
Universitat Politecnica de Catalunya

Master in Innovation and Research in Informatics

Computer Graphics and Virtual Reality

Master Thesis

Improving Image-Base Rendering for

Crowds and Perceptual Evaluation

Student: Maria Izquierdo Torrent

Directors: Nuria Pelechano Gomez & Carlos Andujar Gran

December 2014

2

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Objectives . 2
1.3 Contributions . 3
1.4 Organization . 4

2 State of the Art 5
2.1 Character Representation and Animation 5
2.2 Crowd Rendering Optimization 6

2.2.1 Image-based Impostors 7
2.3 Perceptual Studies for Crowds 9

2.3.1 Character Variety Perception 11
2.3.2 Impostor Artifacts Perception 12

2.4 Conclusions . 13

3 Impostor Generation 15
3.1 CAVAST Platform . 15

3.1.1 Rendering . 17
3.1.2 Impostor Generation and Rendering Module 18
3.1.3 Example: One Textured Quad Impostors 19

4 Impostor Improvements 23
4.1 Relief Impostors . 23

4.1.1 Overview . 23
4.1.2 Our Improvements . 25

4.2 Flat Impostors . 30
4.2.1 Overview . 30
4.2.2 Our Improvements . 32

4.3 General Improvements . 37

5 Perceptual Study 39
5.1 Experiment Design . 39
5.2 Experiment Procedure . 41
5.3 Results . 42

i

ii CONTENTS

5.3.1 Two-way ANOVA . 44
5.3.2 Cumulative probability of distance 45

5.4 Discussion . 51

6 Conclusions and Future Work 53
6.1 Conclusions . 53
6.2 Future Work . 54

Bibliography 55

Annex 57

List of Figures

2.1 Levels of detail of geometry meshes 7

2.2 Examples of point-based animated representations 7

2.3 Generation pre-process of one textured quad impostor [20] . . 8

2.4 Relief Impostor example . 9

2.5 Flat Impostors example . 9

2.6 Scene example of appearance cloning tests 11

2.7 Scene example of simplifying artifacts test 13

3.1 Diagram with an overview of the classes in CAVAST 16

3.2 Diagram of the Scene Graph 17

3.3 Rendering diagram with the Impostor Module (pink classes) . 18

3.4 Sampling the geometry and replacing it with images [21] . . . 20

3.5 Texture atlases examples . 21

3.6 One Textured Quad Impostors’ workflow 21

3.7 Examples of two scenes completely rendered using One Tex-
tured Quad Impostors . 22

3.8 Scene where the closest agents are rendered as high detailed
polygonal meshes and the One Textured Quad Impostor is
used for the furthest away characters 22

4.1 Relief Impostors overview: (top from left to right) character
subdivision per joints, impostor boxes textured with color,
normal and depth information respectively and resultant im-
postor representation. The image below shows a scene popu-
lated with this type of impostors [3] 24

4.2 Scene completely populated with Relief Impostors 25

4.3 Relief Impostor rendered using higher resolution textures for
the head . 27

4.4 Screenshot of impostors user interface 28

4.5 Linear search of Relief Mapping [18] 28

4.6 Binary search using the Secant Method [18] 29

4.7 Flat Impostors generation and rendering 30

4.8 Scene completely populated with Flat Impostors 31

iii

iv LIST OF FIGURES

4.9 Flat Impostor rendered using higher resolution textures for
the head . 33

4.10 Screenshot of impostors user interface 34
4.11 Differences . 35
4.12 Postures used for capturing the angle ranges [7] 36
4.13 Color variation example . 37
4.14 Luminance factor and diffuse color of the model 38

5.1 Two snapshots of the videos showed to the users 40
5.2 User test setup . 41
5.3 Distance vs. Camera interaction plot 43
5.4 Intervals of confidence Camera 1 44
5.5 Confidence intervals of camera 3 45
5.6 Cumulative probability of distance: Camera 1, density 7 . . . 46
5.7 Cumulative probability of distance: Camera 1, density 95 . . 46
5.8 Cumulative probability of distance: Camera 3, density 7 . . . 47
5.9 Cumulative probability of distance: Camera 3, density 95 . . 47
5.10 Cumulative normal: Camera 1, density 7 48
5.11 Cumulative normal - Camera 1, density 95 49
5.12 Cumulative normal: Camera 3, density 7 49
5.13 Cumulative normal: Camera 3, density 95 50

Abstract

Human characters are usually represented as high-detailed textured polyg-
onal meshes. Since rendering and animating these characters implies high
computational cost, simulating large crowds of hundreds or thousands of
agents in real-time has become a major limitation. Several impostor meth-
ods have been proposed in order to improve crowd simulation performance.
We have focused on image-based impostors since they produce better visual
results, more concretely on two per-joint image-based representations: Re-
lief Impostors and Flat Impostors. First, to ease the processes of generation
and rendering of impostors we have also developed a module of software,
which is integrated in a prototyping framework for crowd simulation. The
structure of this module is sufficiently generalized for including any type
of impostor approach and we illustrate it implementing One Texture Quad
Impostors as an example. After studying both per-joint techniques, we have
centered on their limitations and proposed optimizations for some of their
major restrictions without affecting significantly visual quality and perfor-
mance. In order to analyze the visual quality of these techniques, we have
carried out a perceptual experiment to study the optimal distances at which
each one of the mentioned impostor techniques should be rendered without
noticeable artifacts.

v

vi LIST OF FIGURES

Chapter 1

Introduction

1.1 Introduction

During the last decade, crowd simulation has become an increasingly active
area of research in computer graphics. Crowd simulation does not only sim-
ulate the movement of large number of characters or agents, it also includes
individual behavior and interactions between these agents. It has to be as
realistic as possible, in the sense that the appearance, the interaction and
the animation of characters results believable and lifelike.

Taking advantage of the large number of improvements that have been
made in the recent years, applications using crowds have expanded into
other fields such as video-games and the film industry. Crowd simulation is
appropriate in situations where realistic collective behavior is required, but
the conditions can be unfeasible or unsafe for people in real life. Potential
dangerous situations for human beings can be avoided by substituting these
scenarios with virtual environments. Psychological and behavioral studies
or simulations of building evacuations are some other examples of crowd
simulation applications.

Besides the process of simulation, rendering and animation of each in-
dividual agent is remarkably important. The characters are represented
as polygonal meshes and are textured to reproduce high-resolution details.
Character’s mesh is associated with a hierarchical skeleton-like structure so
that each vertex of the mesh is related to one or more bones of the skele-
ton. Then, to animate the character, a three-dimensional transformation is
applied to these bones, deforming the surrounding mesh and changing the
current pose. Since there is a large amount of information to be computed
per each agent per frame, rendering a crowd of several hundreds or thousand
of agents often implies a loss of performance. Thus, rendering and simulat-
ing a realistic multitude of people in real time is still a challenging problem,
especially for interactive applications, despite the significant advances of the
graphic cards in recent years.

1

2 CHAPTER 1. INTRODUCTION

Several impostor methods have been presented in order to improve the
rendering performance of crowd simulation. The general idea consists of
simplifying the rendering method for those agents that are situated at a fur-
ther distance from the camera position, but still rendering the nearest agents
with their full geometry. By doing this, the visual quality of the crowd is not
affected significantly and at the same time the performance is considerably
improved. A common approach is to reduce the number of polygons of the
character representation depending on the distance: the further away the
agents, the fewer polygons used to render them [16]. However, reducing the
number of vertices results in a noticeable loss of detail in the original mesh,
which is clearly aggravated when the agent is animated.

A proper alternative are image-based object representations, because
they are unaffected by the agent’s complexity. In image-based precomputed
impostors, the basic approach is rendering each agent as a single textured
polygon [20]. During the pre-process, each character is rendered from pre-
defined points of view and for a specific set of animation frames. While
rendering a crowd, the selection of which image to use at a given time for
each agent depends on its current viewpoint. One disadvantage of these
methods is that the set of animations is predefined and fixed by the pre-
process. Another inconvenient is the amount of memory used to store the
generated textures.

As an improvement of these techniques, per-joint image-based impostors
use a set of textures per each bone of the character [3] [1]. In this manner,
the impostor is animated through bone transformations and precomputed
textures remain independent from animations.

A prevalent limitation of impostor techniques is that they can only be
applied for the furthest away parts of the scene, because they produce no-
ticeable visual artifacts when they are applied to agents near the camera.
Usually, perceptual studies have been conducted in order to analyze the
most pronounced visual artifacts [10] [12]. Examples of these problems are
popping artifacts due to the changing of views or, in the case of per-joint
impostors, discontinuities in the joints resulting from the rigid bone anima-
tion.

In addition, some frameworks have been developed in order to let the
user concentrate only on developing one part of the processes: simulation,
animation or rendering of the agents. This kind of software allows the devel-
oper to focus on a specific area of research while using well known methods
for the other areas. [2].

1.2 Objectives

Rendering realistic animated characters and providing high detail is still a
limitation in large crowd simulation. Although image-based impostors are

1.3. CONTRIBUTIONS 3

a good alternative to improve the high cost of rendering agents as polyg-
onal meshes, there is an important problem to define a balance between
performance and realism while rendering several characters in movement.

Hence, the main goal of this thesis is to improve crowd simulation ren-
dering, in terms of performance and visual perception, so as to achieve a
realistic rendering of a large multitude of agents through a real-time simula-
tion. To achieve this objective, this project centers its attention on the major
limitations of image-based impostor techniques. More specifically, we focus
on techniques based on per-joint impostors, proposing some improvements
to reduce visual artifacts without a loss of performance.

Another important issue that we cover in this thesis is the facilitation
of the impostor generation pre-process. Therefore, we have designed and
developed a new software module to generalize the impostor generation and
rendering for a recently-presented crowd simulation framework.

Furthermore, since the visual evaluation of these techniques is merely
subjective, we realize a rigorous study to analyze the users’ perception of the
common visual artifacts that appear when using rendering methods based
on impostors to replace geometry. By doing this, our goal is to estimate the
most appropriate distances from the camera at which a determined type of
impostors can substitute geometry agents without affecting visual quality.

1.3 Contributions

In this work, after analyzing the state of the art, we present a module of
software for the impostor generation and rendering processes. This software
is not specific only for per-joint impostors or image-based impostors, it al-
lows for any kind of impostor to be easily incorporated into the system. As
an example, we implement the first approach presented in the literature of
image-based impostors: Real-Time Rendering of Densely Populated Urban
Environments, of Tecchia et al. [20]. Moreover, this application is integrated
into an existing crowd simulation framework, easing the simulation of large
number of agents including the added impostors.

Besides, we analyze two already presented image-based per-joint im-
postors’ methods. Our contribution consists of detecting the most visible
artifacts, determining the cause of these irregularities and then proposing a
series of adjustments to correct them.

