and Shao (2010)]. 
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TRMM is set in an inclination angle of 35° and period 90 minutes and covers between 40°N 

and 40°S. The average revisit time is around 9 hours, however, since it is a Low Earth 

Orbiting (LEO) satellite flying at 350 km / 402.5 km, the revisit time is highly irregular and 

highly dependent on the latitude of study [Bell et al. (1990)]. 

 

TRMM satellite was initially set at 350 km altitude, but to increase the life of the mission it 

was moved to 402.5 km in August 2001 (the loss of fuel due to the boost will be compensated 

by the less consumption at the new orbit). The change of the altitude of the satellite had an 

impact on the TRMM-PR resolution [see Table 1.1 for characteristics of TRMM-PR before 

and after the boost; Llort (2010)]. Several authors such as Shimizu et al. (2008), Shimizu et al. 

(2009), and Liu et al. (2012) studied the impact of the boost in the rainfall estimation by 

TRMM-PR. 

 

Table 1:1 Specification of the TRMM-PR before and after the boosting 

Property Unit Before Boost After Boost 

Height km 350 402.5 

Velocity of Nadir at Ground km/s 7 - 

Power Transmitted W 500 - 

PRF Hz 2776 - 

Frequency (Ku: 2.2 cm) GHz 13.8 - 

Beam Width Degree 0.71 - 

Pulse Duration µs 1.6 - 

Number of Beams - 49 - 

Cross Track Scan Angle Degree ±17 - 

Number of Gates - Between 122 and 139 - 

Horizontal Resolution km 4.3 5 

Vertical Resolution m 250 - 

Swath km 220 245 – 250 

Detectable Z Factor dBZ 19.5 20.7 
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1.4. Motivation and thesis outline 

As mentioned above, there is a need for good-quality, high spatial and temporal resolution, 

and uninterrupted coverage of precipitation record for developing hydrological models, flood 

and drought warning models, water resource management, and decision-making systems in 

many parts of the world especially the places where ground-based measurement is not 

available or sparse. Satellite-derived precipitation estimates have the possibility to be used in 

model development, water management, and decision-making systems though these products 

have undetermined uncertainty associated with the estimation algorithms. Thus, the 

motivations of this thesis is to address the following two objectives: 

 

The first objective is to determine the accuracy of satellite products in climatologically 

distinctive places at different scales. This will help us to interpret the measurements of a given 

instruments (working with a specific scale) and to merge estimates from various instruments 

operating at different scales. 

 

The second objective is to study the possibility of using TRMM precipitation – rain gauge 

blended products for hydrological purposes. 

 

After the present chapter, the work that has been done in this thesis will be presented 

according to the following order: 

 

Chapter 2 describes the three case study areas with different climatology and presents data 

sets along with their corresponding spatial and temporal resolution and brief estimation 

procedure. 

 

Chapter 3 presents the comparison between satellite estimation and ground-based rain gauge 

measurements in daily and monthly temporal scales measuring three statistical parameters at 

the three case study areas. 

 

Chapter 4 explains the blending technique that has been adopted in this thesis at the three case 

study areas and also assessed the suitability of the technique. 

 

Chapter 5 presents the conclusions of the thesis. 
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CHAPTER 2. STUDY AREA AND DATA SET DESCRIPTION 

2.1. Introduction 

With the aim of investigating the performance of space borne radar at local scale (i.e. a part of 

a country or a country) three case study areas have been selected. The inter-comparison 

between satellite rainfall estimation and ground-based estimation has done to better evaluate 

the reasons of the discrepancies and formulate an approach for using these products at local 

scale. 

 

There are several TRMM precipitation products available by combining measurements from 

different sensors in the estimation algorithm. 3B42 and 3B43 are based on multi-satellite data 

involving other instruments rather than only the TRMM-PR. From each TRMM product there 

are several versions. Between versions there are some changes in the algorithms used to 

obtain the products. The 3B42 processing is designed to maximize the data quality, so 3B42 is 

strongly recommended for any research work not especially focused on real-time applications. 

 

All data can be obtained through GES DISC (Goddard Earth Sciences Data and Information 

Services Center) website. For older versions, GES DISC should be contacted directly. 

 

2.2. Study areas 

2.2.1. Catalunya, Spain 

Catalunya with a land area of over 32,000 km2, is situated within 40°N - 44°N and 0° - 4°E at 

the north-eastern corner of the Iberian Peninsula with nearly 400 km Mediterranean coast 

[Lana et al. (2009)]. The climate of Catalunya is associated with cold and arid periods, with 

average annual rainfall ranging from less than 400 mm in the dry lowlands in Lleida to more 

than 1250 mm in certain parts of the Pyrenees [Llebot (2012)]. Figure 2.1 shows monthly 

distribution of casualties due to floods in Catalunya for the period from 1982 to 2007 [Llasat 

et al. (2010)]. In this study, we have used 284 remotely operated rain gauge stations with 

temporal resolution 5 minutes. 
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Monthly Distribution of Casualties in Catalunya (1982-2007) 

 
Figure 2.1: Monthly distribution of casualties produced by floods in Catalunya (1982-2007) 

	  

2.2.2. Bangladesh 

Bangladesh with a gross land area of 147,570 km2, is located within 20°N - 27°N and 88°E - 

93°E at the north-eastern part of South Asia. It has approximately 710 kilometers of exposed 

coastline along the Bay of Bengal on its south. Bangladesh receives a sub-tropical monsoon 

climate, with the monsoon starts in June and continues up to October. This period accounts 

80% of the total annual rainfall. The average annual rainfall varies from 1,429 mm in the 

western and northern parts to 4338 mm in the coastal and north-eastern parts of the country 

[Framji et al. (1982)]. Extreme precipitation, floods, droughts, and cyclones, among other 

events, are common in the study area. There are 35 rain gauge stations all over Bangladesh 

with 3 hours temporal resolution. 
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2.2.3. South Africa 

South Africa occupies the southernmost part of the African continent, stretching from 22°S to 

35°S and from 17°E to 33°E. It is bordered to the north by Namibia, Botswana, Zimbabwe, 

and Mozambique, in the west by the Atlantic Ocean and in the south and east by the Indian 

Ocean. The total land area is 1,219,090 km2. It has a coastline of about 3,000 km [GCIS 

(2013)]. With a mean annual rainfall of approximately 450 mm, the climate of South Africa is 

regarded as semi-arid. There is, however, wide regional variation in annual rainfall, from less 

than 50 mm in the Richtersveld on the border with Namibia, to more than 3,000 mm in the 

mountains of the south-western Cape, however only 28% of the country receives more than 

600 [©FAO (2005)]. There are 4,012 rain gauge stations all over South Africa with daily 

temporal resolution and different period of records. In this work, we have used 2,185 rain 

gauge stations for the period from January 2001 to December 2010. 

 

2.3. Data set description 

2.3.1. TRMM products 3B42 and 3B43 

In this study, we have used TRMM Multi-Satellite Precipitation Analysis (TMPA) products. 

More specifically, 3B42 and 3B43 data, version 7 [Huffman and Bolvin (2013)]. TMPA is a 

calibration-based sequential scheme for combining precipitation estimates from multiple 

satellites, as well as gauge analyses where feasible, at fine scales [Huffman et al. (2007)]. The 

goal of TMPA is to provide the “best” estimate of precipitation in each grid box at each 

observation time. TMPA has been computed for the entire TRMM period and is available 

both in real time (January 2002 – present) and as a post processed product (January 1998 – 

present), based on calibration by the TRMM Combined Instrument (TCI) and TRMM 

Microwave Imager (TMI) precipitation products, respectively. The real-time and retrospective 

data are referred to as the RT and research products, respectively. 

 

In reality, 3B42 and 3B43 are the post-real time precipitation estimation with respect to 

3B40RT, 3B41RT, and 3B42RT data products. Because, 3B40RT, 3B41RT, and 3B42RT are 

the experimental best-effort real-time monitoring product about 9 hour after real time while 

3B42 and 3B43 are produced about 2 months after the end of each month. Huffman et al. 
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(2007) presented two important differences between the real-time and research products. 

First, the RT product uses TMI precipitation as the calibrator and the research product uses 

the TCI, which is considered to be better but is not available in real time. Second, the research 

product rescales the monthly sums of the 3-hourly fields to a monthly gauge analysis, but 

such a rescaling is not available in real time. The Climate Assessment and Monitoring System 

(CAMS) 0.25° X 0.25° monthly gauge analysis is used to adjust the initially processed (IP) 

TMPA estimates; the Global Precipitation Climatology Center (GPCC) 1.0° X 1.0° monthly 

monitoring product is used to adjust the reprocessed (RP) TMPA [Su et al. (2008)]. Currently, 

the RP TMPA begins 1 January 1998 and ends March 2005. The IP TMPA starts in April 

2005 and continues to the present. The gauge adjustment only applies to the research product; 

the real-time TMPA is currently not corrected. 

