

Department of Automatic Control

Robot workspace sensing and

control with Leap Motion Sensor

Guillem Solé Bonet

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41816752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Msc Thesis

ISRN LUTFD2/TFRT--9999--SE

ISSN 0280-5316

Department of Automatic Control

Lund University

Box 118

SE-221 00 LUND

Sweden

© 2014 by Guillem Solé Bonet. All rights reserved.

Printed in Sweden by Media-Tryck

Lund 2014

3

Abstract

The present thesis deals with the design and testing of an appropriate software

interface that allows a user to control a robot using a Leap Motion Sensor while

defining and keeping a safe workspace for the robot to operate.

The Leap Motion Sensor is a small device able to sense human hands above

it and to keep track of them. Hence, when controlling the robot, the user will feel

an interesting touch-free control experience.

Distinct control modes, such as linear commandment, joint-by-joint control

or specular imitation have been studied and implemented. The basis for a future

teaching mode, where the robot could remember user actions and play them

accordingly to fulfill a complex task has also been settled.

At the same time, a precise definition of the workspace, creating a safe

environment for both the robot and the user, and the contemplation on how to

avoid undesired situations have been consciously considered.

4

5

Acknowledgements

These people and organizations helped me immensely with my work and I would

like to mention them while thanking them for everything they have done:

 To my supervisor Anders Robertsson and to my examiner Rolf

Johansson, for being there while I required anything and for providing

me with valuable advice every time I found difficulties. To Lund

University in general, for letting me use the robotics laboratory and for

supplying me with a Leap Motion Sensor.

 To the ErghisTech people, Örs-Barna and Holger, for their manifest

interest in my work, their technical support and their valuable advice.

 To my laboratory colleagues, from which I would like to specially

mention Patrik, Jorge, Alberto, Dani, Victor and Silvan, for those long

debates about how to approach next stages of my work and the

incommensurable help at some key points of my work.

 To my family, who in spite of the distance I have felt very close at all

times. Their support has been fundamental to keep going during the

hardest times in which I was not sure to finally succeed in even moving

the robot.

 To my friends in Barcelona and my new friends in Lund, who showed

interest in my project and whose cheers helped a lot and became an extra

motivation to keep on working.

To all of them I wish the best in their future, professionally and personally, and

hope to see, and maybe work with, in another occasion.

6

7

Contents

Preface .. 9

1. Preliminaries ... 12

1.1 Background ... 12

1.2 Components .. 13

2. Methodology ... 22

2.1 Connecting with the robot ... 22

2.2 Connecting with the Leap Motion Sensor ... 23

2.3 Understanding new data .. 24

2.4 Safety considerations .. 26

3. Results... 31

3.1 Computer program .. 31

3.2 Robot response analysis .. 37

4. Discussion ... 38

5. Conclusions ... 40

6. Appendices ... 41

6.1 Computer code .. 41

7. References ... 69

8

9

Preface

Once, reading Physics of the Impossible [1], by Michio Kaku (San José,

California, USA, 1947), I got surprised when along a full chapter the author

reveals how far intelligent robots are from current human possibilities.

Besides the not of little interest discussion about the possibility of achieving

or not a real artificial intelligence, where the fundaments of the very concept of

thinking is revised and the “Turing test”
1
 presented, I found specially interesting

the dissection of robots apparently insurmountable limitations and their causes.

He uses the example of a fruit fly that, with a tiny brain containing only

250.000 neurons, is able to easily fly around an unknown three-dimensional

environment, avoiding all possible obstacles while performing complex flight

paths effortlessly. On the other hand, the descendants of SHAKEY (the first robot

able to navigate around the “real world”) still suffer to navigate around a two-

dimensional space with only square and triangular obstacles, in spite of the fact

that they equivalently have a much bigger computational power than the fly.

At that point I realized how much methods need to change to bring robotic

sciences to a next level I thought was around the corner. If one thinks, there is no

way within the mathematics or the infinitesimal calculus able to express such

truths as than a rope can pull but not push, animals do not like pain or than time

cannot go backwards.

Kaku talks about two different teaching strategies. He distinguishes between

a top-down approach, where the programmer implements into the robot the

knowledge he wants it to have as a predefined set. In the case of the fly, it would

1
 The “Turing test” ends with fruitless philosophical discussions about

whether a machine can think or not and states that if a man cannot see the

difference between the answers of a man and a machine when talking to them, the

machine passes the test. The chapter, and the whole book, is highly

recommendable to anyone that could be interested in such topics.

10

consist on designing an algorithm with recognition patterns to make the robot able

to identify obstacles, and it would simply work or not.

In a bottom-up approach, on the contrary, the robot is given no knowledge

but the means to learn by itself. In the previous case it would learn how to avoid

obstacles by virtue of colliding lots of times with them (as a baby that is learning

how to walk).

Both approaches have shown virtues and defects to this day. To find a

balance between these two perspectives may be the key for powering robot

capabilities in the future society.

However, when thinking of teaching a robot that has room for learning the

question “How?” arises. Given the nature of the bottom-up approach, intuitive

natural ways for humans to teach robots are required, since a pure programmatic

set of knowledge to be implanted in the robot has few potential to evolve (would

be close to the top-down approach instead).

With all these ideas in my mind and a brand-new Leap Motion Sensor the

University of Lund put in my hands, I decided to explore the interesting world of

robotics from this teaching-learning approach, ready to encounter the difficulties

that by all means one can expect when getting into a new field of study but also

with the inherent thrill this causes.

Therefore, the aim of the present thesis is to explore the possibilities a Leap

Motion Sensor can offer when trying to control a robot and, furthermore, to teach

it. Such an undertaking venture must be properly approached and a step analysis

of goals to accomplish can be helpful.

Hence, prior to any move, the forthcoming efforts are guided to fulfill the

following, by order:

 (Preliminaries) To do a research about previous works on this direction.

To explore existing robot control options and teaching methods. To study

the components at disposal and their possibilities.

 To create a network among the components at disposal through which

data can flow from one to another.

 To develop an interface in order to control the robot in real-time using the

before mentioned sensor. To define a safe workspace before performing

any test.

11

 To approach the teaching concept creating ways for the system to store

movements as basic actions and making it able to combine them in order

to obtain more complex operations.

Obviously, when studying thoroughly each point, difficulties appear and new sub-

objectives to achieve must be settled in order to progress. An accurate explanation

of each case can be found within the respective section in the following chapters.

12

1. Preliminaries

Hereunder a short background analysis and components introduction can be

found. This gives an idea on how the present work, despite being innovative, has

not been the first step in this direction and how this thesis has relied on existing

components and previous studies to depart.

1.1 Background

There is quite literature regarding ways of intuitive and natural human control of a

robot. The use of cameras, specially the popular KINECT, has been widely tested

[2; 3; 4]. These attempts have been based on improving the computational vision

of the robot and getting data from the user through his body and the motions he

performs with it. Thus, several gestural commands can be understood by the robot

and specular imitations, for example, can intuitively be performed.

A deep understanding of natural human gesticulation by a robot is difficult to

achieve however. This occurs because the segmentation of human gestures can be

ambiguous (i.e., the switch between two consecutive gestures may carry transient

human movements that may modify the interpretation of the two genuine gestures

or even become a third one) and also because the spatio-temporal variability

involved in all human actions, even in gestures made by the same user [5].

Nevertheless, interesting attempts have been made to classify, distinguish and

interpret human gestures. These can be categorized, going from the more

spontaneous and natural to the more socially regulated ones, in the following

categories: gesticulation, languagelike gestures (which may replace words during

speech), pantomimes, emblems and sign language. The first one, which is based

on hands and arms movements, consists of about the 90% of total human gestured

communication [5].

Regarding the learning capability of a robot, Paul M. Yanik et al. [2] define

this feature as the mechanism by which some manner of feedback is used to

13

improve the future responses of this robot. In their work, they try to avoid labeling

and classification of gestures in benefit of a correct learning by means of trustable

user feedback.

In the search for this learning capability several options appear, most of them

conceived as the seeking of a proper policy able to maximize a reward function.

Different ideas can be found in [6], where examples of robots that actually learned

tasks through several trial-and-error methods are depicted. It is interesting as well

the Latent Space Policy Search presented by Kevin Luck et al. [7], where complex

humanoid redundant robots learn to pose on one leg staying balanced by these

learning methods.

While the robot is assimilating knowledge through these procedures, the

Neural Gas (NG) algorithm by Martinetz and Schulten [8] and the improved

Growing Neural Gas (GNG) by Fritzke [9] can literally build a knowledge net

similar to the way the human brain learns, settling the new information by means

of connecting existing and new nodes one to another, thus expanding the web.

On the other hand, professor Rolf Johansson et al. [10] have focused their

studies on this field on the segmentation part of knowledge acquisition. The so

called autonomous segmentation works with the idea of making robots able to

perform the segmentation of the taught actions by themselves. They illustrate this

with the example of cooking rice: imagine a robot that is intended to learn how to

cook rice. The point would be that when copying from the “teacher”, it could

distinguish sub-actions in this task of cooking rice, such as pouring water, stirring

the pot or scooping rice with a spoon. This would have tremendous potential

because it could easily be asked to repeat any of these sub-actions or even to

change the order of some of them, obtaining thus a huge potential of new derived

actions to be performed.

1.2 Components

To perform the desired control in the present work, several components have been

used. All of them were preexisting and their usage in this thesis has been courtesy

of the Lund University Department for Automatic Control, which ceded them to

the disposal of the author.

The control action here contemplated required at least three elements:

 A sensor: used to transform user gestures into computational data.

 A robot: used to see the results of the control system.

14

 A main computer: to manage all signals, compute outgoing data and

schedule threads on both sides.

In order to connect all these components a proper channel of communication

was also required. In this work the LabComm connection has been used to connect

the Main Computer and the robot.

A careful explanation of each of these components can be found in the

following points of this report. A basic scheme with the components that have

been used in this project and the direction in which data can flow among them can

be seen in Figure 1.1.

Although these components are great tools by themselves, here has been

intended to show that sometimes a combination of items can give place to

something bigger than the mere addition of the parts. The usage of these

components as parts of the control interface has sought this idea the whole time.

Leap Motion Sensor

The sensor role has been assumed by the Leap Motion Sensor. It is a desk device

developed by Leap Motion, Inc. consisting on a small light sleek sensor able to

detect human hands above it, alongside with their 10 fingers.

It physically occupies a small space on the desk but it is able to sense a

notable volumetric space above itself. It is thought as a human-machine

Figure 1.1. Preliminary conception of system composition and data flow direction.

15

interaction tool, ready to help in such different ambits as neat PC commandment,

gaming or design.

The most notable features
2
 of the sensor are:

 Precision: It is tremendously precise. It can keep track of all 10 fingers of

both hands with a precision of 1/100
th

 of mm. It is definitely much more

accurate than other existing motion control technologies.

 Workspace: The spherical conic space above the sensor extends to 150°

and 650 mm
(3)

 in the vertical z-axis. It gives a huge 3D space where

hands and movements are detected. The total volume of this enabled

workspace is 226.5 dm
3
.