The first method studied is A flexible approach for output-sensitive ren-
dering of animated characters [3] in which Beacco et al. introduced the
concept of having precomputed per-joint information. The basic idea is to
divide the character in a set of per-joint bounding boxes and store color,
normal and depth values for each one of their faces. Then, the whole char-
acter is made up of the composition of each one of its joint boxes, rendered
through Relief Texture Mapping [14].

4 CHAPTER 1. INTRODUCTION

The second method is Efficient rendering of animated characters through
optimized per-joint impostors by Beacco et al. [1]. In this method pre-
computed information is also independent per each joint, but it is obtained
by sampling each joint from a discrete set of viewpoints. The character is
rendered using a single texture per joint and the selection of texture used
depends on the joint orientation respect to the camera.

Finally, in order to validate our impostor improvements, we have run a
user study to evaluate the perception of the visual artifacts of each method.
This study is carried out by comparing full-geometry rendering to each one
of the impostors’ methods at different distances from the camera. The aim
of this experiment is to determine, for each impostor type, the appropriate
distance from the observer at which rendering impostors instead of rendering
geometry agents does not affect the visual quality.

1.4 Organization

The rest of the work is organized as follows. In the next chapter 2 we
discuss the state of the art on crowd rendering with impostors and perceptual
studies. In chapter 3 we introduce our framework’s module for the impostor’s
generation and rendering and we show an example. Then, in chapter 4 we
present an accurate explanation of the Relief and Flat impostor methods,
our improvements to each of them and the results obtained. The perceptual
study design, its procedure and the results obtained are addressed in chapter
5. Finally, in chapter 6 we present conclusions and future work.

Chapter 2

State of the Art

The subject of rendering realistic crowds in real time has been studied in re-
cent years. However, improving the rendering performance of a large number
of agents without affecting the visual perception is still an intricate question.
In order to understand the current state of the art on crowd rendering, in
this chapter we explain the basic concepts about character representation
and the way it is animated. Then, we discuss some crowd rendering accel-
eration techniques, focusing mostly on image-based impostors. Lastly, we
analyze some work on perceptual studies applied to crowd simulation and
rendering.

2.1 Character Representation and Animation

The most common approach for representing human characters are textured
polygonal meshes. To animate them, a hierarchical structure called skeleton
is placed inside the mesh or skin. The nodes of the skeleton represent joints
and the edges represent the bones. Since each bone can be easily identified
by its origin, we can use the term joint interchangeably. Then, the vertices
of the mesh are assigned to the bones of the skeleton, through a weight
factor. Consequently, the transformations applied to a bone are propagated
to the linked vertices, deforming the mesh into a new pose. This process of
association by weights is called skinning, and it is done with the mesh in the
reference pose or rest pose.

The value of the weight factor is between 0 and 1, being exactly 1 the
total sum of all weights per vertex. Normally, the vertices belonging to
a joint and their neighboring ones are assigned to more than one bone,
depending on how much the joint movement affects them. For instance,
vertices closed to the knee would be linked to both the calf and the thigh,
with weight less than 1. However, other vertices situated throughout the
upper leg would only be assigned to the thigh and their weight would be
exactly 1. This process of assigning weights and the skeleton fitting is called

5

6 CHAPTER 2. STATE OF THE ART

rigging, and it allows more flexible mesh deformations.
An animation is a smooth transition of movements in a fixed period of

time. It is composed of a series of keyframes, each one defining a charac-
ter pose for an instant of time. These body deformations are obtained by
applying geometrical transformations to each bone of the skeleton. During
the animation, the poses in between each frame are created by interpolating
the two closest keyframes.

The transformations affecting joints in the hierarchy are assumed to be
rotations. These rigid transformations are represented as matrices, so there
is a matrix per each bone and keyframe. Since interpolating simple matrices
can result in artifacts when deforming a mesh, the usual method for defining
motions are dual quaternions. It avoids the creation of artifacts due to non-
rigid transformation results from interpolation, such as the candy-wrapper
effect.

2.2 Crowd Rendering Optimization

In order to simulate a realistic crowd in real-time, the major factors to
consider are: the simulation process (including individual behavior and col-
lective interactions), the animation of the agents and the rendering of each
individual. Crowd rendering is usually the most costly in terms of perfor-
mance, so to accelerate it the following techniques can be applied: culling,
level-of-detail and image-based impostors.

To accelerate the rendering process of any crowded scene, culling tech-
niques are a recurrent and effective option. They consist of discarding the
objects of the scene that are not visible. Frustum Culling discards the ob-
jects that are not inside the camera frustum. Moreover, Occlusion Culling
disposes of the objects that are occluded by other objects of the scene. An-
other possibility can be the usage of occlusion queries, which are part of
a hardware functionality present in modern graphic cards. Nevertheless,
these methods are usually applied to static geometry, so using them for
crowd rendering is not a direct approach; it has to be taken into account
that the agents are continuously in movement.

In crowd rendering, a widely used optimization technique is using differ-
ent levels of detail (LOD) of the characters depending on their distance from
the camera position [16]. An appropriate representation of the character is
chosen according to their position in respect to the observer. Less complex
geometry models are rendered as the agents move away from the viewer, and
this considerably reduces the number of polygons to render. This multiple
resolutions concept can be complemented with image-based rendering, using
impostors for the furthest character’s representations.

An option for improving the runtime performance are static meshes [15]
as one of level-of-detail representation. Here, instead of saving only the

2.2. CROWD RENDERING OPTIMIZATION 7

Figure 2.1: Levels of detail of geometry meshes

geometry of the reduced mesh and then animating it in real time, another
possibility is storing a set of static or pre-deformed meshes. During a pre-
process, a set of deformations of the low-resolution mesh are precomputed
for each animation. By doing this, the rendering process is faster but it
limits of the number of animations to use.

A different example of an optimization method for characters’ rendering
is point-based impostors [22]. This technique consists of dividing the view
space into cells and then sampling the model from those cells. Fundamen-
tally, the goal is to create a point based model based on the saved images,
avoiding uncovered areas (holes) and aliasing from a specific view point.
This technique does not need to maintain point-connectivity information.
The best results are achieved when a triangle of the geometric model covers
a pixel or less.

Figure 2.2: Examples of point-based animated representations

Nevertheless, in the following section we will focus on simple textured
polygon impostors.

2.2.1 Image-based Impostors

In [20], Tecchia et al. proposed a technique for efficiently rendering the most
furthest agents of a scene, without affecting the visual impact. Their ap-

8 CHAPTER 2. STATE OF THE ART

proach consists of using only one textured quad per agent, approximating
the agent appearance from that point of view. In order to animate the im-
postor, they capture a set of 32 views of the agent per each animation frame
(covering it only from above). These views are saved as images and stored
in a texture atlas. While rendering, the appropriate texture for each char-
acter is selected depending on the view point and the animation frame. In
a posterior work [21], they optimized this method by mirroring the anima-
tion to take advantage of the body symmetries. In addition, to save storage
memory, the textures are stored in a single compressed texture, and they
are packed and the empty space between them is removed. Nevertheless,
the method still suffers from the ’popping’ effect when changing textures,
due to the change of viewpoint.

(a) Discretization of view directions (b) Texture atlas of different character views

Figure 2.3: Generation pre-process of one textured quad impostor [20]

More recently, Beacco et al. [3] presented a per-joint impostor approach
in which each character is represented by the set of oriented bounding boxes
of its skeleton bones. For each one of the boxes’ faces, the color, normal
and depth information is saved in two textures as a pre-process. Then, each
bone box is rendered through dual-depth relief mapping to simulate the
original shape and is animated corresponding to the rigid transformation of
the bone. In this manner, the pre-generated images do not depend on the
animation used, so any motion can be applied to the character and at the
same time the number of stored textures are notoriously reduced. Although
the number of primitives to draw is smaller than rendering geometry, there is
a higher per-fragment overhead. However, they found through a user study
that using these Relief Impostors at certain distance is faster than rendering
simplified geometry.

Lately, the same authors proposed Flat Impostors [1], another per-joint
impostor method, based on rendering each bone as a single oriented texture.
The whole character is made up by the composition of its joint textures for a
given viewpoint. So per each bone, color and normal information are stored
from a number of pre-defined view directions, which are taken from a cube

2.3. PERCEPTUAL STUDIES FOR CROWDS 9

Figure 2.4: Relief Impostor example

map, in which a Voronoi map has been projected onto its faces. In order
to avoid holes in the articulations when animating the character, in each
texture is also codified through a mask parts of the neighboring joints. At
runtime, the most appropriate texture per bone is chosen depending on the
view, which is easily obtained by consulting the cube map textures. Then,
animating the character basically consists of applying the rigid transfor-
mation of the representing bone. This image-based technique provides an
efficient impostor rendering with animation-independence.

Figure 2.5: Flat Impostors example

2.3 Perceptual Studies for Crowds

Many physical phenomena (temperature, pressure, weight, etc.) can be ob-
jectively measured by instruments. However, there are some other concepts
that are fundamentally subjective (such as appearance). The aim of per-
ceptual studies is to analyze the response and sensations of the users to
specific tasks or stimuli. In recent decades, these kinds of studies have been
performed to investigate a wide range of topics, such as human behavior.

In computer graphics, perceptual studies are conducted to analyze the
influence of the main factors that contribute to human-like simulation and

10 CHAPTER 2. STATE OF THE ART

rendering. Specifically, they produce a measure that helps to quantify the
relationship between the parameters of the algorithms, the results they pro-
duce and the visual experience they create. For instance, in data compres-
sion, perceptual studies can help to determine whether an algorithm pro-
duces a visible loss of image quality. Or in photo-realistic rendering, where
the results are expected to be lifelike, they can contribute determining if
outcomes are plausible (in terms of shape, lighting, materials, etc.). Fur-
thermore, in virtual reality, perceptual studies are most used to analyze and
improve users’ immersion in virtual environments. A scientific methodology
to carry out these studies is Psychophysics [5], which proposes experimental
proceedings to conduct an objective measurement of subjective experience.

Since in crowd simulation the goal is to represent a realistic group of
human people, it should include individual behavior, character animation,
collective interaction and believable appearance. In order to reduce the
workload, perceptual studies can provide procedures of optimization and
effectiveness improvement, to compute and generate only what is necessary.
Moreover, these studies are a useful resource to analyze visual quality of the
resultant crowd.

Focusing exclusively on animation studies, Pražák at al. [17] studied
the motion cloning problem for crowds, where one animation is applied to
several characters. For this study they used only one mannequin character
composed of rigid segments and a set of human captured animations. They
tested whether the number of crowd agents and the speed of the motion
affect crowd variety. However, the main goal was to determine the minimum
number of individual animations required to create a varied crowd of walking
human. As a result, they found that with only 3 animations it is possible
to create an animate varied crowd.

Alternatively, Jarabo et al. [8] studied the effect of lighting on crowd per-
ception. Concretely, the goal was to determine whether approximations in
global illumination for dynamic scenes are perceptually noticeable. For the
experiments they used a scene with ambient illumination and a crowd of 28
non-textured agents, with some degrees of geometric, motion and illumina-
tion complexity. As a remarkable result, they found that motion affects the
perception of lighting artifacts, at the same time that geometric complexity
of agents masked them. Furthermore, artifacts were perceived easier with
direct illumination.

