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ABSTRACT
Nowadays, productivity is the buzzword in any computer science area. Severalmetrics have been defined in order to measure the productivity in any type ofsystem. Some of the most important are the performance, the programmability,the cost or the power usage. From architects to programmers, the improve-ment of the productivity has became an important aspect of any development.Programming models play an important role in this topic. Thanks to the ex-pressiveness of any high level representation not specified for any particulararchitecture, and the extra level of abstraction they contribute against specificprogramming languages, programming models aim to be a cornerstone in theenhancement of the productivity.OmpSs is a programming model developed at the Barcelona Supercomput-ing Center, built on the top of the Mercurium compiler and the Nanos++runtime library, which aims to exploit task level parallelism and heteroge-neous architectures. This model covers many productivity aspects such as theprogrammability, defining easy directives that can be integrated in sequentialcodes avoiding the need of restructuring the originals to get parallelism, andthe performance, allowing the use of these directives to give support to multiplearchitectures and support for asynchronous parallelism.Nonetheless, not only the convenient design of a programming model and theuse of a powerful architecture can help in the achievement of good productivity.Compilers are crucial in the communication between these two components incomputers. They are meant to exploit both the underlying architectures andthe programmers codes. In order to do that, analysis and optimizations are thetechniques that can procure better transformations.Therefore, we have focused our work in the enhancement of the productivityof OmpSs by means of implementing a set of high level analysis and optimiza-tions in the Mercurium compiler. They address two directions: obtain betterperformance by improving the code generation and improve the programmabil-ity of the programming model relieving the programmer of some tedious anderror-prone tasks. Since Mercurium is a source-to-source compiler, we haveapplied these analyses in a high level representation and they are importantbecause they are architecture independent and, thereupon, they can be usefulfor any target device in the back-end transformations.
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CHAPTER 1. Introduction

Embedded and high performance computing systems research is leaded bythe need to obtain more productivity. Each area of the computing scienceshas its own fields of study in order to achieve this common objective. Be-tween the avalanche of new architectures with faster components and newmemory hierarchies, and the huge amount of languages that try to meet betterthe specific requirements of each application, parallel programming modelsare one of the most important topics. This interest comes from the fact thatthey can interact in different levels of deepness with both the architecturesand the programming languages. Parallel programming languages allow theprogrammer to balance the competing goals of performance and programma-bility by implicitly or explicitly specifying different program properties such asthe computational tasks, the mapping between these tasks and the process-ing elements, the communication network and the synchronization. OmpSs isa parallel programming model with implicit task identification and synchro-nization defined by high level directives. It extends OpenMP API to supportasynchronous task parallelism and integrates different features of StarSs tosupport heterogeneous devices. The importance of this model relies on theeasiness of using directives, its independence of the architecture and its ex-pressiveness when defining both synchronous and asynchronous parallelism,as well as the scalability it contributes to allow the definition of different targetarchitectures such as GPUs.Hand by hand to the programming models are the compilers. We can dis-tinguish between source-to-source compilers and back-end compilers. Eventhough back-end compilers are indispensable and they can provide many bene-fits by the knowledge they can have from the underlaying architectures, source-to-source compilers are a great vehicle to support research. They provide awide range of activity for the development of high level analysis and optimiza-tions that can exploit the characteristics of the codes without loss of portabil-
ity. In this context, Mercurium is a source-to-source compiler developed for fastprototyping. This kind of infrastructure is a breeding ground for the researchand testing of new proposals. In the world of the source-to-source compilers,many groups have based their efforts in the analysis and optimization of bothprogramming languages and programming models. For example, the ROSEcompiler group have built a platform for complex program transformations anddomain-specific optimizations; more recently the have developed techniquesof auto-parallelization and auto-tuning. Other example is LLVM, a project al-
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Chapter 1: Introduction
lowing transformation among different high level programming languages as C,Ada, FORTRAN or Java as well as many different levels of optimizations, fromsource- and target- independent optimizations to run-time optimizations. Inthe Mercurium group we do not want to offer a platform for aggressive opti-mizations or back-end dependent transformations. Instead of that, we want toprovide a set of tools that can help in the improvement of productivity offeringsupport for OmpSs.Compiler analysis and optimizations are very valuable to achieve our goalsbecause of the beneficial impact they can have in the processing of program-ming models and thus, the enhancement in the productivity in specific algo-rithms. In order to tackle some lacks in the Mercurium compiler, we have de-fined a set of analysis in the middle-end phase that allow us to improve boththe performance of the generated code and the programmability of OmpSs.Our challenge is to adapt the classical analyses such as control flow, use-definition chains, liveness analysis and reaching definitions, into the paralleland heterogeneous behavior of OmpSs. We have defined a set of analyses thatgather enough information to implement a few optimizations demonstrating thevalue of implementing architecture independent analysis in Mercurium and, byextension, to any other compiler. These optimizations have been directed toimprove the generated code by analyzing the impact of using shared or privatevariables and to improve the programmability of OmpSs by analyzing the scopeof variables in parallel codes to release the programmer of some tedious workwhile using tasks. We have tested these optimizations in different commonalgorithms and we will show the obtained results.Most of the project has been developed within the Programming Modelsgroup of the Computer Sciences department at the Barcelona Computer Center.The main goal of this group is the research of new programming paradigms andthe runtime system support for high performance of parallel applications. Thegroup works on both multi-core and SMP processors with either shared- ordistributed-memory systems and for both homogeneous and heterogeneousarchitectures using accelerators like GPGPUs. The exploration is supportedwith the development of the Mercurium compiler and the Nanos++ runtimelibrary for fast prototyping. The usability of programming models is tested indifferent scenarios with OmpSs, which proposes extensions to standards likeOpenMP.The group focus its efforts in different projects approaching different as iscomposed by many divided in three different projects which are: the OmpSsprogramming model environment, the Mercurium source-to-source compilerand the Nanos++ runtime library. This project is framed in the context of
2



Chapter 1: Introduction
the OmpSs project and the Mercurium project and aims to improve the codegenerated by Mercurium within the frame of OmpSs programming model.The current project is the final dissertation of the Masterś degree in Com-puter Architecture, Networks and Systems (CANS), at the Computer SciencesFaculty of Barcelona (FBI), part of the Technical University of Catalonia (UPC).The project has been funded by the Barcelona Supercomputing Center (BSC),the European Commission through the ENCORE project (FP7-248647) and theROSE group at Lawrence Livermore National Lab.The rest of the document is organized as follows. Chapter 2 describes themotivation and goals of this thesis. Chapter 3 defines the methodology fol-lowed by along the project in order to achieve our goals. Chapter 4 describesthe environment of the project and the main components used in its execu-tion. Chapter 5 contains the different analyses we have implemented in theMercurium compiler. Chapter 6 explains different OmpSs optimizations imple-mented in the Mercurium compiler based on the previous analyses and theirevaluation. Chapter 8 concludes this dissertation and outlines the future work.
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CHAPTER 2. Motivation and Goals

Parallel programming models as OmpSs and Runtime Libraries as Nanos++play an important part in increasing the productivity of high-performance sys-tems. Research compilers as Mercurium can snappily prototype new featuresto determine their effect. Mercurium generates intermediate code to exploitthe Nanos++ runtime library and OmpSs is built on top these two compo-nents. The research nature of these projects leads us to implement analysisin Mercurium compiler that can help in the commitment of productivity. We donot try to implement aggressive optimizations such as auto-parallelization orloop transformations. It takes too much time and effort, and other compilersalready focus in that area of research. Instead of that, we are in pursuit of theinvestigation about asynchronous parallelism and multiple devices execution.Keeping in mind the previous arguments, in this project we want to focusessentially in two points: on one hand the compiler analysis to improve Mer-curium code generation and get a better performance and on the other handthe enhancement of the programmability of OmpSs programming model. Inorder to achieve these goals, we require the implementation of a set of basicanalysis in the middle-end phase of the compiler. We find at this point our
first challenge: classical analyses for sequential and/or synchronous parallelprograms have lacks of information to analyze the asynchronous parallelismintroduced by tasks; some of these classical analysis have to be extended. Asthe basis of most of the data-flow analysis, we need to break down programcontrol flow behavior for sequential and, synchronous and asynchronous par-allelism. With this baseline analysis we can then implement a reasonable setof analysis that will be used to achieve our goals.Based on the analysis performed in the compiler, we have defined two im-provements of the productivity to be applied in Mercurium: one is the auto-definition of data-dependencies in asynchronous tasks to free the program-mer from the tedious mission of defining the data dependencies for all thevariables included in the task code; the other is the improvement of the per-formance of the generated code by privatizing variables that conservativelyhave been scoped as global. Here appears our second challenge: the auto-matic computation of data-dependencies requires the previous computation ofthe data-sharing for the involved variables; although some rules for automaticdata-sharing have been defined until now, they are not for asynchronous tasks.
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Chapter 2: Motivation and Goals
Thus, the major contributions of this thesis are:
1. We developed a new control flow representation containing informationfor sequential and synchronous and asynchronous parallelism by definingthe key synchronization points that can guarantee correctness.2. We implemented a set of basic data-flow analysis in the Mercurium infras-tructure that includes: use-define chains, liveness analysis and reachingdefinitions.3. We improved the programmability of OmpSs by automatically comput-ing data-dependencies among tasks. In order to do that, we developedan algorithm to extend auto-scoping rules defined for OpenMP parallelconstructs [LTaMC04] and analyze data-sharing in asynchronous tasks.4. We developed a memory flush analysis. Along with liveness analysis, thisanalysis help us to privatize variables that had been conservatively scopedas shared.
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CHAPTER 3. Methodology

As we explained in the previous chapter, we aim to improve the Mercuriumcompiler infrastructure to help us to enhance the productivity of OmpSs. Thegroundwork consists in developing a set of classical analyses adapted to syn-chronous and asynchronous parallel programs. We will reach our goal of pro-ductivity by implementing optimizations based on the previous analyses follow-ing two directions: the enhancement of the generated code to obtain a betterperformance and the improvement of the programmability of our programmingmodel.We have followed the time-line defined in the Gantt chart bellow. Find inpink color the initial planning of the work once it was carried out, and in bluecolor the work we had to redefine.

FIGURE 3.1: Gantt chart of the project

The following is an account of the methodology used for this project. Wehave organized the next paragraphs as the steps defined in Figure 3.1.
3.1 Preparatory research

The first step was the evaluation of different ideas within our area of interestthat could be profitable for the two parts involved in the project: myself, asthe developer of this thesis, and Barcelona Supercomputing Center, as thefunder of the project. Once we defined in broad outline the main aspects wewanted to focus on, we started the analysis of the related work. We studied
7



Chapter 3: Methodology
the state of the art of classical analysis for parallel programming models andwe investigated some compilers implementing this kind of features such asROSE or OpenUH. We read many publications about control flow analysisand data flow analysis to know the strengths and weaknesses of the currentimplementations.

3.2 Definition of our goals

Based on the previous study, we accurately defined the goals to be reachedin this project. With the objective of developing some useful work in the frameof the BSC projects and highlighting that no analyses were implemented inMercurium, we defined a set of classical analysis and different use cases toprove the benefits we can obtain with these analyses in terms of productivity.
3.3 Development and testing

To achieve our objectives, we used a spiral approach. With this technique werevisited the same concepts a few times while increasing the level of complexityin each pass. The advantage of this technique is that we never reached aposition of no progress.We first defined a minimum of requirements to fulfill and a set of benchmarksto test the results of every use case. Since the analyses defined in the previousstep are dependents ones from the others, we developed sequentially a firstapproach of each. With this first release, we tested the results in our use cases.This work revealed some weaknesses in the implementation and some lacks inthe process we had to solve in order to obtain profitable results. We redefinedour analyses from a coarse-grained design into a fine-grained design to keepdetails that we had not took into account in the first sketch. Then, we testedagain our benchmarks and we used these feed-back to iterate in this flow untilwe got the desired results. At the end we had an implementation that worksfor most of the C++ and OmpSs cases we have tested.Because of the research nature of Mercurium, we found a remarkable diffi-culty during the development. Half way across our initial scheduling, our workteam made the decision of changing the internal representation of the compiler.Since we have to deal directly with this representation, that modification af-fected substantially our work. At that point we had to go backwards and adaptour analysis to the new representation. Time constraints and work restrictionsinfluenced the set of use cases we present in the project. We selected a set of
8



Chapter 3: Methodology
analyses and optimizations that is representative enough to prove the benefitsof our implementation.

3.4 Documentation and Presentation

Finally, we wrote the current dissertation as both part of the requirementsof the Master degree and to serve as technical support for the features imple-mented in the Mercurium compiler.
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CHAPTER 4. Environment

In this section we introduce the environment where the project has been de-veloped. We have designed a set of compile-time analyses in the the contextof three related projects: the OmpSs programming model, the Mercurium com-piler and the Nanos++ run-time system. We will briefly describe OpenMP asit is the base of OmpSs. Finally, we will introduce the compiler where we havedeveloped our thesis: Mercurium.
4.1 OpenMP

OpenMP is an interface that covers user-directed parallelization. The APIprovides a set of directives that allow the programmer to specify a structuredblock of code to be executed by multiple threads and to describe how the datawill be shared between the threads. It uses the fork-join model of parallelexecution. Parallel regions are defined by the constructs parallel and task.The directives to express worksharing are for, sections, single and master.Synchronization directives are used to protect data and order execution amongthreads. These directives are critical, barrier, atomic, flush and ordered.OpenMP provides a relaxed-consistency, shared-memory model. This meansthat there are two kinds of memory: the main memory, accessed by all threadsin any point of the execution, and the threadprivate memory, which is a privatememory for each thread. The flush operation provides a guarantee of consis-tency between the threadprivate memory and the main memory. This operationcan be done explicitly by the user or implicitly by the programming model (the
parallel directive, worksharing directives or any combined worksharing di-rective imply a memory flush at the end of the execution of their associatedblock of code). The flush operation restricts some optimizations like reorderingmemory operations but allows some others like shared variables temporaryprivatization.Some directives accept data-sharing attribute clauses. These clauses de-termine the kind of access (shared or private) of the variables inside the struc-tured block associated with the directive’s structured block. The different data-sharing clauses accepted are private, shared, firstprivate and lastprivateand their availability depends on each directive (for example, lastprivateclause is not allowed in task directives). A data race occurs when multiplethreads write without synchronization to the same memory unit. Due to the
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Chapter 4: Environment
laxity of the programming model this situation can appear frequently. To avoidthis data hazards and maintain sequential consistency, OpenMP offers differ-ent methods: the definition of the proper data-sharing for every variable in aconflictive block of code and the synchronization directives to avoid simulta-neous access to the same memory space.All the rules defined by OpenMP model can be found in the Official OpenMPSpecifications [Boa11]. For this project we have worked with the release 3.0for C++.

