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UNIVERSITAT POLITÈCNICA DE CATALUNYA

Abstract
Facultat d’Informàtica de Barcelona
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In this age, a huge amount of data is generated every day by human interactions with

services. Discovering the patterns of these data are very important to take business

decisions. Due to the size of this data, it requires very high intensive computation

power. Thus, many frameworks have been developed using Central Processing Units

(CPU) implementations to perform this computation. For instance, a distributed and

parallel programming model such as Google’s MapReduce. On the other hand, since

the last half decade, researchers have started using Graphics Processing Units (GPU)

performance to process these huge data. Unlike CPU, GPU can execute many tasks

in parallel. To measure the performance of GPU, EURA NOVA implemented two data

mining algorithms (K-Means and Naive Bayes) in the framework to enable task execution

in a distributed manner by considering availability of GPU power in each node. Even

though the framework was successfully implemented, when compared to another CPU

parallel framework, its performance was very poor. It shows that the framework does

not use the performance of GPU effectively. Moreover, it contradicts with the fact that

GPU can execute many tasks in parallel and thus, faster than CPU implementation. As

a result, this research topic started with the objective to answer how to improve this

performance. Specifically, to improve the performance of the K-Means implementation.

We also included a new data mining implementation called Expectation Maximization

to the framework, taking advantage of each GPU node and the distribution nodes.

Furthermore, we address some good practices when implementing data mining in GPU

from a sequential design.

Working with general purpose GPU is still in development stage. A well known library is

Thrust. We used it to achieve the above objectives. Finally, we evaluated our solutions

by comparing with other existed CPU frameworks. The results show that we improved

the K-Means performance more than 130x, and plugged the expectation maximization

implementation into EURA NOVA’s framework.
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Chapter 1

INTRODUCTION

1.1 Context

Nowadays, lots of important data are generated in our daily life. These data are used

by companies to take business decisions by using data mining techniques analyzing the

meaning of this data [1]. As per pingdom website [14], data on the web is growing expo-

nentially and there are more than two billion users generating data by interacting with

services. Data mining is a field of computer science that plays a vital role in different

areas of applications, like healthcare, market analysis, manufacturing, engineering, etc

[15]. To enable the analysis of massive amounts of data in a reasonable time, parallel

computing has been used and is getting huge attention since the past decade. Further-

more, in the past years we have seen the development of general purpose computing on

Graphics Processing Units (GPU) [1], since GPUs [16] can theoretically deliver more

parallel computing performance than traditional CPUs [17].

In GPU programming, there are different programming models which depend on the

type of GPU device. For instance, the most commonly used programming models are

CUDA [18] and OPENCL [19]. CUDA can only be used by Nvidia [18] GPU devices,

whereas OPENCL can be used in any type of GPU Devices. On the other hand, it is also

necessary to deal with memory allocation and memory access patterns [1]. There are

some libraries that can deal with such low-level hardware considerations. For example,

Thrust [20] is a library that contains parallel algorithms [21]. Thrust also presents good

practices for using the GPU in general purpose computing [1].

1



Chapter I. Introduction 2

There are two types of parallelism presented in EURA NOVA’s implementation:

• Per node GPU, allowing further parallelism within each of the nodes.

• Multiple nodes, each equipped with its own CPU and Memory and connected with

a network.

Per node GPU, where each node equipped with a GPU can execute its routine in paral-

lel. Multiple nodes, where the program can be executed in the cluster to run in parallel.

These two together add a second level of parallelization, making the performance of the

computation faster [1]. SNIFF [1] is an appropriate framework for data mining that ex-

ploits both types of parallelism simultaneously. SNIFF was developed by EURA NOVA

in order to prove that these two types of parallelism can achieve better computation for

the GPU than its counterpart CPU.

In order to validate the framework and the execution model, Tran et al. [1] developed

parallel GPU and CPU versions of two data mining algorithms in SNIFF: the Naive

Bayes classifier [22] and the K-Means clustering algorithm [23]. These two algorithms

were implemented in a distributed cluster system exploiting the massive parallel com-

putation provided by the GPU in each node. The SNIFF framework resulted in a

performance gain for the two aforementioned data mining problems for the GPU im-

plementation outperforming the CPU implementation. The results are presented in the

following graph [1]:

Figure 1.1: Average time spent on the computations of models. The figure on the
left shows the average time spent on the computation of the model on 3 GPU nodes,
on a single GPU node and on a CPU node for various sizes of the dataset for the Naive
Bayes implementation. The figure on the right presents the average time spent on the
computation of one K-Means iteration on a GPU node and on a CPU node for various

sizes of the dataset [1].
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Therefore, one can add more value and form a proper platform for distributed hetero-

geneous processing in the future by combining the best of the distributed processing

models and the parallel processing capabilities of the GPUs [1].

The performance of K-Means GPU implementation in the SNIFF framework was tested

with a Dataset of KDD Cup 1999 (Appendix A) with different sizes from 0.6 Gb to 7.2

Gb. The same dataset was applied to the CPU K-Means implementation of Mahout [24],

which is another data mining framework exploiting parallel computation on a cluster.The

starting point of this thesis was the observation that the results of SNIFF GPU K-means

implementation were considerably slower than that of the Mahout CPU K-means, as can

be seen in the following graph:

Figure 1.2: Average time spent for the computation on a GPU node Titan (Nvidia
Graphics card [2]) and on the Mahout for one iteration time using various sizes of the
dataset. Each of the nodes in the cluster locally processes one third of the total data
size. In the case of Mahout, the data will be processed depending of how the data was

distributed by Hadoop [3], using default block size of 64MB.

Theoretically, the GPU version has to be faster than the CPU version for computing

tasks that require intensive computation. Therefore, the main goal of this project was

to make the GPU implementation faster and find good practices to optimize the data

mining implementations using GPU.

1.2 Motivation

Apart from the CPU, there are other different architectures that can be used to process

the data, such as GPU [25]. GPU took their first steps as graphics accelerators, but

nowadays, they are becoming more programmable and researchers started to use GPUs
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for non-graphics applications too [25]. Typically, graphics hardware contains a large

number of programmable processors which are optimized to work efficiently, providing

extremely high parallelism.

Nowadays, clusters with GPUs are being used throughout the world. Three of the five

largest supercomputers in the world employ GPUs [25].

Researchers in data mining have demonstrated the superiority of the computational

power of parallel processing in GPUs over that of CPU. For instance, in [26], the authors

selected two clustering algorithms, the density-based algorithm DBSCAN [27] and the

iterative algorithm K-Means. Both implementations using GPU outperformed their

CPU counterparts. Other related works regarding K-Means implementations have shown

significant speed ups as compared to their CPU counterparts [28–31]. Similar results

were also obtained for K Nearest Neighbors implementation [32].

For EURA NOVA, the outcome of this thesis is not only important for optimizing the

K-Means implementation for SNIFF and reviewing best practices in Data Mining using

GPU. But also the insights in parallel programming obtained in the project could be

used and add value in other projects of EURA NOVA, such as Arom [33]. The Arom

project, which is based on a DataFlow Graph (DFG), can run distributed parallel data

processing jobs on high volumes of data. The DFG model [1] is a graph where the

operations are represented by nodes and data dependencies between operations are on

the edges. Tran et al. [1] believe that an extension to the DFG model, e.g. Arom

or Dryad [34], can be made using GPU, forming a suitable platform for distributed

heterogeneous processing. As shown in the following figure [1]:

Figure 1.3: DFG representation of a job [1].

This DFG job contains two data sources, preprocessing stages and a join operation.

Their results are the input to a GPU-enabled operation stage, represented as the squared

nodes in the figure 1.3 [1].
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1.3 Scope

The initial step of this research was to study the existing implementations of data mining

algorithms from differents frameworks, such as Mahout [24], R [35] and Weka [36]. We

mainly focused on the Mahout’s K-Means implementation, since this implementation

outperformed EURA NOVA’s K-Means GPU implementation in an earlier study done by

EURA NOVA. In the case of R and Weka, we focused in the sequential implementations

to get some insights that may help to optimize the GPU K-Means implementation in

SNIFF.

In addition, it was required to do a review of the conditions to efficiently execute data

mining algorithms using GPUs. It was necessary to take into account some consider-

ations when working with GPU, because a bad parallel implementation can lead to a

terrible performance [1]. In this respect, Cristian Bohm et al. [26] proposed some data

mining algorithms using GPUs. This review could help future works using data mining

with GPU.

This study focused on optimizing a K-Means implementation in EURA NOVA’s frame-

work called SNIFF, as well as taking into account the differences of the optimized frame-

works’ implementations to integrate them in SNIFF. The study also included relevant

information about best practices of Data Mining using GPU. As a result, the distributed

processing framework for data mining with GPU built by EURA NOVA should have bet-

ter time performance execution after optimizing the implementation.

1.4 Objectives

The first three goals of this master thesis according to [37] were:

1. To provide an analysis of the existing data mining algorithms and optimization of

reference data mining frameworks such as Mahout, R and Weka.

2. To provide an in-depth review of the requirements for data mining algorithm to

be optimally suited for GPUs.

3. To integrate the optimized algorithms into the prototype built by EURA NOVA.

4. As well as providing an implementation in the SNIFF framework of Expectation

Maximization (EM) [38].

Regarding the implementation of the EM, we took it into consideration since EM is

another algorithm that can be distributed and requires intensive computation. We
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will also give an insight of how this algorithm can fit the SNIFF framework using the

capabilities for each node of GPU.