The following sections center their attention in experimental studies that
analyze the perception of characters variety and the most salience artifacts
due to the use of impostor techniques.

2.3. PERCEPTUAL STUDIES FOR CROWDS 11

2.3.1 Character Variety Perception

Rendering a large crowd using a different model per each agent and with no
repetitions is unfeasible, due to the amount of resources needed. To achieve
variety, some characters and animations should be replicated in the same
crowd. The important point is finding the balance between resources’ usage
and character diversity.

The first ones to study how cloning appearance and motion affect crowd
variety were McDonell et al. [11]. In their study, twenty capture motions
and twenty human models were used, identifying manually each region of
the models’ textures to create diverse outfits for each model (varying hair,
skin, clothing and shoes color). Firstly, through a series of tests where six
static characters were shown and only two were cloned, they found that by
color diversification it is possible to distinguish the appearance of repeated
characters. Another study was conducted to determine the effect of cloned
motions by means of identifying the only two repeated and in-step motions
into a set of twelve identical models. The outcome was that duplicate ani-
mations were more difficult to be distinguished. Finally, a last experiment
was conducted with a crowd of twenty agents in three scenarios: with sev-
eral clones and no motion, with several motions and the same model for
all of them, and with several clones and several motions. After running
the three tests, they found that appearance clones can be detected quicker
than repeated motions. Most of the false positives obtained were due to
similar clothing between characters. Another finding was that appearance
clones with the same motion but out-of-step was as effective as having many
different motions.

Figure 2.6: Scene example of appearance cloning tests

In the work of McDonell et al. [12], they studied (with the aid of eye-
trackers) if there are parts of human characters within a crowd that are more
looked at than others, and, if any, which are these parts. For that goal, they
used ten human models and cloned five of them with color variation. The
participants were asked to indicate whether a series of scenes with eight
characters (with no occlusion between them and with different orientations)
contain cloned characters. The study confirms that the head and the upper-
torso were the parts most fixated on and also that varying the lower part

12 CHAPTER 2. STATE OF THE ART

of the body does not create visual diversity. Consequently, three variation
techniques were proposed and analyzed: facial texture variation (including
make-up and beards), facial geometry variation (altering face parts) and
accessories addition. Here, ten characters were displayed and only one was
cloned at each scene (using for all of them color variation and adding textures
to the top clothes). As a result, they found that the three of these techniques
were equally effective in order to differentiate clones.

2.3.2 Impostor Artifacts Perception

In crowd rendering, to obtain an accurate but inexpensive representation
of the characters’ models, the most used methods are pre-generated image-
based impostors and low level geometric meshes. Therefore, many studies
have been conducted to obtain an adequate balance between visual fidelity
and low complexity.

In order to study the effectiveness of using impostors, Hamill et al. [6]
experimented to find the point where the geometry of animated human
models and buildings can be replaced by impostors without affecting vi-
sual perception. For that goal, they used pre-generated impostors for the
human character but dynamic impostors for the four models of buildings
(generating them when necessary). The first part of the investigation was
focused on distinguishing the geometric representation from the impostor
one at different distances (for humans and buildings separately), to detect
the transition between them and to determine the acceptability of variations
of the building dynamic impostor. In the second part, by comparing the an-
imation of the human impostor representation to the geometric model, they
found the impostor replicates accurately the motion. Lately, McDonnell et
al. [13] has deepened this work with a study on the perception of motion
and appearance of the geometrically simplified human models.

Most recently, Larkin et al. [10] studied the visual effects of geometric
simplification of human characters using levels-of-detail (LODs). Specif-
ically, they analyzed the artifacts’ impact of reducing the complexity of
textures, silhouettes, lighting or all three combined in both static and ani-
mated characters. Furthermore, there were only two different motions (idle
and fast walking) and two ways of simplifying the models: fully automatic
or aided, to take care of the areas which suffer from more artifacts while an-
imation, as joints. By showing scenes with the original model in the center
and a smaller one on each side (at different distances each time), the par-
ticipants had to decide whether the model on the right or the left was the
simplified one. The study showed that, despite the animation used, the most
detectable artifact was the one due to silhouette simplification, especially at
further distances. Finally, they experimented to find the optimal distances
for using this simplification: distances extracted from the user perception

2.4. CONCLUSIONS 13

and a metric obtained thought image comparison.

Figure 2.7: Scene example of simplifying artifacts test

2.4 Conclusions

The main problem using geometrical models to simulate large crowds is
that rendering performance depends on the complexity of the characters.
It means that the more number of detailed human models we have, the
more primitives to render and, in consequence, the higher is the drop in
performance.

In order to render a crowd of several hundred or thousand agents, some
acceleration techniques have appeared in literature. Initial approaches have
different levels of detail of simplified geometric meshes depending on the dis-
tance to the viewer [16]. Even though model simplification results in better
performance, these meshes with less vertices introduce visual artifacts when
they are animated. Static meshes [15] were thought to avoid these artifacts
on simplified meshes. However, saving all the geometry information of the
reduced mesh for a set of keyframes, produces an increment of the amount
of memory needed and limits the number of animations. A totally different
alternative are point-based methods [22], which consist of rendering surfaces
using a huge number of points. This technique does not need connectivity
information, but it gives the best results when the character is far away.

An alternative for simplifying geometry as a rendering acceleration are
pre-generated image-based impostors. The first method consists of render-
ing an oriented quad and textured with different saved views of the character
and for a set of animation frames [20]. It works properly for the furthest
levels of the scene, but as inconvenient, a large amount of memory is needed
and the animations are restricted to the stored ones. On the other hand,
per-joint impostors render an impostor per body part instead of per char-
acter. A first approach [3] renders each joint as an oriented bounding box
by relief mapping, using the previously stored information. The character is
animated by applying the bone transformations to the joint boxes. A second
method [1] represents each joint as an oriented quad, textured with a set of
stored views from different directions. Similar to relief impostors, the bone
transformations are propagated to the joint quads to animate the character.

14 CHAPTER 2. STATE OF THE ART

Both techniques are untied to a predefined animation.
In order to perceptually analyze crowd simulation, several studies have

been conducted. These studies examine separately each one of the factors
that affect realistic simulation, such as character appearance, collective be-
havior, individual animation [17] or scene conditions like lighting [8]. Deep-
ening in studies related to agents’ appearance, there are two main groups.
The first one examined the effects on diversity of cloning characters into a
multitude [11] [12]. They also proposed some variation techniques to mask
the use of repeated characters. The other group centered their attention on
the perception of artifacts when using impostors [6] [10]. The main purpose
of these studies were to find the optimal distance at which using impostors
instead of geometry is not noticeable.

As mentioned in the previous chapter, our main objective is to improve
realistic crowd rendering without affecting visual perception. The state of
the art of image-based impostors encourage our work to improve some ex-
isting techniques, more concretely per-joint impostors, and to work on their
major limitations. At the same time, the perceptual experiments revised
in this section have evidenced the requirement of a rigorous user study to
analyze and validate our proposal.

Chapter 3

Impostor Generation

This chapter first explains the CAVAST platform, a framework for simulat-
ing and rendering crowds. Secondly, the details of our impostor generation
module are explained. Finally, we show a functional example of how an
image-based impostor can be generated and rendered with our software.

3.1 CAVAST Platform

Crowd simulation consists in rendering human characters and animating
them, at the same time that simulating collective behaviors. Despite these
three areas are usually treated separately in research, they depend on each
other during the simulation process. For instance, in the case of testing a
rendering improvement some artifacts may have not appeared using static
characters. Or a method is too expensive computationally and has to be
optimized or can not be applied. Thus, these three elements: simulation,
animation and visualization have to be considered as continuously interact-
ing processes.

In order to provide a tool covering the three areas, Beacco et al. [2] pre-
sented a framework for researchers which allows to focus on one of these
parts without losing sight of the other two. CAVAST: The Crowd Ani-
mation, Visualization, and Simulation Testbed is a new prototyping and
development framework specialized in crowds. The objective of this work is
offering essential tools to start working in this field and provide a basis on
simulation, animation and rendering, avoiding the tedious work of starting
a project from scratch.

As mentioned before, the structure of this frameworks is divided into
three main areas: simulation, animation and rendering (see figure 3.1). As
a link between all of them, there is the class Agent that provides a visual
representation of the human characters to render. The explanation of the
three parts of the framework and how they are related is explained in the
following paragraphs, but with attention centered on the rendering part.

15

16 CHAPTER 3. IMPOSTOR GENERATION

Figure 3.1: Diagram with an overview of the classes in CAVAST

The simulation module is responsible for moving the agent with the scene
through the Agent Controller interface. This interface is the representation
of a behavioral model, for example, walking through the scene (from one
defined goal to another), and avoiding collision with obstacles and other
agents. So basically, the Agent Controller interface is in charge of modi-
fying the position, orientation and velocity of an Agent at each simulation
execution, following a specified path. For simplicity, the scene is divided into
nodes forming a regular grid. The assigned route of each Agent is computed
by the Pathfinder interface, which uses a basic A* algorithm to compute
the optimal path from one node of the scene to another. The Crowd class
is the one that iterates over all the agents during the simulation execution.

The Animation Controller is the interface in charge of animating each
one of the Agents. In this case the approach used is skeletal animation. In
fact, the animation is not applied directly to the Agent, but it is applied
to the current used Character Representation of the Agent (as is explained
in the rendering part3.1.1). For animating an Agent, the Animation Con-
troller selects or synthesizes the best animation of an Animation Set in order
to properly follow its current motion (depending on the velocity values of
the agent’s movement). Furthermore, if for example it uses an impostor
approach as the current representation, the procedure of applying the an-
imation may be different. In any case, animations have to be consistent
between the different Character Representations used for the same agent.

Agents are sorted and grouped by their Avatar and Character Repre-
sentation in order to send the transformation matrices to the GPU into
vertex buffer objects (VBOs), and with only one render call with instanc-

3.1. CAVAST PLATFORM 17

ing. Since the objective is having individual agents performing different
animations, the animation clips are loaded into the GPU to perform matrix
palette skinning. By doing this, the computation of the blended pose is done
in the vertex shader (with different animations instances and weights). It is
done by blending within the two closest keyframes to the current one, for
each motion clip and between the resulting poses of the different weighted
animations.

The libraries used in this framework for simulation, animation and ren-
dering are independent from each other and can be easily extended. How-
ever, this framework takes advantage of a library called HALCA [19] to
animate and also render the characters. This hardware accelerated library,
based on Cal3D format [4], performs the rendering and skinning parts on
the GPU.

3.1.1 Rendering

An Agent has an Avatar, which is a collection of one or more Character
Representations and the scaling dimensions of it. By having more than one
Character Representation per agent we get different levels of detail (LODs).
For instance, we can render the full-geometry representation only in the
nearest part to the camera and render agents that are further away as im-
postors. The class Avatar is the one that has the representation size (width
and height) and allows to maintain the consistency between representations.