 

3B42 and 3B43 data sets have same temporal coverage (from 1998-01-01 to present), 

geographic coverage (latitude: 50°S - 50°N and longitude: 180°W - 180°E), and horizontal 

resolution (0.25° X 0.25°; nlat = 400 and nlon = 1440) with 1440 columns and 400 rows to 

cover the globe [Huffman and Bolvin (2013)]. 

 

3B42 3-Hourly product is the combined microwave-infrared estimated rainfall with gauge 

adjustment centered at the middle of each 3-hour period [Huffman and Bolvin (2013); Figure 

2.2]. Figure 2.3 shows the daily accumulation of 7 August 2012. 

 

3B43 monthly data is the monthly precipitation accumulation and is produced about two 

months after the end of each month using TRMM and other satellites product 3B42 and the 

CAMS (Climate Anomaly Monitoring System) global gridded rain gauge data, produced by 

NOAA’s Climate Prediction Center and the global rain gauge product produced by the Global 

Precipitation Climatology Center [GPCC; Huffman and Bolvin (2013); Figure 2.4]. 

 

We have compared the 3B42 monthly accumulation with daily and/or 3-hourly 

accumulations. Since, daily product is the sum of the individual 3-Hourly products for the 

specified day, it is rational to compare monthly accumulation with anyone of the daily or 

hourly accumulation. Figures 2.5 (a) and 2.5 (b) represent the monthly accumulation for the 

month of July 2012 by using 3B42 3-hourly and 3B43 monthly products respectively. 
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Figures 2.5 (a) and 2.5 (b) shows the comparison of monthly accumulation between 3B42 and 

3B43 products; since 3B43 is produced about two months after at the end of each month by 

using 3B42 and/or gridded rain gauge data, sometimes this product could be more quality 

controlled than 3B42. Figure 2.6 shows the absolute difference between 3B43 and 3B42 for 

the month of July 2012. From the Figure 2.6 it is shown that the maximum difference between 

3B43 and 3B42 could be more than 10 mm. Actually, the maximum difference is 208 mm. 

The number of pixel that has precipitation value greater than 10 mm is 5780. 795 pixels have 

rainfall value between 50 mm and 100 mm. 93 pixels show between 100 mm and 150 mm. 

There are 25 pixels that have precipitation value within the range from 150 mm to 200 mm. 

One pixel has precipitation value greater than 200 mm. 
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CHAPTER 3. COMPARISON BETWEEN TRMM AND RAIN 

GAUGE  

3.1. Introduction 

As mentioned earlier, our main intention is to verify the performance of space borne satellite 

product (i.e. 3B42 daily and 3B43) at local scale and also to implement an approach to apply 

these products at local scale. For the first reason, three statistical parameters coefficient of 

correlation, bias, and root mean square error are calculated for daily and monthly temporal 

resolutions at the above-mentioned three case study areas to get an insight of the satellites 

products performance. In this chapter, measured statistical parameters are discussed at each 

case study area. 

 

3.2. Statistical parameters 

3.2.1. Coefficient of correlation (R) 

Here, we have calculated the linear Pearson correlation coefficient. Simply, it is a measure of 

the linear interdependence of two variables that ranges in value from -1 to +1, indicating 

perfect negative correlation at -1, absence of correlation at zero, and perfect positive 

correlation at +1. The correlation between satellite rain estimates and rain gauge 

measurements has been estimated as: 

 

! =
! !!"#!!"# − !!"#!

!!! !!"#!
!!!

!
!!!

! !!"#! − !!"#!
!!!

!!
!!! ! !!"#!!

!!! − !!"#!
!!!

!
 (1) 

 

where !!"#  are satellite estimates in millimeters (mm), !!"#  are rain gauge estimates in 

millimeters (mm), and ! is the number of concurrent observations. Here, the index ! is not 

used to simplify the equations !!!"! = !!"#. 
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3.2.2. Bias 

Bias is defined as the mean difference between satellite-based precipitation accumulations 

and rain gauge accumulations. It is expressed in millimeters (mm). 

 

!"#$ =
!!"# − !!"#!

!!!

!   (!!) (2) 

 
where !!"#, !!"#, and ! are as defined in equation (1). 
 

3.2.3. Root mean square error 

The difference between satellite-based observations and rain gauge observations are each 

squared and are then averaged over the sample. Finally, the square root of the average value is 

taken. Here, it is expressed in millimeter (mm). RMSE can be expressed as follows: 

 

!"#$ =
!!"# − !!"#

!!
!!!

!   (!!) (3) 

 

where !!"#, !!"#, and ! are as defined in equation (1). 
 

3.3. Study areas 

In these sections, one daily and one monthly product with large amount of precipitation are 

discussed for each case study area individually. Later, for each case study area we have 

computed the three statistical parameters for the time period from January 2005 to December 

2009, are also discussed. 

 

3.3.1. Precipitation over case study areas (2005-2009) 

Precipitation over the three case study areas shows very distinct pattern with different areal 

distribution. All case study areas have coast with different geography and orography. 

Orography plays a very important role in rainfall distribution. Here, we have determined the 
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mean yearly precipitation at each case study area and compared with the average precipitation 

for the five years from 2005 to 2009. 

 

To determine the average (2005-2009) and mean yearly precipitation, we have measured the 

pixel value over each rain gauge station and divided the total of all pixels value by the number 

of rain gauge. In case of Catalunya and South Africa, we have reduced the number of rain 

gauge station to calculate both the average and yearly mean simply because if the number of 

rain gauge below a TRMM pixel is more than one the impact of this pixel will be more than 

the pixel which has only one rain gauge. To do so, more than 0.125° is used as the minimum 

distance between the gauges. Table 3.1 shows the departure of mean yearly precipitation from 

the average (2005-2009) value. Positive departure denotes surplus rainfall with reference to 

average precipitation and negative departure denotes vice versa. 

 

Table 3:1 Comparison of mean yearly precipitation with average rainfall (2005-2009) 

 

Average 

(2005-2009), 

mm 

Departure from average, mm 

2005 2006 2007 2008 2009 

Catalunya 652 23 -76 -59 101 12 

Bangladesh 2386 73 -251 459 -103 -181 

South Africa 635 -85 -102 29 -4 162 

 

Figures 3.1, 3.2, and 3.3 represent the average (2005-2009) and mean annual precipitation 

over Catalunya, Bangladesh, and South Africa respectively. The average rainfall over 

Catalunya was 652 mm for the time period 2005-2009 and maximum 101 mm excess rainfall 

was observed in 2008 while maximum less precipitation was found 76 mm in 2006 (Table 3.1 

and Figure 3.1). Out of these three case study areas, maximum 2386 mm average precipitation 

was observed in Bangladesh, which is certainly very high with respect to Catalunya and South 

Africa. Maximum 459 mm excess rainfall was found over Bangladesh in 2007 whereas 

maximum 251 mm less precipitation was estimated in 2006 with respect to the average value 

(Table 3.1 and Figure 3.2). In South Africa maximum 162 mm extra precipitation with respect 

to the average value was estimated in 2009 and highest 102 mm negative departure was 

observed in 2006 (Table 3.1 and Figure 3.3). From Table 3.1 it is shown that for all three case 
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study areas maximum negative departure i.e. less rainfall with reference to the average 

estimation was observed in 2006. 

 

 
Figure 3.1: Average (2005-2009) and mean annual precipitation over Catalunya using TRMM 

(3B43) product. 
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Figure 3.2: Average (2005-2009) and mean annual precipitation in Bangladesh using TRMM 

(3B43) product. 
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Figure 3.3: Average (2005-2009) and mean annual precipitation over South Africa using 

TRMM (3B43) products. 

 

3.3.2. Catalunya, Spain 

We have studied several days and months with large rainfall amounts over Catalunya. Each 

event is showing different results from others. 
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3.3.2.1 Daily event on 9 October 2002 

Between 8 and 10 October 2002 there were several heavy rainfall events over Catalunya. The 

maximum rainfall was recorded in the coast near Barcelona, resulting in the closure of 

Barcelona Airport. 196.5 mm rainfall over a period of 48 hours was recorded at Baix 

Llobregat area and out of which 174.1 mm rainfall was collected over a period of 24 hours at 

the station of Sant Joan Despi [Llasat et al. (2004)]. Other stations at the same area collected 

rainfall with different temporal scale such as 162.4 mm in 12 hours at Olivella, 127.7 mm in 6 

hours and 50.2 mm in 1 hour at the stations in Sant Joan Despi. Figure 3.4 shows the daily 

accumulation map for TRMM data 3B42 daily over Catalunya on 9 October 2002. 

 

 
Figure 3.4: Daily accumulation map for TRMM data 3B42 daily over Catalunya on 9 October 

2002 with rain gauge locations. 
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Figure 3.5: Comparison between rain gauge observations and TRMM estimates before 

discarding zero rain gauge values. 

