
TREBALL DE FI DE GRAU

TFG TITLE: Numerical Implementation of a Mixed Finite Element Formulation for
Convection-Diffusion Problems

DEGREE: Grau en Enginyeria d’Aeronavegació

AUTHOR: Iván Padilla Montero

ADVISOR: Adeline de Villardi de Montlaur

SUPERVISORS: Jordi Pons Prats, Riccardo Rossi

DATE: July 10, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41816822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Title : Numerical Implementation of a Mixed Finite Element Formulation for Convection-
Diffusion Problems

Author: Iván Padilla Montero

Advisor: Adeline de Villardi de Montlaur

Supervisors: Jordi Pons Prats, Riccardo Rossi

Date: July 10, 2014

Overview

This document aims to the numerical solution of convection-diffusion problems in a fluid
dynamics context by means of the Finite Element Method (FEM). It describes the classical
finite element solution of convection-diffusion problems and presents the implementation
and validation of a new formulation for improving the accuracy of the standard approach.
On first place, the importance and need of numerical convection-diffusion models for Com-
putational Fluid Dynamics (CFD) is emphasized, highlighting the similarities between the
convection-diffusion equation and the governing equations of fluid dynamics for incom-
pressible flow.
The basic aspects of the finite element method needed for the standard solution of gen-
eral convection-diffusion problems are then explained and applied to the steady state
case. These include the weak formulation of the initial boundary value problem for the
convection-diffusion equation and the posterior finite element spatial discretization of the
weak form based on the Galerkin method. After their application to the steady transport
equation a simple numerical test is performed to show that the standard Galerkin formu-
lation is not stable in convection-dominated situations, and the need for stabilization is
justified.
Attention is then focused on the analysis of the truncation error provided by the Galerkin
formulation, leading to the derivation of a classical stabilization technique based on the
addition of artificial diffusion along the flow direction, the so-called streamline-upwind (SU)
schemes. Next, a more general and modern stabilization approach known as the Sub-
Grid-Scale (SGS) method is described, showing that SU schemes are a particular case of
it.
Taking into account all the concepts explained, a new mixed finite element formulation for
convection-diffusion problems is presented. It has been proposed by Dr. Riccardo Rossi, a
researcher from the International Center for Numerical Methods in Engineering (CIMNE),
and consists on extending the original convection-diffusion equation to a system in mixed
form in which both the unknown variable and its gradient are computed simultaneously,
leading to an increase in the convergence rate of the solution. The formulation, which had
not been tested before, is then implemented and validated by means of a multiphysics finite
element software called Kratos. Eventually, the obtained results are analyzed, showing
the improved performance of the mixed formulation in pure diffusion problems.

Tı́tulo: Implementación Numérica de una Formulación Mixta de Elementos Finitos para
Problemas de Convección-Difusión

Autor: Iván Padilla Montero

Director: Adeline de Villardi de Montlaur

Supervisores: Jordi Pons Prats, Riccardo Rossi

Fecha: 10 de julio de 2014

Resumen

Este documento tiene como objetivo la solución numérica de problemas de convección-
difusión por medio del método de los elementos finitos (FEM) dentro del contexto de la
dinámica de fluidos. En él se describe la solución clásica por elementos finitos de proble-
mas de convección-difusión y se presenta la implementación y validación de una nueva
formulación para mejorar la precisión del enfoque estándar.
En primer lugar se resalta la importancia y la necesidad de modelos numéricos de convec-
ción-difusión en la Dinámica de Fluidos Computacional (CFD), destacando las similitudes
entre la ecuación de convección-difusión y las ecuaciones que gobiernan la dinámica de
flujos incompresibles.
A continuación se explican los aspectos básicos del método de elementos finitos nece-
sarios para la solución estándar de problemas generales de convección-difusión, y se
aplican al caso estacionario. Estos incluyen la formulación débil del problema inicial y de
contorno para la ecuación de convección-difusión y su posterior discretización espacial
por elementos finitos basada en el método de Galerkin. Después de su aplicación a la
ecuación de transporte estacionaria se lleva a cabo una simple prueba numérica para de-
mostrar que la formulación estándar de Galerkin no es estable en situaciones en las que
la convección domina, justificando la necesidad de estabilización.
La atención se centra entonces en el análisis del error de truncamiento proporcionado por
la formulación de Galerkin, lo que conduce a la obtención de una técnica de estabilización
clásica basada en añadir difusión artificial a lo largo de la dirección de flujo, los llamados
esquemas contracorriente (SU). Seguidamente se describe un enfoque más general y mo-
derno de la estabilización conocido como el método de multiescalas (SGS), demostrando
que las técnicas contracorriente son un caso particular de la misma.
Teniendo en cuenta todos los conceptos explicados, se presenta una nueva formulación
de elementos finitos mixtos para problemas de convección-difusión. Ha sido propuesto
por el Dr. Riccardo Rossi, investigador del Centro Internacional de Métodos Numéricos
en Ingenierı́a (CIMNE), y consiste en la ampliación de la ecuación de convección-difusión
original a un sistema en forma mixta en el que tanto la variable desconocida como su
gradiente se calculan de forma simultánea, lo que como se verá lleva a un aumento en
la precisión de la solución. La formulación, que no se habı́a probado antes, es entonces
implementada y validada por medio de un software multifı́sico de elementos finitos llamado
Kratos. Finalmente, se analizan los resultados obtenidos y se muestra el rendimiento
mejorado de la formulación mixta en problemas de difusión puros.

CONTENTS

Introduction . 1

CHAPTER 1. Importance of Convection-Diffusion Models in Com-
putational Fluid Dynamics 5

1.1. Governing Equations of Fluid Dynamics for Incompressible Flow 5
1.1.1. The Continuity Equation . 5

1.1.2. The Momentum Equation . 6

1.2. The Convection-Diffusion Equation . 7
1.2.1. General Form of the Convection-Diffusion Equation 7

1.2.2. The Convection-Diffusion Equation in a Fluid Dynamics Context . . . 8

1.3. Convection-Diffusion as a Representative Model for Computational Fluid
Dynamics . 9

CHAPTER 2. The Finite Element Method in Convection-Diffusion
Problems . 11

2.1. Statement of the Initial Boundary Value Problem 11

2.2. Weak Form of the Problem . 11
2.2.1. The Weighted Residual Formulation 12

2.3. Basics of the Finite Element Spatial Discretization 13
2.3.1. Approximation of the Unknown . 14

2.3.2. The Galerkin Method . 16

2.4. Discretization of the Steady Transport Problem 17
2.4.1. Matrix Form of the Discrete Equation 17

2.5. The Need for Stabilization . 19

2.6. Time Discretization . 23

CHAPTER 3. Stabilized Finite Element Methods for Convection-
Diffusion Problems . 25

3.1. Stabilization of the Steady One-Dimensional Problem 25
3.1.1. Analysis of the Galerkin Discrete Equation and the Cause of the In-

stabilities . 25

3.1.2. The Optimal Formulation . 27

3.2. Stabilization Techniques for Multidimensional Problems 29
3.2.1. The General Streamline-Upwind Formulation 30

3.2.2. The Streamline-Upwind Petrov-Galerkin Method 31

3.2.3. The Sub-Grid Scale Method . 32

CHAPTER 4. A New Mixed Finite Element Formulation for Convection-
Diffusion Problems . 35

4.1. Motivation . 35

4.2. Convection-Diffusion in Mixed Form . 36
4.2.1. Original Formulation . 36

4.2.2. Modified Formulation . 38

4.3. A Pure Diffusion Case: Incompressible Potential Flow 40

Conclusions . 49

Bibliography . 51

APPENDIX A. Source Codes . 57

LIST OF FIGURES

2.1 A generic domain divided into triangular finite elements. Adapted from [8]. . . . 13
2.2 Shape functions for the three-noded triangular element. From [8]. 15
2.3 Portion of the finite element mesh used for solving problem (2.27). Adapted from

[9]. 21
2.4 Galerkin finite element solution of the 1D steady transport problem with u = 1

and f = 1 for two different Péclet numbers. The exact solution is also shown for
comparison. 22

3.1 Modified weighting function characteristic of the SU method for linear elements,
in comparison with that of the Galerkin method. From [3]. 28

3.2 Streamline-upwind (SU) finite element solution of the 1D steady transport prob-
lem with u = 1 and f = 1 for two different Péclet numbers. The exact solution is
also shown for comparison. 29

4.1 ASGS mixed finite element (original formulation) solution of the 1D steady trans-
port problem with u = 1 and f = 1 for two different Péclet numbers. The exact
solution is also shown for comparison. 38

4.2 ASGS mixed finite element (modified formulation) solution of the 1D steady
transport problem with u = 1 and f = 1 for two different Péclet numbers. The
exact solution is also shown for comparison. 40

4.3 Circular cylinder in a freestream. The stagnation and maximum velocity points
are identified with numbers, with the corresponding theoretical values of maxi-
mum velocity. The cylindrical coordinate θ is also shown. 45

4.4 Meshed computational domain for the incompressible potential flow problem
over a circular cylinder. Colors show the velocity potential solution obtained
with the mixed formulation. 45

4.5 Magnitude of the velocity field in the region next to the cylinder surface as ob-
tained by the classical (left) and the mixed (right) finite element solutions. The
average value inside each element is represented. 46

4.6 Comparison of the velocity distribution along the cylinder surface (left) and its
absolute error (right) against the exact solution for both formulations. 46

4.7 Magnitude of the velocity field in the region near the airfoil surface obtained with
the mixed finite element formulation. 47

4.8 Magnitude of the velocity field at the airfoil’s leading edge stagnation point cal-
culated with the classical (left) and the mixed (right) finite element methods. The
numerical value is given by Z. 48

INTRODUCTION

Between 1960 and 1980, the birth of high-speed digital computers changed the engineer-
ing world. Such a rapid increase in the computing power available made computers to
become an essential tool for any engineer or scientist, giving rise to a new philosophy of
solving practical problems: the numerical analysis. Acting as a bridge between pure theory
and pure experiment, numerical methods allow obtaining answers to problems with com-
plex physical processes that would be impossible to solve by classical analytical methods.
In this way, they have revolutionized design and research processes, reducing the amount
of experimentation needed.

Due to the technological challenges that it entails, aerospace engineering was one of the
fields which took most advantage of numerical methods. In fact, an entirely new discipline
in aerodynamics was born, namely, computational fluid dynamics (CFD). With a numerical
approach to the solution of the governing equations of fluid dynamics, the application of
CFD to practical aerodynamics problems opened the door to the design of complex aero-
dynamic shapes, capable of producing high amounts of lift very efficiently, without the need
of intensive wind tunnel testing.

Since its beginning, CFD has been constantly evolving, playing a major role in the transition
to modern aviation. Nowadays the design of any flying vehicle involves a detailed numeri-
cal analysis of the flow field, closely capturing the physical phenomena that is taking place.
On the other hand, the experimental research barrier that was encountered when trying
to simulate high-speed flight regimes in ground facilities has now been almost overcome.
With the possibility of obtaining accurate numerical solutions of such flight conditions, the
extreme high-speed end of the flight spectrum can be explored.

A good knowledge in CFD is indispensable for the modern aerospace engineer. This is
why one of the purposes of this work is to introduce the student to the numerical solution
of physical problems in aerospace engineering.

The governing equations of fluid dynamics are complex, and dealing with the full non-
linear system of the equations of continuity, momentum and energy requires an advanced
knowledge of the numerical techniques that CFD involves. As a result, given the introduc-
tory character of this work, we will focus on the numerical solution of a simplified model,
namely, the convection-diffusion equation. At first, it may appear that such an equation
has nothing to do with fluid dynamics, however, the physical processes that it describes
are also found in the equations of motion of incompressible flows. This, as we will see, is
traduced in that some of the numerical difficulties found in the solution of incompressible
flow problems are also encountered when solving the convection-diffusion equation, mak-
ing the numerical approaches of both types of problems very similar. In this sense, the
convection-diffusion model can be viewed as a simplified way of exposing and analyzing
most of the key features that characterize the numerical solution of incompressible flow
problems, acting as an excellent introduction to CFD.

The numerical solution of a given physical problem can be described mainly in three steps.
On first place, the problem has to be well defined, that is, the governing equations that de-
scribe the physical processes taking place have to be completed with appropriate initial
and boundary conditions. Secondly, a spatial and temporal (if the problem is unsteady)
discretization has to be performed, thus obtaining a set of discrete points where the gov-

1

2 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

erning equations are evaluated by means of algebraic expressions. Finally, the governing
equation at each point has to be solved. In general, there are three different numerical
approaches in CFD, namely, the finite difference method (FDM), the finite element method
(FEM) and the finite volume method (FVM). The FDM is based on the discretization of
the partial derivatives of the governing equations by means of finite difference expres-
sions evaluated in a grid of points covering the problem domain. Such a method is very
straightforward to implement for problems with simple geometries that allow using a regu-
lar grid. However, for irregular grids, which is usually the case, the difference expressions
become difficult to obtain. Moreover the implementation of boundary conditions is strongly
problem-dependent and cannot be easily generalized. A very good introduction to CFD by
means of the FDM can be found in [1].

In the FEM the domain of study is divided in a mesh of arbitrary volumes or cells called
elements. In contrast to the FDM, the FEM uses an integral formulation as a starting point
for the discretization, making it naturally appropriate for unstructured (irregular) meshes.
Inside each element, the nodal unknown variables are interpolated with particular functions
and the resulting discrete equations are assembled in a global system, which is then solved
to obtain the field solution. Another great advantage of this method is that it allows a
consistent and systematic treatment of the boundary conditions, making it more suitable
for the construction of general solvers. This method, although being more mathematically
involved than the FDM and less ”student friendly”, offers a more powerful approach to the
solution of physical problems. A complete presentation of the fundamentals of the finite
element method is to be found in [5] or [10], and its application to CFD in [3], [6] and [23].

Like in the FEM, the FVM assumes a division of the domain of interest in arbitrary cells.
However, the FVM considers such cells as control volumes where the governing equations
are solved in integral conservation form, that is, expressing the flux balance inside and
across the control domains. Once again, the integral form makes it suitable for any arbitrary
mesh. Its major drawback is its limitation to conservation laws, and it is interesting to note
that the integral formulation of the FEM can be considered a generalization of the FVM. As
a consequence, in some particular cases the discrete equations that result from the FVM
are identical to the ones from the FEM. For a presentation of the fundamentals of the FVM
in CFD see [4].

In this work the attention has been focused in the numerical solution of convection-diffusion
problems by means of the finite element method. As presented above, it provides a gen-
eral and consistent approach for the solution of the desired physical problems and there-
fore will satisfy the objectives of this study. For this reason, along a considerable part
of this document the classical finite element formulation for convection-diffusion problems
is described and studied, emphasizing the numerical difficulties that are encountered in
convection-dominated problems and the different techniques that have been developed
to overcome them. It is important to clarify that the intention is not to provide a formal
mathematical presentation of the FEM concepts, but to reflect the numerical and physical
aspects of the solution of such problems.

The close relation between the convection-diffusion model and the governing equations
of incompressible fluid dynamics not only allows an analogy for reflecting the numerical
aspects that characterize certain physical processes, but also provides a solid base for the
development and testing of new techniques that could be extrapolated to more complex
problems. This defines the main objective of this project, namely, the testing of a new mixed

3

finite element formulation for convection-diffusion problems developed by Dr. Riccardo
Rossi at the International Center for Numerical Methods in Engineering (CIMNE). It was
originally presented in [24].

Generally, fluid dynamics problems are characterized by the presence of sharp gradients
near the body surfaces. It is in such regions where most of the important physical phenom-
ena takes place, making them of critical importance when performing a numerical solution.
As a result, developing numerical techniques that focus on the accurate representation of
these processes is a priority. The usual way of improving the numerical solution where
strong gradients exist is by increasing the amount of discrete points in that regions of the
domain, what is known as mesh refinement. However, the proposal of Dr. Rossi is based
on a different idea. It lies on the fact that the convergence rate for the solution of a given
variable decreases when it is subject to a differential operator. Hence, it is desirable to
reduce the differentiation order as much as possible.

Following this reasoning, Rossi proposes to define an auxiliary variable to generate a
mixed finite element formulation and solve convection-diffusion problems with less error
than the classical form for the same mesh size. It is important to notice that the numerical
difficulties that were present in the classical formulation are still encountered in the mixed
form, so the remedies exposed for the conventional form are also used. The rest of this
document is devoted to the implementation and testing of such a new formulation. This is
done by means of MATLAB and Kratos, a simulation software developed by CIMNE defined
as a C++ object-oriented environment for the implementation of finite element methods
in different physical problems (see [27] and [28] for more information). As we will see,
the mixed formulation presents additional difficulties, but it succeeds on improving the
accuracy in determinate cases.

This document is divided in four chapters. They are directly related, written in such a way to
progressively build-up the complete classical finite element solution of convection-diffusion
problems and then expose the new mixed formulation. The first chapter introduces the
standard convection-diffusion model used in this work along with the governing equations
of fluid dynamics. They are compared to find the several similarities between them and to
highlight the important role of the convection-diffusion equation in CFD.

Chapter 2 describes the classical finite element formulation for convection-diffusion prob-
lems. After presenting some basic concepts about the FEM, the Galerkin finite element
formulation is discussed and its difficulties in convection dominated problems are rapidly
recognized, justifying the need for stabilization.

In chapter 3, the stabilized finite element methods for convection dominated transport prob-
lems are discussed. An analysis of the truncation error from the Galerkin formulation is
performed, leading to the definition of an artificial diffusion that serves as a base for the
development of streamline-upwind (SU) stabilization techniques. The discussion on stabi-
lization techniques is completed by introducing the sub-grid scale (SGS) approach, a more
general and modern framework for the development of stabilization methods.

Finally, chapter 4 exposes the new mixed finite element formulation. The motivation that led
to its development is clarified, and the originally proposed formulation is described. Next, it
is implemented and tested, and some numerical deficiencies encountered are commented,
leading to a modification of the original formulation. The scope of the modified version is
analyzed and found to be restricted to pure diffusion situations. For validation of these
arguments, a pure diffusion problem is solved and compared against the results of the

4 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

classical formulation, obtaining a good improvement in the accuracy of the calculations.

The socioeconomic and environmental impacts of this work have been analyzed and are
not found to be relevant.

CHAPTER 1. IMPORTANCE OF
CONVECTION-DIFFUSION MODELS IN
COMPUTATIONAL FLUID DYNAMICS

1.1. Governing Equations of Fluid Dynamics for
Incompressible Flow

In order to illustrate the role of convection and diffusion mechanisms in CFD, we first need
to present which are the equations that govern fluid motion. In fact, these are the equations
in which CFD is based.

On first place we would want to clarify that our intention is to describe the equations only,
to later be able to compare them with the convection-diffusion model, without entering into
the details of their derivation. An excellent and physically meaningful derivation of the
governing equations of fluid mechanics is developed by Anderson in [1] and [2].

For our purpose we will focus on incompressible flows, that is, those flows where the den-
sity changes are negligible. Such flows are governed by two equations, namely, the con-
tinuity and momentum equations. They are mathematical statements of the fundamental
physical principles upon which fluid dynamics is based.

1.1.1. The Continuity Equation

The continuity equation is the result of applying the principle of conservation of mass to a
fluid volume.

If we consider a finite control volume of fluid fixed in space, with volume V and control
surface S, the continuity equation can be written in integral form as

∫
S

ρV ·n dS =−
∫

V

∂ρ

∂t
dV, (1.1)

where ρ and V are the density and velocity of the fluid in the control volume, respectively,
and n is the unit outward normal to the control surface S. Equation (1.1) is stating the
principle of mass conservation in a straightforward way. It says that the net mass flow out
of the control volume through surface S equals the time rate of decrease of mass inside
the control volume V , or, in other words, simply that mass can be neither created nor
destroyed.

The continuity equation in differential form can be readily obtained from the integral form
by applying the divergence theorem to the left-hand side of equation (1.1) and noting that
the resulting integrand, for the equation to be satisfied in any arbitrary control volume, must
be identically zero. The resulting expression is

∂ρ

∂t
+∇ · (ρV) = 0, (1.2)

5

6 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

that expresses the conservation of mass at a given (infinitesimal) point in the flow field, as
opposed to equation (1.1), which deals with a finite space.

