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Abstract 

 

Ensuring the full connection between steel sheet and concrete after applying a load to 

composite slabs is still nowadays something difficult to achieve. The aim of the current 

project is to reveal the experimental results of a new bonding system, under patent [19] by 

the Universitat Politècnica de Catalunya (UPC) which its function is to resist the shearing 

forces and separating forces generated between both materials when the composite steel-

concrete element is loaded ensuring the commented full connection between materials and 

working as a composite cross section. 

The new method has been validated with amount of tests which results have been compared 

with different commercial carbon steel sheeting slabs and ferritic stainless steel sheeting 

slabs, all of them with traditional embossment as a connection system. These tests have 

been carried out in “Laboratori d’estructures i resistència de materials” (LERMA)[2][3]. The 

comparison between composite slabs using traditional embossments and those which use 

new connection system is extremely deep. The ultimate state values of new composite 

slabs were reached with inexistent slippage, so the ultimate bending moment resistance 

is higher on new composite slabs. 

Moreover, theoretical predicted calculations, always by the Eurocode4[4]directions, have 

been done trying to predict the ultimate state service for each studied composite slab. Then it 

has been compared such predicted results with the experimental testing. 

Comparison of experimental and analytical results of the load-carrying capacity of 

composite slabs revealed that agreements between these values are sufficiently good. 
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1. Glossary 

Nomenclature  

𝐴𝑝 : Nominal sheet area 

𝐴𝑝𝑒 : Effective area of the sheet in tension 

𝐴𝑠 : Effective area of passive reinforcement tensioned 

b : Width of the resistant section 

𝑏0 : Average width of the nerves 

𝑏𝑐 : Average width of concrete compressed zone 

d : Distance between the upper edges of the concrete to the underside of the nerve sheet. 

𝑑𝑝 : Distance from the top edge of the slab to the centroid of the effective area of the steel 

𝑑𝑠 : Height of center of gravity of reinforcement compared to the base plate 

E: Young modulus 

e : Distance from the centroid of the effective area of the sheet to the bottom edge 

𝑒𝑝 : Distance from the plastic neutral axis of the effective area of the sheet to the bottom 

edge 

NPF : Neutral plastic fiber 

𝑓𝑐𝑘 : Nominal strength of concrete 

𝑓𝑐𝑡 : Cylinder compressive strength of concrete 

𝑓𝑦𝑢  : Maximum yield stress of steel 

𝑓𝑦𝑝  : Nominal yield characteristic of steel 

𝑓𝑦𝑠  : Yield strength of tensioned reinforcement 

ℎ𝑐   : Height of concrete slab 
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k : Coefficient k of the m-k method 

L : Length of the slab 

𝑙𝑏𝑐   : Length of the concrete support 

𝑙𝑏𝑠  : Length of the steel support 

𝐿𝑠  : Length into shear span 

m: Coefficient m of the m-k method 

𝑀𝑝𝑙 𝑅𝑑   : Last plastic torque 

𝑀𝑒𝑑   : Calculated maximum torque 

𝑀𝑝𝑎   : Calculated plastic torque resistance 

𝑀𝑝𝑟 : Reduced plastic torque of the steel 

𝑀𝑅𝑑 : Design resistance Torque 

𝑁𝑐𝑓 : Concrete compression resultant 

𝑁𝑐: Concrete compression 

𝑁𝑝 : Sheet tension resultant 

𝑁𝑠 : Resulting from tension in passive reinforcement 

s : Width of the pattern sheet 

t : Steel sheeting width 

𝑇𝑐: Stiffness multiplier for cracked tensile condition 

𝑉𝐿,𝑅𝑑 , : Last shear resistance 

𝑉𝑡 : Maximum shear strength on the PSC method 

𝑥𝑝𝑙 : Depth of the plastic neutral axis 

z : Resulting mechanical arm between concrete and steel 
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Greek symbols 

 𝛾𝑎𝑐  : Safety factor for Steel 

𝛾𝑐: Partial safety factor of concrete 

𝛾𝑠 : Partial safety coefficient for the ultimate limit state 

η: Partial connection factor of the slab 

μ : Friction coefficient 

ν: Poison’s coefficient 

𝜏𝑅𝑘 : Characteristic longitudinal shear resistance 

𝜏𝑢 : Longitudinal shear resistance 

𝜏𝑚 : Average resistance to longitudinal shear 
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2. Preface 

2.1. Origins 

Composite slabs consisting of profiled steel sheeting, reinforcement and concrete, are widely 

used in the building industry in the last decades due to composite slabs systems provide 

permanent and integral reinforcement, which eliminates the need for placing and stripping 

of plywood and timber formwork which reduces the construction time and dead-load, both of 

the main interests in high rise steel frame building. 

Composite slabs have been also introduced recently to consider the increase in strength 

that can be achieved if the profiled steel sheeting is taken into account in strength 

calculations and it has meant a development against reinforced concrete framed 

constructions. 

The application of the combination of profiled steel sheeting to existent concrete slabs 

was first developed in America in the early 1950s. Following its introduction into the 

United Kingdom in the 1970s was become one of the most common forms of floor system 

for steel framed buildings. In Australia, in the early 1990’s much research was carried out 

using the same construction technique in beams also. 

From most of tests and old studies, it is known that the load carrying capacity of composite 

slabs is normally dictated by the shear bond, between the steel sheeting and the concrete, 

rather than yielding from the decking. This shear bond generally breaks down when there is 

one relative displacement between the steel sheeting and the concrete, called slip, which use 

to be occurred at the ends of the span. 

So the need of avoiding the slippage of the concrete through the steel deck is the most 

important goal when it is studied and formed the composite slabs floors. 
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2.2. Motivation 

The researching in this project is motivated due to the interests of the author in the 

construction field due to an internship carried out in Germany where a big mall structure was 

built, accompanied by a motivation created by the professor Miquel Ferrer, who has been 

studying the composite slabs behaviour for the last decade. 

Moreover, the combination between the introduction into the structures field by the author 

and a new method to connect the components in still not studied slabs, which can be a 

revolution in this field, are two additional motivations in order to research in this project. 
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3. Introduction 

3.1. The aim of the project 

The aim of this research is to reveal the experimental results of a new bonding system, under 

patent by the Universitat  Politècnica de Catalunya (UPC)[2], ensuring the full connection 

between steel sheet and concrete, and are compared with the behavior of composite slabs 

with traditional embossments created by different types of steel sheets.[3] 

Another objective of the research tries to isolate the different components of the connection 

in order to establish the importance of each one, studying tests that were already performed 

in other projects, and tested during the experimental program part of this project. These long 

span systems require investigation of new deck profiles that can be used to provide an 

adequate interaction with the concrete slab. 

Deflection and ultimate state service calculations of the composite slabs with the new 

connection have been carried out and compared with the experimental case. These 

calculations have been easily described due to the perfect composite action on the cross-

section of the new composite slabs. 

3.2. The scope of the project 

The scope of the project tends to compile, analyze and deal with the database of the bending 

tests of two different commercial steel sheeting profil·les (ferritic stainless steel sheeting and 

galvanized steel sheeting) with different connection systems to the concrete, tested at 

“Laboratori d´estructures I Resistencia de materials” (LERMA) in the UPC, including in two of 

them the new patent connection system. 

Additionally, It has been also described all materials used on tests, including their properties. 

Following the procedure described in Eurocode 4 theoretical formulations for its calculation 

and verification has been also carried out in order to evaluate the ultimate limit state on slabs 

with the new connection system. The project also reveals the description of test set-up and 

the testing procedure on the mentioned composite slabs. The purpose of the project is not 

modelling with the help of Finite Elements, neither are calculations or design of traditional 

embossed composite slabs. 
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4. Main features of composite slabs 

Composite slabs are structural bidimensional elements which are commonly submitted to 

bending stresses. It consists of cold formed steel sheeting, usually between 0.75 and 1.3 mm 

thick, cast concrete, and it might include steel reinforcement situated between top and 

bottom of the thickness. 

 

 

 

 

 

 

 

 

Figure1 Composite slab materials[1] 

Improvement in efficiency of composite floor systems can be obtained directly by 

optimization of materials before mentioned, which includes the possibility of developing 

longer span composite slab systems. Characteristics of the three main elements composed 

in the composite slabs are described in the following sections. 

4.1. Comparison with the conventional reinforced concrete 

slabs 

Composite slab system have some advantages against the conventional reinforced concrete 

slabs. 

Firstly, composite slabs provide horizontal stiffness over the structure, acting as a diaphragm 

side and helping the transmission of such loads, eliminating thus the riostes need to use in 
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the construction phase. 

Secondly, it acts as an astensile reinforcement. This eliminates or significantly reduces the 

need for tensile reinforcement. The other form of reinforcement required is the wire mesh 

which is used to control temperature and shrinkage. In addition, the shape of steel deck 

leads to a reduced amount of concrete, as a result of a lighter structure with reduced column 

sizes and smaller and simpler foundation loads. This contributes to a reduction in material 

costs and an increase in construction speed and a shorter project duration, which leads to 

reduced costs in terms of construction management services.  

Finally it also permits avoiding the need of use shoring systems during the construction 

stage, facilitating movement between plants and offering open plan spaces as well as the 

steel sheeting also works as a steady platform in construction progress and it is used as a 

formwork while concrete is pouring. The use of steel also facilities an earlier start to the 

operations of the building, therefore requiring shorter periods for the recovery of 

construction costs. The fact that steel quality is not compromised by bad weather 

conditions allows for a faster erection process, reducing any potential delays and 

associated costs during construction. 

Despite the fact that there are amount of advantages, forged steel frames collaborates also 

have a disadvantage: its fire behaviour is worse than conventional reinforced concrete floors 

fire behaviour. The reason for this is the decreasing in resistance to traction of steel when it is 

exposed to fire, and due to concrete is not a material capable to support it, there is a rapid 

collapse between the composite slab materials.  

4.2. Steel sheeting 

The main structural function of the steel decking is to act compositely with the concrete to 

support the loads on the floor. 

The effect of cold-rolling on the material properties of the sheeting must also be taken into 

account in the folds of the sheeting. As main effects of the folds over the material are 

considered increasing yield and ultimate strengths, loss of yielding plateau, and decrease in 

ductility. 

These effects depend commonly on the magnitude of the plastic strains caused by the 
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forming process composite action which is obtained by shear bond, mechanical interlock and 

friction between the concrete and the decking. In order to achieve this interaction are used to 

roll embossments over the steel sheet and amount of re-entrant parts in the deck profile, 

which prevent the separation between the steel sheet and concrete, similar to the 

deformations formed in rebar used in a traditional reinforced concrete slab. 

4.2.1. Profiled steel sheeting 

There are two generic types of shallow steel decking: re-entrant (dovetail) profiles and open 

ribbed profiles. 

Dovetailed profiles are used due to the shrinkage effect where a friction interlock is created, 

this fact creates a tightly embracement between the concrete and the plate. 

However, this configuration with all reentrants shape over the sheet, make increase the steel 

material, and it makes as a direct consequence, decking more expensive. Even if the steel 

sheeting is open ribbed or closed, it usually has embossments or indentations to improve its 

resistance to longitudinal shear tensions in concrete-steel interface and enhance the joint 

behavior. 

 

       Figure 2  Open ribbed profile (left) and dove tail profile (right) [1] 

4.2.2. Characteristics of the deck 

This material is available with yield strengths (fyp ) ranging from 235 N/mm2 to at least 400 

N/mm2,  and profiles with depths ranging from 45mm to over 200 mm. Net width of the deck 

(b) between 700 mm  and 900 mm and with a wide range of shapes. 