1.5 Initial Planning

The first step was to start by doing a “literature research” to study some of the algo-

rithms of the frameworks previously mentioned. After doing this study, the following

step was to start with an in-depth review of the requirements for the data mining al-

gorithms to be suited for using a GPU. Consequently, all the optimizations will be

implemented in the prototype already built by EURA NOVA [1]. After some tests,

the execution time performance of the framework should be better, based on the op-

timizations of these implementations of the algorithms. If problems arise, then it may

be necessary to review the implementations again. All the observations of the thesis

should be written, making sure to understand the implementations of the algorithms of

the open source frameworks and how these were optimized along with the requirements

in order to use the best practices, so the GPU can work as efficient as possible.

Timeframe estimation for the Initial Planning:

Figure 1.4: Initial Planning for the master thesis
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1.6 Thesis Structure

In the following chapters, relevant background information will be provided. Chapter

2 provides scientific background for GPU programming as well as some good practices

using Thrust library. In chapter 3, a brief introduction of Map Reduce is presented since

it was the parallel technique used in the K-Means CPU implementation of Mahout. In

chapter 4, information regarding Data Mining is presented, containing K-Means and

Expectation Maximization, as well as the parallel implementation of K-Means using the

SNIFF model. Related Work is also presented in this chapter, which includes an anal-

ysis of different frameworks making K-Means available and Literature survey. Chapter

5 contains the contributions of the thesis. This chapter includes a review of the re-

quirements for the best practices using GPU and Data Mining, an analysis for the data

mining frameworks regarding K-Means, as well as the methodology that was followed for

optimizing SNIFF K-Means, further optimizations and the Expectation Maximization

in the SNIFF model. In chapter 6, Final planning will mention some minor changes of

the initial planning. Finally, chapter 7 includes Conclusions & Future Work.



Chapter 2

GPU Programming

In this chapter, we will explain basic concepts of GPU Programming. We will high-

light some important structures illustrated with examples, which are very common at

programming with GPU using Thrust Library.

2.1 GPU Programming

At first, GPUs were only used as 3D accelerators; nowadays, GPUs are also being used to

speed up general-purpose computations. Due to their massive parallelism, they are well-

suited for executing many similar tasks in parallel [1]. In this section, characteristics of

the GPU are presented as well as the GPU programming model. We will mention some

of the main advantages and disadvantages of programming with GPU. An extension of C

programming language called CUDA will be presented since it was the one used during

the experiments of SNIFF due to its simplicity and performance compared to other

languages using GPU [39] such as OpenCL. Finally, Thrust Library, which simplifies

CUDA programming, will be presented.

2.1.1 GPU

GPU [16] is a processor which is in charge of handling graphical tasks. A GPU is similar

to a CPU. Nevertheless, a GPU is specifically designed to perform complex mathematical

and geometric calculations that are required for graphics rendering, since it can draw

multiple pixels in parallel. CPU and GPU process their tasks differently. A CPU

contains few cores optimized for sequential serial processing while a GPU consists of

thousands of smaller cores designed for handling multiple tasks simultaneously [40]. At

the beginning, GPUs were made specially for graphics accelerators; nevertheless, their

8



Chapter II. GPU Programming 9

power can also be used for non-graphics applications, called General-Purpose Computing

on Graphics Processing Units [1].

2.1.2 GPGPU - General-Purpose computing on Graphics Processing

Units

Figure 2.1: GPGPU Timeline adapted from [4].

At first, GPUs were used as graphics accelerators; however, in 2000, researchers started

to use these graphics adapters for non-graphics applications [25]. Programming for the

GPU [25] was very challenging because deep knowledge of the GPU architecture was

required and it was available only for people who were familiar with graphics processing

language, e.g. OpenGL or Direct3D. However, Ian Buck et al. [41] developed a system

for General Purpose Computation on GPU called Brook. Brook was a C extension that

made easier for a wider audience to use GPU Processing. Ian Buck and other developers

released CUDA in 2006. CUDA is a parallel computing platform and programming

model for general-purpose computation. In 2008, the Khronos Group released a cross-

platform parallel programming model OpenCL 1.0 a competitor of CUDA.

2.1.3 GPU Programming model

A program for GPU is separated into two parts [25]: The host code and the kernels.

The host code is executed on the CPU and the kernels on the GPU. The host code in

the CPU will be in charge of running the main program and sending directions to the

GPU, launching the kernels. A kernel is a program that is executed on the GPU; all

threads in a kernel perform the same tasks, the difference is the data that is processed.

A kernel is a grid of blocks, where each block is assigned to a streaming multiprocessor

(SM) and can contain 1024 threads as maximum. The execution is divided into groups

of 32 threads, called warps, that run at the same time, instead of executing the 1024
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threads that are on a block [25]. The number of warps composed of 32 threads can be

many in the GPU depending on the number of cores of the GPU. These will be executed

in parallel and the remaining threads will be waiting till the others warps finish in order

to be executed. The following figure represents a kernel launch that will store a block

of threads in a grid and in each block containing these threads [5]:

Figure 2.2: GPU kernel structure and invocation [5].

In order to have a great performance when running the kernel, these are some of the

challenges proposed by [25]:

1. Graphics devices only offer limited synchronization possibilities.

2. Memory access should be coalesced to fully utilize the high bandwidth of device

memory. Coalesced is an access pattern where each thread access a consecutive

block of memory without any gaps. This results in a great performance since

whenever each thread wants to read or write to the global memory, it always

access a large chunk of memory; the GPU can reuse this large chunk of memory

for all the threads that are contiguous, giving better performance than if the access

was randomly done [6]. As can be seen in the following pictures:

Figure 2.3: The threads are contiguous having good performance [6].
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Figure 2.4: The threads are random having bad performance [6].

3. Divergence at warp level should be avoided.

Divergence [25] in the GPU is present when some threads take a different execution

path when evaluating a condition. When threads take different code paths, since there

is a single program counter per SM, the execution is serialized and part of the processor

idle. The best way to have a good performance is that all threads that are assigned to

a SM execute the same instruction per cycle. In the case of inter-warp, since they are

in different warps, divergence is not an issue. This execution in GPU is called SIMT

(Single Instruction, Multiple Threads). The CPU programming model [25] follows the

execution of SIMD (Single Instruction, Multiple Data), in which it allows each thread

to branch.

2.1.4 Advantages and Disadvantages of programming with GPU

Some advantages and disadvantages of programming with GPU are presented in the

following table [25, 42]:

Table 2.1 GPU Advantages and Disadvantages

Advantages Disadvantages

1. GPUs can run algorithms from 10
to 100 or more times faster than a
CPUs.

2. GPU technology is now available for
reasonable prices.

1. Programming for GPU differs signif-
icantly from traditional CPU.

2. Incorporating GPU hardware into
systems adds expense in terms of
power consumption, heat produc-
tion and cost.

3. Data transfer at the bus between
CPU and GPU may have perfor-
mance problems due to the Periph-
eral Component Interconnect Ex-
press (PCIe) bottleneck.
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2.1.5 CUDA

CUDA [18] is a parallel computing [43] platform and programming model created by

Nvidia; it improves the computing performance by harnessing the power of the GPU.

CUDA takes advantage of heterogeneous systems that have both CPUs and GPUs [44].

A CUDA program is split into two parts: The host code, which is the code executed in

the traditional CPU, and The device code, which runs on the GPU [44].

We illustrate the advantage of using GPU vs CPU with an example from [45]. In this

example, 100 numbers need to be squared. The following fragment shows how to code

this task for CPU:

for(i=0; i<100; i++)

{

output[i] = input[i] * input[i];

}

This previous code is only launching one thread at a time in which is putting the result

of the multiplication done by the input array in the output array, and it loops 100x

times, one thread after another. In the case of the GPU, it is possible to just run a

program called kernel in which it will launch for this example 100 threads at the same

time in a block, as oppose to the previous CPU example, making the square of each

number of the array, as shown with the following code:

square<<<1, 100>>>(d_out, d_in); //Kernel, launching 100 threads in 1 block

square(output, input){

idx = threadIdx.x; //Each thread contains an id.

f = input[idx]; //Based on this id, the value is stored in f

output[idx] = f * f; //The square of the numbers in

//f is stored in output array

}

Appendix B contains the full implementation of the CUDA code retrieved from [45]. It

describes all the previous procedures for launching the kernel, such as memory allocation

from the CPU to the GPU. Note that to launch a Kernel you have to allocate memory

from CPU to the GPU and then process the data in the GPU. Finally, the result must

be copied back from the GPU to the CPU. In CUDA, there is a library called Thrust

[46], which allows the users to implement parallel applications, making it easier to be

implemented since it reduces many complexities that will be explained in the following

section.
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2.1.6 Thrust

Thrust is a library based on the C++ standard template library and it is fully inter-

operable with CUDA [46]. Thrust helps the programmers to write GPU applications

efficiently and with minimum effort, since it contains very efficient implementations of

algorithms such as sort, transform, reduce, etc.

Using Thrust, the developers describe their computation using the algorithms that are

provided by the library and completely delegate how to implement the computation

to Thrust. This allows the programmers to describe only what to compute without

additional restrictions on how to carry out the computation [20]. For example by not

having to deal with all the detailed complexity of memory allocation such as in pure

CUDA code.