The continuity equation formulations already presented hold in general, for the three-
dimensional, unsteady flow of any type of fluid, inviscid or viscous, compressible or in-
compressible. However, in this work we are only interested in incompressible flows. To
obtain the incompressible continuity equation we have to consider the physical definition
of incompressible flow, that is, ρ is constant. Applying this condition to equation (1.2) and
recalling the identity ∇ · (ρV) = ρ∇ ·V+V ·∇ρ, we obtain

∇ ·V = 0 (1.3)

which is the continuity equation for incompressible flows. It states that the divergence
of velocity is zero in such flows. In other words, it is imposing a condition on the fluid
velocity, i.e. that for a flow to be incompressible its velocity field has to be divergence free.
Furthermore, it can be shown (see for instance [1] or [2]) that the divergence of velocity is
physically the time rate of change of the volume of a moving fluid element, per unit volume.
Hence, for an incompressible flow, this quantity is zero and the volume of a moving fluid
element per unit volume remains constant in time.

Equation (1.3) is sometimes called the incompressibility condition. It is key for defining
a correspondence between the convection-diffusion and momentum equations, which is
discussed next.

1.1.2. The Momentum Equation

Another fundamental physical principle that is satisfied by fluid dynamics is Newton’s sec-
ond law. It’s application to a fluid volume expresses that the net force acting on the fluid
equals the time rate of change of its momentum. The resulting equation is called the
momentum equation.

As before, we consider the model of a finite control volume fixed in space. And once
again, the best way of exposing the physical phenomena behind the equation is to write it
in integral conservation form, that is

∫
V

ρf dV −
∫

S
pn dS+Fviscous =

∫
V

∂

∂t
(ρV) dV +

∫
S

ρV(V ·n) dS, (1.4)

where p is the pressure of the fluid, f is the net body force per unit mass exerted on the
fluid inside V (usually due to gravity or electromagnetic forces) and Fviscous is the term that
contains the surface forces due to the shear stress acting on the control surface S. The
actual expression for Fviscous is not needed for our purpose, such a term will only be of our
interest in the differential form of the momentum equation, which will be described further
below.

Equation (1.4) clearly states what was enunciated above. On the left-hand side we have
the net force acting on the fluid in the control volume, which comes from two sources,
namely, the body forces acting inside V and the surface forces acting on S, exerted by
pressure and shear stress. Then, on the right-hand side we find the time rate of change
of momentum of the fluid in the control volume, that is, the net flow of momentum exiting

CHAPTER 1. IMPORTANCE OF CONVECTION-DIFFUSION MODELS IN
COMPUTATIONAL FLUID DYNAMICS 7

the control volume across surface S plus the time rate of change of momentum due to the
unsteady fluctuations of flow properties inside V . The fluid momentum is given by ρV, so
it is important to notice that equation (1.4) is a vector equation.

Having reflected the physical meaning of the momentum equation, we can now present
it in differential form, which is the form that will satisfy our needs. The transition from
the integral to the differential form for the momentum equation is not as direct as for the
continuity equation. Moreover, there are several ways of expressing it. In the majority of
cases, the fluid studied is assumed to be Newtonian, meaning that the shear stress is
proportional to the normal velocity gradient, with the constant of proportionality given by
the fluid dynamic viscosity µ.

Here we will get directly to the point and present the momentum equation expressed in the
useful way for our analysis, that is, the differential momentum equation for incompressible
flows. The common way of expressing it is (see for example [3])

∂V
∂t

+(V ·∇)V−ν∇
2V+

1
ρ

∇p = f, (1.5)

where ν is the kinematic viscosity of the fluid, equal to the dynamic viscosity divided by
density, and ∇2V denotes the Laplacian operator applied to the velocity vector, also known
as vector Laplacian, which is nothing more than the Laplacian of each scalar component
of the velocity vector.

Equation (1.5) is the momentum equation for incompressible flow in differential form, usu-
ally known as the incompressible Navier-Stokes equations (actually, there are three equa-
tions, one for each velocity component). They are the equations that govern the motion
of incompressible flows, always satisfying the incompressibility condition (1.3), which is a
crucial step in their derivation. This is the desired expression, as will be made clear in
section 1.3..

1.2. The Convection-Diffusion Equation

The convection-diffusion equation is a partial differential equation that expresses the trans-
port of a given field quantity (scalar of vector) by means of two physical processes: con-
vection (also known as advection) and diffusion. In fluid dynamics, the mechanism of con-
vection is governed by the fluid’s motion, that is, the properties of the fluid are transported
(convected) in space according to the fluid velocity. The diffusion process, on the other
hand, is not related to the motion of the fluid and acts even if it is static. It is a transport
mechanism that works at a molecular level and is strongly dependent on the properties of
the fluid.

1.2.1. General Form of the Convection-Diffusion Equation

In its general form, the convection-diffusion equation can be written as (see [7] and [3])

∂c
∂t

+∇ · (ac)−∇ · (D∇c) = s, (1.6)

8 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

where c is the transported quantity, a is the velocity of the convected quantity (also known
as convection velocity), D> 0 is the diffusion coefficient (or diffusivity) and s is a volumetric
source term. The second term on the left-hand side of equation (1.6) is known as the
convective term, whereas the third one is called the diffusion term. It is important to notice
that if anisotropy is present, then the diffusion coefficient becomes directionally dependent.
In this study, an isotropic medium will always be considered.

Here the general convection-diffusion equation has been written for the transport of a
scalar quantity, however, it is equally valid for a vector quantity without loss of generality.
Equation (1.6) has many applications in physics, such as mass transfer, in which the trans-
ported quantity becomes the species concentration, or heat transfer, where c represents
the temperature. For our objective in this chapter, we are interested in putting it in a fluid
dynamics point of view.

1.2.2. The Convection-Diffusion Equation in a Fluid Dynamics
Context

Taking a fluid dynamics approach, equation (1.6) becomes more specific. The transported
quantity c can be viewed as a scalar flow field property like temperature, making the equa-
tion express the heat transfer in the flow. In the same sense, the convection velocity a is
taken to be the velocity of the fluid, better expressed as V. In cartesian coordinates, the
components of V are usually expressed as

V = ui+ vj+wk, (1.7)

with each one being a function of space and time, i.e. u = u(x,y,z, t), and the same for v
and w.

The diffusion coefficient also depends on which quantity is being transported. For exam-
ple, for temperature T it becomes the thermal conductivity k. The same happens for the
volumetric source term s, which for example can be considered as a heat source, taking
again the case of temperature transport.

For the sake of illustrating the relation of the convection-diffusion equation with fluid motion,
there are some common simplifications that have to be made to the model described by
equation (1.6). On one hand we have to consider an incompressible fluid. Applying the
incompressibility condition (1.3) we find that the convective term in equation (1.6) becomes
(in terms of the fluid velocity)

∇ · (Vc) = V ·∇c+ c∇ ·V = V ·∇c. (1.8)

On the other hand, another simplification that is usually made is that the diffusion coeffi-
cient is constant, and hence the diffusion term of equation (1.6) can be expressed by using
the Laplacian operator.

Attending to these arguments, the simplified convection-diffusion equation for a scalar
quantity reads

∂c
∂t

+V ·∇c−D∇
2c = s, (1.9)

CHAPTER 1. IMPORTANCE OF CONVECTION-DIFFUSION MODELS IN
COMPUTATIONAL FLUID DYNAMICS 9

and for a vector field c

∂c
∂t

+(V ·∇)c−D∇
2c = s, (1.10)

where now the source term also adopts a vectorial structure.

The form of the convection-diffusion equation given in equations (1.9) and (1.10) is the
suitable form for putting it in a fluid dynamics context. For example, to express heat transfer
in the fluid we rewrite equation (1.9) in terms of temperature and thermal conductivity,
resulting in

∂T
∂t

+V ·∇T − k∇
2T = f , (1.11)

with f being a heat source.

1.3. Convection-Diffusion as a Representative Model for
Computational Fluid Dynamics

On the previous two sections we have focused on the presentation of the governing equa-
tions of motion and the convection-diffusion equation for incompressible flows. Now we
are ready to expose what do they have in common, and to justify why convection-diffusion
models are important for CFD.

Recalling the momentum equation for incompressible flow, that is, equation (1.5) and ob-
serving the structure of its terms we can make the following identification

∂V
∂t

+ (V ·∇)V︸ ︷︷ ︸
Convection

− ν∇
2V︸ ︷︷ ︸

Diffusion

+
1
ρ

∇p = f. (1.12)

As we can see, both convection and diffusion processes are explicitly encountered in the
equation. Furthermore, if we directly compare equation (1.5) with the vector convection-
diffusion equation for an incompressible fluid, namely, equation (1.10), we find that they
are very similar. In fact, a part from the pressure gradient term, equation (1.5) is equation
(1.10) with c equal to the fluid velocity V, D equal to the kinematic viscosity ν and s to the
net body force f. Thus, there is a strong correlation between both equations.

In order to emphasize even more the similitudes, the Navier-Stokes equations for an in-
compressible flow can also be written as

∂(ρV)

∂t
+V ·∇(ρV)−ν∇

2 (ρV)+
1
ρ

∇p = f, (1.13)

where the fluid momentum, i.e. ρV, appears as the transported quantity in the terms of
the equation. In this form, we see that the second and third terms on the left-hand side
express the convection and diffusion of the fluid’s momentum. Actually, we have that for
an incompressible Newtonian fluid viscosity operates as a diffusion of momentum.

10 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

Now it is clear that convection and diffusion processes play a strong role in fluid dynamics,
and the proper understanding of their numerical behavior is of fundamental importance in
CFD. As will be seen in the next chapter, important numerical difficulties are encountered
in situations where convection dominates. Unfortunately, this is usually the case in fluid
dynamics, specially in aerospace engineering. As a result, knowing how to solve such
issues is a crucial step for the solution of physical problems through CFD, and the best
way to expose them and their remedies is by bringing them to its simplest form, that is, to
the convection-diffusion equation.

A good proof of the importance of convection-diffusion models in CFD is that several nu-
merical techniques that are used nowadays for improving the solutions of fluid dynamics
problems have their foundation in the convection-diffusion equation. When a numerical
difficulty associated to one of the physical processes is encountered, such as that for
convection, the convection-diffusion equation allows the source of the problem to be ex-
posed, and provides information of how it should be circumvented. Then, if a suitable
solution is found, it might be extrapolated to more complex physical models that include
the process of convection, such as the case of incompressible flow. In this sense, the
convection-diffusion equation can also be viewed as a ”testing bench” for the development
of numerical techniques aimed to improve the solution of more complex problems.

The arguments given in this section serve to justify why the convection-diffusion equation,
although being simpler, is a representative model problem for CFD.

In this text, the convection-diffusion equation for heat transfer, equation (1.11), will be used.
It is simpler than equation (1.10), which is the one that mimics the convection and diffusion
processes of the momentum equation, but is enough for showing the important numerical
aspects of convection-diffusion problems. The main difference is that the heat transfer
equation is scalar and linear, whereas the convective transport of momentum introduces
a non-linear term (see equation (1.13)). Such a non-linearity can produce discontinuities
in the solution. However, the analysis of this phenomenon is out of the scope of this work,
see [3] for the details.

As a last thing, we would want to comment that the presence of the pressure gradient
term in equations (1.5) and (1.13) introduces some additional restrictions in the numerical
solution, but it does not affect the validity of the numerical techniques exposed in along
this work.

CHAPTER 2. THE FINITE ELEMENT METHOD IN
CONVECTION-DIFFUSION PROBLEMS

2.1. Statement of the Initial Boundary Value Problem

The first step towards the theoretical solution of a given physical problem, both by ana-
lytical or numerical methods, is its correct mathematical formulation. Once the governing
equations that model the behavior of the physical system have been obtained, proper initial
and boundary conditions must be prescribed in order to close problem. Otherwise its so-
lution would be undefined. While boundary conditions are always needed for any problem
to be well-posed, initial conditions are only required in transient problems where the time
dimension is important.

In our analysis, two types of boundary conditions are used, namely, the Dirichlet and Neu-
mann boundary conditions. Dirichlet conditions are defined as the direct prescription of
the unknown values of the problem at the system boundary. Neumann conditions are the
imposition of the normal gradient of the unknown function along the boundary.

Focusing on convection-diffusion problems, our model is given by the partial differential
equation (1.11). We consider the transport by convection and diffusion of a scalar quantity,
in this case temperature, that is a function of both space and time T = T (x,y,z, t), in a
domain denoted by Ω with a smooth boundary Γ. The boundary is divided in two comple-
mentary portions, ΓD and ΓN such that Γ = ΓD∪ΓN , respectively referring to that portions
of the boundary where Dirichlet and Neumann conditions are prescribed.

With this, the initial and boundary value problem associated with equation (1.11) can be
stated as: given the velocity field V(x,y,z, t), the diffusion coefficient k, the source term
f (x,y,z, t), and the necessary initial and boundary conditions, find T (x,y,z, t) in a given
time interval provided that

∂T
∂t

+V ·∇T − k∇
2T = f in Ω, (2.1a)

T (x,y,z,0) = T0 (x,y,z) in Ω, (2.1b)

T = TD on ΓD, (2.1c)

n · (k∇T) = k
∂T
∂n

= qn on ΓN , (2.1d)

where T0 refers to the initial conditions, TD denotes the prescribed values of T on the
Dirichlet portion of the boundary, and the function qn denotes the prescribed normal diffu-
sive flux on the Neumann portion, with n being the normal vector to ΓN .

2.2. Weak Form of the Problem

The statement of the initial boundary value problem given by (2.1) in the previous section is
known as the strong form. However, the process of numerical solution by the finite element

11

12 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

method rests upon the discrete representation of a weak integral from of the governing
partial differential equation. Then, the first step for the finite element solution of convection-
diffusion problems is the association of an equivalent weak form to the strong form of the
initial boundary value problem. This can be achieved by two different approaches, namely,
variational formulations or residual formulations.

Variational formulations are based on finding the solution of the problem through an integral
equation that represents a general property of the system, like for example the principle
of minimum energy. On the other hand, residual formulations are characterized by the
weighting of the residual of the governing equation by means of specific functions, without
requiring any physical property to be formulated. Due to their more general applicability,
residual formulations are the most usual, and CFD is no exception.

2.2.1. The Weighted Residual Formulation

For obtaining the weak formulation of our model problem we use the standard approach
in the FEM, that is, the weighted residual formulation. Basically, it consists on multiplying
the governing equation by a weighting (also called test) function and integrating it over the
computational domain Ω. The key point in this process is to ensure that the solution of
the weak integral form is also a solution of the strong form of the problem. This imposes
some requirements on the choice of the weighting and the unknown functions (in this
case the temperature function), with specific continuity requirements that classify them in
determinate mathematical spaces.

Here we will assume the classical definition of the weighting and unknown functions, that
is, those functions which are square integrable and have square integrable first derivatives
over the domain Ω. Moreover, on the Dirichlet portion of the boundary, ΓD, the weighting
functions are assumed to vanish and the unknown functions are assumed to be equal
to their prescribed values (TD in our case). A formal mathematical presentation of this
concepts is given in [3] and [5].

Denoting the weighting function by w, the weighted residual formulation of problem (2.1) is

∫
Ω

w
∂T
∂t

dΩ+
∫

Ω

w(V ·∇T) dΩ−
∫

Ω

wk∇
2T dΩ =

∫
Ω

w f dΩ, (2.2)

where, as described above, w = 0 and T = TD on ΓD. By observing equation (2.2) we
see that classical solutions of problem (2.1) will also verify this integral equation for all the
admissible functions w, i.e. both formulations are equivalent.

The weak form (2.2) accounts for initial and Dirichlet conditions through T0 and TD, respec-
tively. However, it does not tell anything about Neumann boundary conditions. In order to
account for Neumann conditions also, the diffusion term on the left-hand side of equation
(2.2) is integrated by parts, becoming

∫
Ω

wk∇
2T dΩ =−

∫
Ω

∇w · (k∇T) dΩ+
∫

Γ

wn · (k∇T) dΓ. (2.3)

Now, if we recall that the weighting function is zero on ΓD by definition, the resulting bound-
ary integral that appears in equation (2.3) is the weighted formulation of the condition ex-
pressed in (2.1d), that is, the Neumann boundary condition. As can be observed, such

CHAPTER 2. THE FINITE ELEMENT METHOD IN CONVECTION-DIFFUSION
PROBLEMS 13

term has appeared naturally from a mathematical manipulation of the diffusion term. This
is why Neumann conditions are also called natural boundary conditions. Now, the weak
formulation of our convection-diffusion problem renders

∫
Ω

w
∂T
∂t

dΩ+
∫

Ω

w(V ·∇T) dΩ+
∫

Ω

∇w ·(k∇T) dΩ =
∫

Ω

w f dΩ+
∫

ΓN

wqn dΓ. (2.4)

This weak form is at the basis of the finite element solution of our convection-diffusion
problem. The next step is the time and space discretization, necessary for obtaining a
numerical solution of the problem.

2.3. Basics of the Finite Element Spatial Discretization

The process of spatial discretization by the finite element method considers a partition of
the computational domain Ω into a given number of non-intersecting subdomains called
elements (or finite elements). Each subdomain is denoted by Ωe and has a piecewise
smooth boundary Γe. The shape of the elements can be arbitrary, however, to ensure a
consistent numerical solution their distribution (the mesh) has to be as regular as possible.
In one dimension there is only one possible shape, i.e. a straight line, but for multidimen-
sional problems, which is usually the case in practice, different shapes can be used. The
most common are the triangular and the quadrilateral elements, for being the simplest
two-dimensional geometries.

In our presentation we will focus on two-dimensional convection-diffusion problems using
standard triangular elements. Such elements are represented in figure 2.1. Our inten-
tion is only to present the finite element formulation that we use for the resolution of the
considered convection-diffusion model. General finite element concepts can be found for
example in [5] and [10].

Figure 2.1: A generic domain divided into triangular finite elements. Adapted from [8].

14 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

2.3.1. Approximation of the Unknown

It is clear that due to the impossibility of finding exact analytical solutions to the problems
under study, what the finite element method finds is an approximate solution. Such an
approximation, attending to our model, is denoted by T h, with T h ≈ T (see [10]). The
superscript h is the characteristic mesh size, and consequently gives the precision of the
approximation. The weighting functions now also become approximations, expressed as
wh.

This approximation process does not alter any of the function requirements exposed in
section 2.2.1., therefore, wh also vanish on Γ, and TD is satisfied on the Dirichlet boundary
with the precision given by h. Now the weak form of the problem is restricted to the finite
element space, and can be written as

∫
Ω

wh ∂T h

∂t
dΩ+

∫
Ω

wh
(

V ·∇T h
)

dΩ+
∫

Ω

∇wh ·
(

k∇T h
)

dΩ

=
∫

Ω

wh f dΩ+
∫

ΓN

whqn dΓ. (2.5)

In the practical implementation of the finite element method, attention is focused on the
computations in an individual element. Taking the definition of the integral in a distribu-
tional sense, an integral over the complete domain Ω can be viewed as the sum of the
integrals over each subdomain Ωe, that is, over each element. In a similar fashion, the
approximation of the unknown can be interpreted as the topological assembly of the indi-
vidual element contributions, namely, T h

e . This allows us to write equation (2.5) for a given
element as

∫
Ωe

wh ∂T h
e

∂t
dΩ+

∫
Ωe

wh
(

V ·∇T h
e

)
dΩ+

∫
Ωe

∇wh ·
(

k∇T h
e

)
dΩ

=
∫

Ωe

wh f dΩ+
∫

Γe
N

whqe
n dΓ, (2.6)

with qe
n being the normal prescribed flux on the portion of the complete Neumann bound-

ary that corresponds to the given element. Obviously, if the element is in the interior of
the domain this term becomes zero. It should also be noted that the values of V and f
appearing in (2.6) are the corresponding local values acting on the element domain Ωe.

Given the previous elementwise definition of the approximated weak form, the problem
unknown is interpolated inside each element by means of a linear combination of functions
such that, for two dimensions

T h
e (x,y) =

n

∑
i=1

Ne
i (x,y)T e

i , (2.7)

where T e
i is the value of T h

e at node number i, that is, the nodal unknown, n is the number
of nodes of the element and Ne

i is the element shape function of node i, described next.

CHAPTER 2. THE FINITE ELEMENT METHOD IN CONVECTION-DIFFUSION
PROBLEMS 15

The shape functions are expressions that interpolate the unknown inside the element ac-
cording to its nodal values, and they do only depend on the geometry of the element shape
chosen. In our case we choose to use triangular elements with three nodes (n = 3), also
known as linear triangular elements due to the linear order of their shape functions. They
are the simplest bidimensional elements, but also the most used.

