
Integrated Grasp and Motion Planning using Independent Contact Regions 1

Abstract

Traditionally, grasp and arm motion planning are considered as separate tasks. This

might lead to problems such as limitations in the grasp possibilities, or unnecessary

long times in the solution of the planning problem. This thesis presents an integrated

approach that only requires the initial configuration of the robotic arm and the pose

of the target object to simultaneously plan a good hand pose and arm trajectory to

grasp the object.

The planner exploits the concept of independent contact regions to look for the

best possible grasp. In this document, two different methods have been considered

to search for good end-effector poses. One biases a sampling approach towards

favorable regions using principal component analysis, and the other one considers

the capabilities of the robotic arm to decide the most promising hand poses. The

performance of the methods is evaluated using different scenarios for the humanoid

robot SpaceJustin. In order to validate the paths, some scenarios were replicated in

the laboratory and the generated paths were executed on the real robot.

Joan Fontanals Mart́ınez

2 Integrated Grasp and Motion Planning using Independent Contact Regions

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 3

Contents

Abstract 1

Nomenclature 9

Preface 11

1 Introduction 13

2 Related Work 15

2.1 Path Planning . 15

2.2 Grasp Planning . 18

2.3 Integrated grasp and motion planning 19

3 Tools 21

3.1 Robot SpaceJustin . 21

3.2 Independent Contact Regions (ICR) 22

3.3 Capability Map . 28

4 Integrated method 33

4.1 Grasp Planning . 33

4.1.1 Using PCA . 33

Joan Fontanals Mart́ınez

4 Integrated Grasp and Motion Planning using Independent Contact Regions

4.1.2 Using CapMap . 38

4.1.3 Complete transformation T objecthand 40

4.2 Integrated planning algorithm . 41

4.2.1 Before goal configuration . 42

4.2.2 Goal configuration found . 47

5 Implementation 49

5.1 Open Motion Planning Library . 49

5.2 The Kautham Project . 51

5.3 Implementation of the Integrated Planner in The Kautham Project . 53

5.4 OpenRAVE . 55

5.5 Implementation of the Integrated Planner in OpenRAVE 57

6 Results and discussion 61

7 Environmental Analysis 69

7.1 Environmental Impact . 69

7.2 Socio economic Impact . 69

8 Costs Analysis 71

8.1 Development Costs . 71

8.2 Execution Costs . 72

Conclusions 75

Future work 77

Acknowledgement 81

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 5

List of Figures

2.1 Typical path planning problem. Taken from The Kautham Project [1]. 16

2.2 Examples of sampling-based path planners. Left: PRM. Right: RRT. 17

3.1 Humanoid robot SpaceJustin. 22

3.2 DLR-HIT hand II in its original configuration. 22

3.3 ICR computation in an abstract 2-dimensional wrench space (taken

from [2]). 23

3.4 Workspace for one finger of the DLR-HIT hand II. 26

3.5 Finger workspace collision detection. n is a normal vector on the ob-

ject’s surface and f the vector representing the ideal direction where

the finger tip can actually apply force. The angle between f and −n

is checked for reachability. 27

3.6 Visual representation of the complete ICR computation process. . . 27

3.7 Capability map for one arm of SpaceJustin. Colors indicate the reach-

ability index for each voxel, i.e. the percentage of discrete poses within

that voxel that are reachable for the arm. 30

Joan Fontanals Mart́ınez

6 Integrated Grasp and Motion Planning using Independent Contact Regions

4.1 Influence of the superellipsoid parameters on the distribution of sam-

ples inside the goal region for a soda can in the top row (with ε1 = 0.1,

ε2 = 1.0 to the left and ε1 = 0.5, ε2 = 1.0 to the right), and for a

shampoo bottle in the bottom row (with ε1 = 0.1, ε2 = 0.1 to the left

and ε1 = 0.5, ε2 = 0.5 to the right). 35

4.2 PCA-based sampling applied to a space B defined by 3 parameters;

mv is the mean of the set of samples and H is the new sampling region. 38

4.3 Points resulting from the filtering phase of the capability map. The

points define hand positions reachable by the arm. 39

4.4 Different T objecthand for grasping. Left: self-collision between two fingers.

Right: good grasp pose. 40

4.5 Finding the rotation around the approach vector xp. 42

5.1 OMPL API Overview taken from OMPL website [3]. 52

5.2 Different GUI implemented in Kautham. 54

5.3 OpenRAVE architecture. (Taken from the website http://www.openrave.org/). 56

5.4 Library diagram. 59

6.1 Tabletop and cupboard scenarios, with and without obstacles, for

testing the planning approaches. 62

6.2 Grasp-RRT in Simox (this scenario was not used in the comparison). 63

6.3 Collision models for SpaceJustin: simple model (up) and full model

(down). 66

6.4 Diagram of implementation for the real experiment. 67

6.5 Snapshots of the real experiment with SpaceJustin. 68

8.1 Diagram explaining the process towards a bi-manual pick and place

application. 79

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 7

List of Tables

4.1 Data types. 45

4.2 Methods. 46

6.1 Time to grasp the soda can (s). 63

6.2 Success rate for grasping the soda can (%). 64

6.3 Time to grasp the shampoo bottle (s). 64

6.4 Success rate for grasping the shampoo bottle (%). 64

6.5 Time distribution for the CAP-RRT planning approach. 65

6.6 Collision detection: Time comparation (s). 67

8.1 Costs of code. 72

8.2 Total developing cost. 72

8.3 Execution costs. 72

Joan Fontanals Mart́ınez

8 Integrated Grasp and Motion Planning using Independent Contact Regions

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 9

Nomenclature

CMU Carnegie Mellon University

DLR Deutsches Zentrum für Luft und Raumfahrt, German Aerospace Center

FC Force Closure

FK Forward Kinematics

GWS Grasp Wrench Space

ICRs Independent Contact Regions

IK Inverse Kinematics

OMPL Open Motion Planning Library

OpenRAVE Open Robotics Automation Virtual Environment

PCA Principal Component Analysis

PRM Probabilistic Roadmap

RRT Rapidly exploring random tree

TCP Tool center point

UPC Universitat Politècnica de Catalunya

Joan Fontanals Mart́ınez

10 Integrated Grasp and Motion Planning using Independent Contact Regions

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 11

Preface

This thesis has been developed at the German Aerospace Center (DLR) in the

Institute for Robotics and Mechatronics. During the thesis the author has been part

of the “Robotic Grasping and Manipulation” team of the mentioned institution,

having the chance to work and collaborate with many researchers on the field of

grasping for robotics applications.

The main result of the project is a software module that can be easily integrated into

other software packages. For this thesis, the module has been successfully integrated

into The Kautham Project (a motion planner developed at the UPC) as well as with

OpenRAVE (Open Robotics Automation Virtual Environment, developed at CMU).

The results of the work have been published in the paper “Integrated Grasp and

Motion Planning using Independent Contact Regions,” presented at the IEEE-RAS

International Conference on Humanoid Robots, November 18-20th 2014, in Madrid,

Spain.

Joan Fontanals Mart́ınez

12 Integrated Grasp and Motion Planning using Independent Contact Regions

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 13

Chapter 1

Introduction

Grasp and motion planning for robotic arms are a set of techniques focused on

deciding how an object should be grasped and how the robot reaches the position

where the grasp is executed, respectively. They have been traditionally considered

as two separated stages, solved in a sequential manner to find a valid trajectory

that allows a robot to pick up an object from the environment. This thesis proposes

a novel method to integrate grasp and motion planning into a unified planning

algorithm that does not restrict the possible grasps on the object, while at the same

time computes a collision-free path plan to reach and grasp the object.

The project proposes a new approach that looks for a feasible grasp on the object

exploiting the concept of independent contact regions (ICRs). ICRs have been suc-

cessfully used as part of a shared autonomy approach for telemanipulation, where

the human decides the hand pose with respect to the object based on the ICR in-

formation [4, 5]. This work uses the ICRs as part of a fully autonomous motion

planner. In order to replace the human input, and to improve the efficiency of the

planning process, the search of a new grasp is restricted to areas of potentially good

configurations using two tools: 1) A principal component analysis (PCA) that bi-

ases a sampling-based search of hand poses towards promising regions, and 2) an

efficient representation of the reachability of the robot in a capability map [6], which

restricts the search to feasible manipulation areas for the robot. A great exploration

capacity is required to simultaneously combine grasp and motion planning, therefore

Joan Fontanals Mart́ınez

14 Integrated Grasp and Motion Planning using Independent Contact Regions

bidirectional RRTs are used for the planning strategy.

After this introduction, the thesis is developed in the following way. Chapter 2

presents the state of the art in methods for motion and grasp planning. Chapter 3

describes the hardware and software tools required for the development of the pro-

posed method. Chapter 4 presents in detail the proposed method and its algorithms.

Then, Chapter 5 discusses the implementation of the method. Results are shown

and analyzed in Chapter 6. The required environmental analysis is presented in

Chapter 7 and the costs analysis in Chapter 8. Finally, conclusions and future work

based on the results obtained in this thesis are presented.

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 15

Chapter 2

Related Work

2.1 Path Planning

Path planning (also known as motion planning) defines the process of finding a valid

trajectory between an initial and a final configuration, while ensuring that all the

possible constrains are respected during the execution of the complete movement.

These constraints can be imposed by the environment or the kinematics and dy-

namics of the system; typical restrictions include torque and joint limits, obstacle

avoidance or torque minimization. Motion planning is not only used in robotics,

but also in other fields such as biology or digital animation [7]. Paths are computed

inside the Configuration Space C (C−space or also joint space) of the system. C de-

scribes the space of all possible robot configurations. For a floating base robot with

N joints, a general topology is SE(3) ×RN . For a fixed base robot, SE(3) is not

present.

The workspace of a robot represents the portion of the space that the end effector

of the robot can access. When orientations and positions are considered, it is a

portion of SE(3). The correspondence between the configuration space and the

workspace of a robot is obtained via Forward and Inverse Kinematics (FK and IK).

Forward Kinematics uses the kinematic equations of the robot to compute the end-

effector position and orientation. On the other hand, Inverse Kinematics tries to

Joan Fontanals Mart́ınez

16 Integrated Grasp and Motion Planning using Independent Contact Regions

Figure 2.1: Typical path planning problem. Taken from The Kautham Project [1].

find which configuration brings the end effector to a desired position. The problem

of IK is that there is not always an analytical way to solve the problem, since

many manipulators are redundant, i.e., have more than six joints and have multiple

configurations that can reach the same end effector pose. In these cases, IK is

normally solved as a optimization problem. Another way to tackle this problem

is using the pseudo-inverse of the Jacobian to find correspondences between small

changes in the workspace with small changes in the configuration space [8].