Features of Thrust can be presented in the following examples that were retrieved from

[20]. A Thrust program which sort data on the GPU [20]:

int main (void)

{

//generate 16M random numbers on the host

thrust::host_vector <int> h_vec (1 << 24);

// transfer data to the device

thrust::device_vector <int> d_vec = h_vec;

// sort data on the device

thrust::sort(d_vec.begin(), d_vec.end());

//transfer data back to host

trust::copy(d_vec.begin(), d_vec.end(), h_vec.begin())

}

Thrust provides two vector containers: host vector and device vector. The host vector

is stored in the RAM memory and the device vector in the memory of the GPU. As

shown in the previous example, after generating random numbers in the host vector it

will allocate and transfer the data into the device memory, then the sorting function will

be executed in the GPU for all the values contained in the device vector. Finally, the

result is transferred to the host vector using the copy instruction from Thrust. Note that

running the sort function may imply launching one or more CUDA Kernels but all these

are abstracted, so the programmer does not have to deal with the launch configuration

of the kernels, Thrust library does it for you [20].

Some of the common implementations and examples of Thrust parallel algorithms exe-

cuted in the GPU along with their descriptions are presented next [46]:
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2.1.6.1 Reduce

A reduction algorithm uses a binary operation to reduce an input sequence to a single

value, e.g. the sum of an array of numbers is obtained by reducing the array. If no

binary operation is specified, the elements will be summed by default (+ operation). As

an example, suppose we have one input vector with these values:

Vector 10 20 50 20

The output of the following function:

int Sum = thrust::reduce(Vector.begin(), Vector.end());

will have a value with the sum of all the elements: Sum 100

2.1.6.2 Sort

Thrust offers several functions to sort data or rearrange data according to a given crite-

rion. By way of illustration, we have this input vector:

Vector 3 2 1 5 4

The output of the following function:

thrust::sort(Vector.begin(), Vector.end());

will be a sort the vector in ascending order:

Vector 1 2 3 4 5

2.1.6.3 Fill

Simply sets a range of elements to a specific value. For example, this input vector with

0 values:

Vector 0 0 0 0 0 0 0

After the following function:

thrust::fill(Vector.begin(), Vector.end(), 7);

The vector will contain the value 7 in all its elements:

Vector 7 7 7 7 7 7 7
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2.1.6.4 Sequence

A function can be used to create a sequence of equally spaced values. As a case in point,

this input vector with 0 values:

Vector 0 0 0 0 0 0 0

The following function:

thrust::sequence(Vector.begin(), Vector.end());

will fill the vector with the following sequence:

Vector 0 1 2 3 4 5 6

2.1.6.5 Transform

Transform applies a unary function to each element of an input sequence and stores the

result in the corresponding position in an output sequence. Specifically, an operation is

performed for each element i in the range and the result is assigned to the output iterator.

The input and output sequences may coincide, resulting in an in-place transformation

[47]. For instance, we have two vectors as input and one as output:

Vector 5 6 9 10 20 30

Vector2 2 3 5 5 10 20

Vector3 0 0 0 0 0 0

thrust::transform( Vector.begin(), Vector.end(), Vector2.begin(), Vector3.begin(),

thrust::minus<float>() );

This function will compare each element in the Vector and Vector2, and compute the

difference and storing the result in Vector3. Having the following output for Vector3:

Vector3 3 3 4 5 10 10

Thrust covers most of the arithmetic operations (+, - , /, *, mod). However, often we

want to do something different. For instance, there is a very well known vector operation

called SAXPY operation: y <- a * x + y, where x and y are vectors and a is a constant.

In this case we can implement our own function SAXPY to do this operations in a single

transformation.

For example, we have as input the following two vectors and a constant ”a”:
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Vector X 2 4 6 8 10

Vector Y 5 10 15 20 25

a 10

Where saxpy is the function that will perform for a multiplication with a constant ”a”

with x and a sum with Y. It is possible to compute more operations with each value in

a vector just by following this saxpy example in thrust.

This function will perform the SAXPY operation y <- a * x + y :

thrust::transform(X.begin(), X.end(), Y.begin(), Y.begin(), saxpy(a));

It will output the following vector storing the results in the four parameter (Y.begin())

of the transform operation:

Vector Y 25 50 75 100 125

All the values computed by the operation are stored in Y vector by overwriting the

previous values in Y; preventing to allocate memory in another vector.

2.1.6.6 Sort by key

Sort by key performs a key-value sort. By way of illustration, these two input vectors:

Keys 1 3 2 6 4 5

Values 10 20 30 50 15 25

With the next function:

thrust::sort by key(Keys.begin(), Keys.end(), Values.begin());

The output of the keys and values is:

Keys 1 2 3 4 5 6

Values 10 30 20 15 25 50

2.1.6.7 Reduce by key

Reduce by key is a generalization of reduce to key-value pairs. For each group of con-

secutive keys in the range keys first, keys last that are equal, reduce by key copies the

first element of the group to the keys output. The corresponding values in the range are
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reduced using the plus operation and the result copied to values output. For instance,

these two input vector:

KeysInput 1 3 3 3 2 2 1

ValuesInput 9 8 7 6 5 4 3

With the following function:

thrust::reduce by key(KeysInput.begin(), KeysInput.end(), ValuesInput.begin(),

KeysOutput.begin(), ValuesOutput.begin());

will put the result by grouping by same keys in the two output vectors: KeysOutput

and ValuesOutput:

KeysOutput 1 3 2 1

ValuesOutput 9 21 9 3

2.1.6.8 Count

Count returns the number of instances of a specific value in a given sequence. For

example, this input vector: Vector 1 3 5 2 5 7 5

This function:

int Result = thrust::count(Vector.begin(), Vector.end(), 5);

will assign to the result variable, the total number of elements with value 5: Result 3

2.1.6.9 Repeated Range

Repeated Range will create a vector with the number of repeated values according to a

parameter as output. For example, the next input vector:

Vector 1 2 3 4

By assigning the value three for repetition with the following function:

repeated range <Iterator>Vector2(Vector.begin(), Vector.end(), 3);

The output will be a vector with repeated range of three for each element.

Vector2 1 1 1 2 2 2 3 3 3 4 4 4
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MapReduce

In this chapter, a brief introduction of Map Reduce is presented. It is the framework

used by Mahout to process the data, in which the Mahout CPU implementation of

K-Means was compared to the SNIFF GPU K-Means implementation.

3.1 MapReduce

Distributed systems can present many complexities [48], such as computation paral-

lelization, work distribution, and dealing with unreliable hardware and software. Nev-

ertheless, the MapReduce model makes parallel processing simpler by abstracting away

from these complexities. MapReduce uses key/value pairs: The keys are used to identify

the information and the values are the data associated with the key.

MapReduce [49] is a programming model for processing large datasets. MapReduce

allows to write data-parallel programs and execute them in a distributed system.

In MapReduce a user implements two main phases [7, 50]:

1. Map Phase. - The node takes the input in a set of key/value pairs, the map will

produce zero or more key/value pairs as output to the Reduce Phase.

2. Reduce Phase. - The node with the reduce phase will gather all the output passed

through the map phase and combine them in order to form the global output.

Between the Map Phase and the Reduce phase, there is a shuffle phase taking place.

This sorts the resulting key/value pairs from the map phase by their keys; then, these

pairs will be assigned to the reducer according to their keys [7].

18
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A MapReduce program breaks down the work submitted by a client into a small paral-

lelized map and reduces tasks, also called mappers and reducers. Each map task deal

with a relatively small amount of data and work in parallel. The output of the map tasks

are the intermediate key/value pairs that can be group by same keys before being sent

to the reduce phase [7]. This grouping is also called combiner, which is an optimization

by reducing the transfer time in the shuffle phase to the reduce tasks, which represent

synchronization of the map tasks [7]. The following figure from [7] shows an iteration of

the three phases previously explained:

Figure 3.1: The MapReduce framework breaks down data processing into map, shuf-
fle, and reduce phases [7].

Word count is a typical example used for understanding MapReduce. The following

figure from [8] explains the flow of using MapReduce in word count when having as

input a file with 4 lines of text with a set of 3 words each:

Figure 3.2: MapReduce Word Count example flow [8].
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The steps of the figure from [8] are the following:

1. Input: A file with 4 lines of text is used as input to MapReduce.

2. Split: For this example, the file is split into four sets, each set is one line from the

input file.

3. Map: Each split is fed to a map() function implemented by the user, specifying

the logic of how this input data will be processed. For this example, the map()

function will count the occurrence of each word and adapt it to a (key, value) pair.

4. Combine: Optional step and is often used as an optimization to reduce the data

transferred across the network. It is accumulating the values per mapper instead

of sending each result of the map to the shuffle, thus reducing the transfer time.

5. Shuffle & Sort: Output of all the map() function is collected, shuffled, and sorted

and ready to be sent to the reducer phase.

6. Reduce: The data from many map() function is aggregated and the word counts

are built as (key, value) pairs.

7. Output: The output of the reduce phase is written to a file.

The main contributions of the MapReduce programming models are the scalability and

fault-tolerance achieved for a variety of applications that fit this model [49].
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DATA MINING

In this chapter, background for the data mining, K-Means and Expectation Maximiza-

tion algorithms will be further explained, as well as information regarding the data

mining frameworks such as Mahout, R and Weka. We will also present how the imple-

mentation of K-Means using GPU in SNIFF proposed by Tran et al [1], related work

and literature survey.

4.1 Data Mining

Data mining is the process that can be used to discover useful and interesting pat-

terns and relationships in huge quantities of data to generate rich knowledge and help

organisations, government and individuals [51].

The Knowledge Discovery Process [52] is a broad process for finding knowledge in data,

as illustrated in the following figure [51]:

Figure 4.1: The Knowledge Discovery Process

The Knowledge Discovery Process starts with the integration of the data, which can

come from many sources. This integration places the data into a data store such as

21
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databases or in flat files. Next, some part of the data will be selected and pre-processed

into a standard format. The data mining algorithms will discover some patterns and

produce an output, which will be interpreted in order to generate relevant knowledge

[51]. Data Mining is just one part of the knowledge Discovery process.