The total specimens which permit achieving composite action with concrete are carried out 

with a steel sheet between 0.75 to 1.5 mm thickness (t) and a distance between ribs 𝑑𝑛 of 

150 to 300 mm.  
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4.2.3. Makeup of the steel sheeting 

Most common steel decking are made by galvanized method which consists on applying a 

zinc coating to profile deck. Normally is enough with a total covering of 275 g/m² and 0.02mm 

extra thickness for each part. The steel sheeting is cold-formed from a carbon steel coil 

which profile is progressively formed due to the action of some rollers. 

 

 

 

 

 

 

4.3. Concrete 

Concrete is a mixture of cement paste and aggregate, each of which has an essentially linear 

and brittle stress-strain relationship in compression. Brittle materials tend to develop tensile 

fractures perpendicular to the direction of the largest tensile strain. 

Thus when concrete is subjected to uniaxial compressive loading, cracks tend to develop 

parallel to the maximum compressive stress. 

Two different types of concrete are used in composite slab, normal weight concrete and 

lightweight concrete, but in the Eurocodes these are now referred to as normal concrete and 

lightweight aggregate concrete respectively. Normal concrete is made by dense aggregates 

from natural sources. Lightweight aggregate concrete contains artificially aggregates such as 

Figure 4 Steel sheeting conformation.[7]  

Figure 3 Common parameters of steel sheeting 
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expanded pulverised fuel ash pellets.  

Eurocode 4[4] accepts only concrete qualities above C20/C25 for normal and between 

LC20/22 and LC60/66 for lightweight concrete. 

Concrete used for the specimens is of normal weight, where the characteristic compressive 

strengths at 28 days is 26,86 N/mm2. Concrete’s degree affects the stiffness of the 

composed section and the shear tensions on the connectors. 

                                                          

Table 1 Normal concrete values from compressive and tensile strengths resistance . 

Table 2 represents the nominal values from secant modulus of elasticity of concrete : 

                            Table 2 Secant modulus of elasticity of concrete. 

4.4. Reinforcement  

The bar reinforcement in composite slabs usually takes the form of a relatively light welded 

fabric, commonly supplemented by some bar reinforcement. The fabric reinforcement is 

required to perform a number of functions:  

 Provide bending resistance at the supports of the slab in the fire condition (this 

reinforcement is usually ignored under ‘normal’ load conditions).  

 Reduce and control cracking at the supports, which occurs because of flexural 

tension and differential shrinkage effects.  

 Distribute the effects of localised point loads and line loads.  

 Strengthen the edges of openings. 
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5. Behavior characteristics 

5.1. Behavior based on materials interaction 

In order to create an efficient composite slab, as a mix structural element, is essential to 

know and understand how it behaves after external loads which it has to support. The 

behavior of composite slabs in front of tangential stresses depends on the capacity of 

materials to transmit gradient efforts. This is known as degree of interaction 

The interaction between these materials could be described as total, partial, or inexistent 

depending on the relative movement of concrete through the steel sheeting and the shear 

bond that appears between their contact surfaces. 

 

Figure 5 Steel-concrete interaction [8] 

 

5.1.1. Total interaction 

Total interaction appears when the contact between the different surfaces is perfect and 

continuous through all over surfaces on the span. There is no slippage or relative movement 

between the two materials and it can be accepted as valid the hypothesis of longitudinal 

continuity deformation between materials. It is also assumed the linear law deformation and 

all structural and all structural elements work together as a single element.  

In this case bending will produce the failure due to the exhaustion of the steel sheeting. 
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A possible working situation in total connection where the concrete is fissured and steel 

works in elastic range, it is shown in figure 

 

 

 

 

 

 

 

 

The average force for embossment patron in the distance Ls is : 

𝐹𝑒𝑚𝑏 =
𝑁𝑐

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑚𝑏𝑜𝑠𝑠𝑚𝑒𝑛𝑡𝑠
=

𝑉𝐿𝑠
𝑧⁄

𝐿𝑠
𝑧⁄

= 𝑉
𝑠

𝑧
      (Eq. 5.1) 

Where, s is the distance between embossments patron 

 z is the lever arm of longitudinal resultants 

5.1.2. Partial interaction 

Partial interaction between steel and concrete is produced when there is a limited slippage 

between materials. Deflection is not the same for both materials and there is a longitudinal 

shear transmission between their contact surfaces, affecting its resistant capacity. Moreover, 

in the absence of continuity of deformation between the elements, the respective neutral axis 

do not coincide. This failure is usually produced as a consequence of longitudinal shear and 

the ultimate load is lesser than the total interaction one. Bankruptcy can be ductile or brittle.  

            Figure 6 Total connection diagram[8].  
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5.1.3. Inexistence interaction 

When there is inexistence interaction between materials, there is a free slippage without 

limitations and there is no transmission of stresses. It could be considered inexistent 

composite behavior as a sum of independent parallel structural elements, therefore ultimate 

load is fewer than in the other cases. Obviously, in this case, the contribution of the steel 

sheet has a negligible effect on the composite flexure, acting only as formwork. 

 

 

 

 

 

 

 

 

               Figure 7 Partial connection diagram[8]. 

           Figure 8 Inexistent connection diagram[8]. 
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5.2. Connection mechanisms 

In response to the need of avoiding the slippage of the concrete through the steel deck which 

is the most important goal, there are three types of shear connection between the profiled 

steel sheet and a concrete slab. 

The first type of shear connection is known as ‘frictional’ interlock, which it is proved that 

when the load is bending the slab, slippage occurs frequently. 

The second type of shear connection is ‘end anchorage’. This can be provide where the end 

of a sheet rests on a steel beam, by means of shot-fired pins, or by welding studs through 

the sheeting to the steel flange. 

Finally the third type, which is the most common used, is the mechanical interlock, which is 

entrusted to a repeating pattern of embossments all along the ribs of the sheet. Its function is 

the same as corrugations on reinforcing bars for concrete. The effectiveness of these 

embossments depends entirely on their depth which must be accurately controlled 

manufacture. 

 

 

 

 

 

 

Figure 9 Types of mechanical interlock[1]. 

5.2.1.  Embossments problem 

The traditional embossments wedge effect transforms the longitudinal slip into forces on 

steel sheet that mainly causes the transversal bending of steel sheet , presenting a much 

lower stiffness, and posterior vertical separation of both elements when slip is high enough to 

release them , and the consequently load drop . 
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Figure 10 Transversal bending[10] 

A possible equilibrate state is shown in figure 11. The ends of the embossments, position 1, 

are the main contributors to the resistance to slippage between materials. Forces produced 

by the presence of embossments which act as physical obstacles over the concrete, can be 

splitted into two components. The first component is the longitudinal direction and the second 

component, which is assumed to act perpendicular to the web. 

 

Figure 11 Possible equilibrate state[18] 

 

Compressive vertical forces arise at the contacts between the concrete and the flanges 

which tend to lift the concrete from the sheeting.  

The position of the vertical forces on the concrete, position 2a and position 2b, depends on 

the sheeting profile, and on the direction and distribution of actions on the web. 

The force at position 3 additionally to the frictional forces increase due to the slip between 

concrete and sheeting. The force at position 3 can be named as splitting force because its 

tendency is making split the concrete. Depth, position on the sheet and volume from 

embossments are dependent characteristics from these splitting forces. This splitting force 

can be so high that it might cause splitting concrete which originates a peak of the reentrant 

portion. 
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5.2.2. The new UPC connection system 

The new connection system, under patent by UPC, achieves the full connection of the steel 

sheet to concrete surface by a series of many small crown-shaped breakages generated in 

the steel sheet by a mechanism illustrated in next figure. These breakages are oriented 

towards the side of the sheet which will be contacting the concrete, these small breakages 

have the function to transfer shear forces between both materials once they are inserted into 

the concrete when it is poured. 

 

             Figure 12 Square punch[2].                       Figure 13 Punch mechanism[2].  

 

Another interesting point of this new connection system is the small size and the number of 

the crowns, distributed uniformly over the sheet, which makes that the shear forces are not 

totally concentrated in specific points; such like the only-friction or the rusted-surface 

mechanisms. Both local breakage of the concrete and excessive deformation of the 

projections themselves is thus prevented. 

On the other hand, its effectiveness also resides in the complete and through punching, 

when the breakage is as open as possible traverse the steel sheet completely. Thus, such a 

breakage does not lead to the detachment of both materials since there is no wedge effect 

between them, unlike embossments do. 
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   Figure 14 Method summarized[2]                                Figure 15 Resulting breakage.  

5.3. Failure mechanisms 

The shear bond characteristic depends on many factors such as the height or shape. 

It could be described the main failures in the design of composite floors in Eurocode 4, which 

is based on experimental results obtained for simply supported composite slabs loaded with 

two line loads, as follows: 

 

Figure 16 Main failures position[1]. 

The flexural failure occurs when complete interaction at the interface between concrete and 

steel is achieved, and where the strength and ductility of the mechanical interlocking do not 

limit the flexural capacity. This type of failure usually occurs in long thin slabs. The reason 

why it occurs is the application of an excessive torque (Mpl,Rd) which it is higher than the 

resistance of the slab. 

When the failure mode is due to longitudinal shear; the ultimate load resistance is reached at 

the steel interface. This happens in section II along the shear span LS, where apart from 

horizontal shear forces, bending action can also create vertical separation between the steel 

and the concrete. Therefore, the profiled sheeting must resist vertical separation as well as 

transfer horizontal shear forces between the steel-concrete interfaces. 

Failure III is an unusual mechanism of failure, and has a type of brittle rupture with small 

deformations and cracks appearing at 45 ° in the middle plane of the slab. 
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Figure 17 Modes of Failure of Composite slabs depending on length[1] 

 

5.4. Resistance of composite slabs to different failure modes 

5.4.1. Verification of the sagging bending resistance 

In previous section have been explained different possible types failures when the slab is 

loaded, as a failure mode owing to sagging bending resistance it has been studied the type 

failure I. That failure mode is reached whether the steel sheeting yields in tension or if 

concrete reaches to its compression resistance. 

 One of the assumptions of this failure mode is to ensure the complete interaction at the 

interface between concrete and steel, therefore this is going to be the case of study related to 

composite slabs with the new connection system.  

As a design strength ultimate limit state is considered: 

Profiled steel             𝑓𝑦𝑝,𝑑 =
𝑓𝑦𝑝

𝛾𝑀
 

Concrete                   0.85𝑓𝑐𝑑 = 0.85
𝑓𝑐𝑘

𝛾𝐶
 

Reinforced steel       𝑓𝑠𝑑 =  
𝑓𝑠𝑘

𝛾𝑠
 

Additionally, when tension reinforcement or anti-cracking reinforcement is added into the 

depth of the concrete slab, this reinforcement is generally neglected when it is evaluating 

resistance to sagging bending. 
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There are two different ways to calculate the ultimate limit state when this failure occurs in 

the slab. One of them is the most common case where the neutral axis for bending lies in the 

concrete, and the other case, which usually happens when the sheeting is unusually deep, 

the neutral axis is situated in the steel sheeting. 

With the aim to know in which situation is situated, firstly it is compared the resulting 

compression force in the concrete Ncf with the tension force Np in the steel sheeting, and 

when Ncf value is higher than Np then the neutral axis is above the sheeting. Otherwise the 

neutral axis is situated in the steel sheeting web. 