The problem of collision-free arm motion planning, i.e. finding an arm trajectory

from an initial to a final configuration while avoiding obstacles in the environment,

has been tackled using mainly two approaches: sampling- and optimization-based

planning. Because of their simplicity, sampling-based motion planners have become

very popular. They approximate the configuration space by sampling it (uniformly

or not) and keeping the collision-free samples in a graph structure defining the free

configuration space (Cfree). Sampling-based planners include methods based on

probabilistic road-maps (PRM), where several collision-free configurations are com-

puted beforehand and stored in a graph structure called roadmap [7]. In this graph,

the nodes represent configuration samples while the edges represent local paths con-

necting nodes that are close enough to each other in the configuration space. The

roadmap is later queried to get the desired path by checking the connectivity between

two nodes in the graph. The approach is particularly useful for multiple queries in

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 17

Figure 2.2: Examples of sampling-based path planners. Left: PRM. Right: RRT.

very structured and static scenarios. For single queries, rapidly-random exploring

trees (RRTs) sample the configuration space while creating a tree that connects the

start and goal configuration [9], which proves useful for changing environments like

those encountered in manipulation tasks with different obstacles.

These randomized path planners are probabilistically complete, meaning that as

the number of steps executed from the planner increases, the probability that the

planner fails to find a path, if one exists, asymptotically approaches zero. One

disadvantage of these planners is that they often return non-optimal solutions that

require a post-processing step to smooth and shorten the computed trajectories.

Examples of 2D planning using these techniques are sketched in Fig. 2.2.

Optimization-based planners, on the other hand, define path computation as an op-

timization problem that minimizes a suitable cost function [10]. Such cost function

can be used to avoid obstacles, provide smoothness, and respect kinematic and dy-

namic constraints of the problem. These planning approaches suffer from limitations

associated to optimization algorithms such as non-convergence or local minima, and

lack the exploration nature of sampling-based planners required for difficult path

planning problems. The consideration of optimality within sampling-based planners

has been recently proposed [11], although these approaches are not computationally

efficient for high-dimensional problems.

Joan Fontanals Mart́ınez

18 Integrated Grasp and Motion Planning using Independent Contact Regions

2.2 Grasp Planning

Grasp Planning involves a set of techniques whose goal is finding good contact

locations on the object and a corresponding suitable hand configuration, given a

particular end effector (gripper or multi-fingered hand) and object. The grasp is

usually defined as a homogeneous transformation that defines the relative location

of the object with respect to the gripper, and the set of joint values that move the

gripper to the desired contact points on the object.

Depending on the way that the grasp configurations are searched, grasp planning

approaches can be separated into analytical and data-driven methods [12]. Typically,

analytical methods tackle the grasp search with heuristic- or optimization-based

algorithms, adapting the restrictions and goal functions to the particularities of

the problem. On the other hand, data-driven methods mainly rely on an off-line

generated set of grasp configurations, which is later used to choose a valid grasp pose

according to other restrictions of the environment. Grasps are chosen according to

some desired property, being force closure (FC) the most popular one. A grasp that

is FC is able to resist perturbations in any direction, using suitable contact forces.

To measure the goodness of a grasp, different grasp quality measures have been

proposed [13]; the most common one is the measure of the maximum perturbation

wrench that a grasp can resist in any direction [14].

Most of the approaches for planning grasps provide precise contact locations for

the fingers on the object surface, but real robotic hands can hardly guarantee that

the exact contact points are reached due to different sources of uncertainty (for

instance, a poorly estimated friction coefficient, or uncertainties in the object pose

estimation). The computation of independent contact regions (ICRs) on the object

boundary was introduced to provide robustness to finger positioning errors, such

that if each finger i is positioned on its corresponding ICRi an FC grasp is always

obtained, independently of the exact location of each finger [15].

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 19

2.3 Integrated grasp and motion planning

Finding a feasible grasp for a given scenario has been traditionally solved in a se-

quential manner. Given the object model, a grasp database is computed offline,

and grasps are sorted according to some grasp quality measure. Later, given the

current scenario, the feasibility of the grasps is evaluated, i.e. only grasps that have

a corresponding inverse kinematics (IK) solution for the arm are considered in later

stages. One feasible grasp defines one goal configuration for the robot. Then, given

the initial and final arm configuration, a collision-free path for the arm is searched

using some path planning method. If no path is found a new grasp is chosen, until

a path is obtained or until the complete database has been explored and no solution

is found [16]. Working with a discrete set of grasps from a database has several

disadvantages, such as limitations in the number of grasp possibilities for the object

and low adaptability to the environment, i.e. no new grasps can be explored even if

they mean only a slight change of pose with respect to one predefined grasp.

While traditional motion planning for grasping connects an initial to a desired ar-

m/hand configuration, an integrated approach simultaneously looks for the hand

configuration and arm motion to grasp a particular object given the initial arm/-

hand configuration and object pose. In most of the cases it is not important how

the object is grasped, as long as some minimum quality conditions are met.

An initial step towards an integrated approach was taken by defining online a set

of candidate grasp poses, obtained by solving an optimization problem that takes

into account the location of obstacles in the scene and the likelihood of not being

in collision and leading to FC grasps [17]. Candidate grasps obtained in this way

are then tried out by moving the wrist and closing the fingers until some grasp

is detected. This idea evolved towards the definition of Task Space Regions [18,

19], which manually define areas (subsets of SE(3)) of predefined good grasp poses

around the object for an underactuated hand. The regions are later used to plan

arm paths with a bidirectional RRT.

The previous work closest to the approach presented in this thesis is [20], where the

Joan Fontanals Mart́ınez

20 Integrated Grasp and Motion Planning using Independent Contact Regions

grasp search is performed while the motion planning loop is running. From the initial

arm configuration, an RRT is built and starts growing. Occasionally, an approach

movement is tried from some existing node in the tree towards the object, stopping

as close as possible to the object while still there are no collisions detected. Once the

hand is at this position, a grasp is evaluated by simply closing the fingers around

the object. During the whole planning process the approach trajectories towards

the object are tracked, to try to uniformly cover different approach directions.

This thesis proposes a novel way to integrate the grasp and motion planning pro-

cedures without using any precomputed grasp database, thus making it suitable for

arbitrary objects and complex end effectors. The approach reuses the idea of a goal

region around the object that contains promising hand poses, but the proposed ap-

proach does not explicitly constrain the potential grasps on the object. The method

also provides robustness against uncertainty in the positioning of the fingers by com-

puting reachable independent contact regions, which also leads to more candidate

grasps than the closing and testing policy adopted in some common grasp planning

approaches. To improve the performance in cluttered environments, bidirectional

RRTs are used to connect the initial configuration with the multiple grasps discov-

ered during the search process. The planning algorithm tries to bias the connection

of the trees to the ones leading to better grasps, measured according to a suitable

quality metric.

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 21

Chapter 3

Tools

3.1 Robot SpaceJustin

Although the integrated planning method that was developed and will be presented

in Chapter 4 can be used with any robotic arm and any manipulator, the examples

and real implementation was done for SpaceJustin (Fig. 3.1), the upper body of a

humanoid robot developed by the German Aerospace Center (DLR) at the Institute

of Robotics and Mechatronics in Oberpfaffenhofen. The main purpose of SpaceJustin

is to work in a telepresence environment, for instance for teleoperation from the earth

for tasks on the International Space Station.

The robot SpaceJustin has two arms of seven degrees of freedom (DoF) each, plus

one neck with 2 DoF and one additional DoF in the waist; each drive has position

and joint torque sensors. The robot uses as end effectors two five-fingered DLR-HIT

hands II with 15 DoF each. These are anthropomorphic hands also designed by

the German Aerospace Center, which are commercially available. The hand has 5

fingers with 4 joints each of them, although the two last joints are coupled with a

relation 1/1, thus leaving 3 controlled degrees of freedom per finger. Every joint

is also equipped with torque sensors. Given the small workspace obtained by the

original hand configuration shown in Figure 3.2, the configuration of the thumb was

changed. In the new configuration the thumb is placed totally opposed to the index

Joan Fontanals Mart́ınez

22 Integrated Grasp and Motion Planning using Independent Contact Regions

Figure 3.1: Humanoid robot SpaceJustin.

Figure 3.2: DLR-HIT hand II in its original configuration.

finger. This new configuration does not just give the hand a larger workspace, but

it also provides an important increment of dexterity [21].

3.2 Independent Contact Regions (ICR)

One of the most popular methods in the evaluation of grasp robustness is the force

closure (FC) method, generally used with the additional consideration of a grasp

quality measure. They are based in the analysis of the Grasp Wrench Space (GWS).

The Grasp Wrench Space is a subset of the 6-dimensional force and torque space

spanned by the forces applied on the contact points of the object and the torques

produced by those forces, measured with respect to some convenient reference point,

usually the center of mass of the object. These forces are the forces that each contact

can apply at the contact point, considering the restrictions coming from the friction

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 23

ICR0

ω00

ω01p0

ICR1

ICR2

ICR3

H ′′+
0H ′′+

1

H ′′+
2

S0

S1

S0
⋂
S1

O

Qmin

Figure 3.3: ICR computation in an abstract 2-dimensional wrench space (taken

from [2]).

cone. A convex hull of all these points in the GWS is computed and from that the

FC test is evaluated by checking if the origin of the wrench space lies inside the

convex hull. If the test turns positive it means that the object grasped can resist

perturbations in any possible direction.

To measure the quality for different FC grasps, a metric is required to give an idea

of the disturbance resistance of a grasp. One of the most popular metrics is the

largest ball criterion, which computes the minimum distance in the wrench space

from the origin to any of the facets forming the convex hull. This quality metric

also defines the direction of the maximum perturbation wrench that the object can

handle without loosing the force closure condition.

ICRs correspond to regions on the boundary of the object (here represented by sets

of points), such that if each finger i is positioned on its corresponding ICRi an FC

grasp is always obtained. Not only the FC condition is guaranteed, but also a min-

imum desired grasp quality is met. The grasp quality is quantified with the largest

perturbation wrench that the grasp can resist in any perturbation direction [14].

The computation of independent contact regions was introduced to provide robust-

Joan Fontanals Mart́ınez

24 Integrated Grasp and Motion Planning using Independent Contact Regions

ness against finger positioning errors. For its computation, the contact between the

finger and the object surface are considered punctual. A force fi applied at a point

pi generates a torque τi = pi× fi with respect to an object reference. This reference

frame of the system is located in the center of mass CM for simplicity. fi and τi

form together a wrench vector ωi = (fi τi)
T . For the ICR computation, the friction

caused by the contact between the fingertips and the object is described by a friction

cone. To simplify the computations, the friction cone is linearized using an m-side

polyhedral convex cone. The number of sides considered for that cone is the result of

a compromise between the desired precision and the computational time, since the

higher this number is the higher the computational time. A wrench ωij generated

by a unitary force fi along an edge of the linearized friction cone, i.e. fi = n̂ij , is

called a primitive wrench.

