Compiler Analysis and its application to

OmpSs

Sara Royuela Alcazar
Master's Thesis

January 2012

Advisors:
Alejandro Duran Gonzalez Xavier Martorell Bofill
Parallel Programming Models Computer Architecture Department
Barcelona Supercomputer Center Technical University of Catalonia

©

A dissertation submitted in partial fulfillment of the requirements for the
degree of: Master in Computer Architecture, Networks and Systems

AKNOWLEDGMENTS

| dedicate this work to the two persons who really encourage me to think that
my work worth to be done. Thank you Dario and Alex, because without your
help and conversations, I'm sure that | will not be here right now.

| thanks my family because they always think that I'm doing right, and this
is helps many times to keep trying.

| thanks Jordi for the weekly evenings in the bar, that helped me to break
my routine and enjoy some fresh air. | thanks Diego because he is always
bearing my silly thoughts and makes me laugh.

A special acknowledgement to my Monday kids, without your smiles, your
stories and our good times skating, all this process had been harder.

ABSTRACT

Nowadays, productivity is the buzzword in any computer science area. Several
metrics have been defined in order to measure the productivity in any type of
system. Some of the most important are the performance, the programmability,
the cost or the power usage. From architects to programmers, the improve-
ment of the productivity has became an important aspect of any development.
Programming models play an important role in this topic. Thanks to the ex-
pressiveness of any high level representation not specified for any particular
architecture, and the extra level of abstraction they contribute against specific
programming languages, programming models aim to be a cornerstone in the
enhancement of the productivity.

OmpSs is a programming model developed at the Barcelona Supercomput-
ing Center, built on the top of the Mercurium compiler and the Nanos++
runtime library, which aims to exploit task level parallelism and heteroge-
neous architectures. This model covers many productivity aspects such as the
programmability, defining easy directives that can be integrated in sequential
codes avoiding the need of restructuring the originals to get parallelism, and
the performance, allowing the use of these directives to give support to multiple
architectures and support for asynchronous parallelism.

Nonetheless, not only the convenient design of a programming model and the
use of a powerful architecture can help in the achievement of good productivity.
Compilers are crucial in the communication between these two components in
computers. They are meant to exploit both the underlying architectures and
the programmers codes. In order to do that, analysis and optimizations are the
techniques that can procure better transformations.

Therefore, we have focused our work in the enhancement of the productivity
of OmpSs by means of implementing a set of high level analysis and optimiza-
tions in the Mercurium compiler. They address two directions: obtain better
performance by improving the code generation and improve the programmabil-
ity of the programming model relieving the programmer of some tedious and
error-prone tasks. Since Mercurium is a source-to-source compiler, we have
applied these analyses in a high level representation and they are important
because they are architecture independent and, thereupon, they can be useful
for any target device in the back-end transformations.

CONTENTS

Chapter 1: Introduction

Chapter 2: Motivation and

Chapter 3: Methodology
3.1 Preparatory research

3.2 Definition of our goals

Goals

3.3 Development and testing L.

3.4 Documentation and Pr

Chapter 4: Environment
41 OpenMP
42 OmpSs

esentation

421 The task directive

4.2.2 The taskwait directive

423 The target directive L.

43 The Mercurium compiler

431 Parsing.
4.3.2 Compiler phases

43.3 Code generation

43.4 Object code generation

Chapter 5: Analysis

5.1 Parallel Control Flow Graph (PCFG)

51.1 The Extensible Graph

51.2 Specifics of OpenMP

5.2 Use-definition chains

11
11
12
12
15
16
18
18
22
22
22
23
23
24
28
30

VI

53 Loop analysis.
5.4 Reaching definitions oL oo
55 Liveness analysis o
Chapter 6: OmpSs optimizations
0.1 Privatization: optimizing shared variables
0.1.1 Scope of the optimization.
0612 Theresults
0.2 Automatic scoping of variables intasks
6.2.1 Scope of the optimization.
0.22 Theresults
6.3 Automatic dependencies discovery in tasks
0.3.1 Scope of the optimization.
032 Theresults
Chapter 7: State of the Art
Chapter 8: Conclusions and Future Work
8.1 Conclusions

8.2 Future Work

References

VI

LISsT OF FIGURES

3.1 Gantt chart of the project L. 7
41 OmpSs dependency graph for code in Listing 4.1 14
42 Mercurium compilation stages 18
43 Nodecl generated from code in Listing4.6 20
4.4 Nodecl snippet with context information from code in Listing 46 . 21
5.1 Basic class diagram for the PCFG 24
52 EG for code in Listing 5.1 oo 29
53 EG for code in Listing 5.2 31
54 EG for code in Listing 5.3o oo 31
55 EG for code in Listing 5.4o 32
5.6 EG with Use-Define information for code in Listing 55 35
5.7 EG with Loop Analysis for code in Listing55 38
5.8 Arithmetic simplifications oL 39
5.9 EG with Reaching Definitions for code in Listing55 41
510 EG with liveness information for code in Listing 55 42
6.1 Matrix multiply execution time 48
0.2 Matrix multiply speed-up & gain 48
0.3 Jacobi dependencies 49
0.4 Jacobi execution time 50
0.5 Jacobispeed-up &gain. 50
6.6 Scan execution time comparison 51
6.7 Scan speed-up comparison 51

LIST OF ALGORITHMS

41 OmpSs task code exampleo oL 14
42 OmpSs task code example at declaration level 14
43 OmpSs extensions example code: array sections and shaping
EXPresSSIONS oo 15
4.4 N-queens code with OmpSs taskwait directive 16
45 OmpSs target directive example code 17
46 Code snippet with OmpenMP parallel for construct. 19
51 Block partitioned Matrix Multiply 29
52 OpenMP sections example L 30
53 OpenMP worksharing example 0L 30
5.4 Pi computation with OpenMP tasks 31
55 Lay down method from Floorplan benchmark 35
6.1 Matrix multiply with OpenMP parallel 45
6.2 Mercurium outline for code in Listing 6.1 46
6.3 Mercurium optimized outline for code in Listing 6.1. 48
6.4 Jacobi iteration with OpenMP parallel 49
6.5 Vector scan computation with OpenMP parallel 50
6.6 Fibonacci code from BOTS benchmarks 55
6.7 Floorplan code from BOTS benchmarks 57
6.8 Nqueens code from BOTS benchmarks 58
0.9 Cholesky code 59
06.10 Stencil code 60

Xl

CHAPTER 1. Introduction

Embedded and high performance computing systems research is leaded by
the need to obtain more productivity. Each area of the computing sciences
has its own fields of study in order to achieve this common objective. Be-
tween the avalanche of new architectures with faster components and new
memory hierarchies, and the huge amount of languages that try to meet better
the specific requirements of each application, parallel programming models
are one of the most important topics. This interest comes from the fact that
they can interact in different levels of deepness with both the architectures
and the programming languages. Parallel programming languages allow the
programmer to balance the competing goals of performance and programma-
bility by implicitly or explicitly specifying different program properties such as
the computational tasks, the mapping between these tasks and the process-
ing elements, the communication network and the synchronization. OmpSs is
a parallel programming model with implicit task identification and synchro-
nization defined by high level directives. It extends OpenMP API to support
asynchronous task parallelism and integrates different features of StarSs to
support heterogeneous devices. The importance of this model relies on the
easiness of using directives, its independence of the architecture and its ex-
pressiveness when defining both synchronous and asynchronous parallelism,
as well as the scalability it contributes to allow the definition of different target
architectures such as GPUs.

Hand by hand to the programming models are the compilers. We can dis-
tinguish between source-to-source compilers and back-end compilers. Even
though back-end compilers are indispensable and they can provide many bene-
fits by the knowledge they can have from the underlaying architectures, source-
to-source compilers are a great vehicle to support research. They provide a
wide range of activity for the development of high level analysis and optimiza-
tions that can exploit the characteristics of the codes without loss of portabil-
ity. In this context, Mercurium is a source-to-source compiler developed for fast
prototyping. This kind of infrastructure is a breeding ground for the research
and testing of new proposals. In the world of the source-to-source compilers,
many groups have based their efforts in the analysis and optimization of both
programming languages and programming models. For example, the ROSE
compiler group have built a platform for complex program transformations and
domain-specific optimizations; more recently the have developed techniques
of auto-parallelization and auto-tuning. Other example is LLVM, a project al-

Chapter 1: Introduction

lowing transformation among different high level programming languages as C,
Ada, FORTRAN or Java as well as many different levels of optimizations, from
source- and target- independent optimizations to run-time optimizations. In
the Mercurium group we do not want to offer a platform for aggressive opti-
mizations or back-end dependent transformations. Instead of that, we want to
provide a set of tools that can help in the improvement of productivity offering
support for OmpSs.

Compiler analysis and optimizations are very valuable to achieve our goals
because of the beneficial impact they can have in the processing of program-
ming models and thus, the enhancement in the productivity in specific algo-
rithms. In order to tackle some lacks in the Mercurium compiler, we have de-
fined a set of analysis in the middle-end phase that allow us to improve both
the performance of the generated code and the programmability of OmpSs.
Our challenge is to adapt the classical analyses such as control flow, use-
definition chains, liveness analysis and reaching definitions, into the parallel
and heterogeneous behavior of OmpSs. We have defined a set of analyses that
gather enough information to implement a few optimizations demonstrating the
value of implementing architecture independent analysis in Mercurium and, by
extension, to any other compiler. These optimizations have been directed to
improve the generated code by analyzing the impact of using shared or private
variables and to improve the programmability of OmpSs by analyzing the scope
of variables in parallel codes to release the programmer of some tedious work
while using tasks. We have tested these optimizations in different common
algorithms and we will show the obtained results.

Most of the project has been developed within the Programming Models
group of the Computer Sciences department at the Barcelona Computer Center.
The main goal of this group is the research of new programming paradigms and
the runtime system support for high performance of parallel applications. The
group works on both multi-core and SMP processors with either shared- or
distributed-memory systems and for both homogeneous and heterogeneous
architectures using accelerators like GPGPUs. The exploration is supported
with the development of the Mercurium compiler and the Nanos++ runtime
library for fast prototyping. The usability of programming models is tested in
different scenarios with OmpSs, which proposes extensions to standards like
OpenMP.

The group focus its efforts in different projects approaching different as is
composed by many divided in three different projects which are: the OmpSs
programming model environment, the Mercurium source-to-source compiler
and the Nanos++ runtime library. This project is framed in the context of

Chapter 1: Introduction

the OmpSs project and the Mercurium project and aims to improve the code
generated by Mercurium within the frame of OmpSs programming model.

The current project is the final dissertation of the Masters degree in Com-
puter Architecture, Networks and Systems (CANS), at the Computer Sciences
Faculty of Barcelona (FBI), part of the Technical University of Catalonia (UPC).
The project has been funded by the Barcelona Supercomputing Center (BSC),
the European Commission through the ENCORE project (FP7-248647) and the
ROSE group at Lawrence Livermore National Lab.

The rest of the document is organized as follows. Chapter 2 describes the
motivation and goals of this thesis. Chapter 3 defines the methodology fol-
lowed by along the project in order to achieve our goals. Chapter 4 describes
the environment of the project and the main components used in its execu-
tion. Chapter 5 contains the different analyses we have implemented in the
Mercurium compiler. Chapter 6 explains different OmpSs optimizations imple-
mented in the Mercurium compiler based on the previous analyses and their
evaluation. Chapter 8 concludes this dissertation and outlines the future work.

Chapter 1: Introduction

CHAPTER 2. Motivation and Goals

Parallel programming models as OmpSs and Runtime Libraries as Nanos++
play an important part in increasing the productivity of high-performance sys-
tems. Research compilers as Mercurium can snappily prototype new features
to determine their effect. Mercurium generates intermediate code to exploit
the Nanos++ runtime library and OmpSs is built on top these two compo-
nents. The research nature of these projects leads us to implement analysis
in Mercurium compiler that can help in the commitment of productivity. We do
not try to implement aggressive optimizations such as auto-parallelization or
loop transformations. It takes too much time and effort, and other compilers
already focus in that area of research. Instead of that, we are in pursuit of the
investigation about asynchronous parallelism and multiple devices execution.

Keeping in mind the previous arguments, in this project we want to focus
essentially in two points: on one hand the compiler analysis to improve Mer-
curium code generation and get a better performance and on the other hand
the enhancement of the programmability of OmpSs programming model. In
order to achieve these goals, we require the implementation of a set of basic
analysis in the middle-end phase of the compiler. We find at this point our
first challenge: classical analyses for sequential and/or synchronous parallel
programs have lacks of information to analyze the asynchronous parallelism
introduced by tasks; some of these classical analysis have to be extended. As
the basis of most of the data-flow analysis, we need to break down program
control flow behavior for sequential and, synchronous and asynchronous par-
allelism. With this baseline analysis we can then implement a reasonable set
of analysis that will be used to achieve our goals.

Based on the analysis performed in the compiler, we have defined two im-
provements of the productivity to be applied in Mercurium: one is the auto-
definition of data-dependencies in asynchronous tasks to free the program-
mer from the tedious mission of defining the data dependencies for all the
variables included in the task code; the other is the improvement of the per-
formance of the generated code by privatizing variables that conservatively
have been scoped as global. Here appears our second challenge: the auto-
matic computation of data-dependencies requires the previous computation of
the data-sharing for the involved variables; although some rules for automatic
data-sharing have been defined until now, they are not for asynchronous tasks.

Chapter 2: Motivation and Goals

Thus, the major contributions of this thesis are:

1. We developed a new control flow representation containing information
for sequential and synchronous and asynchronous parallelism by defining
the key synchronization points that can guarantee correctness.

2. We implemented a set of basic data-flow analysis in the Mercurium infras-
tructure that includes: use-define chains, liveness analysis and reaching
definitions.

3. We improved the programmability of OmpSs by automatically comput-
ing data-dependencies among tasks. In order to do that, we developed
an algorithm to extend auto-scoping rules defined for OpenMP parallel
constructs [LTaMC04] and analyze data-sharing in asynchronous tasks.

4. We developed a memory flush analysis. Along with liveness analysis, this
analysis help us to privatize variables that had been conservatively scoped
as shared.

CHAPTER 3. Methodology

As we explained in the previous chapter, we aim to improve the Mercurium
compiler infrastructure to help us to enhance the productivity of OmpSs. The
groundwork consists in developing a set of classical analyses adapted to syn-
chronous and asynchronous parallel programs. We will reach our goal of pro-
ductivity by implementing optimizations based on the previous analyses follow-
ing two directions: the enhancement of the generated code to obtain a better
performance and the improvement of the programmability of our programming
model.

We have followed the time-line defined in the Gantt chart bellow. Find in
pink color the initial planning of the work once it was carried out, and in blue
color the work we had to redefine.

7/3 7/17 7/31 8/14 8/28 9/11 9/25 10/9 10/23 11/6 11/20 12/4 12/18 1/1 1/15 1/29

Preparatory research i
Definition of the goals 1

Development and testing L 1

Software design and benchamarks definition

Analysis implementation L L { > L

Analysis testing

Use case implementation —
Use case testing
Documentation

Presentation L

Ficure 3.1: Gantt chart of the project

The following is an account of the methodology used for this project. We
have organized the next paragraphs as the steps defined in Figure 3.1.

3.1 Preparatory research

The first step was the evaluation of different ideas within our area of interest
that could be profitable for the two parts involved in the project: myself, as
the developer of this thesis, and Barcelona Supercomputing Center, as the
funder of the project. Once we defined in broad outline the main aspects we
wanted to focus on, we started the analysis of the related work. We studied

7

Chapter 3: Methodology

the state of the art of classical analysis for parallel programming models and
we investigated some compilers implementing this kind of features such as
ROSE or OpenUH. We read many publications about control flow analysis
and data flow analysis to know the strengths and weaknesses of the current
implementations.

3.2 Definition of our goals

Based on the previous study, we accurately defined the goals to be reached
in this project. With the objective of developing some useful work in the frame
of the BSC projects and highlighting that no analyses were implemented in
Mercurium, we defined a set of classical analysis and different use cases to
prove the benefits we can obtain with these analyses in terms of productivity.

3.3 Development and testing

To achieve our objectives, we used a spiral approach. With this technique we
revisited the same concepts a few times while increasing the level of complexity
in each pass. The advantage of this technique is that we never reached a
position of no progress.

