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de Barcelona (FIB)





Abstract

On-line communities are virtual environments where users exchange contents.
Occasionally, users’ interactions lead to frictions, jeopardising the proper func-
tioning of the community. Trying to avoid frictions, on-line communities typi-
cally incorporate a regulation mechanism based on: (i) norms set by the owner
of the community; and (ii) human moderators. In this thesis we introduce a
legislation mechanism, capable of automatically synthesise norms from a multi-
agent domain, to synthesise norms in a deliberative and participatory manner,
namely desmon. Moreover, we have created an agent-based on-line commu-
nity simulator to model the interactions within their users. We then empirically
evaluate our norm synthesis approach against two state-of-the-art norm synthe-
sis mechanisms, to regulate simulated on-line communities. As a result, desmon
is capable of synthesising normative systems according to the consensus of the
users, capturing the opinion of the majority, hence avoiding frictions between
them.

i





Acknowledgements

First and foremost I want to thank my advisors, whose guidance and dedication
has made this work possible. My most sincere gratitude to Juan A. Rodriguez-
Aguilar, for your unbreakable spirit of help, for being always optimistic about
everything, for your endless knowledge and for betting on me. To Maite Lopez-
Sanchez, for your cheerfulness and kindness, your perpetual aim of perfectionism
and your good taste on colours ;). I sincerely thank you all the support and want
to express gratitude because you trusted on me. You are the inspiration that
everybody is looking for.

To Javier Morales because you have been like an advisor without being it, for
letting me be part of your legacy and for helping me in any question I had and
will have!

To the Artificial Intelligence Research Institute (IIIA-CSIC) who has adopted
me and relied on me. Thanks to all the colleagues that I have encountered there.
To all the doctoral students that I have met over the time. Thanks for making
me feel as pleased as at home.

To the MAI Master fellas, that have made these last two years fly by.

And last but not least, to my Father Pedro, and my Mother Maite, for giving
me the education and the opportunity of being what I am.

iii





Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Organisation of the thesis . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and related work 7

2.1 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Keepcon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Stilus Forum . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Sourpanel . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Definition of moderator and types of moderation . . . . . 10

2.1.5 Conclusions of the state-of-the-art . . . . . . . . . . . . . 11

2.2 Multi-Agent Systems . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 MAS Simulation . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 MAS Coordination mechanisms . . . . . . . . . . . . . . . . . . . 13

2.3.1 Coordination via Norms and Social laws . . . . . . . . . . 14

2.4 IRON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Information model . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 IRON’s norm synthesis process . . . . . . . . . . . . . . . 17

2.4.3 IRON’s inputs . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 SIMON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Improvements of SIMON . . . . . . . . . . . . . . . . . . 25

2.5.2 SIMON’s extra inputs . . . . . . . . . . . . . . . . . . . . 32

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



3 Improving Norm Synthesis 35
3.1 Analysing SIMON’s synthesis . . . . . . . . . . . . . . . . . . . . 35
3.2 DESMON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Information model . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Norm synthesis process . . . . . . . . . . . . . . . . . . . 38
3.2.3 Simon’s Norm synthesis strategy . . . . . . . . . . . . . . 45

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Simulating Social Networks 49
4.1 Work-flow of a Simulation . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Visualising a simulation . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Users behaviour simulation . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 User types . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 User behaviour . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Functionalities of the simulator . . . . . . . . . . . . . . . . . . . 55
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Synthesising norms in Social Networks 57
5.1 Social network legislation system: a general architecture . . . . . 58
5.2 Integrating NSM’s with a social network simulator . . . . . . . . 59

5.2.1 Perceiving On-line Communities . . . . . . . . . . . . . . 60
5.2.2 Norms for On-line Communities . . . . . . . . . . . . . . 60
5.2.3 Conflict detection in On-line communities . . . . . . . . . 61
5.2.4 Detecting norm applicabilities . . . . . . . . . . . . . . . . 62
5.2.5 Evaluating norms . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Empirical analysis and results 65
6.1 Empirical Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 On-line community settings . . . . . . . . . . . . . . . . . 65
6.1.2 Simulator settings . . . . . . . . . . . . . . . . . . . . . . 67
6.1.3 Norm synthesis settings . . . . . . . . . . . . . . . . . . . 67

6.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.1 IRON’s macro analysis . . . . . . . . . . . . . . . . . . . . 68
6.2.2 SIMON’s macro analysis . . . . . . . . . . . . . . . . . . . 70
6.2.3 DESMON’s macro analysis . . . . . . . . . . . . . . . . . 71
6.2.4 Analysis of synthesised normative networks . . . . . . . . 71
6.2.5 Micro Analysis . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Conclusions and future work 79
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vi



List of Figures

2.1 Main steps of the Keepcon. . . . . . . . . . . . . . . . . . . . . . 8

2.2 Work-flow of the Sourpanel software. . . . . . . . . . . . . . . . . 10

2.3 Abstract vision of an intelligent agent. . . . . . . . . . . . . . . . 12

2.4 iron ’s abstract architecture. . . . . . . . . . . . . . . . . . . . . 15

2.5 Example of norms synthesized by iron. . . . . . . . . . . . . . . 17

2.6 iron ’s components and inputs. . . . . . . . . . . . . . . . . . . . 18

2.7 Evolution of a Normative Network along time. . . . . . . . . . . 18

2.8 Generalisation of example norms. . . . . . . . . . . . . . . . . . . 20

2.9 Generalisation of norms n1, n2, n3 to a new norm n4. . . . . . . . 21

2.10 Specialisation of norm n4 to its child norms n1, n3. . . . . . . . . 21

2.11 Abstract grammar for norm synthesis. . . . . . . . . . . . . . . . 24

2.12 Relationships between terms, ontology. . . . . . . . . . . . . . . . 26

2.13 Example of relationship between norms. . . . . . . . . . . . . . . 28

2.14 Example of generalisation between norms. . . . . . . . . . . . . . 29

2.15 Abstract computational model. . . . . . . . . . . . . . . . . . . . 33

3.1 A norm’s life cycle in desmon. . . . . . . . . . . . . . . . . . . . 38

4.1 Social network simulation work-flow. . . . . . . . . . . . . . . . . 50

4.2 Simulator Structure . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Categories of contents and their respective colours. . . . . . . . . 52

4.4 Windows to choose the behaviour of the population . . . . . . . 54

4.5 Computational model of iron. . . . . . . . . . . . . . . . . . . . 56

5.1 social network legislation system: a general architecture. . . . . . 58

5.2 Norm synthesis architecture: components and inputs. . . . . . . 59

5.3 Examples of norms for the on-line community scenario. . . . . . 61

5.4 Incremental backup. . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 Synthetic view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1 Example of a prototypical normative network synthesised by iron. 72

6.2 Example of a prototypical normative network synthesised by desmon. 72

6.3 Example of iron’s generalisation. . . . . . . . . . . . . . . . . . . 72

6.4 Example of simon’s and desmon’s generalisation. . . . . . . . . 72

vii



6.5 Cardinality of the NS for the different NSM approaches with low
consensus degree (αnecspec = 0.3). . . . . . . . . . . . . . . . . . . . 74

6.6 Cardinality of the NS for the different NSM approaches with
medium consensus degree (αnecspec = 0.5). . . . . . . . . . . . . . . 75

6.7 Cardinality of the NS for the different NSM approaches with high
consensus degree (αnecspec = 0.7). . . . . . . . . . . . . . . . . . . . 76

7.1 The logic of the simulation. . . . . . . . . . . . . . . . . . . . . . 81
7.2 State machine transitions for users punishments. . . . . . . . . . 82

viii



List of Tables

5.1 An example of a NSM’s observation. . . . . . . . . . . . . . . . . 60

6.1 A user’s profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 Norm synthesis mechanism parameters summary. . . . . . . . . . 68
6.3 Number of norms that iron converged to. . . . . . . . . . . . . . 69
6.4 Number of norms that simon converged to. . . . . . . . . . . . . 69
6.5 Number of norms that desmon converged to. . . . . . . . . . . . 69
6.6 Summary of iron’s macro analysis. . . . . . . . . . . . . . . . . . 70
6.7 Summary of simon’s macro analysis. . . . . . . . . . . . . . . . . 70
6.8 Summary of desmon’s macro analysis. . . . . . . . . . . . . . . . 71
6.9 Summary of NSM’s macro analysis. . . . . . . . . . . . . . . . . . 75

ix



x



Chapter 1

Introduction

Since the diffusion of the Internet, two decades ago, on-line communities have be-
come an indispensable and necessary tool for communication, information/content
exchange and social activities. Occasionally, users’ interactions within these
communities lead to frictions (conflicts) and this may jeopardise the proper
functioning of such communities. These communities typically incorporate a
pre-designed legislation, but it is far from being the ideal in terms of expressing
users’ opinion. In this thesis, we aim at creating a mechanism to generate a
legislation which captures users’ opinions. Hence, in the following we first intro-
duce in section 1.1 the reasons that lead to this work. Thereafter in section 1.2
the approach we proposed to the problem. Section 1.3 presents the contributions
we made, followed by Section 1.4 that offers a list of our published publications
throughout this work.

1.1 Motivation

On-line communities are virtual environments that work over the Internet allow-
ing their members to share content and information between users (e.g., pictures,
opinions, information, videos, etc.). An on-line community can be either pub-
lic or private. Public communities are those that accept any new user and let
visualize the community without an account (as it is the case in most blogs).
On the other hand,there are private communities, which are the ones that need
an invitation to be part of and users only share their content with their “com-
munity friends”. Furthermore, communities are dynamic, because its members
may change their preferences and behaviours along time.

Within on-line communities users eventually interact with other users. Some of
these users may eventually exhibit totally different opinions. As a consequence,
some interactions may lead to frictions between users, which can be regarded
as conflicting situations. These situations complicate the information exchange,
hence causing discomfort to users, who may decide to abandon the community.

1



2 CHAPTER 1. INTRODUCTION

Community managers’ goal is to avoid conflicting situations by establishing some
hard-wired terms and conditions (i.e., norms), which specify what is acceptable
and what is not. Users are expected to fulfil such norm. As an example, norms
can avoid frictions between users, prohibiting them to share inappropriate con-
tents, which may lead to arguments between users.

Typically, a regulation mechanism is based on:

• Some pre-designed terms and conditions (norms) set by the owner of the
community that describe, in general terms, users’ obligations, permissions
and prohibitions. They aim at achieving healthy on-line communities in
the sense proposed in [Hinds and Lee, 2011].

• Human moderators who actively participate in the community, perform-
ing corrective actions in order to avoid and solve conflicts following some
pre-designed terms and conditions.

This regulatory approach suffers from lack of participation, transparency and
adaptability among others.

1. It lacks of participation because the terms and conditions of an on-line
community are fixed by the owner/designer of the community, hence not
allowing users to participate in the regulation process.

2. It lacks of transparency when the norm is applied to someone. Because
different moderators, as human beings they are, could apply different pun-
ishments to similar actions.

3. It lacks of adaptability since communities are dynamic (e.g. users may
change or their opinions may change along time), the regulations initially
set by the community owner/designer may may not perform well as the
community changes.

Moreover, the use of human moderators to control all the conflictive contents of
an on-line community is very costly. At this point, we can conclude that since
norms are pre-designed and imposed by a community designer, they may not
be aligned with the users’ preferences. And thus, frictions will arise depending
on what users consider inappropriate. Against this background, the purpose of
this thesis is the creation of a mechanism to regulate on-line communities that
takes into account users’ preferences as to what they consider as appropriate
and inappropriate.

1.2 Approach

From the discussion above follows that if a community designer aims at achiev-
ing a healthy on-line community, its regulation mechanism must allow users to
participate in the regulation process. For this purpose, our approach will con-
sider that users can report (i.e., complain about inappropriate content) about
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conflicting situations. Based on such feedback we will engineer a regulation
mechanism that generates norms aimed at avoiding the conflicting situations
identified by users. Moreover, norm generation will only occur whenever there is
enough evidence (i.e., users’ complaints) supporting norms’ creation, considering
it creation necessary for the users of the community. In other words, we propose
to build a regulation mechanism that cumulates users’ complaints and generates
norms only whenever enough complaints are gathered, and hence enough con-
sensus exist to support norm generation.

We argue that our approach is deliberative because it will only generate norms
when the feedback collected from users’ opinions indicate that there is consensus
about the need for a norm. This deliberative manner is bound to lead do larger
and healthier on-line communities, which is the main aim of any community. On
the one hand, as norms are, indirectly, created by users’ participation, they will
be aligned with users’ preferences and may effectively avoid frictions. This will
potentially attract new users and hence promote community growth. On the
other hand, according to Ostrom’s principles [Ostrom, 1990], individuals that
participate in modifying the rules of a community are more likely to comply
with them. Therefore, a community of users aware of their participation in the
regulation process is more likely to follow the norms they contributed to create.
Hence, this will promote a healthier behaviour from its members.

As a paradigmatic example, within this thesis we have collaborated with a real
on-line community and they shared with us their moderation problems. This
community is named Fanscup [Lanas and Garzón, 2005] and they manage soccer
communities. Fanscup includes the main football tournaments of ten countries,
with a web page for each team and their respective fans. Each web page is struc-
tured as a virtual community with typical sections: forum, photos, videos, news,
and so on. The managers of Fanscup realised that as their web sites went larger
and larger they needed support for the moderation of their web site. So they
tried to tackle this problem by assigning moderator rules to the most active users
of their community (a solution that most communities adopt). However, they
have observed over time that this solution leads to two main attitudes on the
behaviour of moderators. Firstly, the inactivity or the disassociation of the user
to the given role, which creates moderators that do not moderate (false mod-
erators). Secondly, the dictatorship or tyrannical attitude which corresponds
to moderators that apply their own rules without following the web site regula-
tions and taking into account their own opinions. Furthermore, the regulation of
Fanscup was also pre-designed and remaind unmodified since its creation. They
have seen two problems in their approach to regulation. On the one hand, like-
wise most virtual communities, the regulation was full of pre-designed general
terms which users may not understand and may not agree with. On the other
hand, most users never read the regulation of the community, because it is too
dense and not easy to find.

The work in [Morales et al., 2013] introduced a participatory mechanism to
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regulate a Multi-Agent Systems (MAS) scenario employing an architecture and
computational model named iron. There, iron adopts the role of the regu-
lation mechanism that synthesises norms based on MAS agents conflicts. A
second approach of this work appears in [Morales et al., 2014a], where they
introduce another norm synthesis approach, the so-called simon, to overcome
iron’s drawbacks in terms of compactness. Although simon manages to syn-
thesise more compact normative systems that iron, likewise iron it cannot be
employed to synthesise norms that regulate virtual communities. Briefly, neither
iron nor simon are appropriate for this approach, because they were designed
for a specific domain (i.e., traffic scenario where collisions between cars are con-
flicts) where norm generation was required to be reactive (i.e., for each collision
between cars a conflict arises and this generates a norm). They cannot cap-
ture the consensus of the community, because a conflict in a community occurs
whenever enough evidence has been gathered about a certain content. Moreover,
both iron and simon are very conservative approaches and take a long time to
discard norms. Thus, they synthesises norms that may not be aligned with the
overall preferences of the users.

Against these problems, our approach in this thesis is to adapt and improve
simon to produce a deliberative and participatory approach to regulate on-line
communities capturing their consensus. Moreover, we adapt simon because it
was able to synthesise compact normative systems, and this is very useful when
for human beings. Furthermore, this compactness will also help making the cost
of reasoning smaller for the agents of the simulation.

1.3 Contributions

In this thesis we contribute to advancing the state-of-the-art on regulation mech-
anisms for domains where social interaction occurs, namely virtual communities.
We regulate on-line communities in a deliberative manner capturing users’ opin-
ion with a norm synthesis mechanism, the so-called desmon. desmon extends
from simon, detailed in [Morales et al., 2014a], which cannot capture users’ con-
sensus. For this reason, we aim at adapting the norm synthesis mechanism of
simon to capture users’ consensus. And hence, desmon will allow to achieve
healthier and larger on-line communities. This main contribution is composed
of three sub-contributions:

• Our main contribution is a novel norm synthesis machine for virtual com-
munities, the so-called desmon. desmon has been conceived to synthesise
norms when there is enough consensus between users and to discard norms
when they are no longer needed. Unlike simon, desmon employs a more
deliberative approach to generate norms. Furthermore, desmon benefits
from an alternative norm evaluation mechanism to detect when norms are
no longer necessary, hence being less reluctant than simon to disregard
norms that are not useful for regulatory purposes. Finally, desmon imple-
ments a novel norm synthesis strategy that exploits a norm management
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life-cycle richer than simon’s. Nonetheless, desmon borrows simon’s pow-
erful generalisation mechanism to guarantee the compactness of the nor-
mative systems that it synthesises. To the best of our knowledge, desmon
is the first deliberative norm synthesis machine.

• Second, we have created a novel multi-agent on-line community simulator,
where users’ behaviour is modelled by agents. To the best of our knowl-
edge, this is the first multi-agent simulator for virtual communities. It
is also part of the NormLab framework, which is a novel framework to
support norm synthesis research, detailed in [Morales et al., 2014b] and
[Morales et al., 2015a]. Furthermore, we have configured our simulator
to allow iron, simon and desmon to operate on it, and hence synthesise
norms.

• Third, we have empirically evaluated the norm synthesis approaches to-
gether with our virtual community simulator, namely we have compared
iron and simon with desmon. Moreover, in each experiment we use three
different populations, composed by: moderate (users that complain about
inappropriate content) and spammer (users that upload inappropriate con-
tent) agents: (1) majority of moderates, (2) balanced population, and (3)
minority of moderates. In our experiments we will like to observe: (i)
with the first population (1), iron, simon and desmon converges to their
compactest regulations, legislating the inappropriate contents. (ii) with
the second population (2), as users are in equilibrium the NSM’s will not
converge to a normative system, because will be continuously activating
and discarding norms. (iii) with the third population (3), as the majority
is spammer we will like to observe a normative systems without regula-
tions. On the one hand, as iron and simon are reactive approaches they
will hasten to the norm generation, continuously activating and discarding
norms. On the other hand, desmon will wait gathering evidences for norm
generation to capture the majorities opinion. As the majority is spammer,
and hence do not want to have norms, desmon will be able to capture the
opinion of the users and synthesise a normative system without regulation
(without norms). So we will empirically demonstrate that desmon is a
deliberative approach, which is able to synthesise normative systems in
consensus capturing the users’ opinion.

1.4 Publications

In this section we will introduce the publications that we have published among
the life period of this thesis.

