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A B S T R A C T

Objective: Huntington’s Disease (HD), a devastating neurogenetic dis-
order, is clinically diagnosed by the presence of motor symptoms.
However, cognitive deficits are present before motor symptoms ap-
pear. A large body of literature has shown the involvement of the
fronto-striatal and fronto-parietal circuits in cognitive control. This
study aims to investigate the role of the fronto-striatal circuit as a
biomarker of the deficits in executive functions observed in HD.

Methods: Twenty-six healthy adults and twenty-six HD patients un-
derwent a functional magnetic resonance imaging involving a switch-
ing task. Two different approaches were applied: the standard gen-
eral linear model and support vector machines, in order to investigate
potential alterations of the fronto-striatal circuit engaged in cognitive
control.

Results: Using the general lineal model, we observed a gradually de-
creasing activity of the fronto-striatal circuits, following the disease
progression. Additionally, different support vector machines based
on the fronto-striatal activation pattern have allowed us to classify
participants between controls and patients, although with an accu-
racy level lower than expected.
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R E S U M

Objectiu: La malaltia de Huntington s un desordre neurogenètic dev-
astador, diagnosticat clnicament amb la presència de smptomes mo-
tors. Tanmateix, abans que apareguin els smptomes motors ja hi han
deficiències cognitives. Gran part de la literatura ja ha mostrat la im-
plicaci dels circuits frontoestriats i frontoparietals en el control cogni-
tiu. Aquest estudi busca investigar el paper del circuit frontoestriat
com a biomarcador dels dèficits en les funcions executives observades
en la malaltia de Huntington.

Mètodes: Vint-i-sis adults saludables i vint-i-sis pacients de la malaltia
de Huntington es van sometre a una resonància magnètica funcional
que implica una tasca de conmutaci. S’han utilitzat dos estratègies
diferents: un general linear model i support vector machines per poder
investigar alteracions potencials en el circuit frontoestriat encarregat
en el control cognitiu.

Resultats: Utilitzant el general linear model observem una baixada grad-
ual d’activaci en els circuits fronto estriats conforme la malaltia avana.
Adicionalment, diferent support vector machines basada en l’activaci
dels circuits frontoestriats han permès classificar els participants en-
tre controls i pacients, encara que amb un percentatge d’encerts ms
baix de l’esperat.
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R E S U M E N

Objetivo: La enfermedad de Huntington es un desorden neurogentico
devastador, diagnosticado clnicamente con la presencia de sntomas
motores. Sin embargo, antes de que aparezcan los sntomas motors
ya hay deficiencias cognitivas. Gran parte de la literatura ya ha
mostrado la implicacin de los circuitos frontoestriados y frontopari-
etales en el control cognitivo. Este estudio busca investigar el papel
del circuito frontoestriado como biomarcador de los dficits en las fun-
ciones ejecutivas observadas en la enfermedad de Huntington.

Mtodos: Veintisis adultos saludables y veintisis pacientes de la enfer-
medad de Huntington se sometieron a una resonncia magntica fun-
cional que implica una tarea de conmutacin. Se han utilitzado dos
estrategias diferentes: un general linear model y support vector machines
para poder investigar alteraciones potenciales en el circuito frontoes-
triado encargado en el control cognitivo.

Resultados: Utilizando el general linear model observamos una dismin-
ucin gradual de la activacin en los circuiots frontoestriados conforme
la enfermedad avanza. Adems, diferentes support vector machines
basadas en la activacin de los circuitos frontoestriados han permitido
clasificar a los participantes entre controles i pacientes, aunque con
un porcentage de aciertos ms bajo de lo esperado.
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Part I

P R E S E N TAT I O N O F T H E P R O J E C T



1

I N T R O D U C T I O N

Huntington’s Disease (HD) [32] is a progressive neurodegenerative
disease characterised by a mixture of motor, cognitive and psychi-
atric symptoms, which is caused by an expanded cytosine adenine
guanine (CAG) repeat in exon 1 of the huntingtin gene.

Unlike other non-genetic neurodegenerative diseases as Alzheimer’s
Disease [21] and Parkinson’s Disease [22], HD has the potential to be
identified by predictive genetic testing, thereby HD being a model for
studying neurodegenerative diseases before clinical onset.

This possibility of being a neurodegenerative model is what makes
HD a comparatively well studied disease1, despite being a rare dis-
ease [26] 2.

Although HD is diagnosed by the the presence of motor symptoms,
cognitive and psychiatric abnomalities can be detected before motor
deficits. From now on, patients who have not yet been clinically diag-
nosed by motor sympthoms but who will develop the disease will be
refered as PreHD patients.

In this regard, many studies have shown that HD patients have cog-
nitive deficits in executive function, which have been related to an
abnormal dysfunction. For example, a study uses functional Mag-
netic Resonance Images (fMRI) to characterized the relationship be-
tween PreFrontal Cortex (PFC) and cognition on HD patients [9].
Another study [10] correlates the PFC with cognition (i.e, work-
ing memory) using structural Magnetic Resonance Images (MRI)
on preHD patients, finding a reduction in PFC activity as the dis-
ease progress. There are also behavioural studies showing cognitive
deficits in PreHD patients [12].

One of the methods for image acquisition in neuroscience is fMRI
[2], which produces a brain activity map in which allows comparing

1 Searching on Google scholar: there are only 3.5 times more cites to Parkinson’s
Disease and 4.5 times more cites to Alzheimer’s Disease than those to HD, even if
Parkinson’s and Alzeimer’s Disease are much more prevalent.

2 Huntington prevalence is quite low, affecting to only 0,007% Europeans and even
lower rates on other continents
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introduction

those regions that are significantly more active when two conditions
are compared.

The standard method to analyze data from these brain imaging tech-
niques involves a General Linear Model (GLM). Th GLM is used to
retrieve a brain activity map using a voxel-by-voxel regression model.
This method, based on a voxel-by-voxel approach, computes the like-
lihood of one particular voxel to be active during a specified condi-
tion. After this step, a statistical test for rejecting the null hypothesis
is used to detect any significance difference between two different
conditions. The activation patterns observed in this statistical test
can be related to signs of cognitive decline in the brain even before
the symptoms appear. However, this univariate (voxel-by-voxel) ap-
proach makes the voxels independent on the neighbouring voxels,
losing potential information that could be useful.

Even if GLM can be considered a particular case of a machine learn-
ing technique, other machine learning techniques have been used for
several purposes, like classifying whether a subject is a patient or a
control, or using several modalities at a time (i.e. PET & fMRI & exam-
ination results) or predicting a biomarker through regression using a
multimodal approach. On this same line, this study [28] uses machine
learning techniques to evaluate biomarkers for neurodegeneration in
presymptomatic Huntington’s Disease patients.

In the last years, the number of studies applying machine learning
techniques has been increasing. One of the reasons for that fMRI
involves data with high dimensionality, which can be efficiently ana-
lyzed with machine learning techniques. [19] reveal the incrementing
use of machine learning techniques and the most popular classifiers:
K-Means, Fisher Linear Discriminant Analysis(FLDA) and Support
Vector Machines (SVM) [29] [31]. But the quantity of different ma-
chine learning techniques being applied to studies on Neuroscience
field is very large. Some examples of machine learning techniques
are:

k-means Is a clustering method that classifies a new data point us-
ing the distance to the cluster mean.

flda This method extracts the linear combination of features that
best explains the separation between classes.

svm Constructs a hyperplane to separate two different classes using
the bests data points to minimize the error.

gaussian processes Every single data point is associated to a
Gaussian distribution variable.

random forest This is an ensemble method of decission trees. De-
cission trees is a colletion of conditions ordered by the informa-
tion gain.

3



introduction

deep learning A complex architecture of complex networks to
classify using the extraction of abstract features.

complex networks Consisting of modelling a network to observe
some particular behaviours of that model.