We first defined a minimum of requirements to fulfill and a set of benchmarks
to test the results of every use case. Since the analyses defined in the previous
step are dependents ones from the others, we developed sequentially a first
approach of each. With this first release, we tested the results in our use cases.
This work revealed some weaknesses in the implementation and some lacks in
the process we had to solve in order to obtain profitable results. We redefined
our analyses from a coarse-grained design into a fine-grained design to keep
details that we had not took into account in the first sketch. Then, we tested
again our benchmarks and we used these feed-back to iterate in this flow until
we got the desired results. At the end we had an implementation that works
for most of the C++ and OmpSs cases we have tested.

Because of the research nature of Mercurium, we found a remarkable diffi-
culty during the development. Half way across our initial scheduling, our work
team made the decision of changing the internal representation of the compiler.
Since we have to deal directly with this representation, that modification af-
fected substantially our work. At that point we had to go backwards and adapt
our analysis to the new representation. Time constraints and work restrictions
influenced the set of use cases we present in the project. We selected a set of

Chapter 3: Methodology

analyses and optimizations that is representative enough to prove the benefits
of our implementation.

3.4 Documentation and Presentation

Finally, we wrote the current dissertation as both part of the requirements
of the Master degree and to serve as technical support for the features imple-
mented in the Mercurium compiler.

Chapter 3: Methodology

10

CHAPTER 4. Environment

In this section we introduce the environment where the project has been de-
veloped. We have designed a set of compile-time analyses in the the context
of three related projects: the OmpSs programming model, the Mercurium com-
piler and the Nanos++ run-time system. We will briefly describe OpenMP as
it is the base of OmpSs. Finally, we will introduce the compiler where we have
developed our thesis: Mercurium.

41 OpenMP

OpenMP is an interface that covers user-directed parallelization. The API
provides a set of directives that allow the programmer to specify a structured
block of code to be executed by multiple threads and to describe how the data
will be shared between the threads. It uses the fork-join model of parallel
execution. Parallel regions are defined by the constructs parallel and task.
The directives to express worksharing are for, sections, single and master.
Synchronization directives are used to protect data and order execution among
threads. These directives are critical, barrier, atomic, flush and ordered.

OpenMP provides a relaxed-consistency, shared-memory model. This means
that there are two kinds of memory: the main memory, accessed by all threads
in any point of the execution, and the threadprivate memory, which is a private
memory for each thread. The flush operation provides a guarantee of consis-
tency between the threadprivate memory and the main memory. This operation
can be done explicitly by the user or implicitly by the programming model (the
parallel directive, worksharing directives or any combined worksharing di-
rective imply a memory flush at the end of the execution of their associated
block of code). The flush operation restricts some optimizations like reordering
memory operations but allows some others like shared variables temporary
privatization.

Some directives accept data-sharing attribute clauses. These clauses de-
termine the kind of access (shared or private) of the variables inside the struc-
tured block associated with the directive’s structured block. The different data-
sharing clauses accepted are private, shared, firstprivate and lastprivate
and their availability depends on each directive (for example, lastprivate
clause is not allowed in task directives). A data race occurs when multiple
threads write without synchronization to the same memory unit. Due to the

11

Chapter 4: Environment

laxity of the programming model this situation can appear frequently. To avoid
this data hazards and maintain sequential consistency, OpenMP offers differ-
ent methods: the definition of the proper data-sharing for every variable in a
conflictive block of code and the synchronization directives to avoid simulta-
neous access to the same memory space.

All the rules defined by OpenMP model can be found in the Official OpenMP
Specifications [Boal11]. For this project we have worked with the release 3.0
for C++.

4.2 OmpSs

OmpSs [DAB*11]is a parallel programming model which extends the OpenMP
model to support asynchronous task parallelism. OmpSs manage to express
the parallelism in such a way that is able to deal with both homogeneous and
heterogeneous architectures. This programming model has been developed at
the Barcelona Supercomputing Center (BSC) based on the StarSs' [PBAL09]
and OpenMP.

The programming model is used in the simple form of introducing a few di-
rectives in the original code. In the next sections these directives are explained
exhaustively with their features and showing different use cases.

421 The task directive

OmpSs extends the OpenMP task directive to suppport asynchronous par-
allelism by means of data-dependencies. The model ensures the correctness of
the asynchronous execution by defining data-dependencies between the dif-
ferent tasks of a program. The syntax of the directive used to create a task is
as follows:

#pragma omp task [clauses]
function_or_code_block

where:

— clauses is a list of new clauses that allows specifying restrictions about the
dependencies. The allowed clauses are:

' StarSs is a task-hased programming model developed at the Barcelona Supercomputing Center with two main
objectives: to enable the automatic exploitation of the functional (task-level) parallelism and to keep applications
unaware of the target execution platform.

12

Chapter 4: Environment

x input(list_of expressions): evaluating an lvalue as an input dependence
implies the related task cannot run until all previously defined tasks
with an output dependence on the same expression have finished its
execution.

* output(list_of expressions): evaluating an [lvalue as an output depen-
dence implies the related task cannot run until all previously defined
tasks with an input or an output dependence on the same expression
have finished its execution.

* inout(list_of expressions): evaluating an lvalue as an inout dependence
means that it may behave as an input and as an output dependence.

* concurrent(list_of vars): this is a relaxed version of the inout clause. The
task is scheduled taking into account input, output and inout previous
clauses, but not concurrent clauses.

* The rest of clauses allowed in OpeMP for the task construct, which
are: if(scalar_logical expression), final(scalar logical expression), untied, de-

fault(private | fisrtprivate | shared | none), mergeable, private(list of variables),

firstprivate(list_of variables) and shared(list _of variables)

— function_or_code block specifies the block of code that will be executed
asynchronously in parallel.

It is important to note that the user assumes the liability on the correctness
of the dependencies’ definition. For the concurrent clause, as it relaxes the
synchronization between tasks, the programmer must ensure that either the
task can be executed concurrently or that additional synchronization is used
(like atomic OpenMP directive).

4.21.1 Expression extensions

OmpSs allows two C/C++ extensions in the expressions that can appear in
the data-dependence clauses. These extensions are:

— Array sections: allow to refer to multiple elements of an array or data
addressed by a pointer. They can be specified as a range of accesses by
the doublet [lower bound : upper bound].

— Shaping expressions: allow to recover the dimensions of an array that
has been degraded to pointer. It is used by adding one or more [size]

expressions before a pointer.

13

Chapter 4: Environment

4.21.2 Execution model

As the tasks are created, they are inserted in the graph of execution that
determines the dependences between tasks. This graph ensure the dependence
satisfaction of every task. So, each time a task is created, its dependences are
checked against those of the previous tasks and the new task is scheduled as
soon as possible (i.e.,, when all its predecessors in the graph have already been
completed).

4.21.3 Examples

An example of task creation with different clauses is shown in Listing 4.1.
The task execution graph created for this graph is the one shown in Figure 4.1.

void compute (intx A, intx NB) {
for (int i =1, i <N; ++i) {
#pragma omp task input(A[i—1]) inout(A[i]) output(B[i])

1
2
3
4 foo(A[L—1], A[t], B[i]); e @
6
7
8
9

#pragma omp task input(B[i—1]) inout(B[i])
bar(B[i—=1], B[i])
} © _’

11 void foo (int a, int& b, int& ¢) {

12 b=Db+ a;

13 c=bh; @)
14}

16 void bar (int a, int& b) {

17 b=>b % a;
5} FIGURE 4.1: OmpSs depen-

dency graph for code in
Listing 4.1

}

LISTING 4.1: OmpSs task code example

Not just structured blocks, but also function definitions can be annotated
with the task construct. In this case, each invocation of the function becomes
the generation of an asynchronous parallel point. In Listing 4.2 we show an
example of this kind of task definition.

#pragma omp task
void foo (int i);

void bar ()

for (int 1 =0; t < 10; i ++) {
foo(i);

LisTING 4.2: OmpSs task code example
at declaration level

14

Chapter 4: Environment

The example in Listing 4.3 shows a merge sort code using tasks and the
extended expressions allowed by OmpSs. Shaping expressions are used to
transform pointer variable a to an array in the call to merge function. Array
section regions are used to specify the region that will be used in each level
of the recursion of the method sort.

void sort (int n, int xa)

{

1
2
3 if (n < small) seq_sort (n, a);
4

5 #pragma omp task inout(a[0 : n/2 |)
6 sort (n/2, a);
7
8

#pragma omp task inout(a[n/24+1 : n])
9 sort (n/2, a[n/2+1]);

11 #pragma omp task inout([n] a)
12 merge (n/2 , a, a, a[n/2+1]);
13}

LiSTING 4.3: OmpSs extensions example code: array sections and shaping
expressions

4.2.2 The taskwait directive

The taskwait directive allows to enforce synchronization among tasks re-
gardless of data-dependencies clauses. It is useful when there is no need for
synchronous data output but a synchronization is required. Its syntax is the
following:

#pragma omp taskwait [clauses]
where clauses can be:

— on (list_of expressions): it allows waiting only to those previous tasks having
some output dependence on the defined expressions.

— noflush: OpenMP enforces a memory flush immediately before and imme-
diately after every task scheduling point. The use of this directive avoids
the execution of these flushes.

4.2.21 Example

In the example shown in Listing 4.4 a code with tasks for the N-Queens
problem is presented using a taskwait directive to wait the computation of the

15

Chapter 4: Environment

queens disposition in each recursion level. When all tasks in a given level have
finished, then the number of possible solutions for that level is stored.

1 void nqueens(int n, int j, char *a, int *solutions, int depth)
2 {

3 int xcsols; int i;

4

5 if (n=1j) {

6 *solutions = 1;

7 return;

s)

9

10 *solutions = 0;

11 csols = alloca(n*sizeof(int));

13 for (L =0; i <n; i++4) {

14 #pragma omp task untied

15

16 char * b = alloca(n * sizeof(char));
17 memcpy (b, a, j * sizeof(char));

18 b[j] = (char) i;

19 if (no_confict(j + 1, b))

20 nqueens(n, j + 1, b,&csols[i],depth+1);
21 }

22 }

23

24 #pragma omp taskwait

26 for (i =0; t <n; i++)
27 xsolutions += csols[i];

LisTING 4.4: N-queens code with OmpSs taskwait directive

4.2.3 The target directive

As explained at the beginning of this section, the OmpSs programming model
not only allows the creation of asynchronous parallelism, but also supports
multiple platforms. To support heterogeneity, a new construct is introduced
with the following syntax:

#pragma omp target [clauses]
task_construct | function_definition | function_header

where clauses can be:

— device(device _name): it specifies the device where the construct should be
targeted. If no device clause is specified, then SMP device is assumed.
The other currently supported target is CUDA for GPGPUs.

— copy_in(list_of vars): it specifies the set of shared data that must be trans-
ferred to the device before the execution of the code associated to the
construct.

16

Chapter 4: Environment

— copy_out(list_of vars): it specifies the set of shared data that must be trans-
ferred from the device after the execution of the code associated to the
construct.

— copy_inout(list_of vars): it specifies the set of shared data that must be
transferred to and from the device, before and after the execution of the
associated code.

— copy_deps: this clause specifies that the dependence clauses of the at-
tached construct (if there exists) will have also copy semantics; it means
that input dependencies will be considered as copy_in variables, output
dependencies as copy_out variables and inout as copy_inout. If the at-
tached construct has a concurrent clause, then all the dependencies are
considered as inout.

— implements: this clause specifies that the code is an alternate implemen-
tation for the target device and it could be used by the target instead of
the original if the implementation considers it appropriately.

4.2.31 Example

In the code shown in Listing 4.5 a new task is created for function scale_task
and its target is a CUDA device. With the clause copy deps in the target directive,
we say that all the dependencies specified in the following task directive will
be copied to/from the device. In this case, the whole ¢ array will be copied
to the device at the beginning of the execution and the whole b array will be
copied from the device at the end of the execution.

1 #pragma omp target device (cuda) copy_deps implements (scale_task)
2 #pragma omp task input ([size] c¢) output ([size] b)

3 void scale_task_cuda(double *b, double xc, double scalar, int size)
+

5 const int threadsPerBlock = 128;

6 dim3 dimBlock;

7

8 dimBlock.x = threadsPerBlock;

9 dimBlock.y = dimBlock.z = 1;

10

11 dim3 dimGrid;

12 dimGrid.x = size/threadsPerBlock+1;

13

14 scale_kernel<<<dimGrid , dimBlock>>>(size, 1, b, c, scalar);

15}

LISTING 4.5: OmpSs target directive example code

17

Chapter 4: Environment

4.3 The Mercurium compiler

Mercurium is an agile source-to-source compiler supporting C, C++ and
Fortran that aims at easy prototyping of parallel programing models. The
goal of Mercurium is to rewrite, translate and mix the input source code into
another source code that is fed into a object-code generating compiler. In
this process, different constructs are recognized and transformed to calls to
the runtime system enabling parallel execution. Mercurium does not build
architecture dependent back-ends, instead, it supports the invocation of many
native compilers as gcc, icc or nvcc. Mercurium is useful transforming high level
directives into a parallelized version of the application, as well as profiling,
instrumenting and synthesizing information at compile time. It is not useful for
performing hard optimizations in the code; this area of research is develop in
other compilers like ROSE, LLVM or Open64.

There are different parts in the compilation process. In the next paragraphs
we explain the specifics of each step. Figure 4.2 outlines an schema of the
whole process.

Compiler phases
Phase N

Phase 2
IR modifications

>(Back-end)<t—

!

=(Linkage »——>

FIGURE 4.2: Mercurium compilation stages

4.3.1 Parsing

The compiler parses each input file by creating the Abstract Syntax Tree
(AST) that contains the input code. Once the tree is built, a classical type-
checking is performed creating the symbol table for each scope, removing am-

18

Chapter 4: Environment

biguities and synthesizing all expressions types. This non-ambiguous tree is
used to the costruction of the Internal Representation, called Nodecl, which
will be used in the next compiler phases. Nodecl is also an AST but it differs
from the previous one in some aspects:

— Nodecl does not contain declarations. Instead of that, it includes a new
node called coNTEXT for every block of code creating a new scope. The
CONTEXT node stores information about the different scopes that apply for
the given context (global, namespace, function, block and current).

— Nodecl is aimed to represent with the same structure both C/C++ and
Fortran. That means that similar constructs in the two languages are
represented by the same type of nodes in Nodecl. This step is very useful
for the next phases in the compiler since in most of the cases, the phases
will not need to have specific implementations for each language.

In Figure 4.3 we show the Nodecl for the

code in Listing 4.6. It is the very essential struc- 1 ?ouble foo(int n)
. . . . 2
ture, containing just the kind of the nodes an ; =~ int i, res;
. . . _ . _ . 4
their relations. The structure starts with the = . = el for
function foo in the top level. Function code node ¢ {0" (=0 L <ny b +44)
is the root of a compound statement contain- s res 4= i;

. . . 9
ing the function code. This compound state- |, ,}.etu,.n res:

ment has two children, the pragma parallel for " '}
(pink frame) and the return statement. Notice LisTinG 4.6: Code snippet with Om-
here that no definitions appear in the tree while penMP parallel for construct

the code declares the variables i and res at

this level; information about declarations is at-

tached to the tree but not as a node. Finally, hanging from the pragma appears
the loop statement (green frame). Notice also that symbols (blue boxes) ap-
pear always as a leaf of the tree. Other kind of nodes are always leafs, like
literals. Other significant aspect to realize in the tree are the context nodes
inserted for each new context created in the input code (yellow boxes).

For more details, we show in Figure 4.4 the information about the context.
Other nodes have been removed to aid to comprehension of the tree. Specif-
ically, we display the contexts generated by the function, the pragma omp
parallel and the for-loop. In that case, the global, the namespace and the
function scopes are the same for the three contexts. The block scope is differ-
ent for each one because each one is creating a new scope. The relations of
ownership are shown through the dotted edges labeled as contained_in.