4.2 OmpSs

OmpSs [DAB+11] is a parallel programming model which extends the OpenMPmodel to support asynchronous task parallelism. OmpSs manage to expressthe parallelism in such a way that is able to deal with both homogeneous andheterogeneous architectures. This programming model has been developed atthe Barcelona Supercomputing Center (BSC) based on the StarSs 1 [PBAL09]and OpenMP.The programming model is used in the simple form of introducing a few di-rectives in the original code. In the next sections these directives are explainedexhaustively with their features and showing different use cases.
4.2.1 The task directive

OmpSs extends the OpenMP task directive to suppport asynchronous par-allelism by means of data-dependencies. The model ensures the correctness ofthe asynchronous execution by defining data-dependencies between the dif-ferent tasks of a program. The syntax of the directive used to create a task isas follows:
#pragma omp task [clauses]

function_or_code_block

where:
− clauses is a list of new clauses that allows specifying restrictions about thedependencies. The allowed clauses are:
1 StarSs is a task-based programming model developed at the Barcelona Supercomputing Center with two mainobjectives: to enable the automatic exploitation of the functional (task-level) parallelism and to keep applicationsunaware of the target execution platform.
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Chapter 4: Environment
∗ input(list_of_expressions): evaluating an lvalue as an input dependenceimplies the related task cannot run until all previously defined taskswith an output dependence on the same expression have finished itsexecution.
∗ output(list_of_expressions): evaluating an lvalue as an output depen-dence implies the related task cannot run until all previously definedtasks with an input or an output dependence on the same expressionhave finished its execution.
∗ inout(list_of_expressions): evaluating an lvalue as an inout dependencemeans that it may behave as an input and as an output dependence.
∗ concurrent(list_of_vars): this is a relaxed version of the inout clause. Thetask is scheduled taking into account input, output and inout previousclauses, but not concurrent clauses.
∗ The rest of clauses allowed in OpeMP for the task construct, whichare: if(scalar_logical_expression), �nal(scalar_logical_expression), untied, de-

fault(private | �srtprivate | shared | none), mergeable, private(list_of_variables),
�rstprivate(list_of_variables) and shared(list_of_variables)

− function_or_code_block specifies the block of code that will be executedasynchronously in parallel.
It is important to note that the user assumes the liability on the correctnessof the dependencies’ definition. For the concurrent clause, as it relaxes thesynchronization between tasks, the programmer must ensure that either thetask can be executed concurrently or that additional synchronization is used(like atomic OpenMP directive).
4.2.1.1 Expression extensions

OmpSs allows two C/C++ extensions in the expressions that can appear inthe data-dependence clauses. These extensions are:
− Array sections: allow to refer to multiple elements of an array or dataaddressed by a pointer. They can be specified as a range of accesses bythe doublet [ lower_bound : upper_bound ].
− Shaping expressions: allow to recover the dimensions of an array thathas been degraded to pointer. It is used by adding one or more [ size ]expressions before a pointer.
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Chapter 4: Environment
4.2.1.2 Execution model

As the tasks are created, they are inserted in the graph of execution thatdetermines the dependences between tasks. This graph ensure the dependencesatisfaction of every task. So, each time a task is created, its dependences arechecked against those of the previous tasks and the new task is scheduled assoon as possible (i.e., when all its predecessors in the graph have already beencompleted).
4.2.1.3 Examples

An example of task creation with different clauses is shown in Listing 4.1.The task execution graph created for this graph is the one shown in Figure 4.1.
1 void compute ( i n t ∗ A , i n t ∗ NB ) {
2 f o r ( i n t i = 1 ; i < N; ++i ) {
3 #pragma omp task input (A [ i −1 ] ) inout (A [ i ] ) output (B [ i ] )
4 f oo ( A [ i −1 ] , A [ i ] , B [ i ] ) ;
5

6 #pragma omp task input (B [ i −1 ] ) inout (B [ i ] )
7 bar ( B [ i −1 ] , B [ i ] )
8 }
9 }
10

11 void f oo ( i n t a , i n t& b , i n t& c ) {
12 b = b + a ;
13 c = b ;
14 }
15

16 void bar ( i n t a , i n t& b ) {
17 b = b ∗ a ;
18 }

LISTING 4.1: OmpSs task code example
FIGURE 4.1: OmpSs depen-dency graph for code inListing 4.1

Not just structured blocks, but also function definitions can be annotatedwith the task construct. In this case, each invocation of the function becomesthe generation of an asynchronous parallel point. In Listing 4.2 we show anexample of this kind of task definition.
1 #pragma omp task
2 void f oo ( i n t i ) ;
3

4 void bar ( )
5 {
6 f o r ( i n t i = 0 ; i < 10 ; i ++ ) {
7 f oo ( i ) ;
8 }
9 }

LISTING 4.2: OmpSs task code exampleat declaration level
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The example in Listing 4.3 shows a merge sort code using tasks and theextended expressions allowed by OmpSs. Shaping expressions are used totransform pointer variable a to an array in the call to merge function. Arraysection regions are used to specify the region that will be used in each levelof the recursion of the method sort.

1 void so r t ( i n t n , i n t ∗a )
2 {
3 i f ( n < smal l ) seq_sor t ( n , a ) ;
4

5 #pragma omp task inout ( a [ 0 : n /2 ] )
6 so r t ( n / 2 , a ) ;
7

8 #pragma omp task inout ( a [ n/2+1 : n ] )
9 so r t ( n / 2 , a [ n /2+1] ) ;

10

11 #pragma omp task inout ( [ n ] a )
12 merge ( n /2 , a , a , a [ n /2+1] ) ;
13 }

LISTING 4.3: OmpSs extensions example code: array sections and shapingexpressions

4.2.2 The taskwait directive

The taskwait directive allows to enforce synchronization among tasks re-gardless of data-dependencies clauses. It is useful when there is no need forsynchronous data output but a synchronization is required. Its syntax is thefollowing:
#pragma omp taskwait [clauses]

where clauses can be:
− on (list_of_expressions): it allows waiting only to those previous tasks havingsome output dependence on the defined expressions.
− no�ush: OpenMP enforces a memory flush immediately before and imme-diately after every task scheduling point. The use of this directive avoidsthe execution of these flushes.
4.2.2.1 Example

In the example shown in Listing 4.4 a code with tasks for the N-Queensproblem is presented using a taskwait directive to wait the computation of the
15
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queens disposition in each recursion level. When all tasks in a given level havefinished, then the number of possible solutions for that level is stored.

1 void nqueens ( i n t n , i n t j , char ∗a , i n t ∗ so lu t i ons , i n t depth )
2 {
3 i n t ∗ c so l s ; i n t i ;
4

5 i f ( n == j ) {
6 ∗ s o l u t i o n s = 1 ;
7 re turn ;
8 }
9

10 ∗ s o l u t i o n s = 0 ;
11 c so l s = a l l o ca ( n∗ s i z e o f ( i n t ) ) ;
12

13 f o r ( i = 0 ; i < n ; i ++) {
14 #pragma omp task unt ied
15 {
16 char ∗ b = a l l o ca ( n ∗ s i z e o f ( char ) ) ;
17 memcpy ( b , a , j ∗ s i z e o f ( char ) ) ;
18 b [ j ] = ( char ) i ;
19 i f ( n o _ c o n f i c t ( j + 1 , b ) )
20 nqueens ( n , j + 1 , b ,& cso l s [ i ] , depth +1) ;
21 }
22 }
23

24 #pragma omp taskwai t
25

26 f o r ( i = 0 ; i < n ; i ++)
27 ∗ s o l u t i o n s += cso l s [ i ] ;
28 }

LISTING 4.4: N-queens code with OmpSs taskwait directive

4.2.3 The target directive

As explained at the beginning of this section, the OmpSs programming modelnot only allows the creation of asynchronous parallelism, but also supportsmultiple platforms. To support heterogeneity, a new construct is introducedwith the following syntax:
#pragma omp target [clauses]

task_construct | function_definition | function_headerwhere clauses can be:
− device(device_name): it specifies the device where the construct should betargeted. If no device clause is specified, then SMP device is assumed.The other currently supported target is CUDA for GPGPUs.
− copy_in(list_of_vars): it specifies the set of shared data that must be trans-ferred to the device before the execution of the code associated to theconstruct.
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− copy_out(list_of_vars): it specifies the set of shared data that must be trans-ferred from the device after the execution of the code associated to theconstruct.
− copy_inout(list_of_vars): it specifies the set of shared data that must betransferred to and from the device, before and after the execution of theassociated code.
− copy_deps: this clause specifies that the dependence clauses of the at-tached construct (if there exists) will have also copy semantics; it meansthat input dependencies will be considered as copy_in variables, outputdependencies as copy_out variables and inout as copy_inout. If the at-tached construct has a concurrent clause, then all the dependencies areconsidered as inout.
− implements: this clause specifies that the code is an alternate implemen-tation for the target device and it could be used by the target instead ofthe original if the implementation considers it appropriately.
4.2.3.1 Example

In the code shown in Listing 4.5 a new task is created for function scale_taskand its target is a CUDA device. With the clause copy_deps in the target directive,we say that all the dependencies specified in the following task directive willbe copied to/from the device. In this case, the whole c array will be copiedto the device at the beginning of the execution and the whole b array will becopied from the device at the end of the execution.
1 #pragma omp ta rge t dev ice ( cuda ) copy_deps implements ( sca le_ task )
2 #pragma omp task input ( [ s i z e ] c ) output ( [ s i z e ] b )
3 void scale_task_cuda ( double ∗b , double ∗c , double sca lar , i n t s i z e )
4 {
5 const i n t threadsPerBlock = 128 ;
6 dim3 dimBlock ;
7

8 dimBlock . x = threadsPerBlock ;
9 dimBlock . y = dimBlock . z = 1 ;

10

11 dim3 dimGrid ;
12 dimGrid . x = s i ze / threadsPerBlock +1;
13

14 sca le_kerne l <<<dimGrid , dimBlock>>>(s ize , 1 , b , c , s ca la r ) ;
15 }

LISTING 4.5: OmpSs target directive example code
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4.3 The Mercurium compiler

Mercurium is an agile source-to-source compiler supporting C, C++ andFortran that aims at easy prototyping of parallel programing models. Thegoal of Mercurium is to rewrite, translate and mix the input source code intoanother source code that is fed into a object-code generating compiler. Inthis process, different constructs are recognized and transformed to calls tothe runtime system enabling parallel execution. Mercurium does not buildarchitecture dependent back-ends, instead, it supports the invocation of manynative compilers as gcc, icc or nvcc. Mercurium is useful transforming high leveldirectives into a parallelized version of the application, as well as profiling,instrumenting and synthesizing information at compile time. It is not useful forperforming hard optimizations in the code; this area of research is develop inother compilers like ROSE, LLVM or Open64.There are different parts in the compilation process. In the next paragraphswe explain the specifics of each step. Figure 4.2 outlines an schema of thewhole process.

FIGURE 4.2: Mercurium compilation stages
4.3.1 Parsing

The compiler parses each input file by creating the Abstract Syntax Tree
(AST) that contains the input code. Once the tree is built, a classical type-checking is performed creating the symbol table for each scope, removing am-
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biguities and synthesizing all expressions types. This non-ambiguous tree isused to the costruction of the Internal Representation, called Nodecl, whichwill be used in the next compiler phases. Nodecl is also an AST but it differsfrom the previous one in some aspects:
− Nodecl does not contain declarations. Instead of that, it includes a newnode called CONTEXT for every block of code creating a new scope. The

CONTEXT node stores information about the different scopes that apply forthe given context (global, namespace, function, block and current).
− Nodecl is aimed to represent with the same structure both C/C++ andFortran. That means that similar constructs in the two languages arerepresented by the same type of nodes in Nodecl. This step is very usefulfor the next phases in the compiler since in most of the cases, the phaseswill not need to have specific implementations for each language.

1 double f oo ( i n t n )
2 {
3 i n t i , res ;
4

5 #pragma omp p a r a l l e l f o r
6 f o r ( i = 0 ; i < n ; i ++)
7 {
8 res += i ;
9 }

10 re turn res ;
11 }

LISTING 4.6: Code snippet with Om-penMP parallel for construct

In Figure 4.3 we show the Nodecl for thecode in Listing 4.6. It is the very essential struc-ture, containing just the kind of the nodes antheir relations. The structure starts with thefunction foo in the top level. Function code nodeis the root of a compound statement contain-ing the function code. This compound state-ment has two children, the pragma parallel for(pink frame) and the return statement. Noticehere that no definitions appear in the tree whilethe code declares the variables i and res atthis level; information about declarations is at-tached to the tree but not as a node. Finally, hanging from the pragma appearsthe loop statement (green frame). Notice also that symbols (blue boxes) ap-pear always as a leaf of the tree. Other kind of nodes are always leafs, likeliterals. Other significant aspect to realize in the tree are the context nodesinserted for each new context created in the input code (yellow boxes).For more details, we show in Figure 4.4 the information about the context.Other nodes have been removed to aid to comprehension of the tree. Specif-ically, we display the contexts generated by the function, the pragma omp
parallel and the for-loop. In that case, the global, the namespace and thefunction scopes are the same for the three contexts. The block scope is differ-ent for each one because each one is creating a new scope. The relations ofownership are shown through the dotted edges labeled as contained_in.
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FIGURE 4.3: Nodecl generated from code in Listing 4.6
20
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FIGURE 4.4: Nodecl snippet with context information from code in Listing 4.6
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4.3.2 Compiler phases

The compiler phases are a set of dynamic libraries that work as a pipeline.These phases are written in C++ and they are enabled or disabled dependingon the profile set in the compiler command line. The unambiguous AST Nodeclarrives to the first phase and a common internal representation (IR) is usedamong the phases. Nonetheless, each phase can create a new IR that will beused in the later phases. The Data Transfer Object (DTO) pattern is used totransfer data between the phases. The DTO is just a dictionary containing astring as the key and an Object as the value. In any point of the compila-tion process we can find available the translation_unit IR with the processedcode. A powerful way to deal with trees has been implemented just recently.Following the Visitor Pattern, traversals through the Nodecl can be performedcompletely separated from the operation to be performed during this traver-sal. The compiler provides exhaustive and base visitors and they can be easilyextended for particular purposes.For this thesis, we have added a new phase to the pipeline that can beactivated to enable the different analysis. The analysis methods can be calledanywhere in the pipeline as well, without being necessary to execute the entirephase. The difference is that the phase will analyze all the translation unitwhile by calling the methods, the programmer will use the analysis on demand,analyzing just the codes he is interested in. Since Nodecl is a common IR fordifferent input languages, the analysis we will implement here will be always
language independent.