 

Figures 3.5 and 3.6 show the comparison between rain gauge and satellite estimates over 

Catalunya on 9 October 2002 before and after removing zero rain gauge values respectively. 

If we remove the zero rain gauge values from the data set, the coefficient of correlation value 

increases from 0.12 to 0.71 while the slope remains same. Bias changes from 28 mm to -5 

mm, the latter indicating underestimation by the satellites. The higher rain gauge values keeps 

the slope lower than 1. TRMM pixel shows the average value over a region while several 
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gauge stations could estimate different values under the same pixel because precipitation is 

highly variable with respect to space and time.  

 

 

Figure 3.6: Comparison between rain gauge and TRMM estimation after discarding zero rain 

gauge values. 
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Figure 3.7: Monthly accumulation map for TRMM data 3B43 over Catalunya on October 

2000 with rain gauge locations. 
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was very stationary (4 – 5 days) and therefore ensured a continuous moisture supply and 

convective instability replenishment [Homar et al. (2002)]. Figure 3.7 shows the monthly 

accumulation map of TRMM data 3B43 over Catalunya with the rain gauge locations. 

 

 
Figure 3.8: Comparison between rain gauge and TRMM estimation before discarding zero 

rain gauge values. 

 

Figures 3.8 and 3.9 show the comparison between rain gauge and satellite estimates over 

Catalunya for the month of October 2002 before and after discarding zero rain gauge values 

respectively. If we remove the zero rain gauge values from the data set, the coefficient of 
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and 3.9). Bias changes from 56 mm to 18 mm, which still indicates overestimation by the 

satellite. RMSE value also improves from 78 mm to 54 mm. The results could also be 

improved if we take the mean value of the rain gauge stations under the same TRMM pixel.  

 

 
Figure 3.9: Comparison between rain gauge and TRMM estimation after discarding zero rain 

gauge values. 

 

3.3.2.3 Daily statistical parameters  
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using the pixels over the corresponding rain gauge stations (Figure 3.10). Coefficient of 

correlation, bias, and RMSE are also calculated by using rain gauge and corresponding 

TRMM pixel values (Figure 3.10). Discontinuities of correlation coefficients represent the 

NaN (not a number). Only the bias values within the range (-30 mm < bias < 30 mm) are 

considered and the corresponding RMSE values are also measured (Figure 3.11). 

	  

	  

	  

	  
Figure 3.10: Daily mean rain gauge and TRMM values with daily coefficient of correlation 

for the period January 2005 – December 2009 in Catalunya.	  

	  
For the specified time period of January 2005 – December 2009 there are 1826 days out of 

which 60 days have coefficient value greater than 0.70 and less than 0.90 (Figure 3.10). For 

this range bias and RMSE ranges between -8 mm and 8 mm (Figure 3.11) and between 0 mm 
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and 23 mm (Figure 3.11) respectively. Number of days that are showing greater than 0.90 

correlation value is 5. Coefficient value varies from 0.50 to 0.70 for 203 days with getting 

high bias and RMSE values (RMSE ranges from 0 mm to 899 mm and bias from -123 mm to 

23 mm). 417 days have correlation value between 0.20 and 0.50 with having bias values from 

-15 mm to 15 mm and RMSE from 0 mm to 33 mm. Finally, 642 days have correlation value 

less than 0.20. 

	  

 

 
Figure 3.11: Daily bias and RMSE for the Period January 2005 – December 2009 in 

Catalunya. 

	  

3.3.2.4 Monthly statistical parameters  

Monthly mean rain gauge and TRMM values, coefficient of correlation, bias, and RMSE are 

also calculated as we have done for daily events. Figure 3.12 shows the monthly coefficient of 

correlation along with monthly mean rain gauge and TRMM values for the study period from  
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Figure 3.12: Monthly mean rain gauge and TRMM values with monthly coefficient of 

correlation for the period January 2005 – December 2009 in Catalunya. 

 

January 2005 to December 2009. Except few months in the first two years, monthly mean rain 

gauge and TRMM values show same pattern of change at each month (Figure 3.12). From the 

Figure 3.12 it is shown that 12 months have correlation value less than 0.20 out of which 

September and October get maximum 2 times less than 0.20. For these months corresponding 

bias and RMSE values are also very high (Figure 3.13). 12 months out of these 60 months 

have correlation value greater than 0.20 and less than 0.50. January, February, September, and 

October get maximum 2 times coefficient value within this range. For this range maximum 

positive and negative bias values are 17 mm and -25 mm respectively. RMSE value ranges 
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between 7 mm and 63 mm for the specified range of coefficient value. 23 months have 

coefficient value greater than 0.50 and less than 0.70. For this range maximum positive and 

negative bias values are 24 mm and -9 mm respectively and the maximum and minimum 

RMSE values are 50 mm and 14 mm respectively. Another 13 months have coefficient value 

greater than 0.70 and the maximum monthly correlation value is 0.81. Bias and RMSE value 

vary from -4 mm to 21 mm and from 15 mm to 36 mm respectively. 

 

 

 
Figure 3.13: Monthly bias and RMSE for the period January 2005 – December 2009 in 

Catalunya. 

3.3.2.5 Statistical parameters for different temporal resolutions 

Daily TRMM values are accumulated over 2 day, 3 days, 5 days, 10 days, 15 days, and 30 

days period and corresponding rain gauge accumulations are also estimated. By using these 

rain gauges and TRMM values two statistical parameters bias and RMSE are measured for 

different temporal resolutions i.e. 2 day, 3 days, 5 days, 10 days, 15 days, and 30 days period 

(Figures 3.14, 3.15, 3.16, 3.17, 3.18, and 3.19). Figures 3.14, 3.15, and 3.16 show bias for the 

period from January 2005 to December 2009 in Catalunya. Figures 3.17, 3.18, and 3.19 show 

root mean square error (RMSE) for the same area and same time period (2005-2009). 
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Figure 3.14: Bias for different temporal resolutions for the period 2005-2006 in Catalunya. 
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Figure 3.15: Bias for different temporal resolutions for the period 2007-2008 in Catalunya. 
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Figure 3.16: Bias for different temporal resolutions for 2009 in Catalunya. 
	  
	  
From Figures 3.14, 3.15, and 3.16 it is shown that bias are all constant in monthly scale for all 

the accumulation period (2 day, 3 days, 5 days, 10 days, 15 days and 30 days) for the entire 

time period from January 2005 to December 2009. All months are showing positive bias 

except February 2005, January 2006, and January 2008. These three months are showing 

small negative bias. 

	  
From Figures 3.17, 3.18, and 3.19 it is showed that with increasing accumulation period 

RMSE decreases in Catalunya for the entire period 2005-2009. However, the rate of fall of 

the RMSE curve is higher for 2 day, 3 days, 5 days, and 10 days than those for 15 days and 30 

days accumulation period. 
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Figure 3.17: RMSE for different temporal resolutions for the period 2005-2006 in Catalunya. 
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Figure 3.18: RMSE for different temporal resolutions for the period 2007-2008 in Catalunya. 
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Figure 3.19: RMSE for different temporal resolutions for the period 2009 in Catalunya 
	  
	  

3.3.3. Bangladesh 

Bangladesh is well known for its natural disasters such as cyclone, storm surges, floods, 

droughts, and river erosions. Precipitation is the major meteorological variable which plays a 

significant role in the hydrological cycles as well as these extreme climatic events [Islam and 

Hasan (2012)]. The rain gauge network is very sparse in Bangladesh. There are only 35 rain 

gauge stations all over Bangladesh with different period of observations. 

 

3.3.3.1 Daily event on 14 September 2004 

We have studied several daily events over Bangladesh in different seasons of the years with 

large amount of rainfall. Generally, the heaviest rainfall occurs during the months from mid 

June to mid August, and this period of time is called rainy season (monsoon) in Bangladesh. 

But, here we have chosen an extraordinary daily event that happened during autumn in 2004. 
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Figure 3.20: Daily accumulation map for TRMM data 3B42 daily over Bangladesh on 14 

September 2004 with rain gauge locations. 

 

On 14 September 2004, Dhaka (23.77°N, 90.38°E) the capital city of Bangladesh received 

unprecedented heavy rainfall and more than two-third of the city was inundated. This is an 

extraordinary rainfall event. The highest amount of rainfall in 24 hours was recorded at Dhaka 
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(341mm), which were the highest ever recorded. Due to this heavy rainfall, flash flood 

situation was created in Dhaka and some other parts of the country. Other nearby weather 

stations of Bangladesh Meteorological Department (BMD) recorded 376 mm at Maijdi Court, 

422 mm at Sandwip, 234 mm at Chandpur, 179 mm at Bhola, 170 mm at Comilla, 195 mm at 

Faridpur, 196 mm at Hatiya, 215 mm at Jessore, and 184 mm at Tangail. This torrential rain 

disrupted life in the metropolitan capital city and caused flash flood situations [Ahasan et al. 

(2011)]. Figure 3.20 shows the daily accumulation map of TRMM 3B42 daily data over 

Bangladesh on 14 September 2004 with the available rain gauge locations. 