Each contact point pi has m corresponding primitive wrenches ωij . A grasp is de-

fined by the set of contact points G = {p1, . . . , pn}, and thus associated to the set

W = {ω11, . . . , ω1m . . . , ωn1, . . . , ωnm}. Therefore, G andW will be used as represen-

tative sets of a particular grasp. It is important to notice that, unlike the definition

proposed in Chapter 2.2, in this grasp definition the transformation of the gripper

is not considered. This is because the Independent Contact Regions algorithm does

not explicitly take it into consideration, but it is a previous step as will be described

below.

Initially, the FC condition is tested. First, the convex hull of the grasp CH(W) is

computed for all the primitive wrenches of the contact points. Next, the condition

that the origin is found inside CH(W) is evaluated by verifying that for every facet

of the convex hull, the centroid P of all the primitive wrenches lies on the same side

as the origin (the center of mass) [22] This condition is valid since the centroid will

always lie inside the CH(W). The quality of the grasp is the radius of the largest

hypersphere centered on O and fully contained in CH(W), i.e. it is the distance

from O to the closest facet of CH(W).

The computation of the Independent Contact Region starts when a first FC candi-

date grasp is found. The method generates hyperplanes H ′′
k parallel to the support-

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 25

ing hyperplanes Hk, i.e. planes that contain one facet of CH(W). Each hyperplane

generates a positive and negative half-space. Arbitrarily, the negative half space

is selected to be the one where the origin O of the wrench space lies. A search

region Sk is defined as the positive half space H ′′+
k , meaning that new points in the

ICRi will have its primitive wrenches in this region. A simple search is performed

to build each ICRi by looking for the neighbor points of pi such that at least one

of its primitive wrenches lies on each search region Sk. The points that fulfill this

condition belong to the region ICRi. This search is performed for all the fingers

involved.

The reachability of the points computed by the ICRs is considered in a two-phases

approach [23]. The first one obtains the points on the object surface reachable by

the fingers for a given hand pose; points are represented by a position vector and a

corresponding normal direction. Precomputation of the workspaces for each finger

speeds up this process. The second phase executes the ICR algorithm previously

described, but only using reachable points, which therefore leads to reachable inde-

pendent contact regions.

In order to find the reachable ICRs the first step required is to find those points

on the surface of the object which are actually reachable for every finger given a

position of the hand. Thus, a voxelized representation of the finger’s workspace is

used. The fingers used during the development of the method just have 3 DoF, since

the two last degrees of freedom are coupled. This eases this representation because

the mapping from the workspace to the configuration of these 3 DoF is unique,

meaning that one position in this representation has only one possible orientation of

the fingertip and just one element of the subset R3. Every voxel in the workspace

holds then information about the position of the fingertip with respect to the finger

origin, a vector representing the ideal direction where the finger tip can actually

apply force, and a 3-dimensional vector indicating the finger configuration that leads

to that position. With these properties, this representation serves also as an inverse

kinematics look-up table.

The reachable points of the object are computed by the collision detection between

Joan Fontanals Mart́ınez

26 Integrated Grasp and Motion Planning using Independent Contact Regions

Figure 3.4: Workspace for one finger of the DLR-HIT hand II.

the worskpaces and the object. This collision detection is performed by a checker

that queries the collision between a voxelized map and a point cloud that in this

case represents the object. The technique used is called VPS, or Voxmap-Pointshell

Method [30]. It does not just give information about whether a collision takes place

or not, but it also provides the point on the point cloud and the voxels that are

colliding. But not all the points that this method gives are useful to execute valid

grasps, since in many cases the fingers cannot apply force in the normal direction of

the object’s surface. Instead, every point is checked with its corresponding voxel to

check if the normal vector of the object’s surface and the vector associated to the

voxel form an angle smaller than 45 degrees 3.5. Once these points are found, the

ICR algorithm is applied as explained before.

For the integrated planner, an additional quality metric for the ICRs is required. As

the regions are represented as discrete sets of points, the more points in the region

the more possibilities of grasping the object are provided. The metric is then defined

as the number of different grasp possibilities, which is indirectly related to the area

that the regions cover on the object surface. Let n be the number of fingers with

contact regions on the object surface, and mi be the number of discrete points in

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 27

f

n

Figure 3.5: Finger workspace collision detection. n is a normal vector on the object’s

surface and f the vector representing the ideal direction where the finger tip can

actually apply force. The angle between f and −n is checked for reachability.

Figure 3.6: Visual representation of the complete ICR computation process.

Joan Fontanals Mart́ınez

28 Integrated Grasp and Motion Planning using Independent Contact Regions

each region ICRi; the quality metric for the contact regions for a particular hand

pose is given by

QICR =

n∏
i=1

mi (3.1)

This quality will serve as weight factor that the planner will use to decide which

grasp is better to perform. The highest value QICR reaches, the more robust the

grasp can be against uncertainties in finger and object positioning errors.

3.3 Capability Map

In general, an offline analysis of the reachability of a robotic arm saves time for online

queries like grasp selection or path planning. The representation of the regions where

the robot tool frame (TCP) can be moved to is known as a reachability map [24].

The reachability data is defined by indices quantifying how “good” a region of the

space is. Arms with different kinematical structures provide different capabilities.

Either if the mobile robot is located in a suitable position or if the robot arm has

a fixed base, an offline analysis of the robot’s workspace is helpful to speed up the

online solution of planning tasks.

The reachability map is in general computed as a spatial grid in the 6D space

(position and orientation), where each cell has a binary value that indicates if it is

reachable or not, together with an associated quality index measuring the dexterity

of the robot when the TCP is at that position. A high dexterity is considered in

the sense that the number of different orientations that the end effector can reach

while staying at the same position is high. The information of the reachability map

requires an accurate description of the workspace, usually described with a voxelized

structure. The reachability or capability maps can be used for online computation

and selection of reachable grasps for performing manipulation tasks. Given a grasp

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 29

pose, the position of the TCP is checked against the capability map to verify if it is

reachable or not.

The offline computation of the map can be done by forward or inverse kinematics.

With forward kinematics (FK), the different arm configurations are randomly sam-

pled in joint space, the TCP is computed and then assigned to one bin in the map,

which changes value from 0 to 1. This method, however, has the problems associated

to redundant manipulators like the presence of singularities. Due to the singularities,

a uniform sampling of the possible joint configurations does not guarantee a uniform

description of the robot’s workspace. Samples tend to accumulate in small regions

of the space close to these singularities, thus not guaranteeing the completeness of

the map. With inverse kinematics (IK), the 6D space is uniformly sampled, and for

each sample an IK solver runs to try to find a solution that leads to that configura-

tion. This method guarantees a complete exploration of the workspace, but the use

of an IK solver makes the generation of a new sample much slower. Therefore, the

capability map used in this project is computed offline using an hybrid approach

that combines forward and inverse kinematics, to obtain an accurate and structured

description of the robot capabilities [6].

The reachability map is then represented using a voxelized structure in SE(3), which

can be interpreted as the voxelized reachable workspace in R3 where each cartesian

voxel has an associated rotational grid that discretizes SO(3). The 3-dimensional

Euclidean space R3 is divided into cubes Cx,y,z of a user-defined side length. This

allows the mapping of the TCP’s translational component to a cubical volume,

tTCP → Cx,y,z with x, y, z ∈ N.

Each cartesian voxel holds a rotational occupancy grid to map the orientation of the

end effector RTCP . To obtain this grid, a virtual sphere is associated to each voxel;

the spherical surface represents the discretization of the approach direction (pitch,

yaw of the TCP), i.e. it is a division of SO(2). Each surface division of the virtual

sphere has an attached discretization of the missing parameter (roll) that completes

the SO(3) division. Such organized division allows creating a precomputed table of

Joan Fontanals Mart́ınez

30 Integrated Grasp and Motion Planning using Independent Contact Regions

Figure 3.7: Capability map for one arm of SpaceJustin. Colors indicate the reach-

ability index for each voxel, i.e. the percentage of discrete poses within that voxel

that are reachable for the arm.

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 31

positions, which makes it fast to determine the bin that corresponds to a particular

RTCP . With this structure, each RTCP is uniquely mapped to one of the bins.

When a SE(3) configuration is queried with the capability map, the translational

part is associated to the closest discrete one found into the map, and its orientation

reachability is validated by the closest division in the rotational grid. Thus, the

performance obtained by its use is highly dependent on the division size of the

workspace. The resolution is chosen by trying to find an equilibrium between the

precision and the memory size required to store the map for future queries.

Joan Fontanals Mart́ınez

32 Integrated Grasp and Motion Planning using Independent Contact Regions

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 33

Chapter 4

Integrated method

4.1 Grasp Planning

To tackle the problem of the integrated planning, two approaches have been devel-

oped in order to find valid grasps and successfully integrate them with the motion

planning algorithm. The first one proposes the definition of a region around the

object with the use of superellipsoids, where a principal component analysis algo-

rithm is applied to try to guide and speed up the sampling of valid positions around

the object in the search for feasible grasps. The second one proposes the use of

the capability map to filter the area around the object which is potentially valid to

perform valid grasps.The two methods are described in the next sections and are

both used in the fully integrated method.

4.1.1 Using PCA

During the execution of the integrated planning algorithm, one requirement is to

find configurations of the hand that will likely lead to a valid grasp. To achieve this

purpose, a goal region around the object is defined using a superellipsoid. Samples

of potential hand positions are taken inside this space, and an adaptive sampling

method based on PCA is applied to bias the sampling towards promising areas. This

follows the idea proposed in [25], where the PCA guides the sampling process in path

Joan Fontanals Mart́ınez

34 Integrated Grasp and Motion Planning using Independent Contact Regions

planning problems with narrow passages by adapting the region in the configuration

space from where the next sample is taken.

Superellipsoids are a way to represent any 3-D surface obtained by the cross product

of two superellipses. A superellipse is defined as:

s(θ) =

a cosε θ

b sinε θ

 ;−π ≤ θ ≤ π (4.1)

And a superellipsoid is obtained by:

r(η, ω) = s1(η)
⊗

s2(ω) (4.2)

r(η, ω) =

a1 cosε1 η cosε2 ω

a2 cosε1 η sinε2 ω

a3 sinε1 η

 ;
−π/2 ≤ η ≤ π/2

−π ≤ ω ≤ π
(4.3)

Here, the parameters a1,a2,a3 are scaling factors along the three coordinate axis,

while ε1 and ε2 are shape parameters. The shape parameters ε1 and ε2 must be

selected such that the goal region represents the shape of the real object while

avoiding the concentration of samples in undesired places (Fig. 4.1).