Data Mining methods may be classified as either supervised or unsupervised [53]. In

supervised methods, there is a particular target variable and the algorithm will have

many examples where the value of the target variable is contained, meaning that the

algorithm can learn from previous data. In the case of the unsupervised methods there

is no target variable. Rather, the data mining algorithm searches for patterns in all

the variables. The most common unsupervised data mining algorithm is clustering [53].

Clustering is the task of grouping objects which are similar to each other [51].

In the following section, two unsupervised learning algorithms will be explained: the

K-Means algorithm [23] and Expectation Maximization [38].

4.1.1 K-Means

K-means clustering is an unsupervised learning algorithm [51]. The objects have to be

assigned to just one of a set of clusters (group of objects). For this clustering algorithm

[51], first, it is necessary to indicate the number of clusters that we want to create from

the data. This number of clusters is called K. Most of the time, the value of K has a

small integer value, e.g. 2,3,4, but it can be larger. It is possible to measure the quality

of the clusters formed by taking the sum of the squares of the distances of each point

from the centroid of the cluster to which is assigned and computing the average. We can

randomly select K-clusters, but the method may work better if we pick K initial points

that are fairly far apart. After selecting K initial points as shown in the following figure:

Figure 4.2: Initial centroids (Green, Blue and Red dots) and datapoints (gray dots)
[9].

We assign each of the points to the cluster which has the nearest centroid. All the

objects have to be assigned to just one cluster:



Chapter IV DATA MINING 23

Figure 4.3: Each datapoint is assigned to its nearest centroid [9].

Then, based on the assignation of the points to the clusters, we recalculate the centroids

of the clusters:

Figure 4.4: Recalculate the centroids based on the datapoints assignations [9].

Subsequently, we get the new cluster values:

Figure 4.5: New cluster values [9].

We keep repeating these steps until it reaches a max-limit iteration criterion or when

the algorithm converges. The K-Means algorithm can do multiple rounds of processing

and produces new centroids locations after each iteration [9].

In the K-Means algorithm, it is not possible to determine which number of K will produce

the best set of clusters [51]. The initial selection of centroids can affect the result. This

is the reason why we should run several times the algorithm for a given value of K, each

time with a different choice of the initial K centroids [51].
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4.1.2 Expectation Maximization

The Expectation Maximization (EM) [54] is an unsupervised clustering method which

follows an iterative approach, which attempts to find the parameters of the probability

distribution that has the maximum likelihood of its attributes.

Maximum-likelihood [54] can provide an estimation for the model’s parameters, such as

the mean and variance, by applying this method in an observed data set and a statistical

model; e.g. the Mixture model. Mixture models [10] are basically a probabilistically way

of doing soft clustering, in which the datapoints can belong to any of the clusters. For

each cluster, it corresponds a probability distribution, and with the EM algorithm you

can discover all the parameters of the distribution for each cluster.

The following figures from [10] explain the basic concepts of Expectation Maximization.

For example, there are some datapoints in which is already known that come from two

gaussian models and also from which model they belong to. Thus, estimating the mean

and the standard deviation for each Gaussian is trivial.

Figure 4.6: Observations in which the gaussian models are already known [10].

In the following example, it is not known the gaussian where each datapoint belongs to.

Then, EM can be used to infere from which gaussian each datapoint more likely belongs

to, and compute the mean and the standard deviation.

Figure 4.7: Observations where the gaussians are not known [10].

In this example, suppose we have some datapoints and two gaussian models that were

put randomly in space; much like the K-Means algorithm with the K clusters.

Figure 4.8: First iteration [10].

In the EM applying soft clustering, we estimate the probability from where each dat-

apoint more likely belongs to a certain distribution. In this case, the first datapoint

is represented in full yellow color, since it is more likely that it belongs to the yellow
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gaussian for being closer to its mean. The next four datapoints have a certain proba-

bility that belong to either yellow or blue gaussian according to their mean. Lastly, the

following five datapoints are in full blue color since they are more likely to belong to the

blue gaussian. Note: The points cannot have a 100% probability of belonging to one

distribution, but in the example from [10] is shown that the closer one datapoint is to

the mean of some gaussian, the more likely this datapoint belongs to that gaussian.

Figure 4.9: Result of first iteration [10]

This figure shows the result of the new gaussian or means of the second iteration, esti-

mating again the probabilities using EM.

Figure 4.10: Result of second iteration [10]

EM is an extension from the basic approach of clustering [11] because, rather than

assigning observations to clusters to maximize the differences in means, EM algorithm

computes probabilities for each cluster based on one or more probability distributions.

The objective of the EM clustering algorithm is to maximize the likelihood of the data,

given the clusters [11]. In summary, EM [11] begins with an initial estimate for the

missing variables and keeps iterating. In the expectation step, it finds the maximum

likelihood for these variables and in the maximization step, it computes the means or

the new clusters.

Expectation maximization for soft-clustering can be implemented containing four major

steps [11]. To initialize, we guess the means and standard deviations; the means represent

the clusters. We start with a ML hypothesis through an iterative scheme to find the

final clusters k.

1. Initialization step: Initialize the hypothesis is θ0 = ( µ01, µ
0
2, ... , µ0k ) → Θ0

k = µ0k

where: K is the number of Gaussians. σ is the standard deviation, θ0 is the

estimate at 0th iteration, µ is the mean.

2. Expectation step: Estimate the probabilities Zik of the hidden variables with

respect to the known means and standard deviations from the initialization step.
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Zik will contain the probabilities of an unobserved variable i, which belongs to

cluster k.

Figure 4.11: Expectation step [11].

where: t represents the number of iteration, the values of E(Zik) are the probabil-

ities for the hidden variables (mean and standard deviation), k is the number of

the cluster, σ is the standard deviation.

3. Maximization step: Compute the new estimate of the parameters which will give

the new clusters.

Figure 4.12: Maximization step [11].

4. Convergence step: if ||θt+1 − θt|| < e. check whether it converged based on a

minimum threshold or if it reached a maximum number of iterations; otherwise,

keep repeating the expectation and maximization step.
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4.1.3 Data Mining Frameworks

R [35] is a free programming language and software environment for statistical com-

puting and graphics. Statisticians and data miners are widely using this language for

data analysis. R contains numerous statistical techniques, e.g. linear and nonlinear mod-

eling, classical statistical tests, classification, clustering, etc. One of the main strengths

of R is the facility for producing high quality plots. R is easily extensible through func-

tions and extensions. For example, advanced users can write C, C++, Java, or Python

code to manipulate R objects directly [35].

Through the uses of packages, R supports a lot of data mining techniques [55], which

includes: Classification and prediction, regression, clustering, text mining, Time Series

Analysis, etc. Yanchang Zhao [56] presents a guide to R for data mining in a Refer-

ence Sheet, which provides a comprehensive index of R packages and functions for data

mining, categorized by their functionality.

Weka [36] is a collection of machine learning algorithms for data mining tasks. The

algorithms can either be applied directly to a dataset or called from your own Java code.

Weka contains machine learning algorithms such as classification, regression, clustering,

association rules, etc [36]. These algorithms can be applied through Java code or, by

the use of a graphic user interface, can be applied directly to the datasets.

Mahout [57] is a scalable machine learning library which is widely used to process

large data sets. Mahout contains algorithms such as clustering, classification and collab-

orative filtering which can be executed in distributed systems. They also have a version

of these algorithms that can run on a single machine as well.

At the moment, Mahout supports mainly three use cases [57]:

1. Recommendation mining. - It suggests items to the users that they may like, based

on understanding the user’s behaviour.

2. Clustering. - Takes, for example, text documents and groups them based on their

topic.

3. Classification. - It learns from previously categorized documents which documents,

of a specific category, look alike and for those documents that are unlabelled, it

tries to assign them a label.
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4.2 SNIFF - Parallel Implementation of K-Means using

GPU

In the following section, the parallel implementation of K-Means using GPU by SNIFF

will be explained. First, SNIFF architecture will be presented in order to understand

how the K-Means algorithm was implemented based on the framework.

SNIFF framework can run data processing algorithms formed by the following phases

[1]:

1. Independent computation of a partial model in separate data chunks.

2. Combination of the partial models in order to compose the global model.

3. Iterate again if needed, e.g. K-Means, until a convergence criteria is met.

The following figure shows SNIFF architecture [1]:

Figure 4.13: Architecture of SNIFF framework. All workers are equipped with a
GPU and in order to process the data, each worker needs to register to a master node,
in which they receive instructions, job information and cluster configuration. Step 3 a

and b may be repeated [1].

Tran et al. [1] implemented a parallel K-Means algorithm based on the distributed

version by [58] in the SNIFF architecture. In the SNIFF implementation, the whole

dataset is partitioned equally among all the workers. Then, each node receives the same

initial centroids and performs the k-means iterations on the partial data. When the

iteration ends, the updated centroids position and a counter containing the data points

belonging to each cluster are collected by the combiner; finally, the combiner will globally

compute the centroids positions.
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All the operations in K-Means algorithm are data-intensive [59] operations which can

be parallelized on the GPU device. Each iteration performs the following steps in the

worker node [1]:

1. Compute the distance of each data point to each of the K centroids.

2. Find the closest centroid for each data point, and use counters containing the

number of data points belonging to each cluster.