19

Chapter 4: Environment

NODECL_TOP_LEVEL
0

NODECL_FUNCTION_CODE
0

AST_NODE_LIST
Text: "omp"

1 | NODECL_RETURN_STATEMENT
A4

[0

NODECL_PRAGMA_CUSTOM_STATEMENT
Text: "omp"

1 0 | NODECL_SYMBOL

NODECL_PRAGMA_CUSTOM_LINE
Text: "parallel for"

ym
NODECL_LOOP_CONTROL ‘ NODECL_EXPRESSION_STATEMENT ‘
2 1 0 0
| NODECL_POSTINCREMENT ‘ | NODECL_LOWER_THAN ‘ ‘ NODECL_ASSIGNMENT ‘ NODECL_ADD_ASSIGNMENT
1 o /) \ 1 0
‘NODECL_SYMBOL‘ ‘NODECL_SYMBOL| |NODECL_SVMBOL| |NODECL_SVMBOL‘ ‘NODECLJNTEGERiLITEPAL | J NODECL_SYMBOL| ‘NODECL_SYMBDL
1
Symbym Sm Zym Sm Sym
res
p.cal |

n \\ i -
p.c:39 1

20

F1GURE 4.3: Nodecl generated from code in Listing 4.6

Chapter 4: Environment

NODECL_TOP_LEVEL
0

< AST_NODE_LIST =
il
NODECL_FUNCTION_CODE
0
NODECL_CONTEXT
0

< AST_NODE_LIST =
il

[NODECL_COMPOUND_STATEMENT |

AST_NODE_LIST
Text: "omp"

NODECL_PRAGMA_CUSTOM_STATEMENT
Text: "omp"

NODECL_PRAGMA_CUSTOM_LINE
Text: "parallel for"

NODECL_CONTEXT

ontext 0
context
‘Context block | function | namespace | global | current
BLOCK_SCOPE
Context | block | function | namespace | global | current 0x91¢h9a0
~ -~ contained| in

BLOCK_SCOPE =
0x91ch2e8
__ -~ contained_in
BLOCK_SCOPE
ox91eatbs Context | block | function | namespace | global | current
e _contained_in ‘
<\

g n; BLOCK_SCOPE FUNCTION_SCOPE
Y 0x91c8ff8 0x91¢9070
sym . contained_in J‘
= ~——— NAMESPACE_SCOPE
0x8de4b98
m

24

<<unnamed symbol>>
(null):0

FIGURE 4.4: Nodecl snippet with context information from code in Listing 4.6

21

Chapter 4: Environment

4.3.2 Compiler phases

The compiler phases are a set of dynamic libraries that work as a pipeline.
These phases are written in C++ and they are enabled or disabled depending
on the profile set in the compiler command line. The unambiguous AST Nodecl
arrives to the first phase and a common internal representation (IR) is used
among the phases. Nonetheless, each phase can create a new IR that will be
used in the later phases. The Data Transfer Object (DTO) pattern is used to
transfer data between the phases. The DTO is just a dictionary containing a
string as the key and an Object as the value. In any point of the compila-
tion process we can find available the translation_unit IR with the processed
code. A powerful way to deal with trees has been implemented just recently.
Following the Visitor Pattern, traversals through the Nodecl can be performed
completely separated from the operation to be performed during this traver-
sal. The compiler provides exhaustive and base visitors and they can be easily
extended for particular purposes.

For this thesis, we have added a new phase to the pipeline that can be
activated to enable the different analysis. The analysis methods can be called
anywhere in the pipeline as well, without being necessary to execute the entire
phase. The difference is that the phase will analyze all the translation unit
while by calling the methods, the programmer will use the analysis on demand,
analyzing just the codes he is interested in. Since Nodecl is a common IR for
different input languages, the analysis we will implement here will be always
language independent.

4.3.3 Code generation

The synthesis part generates an output code which is the conclusion of
all transformations performed in the previous steps. Since the intermediate
representation is the same for the different accepted languages by the compiler,
information about the input must pass through the previous stages until this
point.

4.3.4 Object code generation
Finally, a back-end compiler and a linker are invoked to generate object

code. This will depend on the profile set to the compiler at the compiler
command line.

22

CHAPTER 5. Analysis

Traditional compiler analysis play an important role in generating efficient
code. The classical analysis are quite mature and routinely employed in com-
pilers. Among the most common methods in compiler analysis for optimizing
code, flow analysis is a technique for determining useful information about a
program at compile time. This is the root of a set of analysis that permit us
both the analysis and the optimization of OmpSs codes. The handicap of an-
alyzing parallel codes is that we have to adapt the classical analysis to keep
information about parallel execution.

We built a graph for control flow analysis. This graph represents all OpenMP
3.0 constructs and OmpSs specifics. The graph also stores additional informa-
tion about the clauses associated to the constructs, if applicable. With this data
structure, we can calculate data flow analyses such as use-definition chains,
liveness information and reaching definitions. We have implemented an spe-
cific loop analysis to determine accessed ranges in arrays with restricted loop
definition conditions. In the next sections we explain the details of each one
of these analysis.

We have created and API providing different the analysis. Compiler devel-
opers can ask to analyze any piece of code represented by the compiler in-
termediate representation (IR). Since the different compiler phases can change
this representation, the application of the analyses at different points of the
compiler phase pipeline can return different results. While analyzing, develop-
ers must remember the dependencies existing between some of the analysis.
This means that asking for reaching definitions without previously having com-
puted liveness analysis will cause a null result. For testing purposes we have
added a new phase in the compiler which analyzes the whole translation unit.
Finally, we have created two new debug options: a verbose mode to show
the result of the different analyses at compilation time and a printing mode
that creates a file in DOT language with the control flow graph and all the
information computed during the analyses embedded in the nodes of the graph.

5.1 Parallel Control Flow Graph (PCFG)

Flow analysis techniques allows determining path invariant facts in a given
program. This is a key tool in compiler’s analysis due to the huge list of
optimizations that can be addressed with flow analysis (constant subexpres-

23

Chapter 5: Analysis

sion elimination, constant propagation, dead code elimination, loop invariant
detection, induction variable elimination, range analysis, and a long etcetera).

The problem of the flow analysis is solved by the construction of a graph
commonly known as Control Flow Graph (CFG). Building this graph for se-
quential codes does not introduce many challenges but in our case, we aim to
implement a graph that must be able to correctly represent the semantics of
OmpSs parallel codes. And not only that, but we also bear in mind that we
are implementing this analysis in a research compiler such as Mercurium, and
that led us to think in an extensible and scalable implementation. Assuming
these premises, we have built a Parallel Control Flow Graph (PCFG) called
Extensible Graph (EG) that allows both intra-procedural and inter-procedural
data-flow analysis, and both intra-thread and inter-thread. We have created
an API that allows the construction of the EG from a portion or the whole IR.
In Figure 5.1 we show the basic class diagram of the components of and Exten-
sible Graph. Basically, a graph is formed by one node; one node can contain
other nodes inside, and the nodes are interconnected by edges. To traverse the
graph we have specified a class which implements the visitor pattern among
the nodes in the AST.

Nod eclVisitor
CfgVisitor
0..1-outer_node

1 0.*
-exits
0. .*
-entries

FiGURE 5.1: Basic class diagram for the PCFG

5.1.1 The Extensible Graph

The Extensible Graph is a directed graph formed by a 2-tuple < id, N >
where id is the identifier of the graph and N is the node containing the flow

24

Chapter 5: Analysis

graph. This structure models the control flow of a section of code being that
a whole function code or just a statement. The data structure contains only
structural information, this is nodes and the directed edges connecting these
nodes. We have created different kinds of nodes and edges to represent C++
statements and OmpSs specifics. All the semantics are linked to the structure
as a pair of < Name, Object >. Each kind of element implies a series of addi-
tional attributes that will be linked to it. It is important to note that this way of
attaching information to one object has some advantages and disadvantages.
As a disadvantage, the implementation of this object leaves to the programmer
the responsibility of maintaining the correctness of the data structure but, as
an advantage, we obtain a structure that is clean and agile, free of specific
attributes for every case. In the next sections we explain the details of the two
elements, nodes and edges, and the particularities of OmpSs nodes.

5.1.1.1 Node

A node is a 3-tuple of < Id, Entries, Exits > where Id is the unique iden-
tifler of a node within a given graph, Entries is the set of edges coming from
the nodes of which the current node depends on and Exits is the set of edges
to nodes that depend on the current node. Moreover, as we said before and
depending on the data represented, each node will have additional linked at-
tributes. We have defined the following node types:

— Basic nodes (They contain a expression or a set of expressions):

+ BB: this node contains a Basic Block ' .
* LABELED: it is a special kind of BB node that can be a jump target.

* FuNcTioN CALL: it is a special kind of BB containing a function call.
We keep it separated because we need some analyses to determine
the flow behavior of this kind of expression.

— OmpSs nodes (They refer to OmpSs instances in the original code):

* PRAGMA DIRECTIVE: it contains a pragma directive.
* FLUSH: (it contains a flush directive.
* BARRIER: it contains a barrier directive.

* TASKWAIT: it contains a taskwalit directive.

— Structural nodes (They aid the composition and comprehension of the
graph)

" A Basic Block is a portion of code that has one entry point, meaning no code within it is the destination of
a jump instruction anywhere in the program, and one exit point, meaning only the last instruction can cause the
program to begin execution code in a different Basic Block.

25

Chapter 5: Analysis

26

* ENTRY: it is added at the very beginning of a GRAPH node. Any flow
that traverses the graph goes in through its ENTRY node.

*x ExiT: it is added at the very end of a GrRAPH. Any flow that traverses
the graph goes out through its ExiT node.

* GRAPH: node containing a set of nodes structured as an EG. The first
node in the graph is always an ENTRY, which is the dominator of all
the nodes inside the graph (except itself), and the last node is always
an Exit, which is the post-dominator of all nodes inside the graph
(except itself).

— Temporary nodes (They represent simple control structures and they are

used only during the construction of the graph. Afterwards, they are
removed as nodes and we only maintain in the EG their flow information):
* BREAK: it represents a break statement.
*x CONTINUE: it represents a continue statement.

x GoTo: it represents a goto statement node.

The linked data available and/or mandatory for each node is listed bellow:

Nope Type: this is the type of the node and is one of the values listed
above. This attribute is mandatory for every node.

OuTer Nobe: this is a pointer to the Graph node containing the current
node. All nodes but the outer most one have an OuTter NopEe. For the
outer most node (N from the 2-tuple conforming an EG), the OuTeErR NoDE
is null.

STATEMENTS: this is the list of statements contained in the node. Only
Basic nodes have this attribute.

LABEL: this attribute has different meanings depending on the node it
is applied to. For Labeled and Goto nodes, it contains the symbol rep-
resenting the label or the jump target, respectively. For Graph nodes
representing a block of code, the label contains the statement that cre-
ates the block of code; for example, in OpenMP nodes, the label contains
the pragma line of the construct and for for-loop nodes, the label contains
the control of the loop.

GRraPH TYPE: this attribute only applies for Graph nodes and it contains
the type of the graph node. It can be one from the list below:

* EXTENSIBLE GRAPH: this is the most outer node of a set of nodes.
There is one and only one node of this kind in every EG and it is the
N value of the 2-tuple representing the EC.

Chapter 5: Analysis

*

Speut EXPRESSION: it is the result of a statement that has been split in

the CFG due to its flow semantics. It can be, for example, a expression

containing inside a function call: in that case a node containing the
function call is created first, and then follows the node with the whole
expression; both nodes will be included in a Graph node.

* FuncTioN CaLL: all Function Call nodes are embedded in a Graph
node for analysis purposes.

*x CONDITIONAL EXPRESSION: conditional expressions are special state-
ments that contain an implicit flow. The different nodes created from
this kind of expression are embedded in a Graph node.

* LooP: it contains the structure of nodes created from the statements
inside a loop.

x OMP PRAGMA: it contains the structure of nodes created from the block
code related to a pragma directive.

* TAsK: it contains the structure of nodes created from the block code

related to a task.

The attributes defined above are those that are created during the construc-
tion of the graph. Posterior analyses will add more attributes to the different
nodes. The specific attributes added by each analysis are specified in the
section related to the specific analysis.

5.1.1.2 Edge

An edge is a 2-tuple of < Entry, Exit > where Entry is a pointer to the
node source of the edge and Exit is a pointer to the node target of the edge.
It links two nodes unidirectionally. We have defined different kind of edges:

ALwAys: this is an edge that connects two nodes accomplishing that, once
the source node has been executed, the target will always be the very
next to be executed.

TRUE: this is an edge that connects a source node containing a condition
and a target node containing the very next node to be executed when the
condition is fulfilled.

FALSE: this is an edge that connects a source node containing a condition
and a target node containing the very next node to be executed when the
condition is not fulfilled.

Cask: this is an edge connecting the control expression of a switch state-
ment with the first node created by a given case of this switch.

CaTcH: this is an edge connecting any expression that might be an excep-
tion with the first node created by the handler related to this exception.

27

Chapter 5: Analysis

This kind of edge does not imply that the target node will be executed ev-
ery time the source node is executed, because some analyses are needed
to determine that.

— Goro: this is an edge connecting a Goto node with a Labeled node.

The linked data available and/or mandatory for each edge is listed below:

— EpGE TypE: this is the type of the edge and must be a value from the list
above. This attribute is mandatory for every edge.

— Is Task: it marks the edge as a non flow edge. This edge mark the point
where an OpenMP task is declared and the point where a task code is
synchronized with the main memory. It entails a different analysis than
the other edges.

— Is BAack EpGE: it marks an edge as a backward edge encountered in a
loop iteration.

5.1.1.3 Example

In Figure 5.2 we show the EG corresponding to the matrix multiply code
of Listing 5.1. Among the different elements shown in the figure, we want to
emphasize the loop constructions and the different edges (True and False; the
edges remaining without a label are Always edges) generated by the condi-
tions. Note that for the loop graph node, the initialization expression remains
outside. That is because this statement do not belong to the set of statements
repeated within the loop ranges.

5.1.2 Specifics of OpenMP

Classical analysis must be adapted to capture the parallelism expressed
by OpenMP programs as well as the asynchronism expressed by OmpSs.
Some parallel representation of the CFG have been already presented [Sar97,
HEHCO09]. We define an alternative representation of the Parallel Control Flow
Graph (PCFGQ) for OmpSs. The PCFG expressed with the Extensible Graph is
built as follows:

— A Graph node is built for every OpenMP constructs like parallel, task
and the worksharings.

— AUl implicit memory flush operation introduced by the OpenMP directives
are made explicit in the graph.

— For every OpenMP worksharing without a nowait clause we add a Barrier
node at the end of the Graph node containing the pragma construct.

28

Chapter 5: Analysis

= 0;i < NB;i++
=0 < NBj++
Kk = 0;k < NBjk++
1 void matmul(double x*A,
2 double *B, double xC,
3 unsigned long NB)
+ {
5 int i, j, k, I;
o float tmp;
l/ 7 for (i = 0; t < NB; i++4)
Cll + j] = tmp 8 {
9 Il = i % NB;
o —— 1(1) for (j = 0; j < NB; j++)
: 12 tmp = C[I+j |;
j<ne 13 for (k = 0; k < NB; k++)
False \True 14

[-o] v P 15 tmp += A[l+k] = B[k«NB+j];
16
17 ClI+j] = tmp;
18 }
19 }
20 }

Listing 5.1: Block partitioned
- Matrix Multiply
-EXIT

Ficure 5.2: EG for code in Listing 5.1

— A barrier operation implies a flush during its execution. We represent this
action by adding to every barrier node b one flush node as dominator of
b and another flush node as post-dominator of b.

— We add marks at the beginning and the end of every function graph and in
the entry and exit point of every function call, where we assume memory
flushes are done to ensure the correctness of the memory model.

— OmpSs tasks are analyzed in a specific way taking accounting for either
their parallelism and the uncertainty they introduce in the parallel flow.

In the following paragraphs we show different examples of codes and the
PCFG we generate. We have chosen a set of codes containing different re-
markable C++ structures as well as OpenMP and OmpSs directives.

We define in Listing 5.2 a simple example of OpenMP sections. The EG
generated is the one shown in Figure 5.3. A GRAPH node is created for every
section. All the edges exiting from the dominator node of the sections node
are ALWAYS edges. This means that those codes can be executed in parallel
depending on the availability of threads. All sections are embedded in a GRAPH
node that contains the sections directive. The OpenMP specification says that
there is an implicit barrier at the end of a sections construct. We add this
barrier with its respective surrounding FLUSH nodes before the EXIT node.