 

 
Figure 3.21: Comparison between rain gauge and TRMM estimation before discarding zero 

rain gauge values. 
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From Figure 3.20 it is showed that heavy precipitation occurred mainly over the southeastern 

part of Bangladesh. A Few western districts were also affected by this torrential precipitation. 

TRMM estimated maximum rainfall of 125 mm at Sitakunda in 24 hours period whereas rain 

gauge measured 405 mm at the same location and this was also the maximum rainfall 

observed by any rain gauge on 14 September 2004. 

 

 
Figure 3.22: Comparison between rain gauge and TRMM estimation after discarding zero rain 

gauge values. 
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From Figures 3.21 and 3.22, it is shown that there is no significant difference between the 

statistical parameters before and after removing the zero values from the data set. Bias 

changes from -25 mm to -24 mm, which indicates serious underestimation by the satellite and 

slope 0.42 also implies the same. RMSE increases from 61 mm to 63 mm. On the other hand, 

coefficient of correlation is good (0.64 ∼ 0.65). 

 

3.3.3.2 Monthly rainfall on June 2007 

June and July are the heaviest rainfall months in Bangladesh. In the following section, we will 

analyze monthly rainfall over Bangladesh during June 2007. 

 

Figure 3.23 shows the monthly accumulation map using TRMM data 3B43 monthly product 

over Bangladesh for the month of June 2007. For this month, all rain gauge station picked up 

precipitation except one at Patengag and another one at Patuakhali. During this period, these 

two stations were not in service condition temporarily.  

 

Figure 3.24 shows quite good results having coefficient of correlation 0.85 with slope 1.00 

although bias and RMSE values are quite high 19 mm and 107 mm respectively. Maximum 

rainfall 979 mm was estimated by rain gauge over a period of 30 days at Chittagong 

(Ambagan) while TRMM estimated 748 mm over the same area although bias value 19 mm 

shows the over estimation by the satellites. However, the maximum precipitation 891 mm is 

observed by the satellites at Mymensingh while rain gauge estimated it as 863 mm. 

 

During this period on 11 June 2007, Chittagong (22.35°N, 91.82°E), the south-eastern coastal 

metropolitan city of Bangladesh, received unprecedented heavy rainfall and more than one-

third of the metropolitan city was inundated. This extraordinary rainfall event was localized 

over a region of 20-30 km. Bangladesh Meteorological Department (BMD) recorded rainfall 

was 425 mm within a span of 24-h on that eventful day, out of which 315 mm in just six 

hours (00 UTC-06 UTC). Other nearby weather stations of BMD recorded rainfalls were 225 

mm at Sandwip, 146 mm at Rangamati, 110 mm at Kutubdia, and 101 mm at Cox’s Bazar. 

This torrential rain disrupted life in the metropolitan city, caused flash flood situation. In 

addition to the floods, the rains triggered devastating landslides in the deforested hills on 

which the city is built. The citywide death toll from the floods and landslides was nearly 130 
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on June 12 as reported in the print media (Reuters). Most of the deaths were as a result of the 

landslides or from buildings collapsing due to the rain [Ahasan et al. (2011)]. 

 

 

 
Figure 3.23: Monthly accumulation map for TRMM data 3B43 over Bangladesh on June 2007 

with rain gauge locations. 
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Figure 3.24: Comparison between rain gauge and TRMM estimation during June 2007 over 

Bangladesh. 

 

3.3.3.3 Daily statistical parameters  

Daily mean TRMM values are measured by using the pixels over the corresponding rain 

gauge stations (Figure 3.25) and daily mean rain gauge values are also measured by using the 

rain gauge stations available on that day excluding zero rain gauge values (Figure 3.25). 

Coefficient of correlation, bias, and RMSE are calculated by using rain gauge and TRMM 

values for the period January 2005 – December 2009 in Bangladesh. 
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Figure 3.25: Daily mean rain gauge and TRMM values with daily coefficient of correlation 

for the period January 2005 – December 2009 in Bangladesh. 
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there is almost no rainfall. Maximum coefficient of correlation values are observed during the 

monsoon periods when heavy rainfall events occur. Within the considered time period there 

are 77 days that are showing coefficient values greater than 0.90 with maximum bias and 
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values are 66 mm and 2 mm respectively. For this range of correlation, positive and negative 

bias varies from 0 mm to 29 mm and from 0 mm to 28 mm respectively. 226 days range from 

0.50 to 0.70 correlation with maximum bias and RMSE 29 mm and 72 mm respectively. 

However, 301 and 134 days have correlation value from 0.20 to 0.50 and less than 0.20 

respectively.  

 

The observed maximum RMSE is 76 mm for the condition -30 mm < bias < 30 mm (Figure 

3.26). Figure 3.26 also shows distinct pattern in dry and wet periods. During dry periods both 

bias and RMSE show approximately zero values while those values during rainy season 

display abrupt changes (up and down). 

 

 

 
Figure 3.26: Daily bias and RMSE for the period January 2005 – December 2009 in 

Bangladesh. 
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dry period and rainy season. Here, we have considered the condition -30 mm < bias < 30 mm 

for Figure 3.28. 

 

 

 

 
Figure 3.27: Monthly mean rain gauge and TRMM values with monthly coefficient of 

correlation for the period January 2005 – December 2009 in Bangladesh. 
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respectively. Out of these 7 months, 3 months occurred during winter. 8 months (2 months 

occurred during winter) have correlation value between 0.50 and 0.70 with bias and RMSE 

values from -37 mm to 3 mm and from 8 mm to 129 mm respectively. Maximum 29 (4 

months occurred during winter) months have correlation value from 0.70 and 0.90 while for 

this range bias and RMSE ranges from -78 mm to 44 mm and from 7 mm to 264 mm 

respectively. 9 months have very high correlation value over 0.90. The minimum and 

maximum bias for these 9 months are -27 mm and 14 mm and RMSE are 0 mm and 91 mm. 

Out of these 9 events 5 events occurred during winter.  

 

 

 
Figure 3.28: Monthly bias and RMSE for the period January 2005 – December 2009 in 

Bangladesh. 

 

3.3.3.5 Statistical parameters for different temporal resolutions 
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Figure 3.29: Bias for different temporal resolutions for the period 2005-2006 in Bangladesh.	  
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Figure 3.30: Bias for different temporal resolutions for the period 2007-2008 in Bangladesh. 
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Figure 3.31: Bias for different temporal resolutions for 2009 in Bangladesh. 
	  
	  
Figures 3.29, 3.30, and 3.31 show bias for the whole period 2005-2009 in Bangladesh. From 

the Figures it is shown that bias are constant for all temporal accumulation for the whole time 

duration from January 2005 to December 2009. The months that are showing large bias for 

monthly products (3B43) mainly during high rainfall period (June-August). 

 

Figures 3.32, 3.33, and 3.34 show RMSE for the period from January 2005 to December 2009 

in Bangladesh. From the Figures it is showed that RMSE decreases with increase the 

accumulation period and the rate of decrease is higher for 2 day, 3days, 5 days, and 10 days 

accumulation than those for 15 days and 30 days in Bangladesh same as Catalunya.  
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Figure 3.32: RMSE for different temporal resolutions for the period 2005-2006 in 
Bangladesh. 
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Figure 3.33: RMSE for different temporal resolutions for the period 2007-2008 in 
Bangladesh. 
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Figure 3.34: RMSE for different temporal resolutions for 2009 in Bangladesh. 
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Jury (1997)]. South Africa (SA), south of 15°S, is a semi-arid region mainly experiencing its 

larger rainfall amounts in austral summer between November and February [Crétat et al. 

(2012)]. Because of the predominance of rain-fed agriculture over SA, large departures from 

the average seasonal cycle (either floods or droughts) may have detrimental effects on the 

economies and societies of the region. The southern African rainfall field is known to show 

strong spatio-temporal variability at different scales, materializing the influence of distinct 

rain-bearing processes that themselves depend on various modes of atmospheric variability 

[Crétat et al. (2012)]. There are 4012 rain gauge stations all over South Africa with different 
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3.3.4.1 Daily rainfall on 2 August 2006 

South Africa receives most of its rainfall in austral summer except for a region in the 

southwest that experiences austral winter rainfall [Philippon et al. (2012)]. Rainfall maxima 

are recorded from May to August when the track of the temperate weather systems (i.e. 

extratropical cyclones, cold fronts and cutoff lows) is shifted northward [Rouault and Richard 

(2003)]. That southwestern region which encompasses part of the Western and Northern Cape 

Provinces is bordered in the east by the cold Benguela upwelling system, and to the south, at a 

distance, by the warm Agulhas Current [Philippon et al. (2012)]. Orography plays an 

important role. In particular, the Cape Folded Mountains which stretch northward to the west 

and east–west to the south favour high (low) rainfall on their seaward (landward) side 

[Philippon et al. (2012)].  