                          Figure 18 Neutral axis situated in hp high[14] 

 

𝑁𝑐𝑓 =  𝛼𝑓𝑐𝑑𝑏ℎ𝑐              (Eq. 5.2)[4] 

 𝑁𝑝 =  𝐴𝑝𝑒𝑓𝑦𝑏                  (Eq. 5.3)[4] 

        

If        𝑁𝑐𝑓 >  𝑁𝑝           Neutral axis above the sheeting 

If        𝑁𝑐𝑓 <  𝑁𝑝           Neutral axis in the sheeting 

 

Neutral axis above the sheeting  

The stress distribution for sagging bending is shown in Figure 18. There must be full shear 

connection, so the resulting tension force Np in the steel sheeting, which is calculated with 

the characteristics of the effective steel section Ape, is equal to the resulting compression 

force in the concrete Ncf corresponding to the force acting on the width b of the slab, and the 

distance xpl. Moreover, as it is shown in the distribution of the figure, the tension resistance of 

the concrete is taken as a 0. 
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    Figure 19 Stress distribution for sagging bending neutral axis above the steel sheet [14]                                                      

The resulting compression force is        𝑁𝑐𝑓 = 𝑁𝑝 =
𝐴𝑝𝑓𝑦𝑝

𝛾𝑎𝑝
       

Distance from top to neutral axis   𝑥𝑝𝑙 =
𝑁𝑐𝑓

𝑏(0.85𝑓𝑐𝑘/𝛾𝑐
     (Eq. 5.4)[4] 

The lever arm z is then:      𝑧 = 𝑑𝑝 − 0.5𝑥      (Eq. 5.5)[4] 

Finally the design resistance moment is equal to:         𝑀𝑝𝑅𝑑 =  𝑁𝑐𝑓(𝑑𝑝 − 0.5𝑥)  (Eq. 5.6)[4] 

Plastic neutral axis in steel sheeting 

The force Ncf is now less than Np. For simplicity, the compression within ribs is neglected and 

a part of the steel sheeting section is in compression to maintain the equilibrium of the 

section. 

There is no simple method of calculating the distance from top of the depth to the neutral 

axis, due to the complex properties of profiled sheeting. For this reason the stress distribution 

is divided into two parts, each diagram represents one part of the design resistant moment 

Mc.Rd as it is shown in Figure 20. 

 

Figure 20 Stress distribution for sagging bending if the neutral axis is inside the steel sheet[7] 
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•  The first diagram represents force Nc,f in equilibrium, equivalent to the resistance of the 

concrete slab part (depth hc) equilibrated by a partial tension force Np situated in the steel 

sheeting.  

The distance between mentioned forces is called lever arm z which directly depends on the 

geometrical characteristics steel profile and its approximate calculation is explained below. 

The corresponding moment related to this diagram is Ncf ·z 

• The second diagram corresponds to a pair of equilibrating forces in the steel profile. In this 

case the reduced plastic moment of the steel sheeting Mpr, is added to the pair achieved by 

Ncf ·z.  

The bending resistance is    𝑀𝑝𝑙,𝑅𝑑 = 𝑁𝑝𝑧 +  𝑀𝑝𝑟     (Eq. 5.7)[4] 

The compression force in concrete is as equation 5.2:   𝑁𝑐𝑓 = 0.85𝑓𝑐𝑑𝑏ℎ𝑐 

In Eurocode 4 an approximate method, calibrated by 8 different tests is used with the aim to 

achieve the expression of the reduced plastic moment resistance of the steel sheeting, Mpr. 

Which can be deduced from Mpa.  

𝑀𝑝𝑟 = 1,25𝑀𝑝𝑎(1 −
𝑁𝑐𝑓

𝐴𝑝𝑒𝑓𝑦𝑝,𝑑
) ≤ 𝑀𝑝𝑎       (Eq. 5.8)[4] 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21 Experimental relation between Mpa and Mpr[17] 

The expression of lever arm is:  𝑧 = ℎ − 0.5ℎ𝑐 − 𝑒𝑝 + (𝑒𝑝 − 𝑒)
𝑁𝑐𝑓

𝐴𝑝𝑒𝑓𝑦𝑝,𝑑
    (Eq. 5.9)[4] 
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The equal and opposite forces Nac provide a resistance moment Mpr equal to the resistance 

moment for the sheeting, Mpa, reduced by the effect of the axial force Na. It should be noted 

that in Eurocode 4; Part 1.1[4], the value of the symbol Ncf depends on the ratio x/hc. It is the 

lesser of the two value given by previous equations.  

  

5.4.2. Resistance of composite slabs to longitudinal shear 

Type II failure is failure due to longitudinal shear. The aim of this method is to compare the 

average longitudinal shear resistance 𝜏𝑢 on shear span with the applied force.   

To design the slab resistance against the longitudinal shear can be determined by the semi-

empirical m-k method or the partial shear connection method. 

 

m-k method 

 
This method uses the full-scale test results to establish the longitudinal shear capacity of 

the composite slabs. The linear parametric equation used in the semi-experimental m-k 

method, is composed by most significant resistant parameters present in composite slabs: 

𝑉𝑙𝑅 = 𝐹(𝐿𝑠, 𝑑𝑝, 𝑏, 𝐴𝑝, 𝑉𝑡) 

Where: 

𝑉𝑙𝑅     longitudinal shear resistance 

𝑉𝑡      vertical shear force 

𝑑𝑝     average depth of composite slab 

3 different tests are done with different Ls longitudes and next graph is built: 
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                                          Figure 22 m-k interaction diagram [1] 

Where is obtained m-k values 

According to Eurocodi-4 the longitudinal shear resistance is given by the expression: 

𝑉𝑙,𝑅𝑑 = 𝑏𝑑𝑝 [(
𝑚𝐴𝑝

𝑏𝐿𝑠
) + 𝑘] /𝛾𝑣𝑠        (Eq. 5.10)[4] 

Where the dimensions are in mm and the partial safety factor for shear connection  𝛾𝑣𝑠 =

1.25 

Partial connection method  

This method is only used for ductile behavior composite slabs. It is based on the medium 

value of the design ultimate shear stress τu,Rd between steel and concrete interface, on the 

bending resistance moment from standardized test results and finally on the theoretical 

partial interaction diagram from ultimate states limits. 

  

 

                                 Figure 23 PSC diagram [1]. 
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Where finally the medium shear stress is calculated by next expression: 

𝜏𝑢 =
𝜂𝑁𝑐𝑓

𝑏(𝐿𝑠+𝐿0)
          (Eq. 5.11)[4] 

This medium value of ultimate shear stress is used to determinate the design ultimate plastic 

resistance moment for each checking section, for any distance Lx from the support. 

 

5.4.3. Resistance of composite slabs to vertical shear  

Failure due to vertical shear has been explained in previous section, noticed as a failure type 

III. The general formula to calculate the vertical shear resistance 𝑉𝑅𝑑,𝑐 has the reinforcement 

ratio as a part of it, under the precondition that the reinforcement is fully anchored. 

Nevertheless, the minimum shear resistance formula will be sufficient calculated without 

considering the commented reinforcement ratio, by: 

𝑉𝑅𝑑,𝑐 =  𝑣𝑚𝑖𝑛𝑏𝑤𝑑         (Eq. 5.12) [4] 

Where :  

𝑣𝑚𝑖𝑛 = 0.035𝑘
3
2𝑓𝑐𝑘

1
2 

𝑘 = 1 + (
200

𝑑
)1/2 

𝑏𝑤 is the minimum width of the cross section in the tensile area 

d   is the effective depth of the cross section, d ~ 𝑑𝑝 for sagging moment 
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6. Experimental program 

In order to carry out this study, 6 different slabs were designed and tested thoroughly. All 

tests took place at LERMA in the Universitat Politecnica de Catalunya[2][3]. 

As the maximum capable shear-bond force will be an inherent property for each specific 

composite slab due to the different interlock mechanism, because the steel profile and the 

concrete are the same. Four of the six slab tests were produced by the Cofraplus60 (C60) 

profile by ArcelorMittal, three of them rolled in most usually conventional galvanized steel, 

and one of them rolled in ferritic stainless steel 1.4003 alloy. 

The rest of tests have been obtained with a particular non-embossed profile equivalent to 

Cofraplus60 without longitudinal stiffeners, where manually by means of folding press, are 

being implemented all new connection system. The developed tasks are the following: 

-Construction and test of 3 slabs using ferritic stainless steel sheeting and common 

embossments as a connection system: span length of 2600 mm and 100 mm slab depth. 

-Construction and test of 1 slabs using galvanized steel sheeting and common embossments 

as a connection system: span length of 2600 mm and 100 mm slab depth 

-Construction and test of 2 different slabs, one of them with the full high density punching 

connection system, and the other one with the staggered low density punching connection 

system. Both with 2600mm of span length and 100 mm slab depth. 

 

Specimen code Test type 

C60-Inox-2600-100-nº1 Static 

C60-Inox-2600-100-nº2 Cyclic + static 

C60-Inox-2600-100-nº3 Cyclic + static 

C60-CSteel-2600-100 Static 

PATupc-HI-2600-100 Static 

PATupc-LO-2600-100 Static 

                                        Table 3 Type tests  
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6.1. Type test 

There are two different type of test, static tests and cyclic test. Nevertheless, before doing 

any cyclic test, it must be firstly done one static test, where the load is applied incrementally 

until reaching to slab breakdown, with the aim of knowing the failure load 𝑊𝑡. As it happens 

in C60-Inox-2600-100 tests. 

 Cylic tests, where the load applied varies between 0.2 𝑊𝑡 and 0.6 𝑊𝑡, ensure to 

remove any kind of chemical bond formed between concrete and steel, and the 

posterior static load test will provide the correct designation of the mechanical bond 

formed by the embossment. This load may be applied over 5000 cycles in time of at 

least 3 hours. 

 In static tests the load is applied incrementally. Failure load can not occur in less than 

1 h. 

6.2. Steel sheeting on composite slabs tested  

The decision of taking COFRAPLUS 60 as proof tester is due its geometrical simplicity that 

helps to identify easily the geometrical problems that appear. 

Figure 24 illustrates the geometric shape of the profiled steel deck with embossments placed 

opposite on adjacent webs. For testing has been used sheets with 1013 mm width, and a 

sheet thickness of 0.8 mm. 

Also they are protected from corrosion by a zine coating about 0.02mm thick on each face.  

 

 

 

 

Figure 24 Profile measures  
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Figure 25 Breakages in steel sheeting.           Figure 26 Shoring before concrete pouring. 

Next table summarizes the geometrical properties of all the steel sheets used during tests. 

 

             Ferritic stainless steel sheeting 
  

        Galvanized steel sheeting 

Slab width  
 

𝑏 
 
1013 

 
mm  Slab 

width  

 
𝑏 

 
1013 

 
mm 

  Sheet thickness 
 

𝑡 

 
0,8 

 
mm    Sheet 

thickness 

 

𝑡 

 
0,76 

 
mm 

Profile length  
 
𝐿𝑒 

 
1138 

 
mm  Profile 

length  

 
𝐿𝑒 

 
1138 

 
mm 

Effective Area 
 
𝐴𝑝 

 
910 

 
mm²  Effective 

Area 

 
𝐴𝑝 

 
865 

 
mm² 

Neutral axis 
 

𝑒 
 
33,25 

 
mm  Neutral 

axis 

 
𝑒 

 
33,25 

 
mm 

 
Sheet moment  

 
𝑀𝑝𝑎 

 
5,71 

 
kN·m 

  
Sheet 
moment  

 
𝑀𝑝𝑎 

 
5,30 

 
kN·m 

Sheet high  𝑒𝑝 58 mm  Sheet 

high  

𝑒𝑝 58 mm 

                                                    Table 4 Geometrical properties 
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With regard to material properties, may be assumed elastic properties to be as for structural 

steel. In accordance to standards EN 1993-1-4 [5], may be obtained steel yield stress, and 

ultimate resistance of the steel, however, three different cold formed ferritic stainless steel 

sheets were proved in order to obtain material properties of the composite slabs sheets. The 

tests were only done in longitudinal direction because it was the only way to obtain a 

standardized coupon. 