For example, SVM has been one of the most popular machine learn-
ing techniques applied to fMRI [24]. There are plenty of studies with
SVM on different diseases like Major Depressive Disorder [20], De-
mentia [14], Autism [1], Multiple Sclerosis [33] or Alzheimer’s Dis-
ease [15]. There is literature about SVM even on more general neu-
rodegenerative processes; see for instance [34], which makes a study
classifying the existence of a neurodegenerative disease by simple
gait information. But there are also other techniques being applied
and tested on neurodegenerative diseases. For example see a study
on Gaussian processes classification in Alzheimer’s Disease [35] and
a study on the connectomics of the neurodegenerative disease using
complex networks [6].

Machine learning techniques can also be found in several studies on
HD. There are some examples: from a study about classification with
HD carriers using only structural MRI on SVM technique [13] to de-
tect cognitive deficits. Another study using Random Forests corre-
lates cortical and striatal morphometry with cognitive impairments
in PreHD [10], or a study with deep learning techniques using only
structural MRI to classify between controls and Patients [25].

This project aims to study the neurobiological bases related to the
cognitive deficits observed in the progression of HD. More concretely,
MRI techniques are going to be used to identify functional biomark-
ers that allow, at neurophysiological level, studying the cognitive evo-
lution of HD. By combining different MRI analysis techniques like
GLM and classifiers, it will be possible to define the main neuronal
circuits affected by this disease. This study could shed some light to
the neurodegenerative processes in general and leading the search of
a more customised medicine for those patients.

This document is structured so that the reader can follow the work
done in this master thesis. Because several procedures has been per-
formed in GLM and machine learning, the document is structured as
follows:

The document starts, after this introductory chapter, with Chapter 4

where it is defined information about the Idibell HD project, a bigger
project which this Thesis belongs to. Chapter 5 is to introduce the
software used on this Thesis.

After that information about this project context and tools, the docu-
ment follows up with the more conventional analysis part, detailed
in Chapter 6, where a review of the firts steps to observe the data

4
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statistics is done. The next chapter, Chapter 7, is about GLM and its
internal procedures. Chapter 8 goes next with all the processings and
the work done by the student in GLM.

The Thesis continues with the machine learning part on Chapter 9,
describing Pronto sofware and a simple architecture presented to
compare results with Pronto software. Similar to the conventional
analysis part, Chapter 10 discuss both machine learning solutions.

On the last chapter, Chapter 11, conclusions and possible works is
discussed.
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H Y P O T H E S E S

The main hypothesis of this Thesis is that it is possible to detect and
quantify the neurophysiological deviations in cognitive control ob-
served in HD, by means different fMRI approaches. Using a Wiscon-
sin Sorting Card Test (WCST) task, we expect to find alterations in
the fronto-striatal control circuit, due to the initial degeneration of its
caudate part. More specifically, it is expected that:

1. Alteration in cognition should be initially reflected in the
DLPFC region, which projects to the caudate head.

2. Classical GLM analysis will allow identifying the cognitive con-
trol circuits and distinguish between different degrees of HD
progression (i.e. controls, PreHD, HD).

3. Machine learning analysis, through a multimodal approach,
will allow to predict the patient proximity to the symptomatic
development.

6



3

G O A L S

The main goal of this Thesis is the identification of functional
biomarkers in cognitive control for HD which allow the characteri-
sation of the neurodegenerative process.

The specific goals are:

1. Characterisation of fronto-striatal circuit involved in the execu-
tive control function.

2. Identification of biomarkers that characterise HD the progres-
sion.

3. Development of a multimodal approach that includes informa-
tion of individual differences of functional activity, correlating
with neuropsychological variables related to HD patients.

4. These biomarkers should be able to predict the symptomatology
development of those patients that have not yet developed any
clinical symptoms.

7



4

C O N T E X T

The problem seen in HD patients is that every one is treated as a HD
patient but, when observing them individually, it can be suspected
that some patients have more acute degeneration in motor control
whereas other patient is more prone to have depressions and anxiety
(thus, being the behavioral areas more affected). From this hypothe-
sis, the Idibell HD project born with the aim to be able to detect these
different profiles within HD patients. If these profiles can be detected,
this could mean a great advance in several aspect for this disease.

Detecting these profiles could be important in order to detect which
brain areas are more affected in one profile and on another, under-
standing why and how this HD develops on time and getting more
information about this HD and, possibly, other neurodegenerative
diseases.

This profile identification could also have a direct impact on HD pa-
tients, leading to different possible actions to improve the life quality
of HD patients:

treatment The first and most direct application could be to adapt
the drugs to every profile, resulting in a more accurate and pre-
cise treatment for HD patients.

following A better tracing of the patient, observing the different
development speed of the different profiles.

prediction Forecasting the development of the disease more accu-
rately, thus giving proper aids and scheduling to the patient.

4.1 participants

Twenty-six controls and twenty-six HD patients (10 pre-Hd and 16

HD patients) participated in this study. The selection of the HD pa-
tients was done based on their Total Functional Capacity Scores (TFC),
TFC ≥ 11 and UHDRS-motor <5. HD patients did not present any
neurological disorders beside the HD. Participant demographics are

8



4.2 mri acquisition

detailed in Table 1. Informed written consent was obtained from all
participants.

Controls PreHD HD
N 26 10 16

Female % 46 100 50

Age 50,13 ± 9,46 37,89 ± 10,83 49,07 ± 8,75

CAG - 44,22 ± 2,86 44,33 ± 3,70

YTO - 6,60 ± 12,26 -
TFC - 12,89 ± 0,33 11,79 ± 1,31

UHDRSm - 1,89 ± 3,33 20,47 ± 9,42

UHDRS-c - 299,63 ± 59,71 191,14 ± 49,35

PBA-Depression - 6,11 ± 7,47 2,06 ± 2,35

PBA-Irritability - 3,67 ± 5,66 3,69 ± 4,88

PBA-Psycosis - 0,56 ± 1,33 0,06 ± 0,25

PBA-Apathy - 5,11 ± 5,93 3,81 ± 3,64

PBA-Exec.Disf. - 4,89 ± 6,55 3,19 ± 3,60

PBA-Total - 20,33 ± 24,46 12,81 ± 10,10

Table 1: Demographic and clinical characteristics of all participants-
Mean (standard deviation) reported unless otherwise stated

(CAG)Cytosine-Adenine-Guanine repetitions, (YTO) Years to Onset, (TFC)
Total Functional Capacity, (UHDRSm) Unified Huntington Disease Score
Motor, (UHDRSc) Unified Huntington Disease Score Cognitive, (PBA) Prob-
lem Behaviours Assessment score,(Exec.Disf.)Executive Disfunction

4.2 mri acquisition

FMRI data were collected using a 3T whole-body MRI scanner (Gen-
eral ElectricMR750 GEM E). Tasks were back-projected onto a screen
inside one virtual helmet. Magnet-compatible response buttons were
used. Conventional high-resolution structural images [magnetization-
prepared rapid-acquisition gradient echo sequence, repetition time
(TR) 4.7 ms, echo time (TE) 4.8 ms, inversion time 450 ms, flip angle
12, 1 mm thickness (isotropic voxels)] were followed by functional
images sensitive to blood oxygenation level-dependent contrast (echo
planar T2*-weighted gradient echo sequence, TR=2000 ms, TE 35 ms,
flip angle 90). Wisconsin task consisted of 306 sequential whole-brain
volumes, comprising 30 axial slices aligned to the plane intersecting
the anterior and posterior commissures, 3.5 mm in-plane resolution,
4 mm thickness, no gap, positioned to cover all but the most superior
region of the brain and the cerebellum.