The order of the shape functions depends on the number of nodes that is used in an ele-
ment. As a result, several types of elements can be defined with their respective quadratic,
cubic, quartic and so on shape functions (see [8] for the details). For linear triangular ele-
ments they are defined by

Ne
i =

1
2Ae

(ae
i +be

i x+ ce
i y) , (2.8)

where

ae
i = xe

j ye
k− xe

k ye
j, (2.9a)

be
i = xe

j− xe
k, (2.9b)

ce
i = ye

k− ye
j, (2.9c)

with Ae being the element area and the subindices i, j, k varying from 1 to 3 (see figure
2.1), depending on the node for which the shape function is being calculated. Looking
at equation (2.8), we observe that the shape functions for linear triangular elements are
first order polynomials whose coefficients are a function of the nodal coordinates, and thus
they are linear. Moreover, it is easy to check that such functions take a value of one in
their node and zero on the other two. This is illustrated in figure 2.2, where we see that
the shape functions can be viewed as a triangular plane. Hence, if we want the value of
the unknown at any point inside the element we only need to substitute for the x and y
coordinates of the point in the expression (2.7). This approach provides a local algebraic
model that is very powerful for the numerical solution of the problem, as will be made clear
later.

Figure 2.2: Shape functions for the three-noded triangular element. From [8].

With the shape functions already defined, the interpolation (2.7) can be substituted into the
elemental weak form. It important to notice, though, that there are differential operators
applied to the unknown T h

e in equation (2.6). In fact, in all the terms where temperature is
present. Ignoring the transient term, which will be treated in section 2.6., we see that we
have a gradient operator applied to both the convection and diffusion terms. Recalling that
T e

i are the nodal unknowns of the element, which are treated as constants, we find

16 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

∇T h
e =

n

∑
i=1

∇Ne
i T e

i . (2.10)

Thus, the gradient term operates on the shape functions. This is an important feature of
the finite element method, and highlights one of its most important differences against the
finite difference method, which is that the derivatives of the governing equation, instead of
being replaced by finite difference quotients, are algebraically computed through the shape
functions. Looking back to expression (2.8), the shape function derivatives are immediately
computed to obtain

∂Ne
i

∂x
=

be
i

2Ae
and

∂Ne
i

∂y
=

ce
i

2Ae
. (2.11)

Due to their linearity, the shape functions gradient is constant all over the element domain.
It is obvious that if second derivatives were present in the weak formulation (2.6), such
terms would vanish when performing the discretization through linear triangular elements,
making the solution to become incorrect. In this case, although the original weak form, i.e.
equation (2.2), contains a second-order term (the diffusion term), the process of integration
by parts reduces by one the order of the differential operator, making the use of linear
elements suitable for the convection-diffusion problem. For this reason, the purpose of the
integration by parts is often not only that of introducing the natural boundary conditions,
but also that of adequately modifying the continuity requirements of those terms that are
subject to non-linear spatial operators. Moreover, this also reflects the importance of the
shape functions in the finite element method. The type of element that is used for the
spatial discretization shall be carefully chosen, ensuring that it has enough regularity to
produce a correct solution of the problem.

2.3.2. The Galerkin Method

Now that the unknown T h
e is properly approximated for our convection-diffusion model, the

last step that remains for completing the finite element spatial discretization of problem
(2.1) is the choice of the weighting functions. Almost any set of independent functions
could be used for the purpose of weighting and, according to the choice, a different name
can be attached to each process. The various common choices include the point col-
location method, the subdomain collocation method, the Galerkin method and the least
squares method. A description of them can be found in [5] and in [8].

For being the most used in CFD, and in a general context of the FEM, we will focus on
the Galerkin method. It simply consists on considering as weighting functions the same
functions that are used for interpolating the unknown inside the element, that is, the shape
functions. As a result, for a given element node we will have we

i = Ne
i , where the super-

script h has been dropped in order not to overload the notation.

With this approach, a different weighting function is selected for each node, producing
three different equations for a given element. Then, we end up with three equations of the
type (2.6), with three unknowns each, namely, T e

i . When performing the assembly of each
individual element contribution, this generates a global system of equations that can be

CHAPTER 2. THE FINITE ELEMENT METHOD IN CONVECTION-DIFFUSION
PROBLEMS 17

solved to give the numerical solution to the problem. This process will be made clearer in
the following section.

2.4. Discretization of the Steady Transport Problem

With the purpose of illustrating the spatial finite element discretization process for the so-
lution of convection-diffusion transport problems, we will start by considering the steady
convection-diffusion equation, which can be derived from equation (1.11) by taking the
time derivative equal to zero, obtaining

V ·∇T − k∇
2T = f . (2.12)

This assumption has no impact on the weak formulation of the problem other than remov-
ing the time derivative term. As a result, the finite element approximated weak form (2.6)
for a given element now reads

∫
Ωe

wh
(

V ·∇T h
e

)
dΩ+

∫
Ωe

∇wh ·
(

k∇T h
e

)
dΩ =

∫
Ωe

wh f dΩ+
∫

Γe
N

whqe
n dΓ. (2.13)

At this point, we have all the necessary ingredients to perform the spatial discretization of
the problem. As stated before, we make use of the Galerkin finite element formulation.
Taking into consideration the concepts exposed in the previous section, the discrete weak
form for the node i of a given element e can be expressed as

∫
Ωe

Ne
i

[
V ·

(
n

∑
j=1

∇Ne
j T

e
j

)]
dΩ+

∫
Ωe

∇Ne
i ·

[
k

(
n

∑
j=1

∇Ne
j T

e
j

)]
dΩ

=
∫

Ωe

Ne
i f dΩ+

∫
Γe

N

Ne
i qe

n dΓ, (2.14)

where both indexes i and j go from 1 to 3. Hence, given a linear triangular element, we
have three equations like (2.14), one for each node. Thus, i selects the node for which the
equation is being discretized. On the other hand, j gives the interpolation of the unknown,
which is the same for the three resulting equations.

Focusing the attention on the integrals of the weak formulation (2.14), we see that although
the relative simplicity of linear elements, their analytical calculation can become tedious.
In fact, for higher-order elements it becomes intractable. For this reason, in a practical
implementation of the finite element method such integrals are evaluated numerically. For
our problems, we use a technique known as the Gauss quadrature. However, details will
not be provided here. If desired, they can be found for example in [5].

2.4.1. Matrix Form of the Discrete Equation

The indexing used in equation (2.14) can become rather confusing or uncomfortable. It is
much more convenient to express the discretized weak form in a matrix structure.

18 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

For linear triangular elements, the following matrices are usually defined

Ne = [Ne
1 ,N

e
2 ,N

e
3] (2.15)

Te = [T e
1 ,T

e
2 ,T

e
3]

T , (2.16)

where the subscripts 1, 2 and 3 denote the corresponding element node and the super-
script T denotes the matrix transpose. Recalling matrix algebra, these expressions allow
us to rewrite the unknown approximation in the better way

T h
e = [Ne

1 ,N
e
2 ,N

e
3]


T e

1
T e

2
T e

3

= NeTe. (2.17)

In a similar fashion, the shape functions gradient takes the form

∇Ne = [∇Ne
1 ,∇Ne

2 ,∇Ne
3] =


∂Ne

1
∂x

∂Ne
2

∂x
∂Ne

3
∂x

∂Ne
1

∂y
∂Ne

2
∂y

∂Ne
3

∂y

 . (2.18)

With these definitions, the discrete weak form for our steady transport problem can be cast
in matrix form, resulting in the following expression

(Ce +Ke)Te = fe, (2.19)

where Ce and Ke are known, respectively, as the element convection and diffusion matri-
ces and fe is simply called the right-hand side vector. They have the form

Ce =
∫

Ωe

[Ne]T V∇Ne dΩ (2.20)

Ke =
∫

Ωe

[∇Ne]T k∇Ne dΩ (2.21)

fe =
∫

Ωe

[Ne]T f dΩ+
∫

Γe
N

[Ne]T qe
n dΓ. (2.22)

As noted in the previous section, the convection velocity V and the source term f ap-
pearing respectively in equations (2.20) and (2.22) are considered to be the element local
values. They result from the interpolation of the element nodal values, in the same way as
was done for the unknown function, that is

V = [Ne
1 ,N

e
2 ,N

e
3]

u1 v1
u2 v2
u3 v3

 and f = [Ne
1 ,N

e
2 ,N

e
3]


f1
f2
f3

 , (2.23)

CHAPTER 2. THE FINITE ELEMENT METHOD IN CONVECTION-DIFFUSION
PROBLEMS 19

By direct observation, we see that Ce and Ke are 3×3 matrices and fe is a 3×1 vector.
Therefore (2.19) is a system of three equations with three unknowns.

In order to account for the Dirichlet boundary conditions, if any of the three element nodes
is found to be prescribed, its contribution is substracted from the right-hand side of the sys-
tem. Defining the element Dirichlet values vector by Te

D =
[
T e

D1,T
e

D2,T
e

D3
]T

the complete
system becomes

(Ce +Ke)Te = fe− (Ce +Ke)Te
D. (2.24)

Equation (2.24) represents the element contribution to the overall problem. When all the
individual element contributions are assembled, the global system of equations is obtained,
allowing us to express the solution of the problem as

(C+K)T = f, (2.25)

where, by introducing the assembly operator Ae

C =Ae
Ce K =Ae

Ke f =Ae
fe. (2.26)

The solution of system (2.25) delivers the nodal values of the discrete solution of the
convection-diffusion problem. It has as many equations as nodal unknowns are in the
finite element mesh, and its solution for a linear problem like the one considered in this
work can be obtained directly by inverting the left-hand side matrix.

2.5. The Need for Stabilization

With the steady transport problem already discretized, we can now start with the pre-
sentation of some finite element solutions. Although our main focus are two-dimensional
problems, there are some numerical difficulties that have to be previously addressed, and
the best way to expose them is by the solution of unidimensional convection-diffusion prob-
lems.

The Galerkin finite element method presents some numerical deficiencies in the solution
of convection-dominated problems. To illustrate them, a simplified numerical example is
performed, usually consisting on the solution of the one-dimensional steady convection-
diffusion equation (see [11] or [3]), that is

u
∂T
∂x
− k

∂2T
∂x2 = f . (2.27)

In order to characterize the relative importance between convection and diffusion pro-
cesses in a given flow problem, the following dimensionless number is usually defined

Pe =
V h
2k

, (2.28)

known as the mesh Péclet number, which expresses the ratio of convective to diffusive
transport, with V being the average value of the convection velocity norm (V = u in the 1D

20 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

case) and h a characteristic mesh size, such as the element length for 1D problems. This
number can be considered the convection-diffusion analogue to the Reynolds number, that
expresses the ratio of inertia to viscous forces in fluid dynamics, once again reflecting the
similitudes between both physical models.

The problem considers solving Equation (2.27) in a domain of length L = 1 (dimensionless
domain) discretized with a uniform mesh of 10 linear elements, with uniform unit convection
velocity and source term, i.e. u = 1 and f = 1, and with homogeneous Dirichlet boundary
conditions imposed at each side, namely, T = 0 at x = 0 and x = L. The value of the
diffusion coefficient k is obtained by fixing a value for the Péclet number. Uniform condi-
tions are chosen in order to avoid truncation errors due to the spatial discretization of the
velocity and source terms, as given in (2.23), ensuring that the source of the error is purely
due to the discrete representation of the convection and diffusion operators produced by
the Galerkin finite element formulation.

The exact solution for this model problem with constant convection and diffusion coeffi-
cients u and k is not difficult to obtain and is given by

T (x) =
1
u

x−
1− exp

(u
k

x
)

1− exp
(u

k

)
 . (2.29)

The finite element discretization of this problem follows the same steps described in the
previous sections, except that now unidimensional elements have to used. Linear elements
in 1D are defined by two nodes, as can be seen in Figure 2.3, where a portion of the
problem mesh is shown. Their shape functions are commonly expressed as

Ne
i (ξ) =

1
2
(1+ξi ξ) , (2.30)

where ξ is simply the normalized coordinate ξ = 2(x−xc)
h , with xc being the abscissa of the

center of the element, and ξi its evaluation at the corresponding element node i. Denoting
the local left and right nodes of the element by i = 1 and i = 2, respectively, one finds that
ξ1 =−1 and ξ2 = 1, thus giving

Ne
1 (ξ) =

1
2
(1−ξ) and Ne

2 (ξ) =
1
2
(1+ξ) . (2.31)

Similarly, their derivatives can be easily obtained noting that

∂Ne
i

∂x
=

∂Ne
i

∂ξ

∂ξ

∂x
=

2
h

∂Ne
i

∂ξ
, (2.32)

so

∂Ne
1

∂x
=−1

h
and

∂Ne
2

∂x
=

1
h
. (2.33)

The main reason for using the coordinate transformation given by ξ is to normalize the
shape of the element in a transformed space that allows the expression of the shape
functions in a more convenient form. Although for linear 1D elements it does not suppose

CHAPTER 2. THE FINITE ELEMENT METHOD IN CONVECTION-DIFFUSION
PROBLEMS 21

a noticeable advantage, it becomes very useful for multidimensional elements and its use
is standard.

Figure 2.3: Portion of the finite element mesh used for solving problem (2.27). Adapted
from [9].

With this definitions, the discretized weak form of the problem can be readily obtained.
Recalling the weak formulation of the steady convection-diffusion transport problem for
two dimensions, that is, equation (2.19), we see that now the convection and diffusion
matrices have a size of 2×2 each, and the right hand side vector of 2×1. Noting that for
the one-dimensional case

Ne = [Ne
1 ,N

e
2] and ∇Ne =

[
∂Ne

1
∂x

∂Ne
2

∂x

]
(2.34)

and that u, k and f are constant, the element convection and diffusion matrices and the
element right-hand side vector become

Ce = u
∫

Ωe


Ne

1
∂Ne

1
∂x

Ne
1

∂Ne
2

∂x

Ne
2

∂Ne
1

∂x
Ne

2
∂Ne

2
∂x

dx =
u
2

[
−1 1
−1 1

]
(2.35)

Ke = k
∫

Ωe


∂Ne

1
∂x

∂Ne
1

∂x
∂Ne

1
∂x

∂Ne
2

∂x

∂Ne
2

∂x
∂Ne

1
∂x

∂Ne
2

∂x
∂Ne

2
∂x

dx =
k
h

[
1 −1
−1 1

]
(2.36)

fe = f
∫

Ωe

{
Ne

1
Ne

2

}
dx =

h f
2

{
1
1

}
, (2.37)

where in this case the solution of the integrals has been obtained analytically, with Ne
1 and

Ne
2 being the shape functions in cartesian coordinates, i.e. expressed as a function of x.

Due to the boundary conditions chosen, the Dirichlet term is zero in this case and the
elemental system of equations has the form (2.19), with Te =

[
T e

1 ,T
e

2
]T

and with Ce,
Ke and fe given by the expressions (2.35) to (2.37). As explained before, the assembly
of these individual element contributions already obtained produces the global system of
equations, in the form (2.25), that gives the solution to the problem.

In order to achieve the objective of this section, that is, exposing the numerical deficiencies
of the Galerkin method in convection-dominated problems, equation (2.27) is solved for two
different values of the Péclet number, namely, Pe = 0.5 and Pe = 5. The numerical results
are shown in figure 2.4, compared against the exact solution (2.29).

22 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

T

Galerkin FEM
Exact

Pe=5

Pe=0.5

Figure 2.4: Galerkin finite element solution of the 1D steady transport problem with u = 1
and f = 1 for two different Péclet numbers. The exact solution is also shown for compari-
son.

As can be clearly seen in the figure, the Galerkin solution is satisfactory when the Péclet
number is 0.5, providing an accurate numerical solution to the problem. However, for the
case of Pe = 5, it presents strong non-physical node-to-node oscillations that make the
solution to become unstable and fail. In fact, for values of the Péclet number larger than 1,
that is, when convection dominates, the solution obtained by means of the Galerkin finite
element method is corrupted by spurious oscillations, also known in CFD as ”wiggles”,
that prevent the numerical solution from converging to correct results. Moreover, it can be
easily checked the stronger the convective effects, the larger are the oscillations produced.

This deficiency of the Galerkin formulation has been widely studied since the application
of the finite element method to fluid dynamics problems. As described by Brooks and
Hughes [11], one of the greatest advantages of the Galerkin method, and one of the main
reasons of its popularity, is that when applied to most structure or heat conduction prob-
lems it leads to symmetric matrices, a situation where the finite element method produces
the best results. This created an optimistic point of view and the hope that such signifi-
cant advantages would again be open to exploitation in the area of fluid flow simulation.
Nevertheless, in problems where convection is present, the Galerkin discretization of the
convection operator produces a non-symmetric matrix (see equation (2.35)), causing the
loss of such ”best approximation” property. As a result, when the convection operator
dominates the diffusion operator in the transport equation the oscillations appear. It is im-
portant to notice, however, that wiggles are most likely to appear in convection dominated
cases where a downstream boundary condition is present, forcing a rapid change (large
gradient) in the solution. Such a boundary condition can be observed in figure 2.4, and is
the most usual case in practical convection-diffusion and flow problems.

The only way to eliminate the oscillations while not changing the formulation is by a severe

CHAPTER 2. THE FINITE ELEMENT METHOD IN CONVECTION-DIFFUSION
PROBLEMS 23

mesh refinement, so that the convection operator no longer dominates on an element level
(note in equation (2.36) that the diffusion matrix is inversely proportional to the characteris-
tic element size h). Unfortunately, a global refinement becomes impractical in multidimen-
sional problems, and most of the times detailed features of the solution are not desired
in all the domain, only in specific regions. Hence, there is no other choice than that of
improving the formulation. This motivated the development of numerical methods that try
to eliminate the oscillations while maintaining the accuracy of the solution. Such improved
formulations, that can be viewed as a means of stabilizing the solution of the problem, are
known as stabilization techniques.

In conclusion, this section serves to justify the fact that stabilization is a necessary condi-
tion for the solution of many convection-diffusion problems, and, of course, for the majority
of CFD applications. Due to their fundamental importance, in the next chapter the most
common stabilization techniques will be described.

2.6. Time Discretization

Along this chapter, we have been dealing only with the finite element solution to the steady
convection-diffusion equation. The reason for this, a part from simplifying the presentation
of the finite element method in convection-diffusion problems, is that very often the time
discretization of unsteady transport problems is not performed through the finite element
method but by means of a finite difference approach. Actually, the common philosophy
when solving unsteady convection-diffusion problems lies on performing on first place the
time discretization of the transient term using a finite difference technique, thus obtaining
a modified governing partial differential equation that only contains spatial differential op-
erators, and then applying the standard finite element spatial discretization as exposed in
section 2.3. to that time-discretized form of the problem. It has to be said, however, that
the finite element time discretization can also be used, leading to the so-called space-time
formulations, but will not be considered here.

There are several finite difference formulations suitable for the time discretization, allowing
different orders of accuracy to be obtained (refer to [3, 5] for their presentation). In this
work, we have focused primarily on the solution of steady problems, and for the unsteady
cases, the use of second-order methods has found to be sufficient. Among the second-
order algorithms, we have chosen to use the Crank-Nicolson method for being simple in
its implementation and because it is the one that has the smallest truncation error.

The Crank-Nicolson algorithm is an implicit single step method, meaning that the value
T n+1 of the problem unknown at time tn+1 = tn +∆t is computed from the value T n at
time t, with ∆t denoting the considered time step. In this particular case this is achieved
by defining the time derivative as a first-order forward finite difference (see [1] for details)
given by

T n+1−T n

∆t
=

1
2

[
∂T
∂t

∣∣∣∣
t=tn+1

+
∂T
∂t

∣∣∣∣
t=tn

]
, (2.38)

that is, expressing it as an average between the time derivatives at times tn+1 and tn, which
in turn are replaced by using the governing partial differential equation, namely, equation

24 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

(1.11), as

∂T
∂t

∣∣∣∣
t=tn+1

= f n+1−V ·∇T n+1 + k∇
2T n+1, (2.39)

and the analogue for tn

∂T
∂t

∣∣∣∣
t=tn

= f n−V ·∇T n + k∇
2T n. (2.40)

Introducing the incremental unknown ∆T = T n+1−T n and substituting equations (2.39)
and (2.40) into (2.38) we obtain the following form for the Crank-Nicolson time discretiza-
tion of equation (1.11)

∆T
∆t

+
1
2
(
V ·∇− k∇

2)
∆T =

1
2
(

f n+1 + f n)− (V ·∇− k∇
2)T n. (2.41)

Looking at equation (2.41) we see that all the differential operators present are spatial
operators. It can be viewed as the new governing equation for the unsteady convection-
diffusion problem, and since now the time derivative is not present, the conventional finite
element spatial discretization can be applied to obtain the numerical solution at each time
step. In other words, although the time discretized equation also has a temporal trunca-
tion error, for small time steps such error can be neglected, allowing the equation to be
interpreted as a spatial differential operator in strong form that must be solved at each
step.