• Journal:

– Morales, J., Mendizabal, I., Sanchez-Pinsach, D., López-Sánchez, M.,
and Rodŕıguez-Aguilar, J. A. (2015b). Using iron to build frictionless
on-line communities. AI Communications, 28:16
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• Demonstration:

– Morales, J., Mendizabal, I., Sánchez-Pinsach, D., Lopez-Sanchez, M.,
Wooldridge, M., and Vasconcelos, W. (2014b). Normlab: A framework
to support research on norm synthesis (demonstration)

– Morales, J., Mendizabal, I., Rodriguez-Aguilar, J. A., Sánchez-Pinsach,
D., Lopez-Sanchez, M., Wooldridge, M., and Vasconcelos, W. (2015a).
Extending normlab to spur research on norm synthesis (demonstra-
tion)

1.5 Organisation of the thesis

The remainder of this thesis is organised as follows.

Chapter 2. We first explain the necessary background for a better compre-
hension of this thesis. We introduce state-of-the-art moderation mechanisms
used nowadays, and discuss different existing approaches for the moderation in
virtual communities. We also introduce the Multi-Agent Systems and different
coordination mechanisms for these systems. Thereafter, we explain the state-of-
the-art norm synthesis mechanisms iron, and afterwards its improved version
simon.

Chapter 3. We introduce desmon the improved norm synthesis approach, aim
at synthesising norms in a deliberative and participatory manner capturing the
consensus of the users’ opinion.

Chapter 4. We present a novel multi-agent system simulator to simulate the
behaviour of virtual communities.

Chapter 5. We explain the necessary adaptations made in our on-line commu-
nities simulator to allow all norm synthesis machines to operate on it.

Chapter 6. We empirically compare desmon against iron and simon when
synthesising norms for a virtual community. In this chapter we study the delib-
erativeness of desmon.

Chapter 7. We conclude this thesis by providing a summary of the presented
contributions, drawing the most notable conclusions derived from this work, and
outlining possible directions for future research.



Chapter 2

Background and related
work

This chapter is focused on explaining the fundamental parts for a better compre-
hension of this thesis. We first introduce state-of-the-art moderation mechanisms
in Section 2.1. Once we have described these mechanisms we study how is done
the moderation and draw some conclusions of the state-of-the-art. As our pur-
pose in this thesis is to create a moderation mechanism for social networks, we
explain the Multi-Agent Systems, Section 2.2, that is the technique we use to
simulate our virtual community. Afterwards, Section 2.3 presents some MAS
coordination mechanisms, we focus on the coordination based on norms, a stan-
dard technique in MAS coordination, because is the one we use in order to leg-
islate a virtual community. Moreover, now that we know how we will model our
on-line community (MAS) and the mechanism to coordinate the users (norms)
we present two state-of-the-art on-line norm synthesis mechanisms: iron and
simon. We are going to based on these mechanisms to generate our deliberative
and participatory norm synthesis mechanism.

The next chapters will detail how we apply the explained technology: Chapter
3 describes the new deliberative norm synthesis mechanism, Chapter 4 details
our Multi-Agent simulator of on-line communities. Chapter 5 explains the in-
tegration of the two previous chapters and finally, Chapter 6 empirically proves
the different norm synthesis mechanisms with our novel social network domain.

2.1 State-of-the-art

Virtual communities and social networks are a very recent technology developed
after the huge growth of the internet. Nowadays more and more people interact
through these on-line communities and the moderation requirements of the con-
tents of these sites has grown substantially. In the last decade some enterprises
have started to focus on the problem of moderating them. In this section we

7



8 CHAPTER 2. BACKGROUND AND RELATED WORK

will show some of these enterprises that are the state-of-the-art in automatic
moderation systems.

2.1.1 Keepcon

Keepcon [Guzmán, 2008] is an enterprise located in Buenos Aires (Argentina),
founded in 2009. They started thinking about the automatic moderation of
virtual communities and after some research on the area they realized that it
was still a lot of work to do. So they created an automatic system to moderate
virtual communities, which is called like the company, Keepcon.

The system is split in three main steps that are commented in the figure 2.1 and
in the following paragraphs.

Figure 2.1: Main steps of the Keepcon.

1. Content generation: The first step is when the users generate and up-
load contents to the community. These contents go through Keepcon to
be analysed and classified.

2. Content analysis: Once the content is in the Keepcon, it starts its anal-
ysis. This step is separated in two phases:

2.1. Comprehension phase: The aim of this phase is to interpret and com-
prehend what is in the context. It is a tough task cause many of the
contents are not written in the same way (for instance: to forgive
someone = ”2 4give some1”). Moreover, not only the way in which
the text is written affect to the comprehension, there are ambiguous
terms that can be taken as insult or offensive contents by users. For
this task, Keepcon has different tools for: language detection, typos
detection, url mining, image analysis, and so on.
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2.2. Classification phase: This phase combines two techniques based on
artificial intelligence: (i) Symbolic technology and (ii) Learning ma-
chines. The first one is based on rules, these rules are created by
the clients and this way they avoid the undesirable contents for their
community. The second one is based on machine learning techniques,
they train some algorithms with a text corpus and then they test it
with real cases to measure the precision and classify with it.

3. Content verification: Finally, after the classification stage the Keep-
con machine sends the contents that it has not classified to the Manual
Moderation Factory, where human moderators will manually classify the
ambiguous contents that the machine can not classify.

2.1.2 Stilus Forum

Stilus Forum, [DAEDALUS, 2009], is a product of the enterprise DAEDALUS
- Data, decisions and language S.A. The enterprise is specialised on searching
technologies, natural language processing technologies and business intelligence.

This product is based on the automatic filtering of messages according to their
content. Between the main characteristics of the product are worth noting the
next ones:

• Content filtering: offensive, illegal, inappropriate, and so on.

• Levels of filtering: From less to more strict.

• Coverage of different types of Spanish: From the peninsular Spanish to the
Latino american ones.

• Shortened text recognition, as SMS.

• Real time execution.

The enterprise does not give much more details about the process of moderation
or text recognition.

2.1.3 Sourpanel

Sourpanel, [Gil Alonso and Roig, 2007], is a product of the Spanish enterprise
Sourtech. They are developing their own moderation method since 2007 and are
constantly improving it. Till 2012 they have moderated 60 millions of messages
with this software. But the system is not automatized 100%, but is divided in an
automatic moderation stage followed by a manual moderation, based on human
moderators.

The system provides the following characteristics:

• Automatic moderation: Using natural language processing, regular ex-
pressions, spam filters, and so on.
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• Human moderators assistance: Classifying the contents by subjects.

• Alerts: Predictions of inappropriate conversations, users analysis, and so
on.

• Reports: Customized reports for the clients.

Moreover, there are two main actions which can be done by the Sourpanel to
the contents. The first one is the automatic deletion of contents, based on a
coefficient of confidence, and the second one is the assistance for the human
moderators commented in its characteristics. This last aspect is very helpful for
the human moderators, because the content is going to be classified by subjects
by Sourpanel and then sent to the moderators for their review. The work-flow
of the Sourpanel is described in figure 2.2.

Figure 2.2: Work-flow of the Sourpanel software.

2.1.4 Definition of moderator and types of moderation

In virtual communities, where people interaction occurs, a moderator is a user
or a employee that has been given a special authority to enforce the rules of
the community with the aim of preserving the cordiality and good environment
between the rest of the users.

Its main role is to detect or solve the conflicts that occur within the community
applying the regulations that are ruling it. A moderator can edit, delete or
move contents of a virtual community and also can punish the users that have
uploaded inappropriate contents.

There are different types of moderation: Pre-moderation and Post-moderation,
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these are generally divided by the moment in which the moderation has been
done.

• Pre-moderation: Consists on moderating the content before it is pub-
lished. Hence it is not visible by the other users of the virtual community.
This dynamic is not very regular with human moderators, due to there
will be too many contents to review before uploading them (impossible for
big communities) and this will increase users impatience.

• Post-moderation: Consists on moderating the content after it is pub-
lished. Once the user uploads a content it is visible for the rest of the
community. So the moderation is done afterwards, when people has com-
plaint about certain contents.

Finally, we can consider some advantages and disadvantages of these two types.
First of all, time is a key issue that we have to take into account, post-moderation
deals with it uploading all the contents without being reviewed, while pre-
moderation waits to upload only the contents that have been reviewed. On
the other hand, the user experience will be better in the pre-moderation because
all the bad and inappropriate contents will be filtered out before other users can
see them. Moreover, the post-moderation can create conflicts between users.

2.1.5 Conclusions of the state-of-the-art

After this research we can conclude that there are few automatic moderation
mechanisms, and these are not autonomous at all. The combination of automatic
moderation mechanisms and human moderators is the most common in the state-
of-the-art mechanisms. Also, it is a very novel approach and the techniques of
automatic moderation are improving with time. Nowadays the moderation has
been automatised in the classification of the contents as an assistance for the
human moderators. And only in the cases with high confidence of the automatic
techniques is led to a content deletion without the supervision of a human.

2.2 Multi-Agent Systems

In this section we will explain the basic concepts of a multi-agent system ex-
tracted from Michael Wooldridge’s book [Wooldridge, 2009].

2.2.1 Agents

We will start by defining what an agent is. An agent is a computational system
that is located in an environment and is capable of making actions on an au-
tonomous manner, with the aim of achieving some goals pre-designed on their
creation.

Figure 2.3 provides an abstract vision of what an intelligent agent could look
like. As depicted in the illustration, we can observe how the actions, realized by
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the effectors or actuators, allow it to interact with the environment causing the
changes on it. The agent also takes perceptions from the environment by means
of sensors, and this is how it interacts with it.

Figure 2.3: Abstract vision of an intelligent agent.

But, When do we consider that an agent is intelligent? One of the ways to
answer this question will be listing the capabilities we think an intelligent agent
must have. Therefore, for an agent to be intelligent we will mention the list of
capabilities suggested in [Wooldridge and Jennings, 1995]:

• Reactivity: Intelligent agents are capable to perceive their environment
and answer to any change that happened on it with the aim of satisfying
the pre-designed goals.

• Proactiveness: Intelligent agents are able to exhibit goal-directed be-
haviour by taking the initiative in order to satisfy their design objectives

• Social Ability:Intelligent agents are capable of interacting with other
agents (and possibly humans) in order to satisfy their design objectives.

Summing up, an agent is a computational system capable of acting in an au-
tonomous manner. In other words, an agent can find out by itself what he needs
to do to satisfy the pre-designed goals, instead of saying explicitly in each mo-
ment what do he had to do. Hence, a multi-agent system is the one that consist
of a certain number of agents, which interact one with the other, generally com-
municating by message exchange.

In the most general case, the agents in a multi-agent system will be represented
or will act in the name of several users with different objectives and motivations.
With the aim of interacting successfully, these agents need the capabilities of co-
operate, coordinate and negotiate between them, as the same way as human
beings that collaborate, coordinate and negotiate with other human being daily.

2.2.2 MAS Simulation

There are too many variables and unknowns in human society, that only permit
to forecast very general trends in a short future time space.
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Nevertheless, Multi-agent systems offer an innovative and interesting tool for
human societies simulation. The agents could be used to simulate the human
behaviour and this would help in the solving of different situations. For example,
agents could represent people of a society, electronic institutions or entities to
represent social processes. Moreover, in [Gilbert and Conte, 1995] are detailed
some of the benefits the MAS related to social processes could have:

• The computer simulation allows the observation of properties of a model,
that in principle could be analytically derivable but still is not established.

• Different alternative solutions to a phenomenon observed in nature.

• Properties that are difficult to observe in nature can be observed in simu-
lations in an isolated manner, save them and reproduce them as much as
needed.

• The created society can be moulded explicitly, agents can be created with
different representations and these properties can be studied afterwards.

To conclude, we are going to use a MAS to model our on-line social network
simulator, the pertaining agents will represent human behaviours which will
interact between each other. So a coordination mechanism will be needed in the
agents interaction, in next section 2.3 we introduce some of them and focus on
the used one in section 2.3.1.

2.3 MAS Coordination mechanisms

As is explained in [Wooldridge, 2009], ”Perhaps the defining problem in coop-
erative working is that of coordination”. Some coordination mechanisms are
essential if the activities of the agents that participate interact between them.

Coordination in multi-agent systems its assumed to occur on execution time,
the agents must be able to recognise their relations and when it is necessary to
handle them as part of their activities.

Multiple techniques are available in the literature having as objective the dy-
namic coordination of MAS as:

• Coordination through partial global planning.

• Coordination through joint intentions.

• Coordination by mutual modelling.

• Coordination by norms and social laws.

We are going to focus on the last one and explain it in next section 2.3.1, since
it is the technique adopted by the approaches, iron (section 2.4) and simon
(section 2.5), used in this work.
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2.3.1 Coordination via Norms and Social laws

In our every day lives, we humans use a range of techniques for coordinating
activities. One of the most important is the use of norms and social laws as
said in [Lewis David, 1969]. A norm is simply an expected pattern of behaviour;
whereas the term social laws carry with them some extra authority the norms
does not have.

In MAS simulations conventions play a key role in the social process, they pro-
vide agents a behavioural constraint balancing: the individual freedom on the
one hand and the goal of the society on the other. They also simplify the decision
making process, by dictating some actions to be followed in certain situations.
For example, language is a convention accepted by the human beings to coordi-
nate our activities with others.

Norms have been widely studied as a mechanism for coordinating MAS [Shoham
and Leyton-Brown, 2009; Dignum, 1999; Boella et al., 2006]. Coordination in
this sense is usually understood as achieving some system-level goal, such as en-
suring that the system avoids certain undesirable states. However, the problem
of actually synthesising norms that effectively coordinate a multi-agent system
is challenging. Since the seminal work of [Shoham and Tennenholtz, 1995], the
norm synthesis problem (namely, creating a set of norms which ensures that co-
ordination is successful) has attracted considerable attention. Two approaches
for norm synthesis have been considered in the literature: off-line and on-line.

Off-line approaches (e.g., [Shoham and Tennenholtz, 1995; Fitoussi and Tennen-
holtz, 1998]) are aimed at synthesising normative systems at design time. Unfor-
tunately, the complexity of the off-line norm synthesis problem is high (NP-hard)
[Shoham and Tennenholtz, 1995]. These complexity issues have prompted re-
search into the problem of managing the size of the system state space [Christelis
and Rovatsos, 2009]. Unfortunately, even if we ignore the problem of computa-
tional complexity, computing norms off-line is not appropriate if the state space
of the system is not known in advance, or if it may change over time.

In contrast to off-line approaches, on-line approaches are aimed at synthesising
norms at run-time rather than design time. The key conceptual advantage of
on-line approaches compared to off-line approaches is that on-line approaches
are not assumed to require complete knowledge of the system at design time.

Recently, norm emergence (or convention emergence) has become a popular tech-
nique for on-line norm synthesis (see, e.g., [Christelis and Rovatsos, 2009; Sen
and Sen, 2010; Griffiths and Luck, 2010; Salazar et al., 2010; Villatoro et al.,
2011; Yu et al., 2013]). Norm emergence does not require any global state
representation or centralised control, and considers that agents collaboratively
choose their own norms. Norm emergence therefore implies that agents are en-
dowed with the computational capability to synthesise norms, and that they
will choose to cooperate in the norm synthesis process. A norm is considered
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to have emerged when a significant number of agents in an agent society adhere
to a common behaviour (that is, they choose the same actions), which is not
dictated by a central authority. Therefore, a key issue in norm emergence is the
design of emergence mechanisms that help agents agree on-line (converge) on
some norm(s) [Kittock, 1993; Walker and Wooldridge, 1995]. Typically, state-
of-the-art norm emergence mechanisms: (i) require an initial set of pre-designed,
alternative norms; (ii) are sensitive to such initial conditions; and (iii) mainly
converge to a unique norm instead of to a set of norms (with the exception of
[Sen and Sen, 2010; Salazar et al., 2010]).

A recent alternative on-line approach is described in [Morales et al., 2011]. There
norms are synthesised by observing agent interactions, without requiring their
active participation in the synthesis process, unlike state-of-the-art norm emer-
gence mechanisms. These approach proved to be capable of synthesizing a set
of norms, instead of a single norm, from scratch (namely, without requiring any
initial, alternative norms).

On the next Section 2.4 we will present a state-of-the-art on-line norm synthesis
mechanism: iron. Afterwards Section 2.5 will introduce an improved version of
it, simon, overcoming some encountered drawbacks.

2.4 IRON

We now survey iron [Morales et al., 2013], an abstract and domain-independent
on-line norm synthesis mechanism capable of synthesizing normative systems to
avoid undesirables states for the given domain. In this work we have extended the
mechanism to regulate on-line communities and also overcome some discovered
drawbacks. With this aim, iron synthesises norms that are used by the users of
a community to avoid conflicts. Figure 2.4 illustrates the abstract architecture
of iron. In brief, it works by continuously monitoring agents’ interactions in a
distributed manner through its sensors, searching for conflicting situations.

Figure 2.4: iron ’s abstract architecture.
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At each system’s time step, iron carries out the overall norm synthesis process
throughout three subsequent stages.

1. Whenever it detects new conflicts it performs a norm generation process
that synthesises norms for the agents of the MAS. These new norms, which
regulate agents’ behaviour and are aimed at avoiding conflicts in the future,
are then communicated to the agents of the MAS.

2. Since at each time step agents choose whether to comply or not with norms,
iron monitors the consequences of such decisions to evaluate norms. In
other words, it performs a norm evaluation process to assess if norms
manage to avoid conflicts or not.

3. It carries out a norm refinement process, which: (i) generalises norms when
possible, joining several norms to a single parent that concisely represents
all of them; and (ii) discards those norms that have not performed well for
a period of time.

4. If iron has made any changes to the normative system, either by adding or
removing norms, it sends the new normative system to the agents within
the MAS.

Notice then that iron ’s norm synthesis is a conflict-driven process. It generates
norms whenever new conflicts arise, and it evaluates norms based on the conflicts
that arise after agents fulfil or infringe norms. Moreover, it generalises and spe-
cialises (deactivates) norms based on their continuous evaluations. Therefore,
conflicts also affect norm refinement.

2.4.1 Information model

Consider a Multi-Agent System (MAS) composed of a set of agents Ag =
{ag1, . . . , agn} and a set of actions Ac = {ac1, . . . , acc} available to the agents.
Agents in the system have their local, individual context, which is described in
terms of their local point of view (that is, mimicking their perception).

In the norm synthesis process, norms are of the form 〈ϕ, θ(ac)〉 where ϕ is the
norm’s precondition, θ is a deontic operator (e.g., a prohibition) and ac ∈ Ac is
an action available to the agents. The precondition of a norm is a set of first-order
n-ary predicates p(τ1, . . . , τn), where p is a predicate symbol and (τ1, . . . , τn) is a
set of terms. Moreover, norms are expressed in terms of agents’ individual con-
texts so that they can be understood by them. Hence, whenever the individual
context of an agent satisfies the precondition ϕ of a norm, then the norm applies
to the agent and θ(ac) holds for it. We define a normative system Ω as the set
of norms that are currently active in the multi-agent system.