 

No. Specimen b  

mm 

t  

mm 

Zn 

mm 

Lo 

mm 

Lf 

mm 

L 

% 

Fu  

N 

Fy(0,2% 

   N 

fu 

N/mm
2
 

fy (0,2%) 

N/mm
2
 

Date 

1 FSS_Sheet  15,98 0,83 0,00 50 63 26 6371 4492 480 339 28-6-11 

2 FSS_Sheet 16,12 0,81 0,00 50 64 28 6426 4185 492 321 28-6-11 

3 FSS_Sheet 16,08 0,84 0,00 50 64 28 6478 4378 480 324 28-6-11 

Table 5 Summarize of the results of the tensile test performed at UPC 

 

 

Figure 27 Stress-strain curves of the tensile test performed by UPC 

Table 5 is finally summarizing both the stainless and galvanized steel yield stress. Ferritic 

stainless steel sheeting obtained from tensile tests on strips taken from the profiled sheeting, 

and galvanized steel properties from standards EN 1993-1-4 [5]. 
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Yield Stress [N/mm²] 

 
Young´s modulus E [N/mm²] 

 
Ferritic Stainless Steel 

 
326 

 
218.000 

 

Galvanized Carbon 
Steel 

 

350 
 

210.000 

Table 6 Steel yield stress 

6.3. Concrete testing  

Concrete used on slab testing has been C25/30 and must follow the specifications of EN-

1992-1-1 [6], where are indicated the process to obtain the characteristic strength of 

concrete. The test of the concrete will be determined after 28 days doing compressing test 

with standard cylindrical concrete specimens of 150 mm diameter and 300 mm height. There 

must follow the specifications of UNE EN 12390-3 [11]. To carry out the compression 

testing, after disassembly from moulds must be regularized top and bottom of the 

specimens. The speed of the process is 8,85 kN/s and from each specimen is obtained 

the maximum force database, the cylinder compressive strength of concrete and the 

maximum distance of the mechanism between the beginning and the end of the process. 

Specim. Day of 

concreting 

Day of 

testing 

Type test Speed 

(kN/s) 

Maximum 

force (kN) 

Maximum 

distance(mm) 

Compressive 

strength (MPa) 

1 10-ene-13 27-feb-13 Compression 8,8537 586,6 1,42 33,2 

2 10-ene-13 27-feb-13 Compression 8,8537 601,1 1,41 34,01 

3 10-ene-13 27-feb-13 Compression 8,8537 597,9 1,36 33,83 

4 10-ene-13 27-feb-13 Compression 8,8537 588 1,37 33,27 

5 10-ene-13 26/04/2013 Compression 8,8537 679,7 2,82 38,46 

6 10-ene-13 26/04/2013 Compression 8,8537 690,9 1,75 39,1 

7 10-ene-13 26/04/2013 Compression 8,8537 674,4 1,95 38,16 

8 10-ene-13 26/04/2013 Compression 8,8537 705,8 1,78 39,94 

Table 7 Testing process and concrete properties(truck 2) 
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Two different concrete trucks were tested to carry out the process. The previous table shows 

the values acquired with the truck number 2. As it is observed the specimen lot with 106 days 

has a higher strength property compared with the specimen lot of 48 days. To sum up the 

concrete testing resumes that including both trucks, the compressive cylinder strength of 

concrete (106 days) is 39,81 Mpa and compressive cylinder strength of concrete (48 days) is 

33,58 Mpa. 

 

6.4. Test set-up 

The tests have been carried out following the procedure described in Eurocode4 to obtain 

the longitudinal shear resistance by m-k parameters in traditional embossments, and to 

obtain the behavior of the new connection system in composite slabs. In figure 27 is shown 

the schematic view of arrangement for the simply supported composite slab, all of them were 

single-span and monotonically loaded, configuration with an effective span (L) of 2.6 m and 

subjected to two symmetrically located uniformly distributed line loads, applied on two HEB 

beams. 

Loading was applied by a single hydraulic jack system, where the load was applied by 

increments.  

Moreover there was mounted one structural spreader beam bellow to the structural load 

beams, placed back to back, and load is measured with the help of cell at the point of 

application. Uniform loading is applied by stiff and flexible 100mm width neoprene pads over 

a levelling sand layer, aim for a uniformly distributed load. Two steel plates with two greased 

Teflon sheets between them were used, under neoprene, to eliminate the lateral confinement 

produced by friction between the slab and the testing machine. 
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Figure 28 Test slab[20] 

One support is a fixed joint and the other one is a rotating roller. This arrangement achieves 

a constant bending moment and pure bending in the central zone of the composite slab. The 

shear force is constant between the load application and support cross-sections 

Roller and hinge supports are specially fabricated for study. The schematic view of the roller 

and hinge supports is shown in Figure 28. 

 

 

Figure 29 Displacement sensors on testing. 

 

Linear displacement sensors are measuring the deflection at the middle of the span (d3 and 

d4). Furthermore, there are two other sensors fixed to the concrete at each end of the slab 

measuring the relative slip of the steel and the displacement of the slabs (d1and d2). The 

sensor d5 is incorporated to a central curvature meter, and its intention is measure the 

deflection which permits to obtain the curvature radius. 
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7. Test results and slabs behavior  

Initially it carried out static a test in order to know the loading range which may be applied on 

dynamic tests (C60-Inox-2600-100-nº2,3). To determine the maximum load supported in a 

slab, it may be added to the maximum cell force applied in test, the self slab weight and the 

beams weight. The sum of three forces is obtained the maximum load which produced the 

breakdown on the composite slabs 𝑊𝑡. 

Next table collects the theoretical maximum loads which have produced the slab breakdown. 

 

Specimen code 𝑭𝒎𝒂𝒙
(𝒌𝑵)

 𝑺𝒍𝒂𝒃 𝒘𝒆𝒊𝒈𝒉𝒕(𝒌𝑵)  𝐁𝐞𝐚𝐦𝐬 𝐰𝐞𝐢𝐠𝐡𝐭(𝐤𝐍) 𝑾𝒕(𝒌𝑵) 𝑽𝒎𝒂𝒙(𝒌𝑵) 𝑴𝒎𝒂𝒙(𝒌𝑵 · 𝒎) 

C60-Inox-2600-100-

nº1 

35,05 3,95 0,47 39,47 19,74 12,82 

C60-Inox-2600-100-

nº2 

39,51 3,95 0,47 43,93 21,97 14,27 

C60-Inox-2600-100-

nº3 

36,24 3,95 0,47 40,66 20,33 13,21 

C60-CSteel-2600-

100 

36,06 3,95 0,47 40,48 20,24 13,16 

PATupc-HI-2600-

100 

83,08 3,95 0,47 87,50 43,75 28,44 

PATupc-LO-2600-

100 

90,74 3,95 0,47 95,16 47,58 30,93 

                                    Table 8 Efforts on composite slabs[2] 

 

 

Specimen code 𝟎. 𝟐 · 𝑾𝒕(𝒌𝑵) 𝟎. 𝟔 · 𝑾𝒕(𝒌𝑵) 𝑴𝒊𝒏𝒊𝒎𝒖𝒎 𝒇𝒐𝒓𝒄𝒆 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒇𝒐𝒓𝒄𝒆 

C60-Inox-2600-

100-nº2,3 

7,89 23,68 3,47 19,26 

                                            Table 9 Dynamic test loads [2] 
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Mmax and Vmax have been calculated supposing it is applied a load called P subjected to two 

symmetrically located uniformly distributed line loads, as it is loaded in tested case, then 

theoretical effort moments on the slabs have been studied. 

   

 

 

 

 

 

 

 

 

Figure 30 Effort distribution 

Moment distribution for each part is: 

𝑀𝑎𝑏 = 𝐹 · 𝑥 =  
𝑃

2
· 𝑥 

𝑀𝑏𝑐 = 𝑃 ·
𝐿

4
=

𝑃

2
·

𝐿

4
=

𝑃𝐿

8
 

𝑀𝑐𝑑 = 𝑃(𝐿 − 𝑥) 

The resulting maximum moment available in the slab is  𝑴𝒎𝒂𝒙 =  
𝑷𝑳

𝟖
 .and shear force is  

𝑽𝒎𝒂𝒙 = 𝑷/𝟐. 

From table 7 is obtained the medium shear effort capable to support which is 20,57 N for the 

group of composite slabs which use the common embossments, meanwhile the result is 

46,13 N for the group of slabs with the new patent connection. 

a b c d 
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The resulting moment is also different between groups, the traditional composite slabs have 

a medium moment of 13,36 kN·m and the new composite slabs 29,68 kN·m, which clearly 

shows more than double difference between each group. 

Next Table 9 summarizes the results in terms of resultant forces, midspan deflection and slip 

about all tests completed. 𝐹 0.1 𝑚𝑚 𝑠𝑙𝑖𝑝 and 𝐹 0.5 𝑚𝑚 𝑠𝑙𝑖𝑝 show the forces where the slip, 

measured by displacement sensors number one and two, has a measure of 0.1 mm and 0.5 

mm respectively. Such information is going to be useful in order to know the ductile or brittle 

behavior of the slab. Then 𝐹𝑚𝑎𝑥 shows the maximum force capable to be loaded for the 

composite slab. In addition to this the measurements about the midspan deflection and the 

slip were picked up at the force which was produced the slab breakdown. 

 

                              Load cell force Displacement at 𝑭𝒎𝒂𝒙 

Specimen code 

 

𝑭 𝟎.𝟏 𝒎𝒎 𝒔𝒍𝒊𝒑
(𝒌𝑵)

 𝑭 𝟎.𝟓 𝒎𝒎 𝒔𝒍𝒊𝒑
(𝒌𝑵)

 𝑭 𝒎𝒂𝒙
(𝒌𝑵)

 𝑭 𝑳
𝟓𝟎

(𝒌𝑵)

 𝜹𝑴𝒊𝒅𝒔𝒑𝒂𝒏
(𝒎𝒎)

 𝑺𝒍𝒊𝒑 (𝒎𝒎) 

C60-Inox-2600-100-nº1 3,61 9,77 35,05 34,50 52,55 5,68 

C60-Inox-2600-100-nº2 3,52 9,92 39,51 36,67 70,77 5,46 

C60-Inox-2600-100-nº3 4,37 7,95 36,24 34,86 66,77 6,37 

C60-CSteel-2600-100 23,47 20,00 34,15 34,15 75.22 4,69 

PATupc-HI-2600-100 No slip No slip 83,08 69,35 > 90 No slip 

PATupc-LO-2600-100 No slip No slip 90,74 75,04 > 120 No slip 

Table 10 Slabs behavior[2] 

As it shows in the table, the first noteworthy fact, which only reaffirms the suppositions made 

before about the new patent UPC connection system behavior, is the inexistence of any 

slippage between materials in the slabs where have been applied the commented 

mechanism. Secondly, there is a big difference in the ultimate force and the midspan 

deflection capable to service between the slabs with traditional embossments and the 
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composite slabs with the patent connection system.  