29

oW o =

Chapter 5: Analysis

In Listing 5.3 we show an example with a combined worksharing (parallel +
for) with and without the presence of a nowait clause. In Figure 5.4 there is the
EG resultant of this code. One can see the difference between the loop with a
nowait clause, which finalizes its execution with no synchronization node, and
the loop without the nowait clause, that adds a BARRIER node with its implicit
FLUSH nodes before and after the barrier. At the end of the parallel region, as
specified by the OpenMP model, another BARRIER is inserted before the ExiT
node.

void parallel_for_nowait_example(int n, int m,
float xa, float xb, float xy, float x*z)

1
- 2
void sect_example () 5
4

{

. int i;
#pragma omp parallel sections

#pragma omp parallel

#pragma omp section

XAXIS () ;

5
6
7 #pragma omp for nowait
8
9

#pragma omp section for (i=T; i<n; i++)
YAXIS (); K b[i] = (a[i] + a[i=1)) [/ 2;
#pragma omp section
. 11 #pragma omp for
ZAXIS () ; ! . .
} 12 for (i=0; i<m; i++)
} 13 yli] = sqrt(z[i]);
14
15}

LisTING 5.2: OpenMP sections example

LisTiNG 5.3: OpenMP worksharing example

In Listing 5.4 we show a code for calculating the pi number using OpenMP
tasks. One task is generated for each iteration of a loop contained in a parallel
region. We show in Figure 5.5 the EG built for this code. The critical construct
is embedded in a GRAPH node surrounded by two Flush nodes. For the single
construct no additional synchronization node is added because of the existence
of a nowait clause. The parallel construct adds a BARRIER with its surrounding
FLUSH nodes. Note the different nature of the edges connecting the task with
its dominator and post-dominator. The first corresponds with the scheduling
point of the task (the first moment where the task can be executed) while the
second corresponds to the synchronization point of the task (the last moment
when the task can be executed).

5.2 Use-definition chains

The first step in liveness analysis is to compute, for every node in the graph,
which variables are used and/or defined. We follow an algorithm that computes
this information in two ways: from top to bottom, regarding the flow control,
and from inside to outside regarding the topology of the graph (a given GRAPH
node will compute recursively the use-definition information of its inner nodes
and then will propagate the information to itself). This analysis will add three

30

Chapter 5: Analysis

ENTRY

parallel
ENTRY

for nowjait

for

i=0i< mi++

ENTRY

section/ secion \iection

‘ ENTRY ‘ ‘ ENTRY ‘ ‘ENTRY ‘

ENTRY

EXIT

Ficure 5.3: EG for code in Listing 5.2

Ficure 5.4: EG for code in Listing 5.3

1 double pi(int n) {

2 const double fH = 1.0 / (double) n;
3 double fSum = 0.0, fX;

4 int i;

5 #pragma omp parallel

¢ #pragma omp single private(i) nowait
7 for (i =0; i <n; t +=1) {

8 #pragma omp task private (fX) firstprivate (i)
9

10 fX = f(fH % ((double)i + 0.5));
11 #pragma omp critical

12 fSum += X;

13 }

14

15 return fH x fSum;

16 }

LISTING 5.4: Pi computation with OpenMP tasks

31

Chapter 5: Analysis

i=0i<ni+=1

EXIT

return fH * fSum;

Ficure 5.5: EG for code in Listing 5.4

new attributes to every node in the graph:
— Upper Exposed (UE): set of variables that are used before being defined

32

Chapter 5: Analysis

within the current node.
— Killed (KILL): set of variables that are defined within the current node.

— Undefined behavior (UNDEF): set of variables which we are not able to
define their usage.

When the information is being propagated from inner nodes to its outer
GRAPH node, we follow a recursive depth traversal from the ENTRY node of the
graph until the exit node of the graph. The post-condition of the traversal is
that the current UE, KILL and UNDEF sets contains the information of the
current node combined with the concatenated information of all its children.
Given a specific step of this computation we consider the current node s and
the set the target nodes ty,...,t, that are reachable from s. The algorithm
works as follows:

1. The current sets (UE, KILL and UNDEF) are initialized with the info of s.

2. Three auxiliary sets (UE_AUX, KILL_AUX and UNDEF_AUX) are created
concatenating the info from every node in tq,...,t,. This concatenation
takes into account including expression such us arrays and classes. That
means for example that, if we find the use of an access of a determined
position in an array but the whole array has been already used, the access
of the specific position will not be added into the list because it will be
redundant. If it happens the contrary, we find the use of a whole array
and it already existed in the list the use of a specific position, then the
access to the specific position will be deleted from the list and the access
to the whole array will be added. In addition, during this step, if some
variable is added in the UNDEF_AUX list, this variable or any form of the
variable is deleted from the other two lists (UE_AUX and KILLED_AUX).

3. Finally we complete the current sets info with the info computed in the
children. During this process, any variable appearing in the UNDEF set
will not be propagated from any of the AUX sets to its corresponding
current sets. If some variable appears in the KILL set, then it will not be
propagated from UNDEF_AUX to UNDEF or from UE_AUX to UE. The rest
of variables will be propagated from the AUX sets to the current sets by
following the same rules for arrays and classes that have been described
in the previous step.

Since we perform inter-procedural analysis, use-definition chains are com-
puted recursively in functions calls. When we find a function call during the
analysis of a graph, we stop analyzing the current graph to analyze the func-
tion called. In this situation, one and only one of the following cases must be
applied:

33

Chapter 5: Analysis

— We have access to the code of the function call and there is no recursion
If the graph of the called function is not yet built or the use-definition
chains are not yet computed, then, since we have access to the code that
will be executed in the function call, we do this analysis immediately.
Once we have the PCFG and the use-definition information of the called
graph, we propagate this information to the node containing the function
call. During this propagation we must transform the usage computed in
the called graph by usage meaningful for the current graph. This means
that:

|. The usage of the local variables of the called function is not propa-
gated to the current graph.

Il. The usage of the parameters is renamed to the usage of the arguments.

lll. The usage of global variables is directly propagated to the current
graph.

— We have access to the declaration of a function call and there is recursion
In this case we cannot proceed in the same way as before because we
would enter in an infinite loop analyzing the same function over and over
again. To detect recursive calls we store in every graph the list of functions
called in the graph. At the point were a recursive call appears we launch a
new analysis that only deals with the variables which are relevant in the
current analysis, which are pointed parameters (parameters with pointer
type or parameters passed by reference) and global variables. We traverse
the recursive function by computing the usage of these specific variables
and then we propagate the information to the current graph as explained
in the previous case (here we do not have local variables because no info
is computed for them).

— We don’t have access to the code of the called function In the case we can-
not analyze the code of a function call we cannot define the usage over the
global variables but still can define the usage of the arguments regarding
the types of the declaration of the function. Only parameters passed by
reference or parameters with pointer type will have an undefined behavior.

We introduce in Listing 5.5 a sample code that we will use as example for all
the analysis. This code comes from the floorplan benchmark and it lays down
a cell represented by an identifier (id) into a section of a board delimited by
four points (top, bot, Lhs, rhs). In Figure 5.6 we show the resultant PCFG with
the information computed during the phase of Use-Definition chains.

34

Chapter 5: Analysis

static int lay_down(int id, ibrd board,

i++) {

= lhs; j <= rhs; j++) {

) board[i][]]
return (0);

1

2 int i, j, top, bot, lhs, rhs;
3

4 top = cells[id].top;

5 bot = cells[id].bot;

6 lhs = cells[id]. lhs;

7 rhs = cells[id]. rhs;

8

9 for (i = top; i <= bot;
10 for (j

11 if (board[i][j] == 0
12 else

13 }

14 }

15

16 return (1);

17}

struct cell xcells

= (char)id;

) {

LisTING 5.5: Lay down method from Floorplan benchmark

= top;i <= bot;i++

j = lhs;j <= rhs;j++

KILL: top, bot, Ihs, rhs, i, j, board[il(j]
UE: cells[id].top, cells[id].bot, cells[id].Ihs, cells[id].rhs, board[i][j], id

KILL: j, board[il[j], i
UE: i, bot, lhs, rhs, board[i](j], id

KILL: boardlil[jl, j

UE: j, rhs, board[il(jl, i, id
UNDEEF: EOY |

UNDEEF: UNDEEF:
j<=rhs
KILL:
ENTRY
UE:j, rhs
UNDEF:
rue |[False
top = cellsfid].top
bot = cells[id].bot
Ihs = cells[id].lhs board[i][j] ==
rhs = cells[id].rhs
i=top KILL:
KILL: top, bot, lhs, rhs, i UE: board[illjl, i, j
UE: cells[id].top, cells[id].bot, cells[id].Ihs, cells[id].rhs UNDEF:
UNDEF:
False \True \
. board[i][j] = (char)id
return 0; e+ i++
ST KILL: KILL: board[illjl, j Kt
UE: UE i1 UE:i
UNDEF: UNDEF: LﬂJEF‘
i <= bot
KILL:
UE: i, bot
UNDEF:

j=1hs

KILL: j
EXIT
UE: Ihs

UNDEF:

\

return 1;

KILL:

UE:

UNDEF:

FiGure 5.6: EG with Use-Define information for code in Listing 5.5

35

Chapter 5: Analysis

5.3 Loop analysis

The major data manipulated in scientific programs is the array. The use-
define analysis on a whole array must take into account the existence of loops
surrounding the access to an array. The analysis of arrays is costly in terms
of computation and space storage so the methods used in every situation re-
quire a compromise between accuracy and complexity. Since we do not aim
to implement aggressive optimizations such as auto-parallelization, we have
defined a set of constraints that represent the frame we will use to apply our
loop analysis.

What we want with this analysis is to determine which regions or elements
of a given array are accessed in every code segment (where a code segment
can be a basic block, a loop or a whole procedure). In order to do that we
analyze the loops existing in the code. Specifically, we are interested in the
analysis of induction variables. That is because they are frequently used as
array subscripts and, in that case, we can define the rage of accesses to the
array by defining the range of accesses to the induction variable. When arrays
are accessed by constant values, the range access computation is trivial; in
the case the arrays are accessed by non-induction variables, then we are not
able to determine the range of accesses by analyzing the loop bounds and
it becomes more difficult to discover which positions of the array are being
accessed across the iteration space.

With our PCFQG it is easy to determine when we are into a loop construct
because we have represented the loop with specific nodes. The work here is
to determine whether a variable is an induction variable or not. That requires
the analysis of all the statements within the loop by searching variables that
are increased or decreased by a fixed amount in every iteration or variables
that are a linear function of another induction variable. We have decided to
simplify this step and work only with for-loop constructs and induction vari-
ables that can be found in the control loop. We are missing many other cases
like while-loops or goto control statements, but most of the codes appearing
in our benchmarks fulfill our conditions.

In order to compute the induction variables and their ranges, we traverse the
PCFG looking for for-loop nodes. The information about the induction variables
is stored in a map structure as a 2-tuple of < id, induc_vars >, where id is
the identifier of the loop and induc_vars is the list of induction variables that
fall within the scope of the loop id. Every variable is represented with the
triplet notation < LB, UB,S >, where LB is the lower bound accessed by iv,
UB is the upper bound accessed by iv and S is the stride used to increment

36

Chapter 5: Analysis

or decrement iv in the loop. For every loop we found, we apply the following
algorithm:

— If we are in a nested loop, we propagate the induction variables computed
for our outer loop to the current loop storing this information in induc_var.

— We traverse the nodes representing the loop control (initialization, condi-
tion and next) and we store in induc_var all the variables that are defined
there. In this traverse we compute and we store in the structure the upper
and lower bounds, and the stride of the defined variables. Not always we
can compute these limits.

— All variables introduced in induc_var that have incomplete information
are deleted from the structure.

— We traverse the inner statements of the loop by searching possibles re-
definitions of the variables remaining in the structure. If some statement
makes a variable to violate the induction variable conditions, then it is
deleted from the structure.

Code in Listing 5.5 contains a 2 nested loops. If we apply loop analysis
in this function we will compute two induction variables. In the outer loop
we detect the induction variable i, represented by the triplet [top; bot;1]. In
the inner loop, we detect the induction variable j, represented by the triplet
[Lhs; rhs;1]. In our records, we store the validity of i for the inner loop, and we
do that by creating a virtual induction variable i’ in the scope of the inner loop
with the same attributes (symbol, i, and triplet, [top; bot; 1]) as the original
induction variable of the outer loop.

Once we know the ranges of the induction variables, we modify the informa-
tion computed during Use-Definition analysis to adapt the element information
into range information. This work consists in traversing the graph looking for
for-loop nodes. In a given loop, for every use of an induction variable as a sub-
script, we substitute the single values of the induction variable by the range
values computed during the loop analysis. In Figure 5.7 we show the result
of applying this transformation to the lay down example of Listing 5.5. The
accesses to the matrix board that previously where single values, now have
been transformed to ranges represented with the same triplets as the induction
variables. Note here that the occurrences of the induction variable in situa-
tions different from an array subscript are not substituted. That is because
they do not represent a set of memory units, but the change of value in a
unique memory unit.

37

Chapter 5: Analysis

i = top;i <= bot;i++

j=Ihs;j <= rhsjj++

LI:i, bot, lhs, rhs,
board(top:bot:1][lhs:rhs:1], id
LO: Ihs, rhs, i,
board[top:bot:1][Ihs:rhs:1], id, bot

LI: j, rhs, i, id, bot, Ihs,
board[top:bot:1][Ihs:rhs:1]
LO: i, j, id, rhs, bot, Ihs,
board[top:bot:1]{lhs:rhs:1]

ENTRY LI:j, rhs, i, board[top:bot:1][Ihs:rhs:1], id, bot, Ihs

LO: i, j, board[top:bot:1][lhs:rhs:1], id, rhs, bot, lhs

LI: cells[id].top, cells[id].bot, cells[id].lhs,
cells[id].rhs, board[top:bot:1][lhs:rhs:1], id
LO:

top = cells[id].top
bot = cellsid].bot
Ihs = cells[id].lhs
rhs = cells[id].rhs board[i][j] == 0

i =top

LIt i, j, board[top:bot:1][Ihs:rhs:1], id, rhs, bot, lhs

LI: cells[id].top, cells[id].bot, cells[id].Ihs,
cells[id].rhs, board[top:bot:1][lhs:rhs:1], id

LO: i, bot, Ihs, rhs,
board[top:bot:1][Ihs:rhs:1], id
rue False

LO: id, i, j, rhs, bot, Ihs

i++
board[il[j] = (char)id return 0;
LIz i, bot, Ihs, rhs, id,
LIz id, i, j, rhs, bot, lhs LIz board[top:bot:1][Ihs:rhs:1]
LO:j, rhs, i, board[top:bot:1][lhs:rhs:1], id, bot, Ihs LO: LO: i, bot, Ihs, rhs, id,
board[top:bot:1][Ihs:rhs:1]
i <= bot
JH+
LIt i, bot, Ihs, rhs, id,
board[top:bot:1][lhs:rhs:1] LIz j, rhs, i, board[top:bot:1][Ihs:rhs:1], id, bot, lhs
LO: Ihs, rhs, i, id, bot, LO: j, rhs, i, board[top:bot:1](lhs:rhs:1], id, bot, lhs
board[top:bot:1][lhs:rhs:1]
XTrue False
j=1lhs
LI: Ihs, rhs, i, board[top:bot:1][Ihs:rhs:1], id, bot
LO: j, rhs, i, board[top:bot:1][Ihs:rhs:1], id, bot, lhs
\ return 1;
Lk

Ficure 5.7: EG with Loop Analysis for code in Listing 5.5

5.4 Reaching definitions

We have implemented the reaching definitions data flow analysis in our
PCFG. With the information computed during the Use-Definition analysis and
the Loop Analysis, we are able to determine which definitions potentially reach
any node in our graph. We need this information in order to analyze more
accurately the values of some specific variables after a given iterative construct
such as the induction variables and variables depending on induction variables
like arrays.

We define the reaching definition set of a given node as the set of vari-
ables that reach the exit of the node. We will call this set Reach_out. The
computation of this set is done traversing forward the graph; for GRAPH nodes
we compute recursively the reaching definitions of the inner nodes and then
we propagate this information to the outer node, which will have the same

38

Chapter 5: Analysis

reaching definitions as its exiT node. Once we have finished this computation,
every node will have a new attribute containing the Reach_out set. When we

are not capable to determine the value of a variable at a given node, then this
variable will have an UNKNOWN VALUE.