As an example, consider a traffic scenario where agents are driving cars, and con-
flicting situations are collisions between cars. We consider three unary predicate
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symbols {left, front, right} representing the three road positions that an agent
perceives. Each predicate has a single term from {police, ambulance, fire −
brigade, emergency, nil} representing different types of emergency vehicles, and
symbol “nil” standing for no vehicle. The actions available to agents are Ac =
{go, stop}. With these definitions in place we can create norms such as n1, n2, n3

shown in figure 2.5. All three norms establish a prohibition to go to an agent
that has different types of emergency vehicles to its left position, and nothing
to its front and right positions.

n1 : 〈{left(police), front(nil), right(nil)}, prh(go)〉
n2 : 〈{left(ambulance), front(nil), right(nil)}, prh(go)〉
n3 : 〈{left(fire-brigade), front(nil), right(nil)}, prh(go)〉

Figure 2.5: Example of norms synthesized by iron.

The norm synthesis process is an abstract, domain independent mechanism.
However, in order to configure it for different scenarios, it requires some domain-
dependant inputs that must be implemented for each specific scenario. In what
follows, we will describe iron ’s norm synthesis process (section 2.4.2) as well as
the inputs (section 2.4.3) it requires to synthesise norms for a specific scenario.

2.4.2 IRON’s norm synthesis process

iron is based on three components to perform norm synthesis:

1. A normative network (NN), which is a graph-based data structure to rep-
resent explored norms,

2. A set of normative network operators that allow to apply changes to the
normative network

3. A strategy to apply operators to the normative network.

The right-hand side of Figure 2.6 illustrates the components of iron. The control
unit contains the set of operators O, as well as a strategy Π to apply operators.
iron ’s strategy applies operators to the normative network in order to retrieve
information about norms and to apply changes to the normative network (see
read and write arrows in Figure 2.6). In what follows, we briefly describe these
three main components.
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Figure 2.6: iron ’s components and inputs.

2.4.2.1 The Normative Network

iron represents explored norms by means of the normative network (NN). Specif-
ically, a normative network is a graph-based data structure whose nodes stand
for norms and whose edges stand for (generalisation) relationships among norms.
In a normative network, norms can be either active or inactive. The set of active
norms in the normative network constitutes the normative system (Ω), that is
provided to the agents in the scenario. Figure 2.7 illustrates the evolution of a
normative network (and its corresponding normative system) over time period
ti − ti+2. At time step ti, the normative network NNi contains one unique ac-
tive norm n1 (represented as a white circle), hence representing the normative
system Ωi = {n1}. At time ti a new active norm n2 is created and added to the
normative network, hence leading to NNi+1 = {n1, n2} and Ωi+1 = {n1, n2}.
Finally, at instant ti+2 norm n2 is deactivated (represented as a gray circle),
yielding NNi+2 = {n1, n2} and Ωi+2 = {n1}. Notice that at time step ti+2

the normative system contains one unique norm n1, even though the normative
network contains two norms n1, n2. Recall that a normative network represents
a normative system as its active norms, and at time ti+2 the only active norm
in the normative network is n1.
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Figure 2.7: Evolution of a Normative Network along time.

We now offer a formal definition of the normative network employed by iron:

Definition 1 (Normative Network). A Normative Network (NN ) is a tuple
〈N , RG,∆, δ〉 where: (i) N ⊆ N is a subset of our language of norms; (ii) RG ⊆
N×N is a generalisation relationship between norms; (iii) ∆ = {active, inactive}
is the set of possible states of a norm; (iv) δ : N → ∆ is a function that returns
the state of a norm n ∈ N .
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Since iron considers that the current normative system is composed of the
norms that are currently active in the normative network, we define Ω = {n |n ∈
N , δ(n) = active}.

2.4.2.2 Operators for normative networks

iron transforms the normative network over time, leading from one normative
system into another, searching for a normative system that effectively coordi-
nates the MAS. With this aim, it includes four different operators, more precisely,
iron implements operators to perform:

• The creation of a new norm, activating it and adding it then to the nor-
mative network.

• The deactivation of a norm in the normative network, hence removing it
from the normative system.

• The generalisation of a group of norms in the normative network to a more
general norm that concisely represents all of them.

• As a dual operation to generalisation, the specialisation of a general norm
to more specific norms.

Next we detail each operator:

1. Create. The create operator synthesises a new norm from each new de-
tected conflict. Next, it employs operators add and activate to activate
the norm and add it to the normative network. Thus, the created norm
will be included in the normative system. iron assumes that a conflict
can be avoided if some of the agents’ previous actions are not performed.
Therefore, it generates norms that prohibit agents to perform such actions
in the same conflictive context. Specifically, the create operator receives
a set of detected conflicts and generates a new norm for each conflict.
This generation process is based on an unsupervised version of classical
Case-Based Reasoning (CBR) [Aamodt and Plaza, 1994] (more details can
be found at [Morales et al., 2013]). Figure 2.7 illustrates the creation of a
norm. At time ti, the normative network NNi contains one active norm
n1. By applying operator create, a new active norm n2 is added to the
normative network, yielding NNi+1 = {n1, n2} and Ωi+1 = {n1, n2}.

(a) Add. The add operator adds a norm to the normative network so
that iron can keep track of its ability to avoid conflicts.

(b) Activate. As described above, norms in a normative network may be
either active or inactive. Operator activate sets the state of a norm in
the normative network to active so that it belongs to the normative
system.
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2. Deactivate. Consider that at a given time iron detects that a norm does
not succeed in avoiding conflicts, and hence must be removed from the
normative system. iron will not remove the norm from the normative
network, but it will use operator deactivate to set the state of the norm
to inactive. Therefore, the norm will no longer belong to the normative
system but the normative network will still have it to keep track of its ex-
ploration. Again, Figure 2.7 depicts the normative network NNi+1, which
at time ti+1 contains two active norms n1, n2. Then, operator deactivate
deactivates norm n2, yielding NNi+2 = {n1, n2} and Ωi+2 = {n1}.

3. Generalise. As part of the norm refinement process, iron uses operator
generalise to represent several norms as a more general, single norm that
implicitly includes all of them. Specifically, norm generalisations can be
performed for any norm in the normative network. Thus, by means of
norm generalisations iron reduces the cardinality of synthesised normative
systems. As an example, consider norms n1, n2, n3 described in figure 2.5.
All these three norms can be generalised to the following norm:

n4 : 〈{left(emergency), front(nil), right(nil)}, prh(go)〉

Figure 2.8: Generalisation of example norms.

Norm n4 prohibits an agent to go whenever it perceives any type of emer-
gency vehicle (either police, ambulance or fire-brigade) to its left position,
and nothing to its front and right positions. Figure 2.9 illustrates the gen-
eralisation of n1, n2, n3 to n4. At time ti, the normative network NNi
contains three active norms n1, n2, n3. Then, iron generalises them to n4

by performing the following steps: (i) it generates norm n4, (ii) it activates
n4 and adds it to the normative network, (iii) it establishes generalisation
relationships from n1, n2, n3 to n4, and (iv) it deactivates norms n1, n2, n3,
removing them from the normative system.

4. Specialise. Operator specialise undoes a norm generalisation, special-
ising a general norm into a set of more specific norms. As an example,
consider the normative network NNi depicted in Figure 2.10. It repre-
sents normative system Ωi = {n4}, containing one single norm which is
applicable in the specific situations described by norms n1, n2, n3. Con-
sider now norm n2 does not succeed in avoiding conflicts, and hence it must
be removed from the normative system. Even though n2 does not belong
to the normative system, it is implicitly represented by n4. Therefore,
operator specialise specialises n4, deactivating it and activating n1, n3 in
the normative network. Thus, after the norm specialisation, the normative
system becomes NNi+1 = {n1, n3}, which no longer contains the situation
described by n2.
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Algorithm 1 iron’s norm synthesis strategy
1: function IRONStrategy(〈st−1, st〉,NN ,G, fapply , fconflict , µeff , µnec ,Θ, Tw)
2: conflictDescription ← conflictDetection(〈st−1, st〉, fconflict )
3: NN ← normGeneration(NN , conflictDescription,G)
4: P ← normEvaluation(NN , 〈st−1, st〉, fapply , fconflict , µeff , µnec , Tw)
5: NN ← normRefinement(NN ,P,G,Θ)
6: Ω← {n ∈ NN |δ′(n) = active}
7: return Ω
8: end function
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2.4.2.3 IRON’s strategy

iron invokes previous operators by following a specific strategy to perform the
norm synthesis process. Specifically, the proposal of [Morales et al., 2013] is to
monitor the evolution of the system at regular time intervals and apply oper-
ators under certain conditions. Algorithm 1 describes in outline iron’s overall
norm synthesis strategy. Since iron is an on-line mechanism, at every tick it
runs its strategy to perform three main tasks, namely: norm generation, norm
evaluation and norm refinement. Algorithm 1 specifies iron’s general strategy.
It is domain-independent and takes as input:

• A pair 〈st−1, st〉 containing descriptions of the system state at time t − 1
and time t, respectively. This pair stands for a transition between the
system state at consecutive times. In fact, the differences between st−1

and st reflect the local changes that occurred when the system evolved
from t− 1 to t.

• A normative network NN , which includes the current normative system
Ω.

• A grammar G, including the subsumption relationships between its terms;

• A function fapply to check norm applicability in the current system state
s.

• A function fconflict to detect if a given system state s is undesired.

• Two evaluation functions µeff , µnec to assess the effectiveness and neces-
sity of norms in NN.

• Θ, a set of satisfaction degree thresholds (Θ = {αgen
eff , αgen

nec , α
esp
eff , α

esp
nec}).
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• A time period Tw.

The strategy is on-line and conflict-driven (since it is aimed to avoid undesired,
conflicting states), and thus, at every tick, it starts by searching for conflicts in
the current system state. Function conflictDetection (line 2) uses the domain-
dependent function fconflict to assess if the current system state st is undesired
(i.e., it detects undesired states C ⊂ S). In case that st ∈ C, it returns a
conflictDescription that incorporates descriptions st−1 and st, together with
the identifiers of those agents whose actions lead to the undesired state st (for in-
stance, in a traffic scenario, those cars that went forward before colliding). Next,
the normGeneration function (line 3) synthesises a norm to avoid the transition
from st−1 to st (though disregarding the generation of general norms) in order to
avoid it in the future. Subsequently, normEvaluation in line 4 evaluates norms in
terms of their effectiveness and necessity. Finally, the norm refinement function
in line 5 generalises and/or specialises norms according to their effectiveness and
necessity ranges during the time period Tw. The algorithm outputs a normative
system (line 7), which is the aggregation of all the active norms of the Normative
Network (line 6), for the agents in the domain that iron is aiming at regulating.

We now explain in detail the three main tasks of iron, namely: norm generation,
norm evaluation and norm refinement.

1. Norm generation. During this phase, iron first monitors the multi-
agent system operation through a set of distributed sensors, searching for
conflicts. As depicted in Figure 2.6, iron represents agents’ perceived in-
teractions in the form of observations, which are partial descriptions of the
scenario from a global, external observer’s perspective. Then, it performs
conflict detection within perceived observations. Whenever conflicts arise,
it invokes the previously described operator create to generate norms that
regulate agents’ behaviour in order to avoid detected conflicts in the fu-
ture. Recall that, since agents must be able to understand norms, iron
describes norms from an agent’s local perspective.

2. Norm evaluation. At each time step, some norms may apply to the
agents. In this case, agents decide whether to fulfil norms or infringe
them. During the norm evaluation stage, iron monitors the effects of such
decisions in order to assess if norms succeed in avoiding conflicts. With this
aim, it determines if agents have fulfilled or infringed norms, and which
of these fulfilments or infringements have led to conflicts. Then, norms
are evaluated in terms of their effectiveness and necessity, represented as
µeff and µnec. On the one hand, iron measures the effectiveness µeff
of a norm from the outcomes of its fulfilments: the higher the ratio of
successful fulfilments (fulfilments that did not end up with conflicts), the
more effective the norm. On the other hand, it measures the necessity
µnec of a norm according to the following principle: the higher the ratio
of harmful infringements (infringements leading to conflicts), the more
necessary the norm. Finally, iron computes the effectiveness and necessity
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ranges of norms during a period of time T . Specifically, a range of a norm
contains a lower and upper bound for the range of values of effectiveness
or necessity (µeff , µnec) of the norm during T . These ranges will be used
to refine and evaluate norms, in Section 2.4.3.4 we detail how we evaluate
the norms.

3. Norm refinement. The norm refinement process yields a new normative
system transforming the normative network, deactivating ineffective or un-
necessary norms, and performing norm generalisations and specialisations.
On the one hand, it generalises a norm whenever the lower bound of its
effectiveness and necessity ranges are over a generalisation threshold αgen.
On the other hand it specialises (deactivates) a norm whenever the upper
bound of its effectiveness or necessity ranges are under a specialisation
threshold αspec.

2.4.3 IRON’s inputs

As detailed above, iron ’s norm synthesis is an abstract, domain-independent
mechanism. However, during the norm synthesis process it requires some domain
information:

• A grammar G to define norms for the given scenario.

• A conflict detection function fconflict that allows to detect conflicts in
perceived observations.

• A norm applicability function fapply to determine whether a norm applies
to the agents in a perceived observation.

• Norm evaluation functions to compute the effectiveness and necessity of
norms in the normative network.

• A set of configuration parameters composed of a time interval (T ) to com-
pute effectiveness and necessity ranges of norms during a period of time T ,
as well as a set of thresholds to define the acceptable range of effectiveness
and necessity of norms, to consider to generalise and specialise norms.

In the next section we are going to detail these domain information for the norm
synthesis machine.

2.4.3.1 A Grammar for norm synthesis

The first input iron requires is a grammar to synthesise norms of the form
〈ϕ, θ(Ac)〉 for the given scenario. iron adapts its grammar from [Garćıa-Camino
et al., 2009], using as building blocks atomic formulae of the form pn(τ1, . . . , τn),
p being an n-ary predicate symbol and τ1, . . . , τn terms of an agents’ language
that describes agents’ individual contexts.
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Norm ::= 〈ϕ, θ(Ac)〉
ϕ ::= ϕ & ϕ | α
θ ::= obl | prh
Ac ::= ac1 | ac2 | . . . | acn
α ::= pn(τ1, . . . , τn)

Figure 2.11: Abstract grammar for norm synthesis.

In order to configure iron to synthesise norms for a given scenario, this abstract
grammar must be instantiated, specifying the predicates and terms that are
considered for that particular scenario.

2.4.3.2 A function for conflict detection

The definition of conflict is domain-dependant. For instance, in a traffic scenario
a conflicting situation may be a collision among cars, while in an on-line com-
munity scenario a conflict may be defined as a user that uploads inappropriate
contents (e.g., uploading a spam content), hence leading other users to complain
about it. Therefore, iron requires as an input a function fconflict to detect con-
flicts for a given scenario. Specifically, function fconflict receives as an input a
set of perceived observations, and returns a set of conflicts that it has detected
within these observations.

2.4.3.3 A function to detect norm applicability

As described in the strategy in Section 2.4.2.3, iron evaluates norms based
on the consequences of agents’ norm fulfilments and infringements. With this
aim, function fapply receives as an input a set of perceived observations, and
returns a set of norms that apply in the situations described by the observations.
Specifically, this function operates as follows. First, it computes the individual
context of each agent in the observation. Second, for each agent’s individual
context, it retrieves which norms apply to that context. As an example, consider
an agent which perceives a police car to its left, and nothing to its front and
right positions. In this specific individual context, norm n1 applies to the agent
and hence the agent is forbidden to go.

2.4.3.4 Functions to evaluate norms

During norm evaluation, iron requires as an input two functions µeff and µnec
to evaluate the effectiveness and necessity of norms. In fact, these functions
are not really scenario-dependant. They evaluate norms based on the conflicts
(in general) that arise after agents fulfil or infringe norms. However, iron pro-
vides two default utility functions µeff and µnec that may be replaced by other
functions explicitly implemented for a specific scenario. iron’s default utility
functions evaluate norms along the lines of the explanation of norm evaluation
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in section 2.4.2.3. Function µeff computes the effectiveness of a norm as its ra-
tio of successful fulfilments. Function µnec computes the necessity of a norm as
its ratio of harmful infringements. The definition of default formulas µeff , µnec
correspond to the formulas 1, 2, 3, 4 in [Morales et al., 2013]. These are also
explain in next Chapter 3 on Section 3.2.2.2.

2.4.3.5 Configuration parameters

Recall from section 2.4.2.3 that iron refines the normative system deactivat-
ing, generalising and specialising norms, based on their effectiveness and neces-
sity ranges and a set of generalisation and specialisation thresholds. Therefore,
iron requires as an input parameter T to compute ranges, as well as thresholds
αgen, αspec to generalise and specialise norms. A low time interval T , will make
iron to be more reactive to changes in effectiveness and necessity ranges, refin-
ing the normative system in consequence. By contrast, large time intervals T
will make iron to be more conservative to refine the normative system, since
effectiveness and necessity ranges will be less reactive to changes. Moreover,
the greater the generalisation threshold is, the more conservative iron is about
generalising norms. Finally, the lower the specialisation threshold is, the more
conservative iron will be about deactivating norms.

2.5 SIMON

As argued in [Morales et al., 2014a], iron has some drawbacks. First, iron
misses out on compactness issues: there are no metrics on minimality and sim-
plicity of the synthesized normative system. Indeed, there is a lack of literature
on experimental analysis of compactness, and work so far has only addressed
compactness issues from a theoretical perspective [Fitoussi and Tennenholtz,
2000]. Additionally, iron ’s generalisation is highly conservative. iron requires
that all the children of a potential generalisation (i) exist, (ii) are active and
(iii) perform well in order to generalise norms.

In this section is introduce simon (SI mple M inimal On-line N orm Synthesis),
the approach of norm synthesis presented by [Morales et al., 2014a], which in-
corporates an alternative technique for norm generalisation that increases the
compactness of synthesised normative systems. simon is based on iron, but it
tries to avoid the above mentioned drawbacks. The following sections will talk
about the improvements of simon (2.5.1) with respect to iron and the extra
inputs these improvements require in order to operate (2.5.2).

2.5.1 Improvements of SIMON

simon tries to tackle the drawbacks of iron by using (i) an ontology, and by
improving the (ii) norm generalisation, (iii) strategy and (iv) norm evaluation
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processes in iron. We now focus on these improvements.

2.5.1.1 Ontology

The ontology introduced by simon is a directed tree rooted at a most general
term and whose edges capture generalisation relationships. It uses the same
language used by iron (explained in Section 2.4.1). Moreover, simon denotes
the set of terms in the language by T and defines a relationship between the
terms in T such that if τ, τ ′ ∈ T and τ ′ ≤ τ , we say that τ is more general than
τ ′. There is also a single term τ0 ∈ T , called the most general term, which is
not generalised by any other term.

any

emergency

ambulance police fire-brigade

private

car bike

Figure 2.12: Relationships between terms, ontology.