In cyclic test the midspan deflection displacement in the maximum force for slab tests 

number 2 and 3 was 10.62 mm and 11.10 mm respectively, meanwhile the slip at the 

maximum force is 0.98 mm and 1.46 mm. 

In following sections will be explained and commented in detail all differences between 

composite slabs behavior. 

7.1. Midspan deflection and slippage 

Firstly, in figures 31 and 32 are graphed the load cell force versus midspan deflection and 

longitudinal slip in only slabs with common embossments system behavior, comparing the 

differences between ferritic stainless steel and galvanized steel. 

 

All of them have a parabolic deformation instead of linear deformation, additionally the use of 

ferritic stainless steel or conventional carbon steel as steel sheeting, has no effect in terms of 

resistance values and they have similar initial slope, due to the similarities in Young’s 

modulus and the yield stresses. As it was explained in previous section the tested slabs 2 

and 3 preceded to static test they had a cyclic test. Each figure shows the midspan deflection 

and the slippage in static test.  
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Figure 31 Load cell force vs midspan deflection        Figure 32 Load cell force vs slippage  
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For this reason both slabs start their static test, after any load applied, with the maximum 

midspan deflection displacement achieved in cyclic test (10.62 mm and 11.10 mm 

respectively), and the slip achieved during the cyclic test of 0.98 mm and 1.46 mm. 

Another interesting point is the abrupt curve drop off, once the slab reaches the ultimate load 

and then the slab is collapsed. 

Regarding to load where the first slippage was produced, there are big differences between 

materials used. Focusing on the load where is produced 0,5 mm of slippage, the election of 

galvanized steel as a surface sheeting caused higher resistance values than for stainless 

steel speciments (Fig 32). The weaker initial adherence is probably because the overly 

smoother surface of stainless steel due to different chemical reaction of the concrete on 

stainless steel or zinc surfaces. 

Moreover peaks observed in both figures are the instants where the loss of side slip 

adhesion between concrete and steel had occurred, which as a result, midspan deflection 

increased without a load application. It is also observed that in tests which have previously 

supported cyclic loading, the chemical bond is destroyed only remaining mechanical 

attachment. Therefore in the midspan deflection graph are observed less "peaks" due to the 

no adhesion breakage do not occur. 

In order to understand that phenomenon next figure illustrates the behavior of slab test 

number one (steel sheet made by ferritic stainless steel sheeting and common embossments 

curves), where are compared displacement sensors d1 and d2, which also illustrates the 

existence of slippage, with midspan deflection of the same slab. 

 

 

 

 

 

 

Figure 33 Picks comparison 
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The previous figure shows how at the beginning the load increases without slipping and 

producing a very small midspan deflection until reaching 6000 N when the first slipagge in 

one side occurs. At this moment the midspan deflection without application of load increases.  

After increasing the load, the slippage occurs on the other side, which consequently the 

midspan deflection considerably increase. This phenomenon is observed until to reach the 

collapse of the structure where is observed how the increase of the midspan deflection while 

two courves d1 and d2 remain constant. In this figure is shown the influence of the slippage 

over the midspan deflection and the direct relationship they have. 

Now, it is added to the previous figure the curves of slabs with the new connection system. 

 

                        Figure 34 Midspan deflection                                      Figure 35 Slippage 

 

Figure 35, shows the inexistence of .any slippage on new composite slabs and clearly 

represents how the new connection system keeps full connection up to failure because no 

slippage curve is shown in figure. In addition to this, in figure 34 is demonstrated how 

maximum deflection, which was only limited by the extension capability of the hydraulic 

cylinder, of new composite slab are much higher than the slabs with traditional 

embossments. Also it is observed the fact that the maximum load capable to reached, before 

the decreasing branch was developed, is widely higher in new composite slabs as it was 

proved in table 10.  
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7.2. Cracking  

During the slab tests, it was tested that as much increased the load, before any visible cracks 

in all concrete slabs, a slight cracking between the steel sheeting and concrete was heard. 

This fact is almost similar in all shear spans. 

In most cases of slabs with traditional embossments, the first relative end slip were detected 

at the end of the side when the initial crack was formed, moreover the loading was capable 

of considerable increase in magnitude before a much louder debonding cracking was heard 

and more major cracks of concrete were observed, nevertheless instead of that, due to the 

relative displacement between the steel sheeting and the concrete, and consequently the 

cracking started to develop upward to the top of the concrete, the premature fail occurred. 

However, with the patent connection system by UPC, initial flexural fine cracks were initiated 

at the bottom of concrete near the load points and subsequently fine cracks developed in the 

midspan as the loading being sustained, but they had no consequence in debonding slips. 

 

 

 
 
 
 
 
 
Figure 36 Cracking on slabs  

7.3. Stress-strain distribution 

 

To reveal the steel and concrete stresses and differences between shear-bond 

mechanisms on slabs tested, four strain gauges were monitored on different positions 

of the steel deck, and one strain gauge was monitored over the slab depth in order to 

measure stresses of concrete. 

 

Figure 37 Gauges applied in profile 
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                                            Figure 38 Gauges distribution. 
 

Strain gauges measurements showed that both materials are widely yielded, but it is 

also observed some differences explained in following subsections. 

 

7.3.1. Ferritic stainless slabs with common embossments 

 
 
As it is illustrated on figure 39 bottom flanges of the steel deck (g2 and g3) and most of 

the web of steel sheeting were all subjected to tension stress from the beginning to the 

ultimate state, meanwhile the top flanges of the steel deck (g1 and g4) changed from 

being stressed in tension, prior to initial slip between the concrete and the steel sheet to 

being stressed fully in compression at the ultimate state in the all specimens. The 

mentioned change with stresses tensioned to compressed occurs approximately at 10 

kN load. The reason of this fact is aside of slippage between materials, the concrete 

cracking. 
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             Figure 39 Strain measures                   Figure 40 Focused strain measures 
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From gauge 5 it is shown concrete portion was  in tension during the test, but also 

illustrate that there were rapid strain increases in concrete before cracks initiated at a 

load of 11.8 kN. 

 

Figures 41 and 42 illustrate how varies the curves of deformations compared with the 

measurement to achieve the curvature by displacement sensor d5, and it is shown how 

concrete measured by gauge g5 increases its deformation 0 to -70µε with almost no 

curvature appears.  

After this point cracking appears in the concrete and there is no more deformation 

increase but curvature keeps increasing. 

 

 

     Figure 41 Strain measures(d5)                       Figure 42 Focused strain measures(d5) 
 

 

As it is also shown in figure 41, the deformation applied on the bottom flanges of the steel 

deck (g2 and g3) is directly proportional to midspan deflection in the slab. 

 

7.3.1. Galvanized slabs with common embossments 
 

 

From the curves of strains varying with the exerted load, here it is illustrated that the 

state where top flanges of the steel profile (g1 and g4) turn into compression due to 

the localized separation at the interface occurs in a much higher load than in ferritic 

stainless slabs. Almost considered as a ultimate failure state 

Nevertheless the bottom flange and most of the web of steel sheeting are still in 

tension. 
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 Local buckling occurs in the top flange and in the major parts of web of steel sheeting, 

and the bottom flange of steel sheeting stressed in tension reaches its yielding strength 

 

 
 

Figure 43 Strain measures in galvanized slabs 
 

7.3.2. Slabs with new connection system 
 
 

Figure 44 perfectly illustrates how the ultimate values were reached without slipping 

at all, similar strain increases in the bottom of steel deck as well as on top of the 

concrete were also detected when cracks initiated, when a force of 45000N was loaded 

on the slab. Nevertheless gauges g1 and g4 are subjected to tension stress from the 

beginning to the ultimate state due to no slippage occurs. 

 

 

 

 

 

 

 

 

Figure 44 Strain measures in new composite slabs 
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In order to check the strain-stress diagram where for each point stress, there might be 

same strain, as a consequence, after the load increased the proportion between gauges 

position distance need to be similar. A scale magnification was created in figure, where a 

depth slab web simulation was formed to check the mentioned proportion.  

It is shown how at the beginning of the test, before any possible cracking, the proportion 

between the distance of each gauge situated on the web of the slab is exact, but after 

loads louder than 10kN exactly proportion does not exactly remain. 

 

 

 

Figure 45 Strain measures proportion in new composite slabs 
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8. Ultimate limit state service 

Before starting to calculate the ultimate state service in the different slabs tested, it is worth 

nothing that the effective area Ape of the steel decking, for each calculation, is the net section 

obtained without considering the galvanising thickness (generally  2  x  0,020  =  0,04  mm).  

Moreover, the width of embossments, indentations and all crown-shaped breakages 

generated in the steel sheet are also neglected, unless it can be proved by tests that there is 

a lager effective area. 

For these reasons, the effective area per metre width, Ap, and the height of the center area 

above the bottom of the sheet, e, are usually based on tests. These usually also show that 

ep, is different from e. 

In this section is going to study in theoretical way the ultimate state service and it will be 

compared with the tested experiments on different slabs. 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 46 Ultimate experimental force service  

 

8.1. Ultimate limit state in new connection system slabs 

As it is shown in figure 46 the ultimate limit force capable to reach in new composite slabs is 

in the order of 80 to 90 kN.  So the applying the equation before demonstrated 𝑀𝑚𝑎𝑥 =  
𝑃𝐿

8
 of 

ultimate bending moment which corresponds to the plastic bending moment of the 

composite cross section, should be achieved a theoretical maximum load around the 

order of 80kN. 
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As it was explained in section 5.4.1, when there is full connection between concrete and 

steel, as it is considered the slabs with the new connection patent, it is firstly compared 

𝑁𝑐𝑓and 𝑁𝑝 in order to know where the neutral axis is situated. 

All characteristics material dates of composite slabs with new patent system as a connection 

mode, are shown in next table. 

 

Concrete or Steel Value Units 

αfcd 33,58 N/mm2 

fyb 326 N/mm2 

fyu 480 N/mm2 

                                    Table 11 Materials characteristics. 

Applying formulas 5.2 and 5.3: 

𝑁𝑐𝑓 = α𝑓𝑐𝑑𝑏ℎ𝑐 = 33.58 · 1013 · 42 = 𝟏𝟒𝟐𝟖, 𝟔𝟗 𝑲𝑵 

𝑁𝑝 = 𝐴𝑝𝑓𝑦𝑏 = 910 · 326 = 𝟐𝟗𝟔, 𝟕𝟗 𝑲𝑵 

In studied case 𝑁𝑐𝑓 > 𝑁𝑝, so the neutral axis is situated above the sheeting, therefore there 

must be applied all formulas also explained in section 5.4.1, in order to achieve the design 

resistance moment. After applied all dates of table is showed above. 