For codes without any iterative construct nor with back edges, this analy-
sis is as trivial as propagate forward the values defined at some point of the
graph until the next definition of the same variable. Nonetheless, the exis-
tence of loops increases the difficulty of the analysis because it requires some
arithmetic computation with the limits of the loops. Our purpose with this
analysis is not to implement all cases supported by the C/C++ language, but
mainly being able to determine the values of the induction variables when their
bounds are simple expressions such as constants values, symbols or arithmetic
functions of constants and symbols. We have implemented a calculator for con-
stant expressions and a set of rules for algebraic simplification. These rules
will help us to normalize the arithmetic expressions in the loop boundaries
and simplify them in most cases. In Figure 5.8 we show the set of rules that

+ + N
/N =t / O\ = t VRN +
t 0 0 t + 2=/ \
- - /N cl+c2 t
AR N S
t 0 0 c i
/+\ => cl+c2 /- \ = cl-c2 */ AN N +
cl) cl c2 RN c2 = cl’éz \t
* + - + cl ot
/SN = /N /N N i i
t c c t ot c -C t <—,<\ . /<—<\
* * = + c2 t c2-cl
/ N\ = cl*c2 / N\ = / \ / N\
cl c2 t C c t 1 t
* / ~)
A A I
° % i ° % ‘ + c2 t c2-cl
/N 70 /N =0 cl/ \t
t 1 t t

Ficure 5.8: Arithmetic simplifications

we have implemented to simplify arithmetic expressions. Understand ¢, ¢1 and
c2 as constant values, and t as the tree of a expression (a Nodecl). The left
part of the implication is the input expression and the right and is the output
expression. For example, for the first rule (top left of the figure), whenever
we find a Nodecl of type Addition where the left hand side of the addition is
an unrestricted variable and the right hand side of the addition is a constant

39

Chapter 5: Analysis

value equal to zero, then we can substitute this expression by an expression
equal to the tree on the left hand side of the assignment.

Using once again the example introduced in Listing 5.5, we show in Figure
5.9 the values of the Reach_out set for every node. Note the results of applying
the rules introduced in the previous paragraph. For example, focusing in the
outer loop, the values of the induction variable i are different depending on the
node we look at:

— In the node containing the condition of the loop, i takes values in the
range top : 1+ bot : 1.

— In the node containing the stride, i takes values in the range 1 + top :
14 bot: 1.

— In any other node within the loop, i takes values int he range top : bot : 1.

— The value of i after the execution of the loop is 1 + bot.

Focusing now in the inner loop, we compute the value of j as unknown at the
exit of the GRAPH node because not all branches inside the loop have the same
value of j. However, since j is a range of values inside the loop, we can compute
the ranges in every node using the same technique as used for the variable i.

5.5 Liveness analysis

Liveness analysis is a data flow analysis that computes for each program
point the variables that may be potentially read before their next write. It is
that a variable is live if it holds a value that may be needed in the future.

For this analysis we need the information computed in the previous analysis.
We use the commonly used data-flow equations for defining the variables that
are live at the entry (Live_in) and at the exit (Live_out) of every node in the
graph. So, given a node X, the set of upper exposed variables in the node,
UE(X), and the set of killed variables in the node, K/LL(X), the equations are
the following:

Live_out(X) = U Live_in(Y) (Succ(X) are all nodes reachable from X)
YeSucc(X)

Live_in(X) = UE(X) + (Live_out(X) — KILL(X))

These equations are applied backwards from the ExiT node up to the ENTRY
node of the PCFG. This traversal is embedded in a loop iteration that stops

40

Chapter 5: Analysis

ENTRY

top = cellsfid].top
bot = cells[id].bot
Ihs = cells[id].lhs
rhs = cellsfid].rhs
i=top

REACH DEFS: i = top;
rhs = cells[id].rhs;
bot = cells[id].bot;
top = cellsid].top;
Ihs = cellsfid]. Ihs;

38i = top;i <= botii++

REACH DEFS: i = 1 + bot;
j = UNKNOWN ;
rhs = cells[id].rhs;
top = cellsfid].top;
bot = cells[id].bot;
board[top:bot:1][lhsirhs: 1] = UNKNOWN;|
Ihs = cells(id].Ihs;

o

48] = Ihs;j <= rhs;j++

ENTRY

REACH DEFS: i = bot;
j = UNKNOWN ;
rhs = cells[id].rhs;
top = cells[id].top;
bot = cells{id].bot;
board[top:bot:1]{Ihs:rhs:1] = UNKNOWN;

Ihs = cellsfid].Ihs;

j<=rhs

REACH DEFS: i = top:bot:1;
j=lhs + rhsiL;
ths =
board[top:bot:1][Ihs:rhs:1] = UNKNOWN;
bot =
top =
Ihs =

cellsfid].rhs;

cells[id].bot;
cellsfid].top;
cellsfid].Ihs;

True

board(illj] == 0

REACH DEFS: | = top:bot:1;
= lhsirhs:1;

i

rhs =
boarditop:bot:1]ilhs:rhs:1] = UNKNOWN VALUE;
bot =
top=
Ihs =

cellslid].rhs;

cells[id].bot;
cells[id].top;
cells[id].hs;

\:\se

board(illj] = (char)id

return 0;

REACH DEFS: i = top:bot:1;
j = Ihsirhs:1;
ths = cellslid.rh

top = cells{id].top;

bot = cellsfid].bot;
board{top:bot:1]llhsirhs:1] = (char)id;
Ihs = cellsfid].lh

s:

s:

REACH DEFS: i = top:bot:1;
j = Ihsrhs:1;
rhs = cellsfid].rhs;

top = cellsfid].top;
bot = cellsfid].bot;

Ihs = cellsfid].lhs;

board[top:bot:1][Ihs:rhs:1] = UNKNOWN ;

i <= bot

j++

REACH DEFS: i = top:1 + bot:1;
j = UNKNOWN VALUE;
rhs = cells[id).rhs;
board[top:bot:1][lhs:rhs:1] = UNKNOWN VALUE;
bot = cells[id].bot;
top = cellslid].top;
Ihs = cells[id].lhs;

REACH DEFS: i = top:b
rhs = cellsfid].rhs;
bot = cellsfid].bot;

top = cellslid].top;
Ihs = cells[id].lhs;

j=1+Ihs1 + rhsi1;

board(top:bot:1]{Ihs:rhs:1] =

ot:1;

(char)id;

f(rue False

j=lhs

REACH DEFS: i = top:bot:1;
j=Ihs;
rhs = cells[id].rhs;
board(top:bot:1](lhs:rhs: 1] = UNKNOWN VALUE;
bot = cells[id].bot;
top = cells[id].top;
Ihs = cells[id].Ihs;

i++

j = UNKNOWN;
rhs = cellsfid].rhs;

bot = cells[id].bot;
top = cells{id].top;
Ihs = cellsfid].Ihs;

REACH DEFS: i = 1 + top:1 + bot:1;

board[top:bot:1][Ihs:rhs:1] = UNKNOWN ;

REACH DEFS: i = 1 + bot;
j = UNKNO!

rhs = cells[id].rhs;

top = cellsfid].top;

bot = cellsfid].bot;
board{top:bot:1][Ihsirhs: 1] = UNKNOWN;

Ihs = cells[id].lhs;

WN;

return 1;

REACH DEFS: i = 1 + bot;
j = UNKNOWN ;
rhs = cellsfid).rhs;

bot = cellsfid].bot;
top = cells{id].top;
Ihs = cellsfid].Ihs;

board[top:bot:1](lhs:rhs:1] = (char)id;

EXIT

Ficure 5.9: EG with Reaching Definitions for code in Listing 5.5

when, after the last two iterations, the liveness information has not changed in
any node. In the case of graph nodes, the backward traversal is applied from
its EXIT node until its ENTRY node; then, its Live_in information is obtained from
its ENTRY node and its Live_out information is obtained from its EXIT node.

In order to properly keep OpenMP tasks liveness information, we have to
do some extra work. For tasks appearing within loop iterations, computing
Live_out as we do for the rest of nodes is not enough because variables within
the tasks can be used in the task instance of the following iteration. To compute
these special variables, we virtually add the task as a child of itself. With
virtually we mean that no physical edge is added to the task, but we add to
the task Live_out set all these variables that are in the task Live_in set.

41

Chapter 5: Analysis

We add these new analysis results to every node in the form of two new
attributes:

— Live in: set of variables computed as live at the entry of the node.
— Live out: set of variables computed as live at the exit of the node.

Following with the example introduced in the previous section, the lay down
method from floorplan benchmark (Listing 5.5), we show in Figure 5.10 the same
graph but now with the information computed during the liveness analysis.

i = topii <= botii++

j = Ihsij <= thsj++

LIz i, bot, Ihs, rhs,
board(top:bot:1][lhs:rhs:1], id
Ihs, rhs, i,
board[top:bot:1][Ihs:rhs:1], id, bot

Li: cells{id].top, cellslid].bot, cells[id].lhs,
cells[id].rhs, board[top:bot:1][lhs:rhs:1], id
Lo:

LIz j, rhs, i, id, bot, Ihs,
board(top:bot:1]{Ihs:rhs:1]
LO: i, j, id, rhs, bot, Ihs,
board[top:bot:1][Ihs:rhs:1]

ENTRY LI:j, rhs, i, board[top:bot:1](Ihs:rhs:1], id, bot, Ihs
LO: i, j, board(top:bot:1](Ihs:rhs:1], id, rhs, bot, Ihs
jwue False

top = cellsfid].top
bot = cellsfid]. bot
Ihs = cellsfid].Ihs
rhs = cells{id].rhs board]i][j] == 0

i = top

L2 i, j, boardtop:bot:1][lhs:rhs:1], id, rhs, bot, Ihs

LL: cellsfid].top, cellsfidl.bot, cellsfidl.Ihs,

cells[id].rhs, board[top:bot:1][Ihs:rhs:1], id LO: id, i j, rhs, bot, Ihs
LO: i, bot, Ihs, rhs,
boarditop:bot:1]{lhs:rhs:1], id
rue False
i+
board(ilfj] = (char)id return 0;

LI: i, bot, Ihs, rhs, id,
LI: id, i, j, rhs, bot, Ihs L board[top:bot:][Ihs:rhs:1]

L0: , rhs, i, board[top:bot:1]{Ihs:rhs:1], id, bot, Ihs Lo LO: i, bot, Ihs, rhs, id,
board[top:bot: 1][Ihs:rhs:1]

i <= bot
j+

LIz i, bot, Ihs, rhs, id,
board(top:bot:1](Ihs:rhs:1] LI j, rhs, i, board[top:bot:1](Ihs:rhs:1], id, bot, Ihs

LO: Ihs, ths, i, id, bot, LO: j, rhs, i, board[top:bot:1](lhsirhs:1], id, bot, Ihs
boar 1](lhsirhs:1]

\Tyue False

j=1Ins

LI: Ihs, rhs, i, board(top:bot:1]{lhs:rhs:1], id, bot EXIT

LO: j, rhs, i, board[top:bot:1][Ihs:rhs:1], id, bot, Ihs

return 1;

FiGure 5.10: EG with liveness information for code in Listing 5.5

42

CHAPTER 6. OmpSs optimizations

This section presents three optimizations that we have undertaken to exploit
the benefits of the analyses described in Chapter 5. As we introduced in the
early chapters of this dissertation, our goal when we decided to implement
analysis in Mercurium compiler was to improve the productivity of OmpSs.
Each one of the optimizations we have implemented takes one direction in
order to achieve this objective. In the first case, privatizing shared variables
we can achieve better performance in codes that have many accesses to these
variables. In the second case, automatically discovering task dependencies
does not produce a better performance but it enhances the programmability
of OmpSs releasing the user from the task of doing this job manually. We
present the details of each approach and the results we have obtained for a
set of benchmarks.

6.1 Privatization: optimizing shared variables

6.1.1 Scope of the optimization

The OpenMP model defines the existence of two different contexts for vari-
ables living in parallel environments: private and shared. Variables in a private
context are hidden from other threads; this means that each thread has its own
private copy of the variable and modifications made by a thread are not visible
to other threads. On the contrary, variables in a shared context are visible to
all threads running in associated work teams.

In OpenMP each directive is associated to a structured block that defines a
new scope (in the case of directives in declaration level, this block will be the
code executed in a given call to the declared function). Each variable refer-
enced in the structured block has an original variable existing in the program
immediately outside the construct. Each access to a shared variable in the
structured block becomes a reference to the original variable. For each pri-
vate variable referenced in the structured block, a new version of the original
variable (of the same type and size) is created in memory for each task that
contains code associated with the directive.

As it is explained in Section 4.1, OpenMP defines for shared variables a
relaxed memory model where threads may have regions where they define their
own temporary view of the memory. Threads temporary view is not required

43

Chapter 6: OmpSs optimizations

to be consistent with main memory at every moment of execution. OpenMP
guarantees consistency across the local memories and the main memory by
the flush operation. The completion of a flush executed by a thread is defined
as the point at which all the variables involve are synchronized with main
memory. A memory flush operation can be performed in two different ways:

— OpenMP provides a flush directive with the following syntax:
#pragma omp flush [(list)]
where list specifies the set of items to which the flush is applied on.

— OpenMP implicitly performs memory flushes in the following situations:

* During a barrier region.

* At entry to and at exit from parallel, critical and ordered regions.
* At exit from worksharing regions unless a nowait clause is present.
% A entry to and at exit from combined parallel worksharing regions.
% During omp_set_lock and omp_unset_lock regions.

* Durlng omp_test_lock, omp_set_nest_lock, omp_unset_nest_lock and
omp_test_nest_lock regions, if the region causes the lock to be set or
unset.

* Immediately before and immediately after every task scheduling point.

* A flush region with a list is implied at the entry to and at the exit from
atomic regions, where the list contains only the variable updated in
the atomic construct.

Regarding to a shared variable, a flush region ensures the following state-
ments:

— At the beginning of the region, a flush enforces the value of the variable
to be consistent in main memory and all the local views.

— At the end of the region, a flush enforces the value of the variable to be
synchronized across the memories.

Shared variables are represented in the Mercurium compiler as pointers to
the original memory locations. In Listing 6.1 we show a matrix multiplication
code parallelized with the OpenMP parallel construct. In Listing 6.2 we show
a snippet of code generated by Mercurium. This code contains the outlined
function called _smp__ol_matmul_0 corresponding to the block of code embed-
ded in a parallel region in the original code. The original method matmul has
been transformed into a set of instructions allowing the communication with the
Nanos++ runtime library. We show only the lines that are useful for our pur-
pose, which are the creation of the data structure with _nx_data_env_0_t_tag

44

Chapter 6: OmpSs optimizations

called ol_args that contains the parameters needed for the execution of the
outlined function and the different calls to the Nanos++ specific functions al-
lowing the creation of parallelism. Conservatively, the compiler uses shared
pointers to the matrices. While in the original code, the matrix multiplication
is done over the matrices A, B and C, in the outlined parallel version, every ac-
cess to the matrix is done by referencing the access through a shared pointer.
The overhead paid for using shared variables is proportional to the number of
accesses to this variable. In this case, it supposes doing three extra references
for each iteration of the three loops.

1 int MATSIZE = 0;
2 void matmul (double %A , double %B, double *C) {
3 int it ,], k;

4

5 #pragma omp parallel for private (i, j, k)

6 for (i =0 ; i < MATSIZE; i++4)

7 for (j 0 ; j < MATSIZE; j++)

8 for (=0 ; k < MATSIZE; k++)

Cli [j)+=A[i [k]*«B kIl j]

LisTING 6.1: Matrix multiply with OpenMP parallel

The motivation of privatizing shared variables comes from the fact, confirmed
in the previous example, that using shared variables when it is not indispens-
able to do so, introduces unnecessary overheads without bringing any benefit.
However, incorrectly privatizing a variable may result in an undefined value
for the variable outside the construct. The key is to determine when a shared
variable can be privatized. We can take advantage of the characteristics of the
OpenMP memory model and the flush operations described previously to state
the following privatization criterion:

“If we are capable of guaranteeing that there is a region where
no flushes are performed, then, each thread can privatize a shared
variable in that region.”