9



4.3 cognitive control circuit : the shifting task

4.3 cognitive control circuit : the shifting task

In the present study we used a modified version of the Monchi’s task
[17] in order to characterise the fronto-striatal circuit involved when
performing a set shift. More concretely, it is used an adaptation from
Montreal Card Sorting Test [27] to compare two conditions with dif-
ferent cognitive control levels. On the screen, 4 cards are presented
on top and 1 card on the bottom so the subject has to match the bot-
tom card with the top card that qualifies with the cue given at the
beginning of each trial (i.e. ”Colour”, ”Shape”, ”Number”). These
trials are grouped in blocks of 12 consecutive trials that last for 66

seconds. These blocks can be of the different conditions. In one of
the conditions, the cue will be constantly changing (”Switch” condi-
tion), in another, the condition follows always the same rule (”No
Switch” condition), the last is a control condition where the subjects
must match the bottom card with the identical top card (”Identity”
condition). After every block there is a resting block of 20 seconds.

The total duration of this task is 13 minutes.

10



4.3 cognitive control circuit : the shifting task

Figure 1: WCST task design

(A) Sequence of stimulus and response events in the fixed Wisconsin Card
Sorting Test

(B) Task structure (12 trials for block):

• Switch condition (3 blocks)

• No switch condition (3 blocks)

• Identity condition (3 blocks)

11



5

R E S O U R C E S

5.1 matlab

The statistical parametric mapping tool used to analyse data on
this work is based on Matlab. This convert MATLAB and Statistics
Toolbox Release 2012b, The MathWorks, Inc., Natick, Massachusetts,
United States, in the main and only language programming in this
Master Thesis.

For ML part, it will be also use the statistical toolbox of Matlab for
some methods.

5.1.1 SPM

Statistical parametric mapping (SPM, Wellcome Department of Imag-
ing Neuroscience, University College, London, UK, www.fil.ion.

ucl.ac.uk/spm/) is a standard software in neuroscience for data anal-
ysis. And the fact that this Master thesis is a part of a started greater
project (that was already using SPM) makes a normal choice to select
Matlab as the main programming language.

It is used not only on fMRI, but also in other brain images techniques
like PET or EEG. In fact, SPM comes with a GUI that allows the user
to select the modality used. These modalities are ”PET & VBM”,
”M/EEG” and ”fMRI”.

SPM offers a complete package to process the images step by step
and get a final result being an activation brain map. There are also a
lot of other toolbox based on SPM that allows and help the user with
those aspects SPM can not do.

Although the newest is version number 12, Idibell HD projectstarted
before the release of version 12. Because there are some compatibility
issues between version 8 and 12, this project will use also version 8.

A more detailed explanation about software operation will be ex-
plained in sections 7.1 and 7.2.
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Figure 2: SPM in fMRI mode

5.1.2 ArtRepair

ArtRepair Software (Stanford Psychiatry Neuroimaging Labo-
ratory http://cibsr.stanford.edu/tools/human-brain-project/

artrepair-software.html) is an external SPM extension used to cor-
rect or discard those images with too much movement. Even though
SPM comes with a movement correction, this newer toolbox is pre-
pared for patients with high problems in motor control functions,
where sudden head movements are expected.

Figure 3: ArtRepair screenshot
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Although it has an automatic mode, for this particular experiment it
was considered better to control those images to be discarded. The
desired target was to discard only two consecutive images. When
images are discarded, an interpolated image is replaced, so when
deleting a third consecutive image means that there is an image that
has no neighbour image to interpolate with. The interpolation is
made between the neighbour of its neighbour image.

This toolbox is compatible with matlabbatch.

5.1.3 xjview

For image and results analysis, Xjview(whttp://www.alivelearn.
net/xjview) was used most of the time. It has some enhanced fea-
tures than SPM’s default viewer:

• The threshold of p-value can be changed instantly. This allow
the researcher to observe the significancy of the custers by low-
ering or rising the p-value threshold.

• Automatic inclusion of different canonical images of the brain
to localise and visualise activation clusters.

Figure 4: Xjview screenshot
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5.1.4 MarsBar

This toolbox is a ROI toolbox for SPM. This software allows several
functions with ROIs. Whereas MarsBar[4] is used as a simple ROI
creator in the Thesis, it has much more options like operations with
ROIs, ROI analysis, data extraction, etc.

Figure 5: MarsBar operation

5.1.5 Matlabbatch

Surely the most used SPM extension. Although it is listed as an ex-
tension and it is a project apart, the basic SPM includes this tool-
box incorporated. With it, batch scripts can be done so a single
step can be automated for a large number of runs. The matlab-
batch(http://sourceforge.net/projects/matlabbatch/) structure
allows, to run batch script not only of SPM original functions but,
if any extension allows it, it can be also used.

This is a great advancement: without it, considering a ”large” number
of subject would be a large task, since all the steps should be done
manually. Considering the number of steps per subject ad the number
of subjects, this will be a non-profit time-consuming task.

Source 5.1: Matlabbatch of slice timing

matlabbatch {1}. spm.temporal.st.scans ={files };

matlabbatch {1}. spm.temporal.st.nslices = 30;

matlabbatch {1}. spm.temporal.st.tr = 2;

matlabbatch {1}. spm.temporal.st.ta = 1.93333333333333;

matlabbatch {1}. spm.temporal.st.so = [2 4 6 8 10 12 14 ...

6 18 20 22 24 26 ...

28 30 1 3 5 7 9 ...

11 13 15 17 19 ...

15
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21 23 25 27 29];

matlabbatch {1}. spm.temporal.st.refslice = 1;

matlabbatch {1}. spm.temporal.st.prefix = ’a’;

spm_jobman(’run’,matlabbatch);

This matlabbatch script (Source 5.1) can be run several times changing
the files variable so the process can be automated.

5.1.6 WFU Pickatlas

WFU Pickatlas[16] extension is a piece of software that allows to ex-
tract biological-based ROIs in just a few clicks. Although we do not
use this software very often, it is used once in a while to get the gen-
eral area that is going to be used to get the activation peak. This way
we can get sphere ROIs for each subject centered in an activation peak
that pertains to a biologic-specified area.

Figure 6: WFU pickatlas screenshot

5.1.7 Pronto

Pronto[30] stands for Pattern Recognition for Neuroimaging Toolbox
and it is a software dedicated to machine learning in neuroscience.
This toolbox allows the user to use a multivariate pattern recognition
to face neuroimaging problems.

The toolbox, in its first version yet, allows to apply classification and
regression methods to neuroimaging data using few algorithms.

This software will be explained with more details in Section 9.1.
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Figure 7: Pronto windows sample

This toolbox is also compatible with matlabbatch.

5.1.8 CVX

CVX is a package for specifying and solving convex programs[8][7].

The use of this package is to implement SVM code. As it is a convex
problem, the use of this program allows the user a language specific
for convex solving.

5.1.9 LDA

On the student approach part of the thesis it will be used some linear
discriminant analysis for feature extraction. In order to ease that part,
a specific LDA package[5] has been used.
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5.2 spss

SPSS[11] is a statistical tool to analyse any dataset with a large quan-
tity of known methods. This software has many ways to analyse the
data and visualize it. Thus, is a perfect tool to have a first glance of
the data hanlded.

Figure 8: SPSS screenshot

As it is discussed the conductual data analysis in section 6, more
information about it will be shown.
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B E H AV I O R A L D ATA

Behavioral data were analyzed using SPSS 19.0 for Windows.

Thirty-one HD patients (10 pre-HD; 16 HD) and 26 controls complete
the task.

Overall, both HD patients and controls showed faster and more cor-
rect responses for the Identity condition (Reaction Time: 1.021 ± 0.34s
and 97.7 ± 0.3%; Percentage of Correct Responses) compared to the
Switch Condition (Reaction Time: 1.52 ± 0.49s and 87.6 ± 16.9%; Per-
centage of Correct Responses).

For both Reaction Time and Correct Responses, a repeated-measures
ANOVA analysis was performed introducing the Switch-Cost effect
(Identity condition and Switch condition) as within-factor and the
group (HD, pre-HD and control) as between-subject factor.