𝑁𝑐𝑓 = 𝑁𝑝𝑎 =
𝐴𝑝𝑓𝑦𝑝

𝛾𝑎𝑝
= 910 · 326 = 29660𝑁      

   𝑥𝑝𝑙 =
𝑁𝑐𝑓

𝑏(0.85𝑓𝑐𝑘/𝛾𝑐
=

29660

1080·33.58
= 8,72𝑚𝑚  

𝑀𝑝,𝑅𝑑 = 910 ∗ 326 ∗ (67 − 0.5 ∗
910∗326

1013∗33,58
) : 𝟏𝟖𝟓𝟖𝟐, 𝟔𝟐𝐾𝑁𝑚𝑚   

 

𝑀𝑚𝑎𝑥 =  
𝑃𝐿

8
= 𝑀𝑝,𝑅𝑑 = 𝟏𝟖𝟓𝟖𝟐, 𝟔𝟐𝑲𝑵𝒎𝒎    

                 

Theoretical Pmax = 57177 N  

 

As it has been tested and exposed in section 7, the real ultimate resistance force in new 

composite slabs is higher than the theoretical Pmax previously calculated. The reason is 

because the steel stress on calculations is lower than the stress which is the steel capable 

to reach.  
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For this reason is recalculated the ultimate plastic bending moment in order to achieve the 

ultimate force to service in composite slab using the same procedure exposed previously 

but in this case using the maximum yield stress of steel fyu. 

 

It is firstly compared : 

𝑁𝑐𝑓 = α𝑓𝑐𝑑𝑏ℎ𝑐 = 33.58 · 1013 · 42 = 𝟏𝟒𝟐𝟖, 𝟔𝟗 𝑲𝑵 

𝑁𝑝 = 𝐴𝑝𝑓𝑦𝑏 = 910 · 480 = 𝟒𝟑𝟔, 𝟖𝟎 𝑲𝑵 

In this case as it happened before  𝑁𝑐𝑓 > 𝑁𝑝, so the neutral axis is situated above the 

sheeting. 

𝑁𝑐𝑓 = 𝑁𝑝𝑎 =
𝐴𝑝𝑓𝑦𝑝

𝛾𝑎𝑝
= 910 · 480 = 436800𝑁      

   𝑥𝑝𝑙 =
𝑁𝑐𝑓

𝑏(0.85𝑓𝑐𝑘/𝛾𝑐
=

29660

1080·33.58
= 12,84 𝑚𝑚  

𝑀𝑝,𝑅𝑑 = 910 ∗ 326 ∗ (67 − 0.5 ∗
910∗326

1013∗33,58
) : 𝟐𝟔𝟒𝟔𝟏, 𝟏𝟕𝐾𝑁𝑚𝑚   

 

𝑀𝑚𝑎𝑥 =  
𝑃𝐿

8
= 𝑀𝑝,𝑅𝑑 = 𝟐𝟔𝟒𝟔𝟏, 𝟒𝟕𝑲𝑵𝒎𝒎    

                 

Theoretical Pmax = 81418 N  

 

Which result is much closer to the real ultimate state service in composite slabs with new 

connection system. 

 

8.2. Ultimate state service in slabs with traditional 

embossments as connection system 

The failure mode in composite slabs which have used the traditional embossments, as it 

proved the test data, has been due to longitudinal shear. As it was previously commented 

there are two ways to achieve the average  longitudinal  shear  resistance  τu on  shear  

span  Ls and  compare  this  with  the  applied force. In this case is going to use the partial 

interaction design method.  
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Before starting to calculate anything, as it guides the EN-1994-1-1 [4] section 9.7.3, there 

must be proved how is the slab breakdown, ductile or brittle. Because if it is ductile it is 

taken 𝑉𝑡 as a half of the breakdown load 𝑊𝑡, otherwise the value 𝑉𝑡 must be reduced using 

the factor 0.8. 

 

 The longitudinal shear behaviour may be considered as ductile if the failure load 

exceeds the load causing a recorded end slip of 0,1 mm by more than 10%. 

  If the maximum load is reached at a midspan deflection exceeding L/50, the 

failure load should be taken as the load at the midspan deflection of L/50. 

The 𝑊𝑡 is the sum of ultimate force, slab weight and beams weight. It is calculated in order to 

find the load where the midspan deflection of L/50 and the load which causes end slip of 0.1 

mm. 

 

Specimen code 𝑾𝒕(𝒌𝑵) 

 

𝑭 𝑳
𝟓𝟎

(𝒌𝑵)

 𝑾
𝒕(

𝑳
𝟓𝟎

(𝒌𝑵)

)
 𝑭 𝟎.𝟏 𝒎𝒎 

(𝒌𝑵)
 𝑾 𝒕 𝟎.𝟏 𝒎𝒎 

(𝒌𝑵)
 𝑾 𝒕 𝟎.𝟏 𝒎𝒎+𝟏𝟎%

(𝒌𝑵)
 𝑫𝒖𝒄𝒕𝒊𝒍𝒆  

 𝒃𝒓𝒊𝒕𝒕𝒍𝒆  

C60-Inox-nº1 39,47 34,50 38,92 3,61 8,03 8,83 Ductile 

C60-Inox-nº2 43,93 36,67 41,09 3,52 7,94 8,73 Ductile 

C60-Inox-nº3 40,66 34,86 39,28 4,37 8,79 9,67 Ductile 

C60-CSteel 40,48 34,15 77,86 23,47  30,68 Ductile 

Table 12 Ductile or brittle behavior[3]. 

 

8.2.1. Partial interaction design  

The moments acting on the composite slab in the collapse instant, have an intermediate 

value between the null connection and total connection, so it is necessary to evaluate the 

degree of connection corresponding for each slab. The value of resistance 𝜏𝑢 depends on 

the type of sheeting and must be established for all proprietary sheeting as the value is a 

function of the particular arrangements of embossment or indentation orientation, surface 

condition etc.  
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The acting axil force in the concrete when the neutral axis is situated in the steel sheeting, 

is calculated as in next table. 

 

 

Equilibrium  

 

𝑀𝑡𝑒𝑠𝑡 = 𝑁𝑐 · 𝑧 + 𝑀𝑝𝑟 

(Eq. 8.7) 

𝑁𝑐 = 𝜂 · 𝑁𝑐𝑓                            (Eq. 8.1) 

𝑧 = 𝑑𝑝 − 0.5 · 𝜂 · 𝑋𝑐𝑓 − 𝑒𝑝 + (𝑒𝑝 − 𝑒) · 𝜂 

(Eq. 8.2) 

𝑀𝑝𝑟 = 1.25 · 𝑀𝑝𝑎 · (1 − 𝜂)       (Eq. 8.3) 

  

𝐴 · 𝜂2 + 𝐵 · 𝜂 + 𝐶 = 0 

(Eq. 8.8) 

𝐴 = (𝑒𝑝 − 𝑒 − 0.5 · 𝑋𝑐𝑓) · 𝑁𝑐𝑓  (Eq. 8.4) 

𝐵 = (ℎ𝑡 − 𝑒𝑝) · 𝑁𝑐𝑓 − 1.25 · 𝑀𝑝𝑎  (Eq. 8.5) 

𝐶 = 1.25 · 𝑀𝑝𝑎 − 𝑀𝑡𝑒𝑠𝑡            (Eq. 8.6) 

Table 13 Equilibrium design. 

 

 

Where 𝑀𝑝𝑎, e, 𝑒𝑝 ℎ𝑡, and 𝑑𝑝 are characteristics from each steel sheeting, which have 

been described in table 3. Then  𝜂  is the degree of shear connection defined as the ratio 

between the force in the sheeting evaluated from the tests and the forces on the sheeting 

which causes full yielding, calculated as 𝜂 =
𝑁𝑐

𝑁𝑐𝑓
⁄  and 𝑁𝑐𝑓 is the minimum value 

between 𝐴𝑝𝑓𝑦𝑏 and 𝛼𝑓𝑐𝑑𝑏ℎ𝑐. 

The last plastic torque 𝑀𝑝𝑙,𝑟𝑑 is calculated by the multiplication of values 𝑁𝑐𝑓 and 

 𝑥𝑝𝑙 =
𝑁𝑐𝑓

𝑏(0.85𝑓𝑐𝑘/𝛾𝑐
 . 

 

 

Specimen code 
𝑴 𝒕𝒆𝒔𝒕

(𝒌𝑵·𝒎)
 𝑴𝒕𝒆𝒔𝒕/𝑴𝒑𝒍,𝒓𝒅 𝑁𝑐(𝑘𝑁) 𝜂 

C60-Inox-nº1 
10,85 0,586 136,13 0,459 

C60-Inox-nº2 
12,08 0,652 167,72 0,565 

C60-Inox-nº3 
11,18 0,604 144,92 0,488 

C60-CSteel 
11,13 0,642 152,85 0,552 

Table 14 Degree of shear connection[3]. 
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Figure 47 Degree of shear connection. 
 

As it is observed in the figure 46 , the degree of shear connection obtained from the 

carbon steel specimens is higher than the ferritic stainless steel specimens. 

 

Depending on if the support reaction has been taken into account as a cause of 

longitudinal shear resistance, there are two different ways to calculate it. The default 

value of the friction coefficient µ is taken as 0,5. 

𝜏𝑢 =
𝜂𝑁𝑐𝑓

𝑏(𝐿𝑠+𝐿0)
 (Eq. 8.9)       𝜏𝑢 =

𝜂𝑁𝑐𝑓−µ𝑉𝑡

𝑏(𝐿𝑠+𝐿0)
 (Eq. 8.10) 

The value of longitudinal shear stress has been obtained applying all information explained 

before, and is exposed in following tables.  

 

Specimen code 
𝝉𝒖(

𝑵

𝒎𝒎𝟐
) 𝝉𝒖,𝒎(

𝑵

𝒎𝒎𝟐
) 𝝉𝒖,𝑹𝑲(

𝑵

𝒎𝒎𝟐
) 𝝉𝒖,𝑹𝒅(

𝑵

𝒎𝒎𝟐
) 

C60-Inox-nº1 0,208  

0,229 

 

0,209 

 

0,167 C60-Inox-nº2 0,258 

C60-Inox-nº3 0,222 

C60-CSteel 0,235             -              - 0,188 

Table 15 Longitudinal shear resistance taking into account the effect of friction at the supports[3] 
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Specimen code 
𝝉𝒖(

𝑵

𝒎𝒎𝟐
) 𝝉𝒖,𝒎(

𝑵

𝒎𝒎𝟐
) 𝝉𝒖,𝑹𝑲(

𝑵

𝒎𝒎𝟐
) 𝝉𝒖,𝑹𝒅(

𝑵

𝒎𝒎𝟐
) 

C60-Inox-nº1 0,224  

0,246 

 

0,225 

 

0,180 C60-Inox-nº2 0,276 

C60-Inox-nº3 0,238 

C60-CSteel 0,251             -              - 0,201 

Table 16 Longitudinal shear resistance without the effect of friction at the supports[3] 

The characteristic shear strength 𝝉𝒖,𝑹𝑲 has been calculated from the test values as the 5% 

fractile using an appropriate statistical model in accordance with EN 1990, Annex D[4]. The 

design shear strength 𝝉𝒖,𝑹𝒅 is the characteristic strength 𝝉𝒖,𝑹𝑲 divided by the partial safety 

coefficient 𝛾𝑉𝑆 of 1.25. 

 

8.2.2. Differences between steel sheets 

Despite the fact that there are some differences on ultimate limit states parameters between 

stainless-steel and conventional steel sheeting, these are not significant regardless of the 

calculation method used in past sections. Partial connection method, applied to stainless-

steel have achieved a higher ultimate longitudinal shear resistance compared with the 

medium of tests made by conventional sheeting, nevertheless, the differences are in the 

order of hundredths, so it might be supposed similar results. 
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9. Behavior of slabs with new connection system 
 

9.1. Neutral axis behavior in new patent slabs 

As it is known the neutral axis is an axis in the cross section of a slab where there are 

no longitudinal stresses or strains. 