Figure 2.12 illustrates an example ontology rooted at the “any” term (most gen-
eral term, τ0); term “emergency” is more general than “ambulance”, and term
“any” is more general than “emergency”, that is, ambulance v emergency v any.

2.5.1.2 Preliminary definitions

To understand the generalisation mechanism of simon as described in [Morales
et al., 2014a], some preliminary definitions are required:

1. Subsumption of terms

We say that τ subsumes τ ′, denoted as τ ′ v τ , if the term τ is more general than
τ ′. For example, ”any” subsumes terms ”emergency” and ”ambulance”, that is,
emergency v any and ambulance v emergency. Formally:

Definition 2 (Terms subsumption). Let τ, τ ′ ∈ T be two terms. We say that τ
subsumes τ ′, denoted as τ ′ v τ , iff there is a (possibly empty) sequence of terms
τ ′0, . . . , τ

′
m such that τ ′ ≤ τ ′0 ≤ · · · ≤ τ ′m ≤ τ .

2. Intersection of terms

Considering that the ontology of terms has a tree structure, the intersection
between two terms is the most specific term subsuming these two terms. For
instance, the intersection between ”ambulance” and ”emergency” is the term
”ambulance”, that is the most specific term. Formally:
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Definition 3 (Terms intersection). For τ, τ ′ ∈ T , their intersection τ ut τ ′ is:

τ ut τ ′ =

 τ if τ v τ ′
τ ′ if τ ′ v τ
∅ otherwise

3. Intersection of predicates

The intersection between two predicates p(τ̄), p(τ̄ ′) ∈ LAg is another predicate
with the intersection of each corresponding pair of terms in τ̄ , τ̄ ′, whenever such
intersection exists for all of them and the predicates are equal. Formally:

Definition 4 (Predicates intersection). For p(τ̄ ), p(τ̄ ′) ∈ LAg, if τiutτ ′i 6= ∅, 1 ≤
i ≤ n, then their intersection p(τ̄ ) uπ p(τ̄ ′) is p(τ̄ ′′) such that τ ′′i = τi ut τ ′i for
all 1 ≤ i ≤ n.

Following the examples of figure 2.12, the intersection between left(ambulance)
and left(emergency) is left(ambulance).

4. Generalisation of terms

Inspired by the anti-unification of terms proposed in [Armengol and Plaza, 2000],
the most specific generalisation of terms, τ, τ ′ ∈ T , τ 6= τ ′, is the most specific
term (τs) that strictly subsumes both of them, τ @ τs and τ ′ @ τs. Formally:

Definition 5 (Generalisation of terms). For τ, τ ′ ∈ T , τ 6= τ ′, their most specific
generalisation, denoted as τ tt τ ′, is a term τs ∈ T such that τ @ τs and τ ′ @ τs,
and @τ ′′ ∈ T such that τ @ τ ′′, τ ′ @ τ ′′ and τ ′′ @ τs.

For instance, the most specific generalisation of “ambulance” and “car” is “any”,
since there is no other term which is more specific and strictly subsumes both of
them. On the other hand, the most specific generalisation of “car” and “bike”
is “private”, as we can observe in Figure 2.12.

5. Generalisation of predicates

The most specific generalisation of predicates is followed by the generalisation
of terms. If the predicates are equal and the terms generalisable, as seen in
the previous definition, the most specific generalisation of predicates will be the
same predicate with the specific generalised term. Formally:

Definition 6 (Generalisation of predicates). Predicates p(τ̄ ), p(τ̄ ′) ∈ LAg have
a most specific generalisation iff τi tt τ ′i 6= ∅, 1 ≤ i ≤ m. Their most specific
generalisation, denoted as p(τ̄ ) tp p(τ̄ ′), is another predicate p(τ̄ ′′) such that
τ ′′i = τi tt τ ′i , 1 ≤ i ≤ m.

For example, the most specific predicate generalisation for “left(ambulance)”
and “left(police)” is “left(emergency)”.
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6. Generalisation between norms

Finally, there is a generalisation relationship between norms n and n′ when,
for each predicate there is an equivalent predicate, and the term is equal or
subsumed. Formally:

Definition 7 (Norms generalisation relationship). n = 〈ϕ, θ(ac)〉 is more gen-
eral than n′ = 〈ϕ′, θ(ac)〉, denoted as n′ ⊆ n, iff |ϕ| = |ϕ′|, and for each predicate
p(τ̄ ′) ∈ ϕ′, there is a predicate p(τ̄ ) ∈ ϕ, τ ′i v τi, 1 ≤ i ≤ m.

n : 〈{left(emergency), front(nil), right(nil)}, prh(go)〉
n′ : 〈{left(ambulance), front(nil), right(nil)}, prh(go)〉

Figure 2.13: Example of relationship between norms.

For instance, in figure 2.13 we show norms n and n′, where n is more general
than n′ because for all the predicates there is an equivalent predicate and, in
the case of the first predicate, a more general one, namely:

“left(emergency)
′′ v “left(ambulance)

′′

“front(nil)
′′

= “front(nil)
′′

“right(nil)
′′

= “right(nil)
′′

2.5.1.3 Norm Generalisation

simon ’s norm generalisation consists of three phases:

i) Monitoring when the norms of the NS start performing well.

ii) Checking if the identified norms are generalisable with the rest of the
norms.

iii) Generalising norms if possible.

Specifically, simon first monitors if the effectiveness and necessity performance
values, explained in section 2.4.3.4, surpass the generalisation thresholds during
the current time period. Second, for each norm that starts performing well, it
checks if it is generalisable with another norm in the NS, the active ones (notice
that iron considers all the norms in the NN). Finally, in case two norms are
generalisable, simon generalises them to the most specific general norm (their
parent norm).

So, two norms, n and n′, will be generalisable for simon if for each predicate
of n exists a predicate in n′ such that: it (i) intersects or (ii) subsumes both
predicates. Formally:
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Definition 8 (Generalisable norms). We say that two norms n = 〈ϕ, θ(ac)〉 and
n′ = 〈ϕ′, θ(ac)〉, n 6= n′, are generalisable iff (i) there is at least one predicate
p(τ̄ ′) ∈ ϕ′, p(τ̄ ) tp p(τ̄ ′) 6= ∅; and (ii) for each remaining predicate p(τ̄ ) ∈ ϕ,
there is an equal predicate p(τ̄ ) ∈ ϕ′.

n1 : 〈{left(police), front(police), right(car)}, prh(go)〉
n2 : 〈{left(ambulance), front(police), right(car)}, prh(go)〉
n3 : 〈{left(emergency), front(police), right(car)}, prh(go)〉
n4 : 〈{left(fire-brigade), front(police), right(car)}, prh(go)〉
n5 : 〈{left(fire-brigade), front(police), right(police)}, prh(go)〉
n6 : 〈{left(fire-brigade), front(police), right(any)}, prh(go)〉

Figure 2.14: Example of generalisation between norms.

For instance, norms n1 and n2, shown in figure 2.14, satisfy the conditions of
generalisation because:

1. Predicate left(police) ∈ ϕ1 has a corresponding predicate left(ambulance) ∈
ϕ2, these two predicates are subsumed by the term emergency :

left(police) tp left(ambulance) = left(emergency).

2. Predicate front(police) ∈ ϕ1 has front(police) ∈ ϕ2.

3. Predicate right(car) ∈ ϕ1 has right(car) ∈ ϕ2.

Hence, n1 and n2 are generalisable to a new norm that can be n3, which it is
assessed as follows:

Definition 9 (Norm generalisation). Two generalisable norms n = 〈ϕ, θ(ac)〉,-
n′ = 〈ϕ′, θ(ac)〉 can be generalised to a norm n′′ = 〈ϕ′′, θ(ac)〉 such that, for each
predicate p(τ̄ ) ∈ ϕ and p(τ̄ ′) ∈ ϕ′, there is a predicate p(τ̄ ′′) ∈ ϕ′′ obtained as:

p(τ̄ ′′) =

{
p(τ̄ ) if τi = τ ′i ,∀i ∈ [1,m]
p(τ̄ ) tp p(τ̄ ′) otherwise

Following the previous example:

left(police) tp left(ambulance) = left(emergency)
front(police) ∈ ϕ1 = front(police) ∈ ϕ2.

right(car) ∈ ϕ1 = right(car) ∈ ϕ2.

Moreover, simon generalises norms with partial evidence, while iron requires
full evidence. As an example simon can synthesize norm n3 from n1 and n2,
even though n4 has never been synthesized. In contrast, iron will synthesize
norm n3 only whenever n1, n2 and n4 have been synthesized. Therefore, it is
said that simon takes an optimistic approach to generalisation that requires less
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information than iron, and synthesizes more compact normative systems.

simon was also created with two generalising operation modes, namely Shallow
and Deep. On the one hand, using shallow mode the generalisation will occur in
a direct manner, whenever the terms of the predicates are equal except the term
to generalise, which is the subsumed one. As we can observe in the previous
example n1 and n2, using the shallow generalisation mode, will generalise to n3.

On the other hand, deep mode will generalise norms in an indirect way, when-
ever the terms of the predicate are equal or intersect between them, except the
generalized term that will be the subsumed one.

As an example of a deep generalisation, we can take n5 and n3, depicted in figure
2.14, and see how the deep mode can generalise while shallow mode can not. In
this occasion:

1. For the first predicate left(fire-brigade) ∈ ϕ5 there is a predicate left(emergency) ∈
ϕ3, so left(fire-brigade) up left(emergency) = left(fire-brigade).

2. For the second predicate front(police) ∈ ϕ5, there is a predicate front(police) ∈
ϕ3, that yields to front(police) up front(police) = front(police).

3. For predicate right(police) ∈ ϕ5 there is a predicate right(car) ∈ ϕ3, right(car)up
right(police) = ∅ and right(car) tp right(police) = right(any).

Therefore, norms n3 and n5 are generalised, in deep mode, to n6.

2.5.1.4 SIMON’s strategy

We have so far described a new approach to perform and to revise/backtrack
norm generalisations. Next, we introduce a novel strategy for norm synthesis,
using optimistic norm generalisation. Since simon is an on-line method, its norm
synthesis strategy is continuously executed. simon performs conflict detection
and synthesises new norms as described in Section 2.4 (iron). Crucially, the
norm evaluation and norm refinement phases are novel. In addition to evaluat-
ing norms, the norm evaluation phase synthesises under-performing norms that
have never been synthesised but are implicitly represented by general norms.
Finally, norm refinement generalises norms taking the optimistic generalisation
approach described in the previous section Norm Generalisation 2.5.1.3, and
specialises norms as described in iron ’s Section 2.4.2.

Algorithm 2 describes the new strategy, where, for each detected conflict (line
2) it creates new norms (line 3) aimed at avoiding conflicts in the future. Then,
norm evaluation evaluates applicable norms (lines 4–5) and returns norm perfor-
mances P and a set of negatively rewarded norms (NRN ), namely those under-
performing norms that do not exist but are implicitly represented by general
norms.

Next, it carries out norm refinement. First, it adds to the normative network
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Algorithm 2 simon’s norm synthesis strategy
1: function simonStrategy(views,NN ,O,mode, step)
2: conflicts ← conflictDetection(views)
3: (createdNorms,NN ) = normCreation(conflicts,NN ,O)
4: applicableNorms ← normApplicability(views,NN )
5: (P,NRN )← normEvaluation(applicableNorms)
6: for each n ∈ NRN do
7: NN ← add(NN ,n)
8: NS ← getNormativeSystem(NN)
9: for each n′ ∈ NS do

10: NN ← searchRelationships(NN ,O,n,n′,null, ∅)
11: end for
12: end for
13: for each n ∈ applicableNorms do
14: if crossedGeneralisationThreshold(n, P ) then
15: if mode = s-simon then
16: NN ← ShallowNormGeneralisation(NN ,O,n)
17: else
18: if mode = d-simon then
19: NN ← DeepNormGeneralisation(NN ,O,n)
20: end if
21: end if
22: end if
23: if crossedSpecialisationThreshold(n, P ) then
24: NN ← normSpecialisation(NN ,n, P )
25: end if
26: end for
27: return NN
28: end function

each norm in NRN (lines 7–8), and searches for their possible relationships
with other norms in the NN (lines 9–10). Second, it performs the optimistic
generalisation of norms described in the previous Section 2.5.1.3 whenever it
detects that they start performing well (lines 15-21). The mode parameter de-
termines whether to invoke our Shallow or Deep generalisation methods. Third,
it specialises norms whenever it detects they have just become ineffective or
unnecessary (lines 23–24).

2.5.1.5 Normative system evaluation

In addition to the effectiveness and necessity measures introduced in iron, simon
provides two further metrics introduced by [Fitoussi and Tennenholtz, 2000],
namely minimality and simplicity. Minimality is concerned with minimising the
amount of constraints (in a normative system) imposed on agents. The more
minimal a normative system, the greater the individual agent freedom.

On the other hand, simplicity refers to norms that are easy to reason about
by agents. The simpler the norms, the less computational resources required
to reason about them. We note, therefore, that minimality and simplicity
are local (agent-level) synthesis criteria, aimed at simplifying the reasoning
of individual agents. Both concepts are naturally captured by measuring the
size of a normative system (minimality) and its number of clauses (simplicity).
So the minimality of a NS is M(NS ) = |NS | and the simplicity of a NS is
S(NS ) =

∑
〈ϕ,θ(ac)〉∈NS |ϕ|.
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These two measures are key to the problem at hand (i.e., the on-line synthesis
of normative systems) since the smaller the minimality and simplicity of norma-
tive systems, the better it is so as to give agents flexibility, to save the agents’
computational resources (when processing norms), and to avoid over-regulation.

2.5.2 SIMON’s extra inputs

Once explained the improvements of simon covering the drawbacks of iron, we
also have to comment the extra inputs, apart from the ones explained for iron,
that we have to apply in order to execute simon.

2.5.2.1 Operation modes

We recall from section 2.5.1.3 that simon offers two operation modes namely:
Shallow (S-simon) and Deep (D-simon). These two modes affect the way in
which simon generalise norms. On the one hand, having a direct generalization
with Shallow mode which will generalise norms if all the predicates are equal
except the generalised one. On the other hand, the Deep mode will make an
indirect generalization which will be able to generalise norms with predicates
intersecting between them apart from the one to generalise.

2.5.2.2 Generalisation steps

Another extra input of simon is the one called generalization steps. The aim
of this parameter is to select the total number of clauses a generalisation can
involve. A generalisation can involve from 1 clause up to the total number of
clauses in the precondition of a norm.

According to the examples that we have used so far, the generalisation step, k,
can vary between [1..3]. For instance, setting k = 2 means that a generalisation
can involve both left and front clauses. Moreover, we have to observe that
iron can perform only generalisations of a single predicate, which will be the
equivalent of fixing the generalisation step to 1.

2.6 Summary

This chapter explains the necessary background to the comprehension of this
thesis. To sum up, we explain different state-of-the-art moderation mechanisms,
from them we observed that no one is independent to human moderation. So
being our approach a state-of-the-art improvement. Furthermore, since our on-
line community simulator is based on MAS and the used coordination mechanism
is based on norms, a standard technique in MAS coordination, in this background
we describe both of the concepts. Moreover, we introduce two state-of-the-
art on-line norm synthesis approaches: namely iron and simon. iron is an
abstract and domain independent on-line norm synthesis approach capable of
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synthesising norms to avoid undesirable states for a given domain. Recall the
abstract computational model of it:

Figure 2.15: Abstract computational model.

As we can observe in Figure 2.15 this model is constantly perceiving observations
from a MAS domain, creating norms from those perceptions and sending them
to the MAS to be aware of the current legislation. simon is a second version
of the iron norm synthesis machine that overcomes it in terms of compactness.
The computational model followed by iron is also preserved in simon.

In the next Chapter 3 we present our novel deliberative norm synthesis machine
constructed to capture the consensus of the community users. The computa-
tional model is preserved as it is also based on simon. Chapter 4 introduces the
created MAS simulator to connect with the norm synthesis machine, as depicted
in Figure 2.15. Moreover, the connection between the two modules is explained
in Chapter 5 and, finally, Chapter 6 concludes evaluating the different norm
synthesis approaches with our multi-agent social network simulator.





Chapter 3

Improving Norm Synthesis

This chapter introduces our first contribution of the thesis. As commented in
Chapter 2, iron has some drawbacks that simon overcomes. These two state-
of-the-art approaches were used with a traffic domain, which needs reactive
approaches for norm generation. But as we are studying the implementation
of a novel on-line community simulator that needs a deliberative approach for
norm generation, we have seen necessary the change of some aspects of simon’s
algorithm.

The chapter follows the next structure. We first analyse the norm synthesis of
simon in 3.1. simon was created aiming at avoid conflicts in a traffic domain
scenario, so the created norm synthesis approach may not capture the consensus
of the majority. And thus, may not be appropriate to synthesise norms in
virtual communities. Thereafter, we present desmon 3.2, which is a deliberative
norm synthesis approach based on simon, capable of capturing the consensus
of the community. For this last reason, we will use desmon for our purpose of
regulating on-line communities. Finally, we conclude with a brief summary of
the chapter in Section 3.3.

In the next Chapter 4 we present our novel multi-agent based on-line community
simulator, which we connect with the here detailed norm synthesis machine
desmon, in Chapter 5. Finally, all of the norm synthesis machines are proven
together with the on-line community simulator in Chapter 6.

3.1 Analysing SIMON’s synthesis

As argued in the previous chapter, iron has some drawbacks in compactness.
It requires full evidence to generalise norms while simon is able to generalise
norms with partial evidence, thanks to its optimistic generalisation approach. So
simon overcomes it synthesising compact normative systems. However, simon
and iron have some characteristics that makes them inappropriate to synthesise

35
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norms in a deliberative manner. After analysing simon’s norm synthesis we have
discover that it suffers from two major problems for our purpose. Specifically:

1. simon hastens to add new norms. The norm generation mechanism is
highly reactive to conflicts, rushing to add norms to the normative system.
Once created a norm, it is immediately activated, instead of accumulating
evidences to assess whether it is really necessary or not.

2. simon is reluctant to discarging norms. It decides whether to discard
a norm based on its effectiveness and necessity performance, which are
computed ranges by cumulating its effectiveness and necessity along time.
However, a norm’s effectiveness and necessity are computed by means of
Reinforcement Learning, which accumulates punctual evidences. There-
fore, simon results in a slow deactivation process that preserves norms
even if they show signs of being ineffective or unnecessary.