Overall, a significant main effect of Switch was observed for the RT
and the percentage of correct responses (Reaction Time: F(1,46)=262.1,
p > 0.001; Percentage Responses: F(1,46)=24.1, p > 0.001, see Table 2).
In particular, both HD patients and controls showed faster and more
correct responses for the Identity condition (Reaction Time: 1.021 ±
0.34s and 97.7 ± 0.3%; Percentage of Correct Responses) compared to
the Switch Condition (Reaction Time: 1.52 ± 0.49s and 87.6 ± 16.9%;
Percentage of Correct Responses).

Moreover, a significant Switch x Group Interaction (Reaction Time:
F(2,46)=13.4, p > 0.001; Percentage of Correct Responses: F(2,46)=6.4,
p < 0.004 ) was obtained. The interaction reflects the fact that HD
patients showed larger differences (for reaction times and the num-
ber of correct responses) in the Switch condition than in the Identity
condition, between HD patients and controls.

While no significant differences were observed between pre-HD and
controls in any of the conditions, further pairwise t-test showed signif-
icant differences between HD patients and controls for all conditions
(Reaction Times: Identity t(37)=5.6,p > 0.001, Switch t(37)=7.8,p >

0.001; Percentage Correct Responses: Identity t(37))=2.7,p < 0.01,
Switch t(37),p > 0.001). Pairwise t-test between pre-HD and HD
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patients revealed a significant difference for reaction times (Identity:
t(24)=2.8, p > 0.01, Switch: t(24)=4.3, p > 0.001) and in the percent-
age of correct responses for the Switch condition (t(24)=2.44, p < 0.02
).

Figure 9: Mean reaction times(seconds) for each condition and group

(Legend) 0-Control, 1-PreHD, 2-HD, (x- Axis information) 1-Identity trials,
2-Switch trials.

Controls Pre-HD HD
Identity 0.84 ± 0.14 0.95 ± 0.24 1.3 ± 0.38

Switch 1.22 ± 0.28 1.37 ± 0.39 2.04 ± 0.38

Table 2: Mean reaction times (seconds) for each condition and group

Controls Pre-HD HD
Identity 0.99 ± 0.02 0.98 ± 0.02 0.96 ± 0.04

Switch 0.93 ± 0.06 0.93 ± 0.07 0.76 ± 0.21

Table 3: Mean percentage of correct responses for each condition and
group
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Figure 10: Mean percentage of correct responses for each condition
and group

(Legend) 0-Control, 1-PreHD, 2-HD, (x- Axis information) 1-Identity trials,
2-Switch trials.
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F M R I A N A LY S I S

7.1 preprocessing

Once the images have been acquired, they must be prepared for the
analysis. This preprocessing requires several steps.

7.1.1 Slice Timing

MRI scanners works in slice mode so, for just one volume of 2 sec-
onds, it has to scan, slice per slice, the whole brain. Because this
process it can not be done in parallel, they must scan one slice at a
time.

There are several modes in which the images can be retrieved (i.e.
ascending, descending and interleaved). The scanner is set to work
in an interleaved slice mode(slice 0, slice 2, slice 4... slice 1, slice 3,
slice 5...).

This preprocessing step attempts to correct these little time deviations
from slice to slice by applying a delaying function to the slices corre-
sponding to its temporal position.

7.1.2 Realignment

After having the temporal preprocessing, we need to process the im-
ages in the spatial dimension.

The time-series that correspond to the subject is not static and every
image has tiny movements. Because of these subtle (and not so subtle)
movements of the subject head, we need to compute this movement
and correct it.

Since the brain is going to have subtle movements, it can be trans-
formed using 6-parameter affine transformation.
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After all the images are processed, all of them are prepared and
shares a common coordinate system.

7.1.3 Unwarping

Realignment is not the only spatial correction to perform: The scan-
ner does not behaves the same in all brain space. As a Magnetic
Resonance Image, it uses a magnetic field to acquire the brain image.
This magnetic field, or fieldmap, is distorted by several reasons. So
the images are not acquired in a uniform space thus, the image is dis-
torted in some areas. It is possible to correct this space by applying
the registered fieldmap.

Unwarping, or also named Fieldmap correction, allows applying this
fieldmap mesh into the images from the Time-series, correcting the
error produced by magnetic non-uniform fieldmap.

The unwarping option comes with the realignment option, so SPM
has two different methods to approach this spatial preprocessing:
SPM can perform this realignment method with and without this
fieldmap correction option.

For this project, after consider both options (i.e. with and without
fieldmap correction), the fieldmap has been considered to retrieve
better (less noisy) images.

7.1.4 Artifact Repair

Although SPM does a light motion correction in realignment step, it
does not correct those images that are too much displaced. Working
with HD patients, these kind of movements are very probable be-
cause HD patients have problems with motor control: sudden head
movements during an experiment are very feasible.

ArtifactRepair [23] is another piece of software used to compute, cor-
rect and discard those images with too much movement. This tool
computes the interpolation of images between thresholds to correct
those images with too much movement registered. These extreme
movements can be long or consecutive enough to add noise to several
consecutive images. Thus, it is important to control the number of se-
quential images corrected because we could be interpolating more
than two consecutive images.

For this project, the selection of discarded images was set to two con-
secutive images. This selection is because, with three or more consec-
utive images, some of the images selected for correction would not
have any correct image to interpolate as its neighbour.
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7.1.5 Coregister

One of the powerful aspects of fMRI is that is fully compatible with
structural MRI. Those are images with a much higher definition. By
applying another transformation is possible to fit these ”low resolu-
tions” fMRI into the ”high resolution” structural MRI.

With another 6-parameter affine transformation it is possible to get
both systems (structural MRI and any image from fMRI time-series)
into the same coordinate system.

7.1.6 Segmentation

This step uses the structural MRI to extract other maps of the brain.
With this step, it is possible to attach to a certain subject maps of
voxel types: a map of those voxels which are white matter, another
one for grey matter and a last one for undesired tissues (bones, eyes,
ventricles, etc).

7.1.7 Normalisation

Normalisation allows to bring the subject brain into a standard space,
so every subject shares the same specific space.

This step is a must when using more than one subject: If a particular
voxel (x,y,z) pertains to different structures or tissues for each subject,
the results, whichever they are, will not be correct since these voxels
can not be compared.

For this step to happen, is very important to fit the coordinate origin
of all images to be the same point. When computing this transforma-
tion, if this step is not done correctly, the algorithm used can found
a local minima and the match between both systems (structural MRI
and fMRI) would not fit correctly.

7.1.8 Smoothing

In order to reduce the noise, it is used to apply an ending step to
smooth the image.

For this project, several smoothing kernel were applied to check the
results. Because artifact repair does a little smoothing, depending on
if it was used or not this step, a reduced kernel was used to balance
this smoothing:

25



7.2 first level analysis

• A smoothing kernel of 8 voxels when not applying artifact re-
pair.

• A smoothing kernel of 7 voxels only if artifact repair step was
done.

• A smoothing kernel of 4 voxels when artifact repair step was
done.

The final kernel size was 4 voxels because, as observed in the tests
done for selecting the smoothing kernel, too much smoothing can
affect the resolution of little structures like caudate.

7.2 first level analysis

When using SPM to compute fMRI statistics, we expect SPM trans-
form a set of images, to a unique brain map of these active areas for
the condition we desire. There are several steps to acquire this brain
activity map.

7.2.1 Specify the Model

An important point is that, when doing the experiment, the scanner
is acquiring all the experiment, with every trial starting at some time
and with some duration. The tasks does not fit in a single image,
the tasks will start at the middle of some image and finish at the
middle of another image. This makes the task for the general linear
model more difficult, and to solve that part, the onsets and durations
for every desired trial must be specified. With this information SPM
has enough information to compute and interpolate all the discrete
time-series into their corresponding model.