To finish with, it also has to be said in favor of the Crank-Nicolson scheme that it is an
unconditionally stable algorithm, that is, it will converge for any value of the time step used.
However, large values of ∆t are not used in practice because the truncation errors that
are produced become important, eliminating the validity of the approach described in this
section.

CHAPTER 3. STABILIZED FINITE ELEMENT
METHODS FOR CONVECTION-DIFFUSION

PROBLEMS

3.1. Stabilization of the Steady One-Dimensional
Problem

In the previous chapter we showed how the usual finite element method solution of con-
vection and diffusion problems where convection effects are important leads to unstable
results, and that as a consequence numerical stabilization has to be added. In the same
way that the solution of the 1D steady transport problem was used to illustrate such need,
it is also the best model problem for describing what has to be done for achieving a stable
solution, and hence will be again considered in this section.

3.1.1. Analysis of the Galerkin Discrete Equation and the Cause of
the Instabilities

The best way of finding a possible remedy for a given numerical difficulty is to identify
its cause. The fact of having a problem with a close exact analytical solution like in the
case of the 1D steady convection-diffusion equation is a great advantage for that purpose,
because by a comparison of the discrete equations provided by both the numerical and
the analytical solution the source of the difficulty can be found, and indeed this is what will
be done next.

Like any numerical approach, the Galerkin finite element method has a truncation error.
In order to expose it, we start by obtaining the discrete equation that the method delivers
at a given interior mesh node. Recalling figure 2.3 (known as a tree-node stencil) and the
element matrices for the contribution to the solution of the problem under consideration,
that is equations (2.35) to (2.37), we can perform the assembly for the two elements that
share node i, resulting in the following system of equations



−u
2
+

k
h

u
2
− k

h
0

−u
2
− k

h
2k
h

u
2
− k

h

0 −u
2
− k

h
u
2
+

k
h


︸ ︷︷ ︸

(C+K)


Ti−1

Ti

Ti+1

︸ ︷︷ ︸
T

=



h f
2

h f

h f
2

︸ ︷︷ ︸
f

, (3.1)

where it has to be emphasized that u, k and f are constants. Now, taking the equation for
node i, that is, the second equation of the system, we find

25

26 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

u
(

Ti+1−Ti−1

2h

)
− k
(

Ti+1−2Ti +Ti−1

h2

)
= f . (3.2)

Equation (3.2) is the discrete equation that the Galerkin method produces at an interior
node i for the unidimensional steady convection-diffusion problem. It is easy to observe
that it is exactly the same discrete scheme that would be obtained if second-order cen-
tral differences were used in equation (2.27). This fact, which is not a pure coincidence,
reflects the close relation that is found between the Galerkin method based on linear ele-
ments and the central-difference finite difference method. Moreover, it also gives evidence
that central finite difference solutions are also affected by the same kind of oscillations as
the Galerkin formulation, showing that they are not a particular issue of the finite element
method. A description of the unstable behavior of convection-dominated problems in a
finite difference context can be found in [1].

Having obtained the discrete equation for the numerical scheme, the next step in our way
to find the truncation error of the Galerkin method is to get a discrete expression for the
exact solution, that is, an equation similar to (3.2) that, when solved, would give the exact
solution to the problem at the considered node, no matter which value of the Péclet number
is used.

In order to obtain an exact scheme, an equation of the type

α1Ti−1 +α2Ti +α3Ti+1 = f (3.3)

has to be solved, where the nodal values Ti−1, Ti and Ti+1 are expressed by means of
the exact solution (2.29), thus obtaining three conditions on the coefficients α1, α2 and α3
that allow solving for them. The details are given by Donea and Huerta in [3]. With this
process, the desired exact scheme becomes

u
(

Ti+1−Ti−1

2h

)
−
(
k+ k̄

)(Ti+1−2Ti +Ti−1

h2

)
= f , (3.4)

where k̄ can be interpreted as an added numerical diffusion (a non-physical diffusion co-
efficient) that has the form (see also [11])

k̄ = β
uh
2

with β = cothPe− 1
Pe

. (3.5)

Equation (3.4) is the one that gives the exact nodal solution to the problem for any configu-
ration of the parameters. In fact, k̄ is a function that only depends on the parameters of the
governing equation (except the source term) and the element size. With this, we are now
ready to discover why the Galerkin method fails to deliver correct results in convection-
dominated situations.

By a direct comparison between both the numerical (3.2) and the exact (3.4) difference
discrete schemes we see that the Galerkin method introduces a truncation error in the
form of a diffusion operator, i.e. it lacks the term

−k̄
(

Ti+1−2Ti +Ti−1

h2

)

CHAPTER 3. STABILIZED FINITE ELEMENT METHODS FOR
CONVECTION-DIFFUSION PROBLEMS 27

to represent the exact nodal solution. As can be observed, this is a truncation error that
depends on the problem parameters, specially on the Péclet number, explaining why the
presence and intensity of the spurious oscillations depends on the value of such number.

An analysis of this truncation error allows to find which is the modified partial differential
equation that is actually solved exactly at the nodes by the Galerkin finite element method.
Such a modified equation is (see [3])

u
∂T
∂x
−
[

k− k̄
(

sinh2 Pe
Pe2

)]
∂2T
∂x2 = f , (3.6)

where it can be noticed that the diffusion coefficient is now given by the term inside brack-
ets. This modified diffusion coefficient is what the Galerkin method uses as the ”physical”
diffusion coefficient when solving the problem. However, as pointed in chapter 1, the diffu-
sion coefficient is physically defined as a positive quantity (D > 0), and looking at equation
(3.6) we see that it may become negative if k̄

(
sinh2 Pe/Pe2) > k. It can be checked that

this condition is satisfied when the Péclet number is larger than one, that is, when con-
vection dominates. Hence, when this happens, a non-physical model is being solved by
the Galerkin method, and the corresponding numerical solution is corrupted by the already
known node-to-node oscillations.

After these arguments, we see that the negative numerical diffusion introduced by the
Galerkin finite element scheme is the cause of the numerical difficulties that arise in the
simulation of convective transport problems. But most importantly, now we have an idea
of how to develop a remedy for such deficiencies.

3.1.2. The Optimal Formulation

With the source of the numerical instabilities identified, the results of the previous section
can be exploited to develop an optimal method for the solution of the one-dimensional
steady transport problem. As exposed by Donea and Huerta [3], the behavior of the
Galerkin method in convection-dominated problems can be improved by the addition of
an artificial diffusion that counteracts the negative dissipation introduced by the method,
that is, its truncation error. The advantage of this approach is that the form of such artificial
diffusion (also known as balancing diffusion) is given by k̄, as expressed in equation (3.5).
For illustrating the improved performance of this method, the problem described in section
2.5. is again solved.

Considering the original governing equation of the problem (2.27) and introducing the mod-
ified diffusion coefficient we obtain

u
∂T
∂x
−
(
k+ k̄

) ∂2T
∂x2 = f , (3.7)

which is taken as the new governing partial differential equation. For this equation, the
following weighted residual formulation is obtained

∫ L

0

[
wu

∂T
∂x

+
∂w
∂x

(
k+ k̄

) ∂T
∂x

]
dx =

∫ L

0
w f dx, (3.8)

28 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

Figure 3.1: Modified weighting function characteristic of the SU method for linear elements,
in comparison with that of the Galerkin method. From [3].

which, substituting for the value of k̄, can be rewritten in the form

∫ L

0

[(
w+β

h
2

∂w
∂x

)
u

∂T
∂x

+
∂w
∂x

k
∂T
∂x

]
dx =

∫ L

0
w f dx. (3.9)

Equation (3.9) shows a very interesting result, namely, that the introduction of the balanc-
ing diffusion k̄ produces a weak formulation that uses a modified weighting function for the
convective term. Such a modified weighting, which is given by w+β(h/2)∂w/∂x, is shown
in figure 3.1 for the central node of a three-node stencil, in comparison with the standard
Galerkin weighting function, i.e. the shape function of a 1D linear element. As can be ob-
served, the modified function is discontinuous at the inter-elemental boundaries and gives
more weight to the element upstream of the central node (the flow is from left to right) than
to the element downstream, whereas the Galerkin function weights equally both elements.
This kind of modified weighting function is known as an upwind-type weighting function,
and the scheme that results from its application to the convective term as in equation (3.9)
is referred to (when generalized to multiple spatial dimensions) as the streamline-upwind
(SU) method.

The virtues of the 1D SU method will be exposed next, when presenting the solution of
the modified equation (3.7). However, a more general description of the method is given
in section 3.2.1.. Proceeding as in section 2.5., the spatial discretization of the weak
form (3.9) is performed using linear finite elements. The only difference is in the element
convection matrix (the diffusion and source terms are not changed by the SU formulation),
that now takes the following SU form

Ce
SU =

u
2

[
−(1−β) 1−β

−(1+β) 1+β

]
. (3.10)

Considering the same mesh of ten linear elements used for the Galerkin solution of the
problem, and solving it for the same values of the Péclet number taken before, the SU
method delivers the results displayed in figure 3.2. Comparing this figure with the results
of the Galerkin method, shown in figure 2.4, the difference is very clear. With the addition
of the artificial diffusion that characterizes the streamline-upwind scheme, the exact so-
lution of the problem is obtained at each node, thus completely removing all the spurious
oscillations that were present before. Hence, the truncation error due to the SU formulation
of the problem is zero, and is the optimal finite element approach for this case. Since the
instabilities have disappeared, this formulation is indeed a stabilization technique.

CHAPTER 3. STABILIZED FINITE ELEMENT METHODS FOR
CONVECTION-DIFFUSION PROBLEMS 29

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

T

SU FEM
Exact

Pe=5

Pe=0.5

Figure 3.2: Streamline-upwind (SU) finite element solution of the 1D steady transport prob-
lem with u= 1 and f = 1 for two different Péclet numbers. The exact solution is also shown
for comparison.

The upwind-type weighting function that has been obtained with the introduction of the
balancing diffusion has a numerical meaning that goes beyond the solution of the simple
model problem presented here. Actually, it was discovered in a finite difference context
that stable but overdiffusive solutions could be obtained by the use of upwind differenti-
ation of the convective term, i.e. approximating the convective derivatives with solution
values at the upstream and central nodes of a three-node stencil. However, it was by the
combination of central and upwind differences that the optimal (exactly nodal) solution was
obtained (consult [11] for more information). This is reflected in the form of the SU weight-
ing function, recall figure 3.1, where, although most of the weight is given to the upstream
element, some is still applied to the downstream one. What this means is that the need
for upwinding is an inherent property of the numerical discretization of the convective dif-
ferential operator, given by its mathematical nature, and has nothing to do with whether a
finite difference or a finite element approach is used. Moreover, its behavior is generalized
for multidimensional problems, steady or transient, and the same stabilization philosophy
has to be used for all cases.

3.2. Stabilization Techniques for Multidimensional
Problems

Due to the practical importance of obtaining stabilized formulations for problems in multiple
dimensions, the development of general optimal formulations has always been a matter of
research. Although a method that provides the exact nodal solutions in multidimensional
domains has not been achieved yet, the application of the concepts presented in the pre-

30 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

vious section to more complex problems has resulted in satisfactory results.

3.2.1. The General Streamline-Upwind Formulation

Convective transport is a physical process that takes place along the streamlines in the
flow field. Research studies repeatedly showed that the key for the extrapolation of the
SU stabilization to multidimensional problems is that the balancing diffusion has to be
added in the flow direction only, and not transversely (the so-called crosswind diffusion).
Although the concept of streamlines losses its meaning in 1D (there is only one possible
flow direction), this is where the streamline-upwind method takes its name from, being
based on the idea of adding diffusion along the streamlines only.

Since an exact solution for the general steady convection-diffusion equation (2.12) is not
available, an analysis like the one performed for the one-dimensional case is not possible.
Hence, focusing on the directional character of the convective term, and with the argu-
ments given in the previous paragraph, Hughes and Brooks (see [12, 13]) proposed to add
the artificial diffusion in a tensorial form that acts only in the flow direction. The resulting
SU weak formulation for the general problem is as follows

∫
Ω

{[
w+

k̄
V
(V ·∇w)

]
(V ·∇T)+∇w · (k∇T)

}
dΩ =

∫
Ω

w f dΩ+
∫

ΓN

wqn dΓ. (3.11)

Note that this equation has the same structure as the weak form for the 1D problem,
namely, equation (3.9). Actually, it is its exact extrapolation to multiple dimensions, i.e. (3.9)
can be obtained when particularizing (3.11) for a single dimension. As can be observed,
the introduced artificial diffusion is only affecting the convective term, and attending to its
structure, it modifies the weighting function just along the streamlines, as given by the term
V ·∇w. Similarly, now the velocity norm V (V = ||V||2) is used for computing the artificial
diffusivity k̄. Recalling that the modified weighting function is discontinuous at the element
boundaries, equation (3.11) is more conveniently expressed as

Galerkin terms︷ ︸︸ ︷∫
Ω

w(V ·∇T) dΩ+
∫

Ω

∇w · (k∇T) dΩ

+∑
e

∫
Ωe

k̄
V
(V ·∇w)(V ·∇T) dΩ︸ ︷︷ ︸

SU stabilization term

=
∫

Ω

w f dΩ+
∫

ΓN

wqn dΓ, (3.12)

which is the general weak form of the SU method. Hence, the SU formulation can be
interpreted as the standard formulation delivered by the Galerkin method plus an extra
term that comes from the addition of the balancing diffusion and that is the responsible of
stabilizing the solution, called the stabilization term.

Although the use of the SU finite element method in multiple dimensions leads to stable
results, it is by no means an exact method. It presents accuracy problems in the cases
where the velocity field and/or the source term are not uniform (the truncation error analy-
sis performed before assumed uniform conditions). However, it was discovered that such

CHAPTER 3. STABILIZED FINITE ELEMENT METHODS FOR
CONVECTION-DIFFUSION PROBLEMS 31

inaccuracies were due to the fact that modifying the weighting function only for the convec-
tive term produces a non-residual formulation, that is, that the solution of the weak form
(3.12) is no longer a solution of the original partial differential equation that governs the
problem, and thus the desired solution is not guaranteed.

In order to solve the accuracy problems that characterize the SU method, Hughes and
Brooks subsequently proposed (see [13]) that the modified weighting function should be
applied to all the terms in the governing equation. In this way, it is ensured that the solution
of the stabilized weak form is also a solution of the differential equation, producing what is
known as a consistent formulation, which is described in the next section.

3.2.2. The Streamline-Upwind Petrov-Galerkin Method

To achieve the objective of stabilizing the convective term in a consistent manner, that is, to
perform a consistent stabilization, a residual formulation has to be introduced. This means
weighting all the terms of the original weak formulation by using the SU weighting function.
The common practice to do this is to add an extra term to the Galerkin formulation, in a
similar form to (3.12), but acting on the residual of the governing partial differential equation
(2.12), which is defined for the steady case as

R(T) = V ·∇T − k∇
2T − f . (3.13)

With this, the consistent stabilized formulation for the SU method becomes

∫
Ω

w(V ·∇T) dΩ+
∫

Ω

∇w · (k∇T) dΩ

+∑
e

∫
Ωe

(V ·∇w)τ
(
V ·∇T − k∇

2T − f
)

dΩ =
∫

Ω

w f dΩ+
∫

ΓN

wqn dΓ, (3.14)

where τ = k̄/V is defined as the stabilization parameter (also called intrinsic time). Com-
paring this expression with (3.12), we see that now the stabilization term involves the resid-
ual (3.13), and that as a result the upwind-type weighting function is consistently applied to
all terms of the original equation. This formulation presented in equation (3.14), where the
weighting functions do not coincide with the interpolation functions (the shape functions),
is what is known as a Petrov-Galerkin formulation. For this reason, this stabilization tech-
nique that results from consistently stabilizing the original weighted residual formulation by
means of SU weighting functions is called the streamline-upwind Petrov-Galerkin (SUPG)
method. Since its development, it has been successfully applied in CFD. Refer to [20] and
[21] for pioneer implementations.

It is important to note that when linear elements are used to discretize equation (3.14),
the second-order operator found in the stabilization term vanishes (or is largely under-
represented), since it cannot be further integrated by parts to reduce the continuity re-
quirements. In such a case the SUPG stabilization term reduces to

∑
e

∫
Ωe

(V ·∇w)τ(V ·∇T − f) dΩ,

32 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

and thus the only difference with the SU formulation lies on the source term. This causes
a degradation in the consistency of the formulation since the diffusion term is not weighted
by the upwind-type function. As commented by Donea and Huerta in [3], this lack of
consistency leads to errors of the order of the stabilization parameter (O (τ)).

A part from adding the numerical diffusion in the correct way, i.e. along the flow direction,
it is also important to add the right amount of it. If not, both oscillatory or overdiffusive re-
sults can be obtained. The responsible for regulating the amount of numerical dissipation
that is added is the stabilization parameter τ, and hence it plays a key role in stabilization
techniques. Its form was exactly obtained for the case of 1D steady convection-diffusion
transport approximated with linear elements, as given by equation (3.5), but for higher spa-
tial dimensions an exact expression is not available. Different studies have been focused
on the obtention of a general and optimal definition for τ, but none has succeeded yet.
The most satisfactory results are based on algebraic analyses of the truncation error that
produce a definition of τ such as the one from Codina (refer to [16, 17])

τ =

(
2V
h

+
4k
h2

)−1

=
h

2V

(
1+

1
Pe

)−1

, (3.15)

which should be evaluated for each element in the mesh if the problem parameters are not
uniform. Its structure corroborates the fact that no stabilization is needed for a fine enough
mesh, i.e. the stabilization parameter vanishes when h is made very small.

Although along this section we have been focused on the steady convection-diffusion
equation, the usual extension of the SUPG stabilization technique to unsteady transport
problems is quite straightforward for the case of the Crank-Nicolson method. For the tran-
sient case the stabilization term is added to the left-hand side of the weak formulation of
equation (2.41), with the same structure as in (3.14) but taking into account that now the
residual will be different, namely, that of equation (2.41). The main difference is that the
stabilization parameter should be modified to account for the time stepping. Following the
analysis of Shakib et al. [18] (see also [19]), Codina’s formulation (3.15) adapted for the
Crank-Nicolson scheme becomes

τ =

(
2
∆t

+
2V
h

+
4k
h2

)−1

, (3.16)

which also tends to zero as ∆t is made small. Despite this approach is the one that is com-
monly adopted, the idea of using upwind-type weighting functions that additionally account
for the time discretization has also been studied, leading to good results. A presentation
of this concept is given by Tezduyar and Ganjoo in [22].

3.2.3. The Sub-Grid Scale Method

Moved by the motivation of obtaining a better understanding of the theoretical foundations
of stabilization methods, some research studies (see for instance [14] and [15]) showed
that the origins of stabilization techniques emanate from a particular class of what is known
as sub-grid scale models. These can be viewed as methods for dealing with the multiscale
phenomena that characterizes many physical problems, including fluid dynamics. They are
based on the idea that standard finite element approximations such as the Galerkin method

CHAPTER 3. STABILIZED FINITE ELEMENT METHODS FOR
CONVECTION-DIFFUSION PROBLEMS 33

can only numerically resolve the coarse-scale aspects of these problems, and that as a
consequence they need a means of incorporating the effects of the unresolvable scales
in order to be able to produce accurate and stable results. Otherwise, their solutions may
lead to non-physical (unstable) states, producing the already known spurious oscillations.

Attending to this philosophy, the sub-grid scale (SGS) method rests upon the additive
decomposition of the solution variable T on a coarse scale component, T̄ , which can be
resolved numerically by the considered finite element mesh (and hence T̄ = T h), and
a fine-scale component (also called sub-grid scale or subscale), T ′, which is modeled
analytically, that is

T = T h +T ′, (3.17)

where it can be observed that the fine-scale actually represents the error (T −T h) made
by the finite element approximation. In the same way, the weighting function is split as
w = wh +w′. With these considerations, the original weak form of the problem, namely
equation (2.4), can be equivalently expressed for the steady case by the following two
statements

∫
Ω

wh
(

V ·∇T h
)

dΩ+
∫

Ω

∇wh ·
(

k∇T h
)

dΩ

+
∫

Ω

wh (V ·∇T ′
)

dΩ+
∫

Ω

∇wh ·
(
k∇T ′

)
dΩ =

∫
Ω

wh f dΩ+
∫

ΓN

whqn dΓ, (3.18)

completed by

∫
Ω

w′
(

V ·∇T h
)

dΩ+
∫

Ω

∇w′ ·
(

k∇T h
)

dΩ

+
∫

Ω

w′
(
V ·∇T ′

)
dΩ+

∫
Ω

∇w′ ·
(
k∇T ′

)
dΩ =

∫
Ω

w′ f dΩ+
∫

ΓN

w′qn dΓ, (3.19)

where the first problem governs the resolvable scales and the second one the sub-grid
scale.