3.2 DESMON

We now introduce desmon (DE liberative S imple M inimal On-line N orm syn-
thesis), the general approach to norm synthesis aimed at extending simon-
adapting it to overcome the norm synthesis problems introduced in Section 3.1.
desmon is created to be a deliberative approach instead of reactive as iron and
simon. We call reactive approaches to the norm synthesis mechanisms in which
each single conflict triggers the addition of norms. This approaches are intended
to synthesise norms in scenarios that require to be highly reactive to conflicts,
for instance a traffic domain where car collisions are conflicts. On the other
hand, our approach, desmon, is deliberative because it is intended to perform
norm synthesis in scenarios like the on-line community scenario, in which single
conflicts (i.e., users’ complaints) can be accumulated until there is enough evi-
dence to decide the addition of norms.

desmon’s operation follows the on-line approach of iron and simon, and iter-
atively executes the same steps of the norm synthesis: (i) norm generation, (ii)
norm evaluation and (iii) norm refinement. However, it provides some changes in
each stage that are aimed at overcoming the problems found in 3.1. Specifically,
it provides:

• A norm generation process which does not hastens the addition of the
norms to the normative system.

• A novel approach to norm evaluation that allows to rapidly identify those
norms that should be removed from the normative system.

• A norm refinement process that adds to the normative system those norms
that are proven to be necessary and discards those norms that under-
performs.
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In what follows we describe desmon’s information model in Section 3.2.1. Then,
we detail each one of its norm synthesis process stages (generation, evaluation
and refinement) in Sections 3.2.2.1, 3.2.2.2, and 3.2.2.3 respectively. Finally, in
Section 3.2.3 we will introduce the strategy of desmon.

3.2.1 Information model

We consider a MAS composed of a set of agents Ag = {ag1, . . . , agn}, a set of
actions Ac = {ac1, . . . , acm} available to the agents, a set S of MAS states, and
a set C ⊆ S of undesirable MAS states. Hereafter, we will refer to agents and
users interchangeably. An agent describes the MAS it is part of from its own,
local point of view, namely its context. An agent’s context is an expression of
a language LAg, composed of first-order predicates p(τ1, . . . , τm), where p is a
predicate symbol and τ1, . . . , τn are terms of language LAg. It also considers a
state transition function T : S×Ac|Ag| → S that leads the MAS to a state s′ from
a state s after the agents perform a set of actions A ⊆ Ac|Ag|. For convenience,
Ac includes a special action nil that stands for not performing any action. Given
an agent, and a state transition 〈s,A, s′〉, function action : Ag × S × S → Ac
returns the action the agent performed in the transition. An agent’s context
c : Ag × S → P(LAg) is an expression of an agent language LAg that describes
the perception of an agent ag at a given state s. We assume that an agent’s
context is a set of first-order predicates of the form p(τ1, . . . , τm), where p is a
predicate symbol and τ1, . . . , τn are terms of language LAg. The set of terms in
language LAg is denoted by T .

Norms establish prohibitions and obligations to an agent whenever some pre-
conditions are fulfilled. A norm is a pair 〈ϕ, θ(ac)〉, where ϕ is the norm’s
precondition, θ ∈ {prh, obl} is a modality, where prh stands for a prohibition,
and obl stands for an obligation, and ac is an action prohibited or obligated by
the modality. A norm’s precondition is a set of first-order predicates of the form
p(τ1, . . . , τm), where p is a predicate symbol and τ1, . . . , τn are terms of language
LAg. Then, a norm 〈ϕ, θ(ac)〉 applies to an agent ag in a state s if c(ag, s) |= ϕ,
and hence θ(ac) holds for it.

desmon’s norm synthesis operates over a normative network (NN), which stands
for a directed-graph whose nodes stand for synthesised norms and whose edges
stand for generalisation relationships between norms. A norm in a network may
be “created”, “active”, “discarded” or “represented”. Likewise iron and simon,
desmon computes the normative system as the norms that are “active” in the
normative network. Figure 3.1 depicts the life cycle of a norm as implemented
by desmon. It shows the possible states that a norm may have in the normative
network, along with the transitions between states. Once desmon creates a new
norm, it sets its state to “created” so that it is not yet included in the normative
system. Figure 3.1a, namely the transition labelled with “a” in Figure 3.1, illus-
trates this operation. Eventually, it may consider the norm’s activation (Figure
3.1b), setting its state to “active”. Otherwise, it may consider to discard it (Fig-
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Figure 3.1: A norm’s life cycle in desmon.

ure 3.1c), setting its state to “discarded”. At some point, desmon may consider
that an active norm under-performs, discarding it (Figure 3.1d). However, it
may activate the norm again if it considers that it is necessary (Figure 3.1e).

Additionally, desmon performs norm generalisations to compact the normative
system. After generalising a norm (Figure 3.1f), desmon sets its state to “rep-
resented”, hence removing it from the normative system. However, the norm is
not discarded at all, since it is represented by an active norm in the normative
system. At some point, the represented norm may under-perform. desmon then
proceeds by first discarding the represented norm (Figure 3.1g), along with all
those general norms that represent it. Finally, a represented norm may be acti-
vated again (Figure 3.1h) in case that one of the parent norms that represent it
is discarded because one of its represented norms under-performs.

3.2.2 Norm synthesis process

Take into account that desmon is based on simon’s computational model, which
is also based on iron’s. So recall from Section 2.4.2 that iron uses a norm
synthesis process based on three main stages:

1. Norm generation, in which it exploits detected conflicts to decide whether
to add new norms.

2. Norm evaluation, in which it evaluates how norms perform to avoid con-
flicts.

3. Norm refinement, in which it discards norms that do not perform well
to avoid conflicts, trying to generalise norms to compact the normative
system.

These three norm synthesis stages operate, with the same operators of iron
detailed in 2.4.2.2, over the NN. Moreover, recall that in desmon a norm may
be ”created”, ”active”, ”discarded” or ”represented” (as shown in Figure 3.1).
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In the next sections we will explain the changes that desmon has with respect
to iron and simon, and the benefits provided by them.

3.2.2.1 Norm generation

During the norm generation process desmon, decides whether to create new
norms. Briefly, it monitors a MAS, searching for undesirable states (i.e., con-
flicts). Once it detects a new, non-regulated conflict, it creates a new norm
aimed at avoiding the detected conflict in the future.

desmon perceives the MAS as state transitions of the form 〈s,A, s′〉, being s′

the current MAS state, s the previous MAS state, and A the set of agent ac-
tions that lead from s to s′. desmon assumes that an undesirable state may
be avoided if one of the actions that lead to that state was prohibited. There-
fore, once desmon detects an undesirable state s′, it first identifies one of the
agents ag involved in s′. Then, it retrieves its local context c(ag, s) in the pre-
vious state s. Next, it creates a new norm 〈ϕ, θ(ac)〉, where ϕ stands for the
agent’s context at the previous state, and θ(ac) is a prohibition of the action the
agent performed during the transition from s to s′. Formally, ϕ = c(ag, s) and
θ(ac) = prh(action(ag, s, s′)). Then, it adds the created norm to the normative
network, and sets its state to “created”. In this way, it does not immediately
activate the norm. Instead, it decides whether activating or discarding in sub-
sequent synthesis stages.

Function normGeneration (Algorithm 3) illustrates desmon’s norm generation.
It receives a transition between the previous system state s, and current state s
after the application of actions in A, a set of conflicting states C of the MAS, and
a normative network NN . If the current system state s′ is undesirable (line 2),
then it creates a new norm aimed at avoiding s′ in the future (line 3). Finally, it
adds the norm to the normative network (line 4), and sets its state to “created”
(line 5).

Algorithm 3 Function normGeneration
1: function normGeneration(〈s, A, s′〉, C,NN )
2: if s′ ∈ C and not(regulated(s′,NN ) then
3: n← create(〈s, A, s′〉,NN );
4: NN ← add(n,NN );
5: NN ← setCreated(n,NN );
6: end if
7: return NN
8: end function

3.2.2.2 Norm evaluation

We now detail how desmon evaluates norms to assess whether they are good
enough to regulate a MAS. It computes a norm’s effectiveness and necessity
based on the conflicts that arise after agents fulfil or infringe the norm. On
the one hand, it computes the cumulative effectiveness of a norm as its ratio
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of successful fulfilments, namely those fulfilments that did not lead to conflicts.
On the other hand, it computes its cumulative necessity as its ratio of harmful
infringements, namely those infringements that led to conflicts. We describe
below how desmon gathers and cumulates evidences of a norm’s fulfilments and
infringements, and how it computes its effectiveness and necessity according to
these evidences.

3.2.2.2.1 Gathering norm compliance evidences We first formalise the
concepts of norm fulfilment and norm infringement. Given a state transition
〈s,A, s′〉, and a norm n that applies to an agent ag in s, we say that ag fulfilled
n in the transition from s to s′ if:

• It performed an action that is obliged by n, or

• It did not perform an action that is prohibited by n.

Definition 10 (Norm fulfilment). Given a state transition 〈s,A, s′〉, an agent
ag, and a norm 〈ϕ, θ(ac)〉 applicable to ag in s, we say that ag fulfilled the norm
during the transition from s to s′ iff (i) θ = prh and action(ag, s, s′) 6= ac; or
(ii) θ = obl and action(ag, s, s′) = ac.

Analogously, we say that the agent infringed the norm if it performed an action
that is prohibited by the norm, or did not perform an action that the norm
obliges.

Definition 11 (Norm infringement). Given a state transition 〈s,A, s′〉, an agent
ag, and a norm 〈ϕ, θ(ac)〉 applicable to ag in s, we say that ag infringed the norm
during the transition from s to s′ iff (i) θ = prh and action(ag, s, s′) = ac; or
(ii) θ = obl and action(ag, s, s′) 6= ac.

Formally, the fulfilment (or infringement) of a norm n during a transition 〈s,A, s′〉
is considered as successful iff s′ is not an undesirable state, namely if s′ /∈ C.
Analogously, a norm fulfilment or infringement is harmful iff s′ ∈ C. For each
created norm n, desmon creates a tuple of finite series

〈SFn,HFn,SIn,HIn〉

that accumulate, respectively, its:

• successful fulfilments (SFn), namely fulfilments that did not lead to con-
flicts.

• harmful fulfilments (HFn), namely fulfilments that lead to conflicts

• successful infringements (SIn), namely infringements that did not lead to
conflicts

• harmful infringements (HIn), namely infringements that lead to conflicts.

In particular, SFn is a series 〈sfn1 , . . . , sfnm〉, where sfni is the number of suc-
cessful fulfilments of n the i-th time it was fulfilled, and HFn, SIn, HIn are
computed analogously.
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3.2.2.2.2 Evaluating a norm’s effectiveness and necessity desmon
continuously evaluates a norm in terms of its effectiveness and necessity to avoid
conflicts. With this aim, for each created norm n, it creates a pair of series

〈Uneff ,Unnec〉

that accumulate, respectively, its (i) effectiveness (Ueffn ), namely the frequency
in avoiding conflicts along time whenever n is fulfilled; and (ii) necessity (Unecn ),
namely the arisen conflicts whenever n is infringed. In particular, Uneff is a series
〈effn1 , . . . , effnm〉, where effni is the ratio of absence of conflicts of n the i-th
time it was fulfilled. This is computed according to the following formula:

effni =
sfni

sfni + hfni
(3.1)

where sfni is the number of successful fulfilments the i-th time n was fulfilled,
and hfni is the number of harmful fulfilments of n the i-th time it was fulfilled.

Analogously, Unnec gathers evidences about a norm’s necessity along time. It is a
series 〈necni , . . . , necnm〉, where necnm is the ratio of arisen conflicts of n the i-th
time it was infringed, and is computed according to the following formula:

necni =
hini

hini + sini
(3.2)

where hini is the number of harmful infringements of n the i-th time it was in-
fringed, and sini is the number of successful infringements of n the i-th time it
was infringed.

desmon exploits norms performances during norm refinement (described in the
next Section 3.2.2.3). However, series Uneff ,Unnec may not be appropriate to de-
cide whether to activate or discard a norm. Specifically, both series may have
short-term fluctuations, which may lead desmon to continuously activate and
discard the norm. Therefore, as it is the case for data streams, desmon com-
putes the cumulative moving average [Chou, 1969] of series Uneff ,Unnec in order

to highlight their long-term trends. It computes cumulative series Ûneff , Ûnnec. In

particular, Ûneff is a series 〈 ˆeff
n

1 , . . . ,
ˆeff

n

m〉, where ˆeff
n

i represents the cumu-
lative effectiveness of n to the i-th time it has been fulfilled, and is computed as
follows:

ˆeff
n

i =

∑
effn

j ∈Un
eff ,0≤j≤i

effnj

i
(3.3)

and Ûnecn is computed analogously, by means of the following formula:

n̂ecni =

∑
necnj ∈Un

nec,0≤j≤i
necnj

i
(3.4)
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3.2.2.3 Norm refinement

During norm refinement, desmon decides upon the activation, discard and gen-
eralisation of those norms that have been created during norm generation. With
this aim, it employs the norms’ performance evidences accumulated during norm
evaluation. In what follows, we detail how desmon decides and executes:

1. The activation of those norms that are proven to be necessary (in Section
3.2.2.3.1).

2. The discard of ineffective or unnecessary norms (in Section 3.2.2.3.2).

3. The generalisation of norms in order to compact the normative system,
which is the same as desmon’s, explained in Section 2.5.1.3.

3.2.2.3.1 Activating necessary norms: desmon decides the activation
(and subsequent addition to the normative system) of norms based on their
cumulative necessity, which it gathers iteratively during norm evaluation. Even-
tually, it activates a norm n provided that:

• It accumulates enough number of evidences regarding the necessity of the
norm:

|Ûnnec| > evidmin (3.5)

where evidmin stands for the minimum number of evidences required to
decide a norm’s activation.

• Its cumulative necessity is over a necessity threshold band 〈α−nec, α+
nec〉 that

states the minimum necessity required for a norm to activate it (α+
nec); and

the necessity under which a norm should be discarded (α−nec).

n̂ecnm > α+
nec (3.6)

where n̂ecnm is the last value of series Ûnnec, and α+
nec is the upper bound of

the necessity threshold band 〈α−nec, α+
nec〉.

Here, the difference between the reactive approaches as iron and simon from
desmon relies on the minimum amount of evidences (evidmin) they require to
activate a norm. In particular, iron and simon were capable of activating a
norm from a unique evidence (that is, evidmin = 1). By contrast, desmon
requires to cumulate a minimum of evidences evidmin > 1 to decide a norm’s
activation. Thus, the more minimum evidences desmon requires, namely the
higher evidmin is, the more deliberative we consider it to be.

desmon proceeds to activate a norm by first setting its state to “active” in
the normative network. As described in Section 3.2.1, desmon may activate
a “created” norm (Figure 3.1b), or a “discarded” norm (Figure 3.1e), namely
a norm that was discarded at some point because it was proven to be whether
ineffective or unnecessary. Recall from Section 3.2.1 that, once desmon discards



3.2. DESMON 43

a norm, it discards all the general norms it represents, which implies the loss
of compactness of the normative system. Therefore, after desmon activates a
discarded norm, it tries to regain the compactness of the normative system again
by checking if any of the norm’s parents may be re-activated.

Algorithm 4 Function activateUp
1: function activateup(n,NN )
2: if not isRepresented(n) then
3: NN ← activate(n,NN )
4: children← getChildren(n,NN )
5: parents← getParents(n,NN )
6: for each child ∈ children do
7: if represented(child) then
8: NN ← setRepresented(n,NN )
9: end if

10: end for
11: for each parent ∈ parents do
12: if not representDiscardedNorms(parent) then
13: activateUp(n,NN )
14: end if
15: end for
16: end if
17: return NN
18: end function

Algorithm 4 illustrates recursive function activateUp, which activates a norm
along with those norms that represent it. It receives a normative network NN
and a norm n to activate. If the norm is not already represented by another
norm (line 2) it activates it (line 3). Next, it removes from the normative system
all its children (since they are now represented by n) by setting their state to
“represented” (lines 6–10). Finally, for each parent of n, it checks if it represents
any discarded norm (i.e., with state “discarded”). If a parent does no longer
represent discarded norms, then it is activated up along the lines of n (lines
11–15). Eventually, the re-activation of its parent norm will imply that n will
be set to state “represented”.

3.2.2.3.2 Discarding under-performing norms: desmon discards a norm
whenever it gathers enough evidence to consider it as either ineffective or un-
necessary. As detailed in Section 3.2.2.2.2, a norm’s effectiveness is computed
based on to the outcomes of its fulfilments, and its necessity is computed based
on the outcomes of its infringements. As described in Section 3.2.2.2.1, those
norms in the normative system (i.e., norms “active” and ‘represented” in the
normative network) are available to the agents, and hence can be fulfilled and
infringed. Therefore, active and represented norms can be evaluated in terms of
their effectiveness and necessity. By contrast, norms that are not represented in
the normative system (i.e., norms that are “created” and “discarded”) are not
available to the agents, and hence they cannot fulfil them. Therefore, created
and discarded norms can be evaluated only in terms of their necessity. desmon
decides to discard a norm as follows:

• If the state of a norm is “created”, discard it if satisfies both conditions 7
and 8:
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– There are enough accumulated evidences regarding its necessity.

|Ûnnec| > evidmin (3.7)

where evidmin stands for the minimum number of evidences required
to decide a norm’s discard.

– And its cumulative necessity is under a necessity threshold band.

n̂ecnm < α−nec (3.8)

where n̂ecnm is the last value of series Ûnnec, and α−nec is the lower
boundary of the necessity threshold band.

• If the norm is either “active” or “represented”, discard it if, satisfies con-
ditions 9 and 10 and at least one of conditions 11 or 12:

– There are enough accumulated evidences regarding its effectiveness
and necessity.

|Ûneff | > evidmin (3.9)

|Ûnnec| > evidmin (3.10)

– And, its effectiveness or necessity is under respective threshold bands.

ˆeff
n

m < α−eff (3.11)

n̂ecnm < α−nec (3.12)

where ˆeff
n

m is the last value of series Ûneff , n̂ecnm is the last value

of the necessity moving average Ûnnec, α−eff is the lower bound of an

effectiveness threshold band 〈α−eff , α
+
eff 〉, and α−nec is the lower bound

of the necessity threshold band 〈α−nec, α+
nec〉 .

desmon proceeds to discard a norm by first setting its state to “discarded” in
the normative network. Then, it recursively discards up those parent norms that
represent it so that it is no longer represented in the normative system.

Algorithm 5 Function discardUp
1: function discardup(n,NN )
2: parents← getParents(n,NN )
3: for each parent ∈ parents do
4: discardUp(n,NN )
5: end for
6: if represented(n) then
7: specialise(n,NN )
8: end if
9: return NN

10: end function

Algorithm 5 depicts how desmon discards a norm up. It receives a norm n to
discard, and a normative network NN . First, it recursively discards up those
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parent norms that represent it (lines 2–5). Finally, if the norm is not represented
by any active parent, it discards it, setting its state to “discarded” and activates
all the children it represented when it was active. Eventually, the algorithm will
discard its under-performing children in recursive executions.