Figure 3.2: Diagram of the Scene Graph

For the scene render, this framework uses a Scene Tree as a scene graph
(figure 3.2), and the nodes are Transforms. These Transforms are composed
of one absolute transformation matrix and another one relative to its parent.
They can also have a Render Object, which is an interface class for the scene

18 CHAPTER 3. IMPOSTOR GENERATION

graph to render the objects. Finally, an Avatar is a subclass of Render
Object.

3.1.2 Impostor Generation and Rendering Module

The first part of our work consists of the software development to gener-
ate and render impostors. To do this, we have create and attached a new
framework module for CAVAST, taking advantage of the already developed
functionalities it has.

Our module is split into two different, but not independent parts: the
generation and the rendering classes (see figure 3.3). Then, the most im-
portant classes are Impostor Generation and Impostor Render respectively.
Impostor Render is a subclass of Character Representation and it is an in-
terface class to create an impostor representation that can be added to the
character Avatar and rendering. Additionally, Impostor Generation is a de-
tached class used as a pre-process for the generation of the impostor images.

Figure 3.3: Rendering diagram with the Impostor Module (pink classes)

The key issue of module is the class Impostor Geometry, an Impostor
Render subclass. This relevant class represents the full-geometry mesh of
an avatar and it is used as input of the impostor generation process. Thus,
it is altered to provide a wide range of tools, mostly for per-joint impostor
creations. The most important features are:

3.1. CAVAST PLATFORM 19

• Rendering impostor joints separately, selecting the bone to render and
without showing the rest of the mesh. Additionally, it is possible to
change how many related vertices of the current bone are shown by
the associated weight value. There is the option to show the parent
and child bones from the skeleton of the current bone shown.

• Applying an animation to the character and also changing the cur-
rent pose through the morph value (a position into the normalized
animation time).

Generation

As mentioned before, the generation part uses an Impostor Geometry to
store the information necessary for an impostor representation. Usually, this
process is excessively complex to be performed every time before rendering
the impostor (it may last a few minutes per agent). So generally, it is done as
a pre-process, saving the information as images to disk. However, depending
on the impostor type to create and if the generation process is sufficiently
fast, it can be done on-the-fly each time before rendering.

The idea is to add a new subclass of Impostor Generation for each one
of the impostor type the user wants to create. In some cases, the user
interface should be modified in order to introduce required parameters for
the generation.

Rendering

Once the pre-process is done and the information needed is saved, the next
step is creating a class for rendering the impostor. This class has to inherit
from Impostor Render, in order to render it as a character representation.

The usual process done in this new class is reading first the needed
information from disk, and then creating the vertex buffer objects to render
the representation.

Usually, during the generation process, the information related to the
avatar (as vertices’ topology, computed bounding boxes, etc.) is not saved
to disk. However, we do save the reference to the original mesh from which
we created the impostor representation. Since the geometric representation
is usually loaded to be used for the characters’ closest to the camera, when
loading an impostor we can extract these parameters from the geometry.

3.1.3 Example: One Textured Quad Impostors

In order to offer a better understanding of these procedures, in this section
we illustrate them with an example.

The example chosen is the approach of Tecchia et al. from the work Vi-
sualizing Crowds in Real-Time [20]. As explained in 2.2.1, their technique

20 CHAPTER 3. IMPOSTOR GENERATION

consists of replacing the furthest agents by one textured quad impostors.
Basically, the process consists of sampling the character from determined
view directions and for each frame of the animation. Then, the represen-
tation is rendered using the saved images, choosing them depending on the
viewpoint and the animation point.

Figure 3.4: Sampling the geometry and replacing it with images [21]

Since this impostors were implemented for the purpose of perceptual
evaluation, we have not included any of the optimizations that were carried
out in later work to improve performance or memory footprint. Notice that
non of these improvements affected the visual results.

Generation

First of all, we have to create an OTQ Impostor Generation class. This class
has associated a geometry representation and the main functions to create
it. Additionally, it has an animation clip defined since this specific type of
impostor is tied to the motion. Thus, the number of sampled animation
frames has to be defined in advance.

Once the character and the animation is selected, the procedure of the
impostor generation function is the following: for each animation frame and
for each predefined view direction, we set up an orthographic camera, and
then render the whole geometry character. The camera is aligned to the
current direction and is positioned in a way that the whole character is
visible. Then, the color and normal information of the render are stored to
disk as separated texture atlases.

The number of view directions is a parameter configurable by the user.
For simplicity, we create an icosahedron to sample the character from a pos-
itive semi-sphere evolving it, and take its face normals as the view samples.
Doing this, the user only has to indicate the number of face subdivisions as
an easy way to define the number of views.

3.1. CAVAST PLATFORM 21

(a) Color textures example (b) Normal textures example

Figure 3.5: Texture atlases examples

Rendering

The character rendering is substantially tied to the generation process: we
can only simulate the impostor characters that have been generated previ-
ously, and only with the motions they had during the creation.

The first step is reading from disk the images with color and normal
information (this one is optional) and binding them as texture arrays. A
cube map texture is also loaded, mapping the directions of the pre-computed
view samples.

Figure 3.6: One Textured Quad Impostors’ workflow

In addition, a single vertex buffer object (VBO) is created per agent
type, storing the character’s information. In this VBO is encoded: the cen-
ter of the agent’s bounding sphere and its radius (used for situating the quad
impostor and scaling it), the number of textures per animation frame and
the number of images per texture. This VBO is rendered as GL POINTS
primitives, converted later into two triangles forming the quad. In the vertex
shader, the discrete view from the cube map texture is computed (depending
on the impostor’s orientation to the camera) and the appropriate texture
is selected depending on the current animation frame. Then, the geometry
shader creates two attached triangles forming a quad at the agent’s position,

22 CHAPTER 3. IMPOSTOR GENERATION

oriented to the current view direction, and it calculates the texture coordi-
nates. Finally, the fragment shader performs a texture mapping to compute
the final color.

The following images show some scenes with agents represented as One
Textured Quad Impostors.

(a) Street view (b) Aerial view

Figure 3.7: Examples of two scenes completely rendered using One Textured
Quad Impostors

Figure 3.8: Scene where the closest agents are rendered as high detailed
polygonal meshes and the One Textured Quad Impostor is used for the fur-
thest away characters

Chapter 4

Impostor Improvements

In this chapter we present our improvements for the two well-known methods
of per-joint image-based impostors. For each one of them, the first section
presents a short overview of the approach. Next, the main problems of the
techniques are analyzed and we explain the solutions we have proposed.
Finally, we show the results we obtained with these new optimizations.

4.1 Relief Impostors

When we talk about Relief Impostors we refer to the impostor’s technique
presented in A flexible approach for output-sensitive rendering of animated
characters by Beacco et al. [3].

The key issue of their project consists of rendering a character with a
collection of oriented bounding boxes (OBBs), one for each bone of the
skeleton. Each box is rendered through the Relief Mapping algorithm [14],
projecting a texture onto its faces with the color and depth values. Then,
this character representation is animated by applying the bone’s transfor-
mations to each attached box.

The fact of having an impostor per joint instead of per character elimi-
nates the necessity of being aware of the animation beforehand. Thus, only
one set of textures per impostor is needed, independently of the viewing
angles and the number of animations we want to simulate later. These fea-
tures make evident the impostor versatility and also imply a considerable
size reduction of the memory to store pre-computed information.

In order to simplify the animation stage, this approach takes advantage
of HALCA [19] animation library.

4.1.1 Overview

The first step is choosing the number of divisions for the per-joint impostors’
creation, in order to define which vertices are projected onto each bound-

23

24 CHAPTER 4. IMPOSTOR IMPROVEMENTS

ing box. The easiest way for partitioning the character is throughout its
joints, having a single box per each joint. However, it may lead to too many
impostors per character and some of these boxes could fall inside a bigger
one. A simple solution may be grouping more than one joint into the same
bounding box, and applying to them the parent transformation for animat-
ing it. For instance, merging the hand joint with all the finger parts reduces
considerably the number of boxes and the character motion is not visually
affected. To avoid holes between boxes or occluded areas while capturing
the images only the current joint is rendered at a time, with the neighboring
vertices that are influenced by this joint. Different configurations of merged
bones can be used as various levels of detail.

Secondly, a suitable character pose has to be selected for capturing the
impostors’ images. This pose has to represent an average pose to minimize
the artifacts during the animation and it also has to guarantee a minimum
total volume of the bounding boxes to save memory space. Once the char-
acter is in the selected pose, the oriented bounding boxes of the joints are
computed from the initial axis-aligned ones by applying the required rigid
transformations.

Figure 4.1: Relief Impostors overview: (top from left to right) character
subdivision per joints, impostor boxes textured with color, normal and depth
information respectively and resultant impostor representation. The image
below shows a scene populated with this type of impostors [3]

Finally, the last step of generation is to render the polygon mesh in the
selected animation pose, to capture each one of the six faces of the impostors’
bounding box. For each face, an orthographic camera is situated with its

4.1. RELIEF IMPOSTORS 25

viewing direction aligned with the face’s normal vector. Then, only the part
of the mesh related to the box is rendered, and the color, normal and depth
information are captured and stored as texture images.

Once the set of impostors per character have been generated, the ren-
dering process starts loading the generated images and binding them to the
GPU as separate texture arrays (one for color and another one for nor-
mals, encoding depth values into both alpha channels). All the information
relative to the joint bounding boxes is also bound as a VBO.

During the simulation execution, the HALCA library sends the rigid
transformation matrices of each joint corresponding to the current motion
pose to the GPU. With this information, the vertex shader computes the
transformations of the joint bounding boxes following the skeletal animation.

The fragment shader is responsible for rendering each face of the overall
bounding boxes, using a dual-depth version of the Relief Mapping algorithm.
This method consists of finding the intersecting point of the fragment’s
viewing ray with the height field (encoded by the depth values into the
textures). It is done by a linear search, sampling first the ray at regular
intervals to find a ray sample inside the object, and this is followed by
a binary search to find the intersection point. This allows recovering the
diffuse color of the fragment and its normal component.

Having in mind how this approach works, in the following section we
analyze the limitations of this approach while also presenting our improve-
ments.

(a) Relief Impostor street view scene (b) Relief Impostor aerial scene

Figure 4.2: Scene completely populated with Relief Impostors

4.1.2 Our Improvements

In order to have a better understanding of the Relief Impostors technique
we have re-implemented it from scratch, exploiting the resources offered by

26 CHAPTER 4. IMPOSTOR IMPROVEMENTS

the impostor module embodied into the CAVAST framework. The initial
approach of this method has been obtained by following step by step the
details of their algorithm, creating a generation interface separated from all
of the impostor rendering functionalities.

For the Relief Impostors we propose the following optimizations, which
are described in detail below:

• Different levels of detail into the same character

• Customizable parameters through a user interface

• Variable number of linear and binary steps of Relief Mapping algorithm

• Optimizations on Relief Mapping algorithm

The following subsections describe each one of the above improvements and
the limitations they cover.