3. Update each centroid according to the data points coordinates belonging to each

cluster.

All the previous steps were designed in the SNIFF K-Means implementation to run on

the GPU. The following figures represent the routines for the SNIFF distributed K-

Means in the Worker and in the Combiner [1]. For the worker routine, we used the

variables xi to represent the datapoint and mj for the clusters.

Figure 4.14: Distributed K-Means - Worker Routine [1].

Figure 4.15: Distributed K-Means - Combiner Routine [1].
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4.3 Related Work

Lots of works have been going on under K-Means in different frameworks. We will also

present a literature survey of K-Means GPU implementations.

4.3.1 K-Means Frameworks Implementations

In this section, we will highlight Mahout parallel K-Means implementation. Sequential

K-Means implementations of R and Weka will also be discussed.

4.3.1.1 Mahout Parallel K-Means

Today, there is a need to cluster large datasets that cannot fit into memory. Mahout’s

K-Means implementation can be used for large datasets using the Hadoop framework

[12].

In order for Mahout to process the data, it is necessary to have it in numerical repre-

sentation, if the data is not numerical, it will need to be preprocessed. Afterwards, this

data should be converted into vectors and finally into a sequenceFile which is a specific

Hadoop file format [12].

The K-means implementation in Mahout receives the following input parameters [9]:

• A SequenceFile containing the input vectors.

• A SequenceFile with the initial cluster centers, which can be random.

• A similarity measure, e.g. Euclidean distance, Cosine distance, Manhattan dis-

tance, etc.

• A convergence threshold.

• A maximum number of iterations in case there is no convergence first.

• The vector implementation used for the input files.

As an output, you get the final centroids coordinates and the samples attributed to each

cluster. The output files are in SequenceFile format. Mahout provides some libraries in

order to convert txt files and create the vectors that will be the input for the K-Means

implementation [12].
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According to [12], Mahout K-means contains three stages:

1. Initial stage: the dataset will be split into many blocks.

2. Map stage: In each map function, it reads the centroids in memory first, and then

it will calculate the distances between the objects and the cluster centroids; the

objects will be assigned to the nearest cluster centroid. Each map task is processed

within a data block. Each key represents a datapoint where it will store the index

to which cluster it belongs to, and the value contains the dimensions values of the

datapoint.

3. Reduce stage: In the reduce function, the cluster’s centroid will be recalculated

in that cluster. Also for each of the clusters in the reduce phase it will calculate

whether the cluster converged or not. If the algorithm converged, then the itera-

tions loop finish, otherwise it will continue until it reaches the maximum number

of iterations.

The three stages of Mahout K-means are represented in the following figure from [12] :

Figure 4.16: Mahout K-Means Implementation [12].

In Mahout there are two types of implementation of K-means: Sequential and using

MapReduce. The focus will be in the Map-Reduce implementation, since it is distributed

in different nodes, like the SNIFF K-Means.

The main steps of the pseudo code were taken from [60] and from the implementation in

version 9 of Mahout K-Means [24] which are located in lines [4,7-8,11-18]. Each instance

represents a record in the dataset. The following steps describe the Mahout K-Means

implementation at a higher level, whereas an instance represents just one datapoint:
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Figure 4.17: Distributed K-Means - Map Phase.

Note that in line 7, an square root is applied after the distance computation of the

datapoint with the centers. Also, instead of using the minimum distance to compute

the new centroid, lines [8-9, 11-13] are transforming the distance into a probability, where

the centroid closest to the instance will contain higher probability. On the contrary, the

instance that are further from the centroids will have less probability. Lines [14-16] will

assign to the index variable the position of the cluster for the instance which contains

the highest probability.

Mahout’s K-Means implementation also contains a combiner which is an optimization

that will partially sum the instances assigned to the same cluster; thus, decreasing the

number of intermediate keys that are being passed to the reducer. To compute the

global mean, it is necessary to record the number of samples in the same cluster of the

same map task. Figure 4.18 is the pseudo code of the combiner from [60]. Lines [5-8]

are accumulating the instances in an array with the same cluster index.
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Figure 4.18: Distributed K-Means - Combiner Phase.

Finally, the input of the reduce function is the data obtained from the combine function

of each node. As a result, the global centroids are computed [60] in figure 4.19. Lines

[5-8] sum the values of all instances with the same cluster index from the output of the

combiner. Line 10 is computing the new centroids.

Figure 4.19: Distributed K-Means Mahout- Reduce Phase.
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4.3.1.2 R K-Means

R provides many implementations of the K-Means algorithm, such as the Lloyd imple-

mentation which is the first and the simplest of all the clustering algorithms provided

by R. Other implementations such as Forgy, MacQueen and Hartigan-Wong are also

provided [35].

In R you can specify which of these implementations you want to perform. If no option

is specified, then Hartigan and Wong will be executed, which is a variant of Lloyd

algorithm [13]. The R implementation of the Lloyd algorithm was the one analyzed,

since is the most similar to the one executed by EURA NOVA.

When performing R K-Means, there are some parameters that are needed [35]:

1. A numeric matrix x or an object that can be converted to such a matrix. This

matrix x will be taken as our vectors to be clustered.

2. The number of K cluster centers or a set of initial cluster centers. If a number is

specified, then it will randomly take some rows from the x matrix.

3. The maximum number of iterations allowed.

4. The algorithm to be used.

If there are no errors during the execution of the Lloyd K-Means, then it will return an

object that will provide us with the following components [13]:

1. A numerical vector that will indicate for each point to which cluster it is allocated.

2. A matrix with the cluster centers.

3. The sum of squares errors for each cluster.

4. The number of points that are allocated in each cluster.

In the K-means implementations made by R, there is no convergence threshold, which

means that it will only stop iterating if there is no relocation for the cluster or if the

maximum number of iterations has been reached. The implementation of K-Means in R

can display messages in case there are some exceptions during the algorithm execution,

e. g. the number of clusters K is greater than the rows in x matrix.



Chapter IV DATA MINING 35

Lloyd R K-means steps are based on the pseudocode in [13] and in the implementation of

Lloyd R K-Means. This implementation stops iterating when a max number of iterations

has been reached as shown in line 6, or if there was no update in any of the clusters

for the given iteration as presented in line [22-23]. Lines [8-11] computes the distances

for each of the clusters and datapoints. Lines [12-14] assigns the datapoint with the

minimum distance to a cluster. Lines [25-27] update the clusters values.

Figure 4.20: K-Means R implementation [13].

4.3.1.3 Weka K-Means

Some implementations of K-Means only accept numerical values for attributes. In the

case of Weka, this one provides filters to accomplish all the preprocessing tasks. Weka K-

Means implementation can handle a combination of categorical and numerical attributes.

The algorithm normalizes numerical attributes when doing distance computations. Weka

uses Euclidean distance to compute the distances between instances and clusters [61].

Weka K-Means is similar to R, in the sense that they both stop if no object moves

and the centroids are not recalculating, instead of a threshold which is included in the
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implementation of Mahout. Also, the distance computation uses euclidean distance and

takes the square root between coordinates and pairs of objects [61].

The implementation is based on the steps in [61] which is quite similar to the Lloyd R

K-Means implementation [13], the most important change, in terms of computation, is

that is doing the square root in the distance in line 11.

Figure 4.21: K-Means Weka implementation.

An analysis of these different framework K-Means implementations is presented in con-

tributions chapter (section 5.2).

4.3.2 Literature survey

Previous work done for Data Mining in GPU has been conducted. We will concen-

trate specifically in those regarding K-Means, since it was implemented in the SNIFF

framework and many researches have been working with this algorithm.

A parallel K-Means implementation in [62], on GPU using CUDA technology was intro-

duced. This implementation discussed specific design decisions to accelerate K-Means
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for the CUDA architecture. A recommendation that they gave is that when parallelizing

an application to work in GPU, the characteristics of the architecture should be con-

sidered; for instance, GPU contains many cores compared to the CPU, which can allow

to launch a large number of threads at the same time. In this architecture, the best is

not to assign a thread to process each element, as there are millions of elements ready

to be processed. For example, in the step of assignment of data points to each cluster,

which is the time-dominant phase of the algorithm, the algorithm computes the Eu-

clidean distance of each point that belongs to the set of centroids and assigns each point

to the nearest cluster. To implement this in CUDA, in order to take into account the

architecture of GPU, Reza Farivar et al. [62] proposed to assign the distance calculation

of each data point to a single thread. Then, through all the initial cluster centroids,

it calculates the distance of each data point per cluster at once, instead of computing

each datapoint to its centroid in a loop; later on, finding the minimum distance for each

datapoint to its closest centroid. The results of [62] for a GPU NVIDIA 8600GT were

13x times faster to a 3 GHz Intel Pentium.

Another authors such as [28], also implemented K-Means using GPU having significant

better performance when compared to a fully SIMD (Single Instruction Multiple Data)

optimized CPU implementation.

There has been some attempts to run GPU K-Means in large scale analytics. In [63]

they did their research particularly in big data; their goal was to determine if GPU

could be useful accelerators for data sets that cannot fit into memory. They used K-

Means as the example and results proved to be very positive. For data sets smaller

than GPU’s onboard memory, their GPU version was 6-12x faster than their highly

optimized CPU version running on an 8-core workstation. In the case of large data sets

that cannot fit in GPU’s memory, they showed a design which allows the computation

on both CPU and GPU. With data transfer between them, the GPU version offered

a great performance boost compared to the CPU version, achieving 9x performance in

their test. The previous researchers extended their experiment in [29] to cluster a billion

of datapoints using GPU. The results were still dramatic, having a 11x speed up for

their GPU implementation compared to their highly optimized CPU version.