There are some times that also a condition may be dependant on some
variable. Then to extract the information that modulate this variable
exist an option in SPM called parametric modulation. For example:

• It may be that for a specific test, the learning rate is high enough
that, the most suitable way to extract that learning ”interfer-
ence”, is to add the number of each trial as a parametric modu-
lator along with each onset.

• It can be suspected that failing at the trial could affect the
brain map because some other function area over-activate. Then
adding the result of the trial is the best option.

Finally another option that allows SPM is to declare regressors. Along
the same line of parametric modulation, regressors allows the model
to skip information of non-desired information by ignoring it at the
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Figure 11: Design Matrix example

level of HRF. A good example of it are the movement estimators ex-
tracted from the realingment preprocessing step.

Figure 11 shows a design matrix example. And, for each fea-
ture(column) is specified the ”weight” of the corresponding im-
age(row) into that feature.

27



7.3 second level analysis

7.2.2 Estimation

Once all this have been specified, we have our Design Matrix, a matrix
specifying all the features values for each image. So following the
linear regression formulae:

Y = Xβ + ε (1)

Y = X1β1 + X2β2 + ... + ε (2)

We have on 1 the typical linear regression where, X is the Design
matrix we just created that are the features of the model and Y being
each one of the images and the targets. So fitting the βs(weights) is
just a matter of applying least square method.

Afer this step, all weights for each feature has been estimated into a
beta file for each feature/column of the design matrix.

7.2.3 Factorial Design

The next step should be the comparison between the weights. The
correct way to explain a increased value on the beta file is to compare
it with a baseline. If, for example, one feature is the Switch trial and
another one is the Identity trial, we can only say that Switch trials
activate more the caudate region of the brain if there is a significance
difference between the values of Switch and Identity trials. This dif-
ference can be computed as a T-statistic or a F-statistic depending on
the design of the conditions.

The results of that step produces a contrast image that can be seen
later as a brain activity map.

Specifically, in this Thesis, a whole brain analysis was performed for
the main contrast of interest (Switch vs. Identity).

7.3 second level analysis

All this process where made in order to compute what is named First
level analysis. The first level analysis is just to extract the information
of just one subject, but this project has 63 subjects splitted in different
groups. It can not be said much with just one subject: it may well be
an isolated case. These computed files (beta files and contrast files)
need to be joined with all the subjects within a group to observe that
group’s real activations and get rid of individual effects. This step,
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named as second level, is made to check if the null hypothesis is
given using student’s t-test.

For intragroup check, it should be used the one-sample T-test so the
results for the test between subjects, being each subject contrast file
every data point in the distribution. The result of the one-sample
T-test is then a brain map where every voxel is the T value of that
one-sample T-test. This result ensures us that these voxels with high T
values are going to have more statistical power of being a significative
ctived area for that specific contrast. That means that if the Switch
- Identity contrast is used for controls group in the one-sample T-
test and some area have high T-values, this area is likely to be more
actived on Switch trials compared to the Identity baseline.

The two-sample t-test is used also to check if the null hypothesis is
given between groups. Being each group contrast images collection
each of the t-test distributions, the result is the same: a file where
each voxel is the T value. However, the high voxel values correspond
to those areas where the first group have more activation than the
second in the specified contrast.
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Once explained the details and operation of SPM, this part of the
Thesis will explain which results we obtained.

As said previously in Section 3, it is interesting to see the region that
is known to be activated. And when running the first and second
level (Section 7.2) to get the activity brain map just with the original
onsets and the result is nothing like as expected, like the table 4, the
problem begins.

peak
Region p(FWE) p(FDR) T

x,y,z {mm}

R Postcentral 0,999 0,999 2,4359 22 -36 46

R Par.Lob. 1 0,999 1,9449 6 -36 58

L Temp.Mid 0,999 0,999 2,378 -38 -52 -2
L Lingual 1 0,999 1,969 -26 -44 -2

R Putamen 0,999 0,999 2,327 26 16 6

Table 4: Activations of Switch - Identity contrast for Controls vs HD
on plain onsets

(L) Left, (R) Right, (Par.Lob.) Parietal Lobule, (Temp.Mid.) Temporal Middle
Gyrus

All regions are extracted for the values: clusterp > 0.5 and p(unc) < 0.05

As it can be seen, Table 4 shows very noisy values. Although it can be
seen some activation pattern, the p-value selected is so high (p=0.05)
that makes the confidence on that activation, summing up the noisy
activation map, not that strong.

This could be happening for several reasons. The first to do is com-
pare with previous studies[27] thas shows some significant activity, at
least on controls. The study shows that there is an incremental evolu-
tion in time of the activation in caudate for shift conditions whereas
control conditions have a decremental evolution. This could be per-
fectly a cause why our caudate is not showing significancy. If the cau-
date levels are enough similar on both conditions and it is not until
later -the last trials of same condition- that we see an superior activa-
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tion comparing Switch and Identity. To check this we just needed to
check this evolution in time for the caudate. This can be computed as
a regressor factor or, in terms of SPM, a parametric modulator. Using
the number of each trial as a parametric modulator, all that variance
and behaviour explained as a temporal evolution of the trials, will be
kept in this feature beta file.

The activated regions seen in table 5 represents the information that
those regressors contains. Thus, this high values in caudate region
means that, on switch trials, the caudate increment its activity com-
pared to the Identity trials. In fact, if we get the information from
Switch and Identity trials and not its regressors, it can not be ob-
served any activation. But this result could be expected: if the in-
cremental activity, and decremental activity of caudate in switch and
identity trials, respectively, are substracted (is contained in the num-
ber of trials regressors), then the activation could not be significant.

peak
Region p(FWE) p(FDR) T

x,y,z {mm}

L Precentral 6,0E-08 3,4E-06 8,877 -30 -4 58

L Sup.Par. 9,3E-08 3,4-06 8,75 -22 -80 46

R Fusiform 1,2E-05 9,4E-05 7,391 26 -84 -14

L SMA 4,2E-05 0,0002 7,055 -6 8 54

R Precentral 0,002 0,004 6,023 46 0 46

L Thalamus 0,038 0,030 5,144 -26 -28 14

L Caudate 0,187 0,091 4,553 -18 -20 22

R Insula 0,057 0,037 4,487 38 20 6

L Precuneus 0,110 0,062 4,760 -2 -48 6

R Thalamus 0,138 0,0685 4,674 2 -12 6

L Cing.Mid. 0,352 0,172 4,281 -2 -36 26

Table 5: Activations of Switch - Identity contrast for Controls vs HD
on Split solution

(L) Left, (R) Right, (Sup.Par.) Superior Parietal Lobule, (SMA)
Supplementary Motor Area, (Cing.Mid.) Cingulum Middle Gyrus

All regions are extracted for the values: clusterp < 0.05 and p(unc) < 0.001

Once observed the expected results with this settings of 1st and 2nd
level, another set was prepared. If the caudate is really incrementing
its activity by time on Switch trials and decrementing it on Identity
trials, this activity could be seen on the last part of the block. As a
reminder, a block is composer by 12 trials (and there are 3 blocks and
an extra rest block for each subject), so if the first 6 are splitted from
the second 6 trials and only these last 6 are compared, we should be
able to get a clear caudate.

However, there are some activations that lead to think that there is
something more involved. Reading some more on [27] shows that
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another of the differences is that all the wrong trials have been dis-
carded. This is an important issue in neuroscience, since wrong re-
sponses may activate a different newtork, we must process the design
matrix, extracting those wrong responses from the design matrix.

To corroborate both, correct answers and incremental activity on cau-
date, it was decided to take some time computing several design ma-
trices. In those, the trials were not splitted into two different regres-
sors, but only the correct higher trials were kept, keeping for each
condition, the same number of trials from the last part of the block. Fi-
nally, several solution with similar (18,20,21,23) trials was kept. These
solutions showed that the more trials kept, the less signal on caudate
was found.