 Real-time interaction: The data analyzed and sent at a ratio of 200 frames

per second, what gives a natural sense of instantaneous response.

It is remarkable that SDK packs exist, letting the user perform, adapt and use

all the potential the tool has, taking profit of the allowed access to the primary

code behind the commercially developed applications.

The physical connection between the sensor and the computer takes place via

USB 2.0 (microUSB 3.0 connectors) cable.

The comparison between the Leap Motion Sensor and the popular KINECT

cameras becomes inevitable. The main advantage of the first one lays on its

precision, much higher than in the KINECT. On the other hand, the KINECT has

a way bigger sensed workspace, including the whole human body and its near

surroundings while the Leap Motion Sensor has to limit its sensing to the user’s

hands space.

One could agree that combining both components their full potential can

arise. In a first control stage, making a robot walk long distances or move in a big

scale scenario, the KINECT cameras could be used. When a more precise control

was required, with the robot screwing a lightbulb or inserting a key into a bolt,

then it would be time for the Leap Motion Sensor to take the leading role.

In spite of that, this thesis has studied the Leap Motion Sensor case only.

2
 The following specifications are public and official and have been taken

from [15].
3
 This maximum z-axis value is the only exception to note 2. It has been

measured by own means and it has to be taken as an estimation value only.

16

Robot

The robot that has been controlled in this thesis is an ABB IRB 140. It consists on

a robotic arm with 6 degrees of freedom. It can handle a payload of 6 kg and reach

up to 810 mm (to axis 5). The robot itself weights 98 kg and its TCP can achieve a

maximum speed of 2.5 m/s and a maximum acceleration of 200 m/s
2
, as can be

consulted in the official catalogue [11].

The usual applications for which the robot is conceived are arc welding,

assembly, cleaning/spraying, machine tending, material handling, packing and

deburring. Although in this thesis the robot has not been intended to do any of

those concretely, the possibilities the touch-free control offers can be used in some

of them.

Robot space definition

The coordinate frames along the robot are established according to the

Denavit-Hatemberg convention. It is a methodology that makes it possible to

describe the relations between translations and rotations along subsequent

elements in an articulated chain, in the present case the robot arm.

To achieve this, a Cartesian orthonormal frame () is set for each

element in the chain, being the joint number and the number of

DOF of the robot. See the methodology in Algorithm 1, based on [12].

Algorithm 1. Denavit-Hatemberg frame construction

1: Set the base coordinate frame () with aligned with

the articulation 1 axis and pointing out of the floor. and

can be chosen conveniently.

2: for until do

3: Establish the articulation axes. Align with the motion axis

of joint , pointing toward next joints.

4: Establish the frame origin. It lays in the intersection of and

 or in the intersection of their common normal and .

5: Establish () ‖()‖⁄ . If both z-axis are

parallels, then along their common normal.

6: Establish in order to complete the right-handed coordinate

frame.

7: end for

8: Establish the flange frame. Set along axis direction and

pointing out of the robot. Set normal to both and as it is

required in order to complete a right-handed coordinate frame.

17

The Denavit-Hartenberg convention defines a set of parameters used to

illustrate the transformation from a frame at a joint to the next one [13]. Those are:

 Link length (): distance between the z-axis in and the previous one.

 Link twist (): angular difference between z-axes in and around

their common normal.

 Link offset (): distance along from the origin of frame until

the common normal with .

 Joint angle (): angular difference between x-axes in and

around the z-axis of frame .

A clarifying summary of what has been explained until this point can be seen

in Figure 1.2.

This set of parameters, properly defined for each transformation step from

 to , can be expressed as a transformation matrix, resulting of two

translations and two rotations. It is

 [

 () () () () () ()

 () () () () () ()
 () ()

] (1.1)

where means a rotation (if R) or a translation (if T) around or along the

a-axis of an angle a or a length b.

The global transformation matrix for a robot can be obtained multiplying

these A-matrices from the base to the flange, considering the order. Forward

kinematics is the transformation applied to calculate TCP position and orientation

in a Cartesian workspace from a set of joint angular positions, usually expressed

as qi. It has always a unique solution: given a joint configuration there is one and

only one position and orientation for robot’s TCP.

The inverse calculation can theoretically also be performed. It is called

inverse kinematics and intends to obtain a set of joint angular positions given a

specific position and orientation of the robot’s flange. It can be much harder to

solve and it can have no analytical solution or this one can be not unique: for a

certain position and orientation of robot’s TCP, a suitable joint configuration to

achieve it may not exist. Moreover, if there are several solutions, possible jumps

18

in reference signals may appear [13]. For a 6 DOF robot, however, it can be

demonstrated that has always at least a solution (inside the workspace) [4].

Regarding the velocities of the TCP, both linear and angular (), the same

transformations can be applied, relating them with the rotational velocities of each

joint ̇ in what is known as velocity kinematics. The so called Jacobian is a

commonly used matrix to perform this transformation. This matrix has 6 rows and

 columns (being the number of DOF of the robot). It depends on the joint

configuration q at each instant of time, so one can say that

[
 ()
 ()

] (()) ̇()

(1.2)

is true [13]. In the same way as before, contemplating the problem in the

other way around can be interesting if the desired flange velocity is known and

one wants to calculate the required joint actions which cause it. In this case,

 ̇() (())

 [
 ()
 ()

]

(1.3)

but one can see that if the inversion of the matrix is not possible, the inverse

velocity kinematics study will not be possible.

Studying the Jacobian it can be seen that singularities may appear for certain

configurations of the joints. Specifically, they will at any time in which has no

Figure 1.2. Denavit-Hartenberg visual example

19

maximum rank; this means at any time when two axes are aligned or whenever the

flange reaches an edge of the workspace. Singularities require special care because

they imply that certain directions of movement are not possible and that bounded

TCP velocities may cause unbounded joint velocities [13].

ExtCtrl

The robot controller is composed by two internal computers: the Main Robot

Computer (MC) and the Axis Controller Computer (AXC). The first one is in

charge of the high level control of the robot (e.g., path planning and feed-forward

control), while the second one is just intended to perform the low level control,

acting on each joint.

 ExtCtrl is a protocol conceived to intercept the internal data in the robot

controller, actuating thus in its behavior from an external computer. When the MC

sends data to the AXC the interception of this communication takes place and

allows external control, q.v. Figure 1.3.

This middle step actuation is defined through a Simulink model compiled by

Real-Time-Workshop [4]. On the one side, it gets references sent by the MC,

sensory data concerning the current state of the robot and, if required, LabComm

predefined outgoing variables. On the other side, it delivers expected signals such

Main Robot Computer

(MC)

Axis Controller Computer

(AXC)

Simulink

Controller

rq rq

External

Action

r

Figure 1.3. External Action Interception diagram

20

as torque, velocity and position for the robot (among others) and, if required,

LabComm predefined incoming variables.

Main Computer

The essential communication between the Leap Motion Sensor and the robot to be

controlled requires by all means a main computer as an intermediate stage, which

is going to be in charge of understanding the Leap Motion Sensor data, computing

it according to the desired control specifications and sending the appropriate

signals to the robot, in order to make it behave as required. Moreover, the

computer will also be responsible of managing times and ensuring a free-of-

conflicts access to the exchanged data by all parts.

In this present work this main computer role has been assumed by a laptop

Acer Aspire E1-571 running under Windows 8. Visual Studio
4
 has been used as

code editor and compiler platform and the programming language used has been

C#. The nature of the created software architecture and its characteristics will be

accurately explained in Chapter 2.

The understanding of the Leap Motion Sensor data can be made through its

own SDK (software development kit) that, as has been told, can be easily

downloaded
5
. This software transforms the Leap Motion Sensor signals into

intuitive notions such as fingers, hands, positions of those or gestures, facilitating

hugely the programmer work.

In order to facilitate this interpretation of user commands through the Leap

Motion Sensor, part of the work of ErghisTech, a small Swedish enterprise

interested in free-touch ways of communication between humans and machines,

was used.

Thence, given the collaboration with ErghisTech, the software used was

actually provided by this enterprise, consisting in a more evolved version of the

standard SDK pack including very interesting features such as the air keyboard

developed by them and their concept of a virtual sphere to be hold (see Figure

1.4).

4
 Microsoft Visual Studio Express 2012 for Windows Desktop.

5
 It can be downloaded for free at https://developer.leapmotion.com/.

21

Finally, once sensory data is properly understood, the main computer has to

send clear commands to the robot. To achieve so, it is necessary to establish a

channel through which both the main computer and the robot can interact. This

has been done with a LabComm connection, q.v. next section LabComm

Connection.

LabComm Connection

The LabComm Connection protocol is a communication protocol developed by

the Department for Automatic Control of the LTH, in Lund. It allows the

communication between a computer connected to the local network and the

controller of the robot. It gives a transmission rate suitable for a correct control.

LabComm requires explicitly stating the variables that are going to be sent

through the network into an .lc file. This file is then compiled using the LabComm

compiler and kept on both sides of the connection for them to be able to identify

the incoming and outgoing data [14].

Figure 1.4. Promotional image by ErghisTech where the sphere concept can be seen.

22

2. Methodology

The main goal of this work has been to create a single program for the main

computer able to deal with the connection with the robot and the one with the

Leap Motion Sensor, acting as a linkage and data manager.

2.1 Connecting with the robot

On the one hand, in order to connect the main computer with the server using C#

language the LabComm protocol was used. This apparently simple task became a

real endeavor in the present thesis. The first intuition one can have may be to

establish the connection between the main computer and the robot directly, but it

turns out to be impossible because of the use of C# in the first part, which has no

implemented methods to deal with the procedures required in the robot side.

Hence, a third element must be introduced, assuming the client role and

acting as a linkage between both entities. Its name, and the one that will be used

for it from now on, is Central Station. This is a lab computer that, in Python

language, starts two threads, one sending data from the main computer to the robot

and the other one in the other way around. Time and master’s thesis advance

proved this second thread to be unnecessary as long as the returning data is not

taken into consideration in the designed program.

To establish such a communication, encoders and decoders were needed.

They are part of the LabComm protocol and are used to convert a variable with its

values into a signal that can be sent through the network and, once it has arrived to

its destination, be converted back in order to understand it.

The last problem with this connection was the existence of two LabComm

versions. On the one side, the Central Station and the main computer use a late

version of the protocol (2013) while, on the other side, Central Station and the

robot controller use the old version (2006). Given therefore the existence of two

23

different .lc-compiled files, one for each version, a careful use of signatures after

coding and decoding became fundamental to achieve a correct communication.

The basic .lc file, called leap_labcomm.lc states as follows:

sample struct {
double data[7];
int jogbyjoint;
} leap2extctrl;

sample struct {
double data[7];
int jogbyjoint;
} extctrl2leap;

The distinction between leap2extctrl and extctrl2leap is merely a convention

to clarify and organize data to keep clear in which direction it flows. As has been

said, extctrl2leap was not used and has only been maintained in the program for

possible future uses.