4.3.3 Code generation

The synthesis part generates an output code which is the conclusion ofall transformations performed in the previous steps. Since the intermediaterepresentation is the same for the different accepted languages by the compiler,information about the input must pass through the previous stages until thispoint.
4.3.4 Object code generation

Finally, a back-end compiler and a linker are invoked to generate objectcode. This will depend on the profile set to the compiler at the compilercommand line.
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Traditional compiler analysis play an important role in generating efficientcode. The classical analysis are quite mature and routinely employed in com-pilers. Among the most common methods in compiler analysis for optimizingcode, flow analysis is a technique for determining useful information about aprogram at compile time. This is the root of a set of analysis that permit usboth the analysis and the optimization of OmpSs codes. The handicap of an-alyzing parallel codes is that we have to adapt the classical analysis to keepinformation about parallel execution.We built a graph for control flow analysis. This graph represents all OpenMP3.0 constructs and OmpSs specifics. The graph also stores additional informa-tion about the clauses associated to the constructs, if applicable. With this datastructure, we can calculate data flow analyses such as use-definition chains,liveness information and reaching definitions. We have implemented an spe-cific loop analysis to determine accessed ranges in arrays with restricted loopdefinition conditions. In the next sections we explain the details of each oneof these analysis.We have created and API providing different the analysis. Compiler devel-opers can ask to analyze any piece of code represented by the compiler in-termediate representation (IR). Since the different compiler phases can changethis representation, the application of the analyses at different points of thecompiler phase pipeline can return different results. While analyzing, develop-ers must remember the dependencies existing between some of the analysis.This means that asking for reaching definitions without previously having com-puted liveness analysis will cause a null result. For testing purposes we haveadded a new phase in the compiler which analyzes the whole translation unit.Finally, we have created two new debug options: a verbose mode to showthe result of the different analyses at compilation time and a printing modethat creates a file in DOT language with the control flow graph and all theinformation computed during the analyses embedded in the nodes of the graph.
5.1 Parallel Control Flow Graph (PCFG)

Flow analysis techniques allows determining path invariant facts in a givenprogram. This is a key tool in compiler’s analysis due to the huge list ofoptimizations that can be addressed with flow analysis (constant subexpres-
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sion elimination, constant propagation, dead code elimination, loop invariantdetection, induction variable elimination, range analysis, and a long etcetera).The problem of the flow analysis is solved by the construction of a graphcommonly known as Control Flow Graph (CFG). Building this graph for se-quential codes does not introduce many challenges but in our case, we aim toimplement a graph that must be able to correctly represent the semantics ofOmpSs parallel codes. And not only that, but we also bear in mind that weare implementing this analysis in a research compiler such as Mercurium, andthat led us to think in an extensible and scalable implementation. Assumingthese premises, we have built a Parallel Control Flow Graph (PCFG) called
Extensible Graph (EG) that allows both intra-procedural and inter-proceduraldata-flow analysis, and both intra-thread and inter-thread. We have createdan API that allows the construction of the EG from a portion or the whole IR.In Figure 5.1 we show the basic class diagram of the components of and Exten-sible Graph. Basically, a graph is formed by one node; one node can containother nodes inside, and the nodes are interconnected by edges. To traverse thegraph we have specified a class which implements the visitor pattern amongthe nodes in the AST.

FIGURE 5.1: Basic class diagram for the PCFG

5.1.1 The Extensible Graph

The Extensible Graph is a directed graph formed by a 2-tuple < id, N >where id is the identifier of the graph and N is the node containing the flow
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graph. This structure models the control flow of a section of code being thata whole function code or just a statement. The data structure contains onlystructural information, this is nodes and the directed edges connecting thesenodes. We have created different kinds of nodes and edges to represent C++statements and OmpSs specifics. All the semantics are linked to the structureas a pair of < Name, Object >. Each kind of element implies a series of addi-tional attributes that will be linked to it. It is important to note that this way ofattaching information to one object has some advantages and disadvantages.As a disadvantage, the implementation of this object leaves to the programmerthe responsibility of maintaining the correctness of the data structure but, asan advantage, we obtain a structure that is clean and agile, free of specificattributes for every case. In the next sections we explain the details of the twoelements, nodes and edges, and the particularities of OmpSs nodes.

5.1.1.1 Node

A node is a 3-tuple of < Id, Entries, Exits > where Id is the unique iden-tifier of a node within a given graph, Entries is the set of edges coming fromthe nodes of which the current node depends on and Exits is the set of edgesto nodes that depend on the current node. Moreover, as we said before anddepending on the data represented, each node will have additional linked at-tributes. We have defined the following node types:
− Basic nodes (They contain a expression or a set of expressions):

∗ BB: this node contains a Basic Block 1 .
∗ LABELED: it is a special kind of BB node that can be a jump target.
∗ FUNCTION CALL: it is a special kind of BB containing a function call.We keep it separated because we need some analyses to determinethe flow behavior of this kind of expression.

− OmpSs nodes (They refer to OmpSs instances in the original code):
∗ PRAGMA DIRECTIVE: it contains a pragma directive.
∗ FLUSH: it contains a flush directive.
∗ BARRIER: it contains a barrier directive.
∗ TASKWAIT: it contains a taskwait directive.

− Structural nodes (They aid the composition and comprehension of thegraph)
1 A Basic Block is a portion of code that has one entry point, meaning no code within it is the destination ofa jump instruction anywhere in the program, and one exit point, meaning only the last instruction can cause theprogram to begin execution code in a different Basic Block.
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∗ ENTRY: it is added at the very beginning of a GRAPH node. Any flowthat traverses the graph goes in through its ENTRY node.
∗ EXIT: it is added at the very end of a GRAPH. Any flow that traversesthe graph goes out through its EXIT node.
∗ GRAPH: node containing a set of nodes structured as an EG. The firstnode in the graph is always an ENTRY, which is the dominator of allthe nodes inside the graph (except itself), and the last node is alwaysan EXIT, which is the post-dominator of all nodes inside the graph(except itself).

− Temporary nodes (They represent simple control structures and they areused only during the construction of the graph. Afterwards, they areremoved as nodes and we only maintain in the EG their flow information):
∗ BREAK: it represents a break statement.
∗ CONTINUE: it represents a continue statement.
∗ GOTO: it represents a goto statement node.

The linked data available and/or mandatory for each node is listed bellow:
− NODE TYPE: this is the type of the node and is one of the values listedabove. This attribute is mandatory for every node.
− OUTER NODE: this is a pointer to the Graph node containing the currentnode. All nodes but the outer most one have an OUTER NODE. For theouter most node (N from the 2-tuple conforming an EG), the OUTER NODEis null.
− STATEMENTS: this is the list of statements contained in the node. Only

Basic nodes have this attribute.
− LABEL: this attribute has different meanings depending on the node itis applied to. For Labeled and Goto nodes, it contains the symbol rep-resenting the label or the jump target, respectively. For Graph nodesrepresenting a block of code, the label contains the statement that cre-ates the block of code; for example, in OpenMP nodes, the label containsthe pragma line of the construct and for for-loop nodes, the label containsthe control of the loop.
− GRAPH TYPE: this attribute only applies for Graph nodes and it containsthe type of the graph node. It can be one from the list below:

∗ EXTENSIBLE GRAPH: this is the most outer node of a set of nodes.There is one and only one node of this kind in every EG and it is the
N value of the 2-tuple representing the EG.
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∗ SPLIT EXPRESSION: it is the result of a statement that has been split inthe CFG due to its flow semantics. It can be, for example, a expressioncontaining inside a function call: in that case a node containing thefunction call is created first, and then follows the node with the wholeexpression; both nodes will be included in a Graph node.
∗ FUNCTION CALL: all Function Call nodes are embedded in a Graphnode for analysis purposes.
∗ CONDITIONAL EXPRESSION: conditional expressions are special state-ments that contain an implicit flow. The different nodes created fromthis kind of expression are embedded in a Graph node.
∗ LOOP: it contains the structure of nodes created from the statementsinside a loop.
∗ OMP PRAGMA: it contains the structure of nodes created from the blockcode related to a pragma directive.
∗ TASK: it contains the structure of nodes created from the block coderelated to a task.

The attributes defined above are those that are created during the construc-tion of the graph. Posterior analyses will add more attributes to the differentnodes. The specific attributes added by each analysis are specified in thesection related to the specific analysis.
5.1.1.2 Edge

An edge is a 2-tuple of < Entry, Exit > where Entry is a pointer to thenode source of the edge and Exit is a pointer to the node target of the edge.It links two nodes unidirectionally. We have defined different kind of edges:
− ALWAYS: this is an edge that connects two nodes accomplishing that, oncethe source node has been executed, the target will always be the verynext to be executed.
− TRUE: this is an edge that connects a source node containing a conditionand a target node containing the very next node to be executed when thecondition is fulfilled.
− FALSE: this is an edge that connects a source node containing a conditionand a target node containing the very next node to be executed when thecondition is not fulfilled.
− CASE: this is an edge connecting the control expression of a switch state-ment with the first node created by a given case of this switch.
− CATCH: this is an edge connecting any expression that might be an excep-tion with the first node created by the handler related to this exception.
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This kind of edge does not imply that the target node will be executed ev-ery time the source node is executed, because some analyses are neededto determine that.

− GOTO: this is an edge connecting a Goto node with a Labeled node.
The linked data available and/or mandatory for each edge is listed below:
− EDGE TYPE: this is the type of the edge and must be a value from the listabove. This attribute is mandatory for every edge.
− IS TASK: it marks the edge as a non flow edge. This edge mark the pointwhere an OpenMP task is declared and the point where a task code issynchronized with the main memory. It entails a different analysis thanthe other edges.
− IS BACK EDGE: it marks an edge as a backward edge encountered in aloop iteration.
5.1.1.3 Example

In Figure 5.2 we show the EG corresponding to the matrix multiply codeof Listing 5.1. Among the different elements shown in the figure, we want toemphasize the loop constructions and the different edges (True and False; theedges remaining without a label are Always edges) generated by the condi-tions. Note that for the loop graph node, the initialization expression remainsoutside. That is because this statement do not belong to the set of statementsrepeated within the loop ranges.
5.1.2 Specifics of OpenMP

Classical analysis must be adapted to capture the parallelism expressedby OpenMP programs as well as the asynchronism expressed by OmpSs.Some parallel representation of the CFG have been already presented [Sar97,HEHC09]. We define an alternative representation of the Parallel Control FlowGraph (PCFG) for OmpSs. The PCFG expressed with the Extensible Graph isbuilt as follows:
− A Graph node is built for every OpenMP constructs like parallel, taskand the worksharings.
− All implicit memory flush operation introduced by the OpenMP directivesare made explicit in the graph.
− For every OpenMP worksharing without a nowait clause we add a Barriernode at the end of the Graph node containing the pragma construct.
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i = 0;i < NB;i++
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FIGURE 5.2: EG for code in Listing 5.1

1 void matmul ( double ∗A ,
2 double ∗B , double ∗C ,
3 unsigned long NB)
4 {
5 i n t i , j , k , I ;
6 f l o a t tmp ;
7 f o r ( i = 0 ; i < NB; i ++)
8 {
9 I = i ∗ NB;
10 f o r ( j = 0 ; j < NB; j ++)
11 {
12 tmp = C [ I+j ] ;
13 f o r ( k = 0 ; k < NB; k++)
14 {
15 tmp += A [ I+k ] ∗ B [ k∗NB+j ] ;
16 }
17 C [ I+j ] = tmp ;
18 }
19 }
20 }

LISTING 5.1: Block partitionedMatrix Multiply

− A barrier operation implies a flush during its execution. We represent thisaction by adding to every barrier node b one flush node as dominator of
b and another flush node as post-dominator of b.

− We add marks at the beginning and the end of every function graph and inthe entry and exit point of every function call, where we assume memoryflushes are done to ensure the correctness of the memory model.
− OmpSs tasks are analyzed in a specific way taking accounting for eithertheir parallelism and the uncertainty they introduce in the parallel flow.
In the following paragraphs we show different examples of codes and thePCFG we generate. We have chosen a set of codes containing different re-markable C++ structures as well as OpenMP and OmpSs directives.We define in Listing 5.2 a simple example of OpenMP sections. The EGgenerated is the one shown in Figure 5.3. A GRAPH node is created for every

section. All the edges exiting from the dominator node of the sections nodeare ALWAYS edges. This means that those codes can be executed in paralleldepending on the availability of threads. All sections are embedded in a GRAPHnode that contains the sections directive. The OpenMP specification says thatthere is an implicit barrier at the end of a sections construct. We add thisbarrier with its respective surrounding FLUSH nodes before the EXIT node.
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In Listing 5.3 we show an example with a combined worksharing (parallel +

for) with and without the presence of a nowait clause. In Figure 5.4 there is theEG resultant of this code. One can see the difference between the loop with a
nowait clause, which finalizes its execution with no synchronization node, andthe loop without the nowait clause, that adds a BARRIER node with its implicit
FLUSH nodes before and after the barrier. At the end of the parallel region, asspecified by the OpenMP model, another BARRIER is inserted before the EXITnode.