All these previous research works have shown great performance in K-Means using GPU

compared to the CPU version for small and large datasets. Nevertheless, none of them

explored the setup where each node in a cluster is equipped with a GPU, like in the

SNIFF framework [1].
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CONTRIBUTIONS

In this chapter, good practices while working with data mining using GPU in general will

be presented. These aspects need to be considered when working with GPU in order to

execute data mining implementations efficiently. Also, the methodology used to optimize

the K-Means implementation for SNIFF Framework will be shown, including all the steps

and testings that were realized for finding the main bottleneck and the performance after

solving this problem. Furthermore, another optimization of the K-Means algorithm using

Thrust library when computing the total sum of distances with the datapoints and the

centroids; as a result we got another improvement in the computation performance.

Finally, an implementation of EM in SNIFF will be presented.

5.1 Data Mining Using GPU Requirements - Review

In this section, we will present some recommendations that are required to execute some

data mining algorithms efficiently in GPU, as well as some kind of constructions that

should be avoided.

In both implementations of EM and K-Means, computing the distance with the data-

points and the centroids was presented. As previously reported, to get a higher level of

parallelism in K-Means [62], all the datapoints distance should be computed per centroid

first. Then, calculate the minimum distance. e.g. when computing efficiently d2(xi,mj)

in GPU. The algorithm passed through a series of parallel transformations, such as

computing the difference of each datapoint per centroid and later on the square of each

datapoint. The third step was to sum all the distances, which was not straightforward

at the beginning, but it was possible to do it by using Reduce by key Thrust function,

38
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based on all the datapoints distances which will be further explained in the optimiza-

tions section. All these steps were efficiently executed in the K-Means algorithm, which

were foundations to implement them in the EM algorithm, assuring great computations.

Another recommendation is the use of thrust::transformation having an own user de-

fined operation performing many steps at once, as shown with the SAXPY example in

the Thrust section, which is executed for each datapoint. For example, in the Naive

Bayes implementation to compute the normal distribution P (x) = 1
σ
√
2π
e−(x−µ)

2/2σ2
for

each datapoint, it was possible to avoid all this complexity by using the transformation

algorithm with a user defined function receiving the mean, variance and the datapoint

as parameters. For computing the Maximum Likelihood in Expectation Maximization,

the same parallel transformation was used for each datapoint, e.g. P (x) = e−(x−µ)
2/2σ2

as presented in (2.1.6.5).

A construction that must be avoided is, in implementations of K-Means and EM, to

always try to maximize the number of threads to execute, as previously mentioned.

Launching many kernels, like computing one datapoint for all the centroids like in CPU

implementations, can lead to a very bad performance due to the fact that launching

kernels are very expensive operations [64].

In summary, Thrust library can significantly bring many benefits when implemented for

data mining algorithms, since the structures presented brought high speed performance

for our implementations; however, if the algorithms are not implemented exploiting the

parallelism that can be gained from the GPU, then the resulting performance will be

terrible.

5.2 Data Mining Frameworks K-Means implementations

analysis

After going through all the K-Means implementations of the different frameworks, we

came up with the following conclusions:

• Mahout K-Means, which is the only distributed implementation from the three

frameworks studied, did not present any significant steps in the implementation

which could add up significant performance. To the contrary, we noticed that it

was doing two additional steps, which are not considered in SNIFF, that can make

it slower, since it requires more computation. One step is doing a square root when

computing the distance, which is not necessary [65]. Also, it is normalizing each
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distance to a probability where the closest distance contains higher probability

(the closest centroid).

• R K-Means following the Lloyd implementation is quite similar to the implemen-

tation done in SNIFF. Since it is not doing the square root when computing the

distance for each data point, not adding extra computation. Another difference

is that it does not have a convergence threshold: it only stops when a maximum

number of iterations has been reached or if there was no relocation of the clusters.

• Weka K-Means implementation based on [61] was quite similar to the R K-Means

implementation, just doing the square root like in Mahout when computing the

distance.

In summary, the implementations were quite similar to the K-Means GPU implemen-

tation in SNIFF framework. We did not take into account the possibility of significant

improvements in the implementation of these frameworks and we decided to consider an

analytic approach to find the main bottlenecks responsible for this slow performance, as

shown in our methodology.

5.3 Methodology

In order to locate the parts of the system to optimize, we decided to use an analytic

approach [66] that consisted in studying the system by its elementary elements, checking

in detail each of those elements and the interaction between them, to finally find the

parts that need to be optimized. Finding the main bottleneck was done through a series

of steps, as shown in the following flowchart:

Figure 5.1: Flowchart with all the steps to identify potential bottlenecks
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The steps in the chart are as follow:

• Step 1: Identify potential bottlenecks by comparing both implementations, Ma-

hout and SNIFF.

• Step 2: Find which part is taking most of the time by computing the average time

and comparing.

• Step 3: Observe which potential bottleneck is more time-consuming in SNIFF than

in Mahout. For this step, we isolate the part of the implementation computing

the distances in GPU and compare the average time to compute one centroid with

one datapoint with large number of iterations.

• Step 4: After the findings of step 3, verify where the main bottleneck started in

the implementation.

• Step 5: Verify the performance.

SNIFF and Mahout [57] use different formats for computing the data. In the case of

SNIFF, the dataset is in text format. In the case of Mahout [57], since it only accepts

SequenceFile format (A file containing key/value pairs), it was necessary to make a

conversion into that format using a Java application, having as input for this application

the dataset in text format and output in key/value pairs. An example of the format for

both cases is presented in the following table:

Table 5.1 Example of the data formats

Text Format SequenceFile Format (Key/Value)

1.0,162.0,4528.0,1.0,1.0,1.0,1.0 ... 0 / {0:1.0,1:162.0,2:4528.0,3:1.0,4:1.0,5:1.0,6:1.0 ...}

All tests were performed with EURA NOVA’s computer, which contains 4 physical

machines equipped with Intel i5 3550, 16 Gb RAM and Gigabit interconnect. The

GPUs used for testing include the Nvidia GTX Titan (6 Gb device memory) and the

Nvidia Tesla K20 (5 Gb) device memory [1].

Step 1: Identify potential bottlenecks

In the case of SNIFF, we tested the performance of the GPU implementation on three

nodes, using different sizes of the KDD Cup 1999 Dataset (Appendix A), when testing

K-Means we used 23 centroids and 32 dimensions. In Mahout, it was performed with

the same dataset albeit poured to the SequenceFile format.
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Step 2: Compute the average time for each potential bottleneck

After doing many tests, we discovered that both steps:

• Computing the distances

• Assigning the datapoints to the centroids

were taking most of the time, especially for SNIFF, since these tasks involve intensive

computation, particularly computing the distances. The results of the test can be seen

in the following figure:

Figure 5.2: Average time spent for one iteration when computing all the distances
with the datapoints and the centroids, and assigning the datapoints to the clusters on

a GPU Node (Titan) in SNIFF and in one node of Mahout CPU.

Step 3: Observe which potential bottleneck is more time-consuming in SNIFF than in

Mahout

We concluded that the biggest bottleneck in SNIFF was happening when it was comput-

ing the distances and assigning the datapoints to the centroids for both implementations.

Doing this step was taking nearly 80 % of the average iteration time as illustrated in

figure 5.3.
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Figure 5.3: Comparison of the average time spent in one iteration on a GPU Node
(Titan) and with the total time spent when computing the distances and the assignation

of the datapoints to their centroids.

When the bottleneck was spotted, we looked for the cause of this huge difference in per-

formance between SNIFF and Mahout. In Mahout, the steps of the algorithm (presented

in related work) were inspected. It turned out that Mahout’s K-Means implementation

contained more computations, such as calculating a probability for each datapoint be-

longing to the cluster and doing a square root when computing the distance for each of

the datapoint, two operations not performed on SNIFF. So in SNIFF there was a cer-

tain problem, since these steps add more computations that are not necessary such as

the square root [65]. Even with all these steps, the performance for Mahout’s K-Means

implementation was superior by a great margin.

Isolate the step of computing the distances

In this case, we decided to totally isolate this step from the SNIFF implementation

in order to focus in the procedure that computes the points and not in the way to load

the points from disk. To later compute them in the case of SNIFF and find the potential

main reason causing this bad performance.

In such manner, we selected just two vectors from dataset, one representing the datapoint

and the other one representing the centroid. Then we compared a million times the

distances between the two. We made the observations for both implementations and the

results were quite surprising: the isolated implementation was nearly 35x faster than

computing the distances in Mahout for 10,000,000 iterations, as shown in the following

graph:
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Figure 5.4: Comparison of the average time spent when computing distance of one
centroid with one datapoint using 100, 1000, 10,000, 100,000, 1,000,000 and 10,000,000
iterations for a GPU Node (Titan) and in one CPU node when running Mahout K-

Means.

Step 4: Verify the main bottleneck

At this time, we considered to integrate this implementation inside SNIFF in order

to test the performance. We observed that it was receiving very poor performance at

doing the same step. We continued testing this function in all the framework in order

to know when this bad performance started and we noticed that, even at the beginning

of the framework, it was causing this bottleneck. So, one of the only things left was to

see the compilation parameters and, by using different parameters for compilation, we

noticed that the parameter that was creating debugging information was the one causing

this serious bad performance [67].

Correct the parameter

Below is a table with the description of the parameters included when compiling the

project [68]:
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OPTION DESCRIPTION

nvcc The CUDA compiler driver.

-O Specify optimization level for host code.