Then, as noted above, the objective is to solve problem (3.19) analytically for T ′, which
can be then substituted into (3.18) to obtain a finite element equation for T h. Among
the different ways in which this can be done (refer to the work of Hughes et al. [15] for
a general presentation), here we will consider the simplest one, known as the algebraic
sub-grid scale (ASGS) approach, which consists on modeling T ′ as

T ′ =−τ R
(

T h
)
=−τ

(
V ·∇T h− k∇

2T h− f
)
, (3.20)

that is, as a function of the residual of the approximation T h scaled by the stabilization
parameter (with the same form exposed in the previous section). As can be noticed, the
model provided by equation (3.20) does not make any consideration to the boundary con-
ditions. The reason is that it is standard in the SGS method to impose T ′ = 0 along the
finite element edges, in order to localize the sub-grid scale problem in the element interiors
only.

34 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

In view of the above assumptions, and substituting expression (3.20) into equation (3.18),
the terms for the unresolvable scales become

∫
Ω

wh (V ·∇T ′
)

dΩ+
∫

Ω

∇wh ·
(
k∇T ′

)
dΩ

= ∑
e

∫
Ωe

[
V ·∇wh +∇wh · (k∇)

]
τ

(
V ·∇T h− k∇

2T h− f
)

dΩ, (3.21)

where the convective term inside the brackets has been integrated by parts to reduce the
continuity requirements, with the resulting boundary integral being neglected due to the
restriction of definition (3.20) to element interiors Ωe. With this, the weak form of the finite
element approximation that accounts for the fine-scale behavior reads

∫
Ω

wh
(

V ·∇T h
)

dΩ+
∫

Ω

∇wh ·
(

k∇T h
)

dΩ−
∫

Ω

wh f dΩ−
∫

ΓN

whqn dΓ

+∑
e

∫
Ωe

V ·∇wh︸ ︷︷ ︸
SUPG

+∇wh · (k∇)

τ

(
V ·∇T h− k∇

2T h− f
)

dΩ

︸ ︷︷ ︸
ASGS stabilization term

= 0. (3.22)

We see that equation (3.22) has the same structure as that resulting from the SUPG tech-
nique (3.14), i.e. it is the original weak formulation plus an added term that operates
over the residual of the governing equation, labeled here as the ASGS stabilization term.
This expression is the result from adding the effect of the sub-grid scales to the stan-
dard (Galerkin) finite element formulation of the problem, and, as can be observed, for the
model chosen in (3.20) such effect is added in the form of a consistent stabilization term.

An important particular case is once again that of linear finite elements, where, analyzing
equation (3.22), we can notice that the term ∇wh · (k∇)τ

(
V ·∇T h− k∇2T h− f

)
would

vanish, producing the classical SUPG formulation. Hence, we conclude that SUPG is
ASGS particularized for linear elements.

More details on the SGS stabilization of the steady convection-diffusion equation can be
found in the work of Codina [17]. Regarding the unsteady transport case, different SGS
techniques can be derived. In a lot of situations it is assumed that the sub-grid scales
are static, i.e. ∂T ′/∂t = 0, allowing a direct extension of the formulation presented in this
section, and maintaining the same structure as the SUPG method for linear elements. On
other cases, the transients of the fine-scale components are considered, leading in the
ASGS approach to weighting functions that take into account the time step size ∆t and
that, as a result, produce better solutions than the SUPG method. The reader is referred
to [3] for the details.

CHAPTER 4. A NEW MIXED FINITE ELEMENT
FORMULATION FOR CONVECTION-DIFFUSION

PROBLEMS

4.1. Motivation

In the majority of situations, fluid dynamics problems are characterized by the presence
of rapid changes of the flow properties that occur in small regions of space, specially
near solid surfaces. Common examples that illustrate this are boundary layers, stagnation
points, the flow acceleration or deceleration around aerodynamic shapes like airfoils, or
even shock waves in the case of supersonic flows. These are the places where the most
important physical phenomena take place, and having the right tools for their analysis is
key for the understanding of fluid motion.

Mathematically, such rapid changes are traduced in strong gradients that affect the primi-
tive variables of the problem, and their accurate numerical representation is very important
in CFD. For a given numerical technique, which is defined by an inherent truncation error,
the most direct way of increasing the numerical precision in the desired regions of space
is to locally refine the mesh. However, in order to take all the advantage from this process,
the considered numerical method has to properly account for the local discretization of
these gradients. Restricting ourselves to a finite element context, this is not the case at all
for linear elements.

When standard convergence analyses are performed for the finite element method (see
for example [5]), the results show that the convergence rate for an unknown function T in-
terpolated with a polynomial of degree p is of order O

(
hp+1), with h being a characteristic

mesh size. In the same way, the mth derivative of T should converge with an error of order
O
(
hp+1−m).

Focusing on the finite element discretization of the convection-diffusion equation that has
been exposed in the previous two chapters, that is, equation (1.11) approximated with
linear elements, we find in view of the previous argument that the convergence rate of our
solution is of order O

(
h2) for the unknown variable T , and of order O (h) for the gradient

∇T . In other words, that means for example that for a halving of the mesh size h, the error
in T is reduced by 1/4, and for ∇T by 1/2. However, it must be recalled that since the
finite element method is based on a weak integral formulation of the problem, i.e. the weak
form produced by the weighting of the residual, these orders refer to the average (global)
error of the solution, and that as a consequence there is no guarantee that the nodal (local)
errors would also satisfy such convergence rates. This implies that when linear elements
are used, the local error in the gradient can no longer be controlled by the mesh size h, that
is, it is reduced to the order O (1), producing inaccurate results specially in those zones
where the local gradients are sharp or singular, such as at the stagnation points on the
leading and trailing edges of an airfoil.

Although the choice of higher-order elements could solve this problem, the practical in-
terest in using linear elements has motivated the development of a new formulation for
circumventing such deficiencies. The idea has been proposed by Dr. Riccardo Rossi

35

36 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

(originally presented in [24]), a researcher from the International Center for Numerical
Methods in Engineering (CIMNE). It consists on introducing an auxiliary variable, defined
as the gradient of the transported quantity (∇T), to produce a mixed formulation in which
∇T is computed with the same convergence rate as T , namely, O

(
h2). This approach will

be made clear in the next section, where the formulation is presented.

4.2. Convection-Diffusion in Mixed Form

4.2.1. Original Formulation

Considering the general scalar convection diffusion problem (1.11), repeated here for con-
venience

∂T
∂t

+V ·∇T − k∇
2T = f ,

Rossi’s proposal is to introduce the new vector variable q=∇T and to express the problem
in terms of both T and q, thus extending it to a system of equations. Then, substituting for
q on the original equation we obtain

∂T
∂t

+V ·q− k∇ ·q = f (4.1)

completed by

∇T −q = 0. (4.2)

Equations (4.1) and (4.2) constitute what is known as a mixed formulation, i.e. a multiple
equation problem where the number of dependent unknowns can be reduced by suitable
algebraic operations, still leaving a solvable problem (refer to [5] for a general presenta-
tion). It is important to notice that the second equation (4.2) of the system is a vector
equation, so the system size varies with the number of spatial dimensions considered.
This means that the solution of the problem in mixed form involves dealing with a larger
number of unknowns which, obviously, increases the computational cost of the numerical
solution. However, such an increase has found to be very reasonable and numerical tests
demonstrate that it is not an issue for conventional convection-diffusion problems.

When both equations that constitute the system are enforced weakly, taking into account
that the weighting function for each unknown variable can be different, the weak form of
the problem becomes

∫
Ω

w
(

∂T
∂t

+V ·q− k∇ ·q
)

dΩ =
∫

Ω

w f dΩ∫
Ω

ψ(∇T −q) dΩ = 0,
(4.3)

where w is a test function for the space in which T lives, and ψ is a multidimensional
test function for the space in which q is defined. It shall be noted that now the continuity

CHAPTER 4. A NEW MIXED FINITE ELEMENT FORMULATION FOR
CONVECTION-DIFFUSION PROBLEMS 37

requirements have been reduced, and hence there is no need of integrating by parts the
diffusion term unless natural boundary conditions should be accounted for.

Observing the weak system (4.3), we can expect the convergence rates of both T and q to
be the same and of order O

(
h2) for linear elements. Attending to the arguments exposed

in the previous section, we see that by means of the mixed form (4.3) we have introduced
a control over the local convergence of the gradient (the local gradient error is now of order
O (h)), that is, we now have a guarantee that the local gradients would convergence to
what they should. On the other hand, it has to be noted that for the Laplacian, which now
becomes ∇ ·q, such local control is still not achieved. Despite its global convergence rate
has increased one order, i.e. from O (1) in the classical formulation to O (h) in the mixed
form, the local error remains on O (1). Nevertheless, the interest of this new approach is
not on the Laplacian but on increasing the accuracy with which the gradient is calculated,
as justified in the previous section.

While the previous weak form could be directly discretized, the resulting formulation is not
stable, not only when convective effects are important, but in diffusion-dominated problems
too. The reason is that mixed formulations have extra numerical difficulties that may lead to
additional stability problems (refer to [5] for a general discussion), and for this case stabi-
lization is always needed. To stabilize it Rossi proposes to use the algebraic sub-grid scale
(ASGS) approach, described in section 3.2.3., with static subscales, which corresponds to
assuming that

T = T h +T ′ with T ′ = τT

(
f − ∂T h

∂t
−V ·qh + k∇ ·qh

)
(4.4)

and

q = qh +q′ with q′ = τq

(
∇T h−qh

)
, (4.5)

with τT and τq being the respective stabilization parameters. Basing on an algebraic anal-
ysis, Rossi considers using expression (3.15) for τT and a constant value for τq (he rec-
ommends using τq = 0.1). With these models, the stabilized weak problem can be written
as

∫
Ω

wh
(

∂T h

∂t
+V ·qh− k∇ ·qh

)
dΩ+∑

e

∫
Ωe

wh V ·
[
τq

(
∇T h−qh

)]
dΩ

+∑
e

∫
Ωe

∇wh ·
[
kτq

(
∇T h−qh

)]
dΩ =

∫
Ω

wh f dΩ

∫
Ω

ψ
h
(

∇T h−qh
)

dΩ+∑
e

∫
Ωe

∇ψ
h

τT

(
∂T h

∂t
+V ·qh− k∇ ·qh− f

)
dΩ

−∑
e

∫
Ωe

ψ
h

τq

(
∇T h−qh

)
dΩ = 0,

(4.6)

where the second stabilization term of the first equation and the first stabilization term of
the second equation have been consistently integrated by parts under the assumption that
subscales are zero on the element boundaries. Analyzing these expressions, we realize
that only first derivatives appear. As a result, no terms would vanish when approximating

38 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

T

ASGS Mixed FEM Original
Exact

Pe=5

Pe=0.5

Figure 4.1: ASGS mixed finite element (original formulation) solution of the 1D steady
transport problem with u= 1 and f = 1 for two different Péclet numbers. The exact solution
is also shown for comparison.

the problem with linear finite elements, thus preserving the consistency of the stabilization.
This is indeed another advantage of the mixed formulation.

Equation (4.6) is the weak form of the problem that is ready for the finite element imple-
mentation. For testing its performance, the usual model example has been considered,
that is, the solution of the one-dimensional steady convection-diffusion equation. The re-
sults using the same configuration of the parameters as in chapters 2 and 3, and a value
of τq = 0.1, are displayed in figure 4.1. As can be observed, the formulation fails to provide
stable results, even in the case of Pe = 0.5 some small oscillations are encountered. In
fact, numerical experiments we have carried out show that they are present for all values
of the Péclet number, becoming more severe as the convective effects are progressively
increased but approaching an asymptotic amplitude for values of approximately Pe > 10.
Moreover, they extend over the entire mesh with the same amplitude, not growing as they
approach to the boundary layer. This induces us to think that the oscillations obtained in
this case are of different nature than the classical spurious oscillations that characterize
the Galerkin formulation (recall figure 2.4). Although we have not been able to identify
their source, we think that due to their dependence with convective effects for relatively
low values of Pe they should be related with the mixed formulation of the convective term.

4.2.2. Modified Formulation

In view of the of the results obtained in the previous section for the original formulation,
Rossi proposed modifying it by leaving the convective term as in the original governing
equation, that is

CHAPTER 4. A NEW MIXED FINITE ELEMENT FORMULATION FOR
CONVECTION-DIFFUSION PROBLEMS 39

∂T
∂t

+V ·∇T − k∇ ·q = f

∇T −q = 0.
(4.7)

Then, proceeding in the same way as before, the stabilized weak form for the modified
mixed problem becomes

∫
Ω

wh
(

∂T h

∂t
+V ·∇T h− k∇ ·qh

)
dΩ+∑

e

∫
Ωe

∇wh ·
[
kτq

(
∇T h−qh

)]
dΩ

+∑
e

∫
Ωe

(
V ·∇wh

)
τT

(
∂T h

∂t
+V ·∇T h− k∇ ·qh− f

)
dΩ︸ ︷︷ ︸

SUPG stabilization term

=
∫

Ω

wh f dΩ

∫
Ω

ψ
h
(

∇T h−qh
)

dΩ+∑
e

∫
Ωe

∇ψ
h

τT

(
∂T h

∂t
+V ·∇T h− k∇ ·qh− f

)
dΩ

−∑
e

∫
Ωe

ψ
h

τq

(
∇T h−qh

)
dΩ = 0,

(4.8)

where now both stabilization terms of the first equation have been integrated by parts. Ob-
serving the system (4.8) we see that an important difference with the original formulation
has arisen, namely, that one of the terms of the first equation has the structure of the SUPG
stabilization term. Although the stabilization technique applied in the original formulation
and in this modified case is the same, i.e. the ASGS method, the change in the convection
term of the mixed form (4.7) produces a streamline-upwind consistent stabilization term
that was not encountered before.

This difference has indeed an important impact on the performance of the mixed formula-
tion, as illustrated in figure 4.2, where once again the results for the 1D model transport
problem are presented. Note that with the modification made on the convective term the in-
stability problems have disappeared, with only residual oscillations remaining concentrated
near the boundary layer for the case of Pe = 5. This is standard in convection-dominated
problems and is an indicator that they have been correctly stabilized (see [3] for more
examples). Thus we see that now the mixed formulation is working well, and further nu-
merical tests for higher values of the Péclet number also corroborate these results. Then,
it is now clearer that the stability problems of the original formulation are due to the con-
vective term being written in terms of the auxiliary variable q, even though we have not
managed to obtain a theoretical explanation for this phenomenon.

The system (4.8) provides a weak formulation for the mixed problem that can be imple-
mented with linear finite elements to obtain good results in general transport problems.
However, this modification of the original method has an important drawback in terms of
the advantages exposed previously. By leaving the convective term as in the original gov-
erning equation, that is, as V ·∇T , we are introducing a gradient of the unknown variable in
the first equation of the system. This, recalling the error concepts described before, causes
the convergence rate of ∇T to decrease to the order O (h), and hence eliminates the main
advantage of using the mixed formulation in convection-diffusion problems. Despite this,
for the case of pure diffusion problems the formulation still preserves the increased con-
vergence rate, and hence it is expected to provide higher accuracy for the calculation of

40 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

T

ASGS Mixed FEM Modified
Exact

Pe=5

Pe=0.5

Figure 4.2: ASGS mixed finite element (modified formulation) solution of the 1D steady
transport problem with u= 1 and f = 1 for two different Péclet numbers. The exact solution
is also shown for comparison.

the gradients in such cases. In order to validate this argument, a pure diffusion problem is
presented in the next section.

4.3. A Pure Diffusion Case: Incompressible Potential
Flow

With the purpose of demonstrating the advantages of using the modified mixed formu-
lation in pure diffusion situations, we have considered solving a two-dimensional steady
pure diffusion problem. Focusing on a CFD context, there is a particular case in which
the governing equations of fluid dynamics reduce to a pure diffusion model, namely, that
of irrotational incompressible flow. The author has applied the formulation proposed by
Dr. Rossi to this problem and has derived, implemented and validated the resulting finite
element solution. The process is described next.

As detailed in any introductory fluid dynamics book (see for example [2]), an irrotational
flow is the one that has no vorticity, i.e. that satisfies the condition ∇×V = 0. Then,
recalling the vector identity which states that the curl of the gradient of a scalar function φ

is identically zero, that is, ∇× (∇φ) = 0, we see that

V = ∇φ, (4.9)

which means that for an irrotational flow there exists a scalar function φ, known as the
velocity potential, such that the flow velocity is given by the gradient of φ. Moreover, we

CHAPTER 4. A NEW MIXED FINITE ELEMENT FORMULATION FOR
CONVECTION-DIFFUSION PROBLEMS 41

saw in chapter 1 that the continuity equation for an incompressible flow (equation (1.3))
takes the form of the incompressibility constraint, expressed as ∇ ·V = 0. Combining
this condition with equation (4.9), we have that for a flow that is both incompressible and
irrotational ∇ · (∇φ) = 0, better expressed as

∇
2
φ = 0. (4.10)

Equation (4.10) is the governing equation for incompressible irrotational flow, commonly
known as incompressible potential flow, or simply potential flow. It is called Laplace’s
equation, and is one of the most famous and extensively studied equations in mathematical
physics, containing numerous analytical solutions available.

Comparing equation (4.10) with the general convection-diffusion equation (1.11), we see
that the governing equation for incompressible potential flow is the scalar convection-
diffusion equation particularized for steady pure diffusive transport (no convection) with
k = 1, f = 0, and the velocity potential φ as the transported quantity. Hence, we see that
incompressible potential flow is a suitable pure diffusion model. Moreover, since analytical
solutions exist in some cases, it becomes an excellent problem for testing the modified
mixed formulation.

Taking into account the standard notation used for potential flow problems, we now will use
φ instead of T for denoting the transported quantity, and V instead of q for denoting the
gradient of the transported quantity. With these considerations, the mixed formulation of
the potential flow problem can be written as

∇ ·V = 0
∇φ−V = 0.

(4.11)

It has to be noted that although the velocity V appearing in the system is the fluid velocity,
with its components defined as in (1.7), now it is not acting as a convection velocity, and
the velocity potential is only being transported by a diffusion process.

Except in rare cases, for a flow to be irrotational it also has to be inviscid. The boundary
condition for any inviscid flow is the flow tangency condition, namely, that the flow has to
be always parallel to the wall. The mathematical way of stating this is to impose that the
component of the velocity normal to the body surface must be zero, that is, V ·n = 0, with
n being the unit vector normal to the surface. Then, since V = ∇φ, we see that this is a
Neumann-type boundary condition, which can be expressed as

V ·n =Vn = 0 on ΓN . (4.12)

Taking this into account, the weak formulation of the mixed problem reads

∫
Ω

∇w ·V dΩ = 0∫
Ω

ψ(∇φ−V) dΩ = 0,
(4.13)

where the first equation has been integrated by parts in order to introduce the natural
boundary condition (4.12), with Vn = 0 being imposed on the resulting boundary integral.

42 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

Using once again the ASGS method (as described in section 3.2.3.) for stabilizing the
inherently unstable mixed form, the stabilized weak formulation of the problem becomes

∫
Ω

∇wh ·Vh dΩ+∑
e

∫
Ωe

∇wh ·
[
τV

(
∇φ

h−Vh
)]

dΩ = 0∫
Ω

ψ
h
(

∇φ
h−Vh

)
dΩ

−∑
e

∫
Ωe

∇ψ
h

τφ

(
∇ ·Vh

)
dΩ−∑

e

∫
Ωe

ψ
h

τV

(
∇φ

h−Vh
)

dΩ = 0,

(4.14)

where τV and τφ are the respective nomenclature modifications of τq and τT , which con-
tinue being computed as described in the previous section. Note that the first stabilization
term of the second equation has been integrated by parts in the usual way. The system
of equations (4.14) gives the weak form of the incompressible potential flow problem in
mixed form suitable for a finite element implementation. As the governing equation for in-
compressible potential flow is a particular case of the general convection-diffusion model,
(4.14) can be obtained directly from (4.8), with the corresponding nomenclature changes.