1 void sect_example ( )
2 {
3 #pragma omp p a r a l l e l sec t i ons
4 {
5 #pragma omp sec t i on
6 XAXIS ( ) ;
7 #pragma omp sec t i on
8 YAXIS ( ) ;
9 #pragma omp sec t i on

10 ZAXIS ( ) ;
11 }
12 }

LISTING 5.2: OpenMP sections example

1 void para l l e l_ fo r_nowai t_example ( i n t n , i n t m,
2 f l o a t ∗a , f l o a t ∗b , f l o a t ∗y , f l o a t ∗z )
3 {
4 i n t i ;
5 #pragma omp p a r a l l e l
6 {
7 #pragma omp f o r nowait
8 f o r ( i =1; i<n ; i ++)
9 b [ i ] = ( a [ i ] + a [ i −1 ] ) / 2 ;

10

11 #pragma omp f o r
12 f o r ( i =0; i<m; i ++)
13 y [ i ] = sq r t ( z [ i ] ) ;
14 }
15 }

LISTING 5.3: OpenMP worksharing example
In Listing 5.4 we show a code for calculating the pi number using OpenMPtasks. One task is generated for each iteration of a loop contained in a parallelregion. We show in Figure 5.5 the EG built for this code. The critical constructis embedded in a GRAPH node surrounded by two Flush nodes. For the singleconstruct no additional synchronization node is added because of the existenceof a nowait clause. The parallel construct adds a BARRIER with its surrounding

FLUSH nodes. Note the different nature of the edges connecting the task withits dominator and post-dominator. The first corresponds with the schedulingpoint of the task (the first moment where the task can be executed) while thesecond corresponds to the synchronization point of the task (the last momentwhen the task can be executed).
5.2 Use-definition chains

The first step in liveness analysis is to compute, for every node in the graph,which variables are used and/or defined. We follow an algorithm that computesthis information in two ways: from top to bottom, regarding the flow control,and from inside to outside regarding the topology of the graph (a given GRAPHnode will compute recursively the use-definition information of its inner nodesand then will propagate the information to itself). This analysis will add three
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FIGURE 5.3: EG for code in Listing 5.2
FIGURE 5.4: EG for code in Listing 5.3

1 double p i ( i n t n ) {
2 const double fH = 1 . 0 / ( double ) n ;
3 double fSum = 0 . 0 , fX ;
4 i n t i ;
5 #pragma omp p a r a l l e l
6 #pragma omp s ing l e pr i va te ( i ) nowait
7 f o r ( i = 0 ; i < n ; i += 1) {
8 #pragma omp task pr i va te ( fX ) f i r s t p r i v a t e ( i )
9 {

10 fX = f ( fH ∗ ( ( double ) i + 0 . 5 ) ) ;
11 #pragma omp c r i t i c a l
12 fSum += fX ;
13 }
14 }
15 re turn fH ∗ fSum ;
16 }

LISTING 5.4: Pi computation with OpenMP tasks

31



Chapter 5: Analysis

FIGURE 5.5: EG for code in Listing 5.4
new attributes to every node in the graph:
− Upper Exposed (UE): set of variables that are used before being defined
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within the current node.

− Killed (KILL): set of variables that are defined within the current node.
− Undefined behavior (UNDEF): set of variables which we are not able todefine their usage.
When the information is being propagated from inner nodes to its outer

GRAPH node, we follow a recursive depth traversal from the ENTRY node of thegraph until the EXIT node of the graph. The post-condition of the traversal isthat the current UE, KILL and UNDEF sets contains the information of thecurrent node combined with the concatenated information of all its children.Given a specific step of this computation we consider the current node s andthe set the target nodes t1, ..., tn that are reachable from s. The algorithmworks as follows:1. The current sets (UE, KILL and UNDEF) are initialized with the info of s.2. Three auxiliary sets (UE_AUX, KILL_AUX and UNDEF_AUX) are createdconcatenating the info from every node in t1, ..., tn. This concatenationtakes into account including expression such us arrays and classes. Thatmeans for example that, if we find the use of an access of a determinedposition in an array but the whole array has been already used, the accessof the specific position will not be added into the list because it will beredundant. If it happens the contrary, we find the use of a whole arrayand it already existed in the list the use of a specific position, then theaccess to the specific position will be deleted from the list and the accessto the whole array will be added. In addition, during this step, if somevariable is added in the UNDEF_AUX list, this variable or any form of thevariable is deleted from the other two lists (UE_AUX and KILLED_AUX).3. Finally we complete the current sets info with the info computed in thechildren. During this process, any variable appearing in the UNDEF setwill not be propagated from any of the AUX sets to its correspondingcurrent sets. If some variable appears in the KILL set, then it will not bepropagated from UNDEF_AUX to UNDEF or from UE_AUX to UE. The restof variables will be propagated from the AUX sets to the current sets byfollowing the same rules for arrays and classes that have been describedin the previous step.
Since we perform inter-procedural analysis, use-definition chains are com-puted recursively in functions calls. When we find a function call during theanalysis of a graph, we stop analyzing the current graph to analyze the func-tion called. In this situation, one and only one of the following cases must beapplied:
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− We have access to the code of the function call and there is no recursionIf the graph of the called function is not yet built or the use-definitionchains are not yet computed, then, since we have access to the code thatwill be executed in the function call, we do this analysis immediately.Once we have the PCFG and the use-definition information of the calledgraph, we propagate this information to the node containing the functioncall. During this propagation we must transform the usage computed inthe called graph by usage meaningful for the current graph. This meansthat:

I. The usage of the local variables of the called function is not propa-gated to the current graph.II. The usage of the parameters is renamed to the usage of the arguments.III. The usage of global variables is directly propagated to the currentgraph.
− We have access to the declaration of a function call and there is recursionIn this case we cannot proceed in the same way as before because wewould enter in an infinite loop analyzing the same function over and overagain. To detect recursive calls we store in every graph the list of functionscalled in the graph. At the point were a recursive call appears we launch anew analysis that only deals with the variables which are relevant in thecurrent analysis, which are pointed parameters (parameters with pointertype or parameters passed by reference) and global variables. We traversethe recursive function by computing the usage of these specific variablesand then we propagate the information to the current graph as explainedin the previous case ( here we do not have local variables because no infois computed for them).
− We don’t have access to the code of the called function In the case we can-not analyze the code of a function call we cannot define the usage over theglobal variables but still can define the usage of the arguments regardingthe types of the declaration of the function. Only parameters passed byreference or parameters with pointer type will have an undefined behavior.
We introduce in Listing 5.5 a sample code that we will use as example for allthe analysis. This code comes from the floorplan benchmark and it lays downa cell represented by an identifier (id) into a section of a board delimited byfour points (top, bot, lhs, rhs). In Figure 5.6 we show the resultant PCFG withthe information computed during the phase of Use-Definition chains.
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1 s t a t i c i n t lay_down ( i n t id , i b rd board , s t r u c t c e l l ∗ c e l l s ) {
2 i n t i , j , top , bot , lhs , rhs ;
3

4 top = c e l l s [ id ] . top ;
5 bot = c e l l s [ id ] . bot ;
6 l hs = c e l l s [ id ] . l hs ;
7 rhs = c e l l s [ id ] . rhs ;
8

9 f o r ( i = top ; i <= bot ; i ++) {
10 f o r ( j = lhs ; j <= rhs ; j ++) {
11 i f ( board [ i ] [ j ] == 0) board [ i ] [ j ] = ( char ) id ;
12 else return ( 0 ) ;
13 }
14 }
15

16 re turn ( 1 ) ;
17 }

LISTING 5.5: Lay down method from Floorplan benchmark

FIGURE 5.6: EG with Use-Define information for code in Listing 5.5
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5.3 Loop analysis

The major data manipulated in scientific programs is the array. The use-define analysis on a whole array must take into account the existence of loopssurrounding the access to an array. The analysis of arrays is costly in termsof computation and space storage so the methods used in every situation re-quire a compromise between accuracy and complexity. Since we do not aimto implement aggressive optimizations such as auto-parallelization, we havedefined a set of constraints that represent the frame we will use to apply ourloop analysis.What we want with this analysis is to determine which regions or elementsof a given array are accessed in every code segment (where a code segmentcan be a basic block, a loop or a whole procedure). In order to do that weanalyze the loops existing in the code. Specifically, we are interested in theanalysis of induction variables. That is because they are frequently used asarray subscripts and, in that case, we can define the rage of accesses to thearray by defining the range of accesses to the induction variable. When arraysare accessed by constant values, the range access computation is trivial; inthe case the arrays are accessed by non-induction variables, then we are notable to determine the range of accesses by analyzing the loop bounds andit becomes more difficult to discover which positions of the array are beingaccessed across the iteration space.With our PCFG it is easy to determine when we are into a loop constructbecause we have represented the loop with specific nodes. The work here isto determine whether a variable is an induction variable or not. That requiresthe analysis of all the statements within the loop by searching variables thatare increased or decreased by a fixed amount in every iteration or variablesthat are a linear function of another induction variable. We have decided tosimplify this step and work only with for-loop constructs and induction vari-ables that can be found in the control loop. We are missing many other caseslike while-loops or goto control statements, but most of the codes appearingin our benchmarks fulfill our conditions.In order to compute the induction variables and their ranges, we traverse thePCFG looking for for-loop nodes. The information about the induction variablesis stored in a map structure as a 2-tuple of < id, induc_vars >, where id isthe identifier of the loop and induc_vars is the list of induction variables thatfall within the scope of the loop id. Every variable is represented with thetriplet notation < LB, UB, S >, where LB is the lower bound accessed by iv ,
UB is the upper bound accessed by iv and S is the stride used to increment
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or decrement iv in the loop. For every loop we found, we apply the followingalgorithm:
− If we are in a nested loop, we propagate the induction variables computedfor our outer loop to the current loop storing this information in induc_var.
− We traverse the nodes representing the loop control (initialization, condi-tion and next) and we store in induc_var all the variables that are definedthere. In this traverse we compute and we store in the structure the upperand lower bounds, and the stride of the defined variables. Not always wecan compute these limits.
− All variables introduced in induc_var that have incomplete informationare deleted from the structure.
− We traverse the inner statements of the loop by searching possibles re-definitions of the variables remaining in the structure. If some statementmakes a variable to violate the induction variable conditions, then it isdeleted from the structure.
Code in Listing 5.5 contains a 2 nested loops. If we apply loop analysisin this function we will compute two induction variables. In the outer loopwe detect the induction variable i, represented by the triplet [top; bot; 1]. Inthe inner loop, we detect the induction variable j , represented by the triplet[lhs; rhs; 1]. In our records, we store the validity of i for the inner loop, and wedo that by creating a virtual induction variable i′ in the scope of the inner loopwith the same attributes (symbol, i, and triplet, [top; bot; 1]) as the originalinduction variable of the outer loop.Once we know the ranges of the induction variables, we modify the informa-tion computed during Use-Definition analysis to adapt the element informationinto range information. This work consists in traversing the graph looking forfor-loop nodes. In a given loop, for every use of an induction variable as a sub-script, we substitute the single values of the induction variable by the rangevalues computed during the loop analysis. In Figure 5.7 we show the resultof applying this transformation to the lay down example of Listing 5.5. Theaccesses to the matrix board that previously where single values, now havebeen transformed to ranges represented with the same triplets as the inductionvariables. Note here that the occurrences of the induction variable in situa-tions different from an array subscript are not substituted. That is becausethey do not represent a set of memory units, but the change of value in aunique memory unit.
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FIGURE 5.7: EG with Loop Analysis for code in Listing 5.5

5.4 Reaching definitions

We have implemented the reaching definitions data flow analysis in ourPCFG. With the information computed during the Use-Definition analysis andthe Loop Analysis, we are able to determine which definitions potentially reachany node in our graph. We need this information in order to analyze moreaccurately the values of some specific variables after a given iterative constructsuch as the induction variables and variables depending on induction variableslike arrays.We define the reaching definition set of a given node as the set of vari-ables that reach the exit of the node. We will call this set Reach_out. Thecomputation of this set is done traversing forward the graph; for GRAPH nodeswe compute recursively the reaching definitions of the inner nodes and thenwe propagate this information to the outer node, which will have the same
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reaching definitions as its EXIT node. Once we have finished this computation,every node will have a new attribute containing the Reach_out set. When weare not capable to determine the value of a variable at a given node, then thisvariable will have an UNKNOWN VALUE.For codes without any iterative construct nor with back edges, this analy-sis is as trivial as propagate forward the values defined at some point of thegraph until the next definition of the same variable. Nonetheless, the exis-tence of loops increases the difficulty of the analysis because it requires somearithmetic computation with the limits of the loops. Our purpose with thisanalysis is not to implement all cases supported by the C/C++ language, butmainly being able to determine the values of the induction variables when theirbounds are simple expressions such as constants values, symbols or arithmeticfunctions of constants and symbols. We have implemented a calculator for con-stant expressions and a set of rules for algebraic simplification. These ruleswill help us to normalize the arithmetic expressions in the loop boundariesand simplify them in most cases. In Figure 5.8 we show the set of rules that

FIGURE 5.8: Arithmetic simplifications
we have implemented to simplify arithmetic expressions. Understand c, c1 and
c2 as constant values, and t as the tree of a expression (a Nodecl). The leftpart of the implication is the input expression and the right and is the outputexpression. For example, for the first rule (top left of the figure), wheneverwe find a Nodecl of type Addition where the left hand side of the addition isan unrestricted variable and the right hand side of the addition is a constant
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value equal to zero, then we can substitute this expression by an expressionequal to the tree on the left hand side of the assignment.Using once again the example introduced in Listing 5.5, we show in Figure5.9 the values of the Reach_out set for every node. Note the results of applyingthe rules introduced in the previous paragraph. For example, focusing in theouter loop, the values of the induction variable i are different depending on thenode we look at:
− In the node containing the condition of the loop, i takes values in therange top : 1 + bot : 1.
− In the node containing the stride, i takes values in the range 1 + top :1 + bot : 1.
− In any other node within the loop, i takes values int he range top : bot : 1.
− The value of i after the execution of the loop is 1 + bot.