-o Specify name and location of the output file.

-g Generate debug information for host code (CPU).

-G Generate debug information for device code (GPU).

-odir Specify the directory of the output file.

-M Generate a dependency file that can be included in a make-
file.

-arch Specify the virtual NVIDIA GPU architectures to compile
for.

-code Specify the actual GPU archicture to compile for.

-gencode Specifies a tuple of virtual and GPU architectures to target.

In order to create debug information in NVIDIA CUDA [18], it is necessary to use the

parameter -g and -G to the nvcc compiler driver, but these options, apart of including

debugging information, are also disabling most of the compiler optimizations [67]. So,

using the -G parameter when compiling with NVCC will disable most of the compiler

optimizations that are done in device code.

The following table presents an example of compilation:

Disabling the compiler optimizations Enabling Compiler optimizations

/usr/local/cuda-5.5/bin/nvcc -O3 -
gencode arch=compute 30,code=sm 30
-g -G -odir ”src/deviceFunctions” -M -o
”src/deviceFunctions/deviceFunctions.d”
”../src/deviceFunctions/deviceFunc-
tions.cu”

/usr/local/cuda-5.5/bin/nvcc -gencode
arch=compute 30,code=sm 30 -odir
”src/deviceFunctions” -M -o ”src/device-
Functions/deviceFunctions.d” ”../src/de-
viceFunctions/deviceFunctions.cu”

Step 5: Verify performance

After enabling the compilation optimizations, we observed a huge improvement in perfor-

mance for SNIFF. The result in the case of the comparison between SNIFF and Mahout

went from 9x slower, to 10x faster for the NEW SNIFF than Mahout when compared

with 7.2 Gb dataset, as we can see in the following figure:
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Figure 5.5: Average time spent for the computation on a GPU node (Titan) and on
the Mahout for one iteration time disabling and enabling compiler optimizations for
SNIFF. NEWSNIFF has more than 90x speed up performance compared to SNIFF,

and 10x compared to Mahout.

Although it was extremely challenging to find the problem, the simple solution of ad-

justing the parameter actually solved the main problem of the thesis assignment. Nev-

ertheless, we decided to further improve the performance.
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5.4 Further Optimizations

In this section, we will present another optimization that was done in SNIFF GPU K-

Means. Here, by changing a function and computing the total distance of the datapoints

with the centroids, it was possible to obtain a speed up performance of the K-Means

implementation by a factor of 1.5x when testing 7.2 Gb in 3 GPU nodes.

Optimization for computing the total distance of the datapoints with the

centroids using Thrust

In order to obtain this increase in the speed performance, we will present two different

approaches to compute the total distance of the datapoints with its nearest centroids.

The Reduce by key algorithm, explained in Thrust section 2.1.6.7, can be used to com-

pute the total distance. The one implemented in SNIFF required to create a vector for

the input keys and the other one does not allocate memory in a vector, thus doing the

computations on the fly. As a result, the new implementation is a faster algorithm with

an equal output for both implementations.

In order to explain these two approaches, we will provide:

1. An example.

2. The input and output vectors that are required to compute Reduce by key.

3. The structure of the code of Reduce by key.

4. The previous implementation.

5. The new implementation.

1 - Example for computing total distance

The following example is used to explain these two different implementations of Re-

duce by key. Suppose we have the following 4 datapoints index of 3 dimensions, in

which every dimension corresponds to the squared distance computed of the centroid

with the datapoint in the context of K-Means. As shown in table 5.2.

Table 5.2 Example of the data

Datapoint Index Dimension Values

1 10 20 30

2 10 30 40

3 30 40 50

4 20 20 30
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Then, we want to compute the sum of the values for each datapoint. The table 5.3

summarizes the result of the sum of the dimensions. Note that for the datapoint 1, the

value is 60. This value was obtained by the summed of the 3 dimensions: 10,20,30.

Table 5.3 Result of the sum of the values for each datapoint

Datapoint Index Result of the sum of the dimension values

1 60

2 80

3 120

4 70

In order to do so in GPU, Thrust library contains data structures to stored the data

on a Vector of 1 dimension to do the computations (as explained in Thrust section

2.1.6). Since each datapoint can contain many dimensions, as presented in table 5.2, it

was necessary to do the corresponding sum for each datapoint. To perform this task,

we used the Reduce by key algorithm and compute the final values. These final values

represent the total distance of the datapoints with a cluster centroid. As displayed in

table 5.3.

2 - Input and output vectors for Reduce by key

As we saw in Reduce by key section, it is necessary to use two vectors as input and two

vectors for the output. In our example, the first input vector corresponds to the keys,

which are the datapoint index with repetitions of the length of the dimensions to do the

corresponding sum of the dimension values. The second vector values contain all the

dimension values of the datapoints. These two vectors inputs are shown in the table 5.4.

Table 5.4 The input of Reduce by key are two vectors in 1 dimension: the vector keys
and the vector values.

Vector Keys 1 1 1 2 2 2 3 3 3 4 4 4

Vector Values 10 20 30 10 30 40 30 40 50 20 20 30
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After executing Reduce by key, it will produce as output two vectors: The vector keys,

where same keys are grouped, and the vector values with the sum per group of vector

keys; as demonstrated in table 5.5.

Table 5.5 The output of Reduce by key are two vectors in 1 dimension: the keys and
the values.

Vector Keys 1 2 3 4

Vector Values 60 80 120 70

3 -Structure of the code for Reduce by key

As seen in Reduce by key section 2.1.6.7. In order to execute the algorithm, the structure

of the code in listing 5.1, requires 5 parameters in the following order:

1. The input keys vector, which holds the values of the keys index repetition. e.g.

(1,1,1,2,2,2,3,3,3,4,4,4.) as displayed in table 5.4.

2. The input keys vector termination, which is used to terminate the algorithm. e.g.

for our example, 12, which is the size of the input vector.

3. The input values vector, which contains the values that will sum according to

the key index repetition. For instance, (10,20,30,10,30,40,30,40,50,20,20,30), as

presented in table 5.4.

4. The output keys vector, which holds the keys of grouping the same keys of input

keys vector. e.g. (1,2,3,4) as shown in table 5.5.

5. The output values vector, which contains the sum of the values by grouping the

keys of input values vector. e.g. (60,80,120,70) as presented in table 5.5.

The following listing 5.1 is the structure of the code of Reduce by key with the 5 pa-

rameters.

1 thrust::reduce_by_key(

2 KeysInput.begin(),

3 KeysInput.end(),

4 ValuesInput.begin(),

5 KeysOutput.begin(),

6 ValuesOutput.begin()),

7 )

Listing 5.1: ”Reduce by key structure”
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Now, we will present the two approaches. The first one is the previous implementation

of Reduce by key and the second one is the new implementation of Reduce by key.

4 - Previous implementation of Reduce by key

Next, an example of how it was computed in our previous implementation of Re-

duce by key in SNIFF K-Means will be presented, where we only have the vector with

the values of the datapoints. As displayed in the table 5.6.

Table 5.6 The vectors with all the dimension values in 1 dimension.

Vector Values 10 20 30 10 30 40 30 40 50 20 20 30

Then, to perform the sum in Reduce by key algorithm in our previous implementa-

tion, we used an input vector holding the Keys. So we applied other algorithms from

Thrust, explained in section 2.1.6, to create this input keys vector. One of them is

thrust::counting iterator used to generate the keys from the first datapoint to the last

number of datapoint. For our example, it corresponds from 1 to 4. As presented by

table 5.7.

Table 5.7 The vector with the keys.

Vector Keys 1 2 3 4

Later, we used Repeated range thrust algorithm to repeat the same keys for each dat-

apoint with the centroid size in order to sum the right number of dimensions. For our

example with 4 datapoints with 3 values each, we have in table 5.8 the following vector

keys:

Table 5.8 The input vector with all the keys.

Vector Keys 1 1 1 2 2 2 3 3 3 4 4 4
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To create the vector keys of the table 5.8. SNIFF K-Means used structures such as

counting iterator and repeated range. Counting iterator is used to create the values

from 1-4 as shown in table 5.7 and repeate range create the values as presented in table

5.8. As displayed in the 5.2 listing.

1 //Start key Index with index 1.

2 thrust::counting_iterator<int> first(1);

3 //The last number of the datapoint index. For our example 4 datapoints.

4 thrust::counting_iterator<int> last = first + 4;

5 //Repeat the values for each key by the number of dimensions

6 //of the centroid, for this example 3.

7 repeated_range<thrust::counting_iterator<int> > keys(first, last, 3);

Listing 5.2: ”Creating the key vector”

Finally, in the previous implementation of SNIFF K-Means, we get the the two vectors

output displayed in table 5.5, by using the two input vectors (keys and values) for the

Reduce by key function.

5 - New implementation of Reduce by key

For an optimization, we noticed, from a Thrust example called sum rows [69], that it

is not necessary to create the input key vector. It can be implemented with a different

alternative. This alternative uses a function called linear index to row index along the

Reduce by key to produce the input key vector on the fly, instead of creating the vector

and allocating memory as in Listing 5.2.

By using different parallel algorithms to create the keys, such as counting iterator and

a function linear index to row index, we were able to create the respective keys vectors

and reduce it to get the final distance computation per datapoint. In Appendix B Source

code 2, the implementation of the new approach is presented.

Finally, the output vector was exactly the same as the one presented in table 5.5, con-

taining the values of the distance for each datapoint.