The goal region is then defined by the set A

A =

(a1, a2, a3, η, ω)T

∣∣∣∣∣∣∣∣∣
aimin ≤ ai ≤ aimax

−π/2 ≤ η ≤ π/2

ωmin ≤ ω ≤ ωmax

 (4.4)

where aimin and aimax , i = {1, 2, 3}, define the region of interest along each coordi-

nate axis (for instance, to avoid points below or too close to the supporting surface).

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 35

Figure 4.1: Influence of the superellipsoid parameters on the distribution of samples

inside the goal region for a soda can in the top row (with ε1 = 0.1, ε2 = 1.0 to the

left and ε1 = 0.5, ε2 = 1.0 to the right), and for a shampoo bottle in the bottom

row (with ε1 = 0.1, ε2 = 0.1 to the left and ε1 = 0.5, ε2 = 0.5 to the right).

ωmin and ωmax choose the angular portion of the superellipsoid that faces the robot,

as shown in Fig. 4.1, which discards grasp poses that might look unnatural. In

this work, the parameters for A were manually set, although an automatic selection

process could also be implemented.

Each sample inside the 5-dimensional space A provides a Cartesian position of the

hand with respect to the object coordinate frame. The orientation of the hand with

respect to the object is defined in such a way that the object is always “visible” for

the palm, as suggested in [26] to generate more human-like paths. This still leaves

one DoF, the roll orientation for the hand around the approach axis, which is chosen

such that the palm is parallel to the main axis of inertia of the object [27]. Thus,

the complete hand pose with respect to the object T objecthand is obtained, which is later

used for the computation of the ICRs.

Joan Fontanals Mart́ınez

36 Integrated Grasp and Motion Planning using Independent Contact Regions

During the complete planning procedure that will be presented in section 4.2, differ-

ent samples for robot tool frame (TCP) locations are taken inside A. These samples

are checked to see whether they correspond to collision-free configurations of the ar-

m/hand, and if at least two fingers of the hand have reachable points on the object

surface. If they meet these conditions, they are used inside the Principal Component

Analysis algorithm.

Principal Component analysis (PCA) is a statistical technique used to process a set

of vectorial samples in order to look for a new orthogonal base of the vectorial space

whose axis indicate, in a decreasing order, the directions of the space with more

information to discriminate the samples. In the field of motion and path planning,

it is frequently used to reduce the dimension of the search space and therefore to

decrease the running time.

In this work, PCA is computed through the eigenvalue decomposition of a data

covariance matrix. The main idea is to iteratively get an hyper-rectangle H ⊆ A

from where to take samples. The expected behavior is that the probability to obtain

valid samples in H increases at every iteration.

To obtain H and implement the algorithm, the data matrix PCAmat is needed,

which contains all the samples considered valid for the purpose, in this case, collision-

free samples. It is important to notice that the number of rows in the data matrix

is continuously increasing as new valid samples appear. Once the data matrix is

obtained, H is defined with the following three components:

• Orientation matrix M5x5 formed by the eigenvectors of the covariance matrix

of the PCAmat.

• Translation vector mv taken from the mean of the data matrix.

• Extension vector e proportional to the eigenvalues of cov(PCAmat)

At the beginning, and until the PCA starts to work, H is defined as Hini with the

next components.

• Orientation matrix M5x5 = I5x5

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 37

• Translation vector mv = (0, 0, 0, 0, 0)

• Extension vector e is fixed off-line according to the size of the axis-aligned

bounding box of the object and the hand.

In the integrated motion planner, the PCA is applied to look for a good grasp pose

as follows:

1 A sample is taken inside H, thus obtaining a transformation between the hand

and the object.

2 If this transformation fulfills the following three requirements, the last sample

obtained is inserted in the data matrix:

a The transformation is reachable → IK solution exists.

b The configuration of the hand-arm system is collision-free.

c There are reachable points for at least two fingers on the object.

3 Recompute H for next iterations.

a Computation of the data covariance matrix cov(PCAmat).

b Eigenvalues decomposition of cov(PCAmat).

c Obtaining new orientation matrixM5x5, translation vectormv and extension

vector e.

With this approach, as the sampling process advances it is adapted to the partic-

ularities of the given environment, as well as to the possible particularities in the

shape of the object. It is important to notice that the PCA method in this case does

not try to apply any dimension reduction to the space, but just guides the sampling

process towards promising areas. A similar approach has been used in [25] to guide

the sampling process in narrow passages for motion planning.

In summary, the PCA based method changes the orientation, center and extension

of the sampling hyperbox while the planning method is running, which adapts the

sampling policy to the singularities of the environment. For example, if the object

Joan Fontanals Mart́ınez

38 Integrated Grasp and Motion Planning using Independent Contact Regions

Figure 4.2: PCA-based sampling applied to a space B defined by 3 parameters; mv

is the mean of the set of samples and H is the new sampling region.

that needs to be grasped is surrounded by obstacles, the algorithm will try to search

grasping poses in the areas where the hand can be placed without leading to colliding

configurations.

4.1.2 Using CapMap

As explained in section 3.3, the capability map provides a discretization of the

workspace of the robot together with information of its reachability and dexterity.

The capability map in this work has been used with two purposes: to provide a

previous filtering of the regions that will likely lead to good grasps, and to query

the tested grasps for reachability, thus saving time in inverse kinematics solutions.

For using the capability map, the goal region - where samples for potential hand

poses are taken - is defined as a partial hollow box that surrounds the object. The

outer dimension of the box is defined by the size of the hand, and the inner dimension

corresponds to the length of the fingers minus the length of the object along that

dimension. The goal region represented by such box is intersected with the capability

map to provide the regions of the box that are reachable by the robotic arm. Note

that this filtering is performed only once at the beginning of the complete planning

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 39

Figure 4.3: Points resulting from the filtering phase of the capability map. The

points define hand positions reachable by the arm.

process, as it only needs the data of the capability map and the position of the object

inside the robot workspace. The result of this filtering process is a list of positions

that are potentially valid to obtain good grasps. Fig. 4.3 shows the result of this

filtering step for a soda can; all the represented points are possible hand positions

that are inside the goal region and are also reachable by the arm.

During the planning process, samples are taken inside this reachable region from

the list of feasible positions. These samples provide the Cartesian position of the

hand with respect to the object. All the points obtained from the capability map in

the filtering phase have reachability in at least one direction, but it does not mean

that the robot can reach one of those points while pointing towards the object in

the desired way. Therefore, the computed transformation T objecthand will be checked for

reachability using the capability map, before computing the more expensive inverse

kinematics.

Usage of the capability map provides two main advantages. First, it defines from

the beginning a portion of the goal region reachable by the arm, thus discarding

unfeasible areas where otherwise samples would have to be tossed out by calling an

IK solver if the reachability information were not verified in advance. Second, it can

Joan Fontanals Mart́ınez

40 Integrated Grasp and Motion Planning using Independent Contact Regions

Figure 4.4: Different T objecthand for grasping. Left: self-collision between two fingers.

Right: good grasp pose.

easily incorporate additional restrictions, for instance, guaranteeing that the robot

is always facing the object during the grasp process, which leads to more intuitive

solutions of the planning problem.

4.1.3 Complete transformation T object
hand

In the two grasp planning methods described before, the capability map or the PCA

provide just (x, y, z) positions. To fix the orientation of the hand that should be

used to perform the grasp there are still 3 degrees of freedom that need to be fixed.

Two of them are fixed by defining an approach vector on the palm that points

towards the center of the object [26]. With this transformation there is still one last

degree of freedom that should be set, which corresponds to the rotation around the

defined approach vector on the palm. This rotation does not correspond with a pure

wrist rotation, since this approach vector is defined to have around 30 degrees angle

with respect to the wrist rotation vector. The random sampling of this angle leads

to a non-efficient way of looking for grasps, as in this case most of the grasps are

unnatural and the computation of the ICR leads too often to self collision between

the fingers (Figure 4.4).

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 41

The empirical solution adopted in this work is to find the rotation angle that places

the x-axis of the palm lying on the plane of the object that needs to be grasped,

while maintaining the approach vector pointing towards the object. The process to

find this last transformation is illustrated in figure 4.5, and follows these steps

1 Find the intersection between a 60 degrees opening cone and the x − y plane.

This intersection defines xnew. This vector is the goal vector that xhand has

to turn to. The value of 60 degrees is taken because of the DLR-HIT hand II

configuration. The 60 degrees orientation allows the palm to face the objects

without risk of collision with the thumb.

2 In a plane perpendicular to the approach direction xp, find the points that define

its intersection with xp, the axis xhand, and the goal vector xnew corresponding

to the intersection.

3 In this plane find the value of the angle that has to be rotated.

4 Get the corresponding transformation and compose it to get the final T objecthand .

4.2 Integrated planning algorithm

This section presents the algorithm that integrates the grasp planning methods,

explained in Section 4.1, with an RRT path planning approach for defining the

complete grasping motion of the arm/hand system.

Given an initial pose of the object to be grasped and an initial configuration for the

arm/hand system, the goal is to find a path leading to the best possible grasp, mea-

sured according to the ICR quality described in Eq. (3.1). The object is described

as a pointshell, to facilitate the computation of the ICRs. Algorithm 1 formalizes

the approach; particular details of the planner are presented in Algorithms 2 and 3.

The planner has two different parts that will be explained in detail below. The

first one (Lines 3 to 17) looks for a valid grasp on the object, which defines a goal

configuration, while at the same time grows an RRT from the initial arm/hand pose.

Joan Fontanals Mart́ınez

42 Integrated Grasp and Motion Planning using Independent Contact Regions

Figure 4.5: Finding the rotation around the approach vector xp.

The second part (Lines 18 to 31) uses a bidirectional RRT to try and connect the

initial configuration to the most promising grasp on the object, while still looking

for higher quality grasps. The path generated by the algorithm is later smoothed

using pruning techniques. Tables 4.1 and 4.2 have a list of all the data types and

the methods used in the algorithms.

4.2.1 Before goal configuration

In the initial part no goal has been defined, so the execution time is split between

the search of valid grasps, following one of the methods from Section 4.1, and the

random growing of a forward tree startTree from the initial robot configuration.

In Algorithm 1 (and in the experiments), the ratio between the two tasks has been

empirically set to 80% and 20%, respectively. The initial exploration of the arm/-

hand configuration space is useful for the second part of the planner, where a tree

growing backwards from the goal has to connect to startTree.