By the methodology we use during the construction of the PCFG, all flush
operations are made explicit in the graph. In addition, to ensure the correctness
of the OpenMP memory model, we suppose flush operations at the entry and
at the exit of every function call and we add marks in the code indicating
this assumption. With this information we can define which are the regions
where no flush are performed besides the flush at the entry to the region and
the flush at the exit from the region. We call these regions no-flush regions.
Now we are able to use the results of the liveness analysis to know which
variables are live at any point of the flow and combine this data to decide which
privatized shared variables within a no-flush region need to be initialized with

45

Chapter 6: OmpSs optimizations

the content of the main memory. The liveness analysis also give us information
about the privatized variables that need to be flushed at the end of the no-flush
region. It is important to remark that we are applying this optimization in a
high-level representation of the program, when the code is not yet specialized
for a particular architecture.

1 int MATSIZE = 1000;

2 typedef struct _nx_data_env_0_t_tag {

3 nanos_loop_info_t loop_info;

4 int *MATSIZE_O;

5 double *xxA_0;

6 double x*xB_0;

7 double *%xxC_0;

8 } _nx_data_env_0_t;

9

10 static void _smp__ol_matmul_0(_nx_data_env_0_t *const __restrict__ _args) {
11 int i, j, k;

12 int *xMATSIZE_O0 = (int x) (_args—>MATSIZE_0);

13 double **%*A_0 = (double xxx) (_args—A_0);

14 double ***B_0 = (double xxx) (_args—>B_0);

15 double *xxC_0 = (double xxx) (_args—C_0);

16 int _nth_lower = _args—loop_info.lower;

17 int _nth_upper = _args—>loop_info.upper;

18 int _nth_step = _args—>loop_info.step;

19

20 for (i = _nth_lower; i <= _nth_upper; i += _nth_step)

21 for (j = 0; j < (*xMATSIZE_0); j++)

22 for (k = 0; k < (*xMATSIZE_0); k++)

2 (+C_O)[L][}] += (+xA0)[L][k] * (xB_O)[K][]];

u }

25

26 void matmul(double *xA, double *%B, double xxC) {

27

28 _nx_data_env_0_t xol_args = (_nx_data_env_0_t %) O0;

29

30 err = nanos_create_sliced_wd (&wd, 1, _ol_matmul_0_devices, sizeof(_nx_data_env_0_t),
31 __alignof__(_nx_data_env_0_t), (void x*x) &ol_args, nanos_current_wd (), static_for,
32 sizeof (nanos_slicer_data_for_t), __alignof__(nanos_slicer_data_for_t),
33 (nanos_slicer_t x) &slicer_data_for, &props, 0, (nanos_copy_data_t *x) 0);
34

35 ol_args—>MATSIZE_0 = &(MATSIZE);
36 ol_args—>A_0 = &(A);
37 ol_args—>B_0 = &(B);
38 ol_args—C_0 = &(C);

39 slicer_data_for—>_lower = 0;

40 slicer_data_for—_upper = (MATSIZE) — 1;

41 slicer_data_for—_step = 1;

42 slicer_data_for—>_chunk = 0;

43 err = nanos_submit(wd, 0, (nanos_dependence_t %) 0, (nanos_team_t) 0);
44

45 }

46 nanos_omp_barrier ();

a7}

LisTING 6.2: Mercurium outline for code in Listing 6.1

We have implemented the analysis for these cases where the shared vari-
ables are not used beyond the point of the privatization. A possible extension
of this optimization consists on the research of portions of code were it is pos-

46

Chapter 6: OmpSs optimizations

sible the privatization of a variable that must be flushed afterwards into the
shared memory. In this case, we should define a trade-off between the cost
of privatizing and flushing a variable and the cost of the shared access to the
variable, which will depend on the number of accesses performed to the shared
value.

6.1.2 The results

For this test we have used a machine with 24 Intel Xeon E7450 x86-64 pro-
cessors of 2.50GHz machine with SUSE Linux. In order to test the opportunities
of the shared variables privatization we have chosen a set of different bench-
marks containing a great number of shared variables accesses. We have used
the Mercurium compiler and GCC as the back-end compiler and for all the
executions, both the original and the optimized versions, with have used -O3
level of optimization.

6.1.2.1 Matrix multiplication

In Listings 6.1 and 6.2 we have introduced respectively the code of a matrix
multiplication algorithm parallelized with the OpenMP parallel construct and
the output originally generated by Mercurium for this input code. In Listing
0.3 we present the meaningful parts of the optimized version of the translation
generated by Mercurium once the privatization has been implemented. During
the analysis, the compiler detects that the access to the three matrices A, B
and C can be privatized, as well as the access to the global variable MATSIZE.
It makes that decision because all these variables are not live after the call
to the _smp__ol_matmul_0 method. Therefor, in the optimized version, the
data structure _nx_data_env_0_t_tag is created with the private versions of
the variables. Thus, we have avoided three extra references for each iteration
of the three loops.

Matrix multiply performance is highly dependent from the micro-architecture
because of the repeated number of accesses to the same of contiguous memory
positions. For our optimization in particular, as big is the matrix, as much
benefit we expect to obtain from the privatization. But the size consequences
are sensible to other aspects like cache conflicts, access to slower levels than
L1 in the cache hierarchy, etcetera. In order to avoid this kind of interferences
in our results, we have chosen a matrix size, 2KB x 2KB, which perfectly fits in
the L1 cache, 12MB. We have tested the original translation and the optimized
translation for both serial and parallel codes from 1 thread up to 16 threads.

47

Chapter 6: OmpSs optimizations

1 typedef struct _nx_data_env_0_t_tag {
2 nanos_loop_info_t loop_info;

3 int MATSIZE_O;

4 double **xA_0;

5 double *xB_0;

6 double %xC_0;

7 } _nx_data_env_0_t;

8
9

static void _smp__ol_matmul_O(_nx_data_env_0_t *const __
10 int MATSIZE_O0 = (int) (_args—>MATSIZE_0);

restrict__ _args) {

11 double *xA_0 = (double xx) (_args—>A_ 0)_

12 double *xB_0 = (double xx) (_args—B_0);

13 double *xC_0 = (double *x) (_args—>C_0);

14

15 for (i = _nth_lower; i <= _nth_upper; i += _nth_step)
16 for (j = 0; J < MATSIZE_O; j++)

17 for (k = 0; k < MATSIZE_O; k++)

18 CO[E][j] += A0[U][k] = BLO[K][]];

19 }

20

21 void matmul(double *xA, double %xB, double %xC) {

23 ol a|gs—>MATSIZE 0 = MATSIZE;

24 ol_args—>A_0 = A;
25 ol_args—>B_0 = B;
26 ol_args—C_0 = C;
27

28 }

LisTING 6.3: Mercurium optimized outline for code in Listing 6.1

In Figure 6.1 we show the execution time comparison among the different
executions. As we expected, the optimized version reduces the execution time
against the base version; that is because of the reduction of memory access
due to the use of non-shared variables. In Figure 6.2 we can observe the
perfect scalability we achieve with the optimized version, although the speed-
up obtained with the unoptimized version is close to being perfect. In this chart
we show the gain with the optimized version in relation to the original version

as well. It is close to the 1% an it is stable while we scale the application.

220 18 4 20

200 16 -

1:2 & serial 14 & —s—speed-up base 15
’g‘ 140 Hbase a 12 4 —m-speed-up optimized <
‘;’ 120 kd optimized 'E 10 7 —egain 10 %
g 100 ;’.,_ s £
g @ e B
T w0 .l 5
§ 40
Y 21

0 0 0

1 2 4 8 16 1 2 4 8 16
Number of threads Number of threads

Ficure 6.1: Matrix multiply execution time

48

FiGcure 6.2: Matrix multiply speed-up & gain

Chapter 6: OmpSs optimizations

6.1.2.2 Jacobi

The 2D Jacobi iteration is an stencil algorithm that
computes the arithmetic mean of a cell's four neigh-
bors, as it is showed in Figure 6.3. We have used the
parallel version of this algorithm implemented by us- i '
ing the OpenMP parallel construct that is showed in t
Listing 6.4. The most outer loop repeats the compu-
tation of the Jacobi iteration in a 2D matrix and it is
parallelized among the threads in the current team.
The two nested inner loops implement the Jacobi it- F e 6.5: Jacobi dependencies
eration are private for each one of the threads.

e

static void jacobi(float xx a, float =x b) {
#pragma omp parallel

W o =

for (int iter = 0; iter < ITERS; iter++) {
int i, j;
6 #pragma omp for private(i,j)

[

7 for (i =1, t <N—=1; i++4)

8 for (j =1; j <N—=1; j+4)

9 bi][j] = 0.25 = (a[t=1][J] + a[t+1][j] + a[t][j=1] + a[U][j+1]);
10 swap(a, b);

1

12 }

13}

LIsTING 6.4: Jacobi iteration with OpenMP parallel

In the same line as with the matrix multiply, we have obtained an improve-
ment in the performance of the optimized version. In Figure 6.4 we show the
differences in the execution time for different executions of the two versions
both serial and parallel from 1 up to 24 threads and as it happened in the
previous example, we reduce the execution time with the optimization. But the
trend is to equalize the time of the non-optimized version while we increase
the number of threads. Regarding on Figure 6.5, we can observe that the ap-
plication is far from obtaining a perfect speed-up as we scale the number of
threads. That fact occurs most specially from 16 threads forth. The reason of
this impasse is that the application reaches the limits of the memory bandwidth
of the machine.

6.1.2.3 Vector scan

Vector scan is an approach to parallelize a computation in a vector which a
priori is not parallel. The input of the algorithm is a vector of size N and the
output is a vector of size N where each position p;; ¢p..n-1] is the summation

49

Chapter 6: OmpSs optimizations

160 o 94 - 20
o serial =4—speed-up base
140 5
H base ; —-speed-up optimized
i & - 15
- i optimized —&—gain
8 e’
= ? 5 g
E b F10 ¢
£ g - £
c n b
2 37
]
3 2 re
Q
2
w 1 -
0 0
1 2 4 a 16 24 1 2 4 8 16 24
Number of threads Number of threads
FIGURE 6.4: Jacobi execution time FiGURE 6.5: Jacobi speed-up & gain

of all elements p;; c.i—1 The code of the parallel version is shown in Listing
6.5.

1 void scan (elem_t*x output, elem_t*x input, int n)
2 {

3 int log2n = log(n) / log(2);

4 int d, k;

5

6 #pragma omp for

7 for (d=0; d<n; d++)

8 output[d] = input[d];

9

10 for (d=0; d < log2n ; d++) {

11 int s =1 << (d+1);

12 int s2 =1 << (d);

13 #pragma omp for firstprivate (s,s2)

14 for (k=0; k<n; k4+=s5s)

15 output[k+s—1] += output[k+s2 —1];
16 }

17

18 output[n — 1] = 0;
19 for (d =log2n — 1 ; d>= 0; d—) {
=1

20 int s << (d4+1);

21 int s2 =1 << (d);

22 #pragma omp for firstprivate (s,s2)

23 for (k=0, k<n; k+=5s) {

24 elem_t t = output[k+s2—1];

25 output[k+s2—1] = output[k+s—1];
26 output[k+s—1] = output[k+s—1] + t;
27 }

28 }

29

30 #pragma omp taskwait

31

LisTING 6.5: Vector scan computation with OpenMP parallel

We have tested the performance and scalability of the base and the opti-
mized version as we did with the other examples. The performance results
are shown in Figure 6.6. We can observe the reduction of the execution time
obtained by the optimized version against the base version. In Figure 6.7 we

50

Chapter 6: OmpSs optimizations

show the scalability and the gain. The values bellow one in the speed-up
obtained before the barrier of the 8 threads are due to the fact that the paral-
lelization of this code requires the magnitude in the array and the number of
threads executing in parallel to be large in order to perceive the profit of the
parallelization. It is not the case of the executions between 1 and 4 threads
of the two parallel versions, which work out to be slower than the serial ver-
sion. Regarding on the gain, we can see that, when the computation time is
dominated by the memory accesses (between 1 and 4 threads), the optimiza-
tion results in almost a gain of the ten percent. From 8 threads and forth, the
benefits of the optimization are hide by the benefits of the parallelization.

L4 =4—speed-up base

15 - M serial 12 == speed-up optimized s

M base 1 =&—gain

id optimized

08 10

speed-up
gain ()%

0,6

0,4

Execution time (secs)

0,2

1 2 4 8 16 1 2 4 8 16

Number of threads Number of threads

Ficure 6.6: Scan execution time comparison FiGure 6.7: Scan speed-up comparison

6.2 Automatic scoping of variables in tasks

6.2.1 Scope of the optimization

The process of automatically defining the scope of the variables in a parallel
region is tedious and error-prone. We can substantially improve the produc-
tivity of our programming model leaving this responsibility to the compiler. Lin
et al. [LTaMCO04| proposed a solution for the auto-scoping problem within syn-
chronous parallel regions in OpenMP. They defined a set of rules that, applied
to the variables appearing in the parallel region, allow determining the proper
scope of the variables. They define four possible values, which are PRIVATE,
LASTPRIVATE, REDUCTION and SHARED. When the compiler is not able to decide
the scope of a variable, then the variable is not auto-scoped.

Based on this work, we have defined an algorithm that solves the scoping
problem in presence of asynchronous parallelism (i.e. OpenMP tasks). The
uncertainty and the semantics introduced by OpenMP tasks requires different
rules that the ones applied when the parallelism is synchronous. The basic

51

Chapter 6: OmpSs optimizations

differences we have taken into account to develop our method are:

— The uncertainty about the exact moment when the task will be executed
against the determinism of the synchronous parallel regions forces us to
define the correct region of code where a data race can appear, while for
parallel regions this region is perfectly defined by the parallel construct.
This code should be not sequential, since tasks scheduled in different and
non-contiguous points of the code can be executed in parallel.

— OpenMP task construct does not admit lastprivate and reduction clauses.

— PRIVATE variables can be specialized into FIRSTPRIVATE variables when the
input value is used.

Taking into consideration these facts, we have defined the following methodol-
ogy for determining the auto-scoping of the variables within a task construct:

1. Traverse the PCFG looking for task nodes. Given a task t and its schedul-
ing point:

2. Determine the different regions that interfere in the analysis of t:

— One region is the one defined by the code in the encountered thread
that can potentially be executed in parallel with the task. This region
is defined by two points:

x Scheduling: is the point where the task is scheduled. Any previous
access by the encountering thread to a variable appearing in the
task is irrelevant when analyzing the task because it is already
executed.

x Next_sync: is the point where the task is synchronized with the
rest of the threads in execution. This point can only be a barrier
or a taskwait. Here we take into account that taskwait constructs
only enforces the synchronization of tasks that are children of the
current task region.

— Other regions are the ones enclosed in tasks that can be executed in
parallel with t. We will call these tasks t; ;cjo.7] and the region of
code where we can find tasks in this condition is defined by:

*x Last_sync: is the immediately previous point to the scheduling
point where a synchronization enforces all previous executions to
be synchronized. We can only assure this point with a barrier and
in specific cases with a taskwait. We only can trust the taskwait if
we know all the code executed previously and we can assure that
the current task region has not generated grandchild tasks.

52

Chapter 6: OmpSs optimizations

x Next_sync: is the same point as explained for the analysis of the
encountered thread.

In order to simplify the reading of the algorithm bellow, from now on we
will talk about the region defined between the scheduling point and the
next_sync point and the different regions defined by the tasks t; icp.7] as
one unique region defined by the points:

— init, referencing both scheduling and any entry point to the tasks
ti, if0..7)-
— end, referencing both next_sync and any exit point to the tasks t; ico..7)-

3. For each v scalar variable appearing within the task t:

(a) If we cannot determine the type of access (read or write) performed
over v either within the task or between init and end because the
variable appears as a parameter in a function call that we do not
have access to, then v is scoped as UNDEFINED.

(b) If v is not used between init and end, then:

i. If v is only read within the task, then v is scoped as FIRSTPRIVATE.
i. If v is written within the task, then:
A. If v is live after end, then v is scoped as SHARED.
B. If v is dead after end, then:
— If the first action performed in v is a write, then v is scoped
as PRIVATE.
— If the first action performed in v is a read, then v is scoped
as FIRSTPRIVATE.

(c) If v is used between init and end, then:

i. If vis only read in both between init and end and within the task,
then the v is scoped as FIRSTPRIVATE.

il. If v is written in either between init and end or within the task,
then we look for data race conditions (see 6.2.1.1 for the details
about data race analysis), thus:

A. If we can assure that no data race can occur, then v is scoped
as SHARED.

B. If it can occur a data race condition, then we tag v as a RACE.
At the end of the analysis we will decide how do we deal with
these variables.