The next step towards the numerical solution of the problem is to perform the finite element
spatial discretization. To do so, we follow the steps described in sections 2.3. and 2.4..
As discussed before, our interest is on using linear elements, so we choose to use the
previously described linear triangular elements for the 2D potential flow problem. Writing
expression (4.14) for a given element, and noting that τV is a constant, we find the following
compact form of the approximated problem

(1− τV)
∫

Ωe

∇wh ·Vh
e dΩ+ τV

∫
Ωe

∇wh ·∇φ
h
e dΩ = 0

(1− τV)
∫

Ωe

ψ
h
(

∇φ
h
e−Vh

e

)
dΩ−

∫
Ωe

∇ψ
h

τφ

(
∇ ·Vh

e

)
dΩ = 0.

(4.15)

At this point, to be able to express the discrete problem in a convenient matrix form we first
need to expand the system. For two dimensions we will have three equations with three
different unknowns, namely, the velocity potential φh

e and the velocity components uh
e and

vh
e . Thus the system expands as

τV

∫
Ωe

∇wh ·∇φ
h
e dΩ+(1− τV)

∫
Ωe

∂wh

∂x
uh

e dΩ+(1− τV)
∫

Ωe

∂wh

∂y
vh

e dΩ = 0 (4.16a)

(1− τV)
∫

Ωe

ψ
h
u

∂φh
e

∂x
dΩ+(τV −1)

∫
Ωe

ψ
h
uuh

e dΩ

−
∫

Ωe

∂ψh
u

∂x
τφ

∂uh
e

∂x
dΩ−

∫
Ωe

∂ψh
u

∂x
τφ

∂vh
e

∂y
dΩ = 0

(4.16b)

(1− τV)
∫

Ωe

ψ
h
v

∂φh
e

∂y
dΩ+(τV −1)

∫
Ωe

ψ
h
vvh

e dΩ

−
∫

Ωe

∂ψh
v

∂y
τφ

∂uh
e

∂x
dΩ−

∫
Ωe

∂ψh
v

∂y
τφ

∂vh
e

∂y
dΩ = 0,

(4.16c)

where ψh
u and ψh

v are, respectively, the tests functions for the x and y velocity components.

CHAPTER 4. A NEW MIXED FINITE ELEMENT FORMULATION FOR
CONVECTION-DIFFUSION PROBLEMS 43

We see that we have an equation for each one of the three unknowns, namely, equation
(4.16a) for φh

e , (4.16b) for uh
e and (4.16c) for vh

e .

Attending to the approximation of the unknowns, the same shape functions have been
chosen for interpolating each one of them inside the element domain. As commented
previously, they are the shape functions for the linear triangular element, whose expres-
sions were given in section 2.3.1. Defining the element nodal unknowns vectors as φe =[
φe

1,φ
e
2,φ

e
3
]T

, ue =
[
ue

1,u
e
2,u

e
3
]T

and ve =
[
ve

1,v
e
2,v

e
3
]T

, the shape functions vector Ne for
each unknown as in (2.15) and the shape functions gradient matrix ∇Ne for each unknown
as in (2.18), the system (4.16) can be expressed by the following equivalent block matrix
form 

Ke
φφ

... Ke
φu

... Ke
φv

.

Ke
uφ

... Ke
uu

... Ke
uv

.

Ke
vφ

... Ke
vu

... Ke
vv


︸ ︷︷ ︸

Ke


φe

ue

ve


︸ ︷︷ ︸

ae

= 0, (4.17)

with each block of Ke being a 3× 3 matrix with two subindexes. The first subindex indi-
cates the row of the block, that is, the equation to which it belongs. The second subindex
indicates the column, telling us the unknown variable to which the block corresponds. For
example Ke

φu refers to the term that contains uh
e in the equation for φh

e , and so on. Attending
to this convention, the block matrices are given by

Ke
φφ = τV

∫
Ωe

[∇Ne]T ∇Ne dΩ

Ke
uu = (τV −1)

∫
Ωe

[Ne]T Ne dΩ−
∫

Ωe

∂ [Ne]T

∂x
τφ

∂Ne

∂x
dΩ

Ke
vv = (τV −1)

∫
Ωe

[Ne]T Ne dΩ−
∫

Ωe

∂ [Ne]T

∂y
τφ

∂Ne

∂y
dΩ

Ke
φu = (1− τV)

∫
Ωe

∂ [Ne]T

∂x
Ne dΩ Ke

φv = (1− τV)
∫

Ωe

∂ [Ne]T

∂y
Ne dΩ

Ke
uφ = (1− τV)

∫
Ωe

[Ne]T
∂Ne

∂x
dΩ Ke

uv =−
∫

Ωe

∂ [Ne]T

∂x
τφ

∂Ne

∂y
dΩ

Ke
vφ = (1− τV)

∫
Ωe

[Ne]T
∂Ne

∂y
dΩ Ke

vu =−
∫

Ωe

∂ [Ne]T

∂y
τφ

∂Ne

∂x
dΩ.

(4.18)

With this there is only one thing remaining to complete the formulation of the problem,
namely, to account for the Dirichlet boundary conditions. Proceeding as in section 2.4.1.,
we define the element Dirichlet vector for each variable as φe

D =
[
φe

D1,φ
e
D2,φ

e
D3
]T

, ue
D =[

ue
D1,u

e
D2,u

e
D3
]T

and ve
D =

[
ve

D1,v
e
D2,v

e
D3
]T

, which can be grouped on a general vector ae
D

(in the same way as ae in equation (4.17)) to obtain

Keae =−Keae
D. (4.19)

44 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

The system of equations (4.19), when assembled in the usual way, gives the complete dis-
crete form of the mixed finite element formulation for the two-dimensional incompressible
potential flow problem.

In order to achieve our objective we need to compare the solution of the mixed problem
with the one delivered by the classical formulation, also known as the irreductible form. The
discretization of the irreductible problem can be found by the appropriate particularization
of expression (2.24). Noting that now Ce = 0, fe = 0, k = 1 and that Te is replaced by
φe, the elemental system of equations that governs the finite element discretization of the
irreductible form becomes

Ke
irrφ

e =−Ke
irrφ

e
D with Ke

irr =
∫

Ωe

[∇Ne]T ∇Ne dΩ, (4.20)

where the subscript irr (denoting irreductible) has been added to the diffusion matrix to
differentiate it against the block matrix Ke of the mixed form.

Comparing both systems, (4.19) and (4.20), we see that for this 2D problem the mixed
formulation requires solving a system that is three times larger than the irreductible one.
However, in the process the mixed form also solves for the velocity, which in the irreductible
case has to be computed as a postprocess to the global solution, where only the velocity
potential is obtained. This can be viewed as another advantage of the mixed approach if
the gradients of the transported quantity are of interest, which is usually the case.

For calculating the velocity with the classical formulation, a simple method has been con-
sidered. Once (4.20) is assembled and solved, the velocity potential is obtained at each
mesh node. This allows its gradient, i.e. the velocity, to be approximated in each element
by means of the shape functions as (recall equation (2.10)) ∇φe (x,y) =∑

n
j=1 ∇Ne

j (x,y)φe
j.

However, a given node i is usually shared by various elements, depending on the mesh
and element shape, and then the actual gradient at the node has to be calculated as an
average of the nodal gradient computed in each element, that is,

Vi =
1

nneigh

nneigh

∑
e=1

∇ φ
e|i , (4.21)

where Vi is the velocity at the considered node and nneigh denotes the number of ele-
ments that share node i, called neighbors. In this expression a simple arithmetic average
has been taken. Although an area weighted average should improve the accuracy of the
method, the numerical results obtained in our case show that the difference is very small.

We now have all the necessary ingredients to obtain the solution of the problem and com-
pare both formulations. Two different geometries have been tested, namely, a circular
cylinder and a symmetric airfoil (model NACA 0012 [26]) at zero degrees of angle of attack
(see [25] for more examples). The exact solution is only available for the cylinder geometry
(consult reference [2] for the details), so we have focused primarily on the validation of such
case. Both problems have been implemented and solved by using the multiphysics finite
element software Kratos (refer to the introduction of this document for more information).
The author source codes can be found in appendix A.

The solution of the incompressible potential flow past a circular cylinder is a well known
problem characterized by the presence of strong velocity gradients at the cylinder surface.
The important points to consider are shown in figure 4.3. Points 1 and 3 are stagnation

CHAPTER 4. A NEW MIXED FINITE ELEMENT FORMULATION FOR
CONVECTION-DIFFUSION PROBLEMS 45

Figure 4.3: Circular cylinder in a freestream. The stagnation and maximum velocity points
are identified with numbers, with the corresponding theoretical values of maximum velocity.
The cylindrical coordinate θ is also shown.

points, hence, velocity is theoretically zero on them. On the contrary, points 2 and 4 are
where the maximum velocity is encountered, which, as exposed in the figure corresponds
to a value of Vmax = 2V∞, with V∞ being the freestream velocity. The geometry that has
been chosen for the validation test can be seen in figure 4.4. We have considered a circular
cylinder of unit radius inside a rectangular domain, with the boundaries chosen enough far
away to ensure that they do not interfere with the velocity distribution around the cylinder.
As can be observed, a mesh of linear triangular elements is used to discretize the compu-
tational domain, with a light refinement near the surface of the cylinder for a proper capture
of the desired physics. It has been obtained by means of a pre and postprocessing soft-
ware called GiD, also developed by CIMNE (refer to [29] for further information). In order
to produce a freestream, the velocity potential is prescribed on the inlet and outlet bound-
aries of the domain using the results provided by the exact solution. For simplification, a
dimensionless freestream velocity of V∞ = 1 is used.

−30 −20 −10 0 10 20 30
−20

−15

−10

−5

0

5

10

15

20
Velocity Potential (Mixed Formulation)

x

y

−30

−20

−10

0

10

20

30

Figure 4.4: Meshed computational domain for the incompressible potential flow problem
over a circular cylinder. Colors show the velocity potential solution obtained with the mixed
formulation.

46 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Velocity Norm (Classical Formulation)

x

y

0.4

0.6

0.8

1

1.2

1.4

1.6

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Velocity Norm (Mixed Formulation)

x

y

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 4.5: Magnitude of the velocity field in the region next to the cylinder surface as
obtained by the classical (left) and the mixed (right) finite element solutions. The average
value inside each element is represented.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

θ

V
el

oc
ity

 n
or

m

Exact
Mixed FEM
Classical FEM

(a)

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

θ

A
bs

ol
ut

e
er

ro
r

in
 v

el
oc

ity

Mixed FEM
Classical FEM

(b)

Figure 4.6: Comparison of the velocity distribution along the cylinder surface (left) and its
absolute error (right) against the exact solution for both formulations.

With these conditions, the mixed form produces the velocity potential distribution displayed
in figure 4.4. Observe that a very smooth and highly linear field is obtained and that sym-
metry is present due to the geometry of the problem. Although the disturbances produced
by the cylinder are inappreciable, they indeed cause intense velocity gradients. In fact,
attending to the velocity results, which are illustrated in figure 4.5 for the region of interest
(that is, near the cylinder surface), we see that both the irreductible and the mixed formula-
tions deliver very similar velocity fields. It can be easily noticed that the results agree with
the theoretical values expected, approximating to 0 at the stagnation points and to 2 at the
maximum velocity points. However, it must be emphasized that for the mixed formulation
the values at those key points are closer to the theoretical ones. This is reflected much
better in figure 4.6(a), where the numerical velocity distributions along the cylinder surface
are compared against the exact one. The θ coordinate on the x-axis defines the angular
position along the cylinder surface as represented in figure 4.3. Hence, point 1 is located
at θ = 0, point 2 at θ = π/2, etc. Note how the mixed solution approximates the exact dis-
tribution much better than the classical (irreductible) one. Actually, looking at figure 4.6(b)
we find that the absolute error for the mixed form is smaller than the one for the classical

CHAPTER 4. A NEW MIXED FINITE ELEMENT FORMULATION FOR
CONVECTION-DIFFUSION PROBLEMS 47

form at all points along the cylinder surface, being approximately an order of magnitude
smaller. Moreover, the largest differences in the error are encountered at θ = 0, π/2 and
3π/2, which respectively correspond to the location of the right stagnation point (where
there is a mesh point) and the upper and lower maximum velocity points. This is not the
case for the left stagnation point simply because as can be observed in figure 4.5 there
is not a mesh point as closer as in the other cases, but it is not an exception as can be
shown by using a finer mesh.

In view of the results already described, we can conclude that for this problem the mixed
formulation succeeds on improving the accuracy with which the transported quantity gra-
dients are computed, specially at those points where they are stronger. This corroborates
the arguments given in the previous section regarding the improvements that should be
expected when using the mixed approach in pure diffusion problems.

To finish with, we will present the solution for the other geometry we have considered
testing, namely, a NACA 0012 airfoil of unit chord oriented parallel to the freestream (no
angle of attack). The airfoil shape can be viewed in figure 4.7, which represents only a
portion of the complete domain that has been used in the calculations, whose dimensions
are x = [−10, 11] and y = [−5, 5]. As can be noticed, the mesh has been considerably
refined on the airfoil surface. This is because this geometry is more streamlined than the
circular cylinder and obtaining a good level of accuracy demands smaller elements. In this
case we do not have an exact analytical solution for comparison. However, since the airfoil
has no angle of attack, we know that there will be two stagnation points located exactly
at the airfoil’s leading and trailing edges, which by looking at the figure are found to be
located respectively at points (0, 0) and (1, 0).

The Dirichlet conditions on the velocity potential have been chosen to produce a dimen-
sionless freestream velocity of 50. Figure 4.7 illustrates the velocity magnitude obtained
with the mixed form at and near the airfoil surface. At the leading edge stagnation point
a very small value is obtained, as expected, but at the trailing edge the resulting velocity
value is inaccurate. This issue is also obtained with the classical formulation and is not a
deficiency of the mixed approach. It is due to the fact that the trailing edge of the airfoil ge-
ometry is a singular point, and thus its discretization requires a special treatment in order
to achieve accurate results, which has not been taken into account for our purposes. How-

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

−0.1

0

0.1

0.2

0.3

x

Velocity Norm (Mixed Formulation)

y

5

10

15

20

25

30

35

40

45

50

55

Figure 4.7: Magnitude of the velocity field in the region near the airfoil surface obtained
with the mixed finite element formulation.

48 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

−0.02 −0.01 0 0.01 0.02

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

X: 3.783e−012
Y: 7.859e−008
Z: 1.183

x

Velocity Norm (Classical Formulation)

y

5

10

15

20

25

30

35

40

45

50

55

−0.02 −0.01 0 0.01 0.02

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

X: 3.783e−012
Y: 7.859e−008
Z: 0.1601

x

Velocity Norm (Mixed Formulation)

y

5

10

15

20

25

30

35

40

45

50

55

Figure 4.8: Magnitude of the velocity field at the airfoil’s leading edge stagnation point cal-
culated with the classical (left) and the mixed (right) finite element methods. The numerical
value is given by Z.

ever, numerical results show that with the mixed form a smaller velocity value is obtained
than with the irreductible case at such point.

Focusing on the leading edge stagnation point, figure 4.8 displays the velocity value ob-
tained at such point with both formulations. Comparing the values, we see once again that
the error of the mixed formulation is much lower than that of the classical approach, i.e.
0.160 in front of 1.18, demonstrating that velocity is computed with increased accuracy for
this problem too.

CONCLUSIONS

The most important results in this work have been emphasized in the respective chapters.
In summary, the following conclusions have been obtained.

Due to its close relation with the incompressible Navier-Stokes equations, the general
convection-diffusion equation is found to be a very good representative model problem for
computational fluid dynamics. It has been shown that its numerical solution involves the
mathematical treatment of convection and diffusion physical processes, which play a vital
role in fluid dynamics problems. Moreover, attending to its simplified structure, the study
of the numerical solution to the convection-diffusion equation can be considered the first
step in the development of adequate numerical methods for solving fluid flow problems.

When applying the standard finite element method to the solution of the one-dimensional
steady transport problem, it is observed that when convective effects are important in the
presence of boundary layers the Galerkin formulation lacks sufficient spatial stability and
presents non-physical oscillations. An algebraic analysis of its truncation error shows that
such instabilities are caused by a not proper discretization of the convective term, which
appears as a negative non-physical numerical diffusion introduced in the original governing
equation. Then, accounting for such error by means of a balancing diffusion, an upwind-
type discretization of the convection term is encountered, where an artificial diffusion is
automatically added along the streamlines of the flow. Numerical tests directly show that
with this modification the spurious oscillations are completely eliminated, obtaining the ex-
act solution at the nodes. This provides a justification for the formulation and usage of the
stabilization techniques known as streamline-upwind (SU) schemes. When consistently
applied, these schemes lead to the well-known SUPG stabilization method. Furthermore,
it has been shown that the use of the multiscale philosophy introduced by the SGS method
produces a more general stabilization framework, from which the SUPG formulation is
derived as a particular case.

Attending to the new mixed formulation, the original proposal has been described. It is
shown by theoretical arguments that for this new formulation the order of magnitude of
the error in the solution and its gradients can be reduced at a reasonable increase in the
computational cost. However, numerical tests demonstrate that the original formulation, al-
though being stabilized by the SGS method, presents oscillatory results. By a modification
on the formulation of the convective term it is then found that the cause of the instabilities is
the mixed discretization of the convection operator, and that as a result the advantages of
the proposed method are for the moment restricted to pure diffusion problems. The imple-
mentation and testing of the pure diffusion formulation is done by means of the solution of
a particular fluid dynamics problem that coincides with a pure diffusive transport equation,
namely, the incompressible potential flow. The results in this case show that the mixed
formulation is capable of providing an important increase in accuracy, specially in the re-
gions where the gradients are stronger, as demonstrated by the velocity calculations at the
stagnation points of a circular cylinder and a symmetric airfoil. In this case, the original
expectations regarding the new formulation are satisfied, and provide promising results for
considering future research that could lead to an improvement of the formulation to make
its advantages applicable to general convection-diffusion systems, and eventually to the
governing equations of fluid dynamics, which is its ultimate goal.