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 43

Algorithm 1 Integrated grasp and motion planner.
1: procedure Planner . Planner main loop

2: startTree← cinit

3: filterCapabilityMap() . If Cap. map is used for Alg. 2

4: while numgoaltrees = 0 do . PART 1: No goal yet

5: p← randomUniform(0, 1)

6: if p < 0.2 then

7: csmp ← cspaceUniformSampling()

8: extendTree(startTree)

9: else

10: cgoal ← findGoal() . Algorithm 2

11: if cgoal 6= NULL then . goal found

12: new tree

13: tree← cgoal

14: listGoalTrees← updateGoalTrees(tree)

15: end if

16: end if

17: end while

18: p← randomUniform(0, 1) . PART 2: Goal found

19: if p < 0.8 then

20: indTree← whichTreetoConnect()

21: if connectTrees(startTree, listGoalTrees[indTree]) then

22: return pathToGrasp

23: end if

24: else

25: cgoal ← findGoal()

26: if cgoal 6= NULL then . new goal found

27: new tree

28: tree← cgoal

29: listGoalTrees← updateGoalTrees(tree)

30: end if

31: end if

32: end procedure

Joan Fontanals Mart́ınez

44 Integrated Grasp and Motion Planning using Independent Contact Regions

Let c denote a configuration in the C-space of the arm/hand system; cinit is the

initial configuration, csmp corresponds to a configuration obtained via forward kine-

matics (FK), and cgoal is a goal configuration. A goal hand pose is obtained via

Algorithm 2 with one of the sampling approaches: PCA-based computation (Sec-

tion 4.1.1) or capability-based computation (Section 4.1.2). After this, an IK solver

is called to verify that the grasp pose is reachable and obtain the corresponding arm

configuration.

Next, the validity of the hand pose must be evaluated to verify if there exist reachable

ICRs. Reachable ICRs provide contact regions on the object surface, but do not

guarantee that the hand configuration (finger positions) leading to them is free of

self-collisions between the fingers. The transformation defined in Section 4.1.3 helps

for this purpose because the fact of having the orientation of the hand with the

palm parallel to the main axis of the object gives to each finger a greater space

to be placed on without self-collision. Therefore, after the ICRs are computed a

hand configuration for grasping the object must be found; this is iteratively done by

exploring the potential FC grasps that the regions provide.

Algorithm 2 Find goal configurations.

1: procedure findGoal()

2: (x, y, z)← sampleHandPosition()

3: T object
hand ← computeTransformation(x, y, z)

4: cgoal ← IK(T object
hand)

5: if cgoal then

6: if validGoal(T object
hand) then . Algorithm 3

7: return cgoal

8: else

9: return NULL

10: end if

11: else

12: return NULL

13: end if

14: end procedure

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 45

Name Structure Description

smp (SE(3) ∪ Rn) Sample in the Configuration

Space

motion smp Sample and parents

parent motion

Tree Nearest Neighbours structure of

motions

goalTrees array< Tree > Vector of trees grown from valid

goal configurations

ICRquality N Contains the value of the quality

metric for every smp

minICRquality N Minimum value of ICRquality

required for a smp to be consid-

ered a valid goal configuration

qualitymap map< Tree, ICRquality > Maps every Tree ∈ goalTrees

with its associated ICRquality

probabilities array< R > probabilities[i] is the probability

that Tree in goalTree[i] will try

to connect with startTree

regions 2-D array< N >> regions[i] contains all the in-

dex to the independent contact

points of the ith finger

Table 4.1: Data types.

Joan Fontanals Mart́ınez

46 Integrated Grasp and Motion Planning using Independent Contact Regions

Method Return Description

randomUniform(a,b) R Samples uniformly a real num-

ber in the range [a,b]. Set to

[0,1] in the experiments

cspaceUniformSampling() smp Samples uniformly in the C-

space

checkCollision(smp) bool Returns true if smp is not

collision-free

extendTree(Tree,smp) Tree Extend the Tree towards smp

as used in the RRT algorithm

findValidGoal() smp Find a valid goal configuration

sampleGoalSpace(smp) bool Adaptive sampling in the goal

space around the object

validGoal(smp) bool Given a smp computes the

Independent Contact Regions

reachable from that sample

numgoalTrees() N Number of backward trees al-

ready created

whichtreetogrow() N Selects a backward tree

updateTrees() Updates goalTrees ,

qualitymap and probabilities

structures

icr(T) regions Holds the computation of the

Independent Contact Regions

filtercapabilitymap() 3-D array< R > Filters the points in the capa-

bility map

reachable(T) bool Consults the capability map

for reachability

Table 4.2: Methods.

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 47

Algorithm 3 Verification of goal validity.

1: procedure validGoal(T object
hand)

2: regions← ICR(T object
hand)

3: if regions.size() ≥ 2 then

4: ICRquality ← computeICRqual() . Eq.(1)

5: if ICRquality ≥ minICRquality then

6: findCollfreeHandConfig(T object
hand , regions)

7: return true

8: else

9: return false

10: end if

11: else

12: return false

13: end if

14: end procedure

4.2.2 Goal configuration found

When the first valid grasp configuration is found, the second part of the algorithm

starts. During this phase, the algorithm tries to connect startTree with one of

the valid grasp configurations. For a valid goal (grasp) configuration, a new tree

goalTree starts to grow backwards. At this point, most of the efforts will be focused

on connecting startTree with goalTree. However, the search for new valid grasp

configurations still continues, although with a lower priority. This continuous search

of new configurations looks for better quality grasps or for goals that can be easier

to connect to startTree.

The connection process is biased towards the grasps with higher QICR. With n

goal configurations found, each goalTree[i] has an associated quality QICRi , and its

probability to be connected is given by

probabilitiesi =
QICRi∑n
j=1QICRj

(4.5)

The planning procedure comes to an end when the connection between the forward

and one of the backwards growing trees is successful, and returns a path in the

C-space that allows the robot to grasp the object.

Joan Fontanals Mart́ınez

48 Integrated Grasp and Motion Planning using Independent Contact Regions

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 49

Chapter 5

Implementation

During the project, different software packages and libraries have been used to help

in the development of the integrated planning method. This chapter introduces the

most important ones in order to give a better understanding of the development

process of the thesis. It is important to notice that the capability map and the Inde-

pendent Contact Regions were already available libraries at the DLR, although some

improvements were required during the thesis and implemented inside its context.

5.1 Open Motion Planning Library

The open motion planning library (OMPL) is a library for sampling-based mo-

tion planning that contains implementations of many state-of-the-art planning al-

gorithms [3]. The library allows the user to easily solve a variety of complex motion

planning problems with minimal input. OMPL itself does not contain any other

capability other than the pure planning and sampling algorithms, i.e., it does not

contain any collision checking or visualization. Thus, OMPL is not tied to any fixed

collision checker or visualization front end, giving the user the freedom to interface

it with other software components. As a result, the user must select a computa-

tional representation for the robot and provide an explicit state validity/collision

detection method. OMPL is entirely implemented in C++, and although it includes

Python bindings they are not used in the context of this project. It is one of the

Joan Fontanals Mart́ınez

50 Integrated Grasp and Motion Planning using Independent Contact Regions

most important tools used in this work, since the core algorithm proposed has been

developed as a class inherited from OMPL.

OMPL contains implementations of many sampling-based algorithms such as PRM,

RRT, EST, SBL, KPIECE, SyCLOP, and several variants of these planners. The

majority of the sampling-based motion planners require similar components to solve

a planning problem: a sampler to compute valid configurations, a collision checker

to quickly evaluate a specific robot configuration, and a local planner to connect

two samples along a collision free path. OMPL provides most of these components,

although some of them must be allocated or reimplemented by the user. The most

important OMPL components are listed below.

One of the key classes is the StateSpace, which provides implementations for several

common configuration spaces with different topologies, including Rn for Euclidean

spaces and SO(2) and SO(3) for the space of rotations in 2D and 3D, respectively. In

many cases the robot space can be defined by a combination of these basic spaces.

Therefore, OMPL allows the definition of these kind of spaces through the Com-

poundStateSpace class, which allows state spaces to be formed from a combination

of their subcomponents.

The StateSampler class implemented in OMPL provides methods for uniform and

Gaussian sampling of the space.

The StateValidityChecker is used to evaluate if a single state collides with an en-

vironment obstacle and respects the constraints. A default checker is not provided

by OMPL, as explained above. The user must provide a callback to this validity

checker.

The MotionValidator class has the function of the local planner and checks to see

if the whole motion of the robot between two states is valid. The standard imple-

mentation uses the interpolated movements between two states (computed by the

StateSpace) to determine if a particular motion is valid. This is an approximate

computation, as only a finite number of states along the motion are checked for

validity (using the StateValidityChecker).

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 51

The Planner class is a base abstract class providing basic usage for planning, but

most of its methods, like the method solve that actually solves the query, must be

reimplemented by the different inherited planners to provide the full functionality.

The planner described in Chapter 4 is defined as a reimplementation of the BiRRT

planner included in the RRTConnect. One of the problems found in the reimplemen-

tation was the need to describe a planner that does not take any goal configuration

as an input, which was not previously considered in OMPL.

Finally, SimpleSetup provides a way to encapsulate the various objects necessary to

solve a geometric or control query in OMPL. When using SimpleSetup, the user only

supplies all the needed objects for the planning solution.

Through the corresponding interfaces with The Kautham Project [1](version septem-

ber 2013) and OpenRAVE [28], OMPL has been used in the thesis as the application

containing the core code implementing the Integrated Grasp and Motion Planning.

5.2 The Kautham Project

The Kautham Project is a simulation tool developed at the Institute of Industrial

and Control Engineering (IOC), Universitat Politècnica de Catalunya (UPC). The

Kautham Project provides a tool for the development of robot motion planners and

for telemanipulation using haptic devices.

The Kautham Project has been developed as a teaching and research tool in the

field of robotics and motion planning. This framework provides to the user the

complete functionality needed in the sample-based path planning process, such as

the implementation of basic standard planners, the most used sampling policies, a

visualization interface, and collision detector. The code has a modular structure that

helps the user to add new functionalities without great effort. It has 4 main modules,

which are called LIBPROBLEM, LIBGUI, LIBSAMPLING and LIBPLANNER.

LIBPROBLEM contains all the functionality related with the workspace and with

the robot. It contains classes as the workspace, robot, link, etc. This library uses

Joan Fontanals Mart́ınez

52 Integrated Grasp and Motion Planning using Independent Contact Regions

Figure 5.1: OMPL API Overview taken from OMPL website [3].

the PQP libraries for the collision queries. One of its most important characteristics

is that it creates the environment and defines the planning problem to be solved by

reading XML files using an XML parser library called PUGIXML. The XML file

contains the definition of the robots, the position of every object in the environment

and their mesh models. It also defines the main attributes needed for the planner

query, such as the number of DOFs used by the planner, the start configuration,

and some other parameters of the motion planners like the maximum length of a

motion.