But, after some discussion and other design matrices, it was agreed
that those were different designs. The fact that the first part of the
images were not kept in the experiment in a design matrix (in any
linear model) make the model different, as the model part of these
first trials could not be explained with the other features. Hence, the
algorithm can not fit a proper model. So finally, a desgin matrix with
only correct trials[27] but with splitting the low and high part was
decided to kept.

peak
Region p(FWE) p(FDR) T

x,y,z {mm}

L Precentral 2,6E-07 1,3E-05 9,020 -50 0 38

L Sup.Par. 3,6E-06 4,9E-05 8,175 -22 -80 46

L SMA 0,0001 0,0008 6,970 -6 4 58

R SMA 0,230 0,136 4,602 10 4 58

R Sup.Occ. 0,0002 0,0008 6,898 26 -64 38

R Lingual 0,0003 0,0009 6,781 26 -88 -14

R Precetral 0,010 0,011 5,743 46 0 46

R Sup.Front. 0,0612 0,045 5,145 6 24 62

L Thalamus 0,076 0,050 5,061 -26 -28 14

L Caudate 0,372 0,177 4,373 -18 -20 22

R Insula 0,311 0,157 4,462 34 16 6

Table 6: Activations of Switch - Identity contrast for Controls vs HD
on Split solution with only correct trials

(L) Left, (R) Right. (Sup.Par.) Superior Parietal Lobule, (SMA)
Supplementary Motor Area, (Sup.Occ.) Superior Occipital Gyrus,

(Sup.Front.) Superior Frontal Gyrus
All regions are extracted for the values: clusterp < 0.05 and p(unc) < 0.001

Finally, it was concluded to better add the reaction time of response
to the model. Since the fact that large reaction times can be produc-
ing some undesired activation, by adding a regressor that take into
account this effect could be of use.
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In Figure 12 the activation brain map for Controls can be seen.

Figure 12: Activity map of Switch - Identity contrast for Controls
group on Split solution with only correct trials and Reac-
tion Time as regressor

When comparing between control and HD group, can be seen that,
those same regions, are significantly more activated by Controls (see
Figure 13).

Consistent with typical findings form the task-switching literature
[27][18][3], both Controls and Patient engaged in the switching pro-
cess the dorsolateral frontoparietal circuit, including subcortical acti-
vations in the in the left caudate and in the left thalamus (e.g. see
Figure 12 for Controls activity activation).

As it has showed in Figure 13 and Table 7), a two-sample t-test be-
tween Controls and HD patients revelaed significant lower levels of
activity in the frontoparietal network and the caudate nucleus in HD
patients.
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Figure 13: Activity map of Switch - Identity contrast for Controls vs
HD on Split solution with only correct trials and Reaction
Time as regressor

Interestingly, another two-sample t-test between Controls and PreHD
subects also revealed significant difference between both groups ac-
tivation in the frontoparietal network and the caudate nucleus (See
Figure 14 and Table 8).
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peak
Region p(FWE) p(FDR) T

x,y,z {mm}

L Precentral 2,0E-07 5,6E-06 9,119 -30 -4 58

L Parietal Sup 2,1E-07 5,6E-06 9,096 -22 -80 46

L SMA 0,0001 0,0005 7,0125 -6 4 58

R SMA 0,309 0,141 4,478 10 0 58

R Occipital Sup 0,0004 0,001 6,701 26 -64 38

R Parietal Sup 0,084 0,051 5,033 22 -76 50

R FusiForm 0,0005 0,001 6,645 26 -84 -14

R Frontal Mid 0,004 0,005 6,017 34 -8 62

R Precentral 0,074 0,051 5,083 50 0 46

L Thalamus 0,0915 0,051 5,001 -26 -28 14

L Caudate 0,496 0,215 4,228 -14 -16 22

Table 7: Activations of Switch - Identity contrast for Controls vs HD
on Split solution with only correct trials and Reaction Time
as regressor

All regions are extracted for the values: clusterp < 0.005 and
p(unc) < 0.001

peak
Region p(FWE) p(FDR) T

x,y,z {mm}

L Parietal Sup 5,0E-07 4,3E-05 9,545 -22 -80 46

L Occipital Mid 1,3E-06 5,1E-05 9,165 -26 -80 38

L Parietal Inf 8,6E-06 0,0001 8,465 -30 -68 46

L Precetral 4,2E-06 9,2E-05 8,733 -30 -4 54

L Precentral 1,0E-05 0,0001 8,409 -46 -4 34

L Precentral 0,0008 0,004 6,831 -38 -4 42

R Occipital Inf. 5,3E-05 0,0004 7,807 34 -84 -10

R Occipital Inf. 0,003 0,009 6,349 30 -88 -2
Cerebellum 0,171 0,074 5,018 14 -80 -26

R Occipital Sup 0,002 0,007 6,539 26 -68 38

R Occipital Mid 0,0290 0,0276 5,620 34 -76 38

R Parietal Sup 0,097 0,049 5,211 22 -72 54

R Frontal Sup. 0,011 0,018 5,937 34 -4 62

R precentral 0,032 0,028 5,583 50 8 34

L SMA 0,048 0,033 5,449 -6 4 58

L Thalamus 0,022 0,025 5,717 -26 -32 18

L Caudate 0,343 0,137 4,679 -22 -28 22

Table 8: Activations of Switch - Identity contrast for Controls vs
PreHD on Split solution with only correct trials and Reaction
Time as regressor

All regions are extracted for the values: clusterp < 0.005 and
p(unc) < 0.001
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fmri results

Figure 14: Activity map of Switch - Identity contrast for Controls vs
PreHD on Split solution with only correct trials and Reac-
tion Time as regressor
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M A C H I N E L E A R N I N G

Since subtle changes in brain may not produce a statistical signifi-
cance between voxels, general linear model may not able to detect
very early stages of HD. Although it can detect regions affected in ad-
vanced HD patients, is difficult to detect the initial changes of PreHD
patients. However, machine learning techniques use a multi-variate
approach to detect a massive collection of subtle changes significant
enough to explain a cognitive presymptomatolgy.

Therefore, the use of machine learning techniques to find biomarkers
that can explain this congitive presymptomatology can help deter-
mining the status of a PreHD patient.

In order to determine this, a classification will be proceeded with two
different approaches:

pronto A Pattern Recognition software using machine learning
techniques.

svm with flda Solution proposed as a comparison for Pronto soft-
ware.

9.1 pronto

When launching Pronto software a GUI is showed with several op-
tions. In a ”Main steps” box there are the options to construct an run
our classificator at the left:

• Data & Design

• Prepare feature set

• Specify model

• Run model

• Compute Weights

And the ”Review options” box at right serve to check the results:
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9.1 pronto

• Review data

• Review Kernel & CV

• Display results

Finally there is an option ”Batch” to open the matlabbatch editor, so
batch scripts can be coded for any step. Although the first step ”Data
& Design” could be scripted with matlabbatch, the next step ”Prepare
feature set” could not be run yet.

9.1.1 Data & Design

The first that must be done in every kind of analysis is to prepare
the dataset. On this step, the user should fill every subject and every
modality it has. This step is not to create the dataset, but to declare
all data that can be used in different datasets. Filling with all data
will allow future reutilisation of the same structure. Even if the user
has a modality (EEG ie) and he is not going to use it in the next
classifications, but does not discard using them in the near future,
the best option is to include it. To do it, simply add a Group and,
for any subject you add, modalities have to be manually introduced
along with its files.

Figure 15: Data & Design window

When including the data, an SPM.mat must be specified in order to
set the desired onsets, if it is not available, manual entry of onsests
are requested. After including all data, one must be sure to introduce
mask for every modality and the output folder of PRT.mat.