 

 
Figure 3.35: Daily accumulation map for TRMM data 3B42 over South Africa on 2 August 

2006 with rain gauge locations. 
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Like the above two case study areas, we have studied several days with large amount of 

precipitation over South Africa. Since, it is a large country, it is very hard to find an event 

occurring over the entire country at a time. 

 

 
Figure 3.36: Comparison between rain gauge and TRMM estimation on 2 August 2006 over 

South Africa. 
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131 mm at the same location. Likewise, TRMM observed maximum rainfall 223 mm while 

rain gauge measured 140 mm in 24 hours period at the same location. Figure 3.36 shows the 

scatter plot between rain gauge and TRMM estimates on 2 August 2006. Coefficient of 

correlation is 0.70 with slope 0.64. Bias -5 mm indicates underestimation by the satellite and 

RMSE is 28 mm. 

 

3.3.4.2  Monthly rainfall on October 2007 

During October 2007 rainfall occurred over entire South Africa although heavy precipitation 

mostly occurred over the eastern part (KwaZulu-Natal, Free State, North West, Gauteng, 

Mpumalanga, Limpopo, and part of Eastern Cape and Northern Cape provinces, Figure 3.37). 

 

 
Figure 3.37: Monthly accumulation map for TRMM data 3B43 over South Africa during 

October 2007 with rain gauge locations. 
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During this month there were 1,453 rain gauge stations all over South Africa that received 

precipitation greater than zero. Maximum rainfall 403 mm was estimated by rain gauge over 

the entire month whereas satellite estimated it as 145 mm at the same location during October 

2007. Similarly, satellite estimated maximum rainfall 275 mm during October 2007 while rain 

gauge estimated 311 mm rainfall at the same location and over the same duration. Coefficient 

of correlation for this month is measured 0.80 with slope 0.98, which indicates little 

underestimation by the satellites (Figure 3.38). On the other hand, bias 9 mm shows 

overestimation by the satellites. RMSE is found as 38 mm. 

 

 
Figure 3.38: Comparison between rain gauge and TRMM estimation during October 2007 

over South Africa. 

0 100 200 300 400
Rain Gauge Value (mm)

0

100

200

300

400

TR
M

M
 V

al
ue

 (m
m

)

Comparison Between Monthly Rain Gauge Accumulation & TRMM Data 3B42 Daily in South Africa
Date: 01/10/2007

Coefficient of Correlation = 0.8047

Slope = 0.9769

Bias = 9.1451

RMSE = 37.6405



 66	  

3.3.4.3 Daily statistical parameters  

Daily mean TRMM, daily mean rain gauge, coefficient of correlation, bias, and RMSE are all 

calculated in the same way as we have done for Catalunya and Bangladesh for the period 

from January 2005 to December 2009. Here, all bias and RMSE values are presented without 

any limit (Figure 3.40). Figure 3.39 shows mean TRMM, mean rain gauge, and correlation 

values in South Africa. 

 

 

 

 
Figure 3.39: Daily mean rain gauge and TRMM values with daily coefficient of correlation 

for the period January 2005 – December 2009 in South Africa. 
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Figure 3.40: Daily bias and RMSE for the Period January 2005 – December 2009 in South 

Africa. 
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change of rainfall in each month for the considered period of study from January 2005 to 

December 2009. Moreover, maximum and minimum coefficient of correlation is found 0.86 

and 0.48 during July 2007 and April 2009 respectively. 2 monthly out of these 60 months 

have coefficient value less than 0.60 and 41 months have correlation value greater than 0.70. 

 

 

 

 
Figure 3.41: Monthly mean rain gauge and TRMM values with monthly coefficient of 

correlation for the period January 2005 – December 2009 in South Africa. 
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Figure 3.42: Monthly Bias and RMSE for the Period January 2005 – December 2009 in South 

Africa. 

 

From Figure 3.42 it is found that minimum and maximum positive bias values are 0 mm 

(September 2007) and 17 mm (January 2006) respectively whereas negative bias are -1 mm 

(May 2007) and -4 mm (September 2009) respectively. Minimum RMSE 16 mm is found in 

September 2005 while maximum RMSE 72 mm is observed in January 2006. It is worthwhile 

to mention that maximum precipitation, maximum positive bias, and maximum RMSE are all 

measured in January 2006. The coefficient of correlation for this month is found as 0.75. 

 

3.3.4.5 Statistical parameters for different temporal resolutions 
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Figure 3.43: Bias for different temporal resolutions for 2005 in South Africa. 
	  

 

 
Figure 3.44: RMSE for different temporal resolutions for 2005 in South Africa. 
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3.4. Comparison between mean rain gauge and TRMM estimation 

Table 3.2 shows coefficient of correlation, bias, and RMSE for three case study areas in daily 

and monthly temporal scale using mean rain gauge and TRMM value. Catalunya, Bangladesh, 

and South Africa all three case study areas show very good results in monthly scale and at the 

same time all case study areas also show good results in daily scale.  

 

Table 3:2 Correlation coefficient, bias, and RMSE are measured using mean rain gauge and 

TRMM value for the three case study areas 

 Daily Monthly 

 Catalunya Bangladesh South 
Africa Catalunya Bangladesh South 

Africa 
Corr. 
Coeff. 0.74 0.62 0.60 0.96 1.00 1.00 

Bias 
(mm) 

-0.47  
(-0.39*) 

-1.98 
 (-1.12*) 

-4.62  
(-4.62*) 

5.25  
(5.25*) 

-3.45 
 (-3.38*) 

4.60  
(4.60*) 

RMSE 
(mm) 

3.02  
(5.68*) 

13.49  
(21.42*) 

6.10 
(12.94*) 

10.07  
(28.46*) 

19.96  
(69.79*) 

6.34 
(34.78*) 

(….*) means average bias and RMSE from Figures 3.11 and 3.13, 3.26 and 3.28,  and 3.40 

and 3.42 for Catalunya, Bangladesh, and South Africa respectively 

 

3.5. Summary of results 

In this chapter, we have presented the areal distribution of precipitation over the three case 

study areas namely Catalunya, Bangladesh, and South Africa. We have also studied several 

extraordinary rainfall events in daily and monthly scale over the areas. Later on, three 

statistical parameters coefficient of correlation, bias. and RMSE have been determined in 

daily and monthly scale for the entire study period (from January 2005 to December 2009) at 

the case study areas. The results show significant spatial and seasonal variation of 

performance of TRMM satellite rainfall products such as in Bangladesh the TRMM satellite 

identified the dry and wet period very well.  
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We have studied the variation of performance of TRMM rainfall products at different 

temporal resolutions for the entire study period in Catalunya and Bangladesh and for 2005 in 

South Africa. Bias is constant for all temporal accumulation and RMSE decreases with 

increase the accumulation period and the rate of decrease is higher for 2 day, 3 days, 5 days, 

and 10 days accumulation than those for 15 days and 30 days in all case study areas. At the 

end of this chapter, we have determined the statistical parameters using mean rain gauge and 

mean TRMM values, which show very good results in monthly scale. The results in daily 

scale are not as good as in monthly scale. It is worthwhile to mention that mean TRMM value 

shows same pattern as like mean rain gauge value in both daily and monthly scale at all case 

study areas. 
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CHAPTER 4. BLENDING OF TRMM AND RAIN GAUGES 

4.1. Introduction 

Rainfall is one of the most important inputs in hydrological models and rain gauges and 

weather radars are probably the two sensors that are most widely used in rainfall 

measurement. Unfortunately, typical densities of operational rain gauge networks are usually 

unable to fulfill the requirements for hydrological modeling, flood forecasting, and weather 

observations. There are also large areas with no rain gauge coverage (e.g. over the oceans). 

Previous works suggested that radar data are essential information in providing accurate flow 

estimates using a rainfall runoff model, even when a dense rain gauge network exists 

[Sempere-Torres et al. (1999); Seo (1998)]. These results have led to the development of 

diverse methodologies for estimating rainfall fields by merging radar and rain gauge data. 

 

According to Velasco-Forero et al. (2009) these merging techniques range from the simplest 

formulation, i.e. finding a constant multiplicative calibration factor [Harrold and Austin 

(1974); Wilson and Brandes (1979); Chumchean et al. (2006)], to statistical approaches based 

on multivariate analysis [Hevesi et al. (1992); Hevesi et al. (1992)], radar-rain gauge 

probability distribution analysis [Calheiros and Zawadzki (1987); Rosenfeld et al. (1994)], 

geostatistical estimators [Seo (1998); Creutin et al. (1988); Seo et al. (1990); Seo (1998); 

Sinclair and Pegram (2005); Schiemann et al. (2011)], or Bayesian methods [Todini (1999)]. 