2.2 Connecting with the Leap Motion Sensor

The connection with the Leap Motion Sensor could be performed with the

standard Leap Motion Sensor software, but in this case was made through the

software provided by ErghisTech. This slightly differs from the standard one

developed by Leap Motion Sensor, having differences such as variable names and

function declarations. On the one hand, this makes impossible to consult general

Leap Motion Sensor developers’ forums which talk in terms of standard methods,

but on the other hand, the methodology designed by ErghisTech and their sphere

conception can be used.

In general, data acquisition can be made through polling (to ask for data

whenever the application is ready to deal with it) or through callbacks (the sensor

sends the data as soon as it is updated). In the present work the second choice was

used, in concordance with ErghisTech methods. A listener was implemented and

the function OnErghisFrame() used. This comes to mean that the Leap Motion

Sensor will set the data flow ratio and the application will never receive either two

samples for the same frame or skip a frame (this can happen in polling).

Callbacks require threads. In this case, given that only one source was

reading from this thread, no semaphores were needed. New data was saved into a

24

local variable in Main Program as soon as it was received and then sent to Data

Management to be interpreted.

2.3 Understanding new data

Once data could be clearly read from the sensor and clearly sent to the robot,

control could begin.

First of all it is fundamental to clearly define what is the robot required to do

and how is the user going to be able to make the robot do it. When thinking of

these desired responses and possible user commands it has to be kept in mind that

the control object will be an ABB IRB-140 arm robot and the control tool a Leap

Motion Sensor.

Robot responses required

It is intended to take profit of all robot capabilities. At the most basic level, for an

arm robot, this means to make the robot:

 Translate its TCP in all 3 directions within its limits.

 Rotate its TCP in all 3 directions within its limits.

 Lock one or some directions to make the robot translate or rotate, for

example, along a single relevant axis or a defined plane.

 Implement specular imitation. This is, make the robot able to follow the

position and orientation of user’s hands in a mirror-like way.

 Use joint-by-joint motion, meaning to translate and rotate the TCP as a

result of the motion of a particular robot joint, within its limits.

 Grab and release the robot gripper.

 Change the speed at which the robot makes all the above listed actions.

From a higher level it can be very interesting, and is actually a goal of this

thesis, to make the robot learn specific actions, composed by one or several of the

above listed. Thus, the ability to record actions, to store them and to let the user

navigate through them is also contemplated.

In the same way, it is desired to make the user feel a comfortable and natural

control over the robot, so live continuous commands are preferred, rather than

predefined numerical definitions or discrete modes.

To achieve such a wide range of objectives it is required to create a menu-

like navigation system. The robot has to know where it is and act properly. This

25

comes to mean that the same user action will not cause always the same robot

response.

Some of the menu levels have to be:

 Main Menu: The first stage the user fronts. It lets him choose what

he wants to do.

 Motion Modes: Different options for the user to control the robot.

 Teaching mode: The user can start recording an action or play,

rename or delete an already recorded action.

User control possibilities

The Leap Motion Sensor, with the SDK pack, can obtain a lot of information

about the hands it has over it. It can get:

 The number of hands and fingers exposed (maximum 2 and 10,

respectively) and their identification.

 The position and rotation of a given hand (in all 3 axes), within its

volumetric range.

 Recognition of several gestures, like a hand folding into a fist or

finger-tapping.

An interesting gesture that was not implemented was the clap. It was created

by own means considering the two most representative characteristics of a clap:

the hands contact at the end of the gesture and they have a certain velocity in their

way there. Thus, the method isAClap() checks at any time the variation on the

hand-to-hand distance. When this becomes bigger than a certain speed boundary a

second clause is triggered, beginning to check if this distance gets closer than a

certain distance boundary during the next half second. If it gets, the method return

true (a clap has occurred). If it does not, the program gets back to its original

speed monitoring state. This conception prevents fast hand movements, where

hands are far from each other, or slow hand approximations to be mistaken as

claps. Between two consecutive claps a certain time is required to avoid multiple

positives because of a single clap.

Control guide

The control guide is the definitive matching solution adopted to solve the control

problem here studied. It relates each robot response requirement, previously

stated, with a certain user’ commands combination to achieve it.

26

Several options were studied and contemplated, because there are lots of

possible solutions to the matching problem. The final a decision was made taking

into account aspects as compactness and coherence of the solution, easiness to

understand and follow by the user and easiness to be implemented.

When possible, the program intends to let the user decide. He can choose

between different control ways for him to feel content. For example, several ways

of controlling the speed are thought to be appealing. In this case, the author’s

intention is not to decide one of these options and discard the others but to let the

user choose according to his preferences and working circumstances.

Converting data

Once the data captured by the Leap Motion Sensor is understood following the

control guide it has to be transformed into something that can be sent to the robot

in order to make it behave as expected.

The Simulink controller has room for user-defined variables, specified in the

.lc file. In this case those variables are a vector of 7 components (6 DOF +

gripper) and an indicator of whether this vector refers to joint values or to absolute

linear speed values. In the second case, it is also needed to specify if the speed

comes from Linear Commandment or from Specular Imitation, because in the

second one, filtering will be required. The software that has been developed in this

thesis accomplishes this point, storing data in the variables called data and

jogbyjoint. Both are the variables to be encoded and sent.

2.4 Safety considerations

The Leap Motion Sensor is an accurate device, but in spite of that, the flow of

information from the user hands to the sensor is not free of errors and it can

mistake values sometimes, therefore completely wrong instructions may be sent. It

is supposed to detect hands, but it is thought to be shown only hands also. If a

distracted user, for example, exhibits his chin to the sensor it will take some value

for it, as if it was a finger, so undesired control action may occur.

Moreover, is a basic principle of this thesis to consider always the worst case,

so even if a nearly perfect sensor performance could be assured, safety

considerations would still remain stated as fundamental, ready to deal with

unexpected distortions.

27

Here safety considerations refer to the prevention of hits between the robot

and the user, the robot and its surroundings and the robot with itself, which may

result in human, robotic or material damages.

Positional saturation

The first kind of hits may be easily avoided keeping the user executing the

control out of the reach of the robot, given that no direct interaction (contacts) are

required in this work.

The second kind of collisions is very important, because it has to be noted

that the current emplacement of the robot in the laboratory leaves objects inside its

area of influence, hence a bad control (due to user distraction or sensor

misunderstanding) can easily result in a clash. It is overcome by defining invisible

walls the robot can by no means breach. The location of these walls in the working

environment of the robot can be seen in Figure 2.1. The green wall was created

with testing purposes only.

What the wall actually does is to saturate the robot’s linear speed to zero in

the outgoing direction in function of its TCP position. Moreover, a linear

Figure 2.1. Workspace virtual walls.

28

interpolation of this saturation has been performed to avoid abrupt clashes with the

invisible walls, converting them into soft walls. Once in the wall, the TCP can

only be moved back to the workspace or along the wall.

Note that it would be extremely easy to define alternative walls in another

working environment.

Regarding “autocollisions” or the ones between the robot and itself, once

they are produced it is important to stop the movement there; otherwise motor

damages can appear. One can distinguish two degrees on them:

- 1
st
 degree autocollisions: Those produced between two consecutive links.

They can occur when a joint angle gets too small and the rigid parts at each

side collide. To deal with them, joint speed saturation has been performed

in function of the angle at each joint. If a user forces a joint to its limit, the

controller will ignore further changes and allow only releasing joint

velocities.

- 2
nd

 degree autocollisions: Those produced between two non-consecutive

links. Much harder to prevent, and also much more uncommon, have been

left unrestrained given the complexity of their management. Users must be

asked to avoid them.

Velocity saturation

Although there is no planned way to give the robot an uncontrolled velocity, their

final control is still a must. The incoming velocity always passes through a

saturation block in the controller where it is assured to be within safe boundaries.

In addition, the ultimate joint velocity is checked to be within boundaries

again, preventing cases such as near-singularity movements (q.v. Singularities

management, below).

Singularities management

As exposed in the introductory part of this paper (q.v. Robot space definition),

given some joint configurations singularities may appear. So far, this thesis has

protected the workspace environment edges, but another cause of these

singularities may lay in the alignment of links.

In such a configuration, the inversion of the Jacobian tends to infinite,

resulting in huge velocities. This would not be problematic given that final joint

speed is properly saturated, but if a joint reaches the total alignment can become

stuck and be unable to leave that state unless giving a direct joint action.

To avoid such a case, a baptized Singularity Crosser has been performed. It

is intended to act when the user is in either Specular Imitation or Linear

29

Commandment modes and the robot is going to cross a singular links-aligned

position.

The crosser keeps control of the angular position of joints 3 and 5, the ones

that may cause link alignments. When the angle lies within predefined small

margins covering the singular position, it takes control of the speed of the joint

and forces it to be high enough to ensure it exits the singular zone in the next

sample of time. This speed value is none other than two times the half-margin (see

Figure 2.2). Thus it is impossible for a joint to rest at a singular position.

Hands surveillance

Two main problems may be identified when thinking about following the track of

the user’s hands the whole time:

Entering and leaving the workspace without disturbances:

A problem arises when thinking of the needed exposure and retreat of the

hands above the Leap Motion Sensor and how to make the sensor distinguish

between a voluntary command and an inevitable motion for the user to place his

hands over it or to retreat them.

To prevent such confusion, a certain gesture is decided to be used to define

the start and end of the motion time. This gesture is thought to be a clap.

Moreover, this clap can additionally be used to define a reference system adjusted

to the user’s most comfortable starting position.

Figure 2.2. Singularity by alignment of axes contemplation.

30

Hence, a clap will first scan the user’s hands’ position and set is as the

reference origin point and next trigger the sending of non-zero data to the robot,

making it move. A second clap will finish this transit, stopping any motions and

allowing the user’s hands to retreat in a safe way.

Confronting interruptions:

Another problem may appear when realizing that at some points during the

control action, the Leap Motion Sensor suddenly loses track of the user’s hands,

thus sending suddenly a zero value for all moves. This sort of error can be caused

most likely by inappropriate room lighting or simply because the user left the

workspace without noticing.

The reacquisition of hand’s track has proved to cause speed peaks that by all

means must be avoided.

To solve this, a Softener is implemented. Its mission consists in linearly

modulate the intensity of all sent signals between zero and its true value during the

first two seconds after any loss of track. Thus, peaks are avoided.

If the loss lasts more than three seconds, the signal is considered lost and a

new clap is required to restart the movement.

31

3. Results

The final results of this thesis are presented below.

3.1 Computer program

The previously presented possibilities-requirements problem, introduced in

section 2.3 , is finally solved with the hereunder presented control guide and an

interface thought for the users to easily understand where they are and what can

they do in each mode. The hierarchical structure of the program can be seen in

Figure 3.1.

To navigate throughout the different levels of the menu the user has to tap

Figure 3.1. Hierarchical organization of modes scheme

Main Menu

Teaching Mode

Record Action

Play Action

Rename Action

Delete Action

Build Action

Linear
Commandment

Joint-by-joint
Jogging

Specular
Imitation

Advanced
Options

Speed
Options

Dimensional
Locking

32

using his fingers onto the virtual sphere. At each mode, he will see in the screen

all the modes he can access from that point and which finger triggers which mode.

When leaving the main menu stage, a back button will appear for him to level up

to the previous step if he wants to deepen into another branch instead.