3.2.3 Simon’s Norm synthesis strategy

We have so far described how desmon manages to generate norms based on
detected conflicts, evaluate norms performances, and refine the normative system
with the same optimistic approach as simon (2.5.1.3). Now we are ready to
introduce desmon’s strategy, which subsequently executes the different norm
synthesis stages.

Algorithm 6 desmon’s general-purpose norm synthesis strategy
1: function DesmonStrategy(evidmin, 〈s, A, s′〉, C,NN ,T,GM ,GS)
2: if s′ ∈ C and not regulated(s′,NN ) then
3: createdNorms← normCreation(〈s, A, s′〉,NN )
4: NN ← add(createdNorms,NN )
5: end if
6: applicableNorms← normApplicability(s,NN )
7: normsPerformances← normEvaluation(s′, applicableNorms)
8: normsToActivate← ∅
9: normsToDiscard← ∅

10: normsToGeneralise← ∅
11: for each n ∈ createdNorms ∪ applicableNorms do
12: if shouldBeActivated(n, normPerformances, evidmin) then
13: normsToActivate← normsToActivate ∪ {n}
14: if isCreated(n,NN ) then
15: normsToGeneralise← normsToGeneralise ∪ {n}
16: end if
17: else if shouldBeDiscarded(n, normPerformances, evidmin) then
18: normsToDiscard← normsToDiscard ∪ {n}
19: end if
20: end for
21: for each n ∈ normsToActivate do
22: NN ← activateUp(n,NN )
23: end for
24: for each n ∈ normsToDiscard do
25: NN ← discardUp(n,NN )
26: end for
27: NN ← generaliseUp(normsToGeneralise,NN ,T,Gmode,Gstep, normsPerformances)
28: return NN
29: end function

Algorithm 6 describes desmon’s norm synthesis strategy, which receives as in-
put: the minimum number of evidences evidmin it requires to decide a norm’s
activation/discard; a transition 〈s,A, s′〉 with the system states before (s) and
after (s′) the performance of the agent actions in A; the set C ⊂ S of the con-
flicting states of the system; a normative network NN , a taxonomy of terms T,
norm generalisation mode Gmode (Shallow or Deep) and the generalisation step
Gstep (these last two ).

Initially, the strategy carries out norm generation. It first checks if the current
state s′ is undesired (i.e., conflictive) and it has not generated norms that can
regulate (avoid) it (line 2). In that case, it creates (and adds to the normative
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network) a new norm with state “created”, which is aimed at avoiding state s′ in
the future (lines 3–4). Next, it performs norm evaluation. With this aim, it first
retrieves those norms that were applicable to the agents in previous state s (line
6). Then, it evaluates how norms applicable in s have performed in avoiding
conflicts in s′ (line 7).

Afterwards, it executes norm refinement. First, it employs cumulative norms’
performances to detect if each applicable norm (1) is neither active nor rep-
resented, but it is necessary enough to be activated up as described in Sec-
tion 3.2.2.3.1 (lines 12–13); (2) can be taken to the generalisation process (lines
14-16); or (3) under-performs and should be discarded up as described in Sec-
tion3.2.2.3.2 (lines 17–19).

Specifically, desmon tries to generalise a norm whenever it is going to be acti-
vated for the first time, namely it should be activated (line 12) and its current
state is Created (line 14). Finally, it activates up norms that should be acti-
vated (lines 21–23) along the lines of Section 3.2.2.3.1, discards up norms that
should be discarded (lines 24–26) as described in Section 3.2.2.3.2, and gener-
alises norms (lines 27) as done in simon [Morales et al., 2014a] and explained in
Section 2.5.1.3.

3.3 Summary

We have introduced desmon, the general approach to norm synthesis in a delib-
erative and participatory manner, based on simon, that overcomes it’s problems
of synthesising normative systems for non-reactive domains by applying some
changes in the iteratively executed strategy stages.

First of all, we improved the norm life cycle by adding more states to the life of
a norm, instead of being only “active” and “discarded”. Secondly, we evaluate
norms in term of their cumulative effectiveness and necessity and use these ranges
to activate or discard norms. Thirdly, the norm generation step is modified to
avoid hastening the addition of norms. So a norm is incubated (“created” state)
until after a minimum of evidences it proofs to be necessary to avoid conflicts,
hence it is activated. Finally, the discard of ineffective or unnecessary norms it
is also novel. We discard a norm if a minimum number of evidences has been
gathered and at least its cumulative necessity or effectiveness ranges are below
a boundary.

Moreover, thanks to the mentioned changes, desmon is a deliberative and par-
ticipatory approach, and hence able to synthesise normative systems according
to the general users’ opinions. It is capable of synthesising norms on scenarios
that require high evidence of conflicts to create a norm (e.g., on-line communities
where accumulation of complains about a content are conflicts). This cannot be
done with previous norm synthesis algorithms: iron and simon, as they were
created to synthesise norms on scenarios that require high reactivity to conflicts
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and they create norms from one single conflict (e.g., traffic junction where col-
lisions between cars are conflicts).

In the next Chapter 4 we are going to introduce the on-line community simulator
that, afterwards, we attach to the created norm synthesis approach (desmon)
in Chapter 5. Finally, Chapter 6 will empirically evaluate normative systems
synthesised with the created deliberative approach: desmon and the two state-
of-the-art reactive approaches iron and simon, with the aim at synthesizing
regulations capturing the majority users’ opinion in an on-line community.





Chapter 4

Simulating Social Networks

In this chapter we detail our multi-agent social network simulator. So far we have
explained the necessary background for a better comprehension of the work and
the improvements we have applied to a state-of-the-art norm synthesis mecha-
nism to synthesise norms for a given domain.

Now, in this chapter, we will describe the created domain, based on MAS simu-
lation, to simulate an on-line community where humans are modelled as agents
of the MAS. As we are trying to represent a social process, we have decided to
use a MAS simulation because of the benefits we have detailed in Section 2.2.2.
Our On-line Communities Simulator, that has been implemented with the aid
of Repast Simphony [North et al., 2013], allows to perform agent-based time-
discrete simulations of users’ interactions within an on-line community scenario.

To the best of my knowledge, this is the first multi-agent based social network
simulator. This thesis contributes with a novel and state-of-the-art tool that
opens a new research branch for this certain domain that is growing rapidly.

In this chapter we outline its features. First of all, in Section 4.1 we are going
to explain how our agent-based time-discrete simulation acts over a tick of time.
Afterwards, once the work-flow of the simulation is clear, in Section 4.2 we are
going to visualise our on-line community simulator. Moreover, as human users
are modelled as agents, in Section 4.3 we will explain how we create these human
behaviours with a stochastic model. Finally, Section 4.4 details the available ex-
tra functionalities the simulator offers and Section 4.5 will offer a summary of
the Chapter.

Afterwards in Chapter 5 we are going to connect this simulator with the norm
synthesis mechanisms explained in Chapter 2 and Chapter 3, namely iron and
desmon respectively. With this connection we aim at avoiding frictions be-
tween users from the novel on-line community simulator, synthesising norms in
a deliberative and participatory approach.
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4.1 Work-flow of a Simulation

We now present a typical work-flow of a simulation within our on-line community
simulator. Recall that our simulations are agent-based and time-discrete, so the
work-flow explains the discrete sequence of events the simulator follows in each
time period. We focus on detailing each event of the simulation through the
graphical representation of a work-flow in Figure 4.1.

Content 1

User 1

User 2

User n
Content n

Type SPAM
Virtual Communities Web

Content 2

Content n

Views & 
Complaints

Section 1 Section 2 Section n

Content 1Content 2 Type CORRECT

Type  ...
1

2

3

Figure 4.1: Social network simulation work-flow.

On the left hand side, we see a box with users and the box on the right hand side
represents the set of contents published by the users in the on-line community.
The actions of the users over the community are represented with arrows, in
this case the users are able to upload, view and complain about contents of
the Virtual Community. Moreover, we specify a taxonomy of contents, which
describe the category of the contents the users of the on-line community upload.
We classify several content categories as:

1. Correct: Content that is not spam, pornographic, violent or insult. Nor-
mally, it is the content that do not receive any complain.

2. Spam: Content which advertises something unsolicited: an entity, a per-
son or some product. Also the sending of the same message repeatedly is
call spam.

3. Pornographic: Content that shows sexual acts or nakedness explicitly.

4. Violent: Content that encourages violence between community users. It
can range from insult, to offensive and provocative commentaries, tending
to stir up conflicts.

5. Insult: Content that tries to offend and provoke to an individual user of
the community.
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A typical work-flow is divided in three main time-discrete events, depicted with
numbers in Figure 4.1.

1. At step 1, the users that are connected to the social network reason whether
to upload a content or not.

2. At step 2, the contents will be uploaded and visible for the rest of users.

3. At step 3, users are allowed to view and complain about contents uploaded
to the virtual community. Every time step each user will view a content
and decide whether to complain or not. These complaints done by users
are going to be the triggers for the mechanism of norm synthesis to create
norms (explained in Chapter 5).

4.2 Visualising a simulation

The visualization of the simulator comprises a table of “x” columns and “y”
rows. The number of columns represents the contents uploaded to each of the
available sections of the community. While the number of rows represents the
number of users that are connected to the virtual community. Specifically, in our
simulations we represent our virtual community scenario by 33 columns divided
into three main groups, each one representing a section of the community, shown
in the Figure 4.2. Moreover, each row contains the contents that each user
uploads into the community, creating a direct relation between the users and
the contents sharing the row. As the column number is finite for each section,
in our case 11 contents per user in each section, whenever a user reaches this
number of contents the next new content will appear as the last one and the first
one will disappear, as a sliding window. These contents will disappear from the
visualisation but will stay available for the users of the on-line community to
view and complain about. Furthermore, below each content there is a cell that
eventually contains an exclamation mark if someone has complained about that
content.

Figure 4.2: Simulator Structure
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The purpose of the names of these sections is to maintain an analogy with the
section names of the Fanscup website [Lanas and Garzón, 2005]. The Sections
shown in the Figure 4.2 are:

• Forum: The forum is the most common section within virtual communi-
ties. It is a place where people give their opinion about diverse subjects
that come out.

• The Reporter: The reporter is the section where people upload news
from reliable sources. These contents tend to be of interest for the com-
munity members and come mainly in the form of plain text.

• Photo and Video: The last section is the multimedia one where people
upload images and videos. These multimedia contents may vary depending
the community users.

Moreover, the uploaded contents, which are classified by the taxonomy explained
in Section 4.1, are associated to a colour scale based on the traffic lights colours.
Being green a correct content, yellow an inappropriate content and red a nox-
ious, provocative and non desirable content for the community. The association
between colours and contents is depicted in Figure 4.3.

Figure 4.3: Categories of contents and their respective colours.

4.3 Users behaviour simulation

Users belonging to an on-line community interact by generating, viewing and
complaining about contents. These users are modelled as agents in our MAS
simulator. In this Section we present the different user types modelled by our
simulator (Subsection 4.3.1) and also the behaviour parameters we tune to make
personalized user types (Subsection 4.3.2).

4.3.1 User types

Our simulator allows to classify community users with different behaviours re-
garding which categories of contents they upload. In particular, a user can be
classified in a category out of a set of categories, these customized user types are
obtained from an analysis of the users in the Fanscup community:
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1. Moderate: Agent that acts correctly and tries to maintain a harmony
in the community. Usually, they are also the ones that complain about
inappropriate contents.

2. Spammer: Agent that invades the community by uploading mass content,
mainly advertisements.

3. Pornographic: Agent that publishes pornographic content.

4. Rude: Agent that does not insult people personally, but incite with his
comments to a fight, creating a flame war.

5. Violent: Agent that attacks other users with insults and offensive com-
mentaries.

These user types can be combined between each other, creating mixed-behaviour
agents, or stay separately creating single-behaviour agents. For instance, a single
behaviour agent may be composed only by moderate type so will only upload
correct content and complain about all the bad or annoying contents of the
community. On the other hand, as example mixed behaviour agent we can
configure it with 50% moderate and 50% spammer types, so will upload spam
and correct content. For the purpose of customising user types we created a
population design tool, which is explained in Section 4.3.2.

4.3.2 User behaviour

Within an on-line community we may find users with different preferences and
behaviours. With the aim of modelling different types of users, our simulator
incorporates a population design tool, which is shown in Figure 4.4. It allows
the designer to define users’ preferences and specify a stochastic model of their
behaviours with regard to the contents they upload, view and complain about.
The top of Figure 4.4 shows the current population that is being specified (de-
picted with label ”Standard”). The bottom of the Figure shows the composition
of the population which is being designed (depicted with label ”Current popu-
lation”). In particular, it shows a population of five different agents, one of each
of the user types presented in the previous Section 4.3.1.

For a given population, our design tool allows to create and define the profile of
each user type (a moderate agent in the picture). A user profile describes how
often a user uploads, views and complains about contents.

Moreover, it also allows to specify the category of contents the user will choose
to upload, view and complain about. As Figure 4.4 shows, a user profile con-
tains three action-profiles: the upload profile, the view profile, and the complaint
profile. Next, we describe each action-profile.

1. The upload profile describes: (i) the upload frequency of the user,
namely the probability of the user of uploading contents at each tick; and
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Figure 4.4: Windows to choose the behaviour of the population

(ii) different upload probabilities for each content category. Thus, whenever a
user uploads a content, the category of this content (correct, spam, porn, in-
sult or violent) depends on some probability. Notice that all the probabilities
assigned to different types of contents must sum up 1. As an example, the left
part of Figure 4.4 shows the upload profile of a moderate user. It describes
a user that uploads contents at each tick with probability 0.4. Every time
she uploads contents, she has probability 0.8 of uploading correct contents,
while she uploads insults with probability 0.2. So we can deduce from the
uploading profile, that this agent is a mixed-behaviour agent.

2. The view profile defines users’ preferences in terms of the probability
of viewing contents from each Section of the community. The central part
of Figure 4.4 shows a user’s view profile. Likewise the upload profile, all
the probabilities assigned to different Sections must sum up 1. Moreover,
the view profile also considers the view mode, which describes three different
ways to choose contents to view:

(a)By order. This method chooses the most recently uploaded contents in
the community. Specifically, this method works as follows. First, it sorts
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all uploaded contents by the time they were uploaded. Second, it assigns
a probability to each content according to a gamma distribution1. Third,
it randomly chooses the next content to view, according to the gamma
distribution.

(b)Most viewed. It chooses the contents with a larger number of visits.
Specifically, it sorts contents by number of views, assigning to each
content a probability according to a gamma distribution.

(c)Randomly. This method chooses contents according to a uniform ran-
dom distribution.

3. The complaint profile defines the probability of a user of complaining
about each type of visited content. Notice that, unlike previous probabilities,
these values are independent and, hence, their addition is not required to be 1.
The right hand side of Figure 4.4 depicts the complaint profile of a moderate
user that complains about all type of conflicting contents with probability
one.

Notice that, even though two users may belong to the same category, their user
profiles may be different because of the percentages. As a convention, whenever
a user is configured to upload a single type of content (with probability 1 and 0
in the rest), we say that this user is single-behaviour user. By contrast, whenever
a user is configured to upload more than one type of content , we say that it
is a mixed-behaviour user. Figure 4.4 depicts a mixed-behaviour user’s profile,
since it has 80% probability of uploading correct content and 20% of uploading
insults.

4.4 Functionalities of the simulator

Our network simulator offers several functionalities:

• Scenario generation: It is able to define, at design time, the population
of agents that will be part of the simulation and their action-profiles.

• Repeatability: It allows to repeat an execution exactly as a previous one.

• User behaviour simulation: It is able to simulate the real community
users’ behaviours in a discrete MAS at runtime from a stochastic model.

• Discrete multi-agent simulation: It simulates an on-line community by
means of discrete-events on time, executing each time actions as: upload,
view and complain.

• Graphical facilities: It is able to execute the on-line community simu-
lation in two modes:

1A graphical representation of this distribution can be found at http://en.wikipedia.org/
wiki/File:Gamma_distribution_pdf.svg, in our case we have used Γ(1, 2)

http://en.wikipedia.org/wiki/File:Gamma_distribution_pdf.svg
http://en.wikipedia.org/wiki/File:Gamma_distribution_pdf.svg
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– With GUI: Watching the presented simulator visualisation in 4.2.

– In Batch: We have created two batch modes to execute the simulator
without the graphical mode in order to run experiments. On the one
hand, in an ordinary simulation in a single computer. On the other
hand, in a computer cluster where the processes can be separated in
different threads paralleling the experiments with the aim of gaining
time.

4.5 Summary

To sum up, we have introduce a novel and state-of-the-art on-line community
simulator that performs agent-based time-discrete simulations of users interac-
tions within the community. This simulator allows MAS simulations, where real
human users are modelled as agents. Each user has its own action-profile, which
we are able to modify in design time and this stochastic model is the one that
simulates human behaviours in runtime.

Recall from Section 2.4 the computational model of iron, which is depicted in
Figure 4.5.

Figure 4.5: Computational model of iron.

In this Chapter we have introduce the MAS that the norm synthesis mechanisms
will use to generate the norms. In the next Chapter 5 we will explain the different
domain dependant inputs that the norm synthesis approaches need to operate
over our novel MAS simulator and pursue our goal of synthesising deliberative
and participatory normative systems.



Chapter 5

Synthesising norms in
Social Networks

The norm synthesis is a task we are going to make in an on-line manner as
commented on previous chapters. We will try to pursue our goals of synthesising
deliberative and participatory normative systems using our novel and state-of-
the-art social network simulator, introduced in Chapter 4, integrated with the
different norm synthesis algorithms: iron (Chapter 2) and desmon (Chapter
3). To integrate a norm synthesis algorithm with the social network simulator
we will have to define some domain dependant inputs as, explained in Section
2.4.3:

1. A function to perceive observations (Section 5.2.1).

2. A grammar to synthesise norms in the domain agents language (5.2.2).

3. A function to detect conflicts (Section 5.2.3).

4. A function to detect the applicability of the norms (Section 5.2.4).

5. A function to evaluate norms (Section 5.2.5).

This chapter follows the next structure. First of all, Section 5.1 explains the gen-
eral architecture resulting from the integration of the multi-agent social network
simulator with a norm synthesis algorithm. Afterwards, Section 5.2 shows the
domain dependant inputs, mentioned above, necessary to synthesise normative
systems for our social network domain.

Finally, once that everything is connected and working we are going to evaluate
it empirically and draw some conclusions of the experiments in Chapter 6.
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5.1 Social network legislation system: a general
architecture

The general architecture of the system to legislate a social network, as shown in
Figure 5.1, is composed of the social network simulator described in Chapter 4
together with a norm synthesis machine (NSM hereafter).