All fibers on one side of the neutral axis are in a state of tension, while those on the 

opposite side are in compression. Therefore by the intermediate value theorem, there 

must be some point between the top and the bottom of the slab that has no strain, 

since the strain in a slab is a continuous function. 

The bending is considered uniform and pure, therefore there is a distance y from the 

neutral axis with the inherent property of having no strain and a longitudinal normal 

strain εx varies linearly with the distance y from the neutral surface. 

 

𝜀𝑥(𝑦) =
𝐿(𝑦)−𝐿

𝐿
=  

𝜃(𝜌−𝑦)−𝜃𝜌

𝜃𝜌
=  

−𝑦𝜃

𝜌𝜃
=  

−𝑦

𝜌
       (Eq. 9.1) 

 
Where : 

L is the original length of the slab (span) 

ε(y) is the strain as a function of coordinate on the face of the slab.  

σ(y) is the stress as a function of coordinate on the face of the slab. 

ρ is the radius of curvature of the slab at its neutral axis. 

θ is the web slab angle 

 

9.1.1. Curvature radius of the slab 

 
In order to obtain the radius of curvature, it has been used all measurements obtained by 

d5 and after trigonometric calculations process it has been developed a formula where 

only depends on d5 and a, where a with a measure of 450mm is half of the distance from 

one of the relative supports to the position on the middle of the slab where is measured 

d5. 

 

The trigonometric process to achieve the commented equation is explained in following 

part: 

http://en.wikipedia.org/wiki/Tension_%28physics%29
http://en.wikipedia.org/wiki/Compression_%28physical%29
http://en.wikipedia.org/wiki/Continuous_function#Intermediate_value_theorem
http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Uniform
http://en.wikipedia.org/wiki/Span_%28architecture%29
http://en.wikipedia.org/wiki/Radius_of_curvature
http://en.wikipedia.org/wiki/Angle
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Figure 48 Trigonometric calculations to obtain curvature radius 
 

tan−1
𝑑5

𝑎
= 𝛼 

𝑑5

𝑎
=

𝑎

2𝑅 − 𝑑5
 

Finally the resultant equation to obtain the radius of curvature is : 

 𝑅 = 𝜌 =
𝑎2

2𝑑5
+  

𝑑5

2
           (Eq. 9.2) 

 

9.1.2. Comparison between gauge measures and theoretical strains.  

 

In order to achieve the results, it has been studied the experimental strains of a sequence 

of forces and they have been compared with the theoretical strains calculated by the 

equation 9.1. 

To solve the commented equation is required to suppose the distance from top of depth 

slab to neutral axis in ultimate state service, which using 𝑓𝑦𝑏 as a nominal yield 

characteristic of steel, after being validated in section 8.1 is 8,72mm. Therefore next table 

contains the distance between each gauge to the neutral axis which is named y: 

 

Gauges Distance y (mm) 

1 and 4 33,28 

2 and 3 91,28 

5 8,72 

                                  Table 17 Distance y depending on gauge position. 
 

a 

d5 

R 
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Next step required to fill the equation 9.1 is knowing the radius of curvature for each d5 

displacement. Figure 49 shows how is developing the midspan flection for curvature as 

same time as the load cell force is increasing. Using the measurements of each point can 

be determined the curvature radius with the method explained in section 9.1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49 d5 evolution on new composite slabs  

 

Following table shows the sequence of forces selected to study the strain distribution and the 

measures of d5 which permits calculate de radius of curvature. The reason of this selection of 

forces is the secure range which gauges work. 

 

FORCE(N) d5(mm) ρ(mm) 

5000 0,09 1125000 

7500 0,16  632812 

10000 0,4  253125 

15000 0,65  155769 

20000 0,85  119118 

30000 1,23   82317 

40000 1.75   57858 

                   Table 18 Radius of curvature from d5. 
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Experimentally, gauges measure deformations associated to strain-force after every 

period of loading. Next table shows the differences between the theoretical longitudinal 

normal strain obtained by the formula 𝜀𝑥(𝑦) =
−𝑦

𝜌
  compared with the commented 

experimental gauge measurements. 

 

 

FORCE(N) strain g1(με) g2(με) g3(με) g4(με) g5(με) 

5000 𝜺𝒆𝒙𝒑 5 54 56 4 -32 

𝜺𝒕𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍 27 81 81 27 -8 

7500 𝜺𝒆𝒙𝒑 21 140 134 12 -44 

𝜺𝒕𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍 52 144 144 52 -14 

10000 𝜺𝒆𝒙𝒑 40 380 373 12 -46 

𝜺𝒕𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍 131 361 361 131 -35 

15000 𝜺𝒆𝒙𝒑 59 603 609 27 -63 

𝜺𝒕𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍 214 586 586 214 -56 

20000 𝜺𝒆𝒙𝒑 110 759 774 62 -97 

𝜺𝒕𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍 279 766 766 279 -73 

30000 𝜺𝒆𝒙𝒑 218 1097 1154 181 -148 

𝜺𝒕𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍 404 1109 1109 404 -106 

40000 𝜺𝒆𝒙𝒑 329 1577 1680 309 -228 

𝜺𝒕𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍 575 1578 1578 575 -151 

 

Table 19 Differences in different gauges between 𝜀𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 and 𝜀𝑒𝑥𝑝 . 

 

 

In order to obtain easily the differences between the theoretical strains and the 

experimental gauges measures, 𝜀𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 and 𝜀𝑒𝑥𝑝 have been illustrate in following 

figures. The line printed on them would illustrate the perfect correlation between both 

strains because. The slope of the perfect line is 1. 
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Figure 50 Comparison between 𝜀𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 and 𝜀𝑒𝑥𝑝 in g1, g4 and g5. 

 

 

 

 

 

 

 

 

 

 

Figure 51 Comparison between 𝜀𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 and 𝜀𝑒𝑥𝑝 in g2 and g3. 

 

As it has been displayed the gauges g2 and g3 have obtained accurated experimental 

measures if they are compared with the theoretical strain calculated by equation 9.1, and 

as it is shown in figure 51 how much increase the force, the differences between strains 

are deeper. 

 

9.1.3. Neutral axis evolution over the slab´s depth 

 

In this section is going to study how evolves the neutral axis experimentally and 

theoretically around the depth of the slab. 
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As it has been demonstrated the distance from top to neutral axis xpl should be in the 

range of 8,72mm to 12,84mm approximately, due to the calculations of ultimate state 

service. 

Following sequence of figures illustrate how evolves the neutral axis over the slab´s depth 

in full high density punching connection system slabs. On each figure along x-axis is plotted 

the gauge measurements distributed over the slab´s depth to obtain the experimental elastic 

calculation and are compared with the theoretical line distribution. And on the ordinate axis is 

represented the position of each gauge along the slab´s depth. 

Some representative load cell forces have been chosen to make the process: 

 

 

 

 

 

 

        Figure 52 Experimental elastic calculation(F=5000N left, F=10.000 right) 

 

 

 

 

 

 

 

 Figure 53 Experimental elastic calculation(F=15.000N left, F=30.000 right) 

From these figures is observed how the distance of the experimental elastic calculation of 

neutral axis remain almost constant during all the process with an approximate values 

between 12-15mm. 
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In order to represent the experimental position of neutral axis as much accurate as 

possible, it has been represented the gauge measurements of the ultimate cell force 

obtained on testing, which could be assumed as a ultimate state service. 

In this case next figure shows how experimental neutral axis is around 12mm from top 

of the slabs depth, which is in total accordance with the ultimate state xpl=12,84 mm 

measured by theoretical way in section 8.1. 

 

  

   Figure 54 Ultimate strain state 

9.2. Deflections 

Deflections due to loading applied to the new patent composite slab should be calculated 

using elastic analysis, neglecting the effects of shrinkage. Additionally, it must be considered 

that for an internal span of a continuous slab, where the shear connection is achieved, 

deflection has to be determined using: 

 The average value of the cracked and uncracked second moment of area may be 

taken 

 For the concrete, an average value of the modular ratio for long-term and short-

term effects may be used 

In accordance to BS EN 1994-1-1 calculations of the deflection of the composite slab may be 

omitted if both the following conditions are satisfied for external or simply supported spans:  
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 The span/depth ratio of the slab does not exceed certain limits delimited by 20 for 

a simply-supported span and 26 for an external span of a continuous slab 

(corresponding to the lightly stressed concrete limits given in EN 1992-1-1. 

 The load causing an end slip of 0.5 mm in the (long span) tests on composite 

slabs exceeds 1.2 times the design service load. 

In this section is going to compare the theoretical midspan deflection calculated with 

following explained method[4][5][6], with the experimental midspan deflection measurements. 

For this reason is important to know the second moment of area equivalent and Young´s 

modulus equivalents. 

To obtain the second moment firstly is calculated the modular ratio n between steel and 

concrete taken as the average value of the short and long term modular ratio : 

𝑛 =
𝐸𝑎

𝐸′𝑐𝑚
=

𝐸𝑎
1
2

(𝐸𝑐𝑚+
𝐸𝑐𝑚

3
)

=
𝐸𝑎

2

3
(𝐸𝑐𝑚)

          (Eq. 9.3) 

with : 

 
Ea : modulus of elasticity of structural steel, in tested value 219000 N/mm2 

Ecm : secant modulus of elasticity of concrete, in tested value 29000 N/mm2 

In a cross-section where the concrete in tension is considered as cracked, like the cross-

section illustrated in Figure 55 subjected to a sagging moment, the second moment of area 

Icc can be obtained from: 

𝐼𝑐𝑐 =
𝑏𝑥𝑝𝑙

3

12𝑛
+

𝑏𝑥𝑝𝑙(
𝑥𝑝𝑙

2
)2

𝑛
+ 𝐴𝑝(𝑑𝑝 − 𝑥𝑝𝑙)2 + 𝐼𝑝     (Eq. 9.4) 

with : 

Ip : second moment of area of the profiled sheeting [3] 

n : modular ratio  

xpl : position of the elastic neutral axis to the upper side of the slab. 

For the same section under sagging moment, considering the concrete in tension as not 

cracked, the second moment of area Icu is given by : 
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𝐼𝑐𝑢 =
𝑏ℎ𝑐

3

12𝑛
+

𝑏ℎ𝑐(𝑥𝑢−
ℎ𝑐
2

)2

𝑛
+

𝑏0ℎ𝑝
3

12𝑛
+

𝑏0ℎ𝑝

𝑛
(ℎ𝑡 − 𝑥𝑢 −

ℎ𝑝

2
)

2

+ 𝐴𝑝(𝑑𝑝 − 𝑥𝑢)2 + 𝐼𝑝  (Eq. 9.5) 

Next figure show all concepts presented in the equation. 

 

Figure 55 Second moment of area calculation for cracked and uncracked cross-section[17]. 

In order to simplify the method to calculate the equivalent second moment of area is only 

considered the most common and real case where the concrete in tension is considered as 

cracked. The procedure to achieve the theoretical midspan deflection starts calculating the 

modular ratio n between steel and concrete. 