Once being said that Main Menu is only a gate to access the different modes

available, the rest of the modes Figure 3.1 shows will be explained below this.

Teaching Mode

This mode aims to be a tool for making the robot to learn. Using action

segmentation concepts, the robot is meant to be able to store sub-actions taught by

the user one by one and to let this user build new, maybe more complex, actions

using these small ones.

With further studies, and taking full profit of the Autonomous Segmentation

theory, the robot would even be able to distinguish these sub-actions from a big

taught action by itself. Moreover, it would be very interesting to let the robot try to

compose new actions under its own judgment, using for example some policy-

reward algorithms to make it reach a specific objective.

So far, the Teaching Mode has only available the following commands:

 Record Action: The program is ready to start recording the next motion

performed by the user, being the following two claps the start and end of

this recording. The new action is going to be saved in a text file with the

present date and time as filename.

 Play Action: The robot reads a previously recorded action from a stored

text file, repeating identically the action the user performed before when

recording.

 Rename Action: The user is able to change the default name of a file

(present time) for a more representative one of what the action does

actually do, e.g., “Waving”.

 Delete Action: The user can remove a previously recorded action from

the actions folder if he wants to discard it.

 Build Action: The user can build a new action using previous actions as

pieces. He can create a sequence of sub-actions combining them in

whichever order, repeating several times a certain one and adding rest

periods in between. Note that this functionality was not completely

implemented in the final version given time constraints.

33

Motion Modes

The so called Motion Modes are those where the user does actually move the

robot in a direct way. They are named Linear Commandment, Joint-by-joint

Jogging and Specular Imitation. All this modes require a clap to start sending data

and habilitate the motion of the robot.

Linear Commandment

In order to rotate and translate linearly the TCP of the robot, the user has to

rotate and translate his hands over the Leap Sensor Motion.

Given a reference origin point, a centered natural position for the user over

the sensor that is defined after clapping, when the user’s sphere center reaches a

certain distance from this origin, along one or several axes, the program will

understand “translation” in those several axes in the specific direction the user has

moved his hands towards.

X-axis Y-axis Z-axis

Figure 3.2. Linear Commandment mode user instructions for translating and rotating

along and around all three axes; with axis definitions.

34

When the user’s hands reach a certain inclination respect the original

position, around one or several axis, the program will understand “rotation”

around those axes in the specific direction the user has rotated his hands around.

The velocity of these movements will not depend on the distance from the

origin to the current position but from the predefined speed and the size of the

virtual sphere at every instant of time (this is further explained in Speed options,

later in this chapter). In Figure 3.2 the motion along the 6 DOF of space can be

seen. The blue sphere represents the virtual sphere the user is holding the entire

time.

Joint-by-joint Jogging

This mode is used to move a specific joint individually Given that there are 6

joints and the user has 8 tapping fingers, an ordered numbering is made hence the

user can select which joint he wants to move by tapping the chosen joint. The last

finger exits this mode. A visual example can be found in Figure 3.3.

Once in Joint-by-joint Jogging, the tilting of hands up and down (around the

x-axis, q.v. Figure 3.2) will make the robot move around that joint in one or other

direction.

Specular Imitation

In this mode the robot will follow the user’s hands’ position in a mirror-like

way. It is possible to choose among three levels of scaling, depending on if it is

desired to perform a more or less precise move.

Figure 3.3. Joint-by-joint mode menu

35

Specular Imitation works as follows: at each frame, the Leap Motion Sensor

captures the current position (center of the sphere’s position) but stores the last

known position, so the difference can be calculated and the velocity obtained.

Sending this velocity rather than the position to the controller avoids the

calculation of inverse kinematics (required for saturations) and simplifies the

Simulink model (no new branches have to be created). The only noticeable thing

is that a low-pass filter will be required to soften the robot’s motion; otherwise it

results noisy and brusque.

In order to give more – actually unlimited – space for the user to perform

movements, the concept of scrolling appears. In this context, to scroll means to

change the reference system from one point to another within the workspace

without moving the robot. If the user wants to scroll he has to close his right hand

into a fist, move or rotate to the new position, open it back resetting the reference

and continue with the motion. The concept of scrolling can be easily understood

looking at the example in Figure 3.4.

Advanced Options

This static mode allows the user to define how he wishes to perform the control of

the robot. Speed options and dimensional locking can be adjusted, always by

direct tapping.

Figure 3.4. Scrolling example: a) the user would like the robot to move lower, but he

has no room above the sensor. b) he turns his right hand into a fist and moves up, the

robot ignores him and stays still. c) the user unfolds his right hand and gains control

of the robot again, now having room to move it lower.

36

Speed options

When shifting the left thumb, the user can turn the Sphere Modulation on or

off, decide the basis speed and decide the basis scaling.

The Sphere Modulation is related to the size of the virtual sphere the user is

holding at all times. It is used to modulate the speed at which the robot moves in

real-time: for small precise and slow movements, both hands have to be close

from each other, holding a small sphere, while for big fast movements both hands

must be separated, holding a bigger sphere. This is an analog process with a

continuous modulation, thought for the user to experience a real control sensation

in a very intuitive way.

While running under Specular Imitation mode, the Sphere Modulation will

not change the speed but the working scale, what will result also in a very intuitive

control feeling.

By default this option is on, but if the user prefers to deactivate it, he can

easily do it tapping onto the switch in this Advance Options mode.

The basis speed is used to predefine what kind of motion the user intends to

perform. He can choose among Slow, Medium or Fast speeds.

In a similar way, the user can decide the scaling factor used in Specular

Imitation, among Precise, Normal or Big scales.

The effect of both Sphere Modulation and predefined speed and scaling

factors is combined into the final resulting speed as a multiplication of factors.

Dimensional locking

The user has full control over the dimensions in which the motion is allowed.

He can explicitly impede translations or rotations along or around certain axes if

he wants, for example, to work over a plane or a straight line.

Moreover, he is supposed to be able to restrict motions to a single dimension

or a plane online (while performing in a Motion Mode), by shifting his right

thumb or both right and left, respectively. This was conceived to give fast access

to usual restrictions, improving the control experience.

However, these modes have proved to fail a bit in some lighting conditions,

because of sensor misunderstandings. In any case, the user has freedom to turn

these functionalities off if he wants.

Gripper control

The gripper can be controlled while the user is in a Motion Mode turning the left

hand into a fist. Then, tilting the right open hand up and down will make the

gripper respectively grab and release.

37

3.2 Robot response analysis

Although the robot followed well the user’s commands during trials at lab, a finer

analysis was made to clearly see until what point it was following the reference

properly.

Joint-by-joint mode was used and reference speed and actual position were

plotted (see Figure 3.5).

It can be seen that no significant response delays appear and that saturation

due to invisible walls work well (position is attenuated around -1 radians even

though reference speed was increasing).

It is also apparent that there is a mismatch in rotation directions between

reference and response (a positive speed makes the robot move towards a negative

direction). However, it has no effect in the user’s perception of motion and is left

as it is.

Figure 3.5. Reference speed vs. actual position for Joint 1

38

4. Discussion

The achieved results are satisfactory and positively accomplish this thesis’

objectives, but it must be said that the full potential of this control and learning

interface has not been used.

Due to time constraints, final tests to perfect the control and the interface

(e.g., reduce sensor mistaking signals and deal with them when they appear, fully

implement the Build Action method or improve final screen interface shown to the

user) were not performed.

Nevertheless, in general lines, the program works well and accomplishes the

basic objectives that were thought for the control experience. Hereunder, all

program modes performances will be discussed.

Teaching Mode:

So far the program records actions by storing all sent data into a text file and

it then plays the action by reading from the file instead of listening to the sensor. It

would be interesting to think of a different way of storing that could be

meaningful, like calculating the described trajectory and the velocity at each

instant of time.

Some problems related to the dynamical declaration of commands in the

ErghisTech definition software impeded to satisfactory choose which action is to

be played, renamed or deleted. The correction of this error should not be much

complicated.

Finally, to create the Build Action method would have been very interesting

and, furthermore, to implement new concepts for the robot to try Autonomous

Segmentation over a recorded action would be a must in future research on this

topic.

39

Motion Modes:

Motion Modes have proved to be useful and the wide range of adjustments

allowed regarding speed or scaling makes them easily adaptable to several kinds

of situations and working conditions.

Improving the sensor detection capability to avoid the occasional loss of

track of the hands or at least soften this empty frames’ effect could be a line of

study. Moreover, it could be room for improvement in filtering the noise of the

robot response in Specular Imitation mode.

Advanced Options:

The program allows the user to configure settings according to his

preferences in order to obtain a tailored control system. Moreover, the

implementation of new features would be relatively easy and the program could be

adapted following user’s demands.

Another point of discussion is the balance between the control made in the

program, allocated in the Main Computer, and the control performed in the

Simulink Controller, allocated in the Central Station. The final result uses both

resources to take care of the several aspects the control cares about, that have been

detailed in the previous chapters.

However, it is thought that in order to facilitate the implantation of this

software into another robots rather than the one in the Robotics Lab that have been

used so far, it would be interesting to concentrate all the control efforts in one side

only, preferably in the Main Computer, leaving for the Simulink Controller only

the task to deliver received signals to the robot.

So far, the Simulink Controller is additionally responsible of computing

forward kinematics and Jacobian matrices in order to perform safety saturations as

explained in section 2.4 , as well as filtering the Specular Imitation signal to

reduce noise and performing the integration from the reference velocity to the

reference position. This tasks could be integrated into the Visual Studio solution in

the Main Computer, resulting into a more compact and portable software.

40

5. Conclusions

Once the work is finished and time gone, it is interesting to have a look at the

initial objectives and see what has been accomplished and what not.

 A working network was satisfactorily created in the Lab, linking for the

first time a Windows 8 laptop with C# language code with the robots

through the LabComm protocol.

 The Leap Motion Sensor has proved to be a useful device very capable of

allowing human-robot communication in a natural way.

 A control guide was developed, proving to be useful when making the

robot perform its most basic actions such as translate, rotate, jog by joints

and follow a positional reference.

 Basis for task teaching have been settled. Although being true the final

result is quite far from the initial expectations about making the robot

learn, a clear path can be seen, at least, until the robot creating new action

by composing stored sub-actions.

 Other future research lines and improvements for the interface to become

a potentially useful tool for users to control robots in nowadays market

can be descried; those that have been discussed in the previous section.

41

6. Appendices

6.1 Computer code

In this section, the whole code that lies beyond the final program is presented. It is

divided into the natural different files it is composed by.