49

50 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

BIBLIOGRAPHY

[1] J.D. Anderson Jr. Computational Fluid Dynamics: The Basics with Applications.
McGraw-Hill, New York, 1995. 2, 5, 6, 23, 26

[2] J.D. Anderson Jr. Fundamentals of Aerodynamics. McGraw-Hill, New York, fifth edi-
tion, 2011. 5, 6, 40, 44

[3] J. Donea and A. Huerta. Finite Element Methods for Flow Problems. John Wiley &
Sons, Chichester, 2003. ix, 2, 7, 10, 12, 19, 23, 26, 27, 28, 32, 34, 39

[4] C. Hirsch. Numerical Computation of Internal and External Flows, volume 1: “Fun-
damentals of Computational Fluid Dynamics”, chapter 5: “Finite Volume Method and
Conservative Discretization with an Introduction to Finite Element Method”, pages
203–248. Butterworth-Heinemann, Oxford, second edition, 2007. 2

[5] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method, volume 1: The Basis.
Butterworth-Heinemann, Oxford, fifth edition, 2000. 2, 12, 13, 16, 17, 23, 35, 36, 37

[6] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method, volume 3: Fluid Dy-
namics. Butterworth-Heinemann, Oxford, fifth edition, 2000. 2

[7] C. Farhat. “Representative Model Problems”. http://web.stanford.edu/group/
frg/course_work/AA214B/CA-AA214B-Ch5.pdf, 2013. Standford University Lec-
ture. Course AA214B: Numerical Methods for Compressible Flows. 7

[8] E. Oñate and F. Zárate. “Introducción al Método de los Elementos Finitos”. Curso de
Máster en Métodos Numéricos para Cálculo y Diseño en Ingenierı́a. Apuntes de la
asignatura. ix, 13, 15, 16

[9] E. Oñate and F. Zárate. “Transmisión de Calor”. Curso de Máster en Métodos
Numéricos para Cálculo y Diseño en Ingenierı́a. Apuntes de la asignatura. ix, 21

[10] T.J.R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1987. 2, 13, 14

[11] A.N. Brooks and T.J.R. Hughes. “Streamline upwind/Petrov-Galerkin formulations for
convection dominated flows with particular emphasis on the incompressible Navier-
Stokes equations”. Comput. Methods Appl. Mech. Eng., 32(1–3):199–259, 1982. 19,
22, 26, 29

[12] T.J.R. Hughes and A.N. Brooks. “A multidimensional upwind scheme with no cross-
wind diffusion”. In T.J.R. Hughes, editor, Finite element methods for convection dom-
inated flows, volume 34 of AMD, pages 19–35. Amer. Soc. Mech. Engrs. (ASME),
New York, 1979. 30

[13] T.J.R. Hughes and A.N. Brooks. “A theoretical framework for Petrov-Galerkin methods
with discontinuous weighting functions: application to the streamline-upwind proce-
dure”. In R.H. Gallagher, D.H. Norrie, J.T. Oden, and O.C. Zienkiewicz, editors, Finite
Elements in Fluids, volume 4, pages 47–65. John Wiley & Sons, New York, 1892. 30,
31

51

http://web.stanford.edu/group/frg/course_work/AA214B/CA-AA214B-Ch5.pdf
http://web.stanford.edu/group/frg/course_work/AA214B/CA-AA214B-Ch5.pdf

52 Numerical Implementation of a Mixed Finite Element Formulation for Convection-Diffusion Problems

[14] T.J.R. Hughes. “Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann
formulation, subgrid scale models, bubbles and the origins of stabilized methods”.
Comput. Methods Appl. Mech. Eng., 127(1–4):387–401, 1995. 32

[15] T.J.R. Hughes, G.R. Feijóo, L. Mazzei, and J. Quincy. “The variational multiscale
method - a paradigm for computational mechanics”. Comput. Methods Appl. Mech.
Eng., 166(1–2):3–24, 1998. 32, 33

[16] R. Codina. “Comparison of some finite element methods for solving the diffusion-
convection-reaction equation”. Comput. Methods Appl. Mech. Eng., 156(1–4):185–
210, 1998. 32

[17] R. Codina. “On stabilized finite element methods for linear systems of convection-
diffusion-reaction equations”. Comput. Methods Appl. Mech. Eng., 188(1–3):61–82,
2000. 32, 34

[18] F. Shakib, T.J.R. Hughes, and Z. Johan. “A new finite element formulation for com-
putational fluid dynamics: X. The compressible Euler and Navier-Stokes equations”.
Comput. Methods Appl. Mech. Eng., 89(1–3):141–219, 1991. 32

[19] A. Soulaı̈mani and M. Fortin. “Finite element solution of compressible viscous flows
using conservative variables”. Comput. Methods Appl. Mech. Eng., 118(3–4):319–
350, 1994. 32

[20] T.J.R. Hughes and T.E. Tezduyar. “Finite element methods for first-order hyperbolic
systems with particular emphasis on the compressible Euler equations”. Comput.
Methods Appl. Mech. Eng., 45(1–3):217–284, 1984. 31

[21] T.E. Tezduyar and T.J.R. Hughes. “Finite element formulations for convection domi-
nated flows with particular emphasis on the compressible Euler equations”. Technical
Report 83-0125, AIAA, 1983. Selected paper from the the AIAA 21st Aerospace Sci-
ences Meeting, Reno, Nevada, January 10-13, 1983. 31

[22] T.E. Tezduyar and D.K. Ganjoo. “Petrov-Galerkin formulations with weighting func-
tions dependent upon spatial and temporal discretization: applications to transient
convection-diffusion problems”. Comput. Methods Appl. Mech. Eng., 59(1):49–71,
1986. 32

[23] M.K. Esfahani. A Contribution to the Finite Element Analysis of High-Speed Com-
pressible Flows and Aerodynamic Shape Optimization. PhD thesis, Universitat
Politécnica de Catalunya. Centro Internacional de Métodos Numéricos en Ingenierı́a
(CIMNE), 2013. 2

[24] R. Rossi. “Convection diffusion in mixed form”, 2014. Initial proposal and definition of
the new mixed formulation. 3, 36

[25] C.V. Flores et al. “Numerical Simulation of Potential Flow using the Finite Element
Method”. California State University, 2007. 44

[26] P. Marzocca. The NACA airfoil series, 2009. Clarkson University. 44

[27] P. Dadvand, R. Rossi, and E. Oñate. “An object-oriented environment for developing
finite element codes for multi-disciplinary applications”. Archives of Computational
Methods in Engineering, 17:253–297, 2010. 3

[28] Kratos Home Page. http://www.cimne.com/kratos/. Accessed: 08-07-2014. 3

[29] GiD Home Page. http://www.gidhome.com/. Accessed: 08-07-2014. 45

[30] L. Lamport. LATEX: A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, second edition, 1994.

http://www.cimne.com/kratos/
http://www.gidhome.com/

APPENDICES

APPENDIX A. SOURCE CODES

This appendix collects the source codes from which the numerical results presented along
this document have been obtained. They are the finite element implementations of the
problems described.

1) MATLAB code for the finite element solution of the one-dimensional steady transport
problem:

%%
% FINITE ELEMENT SOLUTION OF THE 1D STEADY TRANSPORT PROBLEM %
%%

close all
clc
clear all

% Iván Padilla Montero, June 2014.

L = 1; % Domain length

n_el = 10; % Number of elements in the mesh
n_nod = n_el + 1; % Number of nodes in the mesh

% We use a uniform mesh of linear elements
h = L / n_el; % Element length (size). Also known as mesh size.

nodes = (0 : h : L)’; % Only the x coordinate is stored

elements = zeros(n_el, 2);
for i = 1:n_el

elements(i, :) = [i, i + 1];
end

source_term = true; % Boolean to now if the problem has a source term
% or not.

if (source_term)
s = 1;
dirichlet_nodes = [1; n_nod];
dirichlet_values = [0; 0];

else
s = 0;
dirichlet_nodes = [1; n_nod];
dirichlet_values = [0; 1];

end

% Since the mesh is uniform, all the elements are equal. As a result,
% the shape functions evaluated at the integration points are all
% equal. For this problem we need integration order 1. We are not
% discretizingvspatially the source term since it is uniform.

57

% For integration order 1 the integration point is located at xi = 0:
n_int = 1; % Number of integration points for order 1
N_Lin = [1/2, 1/2]; % Shape functions for each node of the element
% evaluated at the linear integration point.
weight = 2; % Integration weight for order 1
jacobian_det = h/2; % Determinant of the jacobian from the
% transformation of cartesian coordinates into natural coordinates.

% Moreover, the shape function derivatives are defined by:
dN_dx = [-1/h, 1/h];

% Problem parametes
%Pe = 0.9; % Mesh Peclet number
conv_vel = ones(n_nod, 1); % Convection velocity field
conv_vel_norm = 1; % Norm of the convection velocity
Pe = [0.5, 5];
for iter = 1:length(Pe)
k = conv_vel_norm * h / (2 * Pe(iter)); % Diffusivity

% Stabilization parameter. Superconvergence formulation, i.e. the
% optimal stabilization parameter that gives exact nodal results for
% any value of Pe on a uniform mesh in 1D.
tau = h / (2 * conv_vel_norm) * (coth(Pe(iter)) - 1/Pe(iter));

% Now we can compute the system and solve it
% Initialize global system variables
LHS = zeros(n_nod);
RHS = zeros(n_nod, 1);
phi = zeros(n_nod, 1);

% Loop in elements
for el = 1:n_el

LHS_local = zeros(2);
RHS_local = zeros(2, 1);
dirichlet_local = zeros(2, 1);

% Compute the element (local) contribution to the global system
conv_vel_local = conv_vel(elements(el, :));
% Loop in integration points
for int = 1:n_int

N = N_Lin(int, :); % Select the row of shape functions
% corresponding to the current integration point.

% Double loop in element nodes
for i = 1:2

for j = 1:2
LHS_local(i, j) = LHS_local(i, j) + weight *
jacobian_det * ((N(i) + tau * conv_vel_local(i) *
dN_dx(i)) * conv_vel_local(i) * dN_dx(j) + dN_dx(i) *
k * dN_dx(j));

end

RHS_local(i) = RHS_local(i) + weight * jacobian_det *
(N(i) + tau * conv_vel_local(i) * dN_dx(i)) * s;

end
end

% Finally, substract the Dirichlet term from the RHS
for i = 1:2

if any(dirichlet_nodes == elements(el, i))
dirichlet_local(i) = dirichlet_values(
find(dirichlet_nodes == elements(el, i)));

end
end
RHS_local = RHS_local - LHS_local * dirichlet_local;

% Assemble the element contribution to the global system
for i = 1:2

for j = 1:2
LHS(elements(el, i), elements(el, j)) =
LHS(elements(el, i), elements(el, j)) + LHS_local(i, j);

end
RHS(elements(el, i)) = RHS(elements(el, i)) + RHS_local(i);

end
end

% Solve the system of equations to obtain the unknowns
% The rows and columns corresponding to the Dirichlet nodes are
% eliminated from the system
unknown_nodes = setdiff((1:n_nod)’, dirichlet_nodes);
phi_unknown = LHS(unknown_nodes, unknown_nodes) \ RHS(unknown_nodes);
phi(unknown_nodes) = phi_unknown;
phi(dirichlet_nodes) = dirichlet_values;

plot(nodes, phi, ’o-’)

% Compute exact solution
x = 0:1/999:1;
gamma = conv_vel_norm / k;
if (source_term)

exact_sol = 1/conv_vel_norm * (x - (1 - exp(gamma * x)) /
(1 - exp(gamma)));

else
exact_sol = (1 - exp(gamma * x)) / (1 - exp(gamma));

end
hold on
plot(x, exact_sol, ’k-.’)
end
legend(’SU FEM’, ’Exact’, ’Location’, ’NorthWest’)
xlabel(’x’)
ylabel(’T’)

2) MATLAB code for the original mixed finite element solution of the one-dimensional steady
transport problem:

%%
% MIXED FINITE ELEMENT SOLUTION OF THE 1D STEADY TRANSPORT PROBLEM %
%%

close all
clc
clear all

% Ivan Padilla Montero, June 2014.

% Original formulation.

L = 1; % Domain length

n_el = 10; % Number of elements in the mesh
n_nod = n_el + 1; % Number of nodes in the mesh

% We use a uniform mesh of linear elements
h = L / n_el; % Element length (size). Also known as mesh size.

nodes = (0 : h : L)’; % Only the x coordinate is stored

elements = zeros(n_el, 2);
for i = 1:n_el

elements(i, :) = [i, i + 1];
end

source_term = true; % Boolean to now if the problem has a source term
% or not.

if (source_term)
s = ones(n_nod, 1);
dirichlet_nodes_phi = [1; n_nod];
dirichlet_phi = [0; 0];

else
s = zeros(n_nod, 1);
dirichlet_nodes_phi = [1; n_nod];
dirichlet_phi = [0; 1];

end

% Since the mesh is uniform, all the elements are equal. As a result,
% the shape functions evaluated at the integration points are all
% equal. For this problem we need integration order 2. We are not
% discretizing
% spatially the source term since it is uniform.
% For integration order 2 the integration points are located at xi =
% +-0.5773502692, thus:
n_int = 2; % Number of integration points for order 2

xi_int = [sqrt(1/3), -sqrt(1/3)]; % Coordinates of the integration
%points for order 2
N_Quad = [1/2 * (1 - xi_int(1)), 1/2 * (1 + xi_int(1)); 1/2 *

(1 - xi_int(2)), 1/2 * (1 + xi_int(2))]; % Shape functions for
% each element node evaluated at each quadratic integration point.
weight = ones(2, 1); % Integration weights for order 2
jacobian_det = h/2; % Determinant of the jacobian from the
% transformation of natural coordinates into cartesian coordinates.

% Moreover, the shape function derivatives are defined by:
dN_dx = [-1/h, 1/h]; % In this case they are constants and they have
% the same value in all the integration points.

% Problem parametes
%Pe = 5; % Mesh Peclet number
conv_vel = ones(n_nod, 1); % Convection velocity field
conv_vel_norm = 1; % Norm of the convection velocity
Pe = [0.5, 5];
for iter = 1:length(Pe)
k = conv_vel_norm * h / (2 * Pe(iter)); % Diffusivity

tau_xi = 0.1; % Constant stabilization parameter
% Codina stabilization parameter.
tau_phi = 1 / (2 * conv_vel_norm / h + 4 * k / h ˆ 2);

% Now we can compute the system and solve it
% Initialize global system variables
LHS = zeros(2 * n_nod);
RHS = zeros(2 * n_nod, 1);
dofs = zeros(2 * n_nod, 1);

% Loop in elements
for el = 1:n_el

LHS_local = zeros(4);
RHS_local = zeros(4, 1);
dirichlet_local = zeros(4, 1);

% Compute the element (local) contribution to the global system
conv_vel_local = conv_vel(elements(el, :)); % Values of the
% convection velocity at the element nodes
s_local = s(elements(el, :));

% Loop in integration points
for i_int = 1:n_int

N = N_Quad(i_int, :); % Select the row of shape functions
%corresponding to the current integration point.

conv_vel_local_i_int = N * conv_vel_local;
s_local_i_int = N * s_local;

LHS_local(1:2, 1:2) = LHS_local(1:2, 1:2) + weight(i_int) *

jacobian_det * tau_xi * (N’ * conv_vel_local_i_int * dN_dx +
k * (dN_dx’ * dN_dx));
LHS_local(1:2, 3:4) = LHS_local(1:2, 3:4) + weight(i_int) *
jacobian_det * ((1 - tau_xi) * N’ * conv_vel_local_i_int *
N - k * N’ * dN_dx - tau_xi * k * dN_dx’ * N);
LHS_local(3:4, 1:2) = LHS_local(3:4, 1:2) + weight(i_int) *
jacobian_det * (1 - tau_xi) * N’ * dN_dx;
LHS_local(3:4, 3:4) = LHS_local(3:4, 3:4) + weight(i_int) *
jacobian_det * ((tau_xi - 1) * (N’ * N) + tau_phi * dN_dx’ *
conv_vel_local_i_int * N - tau_phi * k * (dN_dx’ * dN_dx));

RHS_local(1:2) = RHS_local(1:2) + weight(i_int) *
jacobian_det * N’ * s_local_i_int;
RHS_local(3:4) = RHS_local(3:4) + weight(i_int) *
jacobian_det * tau_phi * dN_dx’ * s_local_i_int;

end

% Finally, substract the Dirichlet term from the RHS
for i = 1:2

if any(dirichlet_nodes_phi == elements(el, i))
dirichlet_local(i) = dirichlet_phi(
find(dirichlet_nodes_phi == elements(el, i)));

end
end
RHS_local = RHS_local - LHS_local * dirichlet_local;

% Assemble the element contribution to the global system
for i = 1:2

for j = 1:2
LHS(elements(el, i), elements(el, j)) = LHS(elements(el,
i), elements(el, j)) + LHS_local(i, j); % Block 11
LHS(elements(el, i), elements(el, j) + n_nod) = LHS(
elements(el, i), elements(el, j) + n_nod) + LHS_local(i,
j + 2); % Block 12

LHS(elements(el, i) + n_nod, elements(el, j)) = LHS(
elements(el, i) + n_nod, elements(el, j)) + LHS_local(i +
2, j); % Block 21
LHS(elements(el, i) + n_nod, elements(el, j) + n_nod) =
LHS(elements(el, i) + n_nod, elements(el, j) + n_nod) +
LHS_local(i + 2, j + 2); % Block 22

end
RHS(elements(el, i)) = RHS(elements(el, i)) + RHS_local(i);
% Block 1
RHS(elements(el, i) + n_nod) = RHS(elements(el, i) + n_nod)
+ RHS_local(i + 2); % Block 2

end
end

% Solve the system of equations to obtain the unknowns
% The rows and columns corresponding to the Dirichlet nodes are

% eliminated from the system
unknown_nodes = setdiff((1:2 * n_nod)’, dirichlet_nodes_phi);
dofs_unknown = LHS(unknown_nodes, unknown_nodes) \ RHS(unknown_nodes)
dofs(unknown_nodes) = dofs_unknown;
dofs(dirichlet_nodes_phi) = dirichlet_phi;
phi = dofs(1:n_nod);
xi_x = dofs(n_nod + 1:2 * n_nod);

figure(1)
plot(nodes, phi, ’o-’)

figure(2)
plot(nodes, xi_x, ’o-’)

% Compute exact solution
x = 0:1/999:1;
gamma = conv_vel_norm / k;
if (source_term)

exact_sol = 1/conv_vel_norm * (x - (1 - exp(gamma * x)) / (1 -
exp(gamma)));
dexact_sol_dx = 1/conv_vel_norm * (1 - (1 - exp(gamma * x) *
gamma) / (1 - exp(gamma)));

else
exact_sol = (1 - exp(gamma * x)) / (1 - exp(gamma));
dexact_sol_dx = - exp(gamma * x) * gamma / (1 - exp(gamma));

end
figure(1)
hold on
plot(x, exact_sol, ’k-.’)
xlabel(’x’)
ylabel(’T’)
legend(’ASGS Mixed FEM Original’, ’Exact’, ’Location’, ’NorthWest’)

figure(2)
hold on
plot(x, dexact_sol_dx, ’k-.’)
xlabel(’x’)
ylabel(’q’)
legend(’ASGS Mixed FEM Original’, ’Exact’, ’Location’, ’NorthWest’)
end

3) MATLAB code for the modified mixed finite element solution of the one-dimensional
steady transport problem:

%%
% MIXED FINITE ELEMENT SOLUTION OF THE 1D STEADY TRANSPORT PROBLEM %
%%

close all
clc
clear all

% Ivan Padilla Montero, June 2014.

% Modified formulation

L = 1; % Domain length

n_el = 10; % Number of elements in the mesh
n_nod = n_el + 1; % Number of nodes in the mesh

% We use a uniform mesh of linear elements
h = L / n_el; % Element length (size). Also known as mesh size.

nodes = (0 : h : L)’; % Only the x coordinate is stored

elements = zeros(n_el, 2);
for i = 1:n_el

elements(i, :) = [i, i + 1];
end

source_term = true; % Boolean to now if the problem has a source term
% or not.

if (source_term)
s = ones(n_nod, 1);
dirichlet_nodes_phi = [1; n_nod];
dirichlet_phi = [0; 0];

else
s = zeros(n_nod, 1);
dirichlet_nodes_phi = [1; n_nod];
dirichlet_phi = [0; 1];

end

% Since the mesh is uniform, all the elements are equal. As a result,
% the shape functions evaluated at the integration points are all
% equal. For this problem we need integration order 2. We are not
% discretizing spatially the source term since it is uniform.
% For integration order 2 the integration points are located at xi =
% +-0.5773502692, thus:
n_int = 2; % Number of integration points for order 2
xi_int = [sqrt(1/3), -sqrt(1/3)]; % Coordinates of the integration

% points for order 2
N_Quad = [1/2 * (1 - xi_int(1)), 1/2 * (1 + xi_int(1)); 1/2 *

(1 - xi_int(2)), 1/2 * (1 + xi_int(2))]; % Shape functions for
%each element node evaluated at each quadratic integration point.
weight = ones(2, 1); % Integration weights for order 2
jacobian_det = h/2; % Determinant of the jacobian from the
% transformation of natural coordinates into cartesian coordinates.

% Moreover, the shape function derivatives are defined by:
dN_dx = [-1/h, 1/h]; % In this case they are constants and they have
% the same value in all the integration points.