LIBGUI is developed using the Qt libraries and defines and provides the user in-

terface. The standard user interface provided offers all the possibilities needed by

any sampling-based planner. For example, it allows the user to define which config-

urations are the start and the goal of the query, but in the case of the algorithms

implemented in this thesis, there were some other needs since no goal configuration

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 53

is preset. Therefore, a new GUI class was inherited from the existing one and it was

slightly changed to be able to apply it to the selection of the object to be grasped

(instead of selecting a goal sample).

LIBSAMPLING holds classes like Sampler, Sample and SampleSet. Sampler man-

ages the filling of the sample sets and holds information about the connectivity

between the samples. The Sample class is one of the main features of Kautham. In

the case of Kautham the samples are initially taken in what is called the Control

Space. The samples in the Control Space have a value between 0 and 1, which are

the high and low limits of the index. The dimensionality of the Control Space is not

necessarily the same as the C-Space dimensionality because Kautham is prepared to

work with reduced dimensionality computed by the Principal Component Analysis.

This allows to have different coupling between joints, which reduces the dimension of

the problem, and can also be used to mimic human-like movements like the possible

couplings present in an anthropomorphic hand.

LIBPLANNER contains the Planner base class, which is the parent class of all the

other planners defined and used in Kautham. Planner owns objects of the Sampler

class, SampleSet class and many others. Planner owns the method which actually

solves the query. The planning algorithms used here were always the ones included

by the developers. Recently, Kautham has integrated OMPL as a module, which

allows the user to profit from the complete range of algorithms available in that

library. This was achieved by building an interface wrapping the Kautham class

definitions to make them usable by the OMPL planners.

5.3 Implementation of the Integrated Planner in The

Kautham Project

As previously explained in 5.1, OMPL core does not provide any visual interface or

collision checker, thus in this case they are provided by Kautham. In this integration

process special attention was put in the conversion of the Samples in the Kautham

control space to the States in the State Space used by OMPL. The interface to the

Joan Fontanals Mart́ınez

54 Integrated Grasp and Motion Planning using Independent Contact Regions

Figure 5.2: Different GUI implemented in Kautham.

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 55

planner is made through inherited planner classes called ompl〈plannertype〉, which

own the actual OMPL planner. When these planners are called for solving a query,

they internally call the OMPL planner solve method.

At the beginning the two described methods were implemented on Kautham using

this OMPL interface. The general planner was written and derived from the OMPL

module interfaced with Kautham in its LIBPLANNER module. Selecting which of

the planners must be loaded through the XML files, different sampling strategies

are called for grasp searching, allocating different kind of sampling subclasses from

OMPL ValidStateSampler. The kinematics of the robot and the workspace defini-

tions are the ones from Kautham. The process is similar as the one done for the

implementation in OpenRAVE, and since that implementation is the definitive one

that stays at DLR for future work, the process is explained in more detail later in

sections 5.4 and 5.5.

5.4 OpenRAVE

OpenRAVE stands for Open Robotics Automation Virtual Environment. Open-

RAVE provides also a framework for testing and developing motion planning al-

gorithms in real-world robotics applications. Its main focus is the simulation and

analysis of kinematic and geometric information related to motion planning. Open-

RAVE was first developed by Rosen Diankov as his Ph.D. thesis in 2010 [28],and

since then it has grown up to become one of the most used software packages by the

robotics community. The proposed integrated planning method was also integrated

to OpenRAVE in order to allow the future use of the module for future research

purposes inside the DLR.

The framework was designed to have a plugin-based structure, allowing users and

developers to extend and change the different plugins’ functionality without the

need of recompilation of the whole core library. The main core provides the Basic

Interface Classes, which provide the basic classes for all the possible functionalities,

but these are mainly abstract classes that must be completed by plugins. This core

Joan Fontanals Mart́ınez

56 Integrated Grasp and Motion Planning using Independent Contact Regions

Figure 5.3: OpenRAVE architecture. (Taken from the website

http://www.openrave.org/).

is written in C++ using the Boost C++ libraries, and its main purpose is holding

the definition and functionality of the workspace, the environment and the robots,

i.e., kinematics or geometrical information. On the other side, the plugins offer

implementation of basic interfaces, and are loaded at run-time into the environment.

To extend the capacities, plugins are linked to external libraries to have access to

externally implemented classes and functions. OpenRAVE provides a main class

called EnviromentBase, which gives access to all the available services. It supports

the loading of robots and scenes, the communication and managing of plugins, the

collision checking, etc. Another characteristic of OpenRAVE is the presence of a

Python scripting layer, which gives access to the C++ functionality of the framework

through a Python API. This eases the work with OpenRAVE and the definition of

different planning problems.

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 57

5.5 Implementation of the Integrated Planner in Open-

RAVE

As explained above, the method has been integrated in Kautham and in OpenRAVE,

but as the second one is the one that stays at DLR to be used in the future, the

explanation of the integration is based on this version.

The integrated planner was added to OpenRAVE using the or ompl package. This

plugin was developed by the Robotics Lab in the Robotics Institute at Carnegie

Mellon University. It provides the interface to use OMPL inside the OpenRAVE

plugin, thus giving the option to delegate planning requests to an OMPL planner.

The method is developed and coupled with or ompl as a shared library to be used

as an OpenRAVE plugin. The code of or ompl was slightly modified to be able to

work with planners as the one developed in this thesis, that does not take any goal

configuration as an input.

The planner core is a planner class inherited from the OMPL RRTConnect class.

This class is called GraspMotionPlanner and allocates instances to other main classes

such as HandArmStateSampler or SamplerCapability. They are in charge of sam-

pling hand-arm configurations inside the configuration space and of the sampling

of potentially grasping positions in the workspace using the capability map, respec-

tively. These classes inherit also from the classes of the ompl library StateSampler

and ValidStateSampler. HandArmStateSampler was created with the only purpose

of sampling the configuration space, taking into account that it is useless to sample

during the complete process different finger configuration, thus increasing the per-

formance of the probabilistic sampling method. Therefore, HandArmStateSampler

only samples the arm space by keeping the finger joints at the starting value. On the

other hand, Samplercapability is one of the most important parts of the approach.

It owns instances of the capability map and has access to its arm workspace dis-

cretization and its querying methods. It also has an instance of the class interfacing

to the library containing the ICR method, called IndependentContactRegions, which

is totally independent from OMPL or OpenRAVE.

Joan Fontanals Mart́ınez

58 Integrated Grasp and Motion Planning using Independent Contact Regions

Another important class of the implementation is the IvKinSpaceJustin class, which

is an abstract class to be used as a base for the right and left arms inverse kinematics

solvers of Space Justin. These classes use an optimization-based solver for the inverse

kinematic problem, and it was developed inside the Robotics Institute at DLR [29].

The planner is accessible through the Python script used for OpenRAVE. The only

difference is that the user has to define OMPL as the planner to be used, and in the

parameters it must be exactly specified which planner method is employed. For this

planner there are also some extra parameters that can be defined by the user. Some

of them are the limit of time given to the planner to find a solution, which thumb

configuration has the hand mounted on the Space Justin arm, which arm is used for

the planning task, or which object in the scene definition is the one to be grasped.

A typical example of a script calling the planner is as follows:

from openravepy import * # import all the functions from OpenRAVE Python API

env = Environment() # Create the environment

env.SetViewer(’qtcoin’) # Set the viewer

env.Load(’path to scene’)# Load the scene

robot = env.GetRobots()[0] # Choose the first robot in the scene

planner = RaveCreatePlanner(env, ’OMPL’) # Create an OMPLPlanner

params = Planner.PlannerParameters() # Create parameters

params.SetExtraParameters(

””” <planner type>GraspMotionPlanner< /planner type>

<time limit>15.0< /time limit><object goal>1< /object goal>

<manip>1< /manip><hand>dlr hit< /hand><handeness>right< /handeness>

”””)# Set the extra parameters

planner.InitPlan(robot, params) # Initialize the planner

traj = RaveCreateTrajectory(env,””) # Create empty trajectory

result= planner.PlanPath(traj) # Plan and fill the trajectory

robot.GetController().SetPath(traj) # Run the trajectory

robot.WaitForController(0)

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 59

Figure 5.4: Library diagram.

As a summary, the method has been developed as a library for OpenRAVE. The

user needs to define the scenario and the robots, these scenarios can be precomputed

or acquired through appropriate sensors. The user must also decide which of the

objects is the one to be grasped, and with which arm. Optionally the user can define

an initial configuration. If this initial configuration is not previously set, the planner

takes the actual configuration of the robot in the scene as the starting one.

The documentation of the library is presented together with this descriptive docu-

ment. It also shows the general inheritance structure explained in this section.

Joan Fontanals Mart́ınez

60 Integrated Grasp and Motion Planning using Independent Contact Regions

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 61

Chapter 6

Results and discussion

The proposed approach has been implemented as a specialized RRT planner inside

the path planning frameworks OpenRAVE [28] and TheKauthamProject [1]. The

RRT planner is based on the implementation of RRT-Connect from the Open Motion

Planning Library (OMPL) [3]. The computation of the reachable ICRs follows the

algorithm proposed in [2], which uses a modified Voxmap-Pointshell (VPS) algorithm

for an efficient detection of hand-object collisions [30].

The application examples are solved for SpaceJustin, the upper body of a humanoid

robot described in Section 3.1. To evaluate the performance of the integrated plan-

ner, two different environments have been tested, one tabletop and one cupboard

scenario, grasping different objects with and without obstacles in the way (Fig. 6.1).

Objects different than the target are considered as obstacles.

The same test scenarios were replicated inside the planning framework Simox [31],

which includes the planning approach described in [20], hereafter referred to as

Grasp-RRT (following the name given by their authors). Thus, a fair comparison of

the approaches can be obtained, using the same platform and same geometric models

for collision detection. The approaches proposed in this thesis will be referred to

as PCA-RRT and CAP-RRT, depending on whether the planner searches for grasp

poses using the PCA technique or the capability map, respectively.

The comparison is performed for two examples grasping two objects, a soda can and

Joan Fontanals Mart́ınez

62 Integrated Grasp and Motion Planning using Independent Contact Regions

Figure 6.1: Tabletop and cupboard scenarios, with and without obstacles, for testing

the planning approaches.

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 63

Figure 6.2: Grasp-RRT in Simox (this scenario was not used in the comparison).

Table 6.1: Time to grasp the soda can (s).

Scenario Grasp-RRT PCA-RRT CAP-RRT

Tabletop
N.O 15.32 ± 18.33 13.20 ± 9.68 5.58 ± 3.30

W.O 18.86 ± 20.87 28.43 ± 17.57 12.66 ± 8.93

Cupboard
N.O 30.23 ± 25.96 15.18 ± 11.08 8.95 ± 7.49

W.O 38.88 ± 34.83 26.34 ± 16.14 23.79 ± 20.00

a shampoo bottle. Tables 6.1 to 6.4 summarize the computational times and success

rate for the planning approaches inside Simox. N.O. and W.O. stand for scenarios

with no obstacles or with obstacles, respectively. 50 runs have been executed for

every test, allowing them to run for a maximum time of 100 seconds.