The main difference, between the previous Reduce by key implementation and the op-

timized one with Reduce by key along linear index to row index, is that the first one

requires to store the keys to compute Reduce by key. The second difference is comput-

ing the distance for each datapoint on the fly or by row and not allocating this key

vector. Since the GPU performance is memory bound, by not allocating the vector keys

in the memory, the speed performance increases [70].
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Verify performance of the two implementations of Reduce by key

Using this new approach, SNIFF K-Means implementation increased its performance,

resulting for the datasize of 7.2 Gb with a computing performance 1.5x faster than

computing a K-Means iteration with the compiler optimizations enabled, as seen in the

following graph:

Figure 5.6: Average time spent for the computation on a GPU node (Titan) and on
new SNIFF for one iteration time after using new implementation of Reduce by key.

Based on the results of the previous figure, it is clear that working with the new imple-

mentation of Reduce by key provides a considerable gain in the speed performance.
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5.5 Expectation Maximization Implementation in SNIFF

Expectation Maximization (EM) was implemented to test the new insights with a related

implementation such as the SNIFF K-Means. It was based on the algorithm shown in

[11] and explained in section 4.1.2, in which all the steps were implemented, just with

the exception that the variances of the clusters are recalculated based on the values of

the new means for the following iterations.

The implementation based on [11] (section 4.1.2) of EM following the SNIFF model was

very straightforward. Both intensive computations, such as the Expectation step and

Maximization step, were executed in the workers equipped with GPU and finally, after

computing each part in every node in the maximization step, we sent all the values of

the maximization step to the combiner to compute the global mean. Nevertheless, in

order to compute the global variance, it is necessary to compute the global mean first

and later to broadcast it to each of the GPU nodes and compute the global variance

before the next iteration. EM stop iterating until it converges or reaches a maximum

number of iterations, if not, EM will keep iterating using the global means and global

variances for computing the next iterations.

Figure 5.7: Distributed Expectation Maximization Worker Routine.
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Figure 5.8: Distributed Expectation Maximization Combiner Routine.

We did some experiments executing one iteration of EM using the same set up as the

K-Means GPU implementation. Computing both the global means and the global vari-

ances, the speed was significant; computing 7.2 Gb of data in just 27 seconds in 3 GPU

nodes. The following figure shows the computation from 0.6 Gb to 7.2 Gb in 3 GPU

nodes:

Figure 5.9: EM Average time for the computation on a GPU node (Titan) for one
iteration



Chapter 6

Final Planning

The main objective of the thesis was to optimize the K-Means implementation in the

SNIFF framework taking into account the optimizations of the different frameworks

previously mentioned. At the end, the speed performance was affected by a simple

parameter, as explained in contributions chapter. After solving the main objective, we

decided to add another implementation to test new insights during the short amount of

time remaining. We chose the Expectation Maximization technique for soft clustering,

since it requires intensive computation. Also, it is similar to the previous K-Means

implementation by EURA NOVA, so this new implementation was added to our initial

planning.

Timeframe estimation for the Final Planning:

Figure 6.1: Final Planning
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CONCLUSIONS & FUTURE

WORK

To answer the objective of this thesis we studied different framework implementations.

Based on the previous implementations of K-Means, as presented in chapter 3, in Mahout

there are extra steps which are not included in SNIFF. Because these steps make the

computation performance slow, it was surprising that Mahout’s implementation was

actually faster than the SNIFF K-Means implementation. Due to the nature of R and

Weka implementation, there is not any significant optimizations that could be adopted

in the SNIFF framework. Based on these findings, we changed our approach to achieve

our objective, as mentioned in the contributions chapter.

As mentioned in the contributions chapter, to increase the performance of K-Means im-

plementation, we used an analytical approach. Through this, we isolated the step that

was taking most of the computation from the implementation, which, in this case, was

computing the distance. After all these steps, we were able to increase the performance

of this implementation by a factor of 130 times, and 10 times faster than the Mahout

CPU implementation. Nevertheless, we continued improving the performance by apply-

ing new structures to a parallel algorithm from Thrust Library called Reduce by key,

achieving a 1.5 times performance after removing the compilation parameter causing the

performance problems.

This significant improvement in performance should motivate to extend the application

of the DFG model to clusters of nodes equipped with GPUs [1].

We also added a new data mining implementation into SNIFF framework, in order

to make soft clustering. This implementation is Expectation Maximization. It is an

iterative approach which allows to reuse some parts of the code from the K-Means

56
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implementation; but it required more computation since, after computing the global

Means, it needed to broadcast the global means to each of the workers and compute

locally the variances to finally get those parts and compute them in the combiner node.

In summary, the implementation of GPU K-Means was not in fact wrong or doing

unnecessary steps. Getting rid of the debugging parameter did not only improve the

K-Means implementation, but also any other implementation based on that framework;

we achieved improvement implementation of that framework.

Also, it is recommended to check those functions which require intensive computation,

since it can be tuned to get further optimizations such as using row by index function

along reduce by key.

The comparison was only between the distributed version of Mahout and SNIFF GPU

K-Means. Further distributed implementations such as RHadoop (R using Hadoop)

with K-Means was not compared in this period of time; it might be interesting to check

whether it can have very different performance compared to SNIFF.

Due to the time, in the K-Means framework analysis, there is an absence of a qualitative

comparison. It would be interesting to see, whether one implementation gives better

quality than the other, in order to know if the implementations did not compromise the

results.

In the case of EM, it was planed to compare the performance with Mahout, but up to our

knowledge, there was not an application available. Also since it is a technique, it would

be interesting to compare how it was implemented in other distributed framework. As

well as testing if the EM implementation performs better than K-Means in retrieving

the real clusters.



Appendix A

Dataset

The KDD Cup 1999 Dataset [71] was used for the experiments. Containing different

levels of Gaussian noise added in order to inflate the total volume of data from 0.6Gb to

7.2Gb. The dataset contains TCP connection information simulating a U.S. Air Force

LAN, each connection presents 41 features, which 32 are continuous and 9 discrete and

contains a label either a normal or a network attack [1].
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Source Code

1 - A cuda implementation retrieved from [45], in which it shows how to compute the

square of a number in an array in parallel using GPU.

//Steps executed in the CPU such as memory allocation and launching the Kernel

to be executed in the GPU.

#include <stdio.h>

int main(int argc, char ** argv) {

const int ARRAY_SIZE = 100;

const int ARRAY_BYTES = ARRAY_SIZE * sizeof(float);

// generate the input array on the host

float h_in[ARRAY_SIZE];

for (int i = 0; i < ARRAY_SIZE; i++) {

h_in[i] = float(i);

}

float h_out[ARRAY_SIZE];

// declare GPU memory pointers

float * d_in;

float * d_out;

// allocate GPU memory

cudaMalloc((void**) &d_in, ARRAY_BYTES);

cudaMalloc((void**) &d_out, ARRAY_BYTES)

// transfer the array to the GPU

cudaMemcpy(d_in, h_in, ARRAY_BYTES, cudaMemcpyHostToDevice);
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// launch the kernel

square<<<1, ARRAY_SIZE>>>(d_out, d_in);

// copy back the result array to the CPU

cudaMemcpy(h_out, d_out, ARRAY_BYTES, cudaMemcpyDeviceToHost);

// print out the resulting array

for (int i =0; i < ARRAY_SIZE; i++) {

printf("%f", h_out[i]);

printf(((i % 4) != 3) ? "\t" : "\n");

}

cudaFree(d_in);

cudaFree(d_out);

return 0;

}

//The Kernel in which it will execute all the threads in parallel in a block.

Squaring the number and storing in the array.

__global__ void square(float * d_out, float * d_in){

int idx = threadIdx.x;

float f = d_in[idx];

d_out[idx] = f * f;

}
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2 - The new implementation of Reduce by key used in SNIFF optimized the sum to

compute the final distance computation between the dimensions of the centroid and the

datapoint.

The goal of the following algorithm is to create the following sequence for input key

vector (1,1,1,2,2,2,3,3,3,4,4,4) and make the sum of the input values vector on the fly by

grouping the keys to save memory. The result is exactly the same output as the previous

Reduce by key implementation.

• Line [2]: We want to sum all the values per rows. In this case, each row is a data-

point conformed of 3 dimensions. Then, instead of creating the keys Input vector,

we have an operation called make transform iterator which will transform the val-

ues from the counting iterator and index to row index, where make transform iterator

will iterate given by the number in counting iterator (1) and number of times given

by the second argument (3). In this case producing a set (1,1,1). Counting iterator

keeps increasing its value after a complete iteration over the elements of the row

given by index to row index. index to row index contains the number of the row

size that it has to compute, in this case 3 dimensions.

• Line [3]: The next make transform iterator specifies the size of each iteration and

the termination of the algorithm, (4*3) → 4 rows with 3 dimensions for this case.

Producing the following 4 sets for input Keys per row on the fly: (1,1,1), (2,2,2),

(3,3,3), (4,4,4). For each set of same keys, the algorithm is making the sum on the

fly and putting the result of the Values in the ValuesOutput vector.

The code of the Optimize version of Reduce by key is the following:

1 thrust::reduce_by_key(

2 thrust::make_transform_iterator(thrust::counting_iterator<int>(1),

linear_index_to_row_index<int>(3)),

3 thrust::make_transform_iterator(thrust::counting_iterator<int>(1),

linear_index_to_row_index<int>(3)) + (4*3),

4 //Values that will be summed according to the key index repetition.

5 ValuesInput.begin(),

6 //Vector containing the output keys.

7 KeysOutput.begin(),

8 //Vector containing the final values representing the distances.

9 ValuesOutput.begin())

Listing B.1: ”Optimize version of Reduce by key”
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