PRT.mat is a file that keeps all the information of a specific dataset
in pronto. A PRT.mat can point to several feature sets and models.
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9.1 pronto

Although the information on feature sets are on a different file, PRT
file points to it so that is the reason why one should include all data
possible into the first run.

9.1.2 Prepare feature set

In the previous section it was defined all the data of the experiment.
In this step the dataset is going to be defined. Whether if the ex-
periment will focus on all the brain data or a specific region of the
brain, use only one modality or various, all that is going to set in the
window from figure 16.

Figure 16: Prepare feature set window

9.1.3 Specify model

After the dataset is defined. The last step is just define the model
with figure 17 window. As always, selecting PRT.mat will enable
the ”Feature set” and after naming the model and selecting one of
the specified feature sets, the classification/regression model must
be specified.

This step also allows the user to apply some preprocessing to the data
before running the model.

9.1.4 Run model

This section allows the user to re-run a specified model. Because
there exist the option to specify and run the model in the specify
model step, this option is not that useful.
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9.1 pronto

Figure 17: Specify model window

9.1.5 Compute Weights

Once the model has been computed, the direct results are the predic-
tions and the performance of the model. However, in Neuroscience
field, understanding why this model is predicting that, the retrieval
of weights in a brain map-like format is as desired as the performance
itself.

With this option, the user can select the computed model of a PRT
file and collect the weights in the shape of a brain map.

9.1.6 Review data

Review data section is useful to check the onsets and conditions of
the model. It shows to the user the number of each conditions in a
simple bar plot.

9.1.7 Review Kernel & CV

How to know before computing weights that our model has been
modelled correctly? This section allows a quick review of the model -
to check everything was set where it should(controls on control group
and patients in patient group)-, the Cross Validation configuration or
even the Kernel computed. This is a great feature since, seeing a
”constant” kernel will reveal that something went wrong.
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9.1 pronto

9.1.8 Display results

The last option allows to show the results of the performance of the
model. In the top part, usual performance values can be accessed:

histogram Plot of sample distributions by classes.

confusion matrix The confusion matrix allows to a quick visual
check on the performance and also allows to compute othe de-
rived performance values

predictions Useful if there are any outlier.

roc curve Usual measure for classificators.

On the lower part, two different spaces for loading brain maps are
found. The left one is for the computed weight image. Sadly, the
visualization of that image is very poor so the box on the right can be
used to load a brain reference image. A canonical T1 image is perfect
for navigating the brain and observe, at the left, the weight it has on
the computed model.

Figure 18: Display results window
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9.2 svm with flda

9.2 svm with flda

Because of several errors, manual settings and some restictions, the
student thought about implementing a quick Machine Learning algo-
rithm based on SVM[24][29][31].

For the data, it was desired to use the same files that SPM compute
as beta files and contrast files. SPM compute the HRF basis func-
tion, the onsets and use a General Linear Model to compute that beta
and contrast files. Using these files instead of directly fMRI can save
us much more efforts on feature reduction. If the fMRI were to be
used, the feature set will increment to: 40 ∗ 48 ∗ 34(voxels in one 3D
image)∗477(images in a time series) >= 31 Millions of features per
subject. Also, the number of images can vary from subject to subject
because there are subjects (patients almost) that have less images due
to different problems. By selecting the features directly from the beta
files and/or contrast files, the feature number is reduced drastically.
But there are still so many features for the SVM to handle properly.

9.2.1 Extracting the features

But the betas and contrasts files are still too large. For that reason,
the best feature for the proble will be one feature describing each
interesting area of each file. For example, if the desired areas are
Caudate and Prefrontal cortex, a combination of the voxels of those
area for each file would be the best solution. In fact, knowing the
area, can be easily extrapolate to mask those areas and, for its peak,
extract an spherical ROI to compute that feature extraction. Since
the activation burst is what is expected to be the most informative
as a predictor, the fact that the feature extraction is centered at the
activation peak should help the feature extractor.

For the later part, some works, even with HD topic, have also used
LDA[28] as a feature extraction method for a SVM. Since it is a super-
vised problem what this thesis is facing, the discrimination of features
by using the information about the different classes should extract
better components.

9.2.2 Fisher Linear Discriminant Analysis

The code used for the LDA part has been extracted from[5]. This
package allows to extract the components using Fisher LDA with a
simple call as:

Source 9.1: Use of LDA
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9.2 svm with flda

options = [];

options.Fisherface = 1;

[eigVectors ,eigValues] = LDA(y,options ,X);

9.2.3 Support Vector Machine

In order to test a first solution and observe its performance, a RBF
SVM was choosen for its capability of to have a better performance
in classification. At least the same performance as a linear SVM

Hence, SVM in its dual form is used. Since we are using CVXr[8], we
need to code the convex language of the SVM in its dual form:

maximize
v

vT1− 1
2

vTQv

subject to 0 >= vi >= λ, ∀i = 1, . . . , N

vTy = 0

where Q = diag(y)Kdiag(y)

(3)

Into Matlab code using cvx convex language:

Source 9.2: SVM dual form

Q = diag(labels)*Kernel*diag(labels);

cvx_begin quiet

variables v(m);

maximize( v’*ones(size(v)) - 0.5*v’*Q*v )

subject to

0 <= v;

v <= lambda;

v’* labels == 0;

cvx_end

For selecting sigma and lambda values, a grid search has been im-
plemented with a nested cross-validation. The inner folds were used
to train SVM with the grid values(sigma and lambda) and then, the
validation of the models was done in the outer folds.

From the grid search of values:

• sigma = [0.0001 0.001 0.1 0.5 1 5 10]

• lambda =[0 1 5 10 25 50 100]
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M A C H I N E L E A R N I N G R E S U LT S

In order to compare the efficiency of the different approaches used,
different statistical measures based on classification confusion matrix
are going to be applied. In particular the confusion matrix, and the
measures extracted from it (i.e. accuracy, precision, recall, specificity
and F1-score):

Confusion Matrix is used to explain the performance of the classifier.
All the predictions of the classifier are counted and organized in a
table by type as it can be seen in Table 9.

True
Positive Negative

Positive True Positive False Positive
Pedicted

Patients False Negative True Negative

Table 9: Confusion Matrix

accuracy =
True Positive + False Positive

True Positive + True Negative + False Positive + False Negative
(4)

Accuracy is the measure to observe the percentage of samples well
classified.

precision =
True Positive

True Positive + False Positive
(5)

Precision measure the proportion of real positives predicted among
all samples predicted as positive.

recall =
True Positive

True Positive + False Negative
(6)

Recall measures the percentage of positives which are correctly iden-
tified.

specificity =
True Negative

True Negative + False Positive
(7)
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10.1 first test

Specificity is the measure that computes the number of negative that
has been really negative.

F1-score = 2
Precision · Recall
Precision+Recall

(8)

A combined measure that takes into account Precision and Recall
measues. It can be interpreted as a weighted accuracy, since the bal-
ance between precision and recall gives the measure higher values.

10.1 first test

Since we expect that caudate is one of the main regions our first ap-
proach was to mask our switch condition contrast (switch vs Identity)
with the caudate that had been segmented previously form the struc-
tural T1 image.

The first model that we apply try to classify HD patients and Controls
but the classification fails.

True
Controls Patients

Controls 13 13

Pedicted
Patients 11 16

Table 10: First test confusion matrix

Statistical measures can be extracted from the confusion matrix (Table
10).

10.2 second test

Therefore, in order to increase the accuracy to the classifier we add
more information to it. In particular:

fmri The whole fMRI data is being used on this test.

spm .mat As fMRI data is being used, to specify onsets, the split
solution with only correct trials and reaction time as regressor
was used.

masks Using mask of results areas in feature set definition.

Accuracy Precision Recall Specificity F1 score
0,547 0,542 0,5 0,593 0,542

Table 11: First test performance
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10.3 third test

As for the masks, those significant areas in Conventional Analysis
were used:

• Caudate L

• Caudate R

• Parietal Superior L

• Parietal Superior R

• Precentral L

• Precentral R

• Supplementary Motor Area L

• Supplementary Motor Area R

After setting these masks, the model was run for another Control /
Patients model obtaining results shown in table 12.