Different levels of detail into the same character

On the basis of the work of McDonnell et al. [12], the head and the upper-
torso are the parts most fixated on when rendering a crowd. However, when
using a single texture atlas for all the impostors of a character, the same
image resolution has to be used for the overall body parts, regardless of their
size or importance. For this reason, we propose rendering the character as
separate parts with different parameters. More specifically in two main
parts: the head and the rest of the body.

The process of rendering the character is similar to previous work, but
handling now two texture atlases and two different VBOs (one encoding
the head’s information and another for the rest of the character’s bounding
boxes). Thus, two render calls per character are performed, allowing to vary
some parameters between them.

It allows for better resolution on the head than on the body. Thus,
the memory used for storing and transferring the images to the GPU can
be decreased without an influence on the visual quality. However, rendering
bigger textures implies increasing fragment processing. Additionally, having
more than one texture atlas results in binding and unbinding textures at each
frame, but this cost can be considered negligible compared to the overall
rendering cost.

Taking advantage of splitting the character rendering into two parts,
another approach consists of mixing both the polygonal mesh and the im-
postors in the same representation. Since the head is one of the most relevant
parts of the character, it can be rendered as a high detailed mesh while the
rest of the body is formed by impostors. Obviously, this approach will have
a higher performance cost in respect to the fully impostor representation.
However, it can be a desirable alternative for some parts of the scene.

4.1. RELIEF IMPOSTORS 27

(a) Geometrical representation (b) Relief Impostor

Figure 4.3: Relief Impostor rendered using higher resolution textures for the
head

Customizable parameters through a user interface

The desirable parameters used to create or render the impostors can vary
depending on the scene or the system requirements. In order to ease both
processes, we allow a modification of some parameters throughout the user
interface.

For the generation process, the texture resolution for the head and for
the other parts of the body can be selected by the user. While rendering
the Relief Impostor representation, the number of linear and binary steps of
the Relief Mapping algorithm can be changed on-the-fly.

These aparently small improvements are extremely useful while searching
the balance between visual quality of the representation and performance.

Variable number of linear and binary steps of Relief Mapping al-
gorithm

The algorithm of Relief Mapping [14] consists of recovering the original
geometry of the model by finding the intersection on a height field. To find
this intersection point, an approached point is obtained through a linear
search by sampling the viewing ray until the current sample falls inside the
geometry or the maximum number of steps is reached. Then, a binary search
is used to refine this first approximation, with another maximum number of
steps. Since these two searches are executed per each fragment, they have
a significant impact on the overall performance.

We propose a variable number of steps for each search depending on the
agent distance to the camera. We have fixed a range for the number of steps
of each search: from 16 to 128 for the linear search and from 4 to 10 for the

28 CHAPTER 4. IMPOSTOR IMPROVEMENTS

Figure 4.4: Screenshot of impostors user interface

binary search. Then, further away agents will use the minimum number of
steps for each search and as they get closer to the camera, this value will be
increased..

Optimized binary search of the Relief Mapping algorithm by the
Secant Method

As mentioned before, Relief Mapping recovers the original geometry by a
finding the intersection on a height field in the fragment shader. Thus, it
is an output-sensitive algorithm, which means the rendering time is pro-
portional to the screen projection of the geometry instead of the polygonal
complexity of the model.

To find the intersection of the viewing ray against the depth map, a linear
search is performed along the ray in order to obtain a first point inside the
surface. Then, a binary search provides a more accurate intersection point.

Figure 4.5: Linear search of Relief Mapping [18]

Since this technique has a high impact on per-fragment performance, we

4.1. RELIEF IMPOSTORS 29

propose to optimize the binary search part of the algorithm by the Secant
Method of Risser et al. [18]. Unlike Relief Mapping where a midpoint is
assigned for the upper and lower bound, at each iteration of the Secant
Method the intersection point is taken as one of the bounds. Then, with
only a few iterations (usually less than four) the intersection of the surface
is found. The figure below 4.6 shows an example.

Figure 4.6: Binary search using the Secant Method [18]

Even though this variant of binary search for Relief mapping converges
in less steps, it is hardly noticeable since Relief Impostors are used in areas
of the scene far away from the camera, and the impact on performance of
the number of fragments is low.

30 CHAPTER 4. IMPOSTOR IMPROVEMENTS

4.2 Flat Impostors

The name of Flat Impostors references another per-joint impostors’ ap-
proach presented by Beacco et al.: Efficient rendering of animated characters
through optimized per-joint impostors [1].

The main contribution of this work is representing each bone of the
skeleton with a single oriented textured quad. In the pre-process each bone
is sampled from a discrete number of views and saved as textures. During
rendering, these textures are projected into the quads, depending on the
joint orientation in respect to the camera. Character animation is done by
applying each bone transformation matrix to the corresponding textured
quad.

This work is based on the strategy of Tecchia et al. [20], which used
a single textured quad for representing the whole character. The fact of
having a collection of pre-computed views of the character increases the
performance of the simulation, since the cost of rendering a textured polygon
is low. Besides, Flat Impostors exploit the benefit of having a separate
impostor for each part of the body, which unties them from having to know
the animation cycle in advance.

As Relief Impostors does, this approach uses HALCA [19] as animation
library.

(a) Mask generation (b) Texture combination to
render the whole character

(c) Texture orientation to
the view direction

Figure 4.7: Flat Impostors generation and rendering

4.2.1 Overview

The first stage of the impostor creation is to decide which vertices of the
polygonal mesh will be codified in each impostor to compose the whole

4.2. FLAT IMPOSTORS 31

character. Dividing the character exactly by its skeleton bones may result
in an excess of impostors, some of them unnecessary. Thus, it is reasonable
to merge groups of bones in a single impostor, such as each hand with its
fingers or each foot with its toes. The resulting representation can be easily
animated using the parent bone transformation for each part. For instance,
the impostor containing one hand and its fingers will be animated using only
the hand’s transformations and ignoring the ones of the fingers.

Next, each joint is sampled from a discrete number of view directions us-
ing a Voronoi map. For simplicity, this map is replaced by a once-subdivided
icosahedron projected into a cube map, each face of the icosahedron repre-
senting a Voronoi region, or in this case, a different view direction. Thus,
this cube map encodes for each texel a color identifying its nearest discrete
sample. The same cube map is used for the overall joints, thus, each joint
is uniformly sampled as many times as the others. For each joint, the color
and normal information of each view is saved to disk as a group of texture
atlases, using an orthographic camera aligned to the view direction.

In order to avoid cracks or overlapping between joints while rendering
the whole impostor representation, it is important to define which part of the
geometry influenced by each joint is captured. For the contrary, including
all the vertices which have any influence in that joint may lead in salient
artifacts around joint boundaries. Thus, they compute an opacity mask
defining a swept area for each joint boundaries, which covers all possible
projections of the neighboring geometry influenced by the joint. For each
joint, this mask is obtained by rendering a subset of realizations by uniformly
taking different rotation angles from fixed angle limits. By doing this, the
mask obtained covers a similar range of the movements of each joint and
minimizes the overlapping artifacts between joints.

(a) Flat Impostor street view scene (b) Flat Impostor aerial scene

Figure 4.8: Scene completely populated with Flat Impostors

32 CHAPTER 4. IMPOSTOR IMPROVEMENTS

Once the impostors of the character have been generated, the created
images are loaded and bound to the GPU as texture arrays (one texture
array for color images and one for normals) and the cube map encoding the
precomputed view directions is also sent to the GPU.

For rendering the character, a VBO is also bound to the GPU with
the character information: a vertex position per joint (which represents the
center of the impostor quad), the bone identification, the normal information
of the joint bounding box and the layer of the texture array where the images
of the joint are stored.

As in Relief Impostors, HALCA library is in charge of sending at each
frame the rigid transformation matrices per joint for animating the charac-
ter. Then, the vertex shader transforms the vertex position and the joint
normals according to the current pose and it computes the view that best
matches the joint orientation looking at the cube map texture.

The geometry shader creates two attached triangles defining the impos-
tor quad and the texture coordinates for accessing the texture array. Finally,
the fragment shader applies the texture to the quad by the usual texture
mapping, computing the final color of the fragment. By using the opacity
mask (codified in the alpha channel of the color texture), the amount of
joint boundary that is shown can be adjusted.

In the next section, we explore the limitations of Flat Impostors while
presenting our improvements for this method.

4.2.2 Our Improvements

After re-implementing Flat Impostors technique from scratch, including it
in the impostor’s module of the CAVAST framework. First, we developed
an approach following exactly the proposed algorithm, but we have modified
some parts in order to optimized the method and to obtain better results.

For Flat Impostors, we propose the following improvements, which are
described in detail below:

• Different levels of detail into the same character

• Customizable parameters through a user interface

• Different angle ranges for joint blending

The following subsections detail each one of the above optimizations and
the limitations they cover.

Different levels of detail into the same character

Similarly to Relief Impostors, using the same texture atlas for the overall
impostors of the character limits to method having the same resolution on

4.2. FLAT IMPOSTORS 33

all the parts of the body. Furthermore, in the case of Flat Impostors a single
cube map texture is in charge of encoding the different viewpoints for all
the impostor joints. This implies that all joint impostors will be sampled
from the same number of view directions. However, as mentioned earlier,
the head is one of the body parts most looked at within a crowd [12], and
providing more resolution to the head will bring on better visual results.
For this reason, we propose rendering the character as two different main
sections: the impostor head on one side, and the rest of the body on the
other side.

(a) Geometrical representation (b) Flat Impostor

Figure 4.9: Flat Impostor rendered using higher resolution textures for the
head

For the sake of giving prominence to the impostor head, we have created
a new texture atlas and another VBO for this part. By this, the head’s
information is processed and rendered separately from the data of the rest
of the body impostors. Thus, an independent cube map can be used only
for codifying the view directions for the head, which allows having more
samples from the head and with more resolution.

Even though creating images of higher resolution improves substantially
the visual quality, the fact of having a different sample rate for the head has a
bigger impact on the final rendering. Impostors with higher number of views
increase the number of switches between views when the character changes
its orientation. Thus, the ’popping’ effect is less noticeable since changes
between views are not so abrupt (images of adjacent views are more similar

34 CHAPTER 4. IMPOSTOR IMPROVEMENTS

between them).
By doing this, the visual quality of the character representation is im-

proved and the artifacts of relevant parts such as the head becomes less
perceptible. It is achieved with a low impact on the current memory size,
which makes it an important point since the high memory requirement is
the most restraining imposition of this method.

In this case is also possible to create a hybrid representation: rendering
the head as a polygonal mesh and having the rest of the body formed by
Flat Impostors. Evidently, this will have a high repercussion on rendering
performance but it removes completely the distracting artifact of ’popping’
of the head and at the same time it provides high resolution detail.