𝑛 =
𝐸𝑎

2

3
(𝐸𝑐𝑚)

=
219.000

2

3
(29.000)

= 11,32    

 In this theoretical case is supposed the constant distance from top to neutral axis of 

xpl=12,84. Therefore applying all dates already identified on equation 9.2 is obtained next 

result : 

𝐼𝑐𝑐 =
𝑏𝑥𝑝𝑙

3

12𝑛
+

𝑏𝑥𝑝𝑙(
𝑥𝑝𝑙

2
)2

𝑛
+ 𝐴𝑝(𝑑𝑝 − 𝑥𝑝𝑙)2 + 𝐼𝑝 = 3.328.654,76 mm4 

Where Ip is a date from manufacturer of Cofraplus60  Ip=58,79cm4/m. 

Once it is known the second moment of area, to know the equivalent Young´s modulus of the 

composite slab it has been used the modulus of elasticity of the structural steel due to its 

higher relevance against the secant modulus of elasticity of concrete working as a 

composite. From the differential equation of the elastic 
𝑑2𝑣

𝑑2𝑥
=

𝑀𝑥

𝐸𝐼
, supposing the two 

symmetrical external loads,  the theoretical displacement on the midspan is calculated by 

following formulas: 
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Figure 56 Small deformations diagram[15] 

 

𝛿 =
𝑃·𝑥(3·𝑎2−3·𝐿·𝑎+𝑥²

6·𝐸·𝐼
      𝑤ℎ𝑒𝑛     0 ≤ 𝑥 ≤ 𝑎       (Eq. 9.6) 

𝛿 =
𝑃·𝑎(𝑎2+3·𝑥2−3·𝐿·𝑥

6·𝐸·𝐼
      𝑤ℎ𝑒𝑛     𝑎 ≤ 𝑥 ≤ 𝐿 − 𝑎      (Eq. 9.7) 

𝛿 =
𝑃·(𝐿−𝑥)(3·𝑎2−3·𝐿·𝑎+𝑥2−2·𝐿·𝑥)

6·𝐸·𝐼
      𝑤ℎ𝑒𝑛     𝐿 − 𝑎 ≤ 𝑥 ≤ 𝐿     (Eq. 9.8) 

𝛿 =
𝑃·𝑎(4·𝑎2−3·𝐿2)

24·𝐸·𝐼
      𝑤ℎ𝑒𝑛     𝑥 = 𝐿/2        (Eq. 9.9) 

𝐼𝑛 𝑡𝑒𝑠𝑡𝑒𝑑 𝑐𝑎𝑠𝑒        𝛿𝑚𝑖𝑑𝑠𝑝𝑎𝑛 =
(𝑃/2)·(

𝐿

4
)(4·(𝐿/4)2−3·𝐿2)

24·𝐸·𝐼
=

𝑀(4·(𝐿/4)2−3·𝐿2)

24·𝐸·𝐼
              (Eq. 9.10) 

Applying all dates already studied, L=2600mm and EI(stiffness)equivalents, equation 9.10 

only depends on the bending moment. 

 𝛿𝑚𝑖𝑑𝑠𝑝𝑎𝑛 =
𝑀(4 · (𝐿/4)2 − 3 · 𝐿2)

24 · 𝐸 · 𝐼
=

𝑀 · 18.590.000𝑚𝑚2

24 ·
219.000𝑁

𝑚𝑚2 · 3.328.654mm4 
 

To prove the method is compared the moment resulting from load cell forces of 30.000N, 

40.000N and 50.000N. 

The corresponding moments of each force are respectively 9,75kNm, 13kNm, 16.25kNm. 

 𝛿𝑚𝑖𝑑𝑠𝑝𝑎𝑛 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  (F=30.000N) = 10,37 mm 

 𝛿𝑚𝑖𝑑𝑠𝑝𝑎𝑛 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  (F=40.000N) = 14,19 mm 

 𝛿𝑚𝑖𝑑𝑠𝑝𝑎𝑛 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  (F=50.000N) = 18,23 mm 
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Comparing these midspans deflection with the experimental measurements, showed in next 

figure, it has been proved the effectiveness of the method : 

 

 

 

 

 

 

 

 

                               Figure 57 Experimental midspan deflection  

9.3. Ultimate force resistance of Cofraplus 60 slabs 

 

In this section is created an ultimate load table, where are included the ultimate resistance 

forces capable to reach for composite slabs with C60 profile steel sheeting and the new 

connection system. The table shows the possible different slab measures disposed by Argal  

ArcelorMittal [16] and it depends on the depth of the slab (ht) and the distance between 

supports (L). Following equation is derived from Eq. 5.7 and equalized to bending moment 

equivalent. Where L(mm) and ht (mm) are both variables and P(N) is the unknown quantity. 

The rest of formula´s date are characteristics of the slab. 

 

𝐴𝑝𝑓𝑦𝑝(ℎ − 33 − 0.5 (
𝐴𝑝𝑓𝑦𝑝

𝑏𝑓𝑐𝑚
)) =

𝑃𝐿

8
      (Eq. 9.11) 

   

To obtain as much real as possible situation, is going to be considered the ultimate tensile 

strengths instead of medium yield characteristic of steel property in last equation to build the 

table. 
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ht/L
MM
M 

2200 2600 3000 3600 4200 

180 223291N 188939N 138686N 115571N 99061N 

160 191524N 162098N 122864N 102386N 87760N 

140 159759N 135179N 107042N 89202N 76458N 

120 127989N 108299N 91220N   76017N   65157N 

100 102816N  81419N 

 
70563N   58802N 50402N 

             Table 20 Ultimate load table depending on ht and L 
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10. Environmental impact 

Construction materials constitute the majority of percentage about humans resources used 

nowadays. The Worldwatch Institute[12] estimated that world building construction was 

responsible of 40% of the stone, sand, and gravel, 40% of the energy, and 16% of the water 

used globally in 1999. Despite the fact that material construction has decreased 

considerately in last decade, reducing the consumption of construction materials is one of the 

targets in new buildings designs. 

 

 

 

 

 

 

                                Figure 58 Raw material consumed in USA, until 1995[12] 

 

Concrete and steel are both main row materials in composite slabs. The environmental 

impact of these materials can be divided in how much energy and CO2 consumption they 

have, their resource depletion and waste minimisation. 

However, it can also be included human concerning or healthy benefits. For instance the 

need of incorporate zinc during the galvanization process to achieve galvanized carbon steel 

in order to assure a minimum fire resistance. The electrolytic production of zinc could 

produce sulfuric acid and zinc sulfate fogs that are poisonous for humans and could cause 

diseases as diarrhea, vomit and high fever. A research using stainless steel instead of 

carbon steel for composite slabs is being carried by the scientific society to avoid these 

problems. 

 



Steel-concrete composite slabs structural system  Pág. 67 

 

10.1. Energy consumption and CO2 emissions  

Despite the fact that neither steel or concrete are especially pollutant during its obtaining 

process, they come with high energy requirements. Buildings consume half of the 

European Union’s the total energy and emit half its annual carbon dioxide production 

throughout their life cycles.  

 

Amount of researches have studied and compared the energy of production for concrete, 

steel and other common building materials for raw material extraction, transportation and 

manufacturing. 

 

 

         

 

 

 

 

                      Figure 59 Energy of production for common building materials[13] 

 

The study concludes that the energy required to produce one metric ton of reinforced 

concrete was 2.5 GJ/t  and 30 GJ/t for steel  and this puts the steel option at a disadvantage 

energy-wise. 

 

Despite this difference between  these energy consumptions, the amounts of CO2 embodied 

in concrete, which are primarily a function of the cement content in the mix designs, are 

higher than steel because it is estimated that in the worldwide more than 85% of steel is 

recycled at the end of its life. Such a high figure might seem surprising until one realises that 

the process is enhanced by steel’s natural magnetism, which makes it easy to sort. 

 

Concrete uses about 7% and 15% cement by weight depending on the performance 

requirements for the concrete. The average quantity of cement is around 250 kg/m3. One 
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cubic meter of concrete weighs approximately 2400 kg. As a result, approximately 100 to 300 

kg of CO2 is embodied for every cubic meter of concrete produced or approximately 5% to 

13% of the weight of concrete produced, depending on the mix design. 

 

For all these reasons nowadays, there are sustainable initiatives that imply recycled 

aggregates. 

 

10.2. Waste minimisation 

Significant volumes of waste result from activities such as inefficient design, 

inaccurate materials estimates and orders or design changes are create in traditional 

concrete slabs. It is notoriously decreased when it is working with composite slabs as 

structural frames. 

Nevertheless the waste created for composite slabs varies depending on the way the 

composite slab is poured. There are two different pouring ways for composite slabs: pre-

casted slabs or in situ pouring. Pre-casted slabs generates less waste than in situ pouring 

slabs, as it is an industrial process with higher control. 

All waste created due to the construction processes needs to be classified in order to 

facility the recyclability. 

 

 

 

 

 

 

 

                            Figure 60 Concrete waste 
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11. Budget 

 

Concept Unit cost Amount Total 

Documentation costs  20 €/h 100h 2000 € 

Theoretical study 20 €/h 50h 1000 € 

Project direction 60 €/h 20h 1200 € 

Pc amortization  2 €/h 400h 800 € 

Redaction costs 15 €/h 200h 3000 € 

Printing and other related costs 70 €/u 1u 70 € 

   Budget table summarizes all costs found during the development of the project. 

 

The sum of the sub-total is 8070 € 

IVA (21%) = 1.681,47 € 

 

The cost total of the project has been = 9751,47  € 
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Conclusions 

 

The main conclusions of this project are the following: 

 

 The UPC patent new connection system, used on the equivalent Cofraplus60 steel 

sheeting achieved the total full connection between the steel and the concrete, up 

to ultimate failure values without slipping at all. Due to this fact the ultimate mean 

load capable to reach for the new composite slabs using the new UPC system is 

more than 2 times higher than the mean load capable to reach for same slabs 

using the conventional embossments system, it means a 100% increase on its 

behaviour. The force-deflection curve, in addition to the commented fact, it also 

shows the extremely ductile behaviour of composite slabs with new connection. 

 

 Comparing only the use of ferritic stainless steel and conventional carbon steel as 

embossed steel sheeting for composite slabs has been shown the similarities in 

ultimate resistance values. Also it has been proved the reliability of ferritic stainless 

sheeting when is working on ultimate bending moments, obtaining values very 

similar to conventional carbon steel. The only noteworthy difference between 

materials is the resistance force value when first and 0,5 mm slippage occurs, 

which is lower for traditional carbon steel (ferritic stainless steel approximately ½ of 

resistance value obtained with carbon steel). The weaker initial adherence would 

be probably demonstrated because it has an overly smoother surface of stainless 

steel due to different chemical reaction of the concrete on stainless steel or zinc 

surfaces. 

 
 

 Differences on parameters of calculation ultimate limit states services between 

composite slabs with new connection system and slabs with traditional 

embossments(ferritic stainless steel and carbon steel), have demonstrated the 

equations proposed by Eurocode4[4], obtaining total similarities compared with 

experimental bending results. Regarding to calculation of partial method applied to 

stainless-steel and conventional steel sheeting, have given similar results of 

ultimate medium shear stress. 
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 Strain gauges measurements have corroborated how slabs with the UPC 

connection system ensure the steel higher yielding and concrete crushes in upper 

fibres. Moreover they provide the real position of the neutral axis, found it by 

experimental way. Which is in accordance to the theoretical calculations of 

ultimate state service on new connection slabs, due to the similar values obtained 

 
 

 Deflection calculations [4][5][6] have been in accordance to real experimental 

cases due to vertical detachment or longitudinal did not produce on composite 

slabs, so the cross-section on tested slabs with new connection has behaved as a 

theoretical composite section. 

. 

.  
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