 

In this chapter a blending technique is applied to estimate the rainfall field using rain gauge 

data and introducing satellite information as supporting data in the three case study areas. Li 

and Shao (2010) used a nonparametric kernel smoothing method to merge TRMM data with 

rain gauge observations. Scheel et al. (2011) proposed an ordinary cokriging algorithm that 

uses rain gauge values as the variate and the TMPA as the covariate. In this study, we have 

applied a approach to implement the technique proposed by Velasco-Forero et al. (2009) and 

Schiemann et al. (2011) [originally used for radar-rain gauge blending] to combine TRMM 

estimates with rain gauge records. This technique is based on the concepts of kriging [see e.g 

Goovaerts (1997); Isaaks and Srivastava (1989)] to interpolate rain gauge records using 

TRMM estimates as a secondary variable. This is a first attempt to do the blending and this is 

not the first work in this topic. The performance of the blending technique is also evaluated 

using two statistical parameters namely bias and root mean square error. 
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4.2. Ordinary kriging 

Ordinary kriging is the most widely used geostatistical method to estimate a value at a point 

from the optimal linear combination of point observations in the neighborhood area, provided 

that the variogram is known; and probably the best unbiased linear combination [Isaaks and 

Srivastava (1989); Goovaerts (1997); Velasco-Forero et al. (2009); Li and Shao (2010)]. It is 

also a well-established reference to assess the improvements of new advance technique. 

 

Suppose, we have (x1, x2, x3,……, xn) n locations in two dimensional space with rain gauge 

rainfall values as R(x1), R(x2), R(x3),……R(xn) and x0 is the location at which the rainfall 

value is unknown. Then, the rainfall value R(x0) at location x0 is estimated by ordinary 

kriging (OK) method as a linear combination of the n observations through the following 

equation: 

 

! !! = !!! !!

!

!!!

 (4) 

 

where, ! !!  are the observed rainfall values and !! are the corresponding weights. If, the 

target location changes, the corresponding weight of the available rainfall data also changes 

accordingly. 

 

The optimal weights for a specific unknown location are computed from the kriging equation 

system by minimizing the estimation error variance with the constraint of unbiased estimates 

 

!!! !! − !! + ! = ! ! − !!               !"#  ! = 1,2,3,…… ,!
!

!!!

!! = 1                                                                                                                                                                                  
!

!!!

 (5) 

 

where, ! !! − !!  is the semivariogram value between points separated by !! − !! and ! is the 

auxiliary Lagrange multiplier, the last equation represents the null bias constraint of the 

estimation. 
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4.3. The semi-variogram 

The semi-variogram is the traditional tool for modeling the spatial dependence in 

geostatistical applications [Schiemann et al. (2011)]. The semi-variogram function, ! ℎ , was 

originally named by Matheron (1963) as half the variance of the difference between points 

separated by a distance ℎ. The semivariogram is calculated as 

 

! ℎ =
1

2 ! ℎ !! − !!
!

! !

 (6) 

 

where ! ℎ  is the set of all pairwise Euclidean distances ! − ! = ℎ, ! ℎ  is the number of 

distinct pairs in ! ℎ , and !! and !! are data values at spatial locations ! and !, respectively. In 

this formulation h represents a distance measure with magnitude only. Sometimes, it might be 

desirable to consider direction in addition to distance. In such cases, h will be represented as 

the vector !, having both magnitude and direction.  

 

The terms semi-variogram and variogram are often used interchangeably. By definition, ! ℎ  

is the semi-variogram and the variogram is 2! ℎ .  

 

The main goal of a semi-variogram analysis is to construct a semi-variogram that best 

estimates the autocorrelation structure of the underlying stochastic process. Most semi-

variograms are defined through several parameters; namely, the nugget effect, sill, and range. 

These parameters are shown in Figure 4.1 and are defined as follows: 

 

• nugget effect – represents micro-scale variation or measurement error. It is estimated 

from the empirical semi-variogram as the value of ! ℎ  for ℎ = 0. 

• sill – the lim!→! ! ℎ  representing the variance of the random field. 

• range – the distance (if any) at which data are no longer autocorrelated. 
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Figure 4.1: A generic semi-variogram showing the sill and range parameters along with a 

nugget effect.  

 

Depending on the properties of the measure taken and the right fit of the data set, there are 

different types of semi-variogram model such as linear, spherical, exponential, Gaussian etc. 

Schuurmans et al. (2007) have determined spherical semi-variogram model for radar rain 

gauge combination to estimate high-resolution daily rainfall fields. The parameters of the 

models are fitted automatically with nonlinear regression, using weights ! ℎ /ℎ! with ! ℎ  

as the number of point pairs and ℎ as the distance. This criterion is partly suggested by theory, 

and partly by practice [Pebesma (2004)]. When it was not possible to fit a unique semi-

variogram model, the range was forced to be beyond the extent. Alternatively, Velasco-Forero 

et al. (2009) and Schiemann et al. (2011) used a sample 2-dimensional semi-variogram 

computed from radar rainfall products. The use of radar data allows to determine a dense 

semi-variogram (unlike rain-gauges, which require interpolation) and to consider the 

anisotropy of the rainfall field in the blending; that is, it allows considering the preferential 

directions of correlation. 

 

4.4. Kriging with external drift 

If extensive auxiliary information (e.g. radar, satellite or topographical data) is available and 

correlated with the target variable (e.g. rainfall), kriging with external drift is a simple method 

for including an external variable in the estimation process [Velasco-Forero et al. (2009)]. In 
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this thesis, kriging with external drift allows us to drive the rainfall. Kriging with external 

drift (KED) assumes that estimations are modeled as a drift term plus a residual term. The 

drift term is an unknown linear function defined externally through the auxiliary variable. 

Previous works have estimated rainfall fields using KED merging ground radar rainfall 

estimates and rain gauges [Cassiraga et al. (2002); Raspa et al. (1997); Velasco-Forero et al. 

(2009); Schiemann et al. (2011)] or rain gauge and satellite data [Grimes et al. (1999)]. A full 

description of KED equations can be found in the literature [Wackernagel (1995); Goovaerts 

(1997); Hengl et al. (2003)]. 

 

If only one secondary variable !! !  is available, KED assumes that the mean of the main / 

principle variable is linearly related to the tendencies of the secondary variable, such that  

 

! !! ! = !! ! = !! + !!.!! ! , (6) 

 

where ! !! !  and !! !  are the expected and mean values respectively of the principal 

variable at the point !, !! !  is the value of the secondary variable at the same location, and 

!!, and !! are unknown coefficients (which do not need to be estimated). Rainfall estimations 

using KED [Equation (7)] are computed using the same expression as in the OK (ordinary 

kriging) estimator [Equation (4)] 

 

!!"#∗ !! = !!!"#!! !! .
!

!!!

 (7) 

 
However, KED weights, !!!"# , are unlike those used in the OK technique because the 

equation system of KED estimator [Equation (8)] has an additional constraint to satisfy the 

new drift hypothesis and there is a second auxiliary Lagrange multiplier, !! 
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!!!"#!! !! , !! + !! + !!!! !! = !! !! , !! ,                        ! = 1,2,…… ,!
!

!!!

!!!"# = 1                                                                                                                                                                                                                    
!

!!!

!!!"#!! !!
!

!!!

= !! !!                                                                                                                                                                     

 (8) 

 

where !!   .  and !!   .  are rain gauge and satellite observations at a given location 

respectively and !! is the covariance of the residuals !! ! −!! ! , where !! !  is the 

gauge drift field. The covariance of the residuals have been estimated from TRMM data using 

the method proposed by Velasco-Forero et al. (2009). As discussed above, the sample 2-

dimensional semi-variogram is estimated from TRMM data, and the validity of the semi-

variogram is guaranteed with the method of Yao and Journel (1998). 

 

The final constraint of the equation system [Equation (8)] introduces the variability of the 

satellite data into the interpolation process of the rain gauge values. This constraint means that 

rain gauge data are weighted using the set of weights that add in the effect of estimating the 

satellite value at the target point as the satellite values at rain gauge locations were 

interpolated. 

 

4.5. Testing of TRMM-rain gauge blending rainfall products 

The verification of the blended products has been based on a cross-validation technique: rain 

gauge measurements in a TRMM cells have not been used in the blending, and the blending 

estimate is compared against rain gauge measurements. In this way, the rain gauge 

measurements in that cell (not used in the blending) are an independent reference that can be 

used to evaluate the blended product. We have repeated this testing procedure for several cells 

at each case study areas using TRMM 3B43 monthly products. 
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4.5.1. Catalunya, Spain 

In Catalunya, we have chosen seven cells at different latitude and longitude (see Table 4.1) to 

test the blended rainfall products against the rain gauge rainfall data. Table 4.1 also shows the 

number of rain gauges inside each cell. Figure 4.2 shows the location of the cells where we 

considered for testing the blending rainfall products. 