Focusing now in the inner loop, we compute the value of j as unknown at theexit of the GRAPH node because not all branches inside the loop have the samevalue of j . However, since j is a range of values inside the loop, we can computethe ranges in every node using the same technique as used for the variable i.
5.5 Liveness analysis

Liveness analysis is a data flow analysis that computes for each programpoint the variables that may be potentially read before their next write. It isthat a variable is live if it holds a value that may be needed in the future.For this analysis we need the information computed in the previous analysis.We use the commonly used data-flow equations for defining the variables thatare live at the entry (Live_in) and at the exit (Live_out) of every node in thegraph. So, given a node X , the set of upper exposed variables in the node,
UE(X ), and the set of killed variables in the node, KILL(X ), the equations arethe following:

Live_out(X ) = ⋃
Y∈Succ(X ) Live_in(Y ) (Succ(X ) are all nodes reachable from X )

Live_in(X ) = UE(X ) + (Live_out(X )− KILL(X ))These equations are applied backwards from the EXIT node up to the ENTRYnode of the PCFG. This traversal is embedded in a loop iteration that stops
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FIGURE 5.9: EG with Reaching Definitions for code in Listing 5.5

when, after the last two iterations, the liveness information has not changed inany node. In the case of graph nodes, the backward traversal is applied fromits EXIT node until its ENTRY node; then, its Live_in information is obtained fromits ENTRY node and its Live_out information is obtained from its EXIT node.In order to properly keep OpenMP tasks liveness information, we have todo some extra work. For tasks appearing within loop iterations, computing
Live_out as we do for the rest of nodes is not enough because variables withinthe tasks can be used in the task instance of the following iteration. To computethese special variables, we virtually add the task as a child of itself. Withvirtually we mean that no physical edge is added to the task, but we add tothe task Live_out set all these variables that are in the task Live_in set.
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We add these new analysis results to every node in the form of two newattributes:
− Live in: set of variables computed as live at the entry of the node.
− Live out: set of variables computed as live at the exit of the node.
Following with the example introduced in the previous section, the lay downmethod from floorplan benchmark (Listing 5.5), we show in Figure 5.10 the samegraph but now with the information computed during the liveness analysis.

FIGURE 5.10: EG with liveness information for code in Listing 5.5
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This section presents three optimizations that we have undertaken to exploitthe benefits of the analyses described in Chapter 5. As we introduced in theearly chapters of this dissertation, our goal when we decided to implementanalysis in Mercurium compiler was to improve the productivity of OmpSs.Each one of the optimizations we have implemented takes one direction inorder to achieve this objective. In the first case, privatizing shared variableswe can achieve better performance in codes that have many accesses to thesevariables. In the second case, automatically discovering task dependenciesdoes not produce a better performance but it enhances the programmabilityof OmpSs releasing the user from the task of doing this job manually. Wepresent the details of each approach and the results we have obtained for aset of benchmarks.
6.1 Privatization: optimizing shared variables

6.1.1 Scope of the optimization

The OpenMP model defines the existence of two different contexts for vari-ables living in parallel environments: private and shared. Variables in a private
context are hidden from other threads; this means that each thread has its ownprivate copy of the variable and modifications made by a thread are not visibleto other threads. On the contrary, variables in a shared context are visible toall threads running in associated work teams.In OpenMP each directive is associated to a structured block that defines anew scope (in the case of directives in declaration level, this block will be thecode executed in a given call to the declared function). Each variable refer-enced in the structured block has an original variable existing in the programimmediately outside the construct. Each access to a shared variable in thestructured block becomes a reference to the original variable. For each pri-vate variable referenced in the structured block, a new version of the originalvariable (of the same type and size) is created in memory for each task thatcontains code associated with the directive.As it is explained in Section 4.1, OpenMP defines for shared variables arelaxed memory model where threads may have regions where they define theirown temporary view of the memory. Threads temporary view is not required
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to be consistent with main memory at every moment of execution. OpenMPguarantees consistency across the local memories and the main memory bythe flush operation. The completion of a flush executed by a thread is definedas the point at which all the variables involve are synchronized with mainmemory. A memory flush operation can be performed in two different ways:
− OpenMP provides a flush directive with the following syntax:

#pragma omp flush [(list)]where list specifies the set of items to which the flush is applied on.
− OpenMP implicitly performs memory flushes in the following situations:

∗ During a barrier region.
∗ At entry to and at exit from parallel, critical and ordered regions.
∗ At exit from worksharing regions unless a nowait clause is present.
∗ A entry to and at exit from combined parallel worksharing regions.
∗ During omp_set_lock and omp_unset_lock regions.
∗ During omp_test_lock, omp_set_nest_lock, omp_unset_nest_lock and
omp_test_nest_lock regions, if the region causes the lock to be set orunset.
∗ Immediately before and immediately after every task scheduling point.
∗ A flush region with a list is implied at the entry to and at the exit from
atomic regions, where the list contains only the variable updated inthe atomic construct.

Regarding to a shared variable, a flush region ensures the following state-ments:
− At the beginning of the region, a flush enforces the value of the variableto be consistent in main memory and all the local views.
− At the end of the region, a flush enforces the value of the variable to besynchronized across the memories.
Shared variables are represented in the Mercurium compiler as pointers tothe original memory locations. In Listing 6.1 we show a matrix multiplicationcode parallelized with the OpenMP parallel construct. In Listing 6.2 we showa snippet of code generated by Mercurium. This code contains the outlinedfunction called _smp__ol_matmul_0 corresponding to the block of code embed-ded in a parallel region in the original code. The original method matmul hasbeen transformed into a set of instructions allowing the communication with theNanos++ runtime library. We show only the lines that are useful for our pur-pose, which are the creation of the data structure with _nx_data_env_0_t_tag
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called ol_args that contains the parameters needed for the execution of theoutlined function and the different calls to the Nanos++ specific functions al-lowing the creation of parallelism. Conservatively, the compiler uses sharedpointers to the matrices. While in the original code, the matrix multiplicationis done over the matrices A, B and C , in the outlined parallel version, every ac-cess to the matrix is done by referencing the access through a shared pointer.The overhead paid for using shared variables is proportional to the number ofaccesses to this variable. In this case, it supposes doing three extra referencesfor each iteration of the three loops.

1 i n t MATSIZE = 0 ;
2 void matmul ( double ∗A , double ∗B , double ∗C) {
3 i n t i , j , k ;
4

5 #pragma omp p a r a l l e l f o r p r i va te ( i , j , k )
6 f o r ( i = 0 ; i < MATSIZE ; i ++)
7 f o r ( j = 0 ; j < MATSIZE ; j ++)
8 f o r ( k = 0 ; k < MATSIZE ; k++)
9 C [ i ] [ j ] += A [ i ] [ k ] ∗ B [ k ] [ j ] ;

10 }
LISTING 6.1: Matrix multiply with OpenMP parallel

The motivation of privatizing shared variables comes from the fact, confirmedin the previous example, that using shared variables when it is not indispens-able to do so, introduces unnecessary overheads without bringing any benefit.However, incorrectly privatizing a variable may result in an undefined valuefor the variable outside the construct. The key is to determine when a sharedvariable can be privatized. We can take advantage of the characteristics of theOpenMP memory model and the flush operations described previously to statethe following privatization criterion:
“If we are capable of guaranteeing that there is a region whereno flushes are performed, then, each thread can privatize a sharedvariable in that region.”

By the methodology we use during the construction of the PCFG, all flushoperations are made explicit in the graph. In addition, to ensure the correctnessof the OpenMP memory model, we suppose flush operations at the entry andat the exit of every function call and we add marks in the code indicatingthis assumption. With this information we can define which are the regionswhere no flush are performed besides the flush at the entry to the region andthe flush at the exit from the region. We call these regions no-flush regions.Now we are able to use the results of the liveness analysis to know whichvariables are live at any point of the flow and combine this data to decide whichprivatized shared variables within a no-flush region need to be initialized with
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the content of the main memory. The liveness analysis also give us informationabout the privatized variables that need to be flushed at the end of the no-flushregion. It is important to remark that we are applying this optimization in ahigh-level representation of the program, when the code is not yet specializedfor a particular architecture.
1 i n t MATSIZE = 1000 ;
2 typedef s t r u c t _nx_data_env_0_t_tag {
3 nanos_ loop_ in fo_ t l o o p _ i n f o ;
4 i n t ∗MATSIZE_0 ;
5 double ∗∗∗A_0 ;
6 double ∗∗∗B_0 ;
7 double ∗∗∗C_0 ;
8 } _nx_data_env_0_t ;
9

10 s t a t i c void _smp__ol_matmul_0 ( _nx_data_env_0_t ∗ const _ _ r e s t r i c t _ _ _args ) {
11 i n t i , j , k ;
12 i n t ∗MATSIZE_0 = ( i n t ∗ ) ( _args−>MATSIZE_0 ) ;
13 double ∗∗∗A_0 = ( double ∗∗∗ ) ( _args−>A_0 ) ;
14 double ∗∗∗B_0 = ( double ∗∗∗ ) ( _args−>B_0 ) ;
15 double ∗∗∗C_0 = ( double ∗∗∗ ) ( _args−>C_0 ) ;
16 i n t _nth_lower = _args−>l o o p _ i n f o . lower ;
17 i n t _nth_upper = _args−>l o o p _ i n f o . upper ;
18 i n t _nth_step = _args−>l o o p _ i n f o . step ;
19

20 f o r ( i = _nth_lower ; i <= _nth_upper ; i += _nth_step )
21 f o r ( j = 0 ; j < (∗MATSIZE_0 ) ; j ++)
22 f o r ( k = 0 ; k < (∗MATSIZE_0 ) ; k++)
23 (∗C_0 ) [ i ] [ j ] += (∗A_0 ) [ i ] [ k ] ∗ (∗B_0 ) [ k ] [ j ] ;
24 }
25

26 void matmul ( double ∗∗A , double ∗∗B , double ∗∗C) {
27 . . .
28 _nx_data_env_0_t ∗ o l_args = ( _nx_data_env_0_t ∗ ) 0 ;
29 . . .
30 er r = nanos_create_sl iced_wd (&wd , 1 , _ol_matmul_0_devices , s i z e o f ( _nx_data_env_0_t ) ,
31 __a l i gno f __ ( _nx_data_env_0_t ) , ( void ∗∗ ) &ol_args , nanos_current_wd ( ) , s t a t i c _ f o r ,
32 s i z e o f ( nanos_s l i c e r _da ta_ f o r _ t ) , _ _a l i gno f __ ( nanos_s l i c e r _da ta_ f o r _ t ) ,
33 ( nanos_s l i c e r _ t ∗ ) &s l i c e r _ d a t a _ f o r , &props , 0 , ( nanos_copy_data_t ∗∗ ) 0 ) ;
34 . . .
35 ol_args−>MATSIZE_0 = &(MATSIZE ) ;
36 ol_args−>A_0 = &(A ) ;
37 ol_args−>B_0 = &(B ) ;
38 ol_args−>C_0 = &(C ) ;
39 s l i c e r _ d a t a _ f o r−>_lower = 0 ;
40 s l i c e r _ d a t a _ f o r−>_upper = (MATSIZE ) − 1 ;
41 s l i c e r _ d a t a _ f o r−>_step = 1 ;
42 s l i c e r _ d a t a _ f o r−>_chunk = 0 ;
43 er r = nanos_submit (wd , 0 , ( nanos_dependence_t ∗ ) 0 , ( nanos_team_t ) 0 ) ;
44 . . .
45 }
46 nanos_omp_barrier ( ) ;
47 }

LISTING 6.2: Mercurium outline for code in Listing 6.1

We have implemented the analysis for these cases where the shared vari-ables are not used beyond the point of the privatization. A possible extensionof this optimization consists on the research of portions of code were it is pos-
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sible the privatization of a variable that must be flushed afterwards into theshared memory. In this case, we should define a trade-off between the costof privatizing and flushing a variable and the cost of the shared access to thevariable, which will depend on the number of accesses performed to the sharedvalue.