The results show that the integration of motion and grasp planning procedures

successfully leads to finding a feasible grasp configuration with its corresponding

path for the arm/hand motion, as demonstrated also in the video attachment. Note

that the Grasp-RRT is a method that works exclusively based on FK computations,

while the two methods proposed in this document - based on ICRs computation -

need some IK calls: to guarantee that the potential grasps are in fact feasible for the

arm (PCA-RRT), or to obtain an arm configuration that leads to a given reachable

Joan Fontanals Mart́ınez

64 Integrated Grasp and Motion Planning using Independent Contact Regions

Table 6.2: Success rate for grasping the soda can (%).

Scenario Grasp-RRT PCA-RRT CAP-RRT

Tabletop
N.O 100 % 100 % 100 %

W.O 100 % 100 % 100 %

Cupboard
N.O 98 % 98 % 100 %

W.O 86 % 96 % 98 %

Table 6.3: Time to grasp the shampoo bottle (s).

Scenario Grasp-RRT PCA-RRT CAP-RRT

Tabletop
N.O 32.99 ± 28.78 11.59 ± 8.09 6.37 ± 3.23

W.O 36.3± 33.29 24.88 ± 20.80 10.93 ± 6.06

Cupboard
N.O 36.3 ± 33.29 23.59 ± 22.20 5.59 ± 2.83

W.O 37.95 ± 31.08 34.3 ± 19.63 11.09 ± 6.10

Table 6.4: Success rate for grasping the shampoo bottle (%).

Scenario Grasp-RRT PCA-RRT CAP-RRT

Tabletop
N.O 94 % 100 % 100 %

W.O 86 % 94 % 100 %

Cupboard
N.O 86 % 98 % 100 %

W.O 90 % 96 % 100 %

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 65

Table 6.5: Time distribution for the CAP-RRT planning approach.

Total Collision Reachability ICR Rest

12.15 s 10.00 s 0.54 s 0.16 s 1.46 s

100 % 82.3 % 4.4% 1.32 % 12.02 %

hand pose (CAP-RRT).

Despite working with different philosophies, the Grasp-RRT and the PCA-RRT

approaches have a comparable performance in several cases, although the PCA-

RRT seems to have less variability in the computational times and behaves better in

most of the tested scenarios. However, the best approach turns out to be the CAP-

RRT, i.e. the planner that uses information from the capability map to restrict the

directions that the robot should use to try and grasp the object. It is faster that the

Grasp-RRT (1.5 to 6.5 times, depending on the scenario) and has less variability in

the time required to get a solution.

To gain some insight into the time distribution of the planning approach, the aver-

aged times for another 50 runs of CAP-RRT in the tabletop scenario with obstacles

are presented in Table 6.5. The times are analyzed for three critical parts: collision

detection, computation of reachable points for the hand, computation of reachable

ICRs, and for the remaining parts (RRT generation and connectivity). The results

show that most of the time spent in the complete procedure goes into collision de-

tection, which is performed using the original meshes of the robot model. However,

using simplified models can reduce the weight of the collision detection in the total

planning time.

To evaluate the improvement obtained by using simpler collision models, the exam-

ple of grasping the soda-can on the cupboard was run 50 times with two different

collision models, the original mesh and a simplified version. These experiments

where performed in the OpenRAVE implementation, due to the limitations of the

Kautham implementation used (september 2013) to arbitrarily set which meshes

are selected to check for collision. The different meshes were built by reducing the

number of the triangles using Blender [32], an open-source graphical modeling soft-

Joan Fontanals Mart́ınez

66 Integrated Grasp and Motion Planning using Independent Contact Regions

Figure 6.3: Collision models for SpaceJustin: simple model (up) and full model

(down).

ware. An optimal simplification would use the approximation of every link by a

convenient geometrical primitive. The results confirm that collision detection time

is a key factor in the performance of the planning algorithm.

Another potential gain in time can be achieved by improving the method for selecting

the final finger poses for grasping the object given the ICRs, so that configurations

with self-collisions between the fingers can be efficiently avoided.

The approach which turned to have the best performance, the so called CAP-RRT,

has been tested on the real robot to prove the physical validity of the method. For

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 67

Table 6.6: Collision detection: Time comparation (s).

Scenario Simple Model Full Model

Cupboard 5.37 ± 2.89 6.73 ± 3.13

Figure 6.4: Diagram of implementation for the real experiment.

this real test two different objects where placed on a table in the DLR telemanip-

ulation laboratory. A simple OpenRAVE environment was built having the models

of the objects and a similar model to the table (in this case no big obstacles were

used). The implementation runs as specified in Figure 6.4. A visual module ob-

tains the position and orientation with respect to the robot base of a predefined

object, which is fed into the planner software module that starts the computation

of the path. Once the path is obtained, the corresponding path steps are sent to

the controllers of the robot as joint angles inputs. A last step to close the fingers

applying pressure and properly grasp the object was performed. For this step, the

position and orientation of the fingers on the surface of the object where obtained.

With this information, the fingers are switched to be controlled by a Cartesian po-

sition controller, and the fingers were commanded to push in the negative normal

direction of the object normal at that contact point until the torque sensor of the

fingers reaches a predefined threshold value. After the complete path is executed,

the robot is commanded to a rest pose by a joint interpolation method to prove that

the object is actually properly grasped and does not fall from the robot hand.

Joan Fontanals Mart́ınez

68 Integrated Grasp and Motion Planning using Independent Contact Regions

Figure 6.5: Snapshots of the real experiment with SpaceJustin.

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 69

Chapter 7

Environmental Analysis

Every project requires an analysis of is its environmental impact. The impact may

be done during the developing process or by the time of the use and execution of

the work done.

7.1 Environmental Impact

Given the nature of this project, mainly a software tool to be applied on robotics

systems, the impact on the environment is almost zero and could be just defined with

the considerations of the power spent by the computers during the development. No

special wastes or emissions are generated at any point of the process.

7.2 Socio economic Impact

The impact of the project has to be also analyzed from a social and economical point

of view. In this case, the work is done inside a robotics research center and with pure

research purposes, which makes it difficult to recognize in it a direct impact in the

industry and in the economy such as the creation or destruction of jobs. The research

results of the project can help to go a step further in the development of robotic

technologies, which can mean a real influence in the future in the modernization

Joan Fontanals Mart́ınez

70 Integrated Grasp and Motion Planning using Independent Contact Regions

of the industry towards process automation. This indirectly involves the change of

less qualified jobs for more qualified ones in the programming and operating of the

robotic systems. It also should make a difference in the assistance of handicapped

persons needing help in their daily life.

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 71

Chapter 8

Costs Analysis

For the economical study of the project, two stages must be considered: the devel-

opment costs and the costs of execution. These two costs form the total cost of the

project for those who do not own the needed hardware specified in the execution

costs. For the persons that already own that part, the only direct costs are the ones

from the developing part.

8.1 Development Costs

The development of the project has only the costs associated to the work of an

engineer and programmer, checking the hours dedicated to the study and evaluation

of the project and the lines of code. The lines of code are counted with a Linux

terminal application which counts the lines of code present in a project, eliminating

the blank lines. Since the author is not an expert programmer, the estimated number

of lines of code that he can produce in a day is 150 lines, and assuming a working

cost of 150 e per day, the cost of a line of code is 1e/line.

Joan Fontanals Mart́ınez

72 Integrated Grasp and Motion Planning using Independent Contact Regions

Table 8.1: Costs of code.

Number of lines Cost

Header files .h 1874 1874 e

Source files .cpp 6820 6820 e

Total 8694 8694 e

The total programming cost must be added to the cost in terms of time of the pre-

vious study and development of the project. 50 hours of an engineer were dedicated

to the study and previous work before starting the software implementation with a

unitary price of 30e/hour. The total developing costs raise up to 10194 e.

Table 8.2: Total developing cost.

Concept Total cost

Study 1500 e

Programming 8694 e

Total 10194 e

8.2 Execution Costs

The execution costs must be taken into account for those who do not have a robotic

arm and an anthropomorphic hand. For this project, all the tests where done with

SpaceJustin, but an LBR robotic arm with a DLR-HIT HAND mounted on top

would be enough. Although other options are possible, the cost analysis is done for

these components. The sum of these costs adds up to 115500 e.

Table 8.3: Execution costs.

Component Cost

LBR 74500 e

DLR HIT HAND 45000 e

Total 115500 e

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 73

Then, the total cost of the project is 10194 e for the development costs plus the

115500 e needed to obtain all the robotic elements.

Joan Fontanals Mart́ınez

74 Integrated Grasp and Motion Planning using Independent Contact Regions

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 75

Conclusions

The project has successfully reached the goals, and the implementation meets all the

requirements posed in the problem definition. A complete grasp and path planner

was developed, which includes the search of grasps inside the main loop and does

not have a pre-defined configuration as a goal. By using tools available at the DLR

such as the Independent Contact Regions implementation and the Capability map

concepts, the planner successfully finds a grasp and an arm path, and the grasps are

robust against the fingertip positioning errors.

The performance of the planner has been proven to be better than other existing

integrated planners following the same idea. Although two approaches were tried

during the development of this work, one of them had a much better performance

and was finally implemented, and is now available inside the Robotics institute at

DLR to be used as an integrated motion and grasp planner for future applications. It

is also meant to be used as a planning tool inside a higher abstraction task planning

framework that plans the order and sequence of steps to be applied in order to

perform a task.

On a final note, the software implementation just relied on open source software or

on software owned by the institution where the project was developed.

Joan Fontanals Mart́ınez

76 Integrated Grasp and Motion Planning using Independent Contact Regions

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 77

Future work

This project proposed algorithms and methods to find valid motions towards a good

grasp. Some improvements could be applied in the future: some of them are meant

to improve the performance of the method, thus making it more efficient, while the

others can be thought as a way to extend the functionality towards more complete

and robust functions in the robotics manipulation community.

The first group includes all the possible improvements involving any of the basic

technologies and algorithms present in the global method, which would automati-

cally become an advantage for this work. But also there are some considerations

independent from the basics algorithms. As mentioned in this document, a critical

issue in finding feasible grasps is the presence of a lot of self-collisions between the

fingers. To minimize these effects, two possible solutions could be considered in the

future. First, a better algorithm or heuristic to decide which of the colliding points

on the object for every finger are selected to start the growing process of the Inde-

pendent Contact Regions. Another option to tackle this problem is the redefinition

of the workspace of the fingers. During the complete process, the workspaces of

every finger were the same. One possible alternative is to reduce the dimensions

of each finger’s workspace depending on its position on the hand, for instance the

index finger on the right hand should have all the freedom to move to the left, but it

should have limited movement to the right due to the presence of the other fingers.