 

 
Figure 4.2: Monthly accumulation map of TRMM 3B43 in January 2009 with location of all 

the cells (shown by rectangles) in Catalunya to test the blended TRMM rainfall products 

(circles represent corresponding monthly accumulations of rain gauges). 
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To verify the improvement of the blended rainfall products, we have compared the blended 

and original TRMM rainfall products with rain gauge data (those rain gauges we removed 

while blending technique is implemented) for each cell separately for the time period from 

January 2005 to December 2009. In this case, we have applied TRMM 3B43 monthly rainfall 

products. Figures 4.3 and 4.4 show the scatter plots of the cells (4,6) and (11,7) respectively 

and all the results are summarized in Table 4.2. 

 

Table 4.1: Latitude and longitude of the testing cells or pixels with the number of rain gauges 

inside the cells in Catalunya 

Cell / Pixel 

Column No. 

(starts from 

zero) 

Row No. 

(starts from 

zero) 

Latitude 

(Degree) 

Longitude 

(Degree) 

No. of rain 

gauges inside 

the cells 

Cell (1,4) 1 4 41.125 N 0.375 E 2 

Cell (4,4) 4 4 41.125 N 1.125 E 3 

Cell (4,6) 4 6 41.625 N 1.125 E 4 

Cell (7,8) 7 8 42.125 N 1.875 E 3 

Cell (9,6) 9 6 41.625 N 2.375 E 4 

Cell (11,7) 11 7 41.875 N 2.875 E 5 

Cell (4,10) 4 10 42.625 N 1.125 E 1 

 

All cells / pixels are showing good correlation (above 0.85) before and after blending except 

cell (4,10) and cell (7,8) [see Table 4.2]. Cell (4,10) is showing 0.43 and 0.64 before and after 

blending respectively. However, for cell (7,8) correlation value increases from 0.65 to 0.90 

after blending. After blending for cells (1,4), (4,6), (7,8), (9,6), and (4,10) correlation values 

are increased and bias and RMSE values are decreased. Alternatively, for cells (4,4) and 

(11,7) bias and RMSE values are increased and correlation values are decreased after 

blending. 

 

From the bias values of Table 4.2, it is shown that TRMM 3B43 values were overestimated 

before applying the blending technique and it remains the same after blending for cells (1,4), 

(4,6), (7,8), and (9,6). Cells (4,4) and (4,10) were under estimated by TRMM satellite before 

blending and after blending it persists the same. Before blending, cell (11,7) was 

overestimated whereas after blending it is under estimated. Out of all cells (4,10) was 
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seriously under estimated by TRMM satellite (-24 mm bias) and the blending procedure 

applied here does not reduce the under estimation (-24 mm bias). 

 

Before blending, maximum and minimum RMSE were observed as 68 mm [for cell (4,10)] 

and 16 mm [for cell (11,7)] respectively. Likewise, after blending maximum and minimum 

RMSE were determined 57 mm [for cell (4,10)] and 13 mm [for cell (4,6)] respectively [see 

Table 4.2]. 

 

Table 4.2: Results of the testing cells before and after blending in Catalunya 

 Cell / Pixel 
No. of rain gauges 

inside the cells 
Correlation 

Bias 

(mm) 

RMSE 

(mm) 
Slope 

A
fte

r b
le

nd
in

g 

Cell (1,4) 2 0.95 6 15 1.17 

Cell (4,4) 3 0.90 -4 22 0.84 

Cell (4,6) 4 0.93 5 13 1.10 

Cell (7,8) 3 0.90 6 19 1.02 

Cell (9,6) 4 0.94 3 15 1.00 

Cell (11,7) 5 0.87 -1 21 0.99 

Cell (4,10) 1 0.64 -24 57 0.70 

B
ef

or
e 

bl
en

di
ng

 

Cell (1,4) 2 0.90 7 16 1.07 

Cell (4,4) 3 0.96 -4 21 0.77 

Cell (4,6) 4 0.88 16 23 1.27 

Cell (7,8) 3 0.65 11 34 0.95 

Cell (9,6) 4 0.86 7 22 0.96 

Cell (11,7) 5 0.91 0 16 0.96 

Cell (4,10) 1 0.43 -24 68 0.65 

 

From the above analysis (Table 4.2), it can be concluded that cell (4,10) is showing the worst 

results out of the seven cells, due to the fact that the number of rain gauges around the cell 

(4,10) is lesser than those of other cells. 
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Figure 4.3: Comparison of original TRMM and blended TRMM rainfall products with rain 

gauge records cell (4,6). 
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Figure 4.4: Comparison of original TRMM and blended TRMM rainfall products with rain 

gauge records for cell (11,7). 
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4.5.2. Bangladesh 

In Bangladesh, we have chosen six cells at different latitude and longitude (see Table 4.3) to 

test the blended rainfall products against the rain gauge rainfall data. Table 4.3 also shows the 

number of rain gauges inside each cell. Figure 4.5 shows the location of the cells where we 

considered for testing the blending rainfall products. 

 

 
Figure 4.5: Monthly accumulation map of TRMM 3B43 in July 2006 with location of all the 

cells (shown by rectangles) in Bangladesh to test the blended TRMM rainfall products 

(circles represent corresponding monthly accumulations of rain gauges). 
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For these six cells we have done the same analysis in Bangladesh as we did for seven cells in 

Catalunya. Figures 4.6 and 4.7 show the scatter plots of the cells (9,9) and (4,22) respectively. 

We have summarized all the results in Table 4.4. 

 

Table 4.3: Latitude and longitude of the testing cells or pixels with the number of rain gauges 

inside the cells in Bangladesh 

Cell / Pixel 

Column No. 

(starts from 

zero) 

Row No. 

(starts from 

zero) 

Latitude 

(Degree) 

Longitude 

(Degree) 

No. of rain 

gauges inside 

the cells 

Cell (9,9) 9 9 22.375 N 90.375 E 1 

Cell (4,12) 4 12 23.125 N 89.125 E 1 

Cell (4,22) 4 22 25.625 N 89.125 E 1 

Cell (9,15) 9 15 23.875 N 90.375 E 1 

Cell (14,10) 14 10 22.625 N 91.625 E 1 

Cell (14,18) 14 18 24.625 N 91.625 E 1 

 

Four cells / pixels are showing very good correlation (above 0.90) before and after blending 

except cells (4,12) and (14,18). Cell (4,12) is showing 0.61 and 0.41 before and after blending 

respectively [see Table 4.4]. Moreover, cell (14,18) is showing 0.78 and 0.82 before and after 

blending respectively. Only for cell (14,18) correlation value is increased after blending while 

for other five cells correlation values are decreased after blending. Furthermore, RMSE values 

are increased after blending for all cells. Perhaps, the number of rain gauges plays a very 

important role to get better estimates. 

 

From the Table 4.4, it is shown that TRMM 3B43 values were under estimated before 

applying the blending technique for all cells except cell (14,18) and it remains the same after 

blending for cells (9,9), (4,12), and (9,15). Cells (4,22) and (4,10) get 0 mm and 1 mm bias 

respectively after blending. Before blending, maximum positive bias was 64 mm [for cell 

(14,18)] whereas maximum negative bias was 51 mm [for cell (4,12)]. After blending, 

maximum and minimum negative bias are 56 mm [for cell (9,9)] and 31 mm [for cell (4,12)] 

respectively while maximum and minimum positive bias are 101 mm [for cell (14,18)] and 0 

mm [for cell (4,22)] respectively. 
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Before blending, maximum and minimum RMSE were observed as 225 mm [for cell (4,12)] 

and 43 mm [for cell (4,22)] respectively. Likewise, after blending maximum and minimum 

RMSE were determined 270 mm [for cell (4,12)] and 97 mm [for cell (9,15)] respectively 

[see Table 4.4].  

 

Table 4.4: Results of the testing cells before and after blending in Bangladesh 

 Cell / Pixel 
No. of rain gauges 

inside the cells 
Correlation 

Bias 

(mm) 

RMSE 

(mm) 
Slope 

A
fte

r b
le

nd
in

g 

Cell (9,9) 1 0.90 -56 160 0.69 

Cell (4,12) 1 0.41 -31 270 0.51 

Cell (4,22) 1 0.92 0 78 0.98 

Cell (9,15) 1 0.92 -44 97 0.77 

Cell (14,10) 1 0.93 1 112 0.95 

Cell (14,18) 1 0.82 101 191 1.41 

B
ef

or
e 

bl
en

di
ng

 

Cell (9,9) 1 0.90 -35 142 0.78 

Cell (4,12) 1 0.61 -51 225 0.52 

Cell (4,22) 1 0.98 0 43 1.00 

Cell (9,15) 1 0.95 -14 65 0.90 

Cell (14,10) 1 0.94 -29 112 0.84 

Cell (14,18) 1 0.78 64 169 1.23 
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Figure 4.6: Comparison of original TRMM and blended TRMM rainfall products with rain 

gauge records cell (9,9). 
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Figure 4.7: Comparison of original TRMM and blended TRMM rainfall products with rain 

gauge records cell (4,22). 
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4.5.3. South Africa 

In South Africa, we have chosen six cells at different latitude and longitude (see Table 4.5) to 

test the blended rainfall products against the rain gauge rainfall data. Table 4.5 also shows the 

number of rain gauges inside each cell. Figure 4.8 shows the location of the cells where we 

considered for testing the blending rainfall products (The rectangles does not indicate the 

pixel or cell size in Figure 4.8, it simply represents the location of the cells. Here, cells or 

pixels are smaller than the size of the rectangles representing those cells). 