Figure 4.10: Screenshot of impostors user interface

Customizable parameters through a user interface

The parameters used to create or generate the impostor representation may
be different depending on the situation. We have added to the interface a
set of widgets to allow the user modifying these parameters.

In this case, the user can choose the image resolution for the head and
for the rest of the body before generating the impostor images. At the same
time, it can select a different number of views for sampling the head for
the other body parts. For simplicity, since we approximate a Voronoi map
with a subdivided icosahedron to compute the view directions, the user has
to choose the number of icosahedron subdivisions instead of specifying the
exact number of desired views.

4.2. FLAT IMPOSTORS 35

To compute the opacity mask of the joints, another parameter that is
tunable by the user is the number of angles sampled in the defined range.
The higher the number of angles chosen, the more precise the mask will be
but the slower this process becomes.

While rendering the Flat Impostor, the user can also adjust the amount
of joint boundary that is shown by modifying the alpha mask value.

Different angle ranges for joint blending

To avoid overlapping joints or holes between impostors, an opacity mask is
calculated for each joint boundary. To compute it, all possible projections of
the geometry that is influenced by the joint have to be taken into account.
For simplicity, they defined a range of rotation angles for each one of the
three degrees of freedom (DoF) of a joint, and they rendered a discrete
subset of realizations per each joint by sampling values within these angle
limits.

(a) Human approximate mobility
range per joint

(b) Fixed mobility range for the
overall joints

Figure 4.11: Differences

The main restriction of this, is that they used the same range of angles
for all the DoF of all the joints, unlike human joints which have different
values for the different joints. For example, the neck has rotations values
very different from the knee, or articulations such as the elbow only has one
degree of freedom for its rotation. For this reason, we propose to adapt each
one of these angle limits to the real human values. Some of these values have
been extracted from the chapter Joint-Articulating Surface Motion of the
book Biomechanics [9], but most of them were taken from the book Physics
of the human body [7]. The following table shows the range of mobility for
the most relevant joints 4.1.

36 CHAPTER 4. IMPOSTOR IMPROVEMENTS

By limiting the rotation angles of each joint we can obtain opacity masks
more realistic and accurate, fitting better for generalized animations.

opposing movements mean SD

shoulder flexion/extension 188/61 12/14
shoulder adbuction/adduction 134/48 17/9
shoulder medial/lateral rotation 97/34 22/13
elbow flexion 142 10
forearm supination/pronation 113/77 22/24
wrist flexion/extension 90/99 12/13
wrist adbuction/adduction 27/47 9/7
hip flexion 113 13
hip adbuction/adduction 53/31 12/12
hip medial/lateral rotation (prone) 39/34 10/10
hip medial/lateral rotation (sitting) 31/30 9/9
knee flexion (prone) - voluntary, arm assist 125, 144 10, 9
knee flexion - voluntary (standing), forced (kneeling) 113, 159 13,9
knee medial/lateral rotation (sitting) 35/43 12/12
ankle flexion/extension 35/38 7/12
foot inversion/extension 24/23 9/7

Table 4.1: Mobility range for the most relevant joints [7]

Figure 4.12: Postures used for capturing the angle ranges [7]

4.3. GENERAL IMPROVEMENTS 37

4.3 General Improvements

Aside from the specific improvements for both techniques Relief and Flat
Impostors, we propose the following series of optimizations that are inde-
pendent from the method used, which are explained in detail below.

• Generalization for different skeletal configurations

• Color diversity

• Pre-computed lighting

The following subsections detail each one of the above optimizations.

Color variety

To provide variety to a large crowd it is not feasible to have hundreds of
different models, because it will greatly affect the performance. The usual
number of different models used for a crowd is between 3 and 10 [11]. How-
ever, the simplest way to add variety is ’per body part color modulation’.
This hardware accelerated technique consists of modifying manually the al-
pha channel of the model’s texture, given different values to the different
parts: skin, hair, top and bottom cloths and shoes. We capture this channel
during impostor creation and added it into the impostors’ textures.

(a) Diffuse color (top), color masks (bot-
tom)

(b) Scene with the same model with dif-
ferent colors

Figure 4.13: Color variation example

Then, in the fragment shader the HSV color of the pixel can be modified
depending on this value. For the hair, we have two types of variation (de-
pending if we decide the agent will have blonde or brown hair). Skin color is
taken from a set of predefined colors, in order to be as realistic as possible.

38 CHAPTER 4. IMPOSTOR IMPROVEMENTS

Pre-computed lighting

Adding color variety through color modulation occupies another channel of
the impostors’ generated image. In the case of Relief Impostors it was a
problem since we saved for each impostor: 3 channels for color, 3 channels
for normals and 2 channels for depths, in two RGBA images.

Since we prioritize character variety more than illumination, a luminance
factor is computed rather than saving the 3 normal components. Then,
during the generation process, we fixed a light on the scene and computed
the resultant diffuse color of the model. With this color, we calculate a
luminance factor for each fragment.

(a) Luminance factor (b) Diffuse color

Figure 4.14: Luminance factor and diffuse color of the model

During the rendering, this luminance factor is used for computing the
shading of the fragment instead of using the normal components.

Chapter 5

Perceptual Study

This chapter explains the experimental evaluation realized to analyze the
perception of the common visual artifacts due to image-based impostors
rendering methods. Concretely, we compare the visual perception of ren-
dering impostors against pure geometry to obtain the preferable distance at
which using each impostor method is not visually appreciable. Then, after
explaining the study setup and the procedure used, we analyze the results
obtained and discuss some final aspects.

It has been observed that every impostor technique produces visual ar-
tifacts when it is used for rendering the closest characters of the scene.
Consequently, the further away from the camera the impostors are situated,
the less noticeable their artifacts become. For this reason, the nearby char-
acters are usually rendered as a high-detailed mesh and switching to their
impostor representation at a determined distance. The key issue of each im-
postor method relies on finding the optimal distance to achieve a trade-off
between performance and visual quality.

In order to find the most favorable distance to render each impostor type,
we have carried out an experiment to evaluate the perception of the most
common visual artifacts in crowds, due to image-based impostors rendering
methods. Concretely, the aim of this study is to determine the optimal
distance at which it is feasible to switch from rendering polygonal meshes
to each one of the impostors without losing visual quality. More specifically,
the three types of impostor techniques that we have analyzed separately are
Relief Impostors [3], Flat Impostors [1] and One Textured Quad Impostors
[20].

5.1 Experiment Design

To analyze visual quality of impostors in crowds, we set up a collection of
populated scenes.

39

40 CHAPTER 5. PERCEPTUAL STUDY

In real-time crowd applications, typically between 3 and 10 templates
are used. Thus, for our study, we used a set of 6 characters (3 males and
3 females) representing typical pedestrian types: middle-aged and wearing
casual attire. Each character had its single texture map which incorporated
all of the textures for hair, skin and clothes. As explained in 4.3, we manually
created an alpha map encoding color variety.

McDonnell et al. found in their work [11] that having a single animation
played out-of-step has the same impact on motion variety as having many
different animations. For this reason, we only use a unique normal-walking
motion cycle for all the characters played off-phase.

The scene consisted of a textured quad for the ground plane (represent-
ing the typical street ground tiles) and a plain white background. For the
simulation we use a simple controller included in the CAVAST 3.1 frame-
work. For each agent, this controller randomly assigns a new goal position
once the agent has reached its current one by following a pathfinding algo-
rithm. We did not force it to produce a deterministic simulation for all the
different scenarios, to avoid users searching similarities between simulations
or being influenced by resultant patterns.

For the study, we have fixed some parameters such as: texture resolution
of impostors, number of views and number of merged joints.

(a) Camera 1 (b) Camera 3

Figure 5.1: Two snapshots of the videos showed to the users

For the experiment, we had recorded a set of videos showing an animated
crowd of 500 agents, with a duration of 30 seconds each. There were a total
of 12 videos: one for each type of impostor method, from two different
camera’s viewpoints and with two different crowd-density values. In both
points of view the camera is situated above pointing to the multitude.

In each video the viewport was vertically divided into two parts: agents
positioned on one half were rendered completely as high-detailed polygonal
meshes and on the other side were represented as impostors. As an ini-
tial configuration of the impostors’ side, only the furthest agents were ren-
dered using an impostor representation while rendering the rest as polygonal
meshes. During the simulation, the frontier for switching between represen-

5.2. EXPERIMENT PROCEDURE 41

tations was decreasing (moving towards the camera), so at each time the
area of the scene with impostors starts closer to the camera. It means that
during the video the number of impostors in the scene increases gradually,
until the overall agents of the impostor’s side of the viewport were repre-
sented as impostors. The decision of which side of the video showed the
impostor representations was done randomly.

During the simulation, this frontier between the geometric and impostor
representation moves towards the user with a non-uniform velocity. To avoid
fast representation switches when an agent is moving around the frontier,
agents have a minimum time for being rendered with the same represen-
tation. They also have different distance offsets to the switching distance,
preventing a visible wavefront when changing representation.

All geometric and impostor representations have pre-computed illumi-
nation (as explained in 4.3), and project shadows to the ground.

5.2 Experiment Procedure

Twenty two participants (14 males and 6 females, aged between 22 and 66)
participated in this experiment. They were from different educational back-
grounds and only 8 of them had any experience with the field of computer
graphics (the rest were näıve). All the participants had normal or corrected
to normal vision.

The experiment was displayed on a wide-screen 23 inch LCD monitor
with a resolution of 1920*1080 pixels. The distance from the user to the
screen was approximately 60 cm and they were asked to respect that dis-
tance. Lighting conditions of the room were the same for all the cases. The
user forms are attached in the annex 6.2.

Figure 5.2: User test setup

42 CHAPTER 5. PERCEPTUAL STUDY

During the experiment, the participants watched all the videos 3 times,
in a random order to avoid ordering effects. So, each user watched 36 trials
(3 impostor types * 2 densities * 2 viewpoints * 3 repetitions), with a withe
screen in between videos to alleviate eye strain.

The users’ task was to determine which side of the video is the one
with visual artifacts. Thus, users were asked to select one side as quickly
as possible when they had noticed any visual difference during the video
reproduction. If the video finished, the last frame image was shown frozen
and the user had to make a choice. Participants indicated their decision by
pressing a button on a modified keyboard. We recorded both the accuracy
of their responses and their reaction times.

At the beginning of the experiment, the participants watched a video
with a simulated crowd formed only by polygonal characters (using the same
character as in the test videos). It was done to familiarize them with both
the characters and the simulation used, showing them an example of what
we considered an optimal rendering. We remarked the fact that other effects
related to the simulation (such as foot sliding or errant character paths) or
scene rendering (such as lighting or shadows) were not the kind of errors we
were looking for. However, we did not specify what the expected artifacts
looked like in order to obtain neutral results.

At the end of the test, the participants had to indicate what artifacts
they found throughout the videos.

5.3 Results

After running the experiment, we collected the overall data to analyze the
results.

We had encoded into a file the correspondence between frame second
and distance of switching to the impostor representation for each video, so
we obtained that distance from the time response of the users.