6.1.2 The results

For this test we have used a machine with 24 Intel Xeon E7450 x86-64 pro-cessors of 2.50GHz machine with SUSE Linux. In order to test the opportunitiesof the shared variables privatization we have chosen a set of different bench-marks containing a great number of shared variables accesses. We have usedthe Mercurium compiler and GCC as the back-end compiler and for all theexecutions, both the original and the optimized versions, with have used -O3level of optimization.
6.1.2.1 Matrix multiplication

In Listings 6.1 and 6.2 we have introduced respectively the code of a matrixmultiplication algorithm parallelized with the OpenMP parallel construct andthe output originally generated by Mercurium for this input code. In Listing6.3 we present the meaningful parts of the optimized version of the translationgenerated by Mercurium once the privatization has been implemented. Duringthe analysis, the compiler detects that the access to the three matrices A, Band C can be privatized, as well as the access to the global variable MATSIZE .It makes that decision because all these variables are not live after the callto the _smp__ol_matmul_0 method. Therefor, in the optimized version, thedata structure _nx_data_env_0_t_tag is created with the private versions ofthe variables. Thus, we have avoided three extra references for each iterationof the three loops.Matrix multiply performance is highly dependent from the micro-architecturebecause of the repeated number of accesses to the same of contiguous memorypositions. For our optimization in particular, as big is the matrix, as muchbenefit we expect to obtain from the privatization. But the size consequencesare sensible to other aspects like cache conflicts, access to slower levels thanL1 in the cache hierarchy, etcetera. In order to avoid this kind of interferencesin our results, we have chosen a matrix size, 2KB x 2KB, which perfectly fits inthe L1 cache, 12MB. We have tested the original translation and the optimizedtranslation for both serial and parallel codes from 1 thread up to 16 threads.
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1 typedef s t r u c t _nx_data_env_0_t_tag {
2 nanos_ loop_ in fo_ t l o o p _ i n f o ;
3 i n t MATSIZE_0 ;
4 double ∗∗A_0 ;
5 double ∗∗B_0 ;
6 double ∗∗C_0 ;
7 } _nx_data_env_0_t ;
8

9 s t a t i c void _smp__ol_matmul_0 ( _nx_data_env_0_t ∗ const _ _ r e s t r i c t _ _ _args ) {
10 i n t MATSIZE_0 = ( i n t ) ( _args−>MATSIZE_0 ) ;
11 double ∗∗A_0 = ( double ∗∗ ) ( _args−>A_0 ) ;
12 double ∗∗B_0 = ( double ∗∗ ) ( _args−>B_0 ) ;
13 double ∗∗C_0 = ( double ∗∗ ) ( _args−>C_0 ) ;
14 . . .
15 f o r ( i = _nth_lower ; i <= _nth_upper ; i += _nth_step )
16 f o r ( j = 0 ; j < MATSIZE_0 ; j ++)
17 f o r ( k = 0 ; k < MATSIZE_0 ; k++)
18 C_0 [ i ] [ j ] += A_0 [ i ] [ k ] ∗ B_0 [ k ] [ j ] ;
19 }
20

21 void matmul ( double ∗∗A , double ∗∗B , double ∗∗C) {
22 . . .
23 ol_args−>MATSIZE_0 = MATSIZE ;
24 ol_args−>A_0 = A ;
25 ol_args−>B_0 = B;
26 ol_args−>C_0 = C ;
27 . . .
28 }

LISTING 6.3: Mercurium optimized outline for code in Listing 6.1

In Figure 6.1 we show the execution time comparison among the differentexecutions. As we expected, the optimized version reduces the execution timeagainst the base version; that is because of the reduction of memory accessdue to the use of non-shared variables. In Figure 6.2 we can observe theperfect scalability we achieve with the optimized version, although the speed-up obtained with the unoptimized version is close to being perfect. In this chartwe show the gain with the optimized version in relation to the original versionas well. It is close to the 1% an it is stable while we scale the application.

FIGURE 6.1: Matrix multiply execution time FIGURE 6.2: Matrix multiply speed-up & gain
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6.1.2.2 Jacobi

FIGURE 6.3: Jacobi dependencies

The 2D Jacobi iteration is an stencil algorithm thatcomputes the arithmetic mean of a cell’s four neigh-bors, as it is showed in Figure 6.3. We have used theparallel version of this algorithm implemented by us-ing the OpenMP parallel construct that is showed inListing 6.4. The most outer loop repeats the compu-tation of the Jacobi iteration in a 2D matrix and it isparallelized among the threads in the current team.The two nested inner loops implement the Jacobi it-eration are private for each one of the threads.
1 s t a t i c void j a c o b i ( f l o a t ∗∗ a , f l o a t ∗∗ b ) {
2 #pragma omp p a r a l l e l
3 {
4 f o r ( i n t i t e r = 0 ; i t e r < ITERS ; i t e r ++) {
5 i n t i , j ;
6 #pragma omp f o r p r i va te ( i , j )
7 f o r ( i = 1 ; i < N − 1 ; i ++)
8 f o r ( j = 1 ; j < N − 1 ; j ++)
9 b [ i ] [ j ] = 0 . 25 ∗ ( a [ i −1 ] [ j ] + a [ i +1 ] [ j ] + a [ i ] [ j −1] + a [ i ] [ j + 1 ] ) ;
10 swap ( a , b ) ;
11 }
12 }
13 }

LISTING 6.4: Jacobi iteration with OpenMP parallel

In the same line as with the matrix multiply, we have obtained an improve-ment in the performance of the optimized version. In Figure 6.4 we show thedifferences in the execution time for different executions of the two versionsboth serial and parallel from 1 up to 24 threads and as it happened in theprevious example, we reduce the execution time with the optimization. But thetrend is to equalize the time of the non-optimized version while we increasethe number of threads. Regarding on Figure 6.5, we can observe that the ap-plication is far from obtaining a perfect speed-up as we scale the number ofthreads. That fact occurs most specially from 16 threads forth. The reason ofthis impasse is that the application reaches the limits of the memory bandwidthof the machine.
6.1.2.3 Vector scan

Vector scan is an approach to parallelize a computation in a vector which apriori is not parallel. The input of the algorithm is a vector of size N and theoutput is a vector of size N where each position pi,i ∈[0..N−1] is the summation
49



Chapter 6: OmpSs optimizations

FIGURE 6.4: Jacobi execution time FIGURE 6.5: Jacobi speed-up & gain

of all elements pj,j ∈[0..i−1]. The code of the parallel version is shown in Listing6.5.
1 void scan ( elem_t∗ output , elem_t∗ input , i n t n )
2 {
3 i n t log2n = log ( n ) / log ( 2 ) ;
4 i n t d , k ;
5

6 #pragma omp f o r
7 f o r ( d = 0 ; d < n ; d++ )
8 output [ d ] = input [ d ] ;
9

10 f o r ( d = 0 ; d < log2n ; d++ ) {
11 i n t s = 1 << ( d+1) ;
12 i n t s2 = 1 << ( d ) ;
13 #pragma omp f o r f i r s t p r i v a t e ( s , s2 )
14 f o r ( k = 0 ; k < n ; k += s )
15 output [ k+s−1] += output [ k+s2 −1 ] ;
16 }
17

18 output [ n − 1 ] = 0 ;
19 f o r ( d = log2n − 1 ; d >= 0 ; d−− ) {
20 i n t s = 1 << ( d+1) ;
21 i n t s2 = 1 << ( d ) ;
22 #pragma omp f o r f i r s t p r i v a t e ( s , s2 )
23 f o r ( k = 0 ; k < n ; k += s ) {
24 elem_t t = output [ k+s2 −1 ] ;
25 output [ k+s2−1] = output [ k+s−1 ] ;
26 output [ k+s−1] = output [ k+s−1] + t ;
27 }
28 }
29

30 #pragma omp taskwai t
31 }

LISTING 6.5: Vector scan computation with OpenMP parallel

We have tested the performance and scalability of the base and the opti-mized version as we did with the other examples. The performance resultsare shown in Figure 6.6. We can observe the reduction of the execution timeobtained by the optimized version against the base version. In Figure 6.7 we
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show the scalability and the gain. The values bellow one in the speed-upobtained before the barrier of the 8 threads are due to the fact that the paral-lelization of this code requires the magnitude in the array and the number ofthreads executing in parallel to be large in order to perceive the profit of theparallelization. It is not the case of the executions between 1 and 4 threadsof the two parallel versions, which work out to be slower than the serial ver-sion. Regarding on the gain, we can see that, when the computation time isdominated by the memory accesses (between 1 and 4 threads), the optimiza-tion results in almost a gain of the ten percent. From 8 threads and forth, thebenefits of the optimization are hide by the benefits of the parallelization.

FIGURE 6.6: Scan execution time comparison FIGURE 6.7: Scan speed-up comparison

6.2 Automatic scoping of variables in tasks

6.2.1 Scope of the optimization

The process of automatically defining the scope of the variables in a parallelregion is tedious and error-prone. We can substantially improve the produc-tivity of our programming model leaving this responsibility to the compiler. Linet al. [LTaMC04] proposed a solution for the auto-scoping problem within syn-chronous parallel regions in OpenMP. They defined a set of rules that, appliedto the variables appearing in the parallel region, allow determining the properscope of the variables. They define four possible values, which are PRIVATE,
LASTPRIVATE, REDUCTION and SHARED. When the compiler is not able to decidethe scope of a variable, then the variable is not auto-scoped.Based on this work, we have defined an algorithm that solves the scopingproblem in presence of asynchronous parallelism (i.e. OpenMP tasks). Theuncertainty and the semantics introduced by OpenMP tasks requires differentrules that the ones applied when the parallelism is synchronous. The basic

51



Chapter 6: OmpSs optimizations
differences we have taken into account to develop our method are:
− The uncertainty about the exact moment when the task will be executedagainst the determinism of the synchronous parallel regions forces us todefine the correct region of code where a data race can appear, while forparallel regions this region is perfectly defined by the parallel construct.This code should be not sequential, since tasks scheduled in different andnon-contiguous points of the code can be executed in parallel.
− OpenMP task construct does not admit lastprivate and reduction clauses.
− PRIVATE variables can be specialized into FIRSTPRIVATE variables when theinput value is used.

Taking into consideration these facts, we have defined the following methodol-ogy for determining the auto-scoping of the variables within a task construct:
1. Traverse the PCFG looking for task nodes. Given a task t and its schedul-

ing point:2. Determine the different regions that interfere in the analysis of t:
− One region is the one defined by the code in the encountered threadthat can potentially be executed in parallel with the task. This regionis defined by two points:
∗ Scheduling: is the point where the task is scheduled. Any previousaccess by the encountering thread to a variable appearing in thetask is irrelevant when analyzing the task because it is alreadyexecuted.
∗ Next_sync: is the point where the task is synchronized with therest of the threads in execution. This point can only be a barrieror a taskwait. Here we take into account that taskwait constructsonly enforces the synchronization of tasks that are children of thecurrent task region.

− Other regions are the ones enclosed in tasks that can be executed inparallel with t. We will call these tasks ti, i∈[0..T ] and the region ofcode where we can find tasks in this condition is defined by:
∗ Last_sync: is the immediately previous point to the schedulingpoint where a synchronization enforces all previous executions tobe synchronized. We can only assure this point with a barrier andin specific cases with a taskwait. We only can trust the taskwait ifwe know all the code executed previously and we can assure thatthe current task region has not generated grandchild tasks.
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∗ Next_sync: is the same point as explained for the analysis of theencountered thread.In order to simplify the reading of the algorithm bellow, from now on wewill talk about the region defined between the scheduling point and the

next_sync point and the different regions defined by the tasks ti, i∈[0..T ] asone unique region defined by the points:
− init, referencing both scheduling and any entry point to the tasks

ti, i∈[0..T ].
− end, referencing both next_sync and any exit point to the tasks ti, i∈[0..T ].3. For each v scalar variable appearing within the task t:(a) If we cannot determine the type of access (read or write) performedover v either within the task or between init and end because thevariable appears as a parameter in a function call that we do nothave access to, then v is scoped as UNDEFINED.(b) If v is not used between init and end, then:i. If v is only read within the task, then v is scoped as FIRSTPRIVATE.ii. If v is written within the task, then:A. If v is live after end, then v is scoped as SHARED.B. If v is dead after end, then:

− If the first action performed in v is a write, then v is scopedas PRIVATE.
− If the first action performed in v is a read, then v is scopedas FIRSTPRIVATE.(c) If v is used between init and end, then:i. If v is only read in both between init and end and within the task,then the v is scoped as FIRSTPRIVATE.ii. If v is written in either between init and end or within the task,then we look for data race conditions (see 6.2.1.1 for the detailsabout data race analysis), thus:A. If we can assure that no data race can occur, then v is scopedas SHARED.B. If it can occur a data race condition, then we tag v as a RACE.At the end of the analysis we will decide how do we deal withthese variables.4. For each use ai, i∈[0..N] (where N is the number of uses) of an array variable

a appearing within the task t.
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(a) We apply the methodology used for the scalars.(b) Since OpenMP does not allow different scopes for the subparts ofa variable, then we have to mix all the results we have get in theprevious step. In order to do that we will follow the rules bellow:i. If the whole array a or all the parts ai have the same scope sc,then a is scoped as sc.ii. If there are different regions of the array with different scopes,then:A. If some ai has been scoped as UNDEFINED then a is scoped as

UNDEFINED.B. If at least one ai is FIRSTPRIVATE and all aj, j∈[0..N] where j! = iare PRIVATE, then a is scoped as FIRSTPRIVATE.C. If at least one ai is SHARED and all aj, j∈[0..N] where j! = i are
PRIVATE or FIRSTPRIVATE, then, fulfilling the sequential consis-tency rules, a is scoped as SHARED.5. NOTE: If we cannot determine the init point, then we cannot analyze thetask because we do not know which regions of code can be executed inparallel with t.6. NOTE: If we cannot determine the end point, then we can only scope thosevariables that are local to the function containing t.7. NOTE: This algorithm is not dealing with aggregates.

When we are executing auto-scoping analysis, variables must be classifiedinto PRIVATE, FIRSTPRIVATE or SHARED. Variables which has been deter-mined as RACE have to be classified. Since OpenMP standard says that theoccurrence of a data race implies the result of the program to be unspecifiedand this is not the behavior we expect for a program, then auto-scoping anal-ysis will privatize all the variables classified as RACE. So, given a variable vclassified as RACE, then:
− If the first action performed in v within the task is a write, then v is scopedas PRIVATE.
− If the first action performed in v within the task is a read, then v is scopedas FIRSTPRIVATE.
6.2.1.1 Data race conditions

Data race conditions can appear when two threads can access to the samememory unit at the same time and at least one of these accesses is a write.
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In order to analyze data race conditions in the process of auto-scoping thevariables of a task we have to analyze the code appearing in all regions de-fined between the init and end points described in the previous section. Anyvariable v appearing in two different regions where at least one of the accessesis a write and none of the two accesses is blocked by either and atomic con-struct, a critical construct or a lock routine (omp_init_lock / omp_destroy_lock,
omp_set_lock / omp_unset_lock), can trigger a data race situation.