 

 
Figure 4.8: Monthly accumulation map of TRMM 3B43 in October 2007 with location of all 

the cells (shown by rectangles) in South Africa to test the blended TRMM rainfall products 

(circles represent corresponding monthly accumulations of rain gauges). 
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Six cells / pixels of distinct climatology have been analyzed in South Africa as we have done 

in Catalunya and Bangladesh. Figures 4.9 and 4.10 show the scatter plots of the cells (9,3) and 

(48,35) respectively. We have summarized all the results in Table 4.6. 

 

Table 4.5: Latitude and longitude of the testing cells or pixels with the number of rain gauges 

inside the cells in South Africa 

Cell / Pixel 

Column No. 

(starts from 

zero) 

Row No. 

(starts from 

zero) 

Latitude 

(Degree) 

Longitude 

(Degree) 

No. of rain 

gauges inside 

the cells 

Cell (9,3) 9 3 34.125 S 18.375 E 6 

Cell (34,23) 34 23 29.125 S 24.625 E 4 

Cell (48,35) 48 35 26.125 S 28.125 E 10 

Cell (49,27) 49 27 28.125 S 28.375 E 3 

Cell (57,47) 57 47 23.125 S 30.375 E 4 

Cell (61,23) 61 23 29.125 S 31.375 E 3 

 

All cells / pixels are showing good correlation (above 0.80) before and after blending except 

cell (34,23) which is showing 0.77 after blending [see Table 4.6]. After blending for cells 

(9,3), (48,35), and (49,27) correlation values are increased and bias and RMSE values are 

decreased. Alternatively, for cells (34,23), (57,47), and (61,23) correlation values are 

decreased and RMSE values are increased after blending; bias is decreased for (34,23) and 

(57,47) and increased for (61,23). However, from Figure 4.8 it can be showed that the number 

of rain gauges around the cells (9,3), (48,35), and (49,27) are higher than those of cells 

(34,23), (57,47), and (61,23). 

 

From the Table 4.6, it is shown that TRMM 3B43 values were overestimated for cells (9,3), 

(34,23), (48,35), (49,27), and (61,23) while cell (57,47) was under estimated before blending. 

After applying the blending technique cells (34,23) and (61,23) remain the same as 

overestimated whereas cells (9,3), (48,35), and (49,27) changes to under estimation. 

Moreover, cell (57,47) changes from under estimation to a little overestimation. Out of all 

cells (9,3) was seriously overestimated by TRMM satellite (30 mm bias) and the blending 

procedure applied here reduces the overestimation (-5 mm bias). 
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Before blending, maximum and minimum RMSE were observed as 44 mm [for cell (9,3)] and 

21 mm [for cell (49,27) and (34,23)] respectively. Likewise, after blending maximum and 

minimum RMSE were determined 38 mm [for cell (57,47)] and 15 mm [for cell (49,27)] 

respectively [see Table 4.6]. 

 

Table 4.6: Results of the testing cells before and after blending in South Africa 

 Cell / Pixel 
No. of rain gauges 

inside the cells 
Correlation 

Bias 

(mm) 

RMSE 

(mm) 
Slope 

A
fte

r b
le

nd
in

g 

Cell (9,3) 6 0.95 -5 18 0.87 

Cell (34,23) 4 0.77 4 22 0.98 

Cell (48,35) 10 0.95 -2 17 0.94 

Cell (49,27) 3 0.97 -1 15 0.94 

Cell (57,47) 4 0.84 0 38 0.86 

Cell (61,23) 3 0.84 13 35 1.11 

B
ef

or
e 

bl
en

di
ng

 

Cell (9,3) 6 0.88 30 44 1.31 

Cell (34,23) 4 0.81 6 21 1.07 

Cell (48,35) 10 0.94 4 23 1.09 

Cell (49,27) 3 0.96 10 21 1.11 

Cell (57,47) 4 0.89 -1 33 0.94 

Cell (61,23) 3 0.87 9 28 1.02 
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Figure 4.9: Comparison of original TRMM and blended TRMM rainfall products with rain 

gauge records cell (9,3). 
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Figure 4.10: Comparison of original TRMM and blended TRMM rainfall products with rain 

gauge records cell (48,35). 
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4.6. Summary of results 

In this chapter, we have applied a blending technique (originally used for radar-rain gauge 

blending) to combine TRMM rainfall products with rain gauge records. The verification of 

blending rainfall products has also been performed. The TRMM rainfall products are showing 

good results before and after the application of blending technique in all case study areas, 

however the performance of blended rainfall products highly depends on the number of rain 

gauges surrounding the cell / pixel. Out of the three case study areas, the performance of 

blended products is decreased in Bangladesh. The reason could be the sparse rain gauge 

network of Bangladesh. However, original TRMM rainfall products are showing very good 

results before blending in Bangladesh. 
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CHAPTER 5. CONCLUSIONS 

In recent years, many efforts have been made to use the spaceborne radar rainfall products for 

hydrological purposes where areal precipitation estimation is essential and operational rain 

gauge network is sparse or absent. In this study, we have studied the accuracy of the TMPA 

rainfall products at three climatologically distinctive places. We have also merged the TRMM 

satellite rainfall data and available rain gauge observations to generate a better and more 

realistic precipitation estimation. 

 

5.1. Summary 

In chapter two, we have presented the three case study areas along with their general 

geographical and climatological features and also learned about the two TMPA rainfall 

products 3B42 and 3B43 version 7. Estimation procedure and other important characteristics 

of 3B42 and 3B43 version 7 rainfall products were analysed including their dissimilarities at 

corresponding scales. These products were also compared with each other to find the 

estimation differences at global scale. 

 

In chapter three, we have shown the precipitation pattern over the three case study areas for 

the time period from January 2005 to December 2009. Some extraordinary rainfall events 

over those case study areas were also analysed at daily and monthly scales. We have 

determined three statistical parameters e.g. coefficient of correlation, bias, and RMSE at daily 

and monthly scales to identify the seasonal variation of the parameters and differences 

between satellite rainfall products and rain gauge records. Moreover, bias and RMSE were 

estimated at different temporal resolutions e.g. 2 day, 3 days, 5 days, 10 days, 15 days, and 30 

days to find the variation of the parameters at different accumulation periods. Finally, we 

have determined the three statistical parameters using mean rain gauge and TRMM value at 

daily and monthly scales. 

 

In chapter four, we have implemented a blending technique that is originally applied for the 

combination of ground based radar rainfall products and rain gauge records. These blended 

rainfall products were also verified to find the improvements over the original TRMM rainfall 

products at climatologically distinctive places in the three case study areas. Here, it is 
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worthwhile to mention that the implementation of the blending technique does not always 

increase the accuracy of TRMM rainfall products. One reason could be the TRMM pixel size 

(0.25° x 0.25°). Since, this technique was applied for ground-based radar-rain gauge blending 

where the pixel size is 1 km x 1 km whereas the TRMM pixel size is about 28 km x 28 km. 

Another reason could be the inaccurate and / or interrupted rain gauge records with sparse rain 

gauge network. Accuracy of the blending technique may also be affected by the orography of 

the area (e.g. local convective events). 

 

5.2. Results and contribution of the thesis 

In each chapter of the thesis, the corresponding results have been shown. Here, a general 

review of the results with the contribution are emphasized: 

 

We have presented the estimation difference of two satellite rainfall products with different 

temporal resolutions at global scale, which depicts the quantitative variation of the two 

products. 

 

Precipitation pattern of the case study areas with different latitude and longitude have been 

showed using satellite rainfall products that represents the accuracy of the satellite rainfall 

products to identify the climatological form of rainfall of the corresponding areas. 

 

We have shown the performance of satellite rainfall products for few extraordinary rainfall 

events in daily and monthly temporal resolutions at distinct locations of the globe. The 

variation of performance has also been revealed with respect to space and time. Moreover, the 

temporal accuracy of the products has also been illustrated. 

 

Finally, we have presented the results of blending rainfall products, which demonstrates the 

constraints of using satellite rainfall products and also enlightens how we can get rid of these 

limitations. 
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5.3. Future works 

During the development of the thesis, we have found few aspects or issues that could be 

improved in future. The present work could also be extended in some directions that will 

definitely strengthen the findings of the current work. These are listed below: 

 

The blending technique implemented here can be compared with other blending techniques to 

find the most efficient or effective one at each case study area. The inclusion of pixel size in 

the blending method (block kriging) may also improve the performance of the blending 

technique. 

 

The impact of the density of the rain gauge network can also be evaluated in future, which 

will certainly reveal the dissimilarities of performance of the blending method. 
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