Norm 
Synthesis 
Machine

Views & Complaints

Norms

Content 1

User 1

User 2

User n
Content n

Type SPAM
Virtual Communities Web

Content 2

Content n

Views & 
Complaints

Section 1 Section 2 Section n

Content 1Content 2 Type CORRECT

Type  ...

Norms Applicability

Figure 5.1: social network legislation system: a general architecture.

As we have observed in the work-flow presented in Section 4.1, the users of a
simulated social network can upload, view and complaint about contents. Once
the simulation starts each tick the NSM will spread the current legislation (nor-
mative system) to the users, so that they can reason about the contents they are
going to upload. In case a user decides to comply with the applicable norms, the
content will be deleted and the user will not upload anything. On the contrary,
even knowing that some norm applies to the content, if the user decides not to
follow the norm, the content will be uploaded but tagged as a violation and the
corresponding norm.

Regarding views and complaints, each user has its own behaviour, as mentioned
in Section 4.3, which will model the users’ action-profiles. Every user will view
a content at every time tick, but only the ones that have a probability of com-
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plaining about certain contents will complain.

When a complain is issued we will consider the content as controversial and it
will be sent to the NSM to be treated. If there was no norm preventing the
conflict, the NSM will create one. On the other hand, if there was already a
norm regulating the friction this will increase the norms necessity, as a harmful
fulfilment. Nevertheless, if there was already a norm regulating the friction but
no one complaints about the content this will decrease the necessity of the norm
as the norm existence is not helpful, namely a successful infringement.

5.2 Integrating NSM’s with a social network sim-
ulator

At this point, we have described our virtual communities simulator, as well as
the norm synthesis approaches presented in Sections 2.4 and Chapter 3, namely
iron and desmon respectively. In this Section we describe how to configure
these machines to synthesise norms for the agents in our on-line communities
simulator.

Figure 5.2: Norm synthesis architecture: components and inputs.

Recall the architecture of the norm synthesis approaches shown in Figure 5.2.
Even though iron and desmon are abstract mechanisms (i.e., scenario indepen-
dent) during the norm synthesis process they employ some elements that are
scenario dependant. First of all, the perceived observations/views are scenario
dependant since each scenario will be composed of different elements and may be
described in different ways (e.g., a traffic junction where the collisions between
cars are the conflicts, instead of our social community where the inappropriate
contents are the conflicts). Secondly, in order to execute the main three stages
of the strategy, that is, norm generation, evaluation and refinement, the norm
synthesis approach requires some scenario dependant inputs. These inputs will
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allow a communication between the scenario and the NSM to generate norma-
tive systems. In the next sections we explain how to integrate our simulator and
a NSM.

5.2.1 Perceiving On-line Communities

Recall from Chapter 4 that our on-line community scenario is divided into three
different sections where the users upload, view and complain about contents.
In order to perceive the scenario, at each time step the simulator generates
observations for the NSM.

An observation is composed of three lists, one for each section. Each element in
a list contains a content that has been uploaded, viewed, or complained about, as
well as the corresponding action, and the identifier of the user who performed the
action. Moreover, each content incorporates the information about its category
and its owner, namely the user that uploaded the content. Thus, an observation
is composed of nine lists (three lists for each one of the three sections) that de-
scribe users’ uploads, views and complaints in the community during the current
time step.

As an example, consider that during the current time step user u1 has uploaded
a correct content in Section Forum, and user u2 has viewed and complained
about a spam content (whose owner is user u1) in Section Multimedia. The cor-
responding observation can be thus described as shown in Table 5.1. In Section
Forum, it shows user u1 that has performed the action upload over a content
of category correct. In Section Multimedia, the table shows that user u2 has
performed two actions: a view and a complain over a content with category
spam, whose owner is user u1.

The Reporter Forum Multimedia
content: id(1) content: id(2)
• action: u1 → upload • action1: u2 → view

• category: correct • action2: u2 → complain

• owner: u1 • category: spam
• owner: u1

Table 5.1: An example of a NSM’s observation.

5.2.2 Norms for On-line Communities

We must provide an NSM with a specific grammar to synthesise norms for
the on-line community scenario. Following the grammar specification in Sec-
tion 2.4.3.1, we instantiate our grammar as follows.

On the one hand, a norm precondition has three unary predicates with predicate
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symbols in P = {user, section, contentType}. The term for predicate user is
one out of the set of user identifiers U (e.g., ui is the i-th user in U). The
term for predicate section is one out of the set of Section names S = {Forum,
Multimedia, The Reporter}. The term for predicate contentType is one out of
the set of content categories Ctype = {correct, spam, porn, insult, violent}.

On the other hand, we consider each norm’s consequence only specifies a pro-
hibition to perform the action upload of the content in the context specified
by the norm precondition (thus, the deontic operator is θ = phr). Therefore,
norms establish prohibitions for users to upload certain types of contents into
some community sections.

n : 〈(user(u1), section(Multimedia), contentType(spam)), prh(upload)〉
n′ : 〈(user(u3), section(Forum), contentType(violent)), prh(upload)〉

Figure 5.3: Examples of norms for the on-line community scenario.

Figure 5.3 shows two examples of norms n and n′ automatically synthesised
by an NSM by means of this grammar. Norm n prohibits user u1 to upload
spam contents into the Multimedia section, while norm n′ prohibits user u3 to
upload violent contents into the Forum section. Recall that an NSM generates
new norms whenever it detects new conflicts in the scenario. In what follows we
explain how to detect conflicts in our on-line community scenario.

5.2.3 Conflict detection in On-line communities

A function that identifies conflicts in an observation perceived by the NSM.
This function will be composed of a view that contains what did users during
the last time tick and goal to achieve, in this case to avoid users complaints. It
is designed to assess if the contents within this given observation is conflictive
or not.

Particularly, in our on-line community scenario, conflicts can be identified based
on the complaints users report about contents. Consider that a user uploads
some content, and then that content receives a complaint. In that case, the
action of uploading the content is considered as a conflict. Recall that an NSM’s
norm synthesis is conflict-driven, since it generates, evaluates and refines norms
based on conflicts. Therefore, thanks to our definition of conflict, the whole norm
synthesis process becomes a participatory process which is guided by users’ com-
plaints.

For each given content, the NSM uses function Conflictive(content) to check if
it is conflictive. This function looks if someone has complained about the given
content in the its life period.
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Conflictive(content)=

{
true if (complaints(content) ≥ 1)
false otherwise

As an example, we will consider that user u1 uploads a spam content in Section
Multimedia. Consider now that another user views the content and complains
about it, reporting a complaint of type spam. Once a user has complained about
the content, then uploading spam contents in Section Multimedia is considered
as a new conflict. Therefore, the users of the on-line community trigger, by
means of their complaints, the generation of norm n (depicted in Figure 5.3),
which prohibits user u1 to upload spam contents into Section Multimedia.

But to generate a norm, an NSM needs to know the origin of the conflictive
content. In the case of our scenario, recording the origin of a content is very
expensive in computational costs, because it would require an array of time
since its creation. For this purpose we create a synthetic view from a conflictive
content that is created when a conflict arises. This conflictive content contains all
the necessary information (content type, owner id, action) to create the synthetic
view. In Figures 5.4 and 5.5 we can see the difference between the realistic view,
made of an incremental backup saving, and our synthetic view approach.

Origin Conflict

View tView t - n

... ... ...

Figure 5.4: Incremental backup.

Origin Conflict

View tView t - 1

Figure 5.5: Synthetic view.

5.2.4 Detecting norm applicabilities

Our implementation of the applicability function required by an NSM works as
follows. Given an observation, it performs the following steps:

i) It generates a list with the identifiers of the users that have uploaded new
contents into the community during the current time step.

ii) It computes the individual context of each user that has uploaded contents.

iii) It retrieves the norms that apply to each agent’s individual context.

As an example, consider that the current normative system contains the norms
in Figure 5.3, namely Ω = {n, n′}. Consider now that an NSM perceives that
user u1 uploads a spam content in Section Multimedia. First, it builds a list
with the identifier of user u1, since it has recently uploaded contents. Second,
it computes u1’s individual context in the same format than the precondition
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of a norm as specified by the grammar. Thus, u1’s individual context can be
compared with the preconditions of norms in order to detect what norms apply
to the user. For instance, say that u1’s individual context is:

(user(u1), section(Multimedia), contentCatg(spam))

Third, the applicability function retrieves the norms within the current nor-
mative system that apply to this specific individual context. Notice that the
individual context of u1 is equal to the precondition of norm n. Therefore, norm
n applies to user u1, and hence the prohibition to upload spam contents to
Section Multimedia holds for her.

5.2.5 Evaluating norms

Recall that an NSM provides default functions to evaluate norms in terms of
their effectiveness and necessity. Within our on-line community scenario,
norms cannot be evaluated in terms of their effectiveness since norm applica-
bility is not observable. As an explanation, recall that (i) norms are aimed at
prohibiting users to upload conflicting contents, and (ii) the effectiveness of a
norm is computed from the outcomes of its fulfilments. Whenever a user fulfils
a norm, then it does not upload conflicting contents and conflicts do not arise.
As a consequence, the NSM cannot detect whether the absence of conflicts is
because either the user fulfilled a norm or because she did not have the intention
to upload conflicting contents.

By contrast, norms can be evaluated in terms of their necessity. Whenever a
user uploads conflicting contents, then conflicts arise and the NSM can detect
that the user has infringed a norm. Specifically, we evaluate norms’ necessity by
means of the NSM’s default necessity function µnec. Specifically, the necessity
of a norm is computed as its ratio of harmful infringements. On the one hand,
norm infringements that lead to conflicts make the NSM to evaluate the norm as
necessary. On the other hand, norm infringements that lead to non-conflictive
situations make the NSM to evaluate the norm as unnecessary.

5.3 Summary

In this chapter we have described the necessary steps to integrate the multi-agent
on-line community simulator with an NSM. Over-viewing its architecture and
the domain dependant inputs needed to create the regulations. Without these
domain inputs an NSM will not be able to synthesise norms for the given domain
as it will not know: (i) what is happening in the domain each tick (perceptions),
(ii) what language do the agents of the scenario understand (grammar), (iii)
what is a conflict, (iv) if a norm applies to an agent, and (v) how to evaluate
norms necessity.

In the next Chapter 6 we will empirically evaluate the on-line community simu-
lator attached with different normative system machines.





Chapter 6

Empirical analysis and
results

We now perform an empirical evaluation and comparison of iron’s, simon’s and
desmon’s norm synthesis in the on-line community scenario described in Chap-
ter 4. We first detail in Section 6.1 the empirical settings of our experiments.
Thereafter, in Section 6.2 we empirically show the differences between the ap-
proaches and their results for the on-line community scenario. More specifically,
we first perform a macro analysis of the convergence, illustrating when they con-
verge, and what types of normative systems they synthesise. Second, we perform
a micro analysis of their norm synthesis process. Our purpose is to shed light on
how iron, simon and desmon, manage to synthesise normative systems, and
what type of data structures (normative networks) they synthesise with this aim.

6.1 Empirical Settings

In this section we describe the empirical settings used in the empirical evaluation,
we detail settings for: the on-line community, the simulator and the different
norm synthesis mechanisms.

6.1.1 On-line community settings

With the aim of comparing both iron and desmon, we employ a discrete agent-
based simulator that implements the scenario described in 4. In particular, we
aim at regulating a simulated on-line community of 10,000 users. However, as
described in [Nielsen, 2006], within an on-line community only the 1% of its users
are heavy contributors, while the remaining 99% are intermittent contributors
and lurkers, namely users that barely contribute to the community. For the sake
of simplicity, we focus on a 10,000-user community by means of a population of
100 heavy contributors.
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At each time step (i.e, tick) each user: (i) views one content with probability 1;
and (ii) uploads one content with probability 0.05. Notice that the probability
to upload contents is much lower than the probability to view contents. With
this setting, we aim at simulating users’ behaviour in real on-line communities,
in which users view contents more often than they upload.

At each tick, each user decides whether to fulfil or infringe those norms that
apply to it according to a norm infringement rate, which is fixed to low value
(0.3) at the beginning of each simulation and is the same for all users. A user
behaves within the community according to its profile, which describes when
and how it uploads, views, and complains about contents. Specifically, a user’s
profile is composed of three sub-profiles (Section 4.3.2). As an example, Table
6.1 depicts the profile of what we call a moderate user. That is, a user that only
uploads correct contents, and complains about all the inappropriate contents
it views. More specifically, Table 6.1 describes a user with probability 1 to
upload correct contents, and probability 0 to upload inappropriate contents (i.e.,
spam, porn, violent, insult). As described in the complain profile, it complains
about each type of inappropriate content with probability 1, and complaints
about correct contents with probability 0. Finally, the view profile defines the
different probabilities of the user to view contents from each section.

Upload Profile View Profile Complain Profile
Type P Section P Type P
Correct: 1 Forum: 0.34 Correct: 0
Spam: 0 The Reporter: 0.33 Spam: 1
Porn: 0 Multimedia: 0.33 Porn: 1
Violent: 0 TOTAL 1 Violent: 1
Insult: 0 View Mode Insult: 1
TOTAL: 1 By Order •
Upload Frequency Most Viewed ◦
Frequency: 1 Random ◦

Table 6.1: A user’s profile

We consider three different populations composed of moderates and spammers
in different proportions. On the one hand, moderates behave according to the
profile depicted in Table 6.1. On the other hand, spammers upload spam con-
tents with probability 1, and never complain about spam. We then consider the
following populations:

1. A population with a majority of moderate users, composed of 70% mod-
erates and 30% spammers (hereafter abbreviated as 30M-70S).

2. A balanced population of 50% moderates and 50% spammers (50M-50S).

3. A population with a minority of moderate users, composed of 30% mod-
erates and 70% spammers (70M-30S).
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6.1.2 Simulator settings

Each section of the community is an sliding window of limited capacity, in our
particular case 1000 different contents. Thus, whenever a section is full and a new
content arrives, the oldest content is removed in order to place the newly arriving
content. Each simulation finishes when it reaches 5,000 ticks. We consider a
“warm-up” period of 500 ticks for all simulations that allows a simulation to
reach normal conditions in on-line communities, where the users enter in the
community and there already exist contents to view and complain about. Thus,
from tick 0 to 500, users only upload contents, and from tick 500 onwards, users
upload, view, and complain about contents. We consider that a simulation has
converged whenever the normative system remains unchanged during a 1000-tick
period.

6.1.3 Norm synthesis settings

We recall from Chapter 3 that desmon is a deliberative norm synthesis ap-
proach while iron (2.4) and simon (2.5) are reactive approaches. In this empir-
ical evaluation we are going to demonstrate it empirically. We configure iron’s,
simon’s, and desmon’s parameters as depicted in Table 6.2. For each new norm
n, iron and simon sets its initial effectiveness and necessity to 0.5, namely
effn1 = necn1 = 0.5. By contrast, desmon initialise a norm with 0 effectiveness
and necessity, namely effn1 = necn1 = 0. Thus, it avoids the activation of the
norm until it accumulates at least 50 evidences (evidmin = 50) to assess its
activation (or discard). We set iron’s generalisation threshold to 0 (αgen = 0)
so that it generalises any norm that performs well enough to be active. Anal-
ogously, simon and desmon generalise any active norm since they do not take
αgen into account. We configure simon and desmon to perform deep generali-
sations (GM = Deep) with a generalisation step GS = (1), since simon obtained
its best results with this configuration in [Morales et al., 2014a]. There, simon
synthesised norms for avoiding collisions between travelling cars in a traffic junc-
tion scenario.

As described in Section 3.2.2.2.2, norms in this on-line community scenario can
be evaluated only in terms of their necessity. Thus, iron and simon deactivates
a norm whenever its necessity performance range is under a necessity deacti-
vation threshold αnecspec, which stands for the minimum necessity required for a
norm to remain active. Analogously, desmon activates a norm whenever its cu-
mulative necessity is over a necessity threshold band 〈α−nec, α+

nec〉, and discards
a norm whenever it is under the threshold band. We compute the upper bound
of the threshold band as αnecspec + εnec, and its lower bound as αnecspec− εnec, where
εnec = (0.05). Therefore, αnecspec directly affects to the preservation and discard
of norms, and hence to the convergence to a normative system. We then aim
at analysing norm synthesis for different low, medium and high deactivation
thresholds, namely αnecspec ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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Parameter Description iron simon desmon
effn1 , nec

n
1 Default norm effectiveness/necessity 0.5 0.5 0

Minimum number of evidences
evidmin to assess a norm’s — — 50

activation and discard
αgen Norm generalisation threshold 0 — —
GM Norm generalisation mode — Deep Deep
GS Norm generalisation step — 1 1
αnec
spec Norm specialisation threshold (0.1, 0.3, 0.5, 0.7, 0.9)

εnec Norm necessity threshold bound — — 0.05

Table 6.2: Norm synthesis mechanism parameters summary.

6.2 Empirical Results

Our first comparison mainly focuses on when iron, simon and desmon manage
to converge, and what type of normative systems they synthesise. With this
aim, we perform 10 different simulations for each population described in 6.1,
and for each specialisation threshold (αnecspec) described in Table 6.2.

6.2.1 IRON’s macro analysis

Table 6.3 depicts averaged results of 10 different simulations. Each cell depicts,
for each population and specialisation threshold: either (i) the amount of norms
that iron converged to; or (ii) symbol “X” if it was not able to converge to a
normative system. As we can observe, for a population of 30 moderates and 70
spammers (30M-70S) iron is able to converge to a stable normative system of 70
norms whenever the specialisation threshold is low (αnecspec < 0.3). By contrast, it
does not converge for medium and high thresholds (αnecspec ≥ 0.3). Along the same
lines, for population 50M-50S, it converges to 50 norms only for low and medium
specialisation thresholds (αnecspec < 0.5), and converges to 70 norms for population
70M-30S for low, medium and high thresholds (αnecspec < 0.7). In particular, iron
generates a norm for each spammer to prevent it from uploading spam in any
section. For instance, for a population of 70 spammers it generates 70 norms
similar to the following norm

〈{user(u1), section(anySection), cntType(spam)}, prh(upload)〉

which prohibits a specific user u1, that is acting as a spammer, to upload spam
to any section. We note that iron is capable of generalising norms for their
section predicate, but it is not capable of synthesising a general norm that pro-
hibits all the spammers to upload spam to any section.

We also note that moderates are the only users who complain about inappro-
priate contents, and hence can trigger the creation of norms. Therefore, the
proportion of moderates in a population represents its capability to complain
and to synthesise norms. We then refer to the proportion of moderates in a pop-
ulation as its complain power (CPw). As a general rule, we observe that iron
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Specialisation threshold αnec
spec

Population 0.1 0.3 0.5 0.7 0.9

30M-70S 70 X X X X

50M-50S 50 50 X X X

70M-30S 30 30 30 X X

Table 6.3: Number of norms that
iron converged to.