Main Computer (MyProject)

The entire code is written in C#.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.ComponentModel;
using System.Threading;
using System.Windows.Forms;
using Erghis;

namespace ErghisExternal
{
 public class MainProgram
 {
 public static double[] outgoingData = new double[7];
 private static Thread leapThread;

 //Internal Data parameters
 public static Data data = new Data(); //last frame of leapData
 public static Data olddata = new Data(); //previous frame of leapData

 public static bool firsttime = true;
 public static DateTime startingTime = DateTime.Now;
 public static bool justLost = false;
 public static DateTime exitTime = DateTime.Now;

 public static void Main()
 {
 //Present the program

42

 Console.WriteLine();
 Console.WriteLine("Leap Motion Sensor Robotic Control. v1.0");
 Console.WriteLine("==");
 Console.WriteLine(DateTime.Now);
 Console.WriteLine();

 ErghisExternal.Program.Setup();

 //Starts getting data
 //in a new thread, to ensure that gui is not locked
 leapThread = new Thread(run);
 leapThread.Start();

 //Establish a connection:
 ExtCtrl.LabCommManagerServer ls = new ExtCtrl.LabCommManagerServer();

 //Holds the program
 Console.ReadLine();
 }

 //The Erghis launchment
 private static void run()
 {
 Application.Run(new Erghis.Form1(ErghisExternal.Program.EC));
 }
 }
}

Code 1. MainProgram.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;
using System.Threading.Tasks;
using System.Windows.Forms;
using Erghis;

namespace ErghisExternal
{
 public class Program
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 ///
 public static ErghisController EC;
 public static ExternalListener listener;
 public static Commands commands;

 [STAThread]
 public static void Setup()
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);

43

 //Create a new ErghisController
 EC = new ErghisController();

 //Create an instance of your listener
 listener = new ExternalListener((ErghisOrbStyle)EC.Settings.GetStyle(), EC);
 EC.SetListener(listener);

 //If you want to define custom commands for the keymaps, do so here

 //Create a new class to hold the code
 commands = new Commands(EC);

 //Register a new command in the keymap
 //Parameters:
 //Name as it appears in the keymap
 //Delegate of the method to be run on that tap
 //How the command will appear in the GUI
 //Default keymap:
 EC.RegisterCommand("[KEYMAP]", new Keymap.VoidDelegate(() =>
commands.SwitchKeymap("mainmenu")), "Robot");

 //Main menu keymap:
 EC.RegisterCommand("[Teach Mode]", new
Keymap.VoidDelegate(()=>commands.SwitchKeymap("teachingmode")), "Teaching Mode");
 EC.RegisterCommand("[Jog by joints]", new Keymap.VoidDelegate(() =>
commands.SwitchKeymap("jogbyjoint")), "Jog by Joints");
 EC.RegisterCommand("[Jog linearly]", new Keymap.VoidDelegate(() =>
commands.SwitchKeymap("freejogging")), "Linear Commandment");
 EC.RegisterCommand("[Options]", new Keymap.VoidDelegate(() =>
commands.SwitchKeymap("options")), "Advanced Options");
 EC.RegisterCommand("[Tracking]", new Keymap.VoidDelegate(() =>
commands.SwitchKeymap("tracking")), "Specular Imitation");

 EC.RegisterCommand("[Back to menu]", new Keymap.VoidDelegate(() =>
commands.SwitchKeymap("mainmenu")), "Back to Menu");

 //Jogbyjoint keymap:
 EC.RegisterCommand("[Joint 1]", new Keymap.VoidDelegate(() =>
commands.SwitchJoint(1)), "Joint 1");
 EC.RegisterCommand("[Joint 2]", new Keymap.VoidDelegate(() =>
commands.SwitchJoint(2)), "Joint 2");
 EC.RegisterCommand("[Joint 3]", new Keymap.VoidDelegate(() =>
commands.SwitchJoint(3)), "Joint 3");
 EC.RegisterCommand("[Joint 4]", new Keymap.VoidDelegate(() =>
commands.SwitchJoint(4)), "Joint 4");
 EC.RegisterCommand("[Joint 5]", new Keymap.VoidDelegate(() =>
commands.SwitchJoint(5)), "Joint 5");
 EC.RegisterCommand("[Joint 6]", new Keymap.VoidDelegate(() =>
commands.SwitchJoint(6)), "Joint 6");

 //Options Keymap
 EC.RegisterCommand("[Allow speed modulation ON/OFF]", new
Keymap.VoidDelegate(() => commands.SpeedModulation()), "Hands Modulation");
 EC.RegisterCommand("[Slow]", new Keymap.VoidDelegate(() =>

44

commands.ChangeSpeed("Slow")), "Slow");
 EC.RegisterCommand("[Medium]", new Keymap.VoidDelegate(() =>
commands.ChangeSpeed("Medium")), "Medium");
 EC.RegisterCommand("[Fast]", new Keymap.VoidDelegate(() =>
commands.ChangeSpeed("Fast")), "Fast");

 EC.RegisterCommand("[Precise]", new Keymap.VoidDelegate(() =>
commands.ChangeScaling("Precise")), "Precise");
 EC.RegisterCommand("[Normal]", new Keymap.VoidDelegate(() =>
commands.ChangeScaling("Normal")), "Normal");
 EC.RegisterCommand("[Big]", new Keymap.VoidDelegate(() =>
commands.ChangeScaling("Big")), "Big");

 EC.RegisterCommand("[Allow single dimension lock mode ON/OFF]", new
Keymap.VoidDelegate(() => commands.SingleDimLock()), "Single Dimension Lock");
 EC.RegisterCommand("[Allow plane control mode ON/OFF]", new
Keymap.VoidDelegate(() => commands.PlaneControl()), "Plane Control");
 EC.RegisterCommand("[Rot X]", new Keymap.VoidDelegate(() =>
commands.NeglectDim(3)), "Rot X");
 EC.RegisterCommand("[Rot Y]", new Keymap.VoidDelegate(() =>
commands.NeglectDim(4)), "Rot Y");
 EC.RegisterCommand("[Rot Z]", new Keymap.VoidDelegate(() =>
commands.NeglectDim(5)), "Rot Z");
 EC.RegisterCommand("[Trans X]", new Keymap.VoidDelegate(() =>
commands.NeglectDim(0)), "Trans X");
 EC.RegisterCommand("[Trans Y]", new Keymap.VoidDelegate(() =>
commands.NeglectDim(1)), "Trans Y");
 EC.RegisterCommand("[Trans Z]", new Keymap.VoidDelegate(() =>
commands.NeglectDim(2)), "Trans Z");

 //Teaching keymap:
 EC.RegisterCommand("[Record]", new Keymap.VoidDelegate(() =>
commands.Record()), "Record Action");
 EC.RegisterCommand("[Rename]", new Keymap.VoidDelegate(() =>
commands.doNothing()), "Rename Action");
 EC.RegisterCommand("[Delete]", new Keymap.VoidDelegate(() =>
commands.doNothing()), "Delete Action");
 EC.RegisterCommand("[Play]", new Keymap.VoidDelegate(() =>
commands.SwitchKeymap("playactions")), "Play Action");

 EC.RegisterCommand("[Back to teach]", new Keymap.VoidDelegate(() =>
commands.SwitchKeymap("teachingmode")), "Back");

 OwnFunctions.updateFiles();

 }
 }
}

Code 2. Program.cs

using System;
using System.Collections.Generic;

45

using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Erghis;

namespace ErghisExternal
{
 public class Commands
 {
 ErghisController EController;

 public Commands(ErghisController ec)
 {
 EController = ec;
 }

 public void SwitchKeymap(string keymap)
 {
 EController.SwitchKeymap(keymap);
 switch (keymap)
 {
 case "freejogging":
 Console.WriteLine();
 Console.WriteLine("Linear Jogging Mode");
 Console.WriteLine("-------------------");
 Console.WriteLine("Move your sphere around the origin to transmit
linear velocity and/or rotations to the robot.");

 break;
 case "jogbyjoint":
 Console.WriteLine();
 Console.WriteLine("Jog-by-joint Mode");
 Console.WriteLine("-----------------");
 Console.WriteLine("Jog the robot joint by joint tilting up and down.
Set a joint to begin.");
 break;
 case "options":
 Console.WriteLine();
 Console.WriteLine("Advanced Options");
 Console.WriteLine("----------------");
 Console.WriteLine("Choose velocity settings for jogging, tracking
scale or dimensional locking options.");
 break;
 case "tracking":
 Console.WriteLine();
 Console.WriteLine("Tracking mode");
 Console.WriteLine("-------------");
 Console.WriteLine("Move the sphere along the path you want the robot
to follow.");
 break;
 }
 }

 public void SwitchJoint(int joint)

46

 {
 DataManagement.jogbyjoint = joint;
 Console.WriteLine("Active Joint: {0}", joint);
 }

 public void SpeedModulation()
 {
 if (DataManagement.handmod)
 {
 DataManagement.handmod = false;
 Console.WriteLine("Hands Modulation OFF");
 }
 else
 {
 DataManagement.handmod = true;
 Console.WriteLine("Hands Modulation ON");
 }
 }

 public void ChangeSpeed(string speed)
 {
 switch (speed)
 {
 case "Slow":
 DataManagement.SF = 0.5;
 DataManagement.SFJ = 0.5;
 Console.WriteLine("Speed: Slow");
 break;
 case "Medium":
 DataManagement.SF = 1;
 DataManagement.SFJ = 1;
 Console.WriteLine("Speed: Medium");
 break;
 case "Fast":
 DataManagement.SF = 3;
 DataManagement.SFJ = 1.5;
 Console.WriteLine("Speed: Fast");
 break;
 }
 }

 public void ChangeScaling(string scale)
 {
 switch (scale)
 {
 case "Precise":
 DataManagement.SFT = 0.5;
 Console.WriteLine("Tracking scale: Precise");
 break;
 case "Normal":
 DataManagement.SFT = 1;
 Console.WriteLine("Tracking scale: Normal");
 break;
 case "Big":
 DataManagement.SFT = 1.3;
 Console.WriteLine("Tracking scale: Big");

47

 break;
 }
 }

 public void SingleDimLock()
 {
 if (DataManagement.singdimlock)
 {
 DataManagement.singdimlock = false;
 Console.WriteLine("Single Dimension Lock OFF");
 }
 else
 {
 DataManagement.singdimlock = true;
 Console.WriteLine("Single Dimension Lock ON");
 }
 }

 public void PlaneControl()
 {
 if (DataManagement.planectrl)
 {
 DataManagement.planectrl = false;
 Console.WriteLine("Plane Control OFF");
 }
 else
 {
 DataManagement.planectrl = true;
 Console.WriteLine("Plane Control ON");
 }
 }

 public void NeglectDim(int i)
 {
 if (DataManagement.neglections[i] == 1)
 {
 DataManagement.neglections[i] = 0;
 }
 else
 {
 DataManagement.neglections[i] = 1;
 }
 Console.WriteLine("Dimension Control Status:");
 Console.WriteLine("C: Considered, N: Neglected (permanently)");
 for (int j = 0; j < 6; j++)
 {
 Console.Write(DataManagement.dictionary[j]);
 if (DataManagement.neglections[j] == 1) Console.Write(": C, ");
 else Console.Write(": N, ");
 }
 Console.Write("\n");
 }

 public void Record()
 {

48

 //createTarget
 int i = 0;
 if (DataManagement.recordingIntention || DataManagement.recording)
 {
 DataManagement.recordingIntention = false;
 DataManagement.recording = false;
 Console.WriteLine("The rocording has been cancelled.");
 }
 else
 {
 while (i < DataManagement.storage.Length - 1 && i < 30)
 {
 i++;
 }
 if (i == 31)
 {
 Console.WriteLine("Storage capacity full. Remove a recording before
starting a new one.");
 }
 else
 {
 DataManagement.currentTarget = "Rec" +
DateTime.Now.ToString("HHmmss");
 DataManagement.storage[i] = DataManagement.currentTarget;
 DataManagement.recordingIntention = true;
 Console.WriteLine("The recording will begin after you clap your
hands.");
 }
 }
 }

 public void Play(string file)
 {
 //Console.WriteLine(ind);
 //string file = DataManagement.storage[Convert.ToInt32(ind)];
 Console.WriteLine(file);
 DataManagement.currentTarget = file;
 DataManagement.playing = true;
 DataManagement.recording = false;
 DataManagement.Play();
 }

 public void doNothing()
 {

 }
 }
}

Code 3. Commands.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

49

using System.Threading.Tasks;
using Erghis;

namespace ErghisExternal
{
 public class ExternalListener : ErghisListener
 {

 ErghisController EController;

 public ExternalListener(ErghisOrbStyle style, ErghisController ec)
 : base((ErghisOrbStyle)style)
 {
 EController = ec;
 }

 public override void OnErghisFrame(Data data)
 {
 base.OnErghisFrame(data);

 if (data.Hands!= null)
 {
 if (MainProgram.firsttime)
 {
 MainProgram.olddata = data;
 MainProgram.firsttime = false;