4. For each use a;, jco..n] (Where N is the number of uses) of an array variable
a appearing within the task t.

53

Chapter 6: OmpSs optimizations

(a) We apply the methodology used for the scalars.

(b) Since OpenMP does not allow different scopes for the subparts of
a variable, then we have to mix all the results we have get in the
previous step. In order to do that we will follow the rules bellow:

i. If the whole array a or all the parts a; have the same scope sc,
then a is scoped as sc.
it.. If there are different regions of the array with different scopes,
then:
A. If some a; has been scoped as UNDEFINED then o is scoped as
UNDEFINED.
B. If at least one a; is FIRSTPRIVATE and all a;, jepo.n) Where j! =i
are PRIVATE, then o is scoped as FIRSTPRIVATE.
C. If at least one a; is SHARED and all a;, jeo.n) Where j! =i are
PRIVATE or FIRSTPRIVATE, then, fulfilling the sequential consis-
tency rules, a is scoped as SHARED.

5. NOTE: If we cannot determine the init point, then we cannot analyze the
task because we do not know which regions of code can be executed in
parallel with t.

6. NOTE: If we cannot determine the end point, then we can only scope those
variables that are local to the function containing t.

7. NOTE: This algorithm is not dealing with aggregates.

When we are executing auto-scoping analysis, variables must be classified
into PRIVATE, FIRSTPRIVATE or SHARED. Variables which has been deter-
mined as RACE have to be classified. Since OpenMP standard says that the
occurrence of a data race implies the result of the program to be unspecified
and this is not the behavior we expect for a program, then auto-scoping anal-
ysis will privatize all the variables classified as RACE. So, given a variable v
classified as RACE, then:

— If the first action performed in v within the task is a write, then v is scoped
as PRIVATE.

— If the first action performed in v within the task is a read, then v is scoped
as FIRSTPRIVATE.

6.2.1.1 Data race conditions

Data race conditions can appear when two threads can access to the same
memory unit at the same time and at least one of these accesses is a write.

54

Chapter 6: OmpSs optimizations

In order to analyze data race conditions in the process of auto-scoping the
variables of a task we have to analyze the code appearing in all regions de-
fined between the init and end points described in the previous section. Any
variable v appearing in two different regions where at least one of the accesses
is a write and none of the two accesses is blocked by either and atomic con-
struct, a critical construct or a lock routine (omp_init_lock / omp_destroy_lock,
omp_set_lock / omp_unset_lock), can trigger a data race situation.

6.2.2 The results

We have tested the auto-scoping algorithm in a set of benchmarks. We
explain the results in the sections bellow.

6.2.2.1 Fibonacci

Fibonacci is a recursive algorithm that computes a sequence of integers
called Fibonacci numbers. Auto-scoping analysis applied to the algorithm
shown in Listing 6.6 results as follows:

— Firstprivate: n.

— Shared: x, y.

Variable n is firstprivatized because it is only read inside the task and no
simultaneous code to the task writes to this variable. Instead, variables x and
y are shared as there is no data race condition with them (a taskwait in every
level of recursion avoids multiple accesses to the same variable at the same
time) and their values are live out of the task. This is the result we expected.

1 int fib (int n) {

2 int x, y;

3 if (n < 2) return n;
4

5 #pragma omp task untied default (AUTO)
6 x = fib(n — 1);

7 #pragma omp task untied default(AUTO)
8 y = fib(n — 2);

9 #pragma omp taskwait

11 return x + y;

12}

14 void fib_par (int n) {
15 #pragma omp parallel
16 #pragma omp single

17 par_res = fib(n);

18}

LisTING 6.6: Fibonacci code from BOTS benchmarks

55

Chapter 6: OmpSs optimizations

6.2.2.2 Floorplan

Floorplan is an optimizing code that computes the optimal placement of cells
in a floorplan. In Listing 6.7 we show the code of the main function. When we
run the auto-scoping analysis in the floorplan code we obtain the following
classification:

— Private: area, footprint.
— Firstprivate: i, j, NWS,id, FOOTPRINT,&footprint, CELLS, BOARD.
— Shared: nnc.

— Undefined: N, MIN_AREA, MIN_FOOTPRINT,BEST_BOARD, board.

— Race: area.

First of all, we explain the UNDEFINED results. N, MIN_AREA, MIN_FOOTPRINT
and BEST_BOARD are global variables; since the method memcpy, not ac-
cessible to us, is called in the function, and these global variables are not
defined before the call to memcpy, then they have an undefined behavior.
board is a parameter passed by reference to the method memcpy; as it hap-
pened with the global variables, we do not know which is the behavior of this
variable, so we tag it as UNDEFINED.

The variable nnc is tagged as SHARED because its use is protected with an
atomic construct, so it can not produce data race, and the value is live out of
the task.

We detect a possible data race in the access to the variable area. This
variable is tagged as RACE. At the end of the analysis, the variable is privatized
to avoid the data race. This privatization causes the variable to be PRIVATE
because the first use of the variable within every thread is a write. Variable
footprint is PRIVATE because the task kills the two first positions of the array
and the rest is never used.

Finally, regarding to the FIRSTPRIVATE set, we see variables that, in this
case, are only used within the task. These are NWS, which appears with the
exact range of accesses performed regarding to the most significant dimension
(the access to the less significant in constant). Variables CELLS and BOARD
are passed by value to the method memcpy, so they are just used within the
task. The address of the variable footprint is passed by value to the recursive
call to add_cell, so this address is FIRSTPRIVATE.

This were the results we expected.

56

Chapter 6: OmpSs optimizations

© W N e A W N e

L T N - S S p g
R N = = R R N O =

25

35

45

void compute_floorplan (void) {
coor footprint;

footprint[0] = 0;
footprint[1] = 0;
bots_number_of_tasks = add_cell(1, footprint, board, gcells);

}

static int add_cell(int id, coor FOOTPRINT, ibrd BOARD, struct cell *CELLS) {
int i, j, nn, area, nnc,nnl;
tbrd board;
coor footprint, NWS[DMAX];
nnc = nnl = 0;

for (i = 0; i < CELLS[id].n; i++) {
nn = starts (id, i, NWS, CELLS);
nnl += nn;
for (j = 0; j < nn; j++)
#pragma omp task untied autodeps

struct cell cells[N+1];
memcpy (cells ,CELLS, sizeof (struct cell)x(N+1));

cells[id].top = NWS[j][0];
cells[id].bot = cells[id].top + cells[id].alt[i][0] — 1;
cells[id].lhs =NWS[j][1];

cells[id].rhs = cells[id].lhs + cells[id].alt[i][1] — 1;
memcpy (board, BOARD, sizeof(ibrd));

if (!lay_down(id, board, cells))
goto _end;

footprint[0]
footprint[1]
area

max (FOOTPRINT[0], cells[id].bot+1);
max (FOOTPRINT[1], cells[id].rhs+1);
footprint[0] * footprint[1];

if (cells[id].next = 0) {
if (area < MIN_AREA) {
#pragma omp critical
if (area < MIN_AREA) {

MIN_AREA = area;
MIN_FOOTPRINT[0] = footprint[0];
MIN_FOOTPRINT[1] = footprint[1];
memcpy (BEST_BOARD, board, sizeof(ibrd));

}
} else if (area < MIN_AREA) {
#pragma omp atomic

nnc += add_cell(cells[id].next, footprint, board, cells);

See also the specialization of the variable

_end:;

} }

#pragma omp taskwait
bots_number_of_tasks = nnc + nnl;

}

LisTING 6.7: Floorplan code from BOTS benchmarks

6.2.2.3 Nqueens

Nqueens is a search algorithm that finds a solution of the N Queens problem.
In Listing 6.8 we present the algorithm. The auto-scoping analysis performed
in this benchmark computes, as it was expected, the following information:

57

Chapter 6: OmpSs optimizations

— Firstprivate: i, j, mycount, n, a.

Variables i, j, n are only used within the task and also outside the task; since
the values are not modified, then we make them PRIVATE. mycount is privatized
because the use of this variable can occur concurrently in two different tasks
(recursive call to nqueens) and the access is not restricted, then there can be
a data race condition and we privatize the variable; since the value is always
used before being defined, then we define mycount as FIRSTPRIVATE. Variable
a is is passed by value to the function call to memcpy, and this value is never
used in a concurrent section of code that executes at the same time as the
task, then we make the variable FIRSTPRIVATE.

1 void nqueens(int n, int j, char xa, int *solutions) {
2 int i;

3

4 if (n=17j) {

5 mycount++;

6 return;

Ty

8

9 for (i =0; © < n; i++) {

10 #pragma omp task untied default(auto)

12 char x b = alloca(n % sizeof(char));
13 memcpy (b, a, j * sizeof(char));

14 b[j] = (char) ti;

15 if (ok(j + 1, b))

16 nqueens(n, j + 1, b);

17 }

18 }

19 }

LisTiNnG 6.8: Nqueens code from BOTS benchmarks

6.2.2.4 Cholesky

Cholesky decomposition is an algorithm for linear algebra programming. We
present in Listing 6.9 an implementation of the cholesky solution with different
tasks. Applying the auto-scoping algorithm to this code returns the following
classification:

— First, second, fifth and sixth tasks:
x Firstprivate: j, jj
x Race: a
— Third and fourth tasks:
* Firstprivate: j
x Race: a

Variables j and jj are only used within the tasks and no other statement,
inside or outside the tasks can create a data race condition, so this variables
are scoped as FIRSTPRIVATE. After the computation, variable a is defined as RACE

58

Chapter 6: OmpSs optimizations

because multiple accesses to the same array can be done at the same time,
being some of them writes. Because of that, we must privatize the variable.
Since some of the values of a are first read and some others are first write, we
scope the variable as FIRSTPRIVATE. We obtain the result we expected.

1 void cholesky(float a[NUM_ELEMS]|[NUM_ELEMS])

>

3 for (int jj = 0; jj < NUMLELEMS; jj += BLOCK_SIZE=x) {

s for (int j = jj: j < MIN(NUMLELEMS, jj + BLOCK_SIZE); j++) {
5

#pragma omp task /1
6 for (int i = j 4+ 1; i < (jj + BLOCK_SIZE); i++)
7 for (int k = 0; k < j; k++4)
s alt][i] = alillj] —ali]lk] * a[jllk];
9
10 #pragma omp task [l 2
11 for (int © = (jj + BLOCK_SIZE); i < NUM_ELEMS; i++)
12 for (int k = 0; k < j; k++)
13 alt]li] = alt][i] = alt)[k] = aljl[k];
14
15 #pragma omp task /3
16 for (int k = 0; k < j; k++4)
7 alilli] =alillil —aljllk] * a[jllk];
18
19 #pragma omp task /4
20 aljlli] = sart(alj][j]);
21
22 #pragma omp task /[l 5
23 for (int i = j 4+ 1; i < (jj + BLOCK_SIZE); i++)
24 alt)[i] = altlli] / alillil:
25
26 #pragma omp task /] 6
27 for (int t = (jj + BLOCK_SIZE); i < NUM_ELEMS; i++)
25 alt][§] = altlli] / alillil:
29 }
30 }

32 #pragma omp taskwait

33}

LisTiNnG 6.9: Cholesky code

6.2.2.5 Stencil

The code presented in Listing 6.10 is an stencil algorithm using and defining
different regions in a matrix. Applying the auto-scoping algorithm we obtain,
as we expected, the following result:

— Firstprivate: 1, J, iter, A.

Variables /, /, iter are FIRSTPRIVATE because they are only used within the task
and there is not a statement that can cause a data race in the code outside
the task. Variable A is tagged as RACE bhecause, even if many of the accesses
to the array are reads, there is one access that can cause different tasks to
write to the same memory location at the same time. Afterwards, variable A is
privatized to avoid the data race and, since some of the access are first read,
then the variable is FIRSTPRIVATE.

59

Chapter 6: OmpSs optimizations

1 int main(int argc, char *xargv) {

2 long (*A)[(NB+2)xB];

3 alloc_and_genmat(&A);

4 int iters, z = 0;

5 long i, j, k, L;

6 double diff;

7

8 for (iter=0; iter <1; iter++) {

9 for (i=B; t < (NB+1)xB; i+=B) {

10 for (j=B; j < (NB+1)«B; j+=B) {

11 long | = i-1, J=j—1;

12 #pragma omp task

13

14 if (I+1L == 1xB)

15 for (k=1; k <= B; k++)

16 if (A[O][k] != INITIAL_LVALUE (I, 0, J, k))
17 abort ();

18 else

19 for (k=1;, k <= B; k++)

20 if (A[O][k] != INITIAL_VALUE(I, 0, J, k)
21 + ITERATION_INCREMENT % (iter+1L))

22 abort ();

23

24 if (I+1L = (1+NB-1)%B)

25 for (k=1;, k <= B; k++)

26 if (A[B+1][k] !'= INITIAL_LVALUE (I, B+1, J, k))
27 abort ();

28 else

29 for (k=1; k <= B; k++)

30 if (A[B+1][k] !'= INITIAL_LVALUE (I, B+1, J, k)
31 + ITERATION_INCREMENT* iter)

32 abort ();

33

34 if (J+1L = 1xB)

35 for (k = 1; k<= B; i++)

36 if (A[k]J[O] !'= INITIAL_LVALUE (I, k, J, 0))
37 abort ();

38 else

39 for (k = 1; k <= B; k++4)

40 if (A[k][O] != INITIAL_LVALUE (I, k, I, 0)
41 + ITERATION_INCREMENT % (iter+1L))

42 abort ();

43

44 if (J+1L = (1+NB—-1)xB)

45 for (k = 1; k<= B; i(++4)

46 if (A[k][B+1] !'= INITIALLVALUE (I, k, J, B+1))
47 abort ();

48 else

49 for (k = 1; k <= B; k++4)

50 if (A[k][B+1] != INITIAL_VALUE (I, k,], B+1)
51 + ITERATION_INCREMENT* iter)

52 abort ();

53

54 for (k = 1; k<= B; i(++4)

55 for (l=1;, | <= B; ++4)
Alk][L] += ITERATION_INCREMENT;

o
=)

58 z++;
59 }
60 }

61 }

63 #pragma omp barrier
64 return 0;

65 }

LisTING 6.10: Stencil code

60

Chapter 6: OmpSs optimizations

6.3 Automatic dependencies discovery in tasks

6.3.1 Scope of the optimization

As we explained in Section 4.2, OpenMP defines the task directive which
allows asynchronous parallelism. The construct can be followed by a series
of clauses describing the scope of the variables inside the task. OmpSs ex-
tends this directive allowing the definition of dependencies in the tasks. The
runtime decision about which tasks have to be executed before the execution
of the current task and which tasks have to be executed after the execution
of the current task is made in terms of these dependencies. Four clauses al-
low the specification of data dependencies in tasks: input, output, inout and
concurrent.

Using the optimization described in Section 6.2 we can substantially improve
the programmability of OmpSs releasing the programmer from the arduous task
of defining the dependencies of a task. In the previous analysis we classified
the variables within a task in four different groups: PRIVATE, FIRSTPRIVATE,
SHARED and UNDEF. Any dependency from a given task to another can occur only
for shared variables or for some of the variables that during the auto-scoping
have been detected as RACE. The algorithm to determine the dependencies
among the tasks is almost the same as defined for the auto-scoping. The
algorithm is defined as follows:

1. For a given task t, we run the algorithm defined for auto-scoping until we
have classified the variables as PRIVATE, FIRSTPRIVATE, SHARED, UNDEF and
RACE. We do not specify the variables scoped as RACE directly as PRIVATE
or FIRSTPRIVATE; instead of that, for each variable v classified as RACE, we
distinguish two cases:

(a) If the race condition occurs between one statement in t and some
statement executed within the sequential code executed concurrently
with the task by the encountered thread that created the task, then v
has to be privatized to avoid the race condition. In that case, we use
the same methodology used in the algorithm of auto-scoping:

i. If the first action performed in v is a write, then v is scoped as
PRIVATE.

it.. If the first action performed in v is a read, then v is scoped as
FIRSTPRIVATE.