Impostor type OneTexturedQuad Flat Relief
Mean time (s) 10,5 21,1 23,9
Mean distance 15,5 10,7 8,9
Miss percentage 6% 9% 15%

Table 5.1: Mean results per impostor type

The data was processed in the following way: we computed a mean of the
three trials per video for the distance and the time response, but ignoring
the cases when the user did not select the correct side of the video (the one
with artifacts). We also counted the number of user hits per video. At this
point, we had one sample per user and per video (22 users per 12 videos).

5.3. RESULTS 43

First of all, we computed general mean times of response and mean
impostor distances for each one of the impostor types for the overall users.
Additionally, the percentage of hits per technique is shown 5.1. From this
table we can clearly deduce that One Textured Quad Impostors are the
most easily detectable, since the users answered quicker and with only 6%
of wrong answers. On the other side are Relief Impostors with the highest
failure rate (15%) and the longest response time. However, Flat Impostors
seems to be in the middle point of the two extremes.

Looking at this results, we could assume that, for achieving good visual
results, the rendering representation order should be: Relief Impostors for
closest areas to the camera, then Flat Impostors and finally Classic Impos-
tors to the furthest part. However, a deeper analysis has to be performed
to have a better understanding of the factors that influence the results ob-
tained.

There was a video for each type of impostor, for 2 different crowd densi-
ties and from 2 points of view, so the three factors to analyze are: impostor
type, density and camera or view point. Since we were measuring the dis-
tance of the impostor representation area to the camera, the goal is to find
out if the obtained distance is influenced by these factors.

Considering that the two views used were decidedly different (an aerial
camera and a street view), we can assume beforehand that the camera po-
sition is a decisive factor and has high influence on visual perception.

Figure 5.3: Distance vs. Camera interaction plot

An interaction plot shows how the relationship between one factor and a
continuous response depends on the value of another factor. Then, looking
at the plot, the more non-parallel the lines are, the greater the strength of the
interaction. In the interaction plot 5.3, we can observe that the view point
used has an influence on the distance obtained for the different impostor
types. This is a reasonable result because a closer view to the crowd will
lead in more occlusions depending on the density and, at the same time,

44 CHAPTER 5. PERCEPTUAL STUDY

some artifacts become more noticeable because of the characters proximity
to the camera.

Since the camera position through the scene is obviously a decisive factor,
we have divided the rest of the analysis in two parts (one for each view point)
to study the influence of the other factors.

5.3.1 Two-way ANOVA

In order to study the relation between the distance and the two factors
(impostor type and density), we have applied a Two-way ANOVA analysis
(Two-way Analysis Of VAriance) with 95% of confidence for each one of the
view points.

Source DF SS MS F P

ImpostorType 2 1414,40 707,199 40,87 0,000
Density 1 4,34 4,345 0,25 0,617
Interaction 2 1186,43 593,217 34,28 0,000
Error 126 2180,18 17,303
Total 131 4785,36

S = 4,160 R-Sq = 54,44% R-Sq(adj) = 52,63%

Table 5.2: Two-way ANOVA of camera 1

Figure 5.4: Intervals of confidence Camera 1

For the camera 1 (from above), the obtained values are shown in the
table below 5.2. From these values we can infer that there was a main effect
of changing the impostor type (p − value = 0.00 < 0.05), so there were
significant differences between the three groups. This is reasonably since
each group represents a completely different technique. On the other hand,
we found no effect of density (p − value = 0, 617), which implies that the
distance at which participants detected artifacts (using this camera) is not

5.3. RESULTS 45

affected by crowd density. We can also concluded that exists an interaction
between the two factors (p-value of the interaction is less than 0.05).

Source DF SS MS F P

ImpostorType 2 510,82 255,412 12,74 0,000
Density 1 0,92 0,916 0,05 0,831
Interaction 2 183,04 91,520 4,56 0,012
Error 126 2526,12 20,049
Total 131 3220,90

S = 4,478 R-Sq = 21,57% R-Sq(adj) = 18,46%

Table 5.3: Two-way ANOVA of camera 3

For the camera 3 (from eye height), the table below shows the resultant
values 5.3. From these values we can deduce that there was also a main
effect of changing the impostor type (p − value = 0.00 < 0.05), so it is
reasoned since we are testing three different techniques. As with the other
view, we found no effect of density (p − value = 0, 831 > 0.05), which
implies that the distance is not affected by crowd density. In this case does
also exist an interaction between the the impostor type and the density
(p− value = 0.012).

Figure 5.5: Confidence intervals of camera 3

The main conclusion of these analysis is that the type of impostor in-
fluences the mean distance, unlike crowd density which does not affect it.
However, the two conditions (type of impostor and density) interact by any
means.

5.3.2 Cumulative probability of distance

The following graphs illustrate for each configuration how frequently was
detected that one side of the video had worse render quality than the other.
So, the vertical axis measure the probability that at given distance users will

46 CHAPTER 5. PERCEPTUAL STUDY

detect artifacts in one side (taking only into account the correct answers).
The resultant curves are known as a psychometric function (or frequency
of seeing curve) [5], and they show that the probability of detecting visual
artifacts increases with the distance.

Figure 5.6: Cumulative probability of distance: Camera 1, density 7

Figure 5.7: Cumulative probability of distance: Camera 1, density 95

5.3. RESULTS 47

Figure 5.8: Cumulative probability of distance: Camera 3, density 7

Figure 5.9: Cumulative probability of distance: Camera 3, density 95

48 CHAPTER 5. PERCEPTUAL STUDY

These graphs are obtained by fitting the data with a model that de-
scribes the response behavior (cumulative normal or probit analysis). The
psychometric function of the cumulative model is:

pi =

∫ zi

−∞
ez

2
i /2dz

z = (i− µi)/θi

when p is the integral of an exponential function and z is a parameter
that is related to both the mean and the variance of the responses collected
in the experiment. We can compute these z values that correspond to the
probabilities in the cumulative normal function and plot then as a function
of the distances. Then, if the cumulative normal model is a good fit to the
data, it can be approximated by a straight line.

Each one of the following graphs, show the cumulative normal model
and the approximated regression line. Each line is described by its equation
and its R2 parameter which quantifies the goodness of this approximation.
For instance, a curves with a line approximation with R2 = 0, 9126 means
that this curve can be approximated by the given line with a 91,26% of
confidence (example OneTexturedQuad figure 5.10).

Figure 5.10: Cumulative normal: Camera 1, density 7

From this line approximations, we can use their slope and intercept to
calculate the mean and standard deviation of the cumulative normal function
that fits the data. With this information, we can extract the predicted
distance at which users will start detecting artifacts for each one of the

5.3. RESULTS 49

Figure 5.11: Cumulative normal - Camera 1, density 95

Figure 5.12: Cumulative normal: Camera 3, density 7

50 CHAPTER 5. PERCEPTUAL STUDY

Figure 5.13: Cumulative normal: Camera 3, density 95

configurations. The predicted distances for each configuration are shown in
the tables below 5.4 5.5 5.6 5.7.

Percentage z OneTextQuad Flat Relief
50% 0 23,62 13,44 26,71
60% 0,253 25,00 14,25 26,06
70% 0,524 26,46 15,12 29,50
80% 0,842 28,18 16,13 31,19
90% 1,282 30,57 17,54 33,53
99% 2,326 36,23 20,89 39,10

Table 5.4: Predicted distance for camera 1 density 7

Percentage z OneTextQuad Flat Relief
50% 0 10,95 9,59 6,63
60% 0,253 11,68 10,61 8,61
70% 0,524 12,46 11,70 10,73
80% 0,842 13,38 12,98 13,21
90% 1,282 14,65 14,75 16,66
99% 2,326 17,67 18,95 24,83

Table 5.5: Predicted distance for camera 3 density 7

5.4. DISCUSSION 51

Percentage z OneTextQuad Flat Relief
50% 0 15,21 13,95 13,65
60% 0,253 16,22 14,75 14,29
70% 0,524 17,29 15,59 14,98
80% 0,842 18,55 16,58 15,79
90% 1,282 20,30 17,96 16,90
99% 2,326 24,45 21,22 19,55

Table 5.6: Predicted distance for camera 3 density 95

Percentage z OneTextQuad Flat Relief
50% 0 13,37 6,53 8,00
60% 0,253 14,44 7,41 10,06
70% 0,524 15,58 8,36 12,27
80% 0,842 16,92 9,46 14,84
90% 1,282 18,78 10,99 18,42
99% 2,326 23,20 14,63 26,92

Table 5.7: Predicted distance for camera 1 density 95

5.4 Discussion

From the statistical analysis we can conclude that One Textured Quad Im-
postors are the most detectable (artifacts due this technique are quickly
detected, which means that are identified at lager distances). This is rea-
sonable since the texture resolution is crucial in this technique, thus, from a
certain distance image pixels become too evident (as users commented after
the experiment). On the other side, Relief Impostors are the most difficult
render technique to detect among the tested, with the closest distances to
the camera and the highest miss rate of response. In the middle point are
Flat Impostors, whose artifacts are less noticeable than One Textured Quad
but more evident than Relief.

These results lead us to the conclusion that the representation with best
results is Relief Impostors, so it can be used for the widest range of distances.
However, as we have mentioned in previous chapter, this technique implies
large cost per fragment. So using Relief Impostors for the overall distance
ranges will drop considerably the performance. On the other hand, Flat
Impostors can be used as a more efficient method in further away distances
without a loss of image quality. Finally, since One Textured Quad Impostors
are the cheapest ones in terms of rendering performance, this representation
can be used in the furthest part of the scene.

To summarize, we have observed that each one of the distance thresholds
will depend mainly on the type of view used. Additionally, even though the
density of agents used to simulate the crowd interacts with the impostor
type, it does not affect the mean distance of each representation.

52 CHAPTER 5. PERCEPTUAL STUDY

Chapter 6

Conclusions and Future
Work

We will now present the conclusions reached during our work. Finally, to
close this chapter we propose some future work.

6.1 Conclusions

The main problem of realistic crowd simulation relies on achieving real time
performance while using hundreds or thousands of agents. Usually, increas-
ing the detail on geometry models used leads to a drop in the number of
agents the system is able to render. Thus, image-based impostors are a good
alternative since they substitute high-detailed geometry by a few textured
polygons.

After studying the state of the art of crowd rendering and knowing its
limitations, we have notice that per-joint imaged based impostors can im-
prove considerably rendering performance while simulating large crowds,
without affecting significantly the visual quality. Specially, we have focused
on two recent techniques that introduced the concept of per-joint impostor
techniques: Relief [3] and Flat Impostors [1]. Furthermore, we have studied
the state of the art on the perceptual evaluation of the different factors in
crowd simulation. That led us to the conclusion that a perceptual experi-
ment is essential in order to achieve the best results both in visual quality
and performance, while using impostor representations for crowd rendering.