% Problem parametes
%Pe = 0.5; % Mesh Peclet number
conv_vel = ones(n_nod, 1); % Convection velocity field
conv_vel_norm = 1; % Norm of the convection velocity
Pe = [0.5, 5];
for iter = 1:length(Pe)
k = conv_vel_norm * h / (2 * Pe(iter)); % Diffusivity

tau_xi = 0.1; % Constant stabilization parameter
% Codina stabilization parameter
tau_phi = 1 / (2 * conv_vel_norm / h + 4 * k / h ˆ 2);

% Now we can compute the system and solve it
% Initialize global system variables
LHS = zeros(2 * n_nod);
RHS = zeros(2 * n_nod, 1);
dofs = zeros(2 * n_nod, 1);

% Loop in elements
for el = 1:n_el

LHS_local = zeros(4);
RHS_local = zeros(4, 1);
dirichlet_local = zeros(4, 1);

% Compute the element (local) contribution to the global system
conv_vel_local = conv_vel(elements(el, :)); % Values of the
% convection velocity at the element nodes
s_local = s(elements(el, :));

% Loop in integration points
for i_int = 1:n_int

N = N_Quad(i_int, :); % Select the row of shape functions
%corresponding to the current integration point.

conv_vel_local_i_int = N * conv_vel_local;
s_local_i_int = N * s_local;

LHS_local(1:2, 1:2) = LHS_local(1:2, 1:2) + weight(i_int) *
jacobian_det * ((N’ + tau_phi * conv_vel_local_i_int * dN_dx’

) * conv_vel_local_i_int * dN_dx + tau_xi * k * (dN_dx’ *
dN_dx));
LHS_local(1:2, 3:4) = LHS_local(1:2, 3:4) - weight(i_int) *
jacobian_det * ((N’ + tau_phi * conv_vel_local_i_int * dN_dx’
) * k * dN_dx + tau_xi * k * dN_dx’ * N);
LHS_local(3:4, 1:2) = LHS_local(3:4, 1:2) + weight(i_int) *
jacobian_det * ((1 - tau_xi) * N’ * dN_dx + tau_phi * dN_dx’
* conv_vel_local_i_int * dN_dx);
LHS_local(3:4, 3:4) = LHS_local(3:4, 3:4) + weight(i_int) *
jacobian_det * ((tau_xi - 1) * (N’ * N) - tau_phi * k *
(dN_dx’ * dN_dx));

RHS_local(1:2) = RHS_local(1:2) + weight(i_int) *
jacobian_det * (N’ + tau_phi * conv_vel_local_i_int
* dN_dx’) * s_local_i_int;
RHS_local(3:4) = RHS_local(3:4) + weight(i_int) *
jacobian_det * tau_phi * dN_dx’ * s_local_i_int;

end

% Finally, substract the Dirichlet term from the RHS
for i = 1:2

if any(dirichlet_nodes_phi == elements(el, i))
dirichlet_local(i) = dirichlet_phi(find(
dirichlet_nodes_phi == elements(el, i)));

end
end
RHS_local = RHS_local - LHS_local * dirichlet_local;

% Assemble the element contribution to the global system
for i = 1:2

for j = 1:2
LHS(elements(el, i), elements(el, j)) = LHS(elements
(el, i), elements(el, j)) + LHS_local(i, j); % Block 11
LHS(elements(el, i), elements(el, j) + n_nod) = LHS
(elements(el, i), elements(el, j) + n_nod) + LHS_local
(i, j + 2); % Block 12

LHS(elements(el, i) + n_nod, elements(el, j)) = LHS(
elements(el, i) + n_nod, elements(el, j)) + LHS_local
(i + 2, j); % Block 21
LHS(elements(el, i) + n_nod, elements(el, j) + n_nod) =
LHS(elements(el, i) + n_nod, elements(el, j) + n_nod) +
LHS_local(i + 2, j + 2); % Block 22

end
RHS(elements(el, i)) = RHS(elements(el, i)) + RHS_local(i);
% Block 1
RHS(elements(el, i) + n_nod) = RHS(elements(el, i) + n_nod)
+ RHS_local(i + 2); % Block 2

end
end

% Solve the system of equations to obtain the unknowns
% The rows and columns corresponding to the Dirichlet nodes are
% eliminated from the system
unknown_nodes = setdiff((1:2 * n_nod)’, dirichlet_nodes_phi);
dofs_unknown = LHS(unknown_nodes, unknown_nodes) \ RHS(unknown_nodes)
dofs(unknown_nodes) = dofs_unknown;
dofs(dirichlet_nodes_phi) = dirichlet_phi;
phi = dofs(1:n_nod);
xi_x = dofs(n_nod + 1:2 * n_nod);

figure(1)
plot(nodes, phi, ’o-’)

figure(2)
plot(nodes, xi_x, ’o-’)

% Compute exact solution
x = 0:1/999:1;
gamma = conv_vel_norm / k;
if (source_term)

exact_sol = 1/conv_vel_norm * (x - (1 - exp(gamma * x)) / (1 -
exp(gamma)));
dexact_sol_dx = 1/conv_vel_norm * (1 - (1 - exp(gamma * x) *
gamma) / (1 - exp(gamma)));

else
exact_sol = (1 - exp(gamma * x)) / (1 - exp(gamma));
dexact_sol_dx = - exp(gamma * x) * gamma / (1 - exp(gamma));

end
figure(1)
hold on
plot(x, exact_sol, ’k-.’)
xlabel(’x’)
ylabel(’T’)
legend(’ASGS Mixed FEM Modified’, ’Exact’, ’Location’, ’NorthWest’)

figure(2)
hold on
plot(x, dexact_sol_dx, ’k-.’)
xlabel(’x’)
ylabel(’q’)
legend(’ASGS Mixed FEM Modified’, ’Exact’, ’Location’, ’NorthWest’)
end

4) C++ code for the classical finite element solution of the incompressible potential flow
using Kratos:

// Project Name: Convection-Diffusion in Irreductible Form
// with Sub-Grid Scale Stabilization
// Last Modified by: $Author: Ivan Padilla $
// Date: $Date: 09/06/2014 $
// Revision: $Revision: 1.0 $

// System includes

// External includes

// Project includes
#include "convection_diffusion_irreductible_application.h"
#include "utilities/geometry_utilities.h" // Needed for the
// calculation of geometry data

namespace Kratos
{

// Constructors
IncompressiblePotentialFlow2D::IncompressiblePotentialFlow2D(

IndexType NewId, GeometryType::Pointer pGeometry)
: Element(NewId, pGeometry)

{}

IncompressiblePotentialFlow2D::IncompressiblePotentialFlow2D(
IndexType NewId, GeometryType::Pointer pGeometry, PropertiesType:
:Pointer pProperties)
: Element(NewId, pGeometry, pProperties)

{}

// Pointer
Element::Pointer IncompressiblePotentialFlow2D::Create(IndexType

NewId, NodesArrayType const& ThisNodes, PropertiesType::Pointer
pProperties) const

{
return Element::Pointer(new IncompressiblePotentialFlow2D(NewId,
GetGeometry().Create(ThisNodes), pProperties));

}

// Destructor
IncompressiblePotentialFlow2D::˜IncompressiblePotentialFlow2D()
{}

// Methods
void IncompressiblePotentialFlow2D::CalculateLocalSystem(

MatrixType& rLeftHandSideMatrix, VectorType& rRightHandSideVector
, ProcessInfo& rCurrentProcessInfo)

{

KRATOS_TRY

unsigned int number_of_nodes = GetGeometry().size(); // Number of
nodes of the element (in this case linear triangular elements).

boost::numeric::ublas::bounded_matrix<double, 3, 2> DN_DX;
// Element gradient matrix (3 rows --> nodes of the element),
// 2 columns (2D --> x and y coordinates) --> [dN1_dx dN1_dy;
// dN2_dx dN2_dy; dN3_dx dN3_dy]. Constant over the element.
array_1d<double, 3> N; // Vector of the shape functions of each
// node evaluated at the linear Gauss point (triangle baricenter).
double Area; // Element area
array_1d<double, 3> Dirichlet_Vector = ZeroVector(3); // Element
// vector for Dirichlet conditions (if any).

// First of all we resize the LHS and RHS as needed
if(rLeftHandSideMatrix.size1() != number_of_nodes)
{

rLeftHandSideMatrix.resize(number_of_nodes, number_of_nodes,
false);

}
rLeftHandSideMatrix = ZeroMatrix(number_of_nodes, number_of_nodes);

if(rRightHandSideVector.size() != number_of_nodes)
{

rRightHandSideVector.resize(number_of_nodes, false);
}
rRightHandSideVector = ZeroVector(number_of_nodes);

// Compute geometry data for the current element
GeometryUtils::CalculateGeometryData(GetGeometry(), DN_DX, N, Area);

// Compute the element LHS matrix (size 3x3)
rLeftHandSideMatrix = prod(DN_DX, trans(DN_DX));
rLeftHandSideMatrix *= Area; // Integration over the element.
// Since DN_DX is constant along the element, the integration
// results in a simple area multiplication.

/*if (this->Id() == 7353)
{KRATOS_WATCH(this->Id())
KRATOS_WATCH(2.0*Area)
KRATOS_WATCH(DN_DX)
KRATOS_WATCH(rLeftHandSideMatrix)

}*/

// Substract the Dirichlet term from the RHS
// (RHS -= LHS*Dirichlet_Vector)
for (unsigned int i = 0; i < number_of_nodes ; i++)
{

Dirichlet_Vector[i] = GetGeometry()[i].
FastGetSolutionStepValue(VELOCITY_POTENTIAL);

}

rRightHandSideVector -= prod(rLeftHandSideMatrix, Dirichlet_Vector);

KRATOS_CATCH("")
}

void IncompressiblePotentialFlow2D::EquationIdVector(
EquationIdVectorType& rResult, ProcessInfo& rCurrentProcessInfo)

{
unsigned int number_of_nodes = GetGeometry().PointsNumber();
// In this case triangular elements with 3 nodes.

if(rResult.size() != number_of_nodes)
{

rResult.resize(number_of_nodes, false);
}

// In this case the element unknowns vector will have the following
// structure:
// rResult = [phi_1; phi_2; phi_3];

for (unsigned int i = 0; i < number_of_nodes; i++)
{

rResult[i] = GetGeometry()[i].GetDof(VELOCITY_POTENTIAL).
EquationId();

}
}

void IncompressiblePotentialFlow2D::GetDofList(DofsVectorType&
rElementalDofList, ProcessInfo& rCurrentProcessInfo)

{
unsigned int number_of_nodes = GetGeometry().PointsNumber();

if(rElementalDofList.size() != number_of_nodes)
{

rElementalDofList.resize(number_of_nodes);
}

for (unsigned int i = 0; i < number_of_nodes; i++)
{

rElementalDofList[i] = GetGeometry()[i].
pGetDof(VELOCITY_POTENTIAL);

}
}

} // namespace Kratos

5) C++ code for the mixed finite element solution of the incompressible potential flow using
Kratos:

// Project Name: Convection-Diffusion in Mixed Form with
// Sub-Grid Scale Stabilization
// Last Modified by: $Author: Ivan Padilla $
// Date: $Date: 09/06/2014 $
// Revision: $Revision: 1.0 $

// System includes

// External includes

// Project includes
#include "convection_diffusion_mixed_application.h"
#include "utilities/geometry_utilities.h" // Needed for the
// calculation of geometry data.

namespace Kratos
{

// Constructors
IncompressiblePotentialFlow2DMixed::

IncompressiblePotentialFlow2DMixed(IndexType NewId, GeometryType:
:Pointer pGeometry)
: Element(NewId, pGeometry)

{}

IncompressiblePotentialFlow2DMixed::
IncompressiblePotentialFlow2DMixed(IndexType NewId, GeometryType:
:Pointer pGeometry, PropertiesType::Pointer pProperties)
: Element(NewId, pGeometry, pProperties)

{}

// Pointer
Element::Pointer IncompressiblePotentialFlow2DMixed::Create(

IndexType NewId, NodesArrayType const& ThisNodes, PropertiesType:
:Pointer pProperties) const

{
return Element::Pointer(new IncompressiblePotentialFlow2DMixed(
NewId, GetGeometry().Create(ThisNodes), pProperties));

}

// Destructor
IncompressiblePotentialFlow2DMixed::

˜IncompressiblePotentialFlow2DMixed()
{}

// Methods
void IncompressiblePotentialFlow2DMixed::CalculateLocalSystem(

MatrixType& rLeftHandSideMatrix, VectorType& rRightHandSideVector,

ProcessInfo& rCurrentProcessInfo)
{

KRATOS_TRY

unsigned int number_of_nodes = GetGeometry().PointsNumber();
// Number of nodes of the element. In this case we are using linear
// triangular elements so we will have 3 nodes.
unsigned int DOFs_per_node = 3; // Number of degrees of freedom
// (DOFs) of each node, i.e. the number of unknowns:
// TRANSPORTED_QUANTITY, TRANSPORTED_QUANTITY_GRADIENT_X and _Y.
unsigned int system_vector_length = number_of_nodes * DOFs_per_node;
// Length of the local system vectors. It is also the number of
// rows and columns of the local LHS matrix.

// Resize the LHS matrix and the RHS vector as needed
if (rLeftHandSideMatrix.size1() != system_vector_length)
{

rLeftHandSideMatrix.resize(system_vector_length,
system_vector_length, false);

}
rLeftHandSideMatrix = ZeroMatrix(system_vector_length,
system_vector_length);

if (rRightHandSideVector.size() != system_vector_length)
{

rRightHandSideVector.resize(system_vector_length, false);
}
rRightHandSideVector = ZeroVector(system_vector_length);

array_1d <double, 3> N_Gauss_1; // Vector containing the shape
// function of each node evaluated at the linear Gauss point.
boost::numeric::ublas::bounded_matrix <double, 3, 2> DN_DX;
// Matrix containing the gradient of the shape functions.
// It has 3 rows (nodes) and 2 columns (x and y coordinates) -->
// [dN1_dx dN1_dy; dN2_dx dN2_dy; dN3_dx dN3_dy].
double Area; // Element area

// Compute the necessary geometry data for the current element
GeometryUtils::CalculateGeometryData(GetGeometry(), DN_DX, N_Gauss_1,
Area); // N_Gauss_1 is not used for the calculation of either the
// LHS or the RHS, but it is needed for computing DN_DX.

// Define and calculate the stabilization parameters
double h = sqrt(2.0 * Area); // Characteristic length of the element.
double tau_phi = 1.0 / (4.0 / pow(h, 2.0)); // Stabilization
// parameter resulting from the subscale of the phi variable.
double tau_xi = 0.1; // Stabilization parameter resulting from
// the subscale of the xi variable.

// Calculate the integration points of the element
const GeometryType::IntegrationPointsArrayType& integration_points

= GetGeometry().IntegrationPoints(GeometryData::GI_GAUSS_2);
// Quadratic integration order (the maximum needed in the system).
const Matrix& N_Gauss_2 = GetGeometry().ShapeFunctionsValues
(GeometryData::GI_GAUSS_2); // Matrix containing the shape
// function of each node evaluated at each of the quadratic
//Gauss points. It has 3 rows (integration points) and 3 columns.
//KRATOS_WATCH(N_Gauss_2)
double jacobian_det = 2.0 * Area; // Determinant of the jacobian
//from the transformation of cartesian coordinates into natural
// coordinates. For linear triangular elements it has a constant
// value over all the element.
/*if (this->Id() == 7353)

{KRATOS_WATCH(this->Id())
KRATOS_WATCH(jacobian_det)
KRATOS_WATCH(DN_DX)

}*/

// Compute and assemble the element LHS matrix. It is divided in
// 9 different blocks, with a size of 3x3 each. The full element LHS
// matrix is 9x9

// For the calculation of such matrices and vectors we need to use
// numerical integration. We loop over all the integration points
for (unsigned int point_number = 0; point_number <
integration_points.size(); point_number++)
{

array_1d <double, 3> N = row(N_Gauss_2, point_number);
// Select the row of shape functions at the current point.

double weight = integration_points[point_number].Weight();
// Integration weight of the current integration point.

for (unsigned int i = 0; i < number_of_nodes; i++)
{

for (unsigned int j = 0; j < number_of_nodes; j++)
{

rLeftHandSideMatrix(i, j) += weight * jacobian_det * tau_xi
* (DN_DX(i, 0) * DN_DX(j, 0) + DN_DX(i, 1) * DN_DX(j, 1));
// Block 11

rLeftHandSideMatrix(i, number_of_nodes + j) += weight *
jacobian_det * (1.0 - tau_xi) * DN_DX(i, 0) * N(j); // Block 12

rLeftHandSideMatrix(i, 2 * number_of_nodes + j) += weight
* jacobian_det * (1.0 - tau_xi) * DN_DX(i, 1) * N(j);
// Block 13

rLeftHandSideMatrix(number_of_nodes + i, j) += weight *
jacobian_det * (1.0 - tau_xi) * N(i) * DN_DX(j, 0); // Block 21

rLeftHandSideMatrix(number_of_nodes + i, number_of_nodes + j)
+= weight * jacobian_det * ((tau_xi - 1.0) * N(i) * N(j) -
tau_phi * DN_DX(i, 0) * DN_DX(j, 0)); // Block 22

rLeftHandSideMatrix(number_of_nodes + i, 2 *
number_of_nodes + j) -= weight * jacobian_det * tau_phi

* DN_DX(i, 0) * DN_DX(j, 1); // Block 23

rLeftHandSideMatrix(2 * number_of_nodes + i, j) += weight
* jacobian_det * (1.0 - tau_xi) * N(i) * DN_DX(j, 1);
// Block 31

rLeftHandSideMatrix(2 * number_of_nodes + i,
number_of_nodes + j)

-= weight * jacobian_det * tau_phi * DN_DX(i, 1) * DN_DX(j, 0);
// Block 32

rLeftHandSideMatrix(2 * number_of_nodes + i, 2 *
number_of_nodes + j) += weight * jacobian_det * ((tau_xi -
1.0) * N(i) * N(j) - tau_phi * DN_DX(i, 1) * DN_DX(j, 1));
// Block 33
}

}
}

// Finally, substract the Dirichlet term from the RHS
array_1d <double, 9> Dirichlet_Vector = ZeroVector(9); // Vector
// containing the local Dirichlet conditions, i.e. the prescribed
// values of the unknowns (if any).

for (unsigned int i = 0; i < number_of_nodes; i++)
{

Dirichlet_Vector[i] = GetGeometry()[i].
FastGetSolutionStepValue(VELOCITY_POTENTIAL);

Dirichlet_Vector[i + number_of_nodes] = GetGeometry()[i].
FastGetSolutionStepValue(VELOCITY_X);

Dirichlet_Vector[i + 2 * number_of_nodes] = GetGeometry()[i].
FastGetSolutionStepValue(VELOCITY_Y);

}

rRightHandSideVector -= prod(rLeftHandSideMatrix,
Dirichlet_Vector);

KRATOS_CATCH("")
}

void IncompressiblePotentialFlow2DMixed::EquationIdVector(
EquationIdVectorType& rResult, ProcessInfo& rCurrentProcessInfo)

{
unsigned int number_of_nodes = GetGeometry().PointsNumber();
unsigned int DOFs_per_node = 3;
unsigned int system_vector_length = number_of_nodes *
DOFs_per_node;

if (rResult.size() != system_vector_length)
{

rResult.resize(system_vector_length, false);
}

// In this case the element vector of unknowns will have the
// following structure:
// rResult = [u_1; u_2; u_3; v_1; v_2; v_3; phi_1; phi_2; phi_3];
for (unsigned int i = 0; i < number_of_nodes; i++)
{

rResult[i] = GetGeometry()[i].GetDof(VELOCITY_POTENTIAL).
EquationId();

rResult[i + number_of_nodes] = GetGeometry()[i].GetDof(VELOCITY_X).
EquationId();

rResult[i + 2 * number_of_nodes] = GetGeometry()[i].
GetDof(VELOCITY_Y).EquationId();

}
}

void IncompressiblePotentialFlow2DMixed::GetDofList(DofsVectorType&
rElementalDofList, ProcessInfo& rCurrentProcessInfo)

{
unsigned int number_of_nodes = GetGeometry().PointsNumber();
unsigned int DOFs_per_node = 3;
unsigned int system_vector_length = number_of_nodes * DOFs_per_node;

if (rElementalDofList.size() != system_vector_length)
{

rElementalDofList.resize(system_vector_length);
}

for (unsigned int i = 0; i < number_of_nodes; i++)
{

rElementalDofList[i] = GetGeometry()[i].pGetDof(VELOCITY_POTENTIAL);
rElementalDofList[i + number_of_nodes] = GetGeometry()[i].

pGetDof(VELOCITY_X);
rElementalDofList[i + 2 * number_of_nodes] = GetGeometry()[i].

pGetDof(VELOCITY_Y);
}

}
} // namespace Kratos

	Introduction
	Importance of Convection-Diffusion Models in Computational Fluid Dynamics
	Governing Equations of Fluid Dynamics for Incompressible Flow
	The Continuity Equation
	The Momentum Equation

	The Convection-Diffusion Equation
	General Form of the Convection-Diffusion Equation
	The Convection-Diffusion Equation in a Fluid Dynamics Context

	Convection-Diffusion as a Representative Model for Computational Fluid Dynamics

	The Finite Element Method in Convection-Diffusion Problems
	Statement of the Initial Boundary Value Problem
	Weak Form of the Problem
	The Weighted Residual Formulation

	Basics of the Finite Element Spatial Discretization
	Approximation of the Unknown
	The Galerkin Method

	Discretization of the Steady Transport Problem
	Matrix Form of the Discrete Equation

	The Need for Stabilization
	Time Discretization

	Stabilized Finite Element Methods for Convection-Diffusion Problems
	Stabilization of the Steady One-Dimensional Problem
	Analysis of the Galerkin Discrete Equation and the Cause of the Instabilities
	The Optimal Formulation

	Stabilization Techniques for Multidimensional Problems
	The General Streamline-Upwind Formulation
	The Streamline-Upwind Petrov-Galerkin Method
	The Sub-Grid Scale Method

	A New Mixed Finite Element Formulation for Convection-Diffusion Problems
	Motivation
	Convection-Diffusion in Mixed Form
	Original Formulation
	Modified Formulation

	A Pure Diffusion Case: Incompressible Potential Flow

	Conclusions
	Bibliography
	Source Codes