 }
 else
 {
 MainProgram.olddata = MainProgram.data;
 }
 MainProgram.data = data;

 //Console.WriteLine("Hands detected!");

 string keymap= ErghisExternal.Program.EC.CurrentKeymap.filename;
 bool motionMode = (keymap == "freejogging" || keymap == "jogbyjoint" ||
keymap == "tracking");

 //Turn ON/OFF the sending of data because of a clap
 if (ErghisExternal.Clap.isAClap())
 {
 if (!motionMode)
 {
 Console.WriteLine("Enter a Motion Mode before starting to send
data. Clap again to restart.");
 }
 else if (DataManagement.on)
 {
 DataManagement.on = false;
 Console.WriteLine("Stoped");
 if (DataManagement.recording)
 {

50

 DataManagement.recording = false;
 DataManagement.recording = false;
 Console.WriteLine("Recording has ended.");
 OwnFunctions.updateFiles();
 }
 }
 else
 {
 Console.WriteLine("Started. Capturing hands reference...");
 System.Threading.Thread.Sleep(1000);
 DataManagement.setOrigin = true;
 DataManagement.on = true;
 if (DataManagement.recordingIntention)
 {
 DataManagement.recording = true;
 DataManagement.recordingIntention = false;
 }
 }
 }

 //Turn OFF the sending of data because of mode
 if (DataManagement.on && !motionMode)
 {
 DataManagement.on = false;
 Console.WriteLine("Stoped");
 if (DataManagement.recording)
 {
 DataManagement.recording = false;
 Console.WriteLine("Recording has ended.");
 OwnFunctions.updateFiles();
 }
 }
 MainProgram.justLost = true;
 //Act consequently
 if (DataManagement.on) DataManagement.Manage();
 }
 else
 {
 //Console.WriteLine("No hands detected!");
 MainProgram.startingTime = DateTime.Now;
 if (DataManagement.on)
 {
 if (MainProgram.justLost)
 {
 MainProgram.exitTime = DateTime.Now;
 MainProgram.justLost = false;
 }

 if ((DateTime.Now - MainProgram.exitTime).TotalMilliseconds > 2500)
 {
 DataManagement.on = false;
 Console.WriteLine();
 Console.WriteLine("Hands track lost.");
 }
 }
 DataManagement.SendZero();

51

 MainProgram.firsttime = true;
 }
 }
 }
}

Code 4. ExternalListener.cs

using System;
using System.IO;
using System.Linq;
using System.Threading;
using Erghis;

namespace ErghisExternal
{
 public class DataManagement
 {

 //Outgoingcommands
 public static double[] outgoingData = { 0, 0, 0, 0, 0, 0, 0 }; //to be send to the
robot

 //Jog by joint
 public static int jogbyjoint;

 //Clapping start
 public static bool on = false;

 //Translations and rotations:
 public static int[] mov = { 0, 0, 0, 0, 0, 0, 0 };
 public static string[] dictionary = { "TransX", "TransY", "TransZ", "RotX",
"RotY", "RotZ", "Gripper" };

 //Origin
 public static double[] ori = { 0, 0, 175, 0, 0, 0 };
 public static bool setOrigin = false;

 //Speed:
 const double TransSpeed = 40;
 const double RotSpeed = 0.1;
 const double JointSpeed = 0.2;

 public static double SF = 1;
 public static double SFJ = 1;
 public static double SFT = 1;

 public static bool handmod = true;

 //Tracking
 const double transScale = 40;
 const double rotScale = 10;

 //Other modes
 public static bool singdimlock = true;

52

 public static bool planectrl = true;
 public static int[] neglections = { 1, 1, 1, 1, 1, 1, 1 };

 //Teaching Mode
 public static string path = @"C:\Users\Guillem\Documents\LTH\Master Thesis\My
Project\Project1\Project1\bin\Debug\recorded\";
 public static bool recording = false;
 public static bool recordingIntention = false;
 public static bool playing = false;
 public static string currentTarget;
 public static string[] storage = Directory.GetFiles(DataManagement.path, "*.txt")
 .Select(path2 =>
Path.GetFileNameWithoutExtension(path2))
 .ToArray();

 //Management
 public static void Manage()
 {

 double[] handmov = new double[6];
 double[] handmov2 = new double[6];

 handmov[0] = (MainProgram.data.Hands[0].Position.Z +
MainProgram.data.Hands[1].Position.Z) / 2; //centerX
 handmov[1] = (MainProgram.data.Hands[0].Position.X +
MainProgram.data.Hands[1].Position.X) / 2; //centerY
 handmov[2] = (MainProgram.data.Hands[0].Position.Y +
MainProgram.data.Hands[1].Position.Y) / 2; //centerZ
 handmov[3] = (MainProgram.data.Hands[0].ZRotation +
MainProgram.data.Hands[1].ZRotation) / 2; //rotX
 handmov[4] = (MainProgram.data.Hands[0].XRotation +
MainProgram.data.Hands[1].XRotation) / 2; //rotY
 handmov[5] = -(MainProgram.data.Hands[0].YRotation +
MainProgram.data.Hands[1].YRotation) / 2; //rotZ (requires sign to be correct)

 Console.WriteLine(handmov[5]);

 handmov2[0] = (MainProgram.olddata.Hands[0].Position.Z +
MainProgram.olddata.Hands[1].Position.Z) / 2; //centerX
 handmov2[1] = (MainProgram.olddata.Hands[0].Position.X +
MainProgram.olddata.Hands[1].Position.X) / 2; //centerY
 handmov2[2] = (MainProgram.olddata.Hands[0].Position.Y +
MainProgram.olddata.Hands[1].Position.Y) / 2; //centerZ
 handmov2[3] = (MainProgram.olddata.Hands[0].ZRotation +
MainProgram.olddata.Hands[1].ZRotation) / 2; //rotX
 handmov2[4] = (MainProgram.olddata.Hands[0].XRotation +
MainProgram.olddata.Hands[1].XRotation) / 2; //rotY
 handmov2[5] = -(MainProgram.olddata.Hands[0].YRotation +
MainProgram.olddata.Hands[1].YRotation) / 2; //rotZ (requires sign to be correct)

 //Set Origin
 if (setOrigin)
 {
 for (int i = 0; i < 6; i++)
 {
 ori[i] = handmov[i];

53

 }
 setOrigin = false;
 }

 double[] interval = { 200, 200, 200, 1, 1, 1 };
 double[] upplimits = new double[6];
 double[] lowlimits = new double[6];
 for (int i = 0; i < 6; i++)
 {
 upplimits[i] = ori[i] + interval[i] / 2;
 lowlimits[i] = ori[i] - interval[i] / 2;
 }

 double[] trackScale = { transScale * SFT, transScale * SFT, transScale * SFT,
rotScale * SFT, rotScale * SFT, rotScale * SFT };
 double[] speed = { TransSpeed * SF, TransSpeed * SF, TransSpeed * SF, RotSpeed
* SF, RotSpeed * SF, RotSpeed * SF, 0 };

 double scalefactor = Math.Sqrt((Math.Pow(MainProgram.data.Hands[0].Position.X
- MainProgram.data.Hands[1].Position.X, 2) +
 Math.Pow(MainProgram.data.Hands[0].Position.Y
- MainProgram.data.Hands[1].Position.Y, 2) +
 Math.Pow(MainProgram.data.Hands[0].Position.Z
- MainProgram.data.Hands[1].Position.Z, 2))) / 150;
 if (!handmod) scalefactor = 1;

 //Teaching mode
 string target = path + currentTarget + ".txt";

 string keymap = ErghisExternal.Program.EC.CurrentKeymap.filename;
 switch (keymap)
 {
 //LINEAR MODE
 case "freejogging":
 jogbyjoint = 0;
 //Free Control => Obtain trans and rots of the TCP
 //Detected trans and rots
 for (int i = 0; i < handmov.Length; i++)
 {
 if (handmov[i] > upplimits[i])
 {
 mov[i] = 1;
 }
 else if (handmov[i] < lowlimits[i])
 {
 mov[i] = -1;
 }
 else
 {
 mov[i] = 0;
 }
 }

 //Preparing the outgoing
 for (int i = 0; i < mov.Length; i++)

54

 {
 outgoingData[i] = mov[i] * speed[i] * scalefactor * neglections[i]
* OwnFunctions.softener();
 }
 break;

 //JOG BY JOINT MODE
 case "jogbyjoint":

 //Jog by joint => Obtain motion for each joint (1-6)
 if (jogbyjoint > 0)
 {
 //if both hands are Up/Down => move mov[jogbyjoint] (jogbyjoint =
#joint)
 if (handmov[4] > upplimits[4]) mov[jogbyjoint - 1] = 1;
 else if (handmov[4] < lowlimits[4]) mov[jogbyjoint - 1] = -1;
 else mov[jogbyjoint - 1] = 0;

 //Preparing the outgoing
 SendZero();
 outgoingData[jogbyjoint - 1] = mov[jogbyjoint - 1] * JointSpeed *
scalefactor * SFJ * OwnFunctions.softener();

 //the gripper and can't be controlled from jog-by-joint
 }
 else
 {
 SendZero();
 }
 break;

 //ADVANCED OPTIONS
 case "options":
 SendZero();
 break;

 //TRACKING
 case "tracking":

 jogbyjoint = -1;
 //Sends the velocity to the robot
 for (int i = 0; i < handmov.Length; i++)
 {
 outgoingData[i] = (handmov[i] - handmov2[i]) * trackScale[i] *
neglections[i] * scalefactor * OwnFunctions.softener() / 0.035;
 }

 if (MainProgram.data.Hands[1].isClosed)
 {
 SendZero();
 }
 break;

 default:
 SendZero();
 break;