We have first developed a module of software for impostor generation
and rendering included in a prototyping and development crowd simulation
framework CAVAST. This module provides basic tools for easing the impos-
tor creation, and at the same time integrates the impostor rendering with an
already developed crowd simulation functionalities. We have demonstrate
the simplicity of adding a new impostor type to the system by implementing
an example: One Textured Quad Impostors [20].

53

54 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

After studying the main issues of both per-joint image-based impostor
techniques, we have presented a collection of improvements in order to pal-
liate their major limitations. The most prominent optimization for the two
methods is the introduction of levels of detail within the same representa-
tion. In this way, most relevant parts of the character such as the head,
can be enhanced without affecting substantially the general performance
and the memory consumption. In the case of Flat Impostors, we have also
adapted the method of computing the opacity masks for joint boundaries to
use approximate actual human values for joints bending. Moreover, other
optimization techniques such as character variety by color modulation or
pre-computing the lighting have been included into the system, while im-
proving the overall performance and contributing in visual variance.

In order to deeply analyze the two studied impostor techniques (Relief
and Flat Impostors), we have carried out a rigorous perceptual experiment.
We have also included to the comparison the One Textured Quad Impostor
technique exposed as an example. Throughout this experiment, we have
determined the optimum distance for rendering each one of the three repre-
sentations without a loss of image quality in a large crowd simulation. We
have also obtained which are the most noticeable artifacts of each represen-
tation, to continue working in them.

6.2 Future Work

As discussed in the previous section, there are some aspects and limitations
we would like to work on in our future research.

We would like to add the implementation of other kind of impostors in
our framework, in order to provide a complete and varied basis to start work-
ing with, while simulating large crowds with impostor techniques. At the
same time, this could be used to carried out a general experiment comparing
other impostor representation techniques.

The user response measurement in the study would be more accurate if
the distance at which the geometry representation switches to the impostor
would vary in screen space units, rather than world space.

Some impostor artifacts such as cracks or joint overlapping can be masked
by choosing the correct amount of neighboring geometry influenced by the
joint. These artifacts are more noticeable near articulations with high level
of bending. Thus, this can be improved by selecting a different amount of
neighboring vertices per joint while generating impostors.

Finally, we would like to improve crowd simulation by adding realistic
agent behaviors. Furthermore, our simulation only uses one walking ani-
mation, thus we would like to extend the simulation using several motion
cycles: walking at different speeds, turning to the left and right, idle motion,
etc.

Bibliography

[1] A. Beacco, C. Andújar, N. Pelechano, and B. Spanlang. Efficient ren-
dering of animated characters through optimized per-joint impostors.
Journal of Computer Animation and Virtual Worlds, 23(2):33–47, 2012.

[2] A. Beacco and N. Pelechano. Cavast the crowd animation, visualiza-
tion, and simulation testbed. In Pere-Pau Vázquez and Adolfo Muñoz,
editors, CEIG - Spanish Computer Graphics Conference, 2014.

[3] A. Beacco, B. Spanlang, C. Andújar, and N. Pelechano. A flexible ap-
proach for output-sensitive rendering of animated characters. Computer
Graphics Forum, 30, 2011.

[4] Cal3d. 3d character animation library.

[5] James A. Ferwerda. Psychophysics 101: How to run perception ex-
periments in computer graphics. In ACM SIGGRAPH 2008 Classes,
SIGGRAPH ’08, pages 87:1–87:60, New York, NY, USA, 2008. ACM.

[6] J. Hamill, R. McDonnell, S. Dobbyn, and C. O’Sullivan. Perceptual
evaluation of impostor representations for virtual humans and build-
ings. Computer Graphics Forum, 24(3):623–633, 2005.

[7] Irving P Herman. Physics of the Human Body. Biological and Medical
Physics, Biomedical Engineering. Springer, Berlin, Heidelberg, 2007.

[8] Adrian Jarabo, Tom Van Eyck, Veronica Sundstedt, Kavita Bala, Diego
Gutierrez, and Carol O’Sullivan. Crowd light: Evaluating the perceived
fidelity of illuminated dynamic scenes. In Computer Graphics Forum,
volume 31, pages 565–574. Wiley Online Library, 2012.

[9] Kenton R . Kaufman and Kai-Nan An. Biomechanics: Principles and
Applications, volume Chapter 3: Joint-Articulating Surface Motion.
CRC Press 2002, 2002.

[10] Michéal Larkin and Carol O’Sullivan. Perception of simplification
artifacts for animated characters. In Rachel McDonnell, Simon J.
Thorpe, Stephen N. Spencer, Diego Gutierrez, and Martin Giese, edi-
tors, APGV, pages 93–100. ACM, 2011.

55

56 BIBLIOGRAPHY

[11] R. McDonnell, M. Larkin, S. Dobbyn, S. Collins, and C. O’Sullivan.
Clone attack! perception of crowd variety. ACM Trans. Graph.,
27(3):26:1–26:8, August 2008.

[12] R. McDonnell, M. Larkin, B. Hernández, I. Rudomı́n, and
C. O’Sullivan. Eye-catching crowds: saliency based selective variation.
ACM Trans. Graph., pages –1–1, 2009.

[13] Rachel McDonnell, Simon Dobbyn, and Carol O’Sullivan. Lod hu-
man representations: A comparative study. In Switzerland Lausanne,
editor, International Workshop on Crowd Simulation (V-CROWDS),
pages 101–115, 2005.

[14] M. Oliveira, G. Bishop, and D. McAllister. Relief texture mapping. In
SIGGRAPH ’00: Proc. of the 27th annual conference on Computer
graphics and interactive techniques, pages 359–368, New York, NY,
USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[15] J. Pettré, P. De Heras Ciechomski, J. Mäım, B. Yersin, J. Laumond,
and D. Thalmann. Real-time navigating crowds: scalable simulation
and rendering: Research articles. Comput. Animat. Virtual Worlds,
17(3-4):445–455, 2006.

[16] D. Pratt, S. Pratt, P. Barham, R. Barker, M. Waldrop, J. Ehlert, and
C. Chrislip. Humans in large-scale, networked virtual environments.
Presence, 6(5):547–564, 1997.

[17] Martin Pražák and Carol O’Sullivan. Perceiving human motion variety.
In Proceedings of the ACM SIGGRAPH Symposium on Applied Percep-
tion in Graphics and Visualization, APGV ’11, pages 87–92, New York,
NY, USA, 2011. ACM.

[18] Eric Risser, Musawir Shah, and Sumanta N. Pattanaik. Faster relief
mapping using the secant method. J. Graphics Tools, 12(3):17–24, 2007.

[19] B. Spanlang. Halca hardware acclerated library for character animation.
Technical report, EVENT Lab. Universitat de barcelona, 2009.

[20] F. Tecchia and Y. Chrysanthou. Real-time rendering of densely popu-
lated urban environments. In Proc. of the Eurographics Workshop on
Rendering Techniques 2000, pages 83–88, London, UK, 2000. Springer-
Verlag.

[21] Franco Tecchia, Celine Loscos, and Yiorgos Chrysanthou. Visualizing
crowds in real-time, 2002.

[22] Michael Wimmer, Peter Wonka, and François Sillion. Point-based im-
postors for real-time visualization. In Steven J. Gortler and Karol

BIBLIOGRAPHY 57

Myszkowski, editors, Rendering Techniques 2001 (Proceedings Eu-
rographics Workshop on Rendering), pages 163–176. Eurographics,
Springer-Verlag, June 2001.

Annex

Perceptual evaluation forms for Image-Base Rendering for Crowds

November 2014

1

Study Information
The purpose of this study is to evaluate the user perception of the visual artifacts resulting from
some render methods applied to a crowd of agents.
This user study is part of the Master Thesis Improving Image-Base Rendering for Crowds and
Perceptual Evaluation. Contact person:

• Maria Izquierdo, e-mail: maria.izqrdo@gmail.com

This experiment has no risk for people. The participants have the right to withdraw from the study
at any time without prejudice and without providing a reason. All data collected from the users
is confidential and it will be processed anonymously. There will be no economical compensation.

Previous information

Age:

Gender: � Male � Female

Is your vision impaired?

� Yes � No

If yes, are you currently wearing corrective glasses or lenses?

� Yes � No

With what frequency do you use the computer?

Less than an hour per day � � � � � More than 6 hours per day

Do you have any experience in working on computer graphics? Or playing 3D
videogames?

I do not know what it means � � � � � More than 3 hours per day

User satisfaction

Did you understand perfectly the tasks to perform and the procedure?

I did not know what to do � � � � � I perfectly understood

Did you find the tasks easy to do?

Very hard � � � � � Very easy

Do you have any comments or suggestions?

Instructions
A set of short videos are presented to the user. All of them show a crowd of agents, animated and
simulated.
Each video is vertically divided through the middle point by a black line, splitting the crowd in
two parts. The agents situated on one side are rendered using a method that does not produce
artifacts. However, the method used on the other side usually produces more visual artifacts.
Which method is used in each part is randomly chosen.
The user’s purpose is to determine which side is the one with the agents showing visual
artifacts.
Under the video player, there are two buttons corresponding to the left and to the right side of
the crowd. During a video reproduction, when the user notices any difference in the rendering of
the agents of a determined area, he has to indicate which side has visual artifacts pressing the
correspondent button (by pressing the colored key or through using the mouse). At the end of
the study, the user has to introduce what kind of artifacts he has detected throughout the whole
study (what were the differences between the two sides of the videos that have led him to such a
conclusion).

(a) Application snapshot (b) Keyboard

At the beginning of the experiment, the first video shows a crowd rendered without artifacts on
both sides, just to become familiar with the environment. During the test, a plain white image is
showed in between videos, to ease eye strain.
Rendering artifacts on one of the two sides will become more apparent as the video goes forward.
So do not worry if during the first few seconds of each video you notice no difference at all in
rendering quality. Be patient and once you are sure which side suffers from the artifacts, please
press the corresponding button as fast as you can. If the end of the video is reached, you have to
choose which side you think is the one with visual artifacts.
It is important to keep in mind that the goal of the study is to find out artifacts of the agents’
rendering method. Artifacts related to any other kind of errors, such as those caused by bad
visualization (rendering, lighting, shadows...) or from the animation and the simulation (as foot
sliding), are not part of the objective of this study and have to be ignored.
The approximated duration of this test is about 20 minutes.

	Introduction
	Introduction
	Objectives
	Contributions
	Organization

	State of the Art
	Character Representation and Animation
	Crowd Rendering Optimization
	Image-based Impostors

	Perceptual Studies for Crowds
	Character Variety Perception
	Impostor Artifacts Perception

	Conclusions

	Impostor Generation
	CAVAST Platform
	Rendering
	Impostor Generation and Rendering Module
	Example: One Textured Quad Impostors

	Impostor Improvements
	Relief Impostors
	Overview
	Our Improvements

	Flat Impostors
	Overview
	Our Improvements

	General Improvements

	Perceptual Study
	Experiment Design
	Experiment Procedure
	Results
	Two-way ANOVA
	Cumulative probability of distance

	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Annex