Specialisation threshold αnec
spec

Population 0.1 0.3 0.5 0.7 0.9

30M-70S 1 X X X X

50M-50S 1 1 X X X

70M-30S 1 1 1 X X

Table 6.4: Number of norms that
simon converged to.

Specialisation threshold αnec
spec

Population 0.1 0.3 0.5 0.7 0.9

30M-70S 1 X 0 0 0

50M-50S 1 1 X 0 0

70M-30S 1 1 1 X 0

Table 6.5: Number of norms that
desmon converged to.

converges to a stable set of norms whenever the complain tpower of the popu-
lation is above the specialisation threshold, namely when CPw > αnecspec. As an
example, in population 30M-70S, 30% of the users consider spam as inappropri-
ate, and hence complain about it. As a consequence, norms that prohibit spam
have a necessity around 30%, and hence they are preserved only whenever the
specialisation threshold is αnecspec < 0.3. This is so because the complaint power
of a population is directly related with the necessity of synthesised norms. That
is, the more users complain about inappropriate contents, the more necessary
the norms that prohibit to upload those contents. Notice then that the special-
isation threshold αnecspec acts as a consensus degree that establishes the minimum
amount of users that must agree about the necessity of creating (and preserving)
norms.

Additionally, if the complain power of the population is equal to the speciali-
sation threshold (that is, CPw = αnecspec), iron cannot converge, since there is
no agreement to include or discard norms. As explained above, in population
30M-70S norms to prohibit spam are around 30% necessary. In fact, their neces-
sity fluctuates around 0.3, continuously going above and below the specialisation
threshold, and being repeatedly deactivated and re-activated. In other words,
iron continuously activates and deactivates norms, being unable to converge to
a normative system.

Finally, when the complaint power of the population is under the specialisation
threshold (that is, CPw < αnecspec), while it should converge to an empty normative
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system. That is, since the complain power is under the specialisation threshold,
the necessity of synthesised norms will be under the threshold as well, and hence
they should be eventually deactivated and remain inactive. However, recall from
Chapter 2 that iron is highly reactive to conflicts. It does not cumulate com-
plaints to decide a norm’s activation, but it activates a norm based on one single
user complaint. As a consequence, punctual complaints trigger the re-activation
of discarded norms, even though, in general, there are no enough complaints to
consider their re-activation.

In Table 6.6 we can observe the summary of combinations between the com-
plaint power and the consensus degree and the results obtained with the norm
synthesis mechanism of iron.

Case Convergence
CPw > αnecspec Multiple norms

CPw = αnecspec No

CPw < αnecspec No

Table 6.6: Summary of iron’s macro analysis.

6.2.2 SIMON’s macro analysis

Table 6.4 depicts simon’s results. Likewise iron, it is able to converge to a
normative system whenever the complain power of a given population is over the
consensus degree (CPw > αnecspec). Moreover, it is not able to converge whenever
the complain power is equal or under the consensus degree (CPw ≤ αnecspec).
However, when simon converges, it is capable to synthesise a normative system
that significantly outperforms iron’s normative systems. Specifically, simon
can synthesise a single norm that generalises both the user and the section
predicates:

〈{user(anyUser), section(anySection), cntType(spam)}, prh(upload)〉

and hence prohibits any user to upload spam to any section. Here simon benefits
from its optimistic approach to norm generalisation, which allows it to perform
further generalisations than iron, hence outperforming it in terms of compact-
ness. In Table 6.7 we can observe the summary of combinations between the
complaint power and the consensus degree and the results obtained with the
norm synthesis mechanism of simon.

Case Convergence
CPw > αnecspec 1 norm

CPw = αnecspec No

CPw < αnecspec No

Table 6.7: Summary of simon’s macro analysis.
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6.2.3 DESMON’s macro analysis

Finally, Table 6.5 shows desmon’s results. Likewise simon, desmon (i) con-
verges to a compact normative system of one general norm whenever the com-
plain power of the population is over the consensus degree (CPw > αnecspec); and
(ii) is not capable to converge whenever the complain power is equal to the con-
sensus degree (CPw = αnecspec). However, when the complain power is under the
consensus degree (CPw < αnecspec), desmon converges to an empty normative sys-
tem that does not include norms to prohibit spam. This is so because desmon
is non-reactive to conflicts (i.e., users’ complaints). Unlike iron and simon, it
accumulates users’ complaints until it has enough evidences to consider the acti-
vation of norms. This deliberative approach to norm generation allows desmon
to implement our desired participatory regulation mechanism. It regulates the
on-line community by imposing norms to the users only whenever there is enough
consensus (enough evidence) about the necessity of including norms.

In Table 6.8 we can observe the summary of combinations between the com-
plaint power and the consensus degree and the results obtained with the norm
synthesis mechanism of desmon.

Case Convergence
CPw > αnecspec 1 Norm

CPw = αnecspec No

CPw < αnecspec 0 Norms

Table 6.8: Summary of desmon’s macro analysis.

6.2.4 Analysis of synthesised normative networks

We now compare the size and structure of the normative networks synthesised
by iron, simon and desmon to understand how they manage to synthesise
normative systems. In particular, both simon and desmon obtain the same
results in terms of compactness. Therefore, for the sake of simplicity we will
refer to both of them as desmon.
Figures 6.1 and 6.2 depict prototypical normative networks synthesised by iron
and desmon, respectively, for a population of 70 moderates and 30 spammers.
There, each circle represents a norm, and each edge represents a generalisation
relationship between two norms. In particular, red circles represent general
norms, that is, norms that concisely represent several norms. On the one hand,
iron synthesises slightly generalised normative networks. The network depicted
in Figure 6.1 contains 30 general (active) norms that concisely prohibit each
one of the 30 spammers to upload spam in any section. In particular, each
general norm generalises three norms that prohibit a user to upload spam in the
three different sections. Figure 6.3 illustrates an example of the generalisation
of norms n1, n2, n3 to norm n4 described below.

n1 : 〈{user(u1), section(forum), cntType(spam)}, prh(upload)〉
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Figure 6.1: Example of a prototypi-
cal normative network synthesised by
iron.

Figure 6.2: Example of a prototypi-
cal normative network synthesised by
desmon.

n4

n1 n2 n3

Figure 6.3: Example of iron’s gener-
alisation.

n8

n4

n1 n2

n7

n5 n6

Figure 6.4: Example of simon’s and
desmon’s generalisation.

n2 : 〈{user(u1), section(the reporter), cntType(spam)}, prh(upload)〉
n3 : 〈{user(u1), section(multimedia), cntType(spam)}, prh(upload)〉
n4 : 〈{user(u1), section(anySection), cntType(spam)}, prh(upload)〉

Norms n1, n2, n3 prohibit user u1 to upload spam to different sections, and n4

generalises n1, n2, n3, prohibiting user u1 to upload spam to anySection. This
lack of generalisation with respect to desmon stems from iron’s conservative
generalisation approach. This is because iron cannot synthesise a general norm
to prohibit to upload spam to all users in any section unless it synthesises one
norm to prohibit each user to upload spam. However, it is impossible for this
scenario since there are moderate users, who never upload spam, and hence iron
never generates norms for them.

By contrast, desmon is capable of performing further generalisations than iron.
The network depicted in Figure 6.2 contains one general norm

〈{user(anyUser), section(anySection), cntType(spam)}, prh(upload)〉

(which is the only active one) that prohibits any user to upload spam to any sec-
tion. In fact, this norm generalises (and hence represents) each one of the norms
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in the normative network. Thus, the represented normative system contains one
single norm that prohibits all the users to upload spam to any section. Consid-
ering norms n1, n2, n3, n4, and norms n5, n6, n7, n8 described below, Figure 6.4
illustrates an example of this generalisation. It shows the optimistic generali-
sation from: (i) norms n1 and n2 to n4 (which prohibits u1 to upload spam to
anySection); (ii) norms n5 and n6 to n7 (which prohibits u2 to upload spam
to anySection); and finally (iii) from norms n4 and n7 to n8 (which prohibits
anyUser to upload spam to anySection);

n5 : 〈{user(u2), section(forum), cntType(spam)}, prh(upload)〉
n6 : 〈{user(u2), section(the reporter), cntType(spam)}, prh(upload)〉
n7 : 〈{user(u2), section(anySection), cntType(spam)}, prh(upload)〉
n8 : 〈{user(anyUser), section(anySection), cntType(spam)}, prh(upload)〉

We then observe a structure which is different from the normative network syn-
thesised by iron. desmon’s network shows a hierarchical structure of two levels,
where the most general norm has two of its predicates generalised. Moreover,
the optimistic approach of desmon permits to it to generalise without gathering
all the possible evidences. Therefore, we conclude that desmon manages to out-
perform iron in terms of compactness of the normative system since it generates
normative networks with a structure that iron is not capable of generating.

6.2.5 Micro Analysis

We now analyse iron’s, simon’s and desmon’s norm synthesis processes in the
transition from converging to a normative system with norms, to converging to
an empty normative system (in the case of desmon). With this aim, we choose
the balanced population of 50 moderates and 50 spammers (with complaint
power Cpw = 0.5), and study its convergence for low, medium and high consensus
degrees, namely when αnecspec takes on values 0.3, 0.5 and 0.7 respectively.
Figure 6.5 depicts the evolution of the size of the normative system synthesised
by each approach for a very low consensus degree (αnecspec = 0.3). It shows aver-
aged results of 10 simulations. Each value in the x-axis stands for a simulation
tick, and the y-axis shows the number of norms in the normative system. As
Figure 6.5 shows, from tick 0 to 500 none of the approaches synthesises norms.
This happens because of the 500-tick warm-up period, in which users do not
complain about contents. From tick 500 onwards, each approach starts synthe-
sising norms and performing generalisations to compact its normative system.
Finally, they are all able to converge to a normative system. This is so because
the complain power of the population (Cpw = 0.5) is over the consensus de-
gree (αnecspec = 0.3), and hence all synthesised norms are considered as necessary.
However, while iron converges to 30 norms, simon and desmon converge to
one single, general norm.
Figure 6.6 shows the size of the normative system along time for a medium con-
sensus degree (αnecspec = 0.5). In this case, none of the approaches are able to
converge. Since the complain power of the population is 0.5 (Cpw = 0.5), the
necessity of norms fluctuates around 0.5, going above and below the consensus



74 CHAPTER 6. EMPIRICAL ANALYSIS AND RESULTS

Figure 6.5: Cardinality of the NS for the different NSM approaches with low
consensus degree (αnecspec = 0.3).

degree αnecspec. Therefore, the three approaches continuously activate and deacti-
vate norms, hence generalising norms and backtracking generalisations repeat-
edly. Finally, Figure 6.7 shows results for a high consensus degree (αnecspec = 0.9).
Since the complaint power (Cpw = 0.5) is lower than the consensus degree, each
approach should converge to an empty normative system. However, iron and
simon cannot converge to a normative system. This is so because iron and
simon are reactive to complaints, and hence they continuously re-activate dis-
carded norms, even though they should remain inactive. By contrast, desmon
manages to converge to an empty normative system. In fact, it creates norms,
but never activates them since their necessity, which fluctuates around 0.5, is
below the consensus degree. Here desmon benefits from its deliberative ap-
proach to norm synthesis, which considers cumulative complaints, instead of
single complaints, to consider norms’ activation.

6.3 Summary

In this final chapter we have empirically evaluated the norm synthesis machines
connected with our multi-agent based on-line community simulator.
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Figure 6.6: Cardinality of the NS for the different NSM approaches with medium
consensus degree (αnecspec = 0.5).

On the one hand, we have found a correlation between the capacity of complain-
ing user population (complain power = Cpw) and the specialisation threshold
(αnecspec), which can be interpreted as a consensus degree. These two values af-
fect the convergence of the NSM’s. As we can observe in Table 6.9 we detail a
summary observed from the macro analysis of this chapter.

Convergence
Case iron simon desmon

CPw > αnecspec Multiple norms 1 Norm 1 Norm

CPw = αnecspec No No No

CPw < αnecspec No No 0 Norms

Table 6.9: Summary of NSM’s macro analysis.

Whenever the complain power is higher than the consensus degree (Cpw > αnecspec)
all of the NSM’s will converge to their compacter normative system, namely
iron (1 norm per each spammer), simon (1 norm prohibiting spam to all users)
and desmon (1 nor prohibiting spam to all users). On the contrary, when they
both are equal (Cpw=αnecspec) convergence will not occur. This is so, because the
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Figure 6.7: Cardinality of the NS for the different NSM approaches with high
consensus degree (αnecspec = 0.7).

NSM’s are continuously activating and deactivating norms, without reaching
a convergence state. Finally, when the consensus degree is bigger than the
complain power (Cpw < αnecspec) the reactive approaches as iron and simon will
not converge to any normative system, as they are too reactive to complains and
precipitates in the addition of the norms. However, the deliberative approach,
desmon, will converge to a normative system without norms as the minimum
consensus degree to create norms is not achieved by the complains of the users
(Cpw. Thus, desmon is capable of capturing the opinion of the community and
only generates norms whenever a minimum consensus is reached.

Moreover, we proved that desmon also overcomes the compactness drawback
of iron. As shown in Section 6.2.4, we can observe that as desmon is based
on simon it inherits the optimistic norm generalisation approach and makes
normative systems that are compacter than iron’s. The normative systems
synthesised by desmon are based on a simple norm prohibiting the upload of
spam content, while iron synthesize one norm per each user prohibiting each
one the upload of spam content.

Furthermore, in the micro analysis we observed the transition from convergence
to no convergence for a certain population of 50 moderates and 50 spammers.
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Focusing on how the normative systems fluctuates with different NSM’s and
different consensus degrees.





Chapter 7

Conclusions and future
work

In this chapter we first summarize the work developed during this thesis drawing
the most notable conclusions attained from it, and finally present some lines for
future research.

7.1 Summary

In this thesis we have build desmon, a deliberative and participatory approach
for norm synthesis, overcoming the drawbacks of simon (the improved version of
iron presented in [Morales et al., 2014a]). Moreover, we have applied desmon to
our novel and state-of-the-art multi-agent on-line community simulator, where
real humans that share, view and complain about contents are modelled by
agents. The aim of this application is to build frictionless communities, that is,
communities that avoid frictions (conflicts) between their users. The conflicts
that arise as frictions, and hence synthesising norms of the normative system,
are the complaints about the contents made by the users from the same com-
munity.

Therefore, we can divide this thesis in three main contributions. First, we have
tackle the drawbacks of simon (Chapter 3) for: reactiveness of the norm addi-
tion and conservativeness of the norm deletion. We introduce desmon, a general
approach to norm synthesis based on simon. desmon is capable of synthesising
norms in a deliberative manner being a participatory approach capable to syn-
thesise norms acquiring the majority of users’ opinion. Moreover, it presents a
new state transitions for the norms life cycle (Figure 3.1) to monitor the norms
performance before activating them, as the norm deactivation is done.

Second, we have presented an on-line community simulator (Chapter 4) that pro-
vides a MAS scenario for the norm synthesis approaches to regulate. Our sim-

79
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ulator allows to design different populations of users with different behaviours,
to build a realistic virtual community simulator. Moreover, it provides differ-
ent execution modes to analyse on-line the norm synthesis: (i) it allows the
visualization on display to visualise the agents interactions in the community,
(ii) a batch mode without visualization and (iii) a parallel execution mode for
computer clusters. Furthermore, we have configure and exploit the norm synthe-
sis machines in order to synthesize norms for our on-line community (Chapter
5). With this aim we have described our domain specific implementation of
the NSM’s inputs. As a result, we obtain synthesis of norms for the users of
the on-line community, preventing them from uploading inappropriate contents,
and hence avoiding friction between users.

Third, we have performed an empirical evaluation (Chapter 6) with the aim of
studying the differences between different approaches iron, simon and desmon.
On the one hand, we have performed a macro analysis to analyse when it oc-
curs the convergence and what type of normative systems it synthesize for each
different approach. On the other hand, we have also performed a micro analy-
sis to focus on the transition from convergence to non convergence and analyse
how they manage to synthesise norms. These experiments shows us that: (i)
simon and desmon outperforms iron in compactness and (ii) desmon is able
to deliberatively synthesise and converge to normative systems without norms,
which iron and simon are not able because they are reactive approaches that
give more importance to the activation and maintenance of the norms than the
deactivation.

7.2 Future work

As future work, we have seen several steps we would like to take into account.

First of all, we have used computer simulation as a method of social research.
We aim to create a model of the real world on-line communities, that are our
targets, and simulate them. Once that we have gathered the data of the model
we have to validate it with the data of a real world scenario, in our case this
would be to make a test with real persons. The logic of the simulation is shown
graphically on Figure 7.1 taken from [Gilbert and Troitzsch, 2005]. Therefore,
after comparing the gathered data by our simulated model and the real world
scenario we could follow with the next steps.

Secondly, we have made experiments with 100 agents that, as described in
[Nielsen, 2006], represents the heavy contributors of an on-line community of
10.000 users. Even though, as it is observed in the usage numbers of the social
networks in [Keckley and Hoffmann, 2010] we are far away from the biggest so-
cial networks of the market (e.g., Facebook, Twitter, Linkedin, YouTube). For
this purpose, the next step after validating our data, we are going to seek for the
scalability of our system. Focusing on the coverage of communities with large
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Figure 7.1: The logic of the simulation.

quantities of users and big movement of data.

Thirdly, the regulations that we have in the real life have a punishment if they
are infringed. This punishments make the rule or law stronger, as people is
frightened of the consequences. In our on-line community scenario we haven’t
taken into account the punishments the users would have by infringing a norm.
In real virtual communities exists some punishments that more or less act in
consensus between different sites. This punishments as described in [Hall and
George, 1999] are:

1. User banning: The user site is banned and no one from that address can
access the virtual community.

2. User deletion “Toading”: The user is deleted. If the user wants to access
again has to create a new account.

3. User imprisonment: The user is placed within a limited area of the com-
munity and prohibited from interacting with other users (during certain
time).

4. Removal of status/ experience: The user will loose all the “points” or
values of the community that make some users more relevant than others.

Therefore, in order to make a more realistic approach we would apply punish-
ments after the infringement of some norms or after the infringement of several,
depending the gravity of the infringement. As an initial guess we could apply
a state machine to the users, making a transition between the punishments de-
scribed above and the original state, as depicted in Figure 7.2 (following the
level of gravity with the colour intensity).
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Start Status 
Removal

Imprisonment

Toading

Banning

Figure 7.2: State machine transitions for users punishments.

Finally, our last aim and objective to pursue will be the application of the
norm synthesis mechanism to an actual world on-line community, automatically
synthesising norms for humans and creating a participatory approach where the
opinions of all the users are listened. And as the norm synthesis mechanism is
domain independent we could extrapolate this mechanism for other purposes,
such as the creation of new civil participation mechanisms for avoiding frictions
in real cities.
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