55

 }

 //Single-dimension control case (neglect everything but the major)
 //If right thumb shifted => consider only the bigger movement
 if (MainProgram.data.RightThumbShifted && singdimlock)
 {
 double major = 0;
 for (int i = 0; i < outgoingData.Length-1; i++)
 {
 if (Math.Abs(outgoingData[i]) > major)
 {
 major = Math.Abs(outgoingData[i]);
 for (int j = 0; j < i; j++)
 {
 outgoingData[j] = 0;
 }
 }
 else
 {
 outgoingData[i] = 0;
 }
 }
 }
 //Plane control
 //if leftthumbs are folded => neglect all rotations and the smallest
translation
 if (MainProgram.data.LeftThumbShifted && planectrl)
 {
 //find "smallest" trans
 double minor = Math.Abs(outgoingData[0]);
 int index = 0;
 for (int i = 0; i < 3; i++)
 {
 if (Math.Abs(outgoingData[i]) < minor)
 {
 minor = Math.Abs(outgoingData[i]);
 index = i;
 }
 }
 //cancel minor and rots
 for (int i = 0; i < outgoingData.Length; i++)
 {
 if (i == index || i > 2) outgoingData[i] = 0;
 }
 }

 //Gripper control
 //if left hand is a fist => open/close gripper according to the tilting of the
right one
 bool motionMode = (keymap == "freejogging" || keymap == "jogbyjoint" || keymap
== "tracking");
 if (MainProgram.data.Hands[0].isClosed && motionMode)
 {
 Console.WriteLine("gripper!");
 SendZero();

56

 if (MainProgram.data.Hands[1].XRotation > upplimits[4]) outgoingData[6] =
1;
 else if (MainProgram.data.Hands[1].XRotation < lowlimits[4])
outgoingData[6] = -1;
 }

 //Recording actions
 if (recording)
 {
 OwnFunctions.printLive("Recording");
 string dataToStore = String.Join(" ", outgoingData.Select(p =>
p.ToString()).ToArray()) + " " + jogbyjoint;
 OwnFunctions.writeData(dataToStore, target);
 }

 //Send data
 MainProgram.outgoingData = outgoingData;

 ////Print if desired
 //for (int i = 0; i < 7; i++)
 //{
 // Console.Write("{0} ", outgoingData[i]);
 //}
 //Console.WriteLine();
 }

 public static void SendZero()
 {
 for (int i = 0; i < mov.Length; i++)
 {
 MainProgram.outgoingData[i] = 0;
 }
 }

 public static void Play()
 {
 if (playing)
 {
 string target = path + currentTarget + ".txt";
 OwnFunctions.printLive("Playing");
 using (StreamReader sr = new StreamReader(target))
 {
 string line;
 while ((line = sr.ReadLine()) != null)
 {
 string[] fields = line.Split(new char[] { ' ' });

 for (int i = 0; i < 7; i++)
 {
 outgoingData[i] = Convert.ToDouble(fields[i]);
 }

 DataManagement.jogbyjoint = Convert.ToInt32(fields[6]);
 MainProgram.outgoingData = outgoingData;

 //Print if desired

57

 for (int i = 0; i < 7; i++)
 {
 Console.Write("{0} ", outgoingData[i]);
 }
 Console.Write(jogbyjoint);
 Console.WriteLine();
 Thread.Sleep(20);//can be modulated to change speed
 }
 Console.WriteLine("\n Playing has ended.");
 }
 }
 }
 }
}

Code 5. DataManagement.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using se.lth.control.labcomm;
using System.Net;
using System.Net.Sockets;
using System.Threading;

namespace ExtCtrl
{
 class LabCommManagerServer : extctrl2leap.Handler, leap2extctrl.Handler
 {
 private LabCommEncoderChannel enc;
 private LabCommDecoderChannel dec;
 private TcpListener listener;
 private TcpClient clientSocket;

 private Boolean run = false;
 private Boolean close_socket = false;
 private int nbr_of_connections = 0;

 public LabCommManagerServer()
 {
 listener = new TcpListener(IPAddress.Any, 9513);

 while (true)
 {
 if (close_socket)
 {
 clientSocket.Close();
 listener.Stop();
 close_socket = false;
 }
 while (!run)
 {
 listener.Start();

58

 Console.Out.WriteLine("The program is listening for connections...");
 clientSocket = listener.AcceptTcpClient(); // Blocking, waiting for
connection(s)
 IPEndPoint endPoint = (IPEndPoint)clientSocket.Client.RemoteEndPoint;
 IPAddress ipAddress = endPoint.Address;
 new Thread(encoderThread).Start();
 new Thread(decoderThread).Start();
 nbr_of_connections += 1;
 Console.Out.WriteLine();
 Console.Out.WriteLine("Connected to: " + ipAddress+" #:
"+nbr_of_connections);
 Console.Out.WriteLine();
 run = true;
 close_socket = false;
 }
 }
 }

 private void encoderThread()
 {
 enc = new LabCommEncoderChannel(clientSocket.GetStream());
 leap2extctrl.register(enc);
 while (run)
 {
 leap2extctrl coord = new leap2extctrl();
 coord.data = ErghisExternal.MainProgram.outgoingData;
 coord.jogbyjoint = ErghisExternal.DataManagement.jogbyjoint;
 try
 {
 leap2extctrl.encode(enc, coord);
 Thread.Sleep(10); //to be disminished
 }
 catch (System.IO.IOException)
 {
 Console.Out.WriteLine("Connection lost.");
 Console.Out.WriteLine();
 run = false;
 close_socket = true;
 }
 catch (Exception e)
 {
 Console.Out.WriteLine("Unexpected exception occurred: \n" + e);
 run = false;
 close_socket = true;
 }
 }
 }

 private void decoderThread()
 {
 dec = new LabCommDecoderChannel(clientSocket.GetStream());
 extctrl2leap.register(dec, this);
 try
 {
 //dec.run();

59

 }
 catch(Exception e)
 {
 Console.Out.WriteLine("Ending decoder thread... Exception: " + e);
 run = false;
 close_socket = true;
 }
 }

 public void handle(extctrl2leap value)
 {
 Console.WriteLine("Got something: {0} {1} {2} {3} {4} {5} {6}",
value.data[0], value.data[1], value.data[2], value.data[3], value.data[4], value.data[5],
value.data[6]);
 }
 public void handle(leap2extctrl value)
 {
 Console.WriteLine("Got sometsdsdsdhing: qp[0] = " + value);
 }
 }
}

Code 6. LabcommManagerServer.cs

using Erghis;
using ExtCtrl;
using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;
using System.Text;
using System.Threading.Tasks;

namespace ErghisExternal
{
 public class Clap
 {
 //Clap recognision parameters
 static double minSpeed = 35;
 static double maxDistance = 50;

 //Time within the start of the motion and the clap
 static long clapStart;
 static bool clapStarted = false;
 static double maxDuration = 0.4;

 //Time within two consecutive claps
 static DateTime clapEnd;
 public static bool inAClap = false;
 static double interClapsTime = 500;

 public static bool isAClap()
 {

 //Speed of Hands calculation

60

 double leftHandSpeed =
Math.Sqrt((Math.Pow(MainProgram.data.Hands[0].Position.X -
MainProgram.olddata.Hands[0].Position.X, 2) +
 Math.Pow(MainProgram.data.Hands[0].Position.Y
- MainProgram.olddata.Hands[0].Position.Y, 2) +
 Math.Pow(MainProgram.data.Hands[0].Position.Z
- MainProgram.olddata.Hands[0].Position.Z, 2)));
 double rightHandSpeed =
Math.Sqrt((Math.Pow(MainProgram.data.Hands[1].Position.X -
MainProgram.olddata.Hands[1].Position.X, 2) +
 Math.Pow(MainProgram.data.Hands[1].Position.Y
- MainProgram.olddata.Hands[1].Position.Y, 2) +
 Math.Pow(MainProgram.data.Hands[1].Position.Z
- MainProgram.olddata.Hands[1].Position.Z, 2)));
 double globalHandSpeed = leftHandSpeed + rightHandSpeed;

 //Distance between Hands calculation
 double distance = Math.Sqrt((Math.Pow(MainProgram.data.Hands[0].Position.X -
MainProgram.data.Hands[1].Position.X, 2) +
 Math.Pow(MainProgram.data.Hands[0].Position.Y -
MainProgram.data.Hands[1].Position.Y, 2) +
 Math.Pow(MainProgram.data.Hands[0].Position.Z -
MainProgram.data.Hands[1].Position.Z, 2)));
 //Console.WriteLine(globalHandSpeed);
 //Console.WriteLine(distance);

 bool clap = false;

 if (globalHandSpeed > minSpeed && !inAClap && !clapStarted)
 {
 clapStarted = true;
 clapStart = DateTime.Now.Second;
 }
 if (clapStarted && !inAClap)
 {
 if (DateTime.Now.Second - clapStart > maxDuration) clapStarted = false;
 if (distance < maxDistance)
 {
 clapStarted = false;
 clap=true;
 inAClap = true;
 clapEnd = DateTime.Now;
 }
 }
 if (inAClap)
 {
 if ((DateTime.Now - clapEnd).TotalMilliseconds > interClapsTime) inAClap =
false;
 }
 return clap;
 }
 }

 public class OwnFunctions
 {
 public static void writeData(string data, string target)

61

 {
 using (System.IO.StreamWriter file = new System.IO.StreamWriter(target,
true))
 {
 file.WriteLine(data);
 }
 }

 public static void printLive(string w)
 {
 Console.SetCursorPosition(0, Console.CursorTop);
 if (DateTime.Now.Second % 2 == 0)
 {
 Console.Write(w + " ...");
 }
 else
 {
 Console.Write(w + " ");
 }
 }

 public static double softener()
 {
 double y;
 if ((DateTime.Now - MainProgram.startingTime).TotalMilliseconds/20000>1) y=1;
 else y=(DateTime.Now - MainProgram.startingTime).TotalMilliseconds/20000;

 return y;
 }

 public static void updateFiles()
 {
 DataManagement.storage = Directory.GetFiles(DataManagement.path, "*.txt")
 .Select(path2 =>
Path.GetFileNameWithoutExtension(path2))
 .ToArray();
 for (int j = 1; j <= 30; j++)
 {
 if (j <= DataManagement.storage.Length)
 {

 Program.EC.RegisterCommand("[File" + j + "]", new
Keymap.VoidDelegate(() => Program.commands.Play(DataManagement.storage[j - 1])),
DataManagement.storage[j - 1]);
 //Program.EC.RegisterCommand("[File1]", new Keymap.VoidDelegate(() =>
Program.commands.Play(Convert.ToString(1))), DataManagement.storage[j - 1]);
 //Program.EC.RegisterCommand("[File2]", new Keymap.VoidDelegate(() =>
Program.commands.Play(Convert.ToString(2))), DataManagement.storage[j - 1]);
 //Program.EC.RegisterCommand("[File3]", new Keymap.VoidDelegate(() =>
Program.commands.Play(Convert.ToString(3))), DataManagement.storage[j - 1]);
 }
 else
 {
 Program.EC.RegisterCommand("[File" + j + "]", new
Keymap.VoidDelegate(() => Program.commands.doNothing()), " ");