6.2.2 The results

We have tested the auto-scoping algorithm in a set of benchmarks. Weexplain the results in the sections bellow.
6.2.2.1 Fibonacci

Fibonacci is a recursive algorithm that computes a sequence of integerscalled Fibonacci numbers. Auto-scoping analysis applied to the algorithmshown in Listing 6.6 results as follows:
− Firstprivate: n.
− Shared: x, y.Variable n is firstprivatized because it is only read inside the task and nosimultaneous code to the task writes to this variable. Instead, variables x and

y are shared as there is no data race condition with them (a taskwait in everylevel of recursion avoids multiple accesses to the same variable at the sametime) and their values are live out of the task. This is the result we expected.
1 i n t f i b ( i n t n ) {
2 i n t x , y ;
3 i f ( n < 2 ) re turn n ;
4

5 #pragma omp task unt ied de fau l t (AUTO)
6 x = f i b ( n − 1 ) ;
7 #pragma omp task unt ied de fau l t (AUTO)
8 y = f i b ( n − 2 ) ;
9 #pragma omp taskwai t

10

11 re turn x + y ;
12 }
13

14 void f i b _ p a r ( i n t n ) {
15 #pragma omp p a r a l l e l
16 #pragma omp s ing l e
17 par_res = f i b ( n ) ;
18 }

LISTING 6.6: Fibonacci code from BOTS benchmarks
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6.2.2.2 Floorplan

Floorplan is an optimizing code that computes the optimal placement of cellsin a floorplan. In Listing 6.7 we show the code of the main function. When werun the auto-scoping analysis in the floorplan code we obtain the followingclassification:
− Private: area, footprint.
− Firstprivate: i, j, NW S, id, FOOTPRINT , &footprint, CELLS, BOARD.
− Shared: nnc.
− Undefined: N, MIN_AREA, MIN_FOOTPRINT , BEST_BOARD, board.
− Race: area.

First of all, we explain the UNDEFINED results. N, MIN_AREA, MIN_FOOTPRINTand BEST_BOARD are global variables; since the method memcpy, not ac-cessible to us, is called in the function, and these global variables are notdefined before the call to memcpy, then they have an undefined behavior.
board is a parameter passed by reference to the method memcpy; as it hap-pened with the global variables, we do not know which is the behavior of thisvariable, so we tag it as UNDEFINED.The variable nnc is tagged as SHARED because its use is protected with an
atomic construct, so it can not produce data race, and the value is live out ofthe task.We detect a possible data race in the access to the variable area. Thisvariable is tagged as RACE. At the end of the analysis, the variable is privatizedto avoid the data race. This privatization causes the variable to be PRIVATEbecause the first use of the variable within every thread is a write. Variable
footprint is PRIVATE because the task kills the two first positions of the arrayand the rest is never used.Finally, regarding to the FIRSTPRIVATE set, we see variables that, in thiscase, are only used within the task. These are NW S, which appears with theexact range of accesses performed regarding to the most significant dimension(the access to the less significant in constant). Variables CELLS and BOARDare passed by value to the method memcpy, so they are just used within thetask. The address of the variable footprint is passed by value to the recursivecall to add_cell, so this address is FIRSTPRIVATE.This were the results we expected.
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1 void compute_ f loorp lan ( void ) {
2 coor f o o t p r i n t ;
3 f o o t p r i n t [ 0 ] = 0 ;
4 f o o t p r i n t [ 1 ] = 0 ;
5 bots_number_of_tasks = add_ce l l ( 1 , f o o t p r i n t , board , g c e l l s ) ;
6 }
7

8 s t a t i c i n t add_ce l l ( i n t id , coor FOOTPRINT , ib rd BOARD, s t r u c t c e l l ∗CELLS ) {
9 i n t i , j , nn , area , nnc , nnl ;

10 i b rd board ;
11 coor f o o t p r i n t , NWS[DMAX ] ;
12 nnc = nnl = 0 ;
13

14 f o r ( i = 0 ; i < CELLS [ id ] . n ; i ++) {
15 nn = s t a r t s ( id , i , NWS, CELLS ) ;
16 nnl += nn ;
17 f o r ( j = 0 ; j < nn ; j ++)
18 #pragma omp task unt ied autodeps
19 {
20 s t r u c t c e l l c e l l s [N+1 ] ;
21 memcpy ( c e l l s , CELLS , s i z e o f ( s t r u c t c e l l ) ∗ (N+ 1 ) ) ;
22 c e l l s [ id ] . top = NWS[ j ] [ 0 ] ;
23 c e l l s [ id ] . bot = c e l l s [ id ] . top + c e l l s [ id ] . a l t [ i ] [ 0 ] − 1 ;
24 c e l l s [ id ] . l hs = NWS[ j ] [ 1 ] ;
25 c e l l s [ id ] . rhs = c e l l s [ id ] . l hs + c e l l s [ id ] . a l t [ i ] [ 1 ] − 1 ;
26 memcpy ( board , BOARD, s i z e o f ( i b rd ) ) ;
27

28 i f ( ! lay_down ( id , board , c e l l s ) )
29 goto _end ;
30

31 f o o t p r i n t [ 0 ] = max (FOOTPRINT [ 0 ] , c e l l s [ id ] . bot +1) ;
32 f o o t p r i n t [ 1 ] = max (FOOTPRINT [ 1 ] , c e l l s [ id ] . rhs +1) ;
33 area = f o o t p r i n t [ 0 ] ∗ f o o t p r i n t [ 1 ] ;
34

35 i f ( c e l l s [ id ] . next == 0) {
36 i f ( area < MIN_AREA) {
37 #pragma omp c r i t i c a l
38 i f ( area < MIN_AREA) {
39 MIN_AREA = area ;
40 MIN_FOOTPRINT [ 0 ] = f o o t p r i n t [ 0 ] ;
41 MIN_FOOTPRINT [ 1 ] = f o o t p r i n t [ 1 ] ;
42 memcpy (BEST_BOARD, board , s i z e o f ( i b rd ) ) ;
43 }
44 }
45 } else i f ( area < MIN_AREA) {
46 #pragma omp atomic
47 nnc += add_ce l l ( c e l l s [ id ] . next , f o o t p r i n t , board , c e l l s ) ;
48 }
49 See also the s p e c i a l i z a t i o n o f the v a r i a b l e
50 _end : ;
51 }
52 }
53

54 #pragma omp taskwai t
55 bots_number_of_tasks = nnc + nnl ;
56 }

LISTING 6.7: Floorplan code from BOTS benchmarks

6.2.2.3 Nqueens

Nqueens is a search algorithm that finds a solution of the N Queens problem.In Listing 6.8 we present the algorithm. The auto-scoping analysis performedin this benchmark computes, as it was expected, the following information:
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− Firstprivate: i, j, mycount, n, a.

Variables i, j, n are only used within the task and also outside the task; sincethe values are not modified, then we make them PRIVATE. mycount is privatizedbecause the use of this variable can occur concurrently in two different tasks(recursive call to nqueens) and the access is not restricted, then there can bea data race condition and we privatize the variable; since the value is alwaysused before being defined, then we define mycount as FIRSTPRIVATE. Variable
a is is passed by value to the function call to memcpy, and this value is neverused in a concurrent section of code that executes at the same time as thetask, then we make the variable FIRSTPRIVATE.

1 void nqueens ( i n t n , i n t j , char ∗a , i n t ∗ s o l u t i o n s ) {
2 i n t i ;
3

4 i f ( n == j ) {
5 mycount++;
6 re turn ;
7 }
8

9 f o r ( i = 0 ; i < n ; i ++) {
10 #pragma omp task unt ied de fau l t ( auto )
11 {
12 char ∗ b = a l l o ca ( n ∗ s i z e o f ( char ) ) ;
13 memcpy ( b , a , j ∗ s i z e o f ( char ) ) ;
14 b [ j ] = ( char ) i ;
15 i f ( ok ( j + 1 , b ) )
16 nqueens ( n , j + 1 , b ) ;
17 }
18 }
19 }

LISTING 6.8: Nqueens code from BOTS benchmarks
6.2.2.4 Cholesky

Cholesky decomposition is an algorithm for linear algebra programming. Wepresent in Listing 6.9 an implementation of the cholesky solution with differenttasks. Applying the auto-scoping algorithm to this code returns the followingclassification:
− First, second, fifth and sixth tasks:

∗ Firstprivate: j, jj
∗ Race: a

− Third and fourth tasks:
∗ Firstprivate: j
∗ Race: aVariables j and jj are only used within the tasks and no other statement,inside or outside the tasks can create a data race condition, so this variablesare scoped as FIRSTPRIVATE. After the computation, variable a is defined as RACE
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because multiple accesses to the same array can be done at the same time,being some of them writes. Because of that, we must privatize the variable.Since some of the values of a are first read and some others are first write, wescope the variable as FIRSTPRIVATE. We obtain the result we expected.

1 void cholesky ( f l o a t a [NUM_ELEMS ] [ NUM_ELEMS ] )
2 {
3 f o r ( i n t j j = 0 ; j j < NUM_ELEMS; j j += BLOCK_SIZE∗ ) {
4 f o r ( i n t j = j j ; j < MIN(NUM_ELEMS, j j + BLOCK_SIZE ) ; j ++) {
5 #pragma omp task / / 1
6 f o r ( i n t i = j + 1 ; i < ( j j + BLOCK_SIZE ) ; i ++)
7 f o r ( i n t k = 0 ; k < j ; k++)
8 a [ i ] [ j ] = a [ i ] [ j ] − a [ i ] [ k ] ∗ a [ j ] [ k ] ;
9

10 #pragma omp task / / 2
11 f o r ( i n t i = ( j j + BLOCK_SIZE ) ; i < NUM_ELEMS; i ++)
12 f o r ( i n t k = 0 ; k < j ; k++)
13 a [ i ] [ j ] = a [ i ] [ j ] − a [ i ] [ k ] ∗ a [ j ] [ k ] ;
14

15 #pragma omp task / / 3
16 f o r ( i n t k = 0 ; k < j ; k++)
17 a [ j ] [ j ] = a [ j ] [ j ] − a [ j ] [ k ] ∗ a [ j ] [ k ] ;
18

19 #pragma omp task / / 4
20 a [ j ] [ j ] = sq r t ( a [ j ] [ j ] ) ;
21

22 #pragma omp task / / 5
23 f o r ( i n t i = j + 1 ; i < ( j j + BLOCK_SIZE ) ; i ++)
24 a [ i ] [ j ] = a [ i ] [ j ] / a [ j ] [ j ] ;
25

26 #pragma omp task / / 6
27 f o r ( i n t i = ( j j + BLOCK_SIZE ) ; i < NUM_ELEMS; i ++)
28 a [ i ] [ j ] = a [ i ] [ j ] / a [ j ] [ j ] ;
29 }
30 }
31

32 #pragma omp taskwai t
33 }

LISTING 6.9: Cholesky code
6.2.2.5 Stencil

The code presented in Listing 6.10 is an stencil algorithm using and definingdifferent regions in a matrix. Applying the auto-scoping algorithm we obtain,as we expected, the following result:
− Firstprivate: I, J, iter, A.

Variables I, J, iter are FIRSTPRIVATE because they are only used within the taskand there is not a statement that can cause a data race in the code outsidethe task. Variable A is tagged as RACE because, even if many of the accessesto the array are reads, there is one access that can cause different tasks towrite to the same memory location at the same time. Afterwards, variable A isprivatized to avoid the data race and, since some of the access are first read,then the variable is FIRSTPRIVATE.
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1 i n t main ( i n t argc , char ∗∗ argv ) {
2 long (∗A ) [ ( NB+2)∗B ] ;
3 alloc_and_genmat (&A ) ;
4 i n t i t e r s , z = 0 ;
5 long i , j , k , l ;
6 double d i f f ;
7

8 f o r ( i t e r =0; i t e r <1; i t e r ++) {
9 f o r ( i=B; i < (NB+1)∗B; i+=B) {

10 f o r ( j=B; j < (NB+1)∗B; j+=B) {
11 long I = i −1 , J=j −1;
12 #pragma omp task
13 {
14 i f ( I+1L == 1∗B)
15 f o r ( k=1; k <= B; k++)
16 i f (A [ 0 ] [ k ] != INITIAL_VALUE ( I , 0 , J , k ) )
17 abort ( ) ;
18 else
19 f o r ( k=1; k <= B; k++)
20 i f (A [ 0 ] [ k ] != INITIAL_VALUE ( I , 0 , J , k )
21 + ITERATION_INCREMENT∗ ( i t e r +1L ) )
22 abort ( ) ;
23

24 i f ( I+1L == (1+NB−1)∗B)
25 f o r ( k=1; k <= B; k++)
26 i f (A [ B+1 ] [ k ] != INITIAL_VALUE ( I , B+1 , J , k ) )
27 abort ( ) ;
28 else
29 f o r ( k=1; k <= B; k++)
30 i f (A [ B+1 ] [ k ] != INITIAL_VALUE ( I , B+1 , J , k )
31 + ITERATION_INCREMENT∗ i t e r )
32 abort ( ) ;
33

34 i f ( J+1L == 1∗B)
35 f o r ( k = 1 ; k <= B; i ++)
36 i f (A [ k ] [ 0 ] != INITIAL_VALUE ( I , k , J , 0 ) )
37 abort ( ) ;
38 else
39 f o r ( k = 1 ; k <= B; k++)
40 i f (A [ k ] [ 0 ] != INITIAL_VALUE ( I , k , J , 0 )
41 + ITERATION_INCREMENT∗ ( i t e r +1L ) )
42 abort ( ) ;
43

44 i f ( J+1L == (1+NB−1)∗B)
45 f o r ( k = 1 ; k <= B; i ++)
46 i f (A [ k ] [ B+1] != INITIAL_VALUE ( I , k , J , B+1))
47 abort ( ) ;
48 else
49 f o r ( k = 1 ; k <= B; k++)
50 i f (A [ k ] [ B+1] != INITIAL_VALUE ( I , k , J , B+1)
51 + ITERATION_INCREMENT∗ i t e r )
52 abort ( ) ;
53

54 f o r ( k = 1 ; k <= B; i ++)
55 f o r ( l =1; l <= B; l++)
56 A [ k ] [ l ] += ITERATION_INCREMENT ;
57 }
58 z++;
59 }
60 }
61 }
62