(b) If the race condition occurs between t and some other task that can
be executed concurrently, then we can consider v as SHARED and we

61

Chapter 6: OmpSs optimizations

can compute the dependencies between the different tasks involved in
the race condition in order to avoid this situation. We classify these
variables into three groups: INPUT, OUTPUT and INOUT. Using the same
nomenclature as we used for the auto-scoping algorithm, we define
the classification as follows:

i. If v is live at the entry and the exit points of the task, then it is
scoped as INOUT.

it.. If v is live only at the entry of the task, then it is scoped as INPUT.
iit. If v is live only at the exit of the task, then it is scoped as OUTPUT.

iv. If none of the previous cases apply, then v remains as SHARED. This
means that the variable is accessed by the task and the code ex-
ecuted by the encountering thread that creates the task without
a data race condition, and no other statement after the synchro-
nization of the task will use the value it produces, so it cannot be
a dependence.

2. NOTE: At that moment we are not able to distinguish variables that are
tagged as INOUT from variables that can be CONCURRENT. This is an special-
ization of the clause INOUT, so the dependence computed is not correct,
but is more restrictive than needed.

6.3.2 The results

We have tested the auto-dependencies a set of algorithms. Since the vari-
ables which are interesting in this analysis are these that have been classified
as RACE or SHARED in the auto-scoping analysis, we present the results for the
examples introduced in Section 6.2 that have matched this kind of variables.

6.3.2.1 Fibonacci

We take the example introduced in Listing 6.6. In the auto-scoping anal-
ysis we found two ompSHARED variables: x and y. When we run auto-
dependencies analysis, we obtain that both variables are computed as 0UTPUT
dependencies, each one for its respective task. This is because there is no
task using the value written in a previous task, but the value is read after the
synchronization point. Variable n classified as FIRSTPRIVATE remains as such.
This is the result we expected.

62

Chapter 6: OmpSs optimizations

6.3.2.2 Floorplan

In the floorplan benchmark introduced in Listing 6.7 we found nnc as SHARED.
This variable is an input value coming from an output value of a previous task.
With the auto-dependencies analysis we obtain nnc as an inout dependence
in the task. Variable area is classified as RACE; since the value of the vari-
able within a task is always written before being read, then the variables is
classified as an OUTPUT dependence. The rest of variables remain as they were
in the auto-scoping analysis (variables that are FIRSTPRIVATE are not ranged
because at that moment firstprivate clause does not accept array regions).
This is the result we expected.

6.3.2.3 Cholesky

For Cholesky code introduced in Listing 6.9, the auto-scoping algorithm
found shared variables for all the tasks in the code. Each task defined as
shared the variable A. As we expected, the auto-dependencies computation for
the arrays appearing in each one of the tasks is the following:

— First task:
* Input: a[j+1: =1+ (1284 /j):1J0: =1+ : 1], a[f0: =1+ j: 1]
x Inout: alj +1: =14+ (128 + jj) : 1]/]

— Second task:

* Input: aljj+128:4:1]0: =1+, :1],a[f]0: =1+ j: 1]
* Inout: aljj + 128 : 4 : 1]/]

— Third task:
« Input: aljJ0:j—1:1]
* Inout: alj][/]

— Forth task:

* Inout: alj][/]

— Fifth:

x Input: alj]/]
* Inout: (alj +1: =1+ (128 + jj) : 1]j]

— Sixth:

x Input: alj]/]
* Inout: aljj + 128 : 4 : 1]/]

63

Chapter 6: OmpSs optimizations

6.3.2.4 Stencil

The stencil code in Listing 6.10 computes the array A as a variable that can
produce a race condition. Since it is tagged as RACE, then the specific ranges
of the variable accessed within the task are analyzed in order to find out the
dependencies and we obtain the following results:

— Firstprivate: A[O][1: 256L : 1], A[256L + 1]1 : 256L : 1), A[1 : 256L : 1]0], A[1 :
2561 : 12561 + 1]

— Inout: A[1:256L : 1][1:256L : 1]

The rest of variables remain as they were classified in the auto-scoping anal-
ysis. This is the result we expected.

64

CHAPTER 7. State of the Art

A huge number of researchers have focused in concurrency and data flow anal-
ysis for shared memory programming models. Regarding to the State of the
Art we focus in two different aspects: on one hand the Control Flow Graph and
on the other hand the analysis we have defined based on these graph and the
classical analysis for sequential or for synchronous parallel codes to extend
them to asynchronous parallelism.

Common Control Flow Graphs for sequential codes cannot express the be-
havior of parallel codes. In order to symbolize the parallel information and
the relaxed memory consistency model of OpenMP this representation must
be extended and enriched. Different approaches have appeared in the 20 last
years with the goal of analyzing and optimizing explicitly parallel codes. But
OpenMP is a programming model in continuous development, and that gives
us the opportunity of improve the existing representations adapting them to
the new semantics.

Wolfe and Srinivasan [WS91] presented new data structures as a Parallel
Control Flow Graph and the Parallel Precedence Graph for programs with
parallel constructs. Based on the fact that precedence relation is not the same
as dominance relation in parallel programs, they used these new structures
to develop algorithms for optimizing parallel programs. Although theirs is a
powerful representation, their optimizations are based in Parallel Static Single
Assignment and we aim to remain in a highest representation of the program.
Grunwald and Srinivasan [GS93] presented a Parallel Flow Graph and a set
of data-flow equations for computing reaching definitions in explicitly parallel
programs with event synchronization. However, their work is focused only in
parallel sections and event synchronizations.

Satoh, Kusano and Sato [SKSO01] proposed a Parallel Control Flow Graph
modeling both flow control and synchronization between threads. They ap-
proach the reaching definitions problem based on the synchronization nodes
in the graph for both intra-procedural and inter-procedural analysis. They
present different optimizations for explicitly parallel programs such as reduc-
tion of coherence overhead, redundant barrier removal and privatization of
dynamically-allocated objects. Nonetheless, they do not cover all the OpenMP
constructs and they do not consider the impact of flush operations, prevent-
ing this of any violation of the memory consistency rules of OpenMP when
applying optimizations.

65

Chapter 7: State of the Art

Huang et al. [HEHCO09] developed a compiler framework for OpenMP pro-
gram analysis and optimization. Based on the OpenMP relaxed memory se-
mantics they are able to remove the conservative restrictions on optimizing in
the presence of shared data. Based on the previous work of Huang, Sethu-
raman and Chapman [HSCO07], they make explicit barriers and define liveness
equations for the parallel nodes in the Parallel Control Flow Graph. They ap-
plied these studies in the OpenUH compiler to optimize OpenMP constructs
before they are lowered to threaded code and get encouraging results in terms
of performance improvement after code analysis and optimizations.

However, none of the previous works have presented any approach for asyn-
chronous parallel executions such as OpenMP task constructs. Weng and
Chapman [WCO03]| defined a task execution graph representing precedence among
tasks based on their dependencies. However, it can be expensive to apply their
testing between two call statements or two larger regions of code because they
try to make decisions on scheduling. Instead of that, we represent the seman-
tics on the asynchronous task execution in our Parallel Control Flow Graph.
The control flow in the occurrence of the task directive cannot be processed in
the same way as the rest of OpenMP directives in the sense that its control
flow is more relaxed than the others. We add tasks in the graph where the
scheduling point of the task is defined inside the code. Since the exact point
of execution of the tasks will be decided at run-time and not at compile time,
our analysis referred to this directive must define the range of code where
this task can be executed in parallel. This range will start always in the task
scheduling point and will end when a synchronization point ensures the task
has been executed.

Based on the OmpSs programming model, tasks can be defined together with
a set of clauses specifying the dependences of the task. With the aim of improve
the programmability of our parallel programming model, we have developed a
new task analysis to determine automatically the correct dependencies of a
given task untying the user from the job of defining each single dependence
for every task. We have added to the task directive the clause auto-dependence
which lets the compiler the responsibility of computing the correct dependen-
cies of the tasks. We are not being conservative in this analysis, so, in the case
that the compiler cannot assure the data-sharing of a given variable, then the
result of this analysis for that variable will be that the compiler returns to the
user the responsibility of defining the correct dependencies.

Defining the dependencies of a task requires the previous analysis of the
scoping of variables. Auto-scoping rules for parallel have been defined pre-
viously by Lin et al. [LTaMCO04]. They defined the clause default(auto) for

66

Chapter 7: State of the Art

OpenMP constructs and they established and algorithm for auto-scoping rules
in synchronous parallel executions for both scalar and array variables. These
rules do not work properly with the asynchronous execution of tasks. We have
defined a new algorithm that determines the scoping of the variables inside
a task depending on the use of this variable between the scheduling point of
the task and the synchronization points that follow the scheduling point. In
the case the compiler is not able to determine a data-sharing, then it warns
to user to do that work by hand.

67

Chapter 7: State of the Art

68

CHAPTER 8. Conclusions and Future
Work

8.1 Conclusions

In this thesis we have presented a set of compiler analyses and optimizations
in the context of the Mercurium compiler and the OmpSs programming model.
We have shown an adaptation of some of the most common classic compiler
analysis to the asynchronous parallelism expressed with OmpSs tasks such as
a new Parallel Control Flow Graph for control flow analysis and new rules for
liveness analysis. We have defined as well a set of use cases using the previ-
ous analysis that demonstrates the benefits of compiler analyses to increase
the productivity of systems. These use cases have induced us to develop new
techniques for asynchronous parallel codes that were developed only for syn-
chronous parallelism, like the automatic discovery of the scope of variables in
OpenMP tasks. We have enhanced our system by improving Mercurium per-
formance with the privatization of shared variables in the code generation and
by improving OmpSs programmability with the automatic detection of depen-
dencies between tasks, releasing the user from this work in many cases.

The results obtained in the different tests applied to our optimizations
demonstrate the profit we can obtain due to the use of compiler analysis.
With the privatization of shared variables we have improved the performance
in codes where there is a high number of accesses to shared memory. With the
automatic computation of the scope of variables and tasks dependencies we
have enhanced the programmability of OmpSs making easier for programmers
to use the parallel model.

We are highly motivated at the end of this project because we have tran-
scended the expectations of the use cases we were be able to implement. The
definition of the automatic detection of the dependencies in tasks as a goal for
this project burst upon the problem as of the automatic scoping in tasks. We
have defined and tested a new algorithm to solve that problem and finally, we
have found a solution for the automatic dependencies computation use case.
This result has a great importance because of its contribution to the compiler
analyses area; the analysis is not only applicable to our scope, but also to any
other compiler implementing analysis for asynchronous parallel applications.

69

Chapter 8: Conclusions and Future Work

8.2 Future Work

Because of the complexity and amplitude of C/C++ languages, different
interesting cases did not fit in our time limitations. For example, we are only
able to analyze for-loop constructs and we cannot deal with complex loop
boundaries in induction variables or induction variables not appearing in the
loop control statements. At the beginning of the project we were ambitious
in the sense of exploiting the Mercurium intermediate representation to deal
with Fortran examples but we did not have the time to test our analyses with
these samples. Nonetheless, since the representation is the same in many
constructs, we only have to extend our implementation for the AST nodes that
are specific for FORTRAN codes.

We are now thinking about the directions we want to take in mid- and long-
term to extend our analyses and to use them in order to better improve Mer-
curium and OmpSs productivity. We show bellow a list of the most important
issues we have in mind:

— To apply the analyses in Fortran codes.

— To extend the analysis of loops to deal with other iterative constructs

rather than for-loops, such as while-loops or goto-statements

— To implement the dependencies analysis in the OpenMP taskwait clause.
This may allow us to determine which tasks should a given taskwait wait
for, sic, automatically determine the clause on in the taskwait.

— To extend our algorithms of auto-scoping and auto-dependencies to deal
with aggregates.

— To extend our auto-scoping algorithm to distinguish when a variable that
can be shared and private, is useful to be privatized. A priori, scalars will
always be privatized because the cost of making a copy is the same as
accessing to a shared variable in the worst of the cases (the variable is
only accessed once) and it is always better to do the copy in the rest of
the cases. For the arrays is not clear that privatizing is the best option
because of the cost of this process.

— To tag functions that are common like memcpy or alloca. Since the com-
piler can know which is the behavior of this functions, then, it can annotate
the usage of the parameters. Thus, during the analyses (Use-Definition
and so on), the global variables will not be classified as UNDEF because of
the appearance of these functions.

Besides getting deeper into this subject, we are currently working on a work-
shop paper with the results of our automatic scoping in OpenMP tasks and we
will present it in the next International Workshop on OpenMP (IWOMP).

70

REFERENCES

[Boal1]

[DAB*+11]

(GS93]

[HEHCO9]

[HSCO7]

OpenMP Architecture Review Board. The openmp(®) api specifica-
tion for parallel programming, September 2011.

Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesus Labarta,
Luis Martinell, Xavier Martorell, and Judit Planas. Ompss: a
proposal for programming heterogeneous multi-core architectures.
Parallel Processing Letters, 21(2):173-193, 2011.

Dirk Grunwald and Harini Srinivasan. Data flow equations for ex-
plicitly parallel programs. In PPOPP, pages 159-168, 1993.

Lei Huang, Deepak Eachempati, Marcus W. Hervey, and Barbara M.
Chapman. Exploiting global optimizations for openmp programs in
the openuh compiler. In Daniel A. Reed and Vivek Sarkar, editors,
PPOPP, pages 289-290. ACM, 2009.

Lei Huang, Girija Sethuraman, and Barbara M. Chapman. Parallel
data flow analysis for openmp programs. In Barbara M. Chapman,
Weimin Zheng, Guang R. Gao, Mitsuhisa Sato, Eduard Aygquadé,
and Dongsheng Wang, editors, IWOMP, volume 4935 of Lecture
Notes in Computer Science, pages 138-142. Springer, 2007.

[LTaMCO04] Yuan Lin, Christian Terboven, Dieter an Mey, and Nawal Copty.

[PBALO9]

[Sar97]

[SKS01]

Automatic scoping of variables in parallel regions of an openmp
program. In Barbara M. Chapman, editor, WOMPAT, volume 3349 of
Lecture Notes in Computer Science, pages 83-97. Springer, 2004.

Judit Planas, Rosa M. Badia, Eduard Ayquadé, and Jesus
Labarta. Hierarchical task-based programming with starss. [JHPCA,

23(3):284-299, 2009.

Vivek Sarkar. Analysis and optimization of explicitly parallel pro-
grams using the parallel program graph representation. In Zhiyuan
Li, Pen-Chung Yew, Siddhartha Chatterjee, Chua-Huang Huang,
P. Sadayappan, and David C. Sehr, editors, LCPC, volume 1366 of
Lecture Notes in Computer Science, pages 94-113. Springer, 1997.

Shigehisa Satoh, Kazuhiro Kusano, and Mitsuhisa Sato. Com-

piler optimization techniques for openmp programs. Scientific
Programming, 9(2-3):131-142, 2001.

71

REFERENCES

[WCO3]

[WSO1]

72

Tien-Hsiung Weng and Barbara M. Chapman. Asynchronous execu-
tion of openmp code. In Peter M. A. Sloot, David Abramson, Alexan-
der V. Bogdanov, Jack Dongarra, Albert Y. Zomaya, and Yuri E. Gor-
bachey, editors, International Conference on Computational Science,
volume 26060 of Lecture Notes in Computer Science, pages 667-678.
Springer, 2003.

Michael Wolfe and Harini Srinivasan. Data structures for optimizing
programs with explicit parallelism. In Hans P. Zima, editor, ACPC,
volume 591 of Lecture Notes in Computer Science, pages 139-156.
Springer, 1991.

	Introduction
	Motivation and Goals
	Methodology
	Preparatory research
	Definition of our goals
	Development and testing
	Documentation and Presentation

	Environment
	OpenMP
	OmpSs
	The task directive
	The taskwait directive
	The target directive

	The Mercurium compiler
	Parsing
	Compiler phases
	Code generation
	Object code generation

	Analysis
	Parallel Control Flow Graph (PCFG)
	The Extensible Graph
	Specifics of OpenMP

	Use-definition chains
	Loop analysis
	Reaching definitions
	Liveness analysis

	OmpSs optimizations
	Privatization: optimizing shared variables
	Scope of the optimization
	The results

	Automatic scoping of variables in tasks
	Scope of the optimization
	The results

	Automatic dependencies discovery in tasks
	Scope of the optimization
	The results

	State of the Art
	Conclusions and Future Work
	Conclusions
	Future Work

	References