62

 }
 }
 }
 }
}

Code 7. Definitions.cs

using System;
using se.lth.control.labcomm;
/*
sample struct {
 double data[7];
 int jogbyjoint;
} leap2extctrl;
*/

public class leap2extctrl : LabCommSample {

 public double[] data;
 public int jogbyjoint;

 public interface Handler : LabCommHandler {
 void handle(leap2extctrl value);
 }

 public static void register(LabCommDecoder d, Handler h) {
 d.register(new Dispatcher(), h);
 }

 public static void register(LabCommEncoder e) {
 e.register(new Dispatcher());
 }

 private class Dispatcher : LabCommDispatcher {

 public Type getSampleClass() {
 return typeof(leap2extctrl);
 }

 public String getName() {
 return "leap2extctrl";
 }

 public byte[] getSignature() {
 return signature;
 }

 public void decodeAndHandle(LabCommDecoder d, LabCommHandler h) {
 ((Handler)h).handle(leap2extctrl.decode(d));
 }
 }

 public static void encode(LabCommEncoder e, leap2extctrl value) {
 e.begin(typeof(leap2extctrl));

63

 {
 int i_0_max = 7;
 for (int i_0 = 0 ; i_0 < i_0_max ; i_0++) {
 e.encodeDouble(value.data[i_0]);
 }
 }
 e.encodeInt(value.jogbyjoint);
 e.end(typeof(leap2extctrl));
 }

 public static leap2extctrl decode(LabCommDecoder d) {
 leap2extctrl result;
 result = new leap2extctrl();
 {
 int i_0_max = 7;
 result.data = new double[i_0_max];
 for (int i_0 = 0 ; i_0 < i_0_max ; i_0++) {
 result.data[i_0] = d.decodeDouble();
 }
 }
 result.jogbyjoint = d.decodeInt();
 return result;
 }

 private static byte[] signature = new byte[] {
 // struct { 2 fields
 17,
 2,
 // array [7] 'data'
 4,
 100, 97, 116, 97,
 // array [7]
 16,
 1,
 7,
 38,
 // }
 // int 'jogbyjoint'
 10,
 106, 111, 103, 98, 121, 106, 111, 105, 110, 116,
 35,
 // }
 };
}
/*
sample struct {
 double data[7];
 int jogbyjoint;
} extctrl2leap;
*/

public class extctrl2leap : LabCommSample {

 public double[] data;
 public int jogbyjoint;

64

 public interface Handler : LabCommHandler {
 void handle(extctrl2leap value);
 }

 public static void register(LabCommDecoder d, Handler h) {
 d.register(new Dispatcher(), h);
 }

 public static void register(LabCommEncoder e) {
 e.register(new Dispatcher());
 }

 private class Dispatcher : LabCommDispatcher {

 public Type getSampleClass() {
 return typeof(extctrl2leap);
 }

 public String getName() {
 return "extctrl2leap";
 }

 public byte[] getSignature() {
 return signature;
 }

 public void decodeAndHandle(LabCommDecoder d, LabCommHandler h) {
 ((Handler)h).handle(extctrl2leap.decode(d));
 }
 }

 public static void encode(LabCommEncoder e, extctrl2leap value) {
 e.begin(typeof(extctrl2leap));
 {
 int i_0_max = 7;
 for (int i_0 = 0 ; i_0 < i_0_max ; i_0++) {
 e.encodeDouble(value.data[i_0]);
 }
 }
 e.encodeInt(value.jogbyjoint);
 e.end(typeof(extctrl2leap));
 }

 public static extctrl2leap decode(LabCommDecoder d) {
 extctrl2leap result;
 result = new extctrl2leap();
 {
 int i_0_max = 7;
 result.data = new double[i_0_max];
 for (int i_0 = 0 ; i_0 < i_0_max ; i_0++) {
 result.data[i_0] = d.decodeDouble();
 }
 }
 result.jogbyjoint = d.decodeInt();
 return result;

65

 }

 private static byte[] signature = new byte[] {
 // struct { 2 fields
 17,
 2,
 // array [7] 'data'
 4,
 100, 97, 116, 97,
 // array [7]
 16,
 1,
 7,
 38,
 // }
 // int 'jogbyjoint'
 10,
 106, 111, 103, 98, 121, 106, 111, 105, 110, 116,
 35,
 // }
 };
}

Code 8. leap_labcomma.cs

Central Station

This code is written in Python language.

#!/usr/bin/env python

'''

'''

#!/usr/bin/env python

'''

 orca_labcomm_basic.py --- Created by Patrik Cairen, LTH, April 2014

 TODO: part .-lc-file in LabComm 2013 and labcomm

'''

from orca.connection import writer

import orca

import threading

import socket

import leap_labcomm # v2006

import leap_labcomma # v2013

import time

import sys

import labcomm # v2006

import LabComm # v2013

import ast

66

class lc_leap_data(object):

 def __init__(self, data, jogbyjoint):

 self.data = data

 self.jogbyjoint = jogbyjoint

class stream_reader():

 def __init__(self, stream):

 self.stream = stream

 def start(self, decoder, version):

 other_version = decoder.decode_string()

 if version != other_version:

 raise Exception("labcomm version mismatch %s != %s" %

 (version, other_version))

 def read(self, count):

 result = self.stream.read(count)

 if len(result) == 0:

 raise EOFError()

 return result

 def mark(self, value, decl):

 pass

class stream_writer():

 def __init__(self, stream):

 self.stream = stream

 def start(self, encoder, version):

 encoder.encode_string(version)

 def write(self, data):

 self.stream.write(data)

 def mark(self):

 self.stream.flush()

'''

 Note: Needs LabComm --- v.2006 & v.2013

'''

class extc2win(threading.Thread):

 def __init__(self, encoder=None, decoder=None, signature=None):

 threading.Thread.__init__(self)

 self.encoder = encoder

 self.decoder = decoder

 self.signature = signature

 self._stop = threading.Event()

 def stop(self):

 self._stop.set()

 def stopped(self):

 return self._stop.isSet()

 def run(self):

 while not self.stopped():

 (recv,_) = self.decoder.decode()

 if recv <> None:

 #print "something received from extctrl"

67

 self.encoder.encode(recv, self.signature)

 #print "something sent to Win"

'''

 Note: Needs LabComm --- v.2006 & v.2013

'''

class win2extc(threading.Thread):

 def __init__(self, encoder=None, decoder=None, signature=None):

 threading.Thread.__init__(self)

 self.encoder = encoder

 self.decoder = decoder

 self.signature = signature

 self._stop = threading.Event()

 def stop(self):

 self._stop.set()

 def stopped(self):

 return self._stop.isSet()

 def run(self):

 while not self.stopped():

 (recv,_) = self.decoder.decode()

 if recv <> None:

 #print "something received from Win"

 print "Sent: "

 print recv.data

 new = lc_leap_data(recv.data,recv.jogbyjoint)

 self.encoder.encode(new, self.signature)

 #print "something sent to extcrl"

if __name__ == "__main__":

 print "Setting up connections..."

 # Setup ORCA-connection

 o = orca.connection('turing', 2000)

 s = o.open_and_select(['leap2extctrl'], 1, o._directory.input,

o._select_input)

 extc_sign = leap_labcomm.leap2extctrl.signature

 extc_enc = labcomm.Encoder(writer(s))

 extc_enc.add_decl(extc_sign)

 extc_dec = o.open_output(['extctrl2leap'])

 # Setup TCP/IP-connection

 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 sock.connect(('130.235.83.221', 9513))

 win_enc = LabComm.Encoder(stream_writer(sock.makefile('w', 100)))

 win_enc_sign = leap_labcomma.extctrl2leap.signature

 win_enc.add_decl(win_enc_sign)

 win_dec = LabComm.Decoder(stream_reader(sock.makefile('r', 100)))

 win_dec.add_decl(leap_labcomma.leap2extctrl.signature)

68

 print "Creating and starting threads..."

 a = extc2win(encoder = win_enc,

 decoder = extc_dec,

 signature = win_enc_sign)

 b = win2extc(encoder = extc_enc,

 decoder = win_dec,

 signature = extc_sign)

 a.start()

 b.start()

 while not a.stopped() and not b.stopped():

 try:

 time.sleep(0)

 except KeyboardInterrupt:

 b.stop()

 sys.exit(0)

Code 9. Client.py

#!/usr/bin/python

Auto generated leap_labcomma

import labcomm

class leap2extctrl(object):

 signature = labcomm.sample('leap2extctrl',

 labcomm.struct([

 ('data', labcomm.array([7],

 labcomm.DOUBLE())),

 ('jogbyjoint', labcomm.INTEGER())]))

class extctrl2leap(object):

 signature = labcomm.sample('extctrl2leap',

 labcomm.struct([

 ('data', labcomm.array([7],

 labcomm.DOUBLE())),

 ('jogbyjoint', labcomm.INTEGER())]))

typedef = [

]

sample = [

 ('leap2extctrl', leap2extctrl.signature),

 ('extctrl2leap', extctrl2leap.signature),

]

Code 10. leap_labcomma.py

69

7. References
[1]. Kaku, Michio. Physics of the Impossible. New York : Doubleday, 2008. 978-

0-385-52544-2.

[2]. Yanik, Paul M., et al. Use of Kinect Depth Data and Growing Neural Gas.

Clemson, South Carolina, USA : s.n., 2012.

[3]. Masse, Jean-Thomas, et al. Human Motion Capture using Data Fusion of

Multiple Skeleton Data. Toulouse, France : s.n., 2013.

[4]. Werber, Klaudius. Intuitive Human Robot Interaction and Workspace

Surveillance by means of the Kinect Sensor. Lund : s.n., 2011. 0280-5316.

[5]. Mitra, Sushmita and Acharya, Tinku. Gesture Recognition: A Survey. IEEE

Transactions on Systems, Man, and Cybernetics, Part C: Applications and

Reviews. 2007.

[6]. Kober, Jens, Bagnell, J. Andrew and Peters, Jan. Reinforcement Learning

in Robotics: A Survey.

[7]. Luck, Kevin Sebastian, et al. Latent Space Policy Search for Robotics.

[8]. Martinetz, T. and Schulten, K. A "Neural-Gas" Network Learns Topologies.

Amsterdam, The Netherlands : Elsevier Science Publishers, 1991.

[9]. Fritzke, B. A Growing Neural Gas Network Learns Topologies. Advances in

Neural Information Processing Systems 7. 1995.

[10].Lee, Sang Hyoung, et al. Learning Basis Skilles by Autonomous

Segmentation. Osaka : s.n., 2012.

[11]. ABB. [Online]

http://www05.abb.com/global/scot/scot241.nsf/veritydisplay/98ba43a906331fe

c48257c6f00374818/$file/PR10031EN%20R15_En.pdf.

70

[12]. Sanfeliu Cortés, Alberto. Curso de Robótica Industrial. Barcelona : s.n.,

2011.

[13]. Freidovich, Leonid B. Control Methods for Robotic Applications - Lecture

Notes. 2014.

[14]. Blomdell, Anders and Robertz, Sven Gestegård . Labcomm tech report.

Lund : s.n., 2014. p. 8.

[15]. Leap Motion, Inc. [Online] 2014. https://www.leapmotion.com/product.