63 #pragma omp b a r r i e r
64 re turn 0 ;
65 }

LISTING 6.10: Stencil code

60



Chapter 6: OmpSs optimizations
6.3 Automatic dependencies discovery in tasks

6.3.1 Scope of the optimization

As we explained in Section 4.2, OpenMP defines the task directive whichallows asynchronous parallelism. The construct can be followed by a seriesof clauses describing the scope of the variables inside the task. OmpSs ex-tends this directive allowing the definition of dependencies in the tasks. Theruntime decision about which tasks have to be executed before the executionof the current task and which tasks have to be executed after the executionof the current task is made in terms of these dependencies. Four clauses al-low the specification of data dependencies in tasks: input, output, inout and
concurrent.Using the optimization described in Section 6.2 we can substantially improvethe programmability of OmpSs releasing the programmer from the arduous taskof defining the dependencies of a task. In the previous analysis we classifiedthe variables within a task in four different groups: PRIVATE, FIRSTPRIVATE,
SHARED and UNDEF. Any dependency from a given task to another can occur onlyfor shared variables or for some of the variables that during the auto-scopinghave been detected as RACE. The algorithm to determine the dependenciesamong the tasks is almost the same as defined for the auto-scoping. Thealgorithm is defined as follows:

1. For a given task t, we run the algorithm defined for auto-scoping until wehave classified the variables as PRIVATE, FIRSTPRIVATE, SHARED, UNDEF and
RACE. We do not specify the variables scoped as RACE directly as PRIVATEor FIRSTPRIVATE; instead of that, for each variable v classified as RACE, wedistinguish two cases:
(a) If the race condition occurs between one statement in t and somestatement executed within the sequential code executed concurrentlywith the task by the encountered thread that created the task, then vhas to be privatized to avoid the race condition. In that case, we usethe same methodology used in the algorithm of auto-scoping:i. If the first action performed in v is a write, then v is scoped as

PRIVATE.ii. If the first action performed in v is a read, then v is scoped as
FIRSTPRIVATE.(b) If the race condition occurs between t and some other task that canbe executed concurrently, then we can consider v as SHARED and we
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can compute the dependencies between the different tasks involved inthe race condition in order to avoid this situation. We classify thesevariables into three groups: INPUT, OUTPUT and INOUT. Using the samenomenclature as we used for the auto-scoping algorithm, we definethe classification as follows:

i. If v is live at the entry and the exit points of the task, then it isscoped as INOUT.ii. If v is live only at the entry of the task, then it is scoped as INPUT.iii. If v is live only at the exit of the task, then it is scoped as OUTPUT.iv. If none of the previous cases apply, then v remains as SHARED. Thismeans that the variable is accessed by the task and the code ex-ecuted by the encountering thread that creates the task withouta data race condition, and no other statement after the synchro-nization of the task will use the value it produces, so it cannot bea dependence.
2. NOTE: At that moment we are not able to distinguish variables that aretagged as INOUT from variables that can be CONCURRENT. This is an special-ization of the clause INOUT, so the dependence computed is not correct,but is more restrictive than needed.
6.3.2 The results

We have tested the auto-dependencies a set of algorithms. Since the vari-ables which are interesting in this analysis are these that have been classifiedas RACE or SHARED in the auto-scoping analysis, we present the results for theexamples introduced in Section 6.2 that have matched this kind of variables.
6.3.2.1 Fibonacci

We take the example introduced in Listing 6.6. In the auto-scoping anal-ysis we found two ompSHARED variables: x and y. When we run auto-dependencies analysis, we obtain that both variables are computed as OUTPUTdependencies, each one for its respective task. This is because there is notask using the value written in a previous task, but the value is read after thesynchronization point. Variable n classified as FIRSTPRIVATE remains as such.This is the result we expected.
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6.3.2.2 Floorplan

In the floorplan benchmark introduced in Listing 6.7 we found nnc as SHARED.This variable is an input value coming from an output value of a previous task.With the auto-dependencies analysis we obtain nnc as an inout dependencein the task. Variable area is classified as RACE; since the value of the vari-able within a task is always written before being read, then the variables isclassified as an OUTPUT dependence. The rest of variables remain as they werein the auto-scoping analysis (variables that are FIRSTPRIVATE are not rangedbecause at that moment firstprivate clause does not accept array regions).This is the result we expected.
6.3.2.3 Cholesky

For Cholesky code introduced in Listing 6.9, the auto-scoping algorithmfound shared variables for all the tasks in the code. Each task defined asshared the variable A. As we expected, the auto-dependencies computation forthe arrays appearing in each one of the tasks is the following:
− First task:

∗ Input: a[j + 1 : −1 + (128 + jj) : 1][0 : −1 + j : 1], a[j ][0 : −1 + j : 1]
∗ Inout: a[j + 1 : −1 + (128 + jj) : 1][j ]

− Second task:
∗ Input: a[jj + 128 : 4 : 1][0 : −1 + j : 1], a[j ][0 : −1 + j : 1]
∗ Inout: a[jj + 128 : 4 : 1][j ]

− Third task:
∗ Input: a[j ][0 : j − 1 : 1]
∗ Inout: a[j ][j ]

− Forth task:
∗ Inout: a[j ][j ]

− Fifth:
∗ Input: a[j ][j ]
∗ Inout: (a[j + 1 : −1 + (128 + jj) : 1][j ]

− Sixth:
∗ Input: a[j ][j ]
∗ Inout: a[jj + 128 : 4 : 1][j ]
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6.3.2.4 Stencil

The stencil code in Listing 6.10 computes the array A as a variable that canproduce a race condition. Since it is tagged as RACE, then the specific rangesof the variable accessed within the task are analyzed in order to find out thedependencies and we obtain the following results:
− Firstprivate: A[0][1 : 256L : 1], A[256L + 1][1 : 256L : 1], A[1 : 256L : 1][0], A[1 :256L : 1][256L + 1]
− Inout: A[1 : 256L : 1][1 : 256L : 1]

The rest of variables remain as they were classified in the auto-scoping anal-ysis. This is the result we expected.
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A huge number of researchers have focused in concurrency and data flow anal-ysis for shared memory programming models. Regarding to the State of theArt we focus in two different aspects: on one hand the Control Flow Graph andon the other hand the analysis we have defined based on these graph and theclassical analysis for sequential or for synchronous parallel codes to extendthem to asynchronous parallelism.Common Control Flow Graphs for sequential codes cannot express the be-havior of parallel codes. In order to symbolize the parallel information andthe relaxed memory consistency model of OpenMP this representation mustbe extended and enriched. Different approaches have appeared in the 20 lastyears with the goal of analyzing and optimizing explicitly parallel codes. ButOpenMP is a programming model in continuous development, and that givesus the opportunity of improve the existing representations adapting them tothe new semantics.Wolfe and Srinivasan [WS91] presented new data structures as a ParallelControl Flow Graph and the Parallel Precedence Graph for programs withparallel constructs. Based on the fact that precedence relation is not the sameas dominance relation in parallel programs, they used these new structuresto develop algorithms for optimizing parallel programs. Although theirs is apowerful representation, their optimizations are based in Parallel Static SingleAssignment and we aim to remain in a highest representation of the program.Grunwald and Srinivasan [GS93] presented a Parallel Flow Graph and a setof data-flow equations for computing reaching definitions in explicitly parallelprograms with event synchronization. However, their work is focused only in
parallel sections and event synchronizations.Satoh, Kusano and Sato [SKS01] proposed a Parallel Control Flow Graphmodeling both flow control and synchronization between threads. They ap-proach the reaching definitions problem based on the synchronization nodesin the graph for both intra-procedural and inter-procedural analysis. Theypresent different optimizations for explicitly parallel programs such as reduc-tion of coherence overhead, redundant barrier removal and privatization ofdynamically-allocated objects. Nonetheless, they do not cover all the OpenMPconstructs and they do not consider the impact of flush operations, prevent-ing this of any violation of the memory consistency rules of OpenMP whenapplying optimizations.
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Huang et al. [HEHC09] developed a compiler framework for OpenMP pro-gram analysis and optimization. Based on the OpenMP relaxed memory se-mantics they are able to remove the conservative restrictions on optimizing inthe presence of shared data. Based on the previous work of Huang, Sethu-raman and Chapman [HSC07], they make explicit barriers and define livenessequations for the parallel nodes in the Parallel Control Flow Graph. They ap-plied these studies in the OpenUH compiler to optimize OpenMP constructsbefore they are lowered to threaded code and get encouraging results in termsof performance improvement after code analysis and optimizations.However, none of the previous works have presented any approach for asyn-chronous parallel executions such as OpenMP task constructs. Weng andChapman [WC03] defined a task execution graph representing precedence amongtasks based on their dependencies. However, it can be expensive to apply theirtesting between two call statements or two larger regions of code because theytry to make decisions on scheduling. Instead of that, we represent the seman-tics on the asynchronous task execution in our Parallel Control Flow Graph.The control flow in the occurrence of the task directive cannot be processed inthe same way as the rest of OpenMP directives in the sense that its controlflow is more relaxed than the others. We add tasks in the graph where thescheduling point of the task is defined inside the code. Since the exact pointof execution of the tasks will be decided at run-time and not at compile time,our analysis referred to this directive must define the range of code wherethis task can be executed in parallel. This range will start always in the taskscheduling point and will end when a synchronization point ensures the taskhas been executed.Based on the OmpSs programming model, tasks can be defined together witha set of clauses specifying the dependences of the task. With the aim of improvethe programmability of our parallel programming model, we have developed anew task analysis to determine automatically the correct dependencies of agiven task untying the user from the job of defining each single dependencefor every task. We have added to the task directive the clause auto-dependencewhich lets the compiler the responsibility of computing the correct dependen-cies of the tasks. We are not being conservative in this analysis, so, in the casethat the compiler cannot assure the data-sharing of a given variable, then theresult of this analysis for that variable will be that the compiler returns to theuser the responsibility of defining the correct dependencies.Defining the dependencies of a task requires the previous analysis of thescoping of variables. Auto-scoping rules for parallel have been defined pre-viously by Lin et al. [LTaMC04]. They defined the clause default(auto) for

66



Chapter 7: State of the Art
OpenMP constructs and they established and algorithm for auto-scoping rulesin synchronous parallel executions for both scalar and array variables. Theserules do not work properly with the asynchronous execution of tasks. We havedefined a new algorithm that determines the scoping of the variables insidea task depending on the use of this variable between the scheduling point ofthe task and the synchronization points that follow the scheduling point. Inthe case the compiler is not able to determine a data-sharing, then it warnsto user to do that work by hand.
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CHAPTER 8. Conclusions and Future
Work

8.1 Conclusions

In this thesis we have presented a set of compiler analyses and optimizationsin the context of the Mercurium compiler and the OmpSs programming model.We have shown an adaptation of some of the most common classic compileranalysis to the asynchronous parallelism expressed with OmpSs tasks such asa new Parallel Control Flow Graph for control flow analysis and new rules forliveness analysis. We have defined as well a set of use cases using the previ-ous analysis that demonstrates the benefits of compiler analyses to increasethe productivity of systems. These use cases have induced us to develop newtechniques for asynchronous parallel codes that were developed only for syn-chronous parallelism, like the automatic discovery of the scope of variables inOpenMP tasks. We have enhanced our system by improving Mercurium per-formance with the privatization of shared variables in the code generation andby improving OmpSs programmability with the automatic detection of depen-dencies between tasks, releasing the user from this work in many cases.The results obtained in the different tests applied to our optimizationsdemonstrate the profit we can obtain due to the use of compiler analysis.With the privatization of shared variables we have improved the performancein codes where there is a high number of accesses to shared memory. With theautomatic computation of the scope of variables and tasks dependencies wehave enhanced the programmability of OmpSs making easier for programmersto use the parallel model.We are highly motivated at the end of this project because we have tran-scended the expectations of the use cases we were be able to implement. Thedefinition of the automatic detection of the dependencies in tasks as a goal forthis project burst upon the problem as of the automatic scoping in tasks. Wehave defined and tested a new algorithm to solve that problem and finally, wehave found a solution for the automatic dependencies computation use case.This result has a great importance because of its contribution to the compileranalyses area; the analysis is not only applicable to our scope, but also to anyother compiler implementing analysis for asynchronous parallel applications.
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8.2 Future Work

Because of the complexity and amplitude of C/C++ languages, differentinteresting cases did not fit in our time limitations. For example, we are onlyable to analyze for-loop constructs and we cannot deal with complex loopboundaries in induction variables or induction variables not appearing in theloop control statements. At the beginning of the project we were ambitiousin the sense of exploiting the Mercurium intermediate representation to dealwith Fortran examples but we did not have the time to test our analyses withthese samples. Nonetheless, since the representation is the same in manyconstructs, we only have to extend our implementation for the AST nodes thatare specific for FORTRAN codes.We are now thinking about the directions we want to take in mid- and long-term to extend our analyses and to use them in order to better improve Mer-curium and OmpSs productivity. We show bellow a list of the most importantissues we have in mind:
− To apply the analyses in Fortran codes.
− To extend the analysis of loops to deal with other iterative constructsrather than for-loops, such as while-loops or goto-statements
− To implement the dependencies analysis in the OpenMP taskwait clause.This may allow us to determine which tasks should a given taskwait waitfor, sic, automatically determine the clause on in the taskwait.
− To extend our algorithms of auto-scoping and auto-dependencies to dealwith aggregates.
− To extend our auto-scoping algorithm to distinguish when a variable thatcan be shared and private, is useful to be privatized. A priori, scalars willalways be privatized because the cost of making a copy is the same asaccessing to a shared variable in the worst of the cases (the variable isonly accessed once) and it is always better to do the copy in the rest ofthe cases. For the arrays is not clear that privatizing is the best optionbecause of the cost of this process.
− To tag functions that are common like memcpy or alloca. Since the com-piler can know which is the behavior of this functions, then, it can annotatethe usage of the parameters. Thus, during the analyses (Use-Definitionand so on), the global variables will not be classified as UNDEF because ofthe appearance of these functions.

Besides getting deeper into this subject, we are currently working on a work-shop paper with the results of our automatic scoping in OpenMP tasks and wewill present it in the next International Workshop on OpenMP (IWOMP).
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