This would limit the sizes of the independent regions, but would increase the chances

to directly find a valid grasp without self-collisions.

On the other hand, it would be interesting to extend the functionality of the planner

Joan Fontanals Mart́ınez

78 Integrated Grasp and Motion Planning using Independent Contact Regions

and adapt it to be used in bi-manual manipulation. To grasp big objects often one

hand is not enough, but the same integrated planning principle for finding all the

possible regions on the object considering the actions of two hands could be applied.

Another functionality was already implemented in a simple way. The goal was to

use the implemented planner inside a pick and place task, where the object has to be

picked with one hand and placed with the other. The primitive implementation just

considered long cylindrical objects like a tube where two hands could easily grasp

together the object. At the beginning, the planner runs as in single manual grasping

with the only difference that the grasp must be validated in a second phase. The

extra validation applied in this case is the existence of a valid FC grasp with the

other hand and with the object virtually placed on the goal position, on the part of

the object which is not covered by the first one. When the grasps are validated in

the initial and goal position and the plan towards the first grasp is solved, a position

between the two arms is sampled to find the configurations where it is feasible to

exchange the object from one hand to the other. Once this is found, some motion

planners act to find the complete sequence of movements leading to the complete

pick and place sequence. A diagram presenting the sequence of actions is showed

in 8.1.

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 79

Figure 8.1: Diagram explaining the process towards a bi-manual pick and place

application.

Joan Fontanals Mart́ınez

80 Integrated Grasp and Motion Planning using Independent Contact Regions

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 81

Acknowledgement

I want to dedicate some lines to say thank you to all the people who meant a big

help during all this time.

First I have to thank Dr. Jan Rosell and Dr. Máximo Roa, the directors of the

thesis, for the great support they gave me at all times, and for being always there

to solve any doubt that could appear.

I also want to thank everyone at the Robotics and Mechatronics Center at the

DLR for the amazing time I was able to spent there, and specially to the ”Robotic

Grasping and Manipulation Team” since without their support this work would have

been impossible.

And lastly, I have to thank my family and friends for all the support that they

always provided to me and their visits to Germany that gave me the strength to

complete the job.

Joan Fontanals Mart́ınez

82 Integrated Grasp and Motion Planning using Independent Contact Regions

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 83

Bibliography

[1] J. Rosell, A. Pérez, A. Aliakbar, Muhayyuddin, L. Palomo, and N. Garćıa. The

Kautham Project: A teaching and research tool for robot motion planning.

In Proc. IEEE Int. Conf. on Emerging Technologies and Factory Automation,

ETFA, 2014. 5, 16, 51, 61

[2] B. A. Dang-Vu, M. A. Roa, and C. Borst. Extended independent contact regions

for grasping applications. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems - IROS, pages 3527–3534, 2013. 5, 23, 61

[3] I.A. Şucan, M. Moll, and E. Kavraki. The open motion planning library. IEEE

Robotics and Automation Magazine, 19(4):72–82, 2012. 6, 49, 52, 61

[4] K. Hertkorn, M. A. Roa, M. Brucker, P. Kremer, and C. Borst. Virtual reality

support for teleoperation using online grasp planning. In Proc. IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems - IROS, pages 2074–2074, 2013. 13

[5] K. Hertkorn, B. Weber, P. Kremer, M. A. Roa, and C. Borst. Assistance for

telepresence using online grasp planning. In Proc. IEEE-RAS Int. Conf. on

Humanoid Robots, pages 507–513, 2013. 13

[6] O. Porges, T. Stouraitis, C. Borst, and M. A. Roa. Reachability and capability

analysis for manipulation tasks. In M. Armada, A. Sanfeliu, and M. Ferre, ed-

itors, ROBOT2013: First Iberian Robotics Conference, Advances in Intelligent

Systems and Computing 253, pages 703–718. Springer, 2014. 13, 29

[7] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge,

U.K., 2006. Available at http://planning.cs.uiuc.edu/. 15, 16

Joan Fontanals Mart́ınez

84 Integrated Grasp and Motion Planning using Independent Contact Regions

[8] S.R Buss. Introduction to inverse kinematics with jacobian transpose, pseu-

doinverse and damped least squares methods. IEEE Journal of Robotics and

Automation, 17:1–19, 2004. 16

[9] J. Kuffner and S. M. Lavalle. RRT-connect: An efficient approach to single-

query path planning. In Proc. IEEE Int. Conf. Robotics and Automation -

ICRA, pages 995–1001, 2000. 17

[10] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M.

Dellin, J. A. Bagnell, and S. S. Srinivasa. CHOMP: Covariant hamiltonian

optimization for motion planning. Int. J. Robotics Research, 32(9-10):1164–

1193, 2013. 17

[11] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion

planning. Int. J. Robotics Research, 30(7):846–894, 2011. 17

[12] J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data-driven grasp synthesis -

a survey. IEEE Trans. Robotics, 30(2):289–309, 2014. 18

[13] M. A. Roa and R. Suárez. Grasp quality measures: Review and performance.

Autnonomous Robots, 2014. DOI: 10.1007/s10514-014-9402-3. 18

[14] C. Ferrari and J. Canny. Planning optimal grasps. In Proc. IEEE Int. Conf.

Robotics and Automation - ICRA, pages 2290–2295, 1992. 18, 23

[15] M. A. Roa and R. Suárez. Computation of independent contact regions for

grasping 3D objects. IEEE Trans. Robotics, 25(4):839–850, 2009. 18

[16] D. Berenson, R. Diankov, K. Nishikawi, S. Kagami, and J. Kuffner. Grasp plan-

ning in complex scenes. In Proc. IEEE-RAS Int. Conf. on Humanoid Robots,

pages 42–48, 2007. 19

[17] D. Berenson and S. Srinivasa. Grasp synthesis in cluttered environments for

dexterous hands. In Proc. IEEE-RAS Int. Conf. on Humanoid Robots, pages

189–196, 2008. 19

Joan Fontanals Mart́ınez

Integrated Grasp and Motion Planning using Independent Contact Regions 85

[18] D. Berenson, S. Srinivasa, D. Ferguson, A. Collet, and J.J. Kuffner. Manipula-

tion planning with workspace goal regions. In Proc. IEEE Int. Conf. Robotics

and Automation - ICRA, pages 618–624, 2009. 19

[19] D. Berenson, S. Srinivasa, and J. Kuffner. Task space regions: A frame-

work for pose-constrained manipulation planning. Int. J. Robotics Research,

30(12):1435–1460, 2011. 19

[20] N. Vahrenkamp, T. Asfour, and R. Dillmann. Simultaneous grasp and motion

planning. In IEEE Robotics and Automation Magazine, pages 43–57, 2012. 19,

61

[21] M.A Roa, C. Zhaopeng, I.C Staal, J.N Muirhead, A. Maier, B. Pleintinger,

C. Borst, and N.Y Lii. Towards a functional evaluation of manipulation perfor-

mance in dexterous robotic hand design. In Robotics and Automation (ICRA),

2014 IEEE International Conference on, pages 6800–6807. IEEE, 2014. 22

[22] M.A. Roa and R. Suárez. Finding locally optimum force-closure grasps. Robotics

and Computer-Integrated Manufacturing, 25(3):536–544, 2009. 24

[23] M. A. Roa, K. Hertkorn, C. Borst, and G. Hirzinger. Reachable independent

contact regions for precision grasps. In Proc. IEEE Int. Conf. Robotics and

Automation - ICRA, pages 5337–5343, 2011. 25

[24] F. Zacharias, C. Borst, and G. Hirzinger. Capturing robot workspace structure:

Representing robot capabilities. In Proc. IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems - IROS, pages 3229–3236, 2007. 28

[25] J. Rosell, R.Suárez, and A. Pérez. Path planning for grasping operations using

an adaptive PCA-based sampling method. Autonomous Robots, 35(1):27–36,

2013. 33, 37

[26] J. Rosell, R. Suárez, A. Pérez, and C. Rosales. Including virtual constraints

in motion planning for anthropomorphic hands. In Proc. IEEE Int. Symp.

Assembly and Manufacturing - ISAM, pages 1–6, 2011. 35, 40

Joan Fontanals Mart́ınez

86 Integrated Grasp and Motion Planning using Independent Contact Regions

[27] R. Balasubramanian, L. Xu, P.D. Brook, J.R. Smith, and Y Matsuoka. Human-

guided grasp measures improve grasp robustness on physical robot. In Proc.

IEEE Int. Conf. Robotics and Automation - ICRA, pages 2294–2301, 2010. 35

[28] R. Diankov. Automated Construction of Robotic Manipulation Programs. PhD

thesis, Carnegie Mellon University, Robotics Institute, August 2010. 51, 55, 61

[29] R. Konietschke and G. Hirzinger. New inverse kinematics algorithms combining

closed form solutions with nonlinear optimization for highly redundant robotic

systems. 58

[30] M. Sagardia, T. Hulin, C. Preusche, and G. Hirzinger. Improvements of the

voxmap-pointshell algorithm - fast generation of haptic data structures. In

Proc. 53rd Int. Wissenschaftliches Kolloquium, 2008. 26, 61

[31] N. Vahrenkamp, M. Kröhnert, S. Ulbrich, T. Asfour, G. Metta, R. Dillmann,

and G. Sandini. Simox: A robotics toolbox for simulation, motion and grasp

planning. In Intelligent Autonomous Systems 12, pages 585–594. Springer, 2013.

61

[32] Blender Online Community. Blender - a 3D modelling and rendering package.

Blender Foundation, Blender Institute, Amsterdam, 65

Joan Fontanals Mart́ınez

	Abstract
	Nomenclature
	Preface
	1 Introduction
	2 Related Work
	2.1 Path Planning
	2.2 Grasp Planning
	2.3 Integrated grasp and motion planning

	3 Tools
	3.1 Robot SpaceJustin
	3.2 Independent Contact Regions (ICR)
	3.3 Capability Map

	4 Integrated method
	4.1 Grasp Planning
	4.1.1 Using PCA
	4.1.2 Using CapMap
	4.1.3 Complete transformation Thandobject

	4.2 Integrated planning algorithm
	4.2.1 Before goal configuration
	4.2.2 Goal configuration found

	5 Implementation
	5.1 Open Motion Planning Library
	5.2 The Kautham Project
	5.3 Implementation of the Integrated Planner in The Kautham Project
	5.4 OpenRAVE
	5.5 Implementation of the Integrated Planner in OpenRAVE

	6 Results and discussion
	7 Environmental Analysis
	7.1 Environmental Impact
	7.2 Socio economic Impact

	8 Costs Analysis
	8.1 Development Costs
	8.2 Execution Costs

	Conclusions
	Future work
	Acknowledgement