True
Controls Patients

Controls 14 12

Pedicted
Patients 14 12

Table 12: Second test confusion matrix

However, despite the introduction of all fMRI data and the masks for
each region of interest, this approach still does not work. As it can be
seen in the results (See table 13).

10.3 third test

The previous tests were using Patients and Controls as classes. But,
being PreHD patients among HD patients, could make much noise
to the classifier. For the next test, the same data as the second test
is used. The difference relies in the model specification, where this
time is set to use controls and only symptomatic HD patients. With
that configuration the classifier have a better classification as it can be
seen in its confusion matrix (See table 14).

And the different statistical measures (See table 15).

Accuracy Precision Recall Specificity F1 score
0,5 0,5 0,538 0,462 0,497

Table 13: Second test performance
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10.4 svm using flda

True
Controls Patients

Controls 19 7

Pedicted
Patients 14 12

Table 14: Third test confusion matrix

Accuracy Precision Recall Specificity F1 score
0,682 0,731 0,731 0,611 0,666

Table 15: Third test performance

10.4 svm using flda

On the other hand, the classifier developed in Idibell could not use
fMRI properly. So for this solution, the dataset was based on the
Switch vs Identity Contrast file of the conventional analysis last result
Also, the same list mask as in section 10.2 to extract features was used.

For the SVM parameter selection, from the grid (Section 9.2), the best
obtained values are:

• sigma = 0.1

• lambda = 1

The results are shown in the confusion matrix for the 3 outer folds
(Table 16):

True
Controls Patients

Controls 17 10

Pedicted
Patients 9 8

Table 16: SVM + FLDA confusion matrix

From that confusion matrix, it can be extracted the statistical mea-
sures:

Accuracy Precision Recall Specificity F1 score
0,568 0,63 0,654 0,444 0,529

Table 17: SVM + FLDA solution performance

10.5 discussion on machine learning results

Using all the results in a table (Table 18) to compare, we obtain:
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10.5 discussion on machine learning results

Accuracy Precision Recall Specificity F1 score
First test 0,547 0,542 0,5 0,593 0,542

Second test 0,5 0,5 0,538 0,462 0,497

Third test 0,682 0,731 0,731 0,611 0,666

SVM + LDA 0,568 0,63 0,654 0,444 0,529

Table 18: Performance values of the different machine learning tests

For controls and HD patients classification, the third test is better
in all parameters. However, each test is not truly comparable with
each other since they have different dataset inputs (i.e. first test had
Switch vs Identity contrasts with caudate mask, second and third test
includes all fMRI with several masks and the SVM with FLDA solu-
tion used Swich vs Identity contrasts and several masks) and different
models (i.e. first and second test models Control class against HD and
PreHD class, meanwhile third and SVM with FLDA solution models
Control class against only HD class). But, taking into account the low
accuracies achieved by first and second tests, the explanation is that,
with these models and the information we have, we cannot predict
between Controls and Patients (being of PreHD or HD group). This
may well be because the introduction of PreHD in a class that may be
closer to Control group than HD group in terms of brain activity.

Contrary to first and second level, the third test has an acceptable,
yet improvable, accuracy. Furthermore, not only has better % of well
classified samples, but also that the false positives and false negatives
are better are balanced as it can be seen with precision and recall mea-
sures. In general, with a F1 score of 66% is the best classifier despite
being a quite low compared to other machine learning applications.
It can be said that, with these values, it is possible to classify Controls
and HD groups, contrary to Controls and Patients model.
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C O N C L U S I O N S

A whole brain analysis was performed for the main contrast of inter-
est (Switch vs. Identity). For the fMRI analysis, both the first trial
of each condition and errors were removed. As it was reported by
Monchis et al. [27], we observed that the the caudate nucleus in the
Switch condition showed a significant correlation between the level of
BOLD signal and the increased trial position (as the time since the last
set shift increases) while it decreased over time in the Identity Con-
dition. Therefore, in order to optimise the difference between both
conditions (Switch and Identity), we split the block length for each
condition and we only reported the effects observed in the last half
part of the block. Moreover, since Patients and Controls showed sig-
nificant main effects and interactions in reaction times (RT) between
conditions, RT times were regressed in the analysis. All activations
we report were corrected for multiple comparison (FDR) at cluster
level p¡ 0.05.

Consistent with typical findings form the task-switching literature
[18][27][3], both Controls and Patient engaged in the switching pro-
cess the dorsolateral frontoparietal circuit, including subcortical acti-
vations in the in the left caudate and in the left thalamus (see Figure
13 and Table 7).

As it has showed in Figure 13 and Table 7), a two-sample t-test be-
tween Controls and HD patients revelaed significant lower levels of
activity in the frontoparietal network and the caudate nucleus in HD
patients. Importantly, pre-HD patients also show a reduced signif-
icant activity in the dorsolateral prefrontal cortex and the striatum
before symptoms begin.

Also the classification allow us to classify between control and HD
group with an acceptable, yet improvable, accuracy. These results,
accordingly with fMRI analysis shows that it is possible to classify
between groups with only some masks of some desired regions. How-
ever, the low accuracy of classification between Controls and Patients
(PreHD and HD group), make impossible the classification.
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11.1 future work

11.1 future work

Individual differences study in HD is of utmost importance in clinical
essays. It will allow to classify HD patients into different profiles to
get more homogeneous groups of patients, which is important when
evaluating a new drug efficiency and, in HD case, essential given
the high variability of the prevalence on different symptoms on this
disease. It will also be possible to predict the symptomathology type
developed by each patient, being that a new possibility to preventive
treatment.

The work done in this Thesis opens much work to be done and some
new questions on this field.

Of the proposed solution (Chapter 9), only the classification of HD
and Control group has been done. There is still work to do and
to improve on both approaches of the solution and the Idibell HD
projecthas not finished yet.

Using the first approach, temporal information of fMRI scans have
been used in Pronto toolbox, selecting only the desired areas to be
used on a binary classification using Support Vector Machines (SVM).
So there are some improvements to be done:

multimodality Only fMRI has been tried on classification. Al-
though regression does not allow multi-modality, classification
does it. The inclusion of external data to infer some informa-
tion of the fMRI scans may be of great importance: Age, brain
atrophy, disease burden can be of great impact on some studies
as it could give to the SVM more variability explanation.

other methods Pronto can use several machine learning methods
for classification. Among the 3 available methods (i.e. SVM, bi-
nary Gaussian Processes classification and multi-class Gaussian
Processes classification) only the first one was.

Said that, Pronto works with the data, preprocessed or not, of several
modalities for classifiers and only one modality/value for regression.
The toolbox is also very restrictive of what to declare as an input
and there are several applications for what is not prepared like, for
example, adding external features like it could be age, VBM or alike.

With the second approach Fisher Linear Discriminant Analy-
sis(FLDA) is used as a feature extractor to characterise the different
interesting areas extracted from fMRI analysis files(Chapter 8), with a
single linear component of the area voxels for the classifier. A binary
SVM is the used on

On the other hand, the second classifier has much more room to im-
prove:
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11.1 future work

multimodality Only one image was used as input of the classifier
to test both classifiers, although it can easily be expanded to
more images or other values.

feature extraction This solution can be highly improved by se-
lecting better features.

fmri data Pronto can work easily with fMRI scans: All the infor-
mation is in the fMRI scans. The inclusion of fMRI data could
give more information and variability although it would mean
to improve, even more, the feature extraction part. However,
taking into account the difficulty to extract good SPM contrast
files, this could be a good improvement.

Once the solutions are ready and can be repeated for all the classifi-
cations (Section 9.2), the ECOC architecture can be implemented.
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