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Chapter 1.  

Introduction 

1.1 Motivation and objectives 

The increase of global Internet users, the fast proliferation of smart city 
technologies and the advent of Internet of Things are imposing unprecedented 
challenges to telecommunication network operators. Specifically, by 2018, there 
will be nearly four billion global Internet users (2.5 billion in 2013), which 
represents about 52% of the world’s population [CISCO]. Flexgrid technology [Ji09] 
has been recently presented as the most promising option for upgrading the 
currently operating fixed grid optical networks and extending their capacity to be 
able to deal with massive traffic volumes forecast for the next decade. 

Due to the constant increase and evolution of Internet traffic, underlying optical 
transport networks must be periodically re-designed (in response to predicted or 
monitored traffic changes) in order to keep committed service requirements for the 
next period [Ru14.1]. Incremental network capacity planning requires the 
placement of new network resources (i.e. fiber links) to be deployed over the 
current legacy infrastructure. This network upgrade must be done to satisfy some 
requirements such as expected traffic demands and network failure scenarios. To 
that end, a planning tool can be used to decide the hardware to be installed at 
minimum cost [Gi14]. Note that this is just a use case of holistic network planning, 
where the planning tool has access to both, an inventory database with the 
available equipment and the current state of the network stored in the traffic 
engineering databases. 

One of the key requirements commonly considered in optical network design is 
survivability [Li09]. In an in-operation dynamic network, an on-line recovery 
mechanism can be implemented and applied each time a failure impacts the 
network to restore the affected traffic. In this regard, fast and efficient dynamic 
restoration based on bulk path computation algorithms has been proven to restore 
optical connections affected by a link failure [Ca14]. It is worth mentioning that 
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significant traffic changes in terms of volume or distribution could lead to saturate 
part of the network capacity resources affecting the effectiveness of the restoration 
algorithm to find alternative routes in case of failure. Roughly speaking, traffic 
evolution could lead to an increase of network vulnerability. 

In this work, we face the incremental capacity planning problem for minimizing 
network vulnerability in flexgrid optical networks (hereafter referred as 
Vulnerability-aware Incremental Capacity Planning problem VINCI). This 
optimization problem, based on the Routing and Spectrum Allocation (RSA) 
problem (that belongs to the class of the so-called NP-hard problems), aims at 
finding the set of new links in the inventory with the minimum cost that allow 
reducing network vulnerability to above a desired threshold. This network 
vulnerability is measured in terms of traffic restorability in the event of single link 
failures. In fact, the restoration algorithm in [Ca14] can be used to find which 
current links violate the restorability threshold and, if any, trigger the incremental 
capacity planning. 

This work contributes to solve the aforementioned problem by presenting two 
alternative methods. Firstly, an integer linear programming formulation is 
presented to provide optimal solutions. This formulation is based on a node-link 
formulation of a basic topology design problem involving RSA constraints. 
However, due to the complexity of this exact method, we propose a heuristic 
approach based on the GRASP meta-heuristic framework [Fe95]. Both methods are 
compared and evaluated through numerical results obtained from solving realistic 
instances. It is important to remark that the C++ heuristic implementation has 
been integrated within the framework of an OMNET++-based network simulator 
[As13], using the standardized architecture and protocols of a real flexgrid optical 
network. 

1.2 Report organization 

The rest of the document is organized as follows. Chapter 2 approaches the 
necessary background to clearly understand the contributions of this work. 
Basically, the main concepts of optical networks, holistic planning, and operational 
research used in this work are briefly presented. In Chapter 3, the concept of 
incremental capacity planning for minimizing network vulnerability is introduced, 
as well as the VINCI problem is stated. In Chapter 4, the mathematical 
formulation is described, detailing the notation and equations, as well as precise 
explanations and details about complexity. Chapter 5 is devoted to the heuristic 
algorithm, focusing on the specifications of the GRASP-based procedure. Chapter 6 
presents the numerical results of the project, consisting in a comparison of both 
exact and heuristic methods, an exhaustive performance analysis of the heuristic 
algorithm, and an analysis of the problem solutions leading to major conclusions of 
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this work. Finally, Chapter 7 concludes the report with the main contributions and 
conclusions of the project. 

The document includes few appendices containing part of the implemented code 
and extended tables containing the raw results used to compose tables and figures 
in the document. 

 





 
 
 
 
 
 
 
 
 

Chapter 2.  

Background 

In this chapter, the necessary concepts of optical networks and operations research 
are introduced in order to facilitate understanding the key contents of this project. 

2.1 Dynamic optical networks 

2.1.1 Basic concepts 

An optical network can be defined as a graph with its representative equipment 
based on a certain optical technology. In general, it is represented by an undirected 
graph where the edges are fiber optic links and the vertices are optical nodes, 
named as Optical Cross Connects (OXC), capable of establishing and deleting 
optical connections. The optical technology uses a range of frequencies of the total 
Optical Spectrum (OS), and it is measured in Gigahertz (GHz). The capacity of an 
optical link depends on the OS width and other factors like the spectral efficiency 
of established connections. 

Basically, a traffic demand is a request of bandwidth (or bitrate) to be transported 
between the source node (sd) and the termination node (td), usually expressed in 
Megabits per second (Mb/s) or Gigabits per second (Gb/s). If the demand cannot be 
ensured due to the lack of capacity resources, then the demand will become blocked 
(i.e. not served). When a demand is accepted, an optical connection in the network 
is established between source and termination nodes; these optical connections are 
called as lightpaths since they allow the data transmission as a light wave. 
Moreover, a fiber optic can transport more than one lightpath at the same time, 
each of them allocated in different parts of the available OS. In the signaling 
process of optical connections for real operator networks, connections are also 
referred to as label switched paths (LSP). 



6  Fernando Morales Alcaide 

2.1.2 Flexgrid optical networks 

In ITU-T Recommendation G.964 [G964], it has been included the definition of a 
flexible grid (flexgrid) (previously introduced in [Li11]). Flexgrid optical networks 
require specific components such as Bandwidth-Variable Wavelength Selective 
Switches to build Bandwidth-Variable Optical Cross Connects. The OS is divided 
into slices, which are portions of the OS with a fixed width of few GHz (e.g. 6.25 
GHz). The central frequency (CF) defines where the assigned spectrum is centered 
and thus it allows positioning the slices within the whole OS. Moreover, a subset of 
contiguous (adjacent) slices is called slot and it is characterized by its CF and the 
number of slices that contains. In order to illustrate the concepts introduced above, 
Figure 2-1 represents the spectrum of a fiber optical link using the flexgrid 
technology. 

 

Figure 2-1: Logical representation of fiber link 

In order to find the route and spectrum allocation for lightpaths in flexgrid optical 
networks, the Routing and Spectrum Allocation (RSA) problem must to be solved. 
The objective of the RSA problem is to find a route with enough free spectrum 
width to serve the required bandwidth for traffic demands. The spectrum allocation 
(SA) of an optical connection consists in finding a certain slot which must 
accomplish the contiguity and continuity constraints. This means that all slices in 
a lightpath must be one next to the other (spectrum contiguity constraint) as well 
as the assigned slot must be placed in the same part of the OS (i.e. using the same 
CF) for all links conforming that optical connection (spectrum continuity 
constraint). 

As an example of the RSA problem, and for illustrating the continuity and 
contiguity constraints, Figure 2-2 shows the routing and spectrum allocation for 
serving a demand with a required bitrate equivalent to 2 slices from the source 
node B to the destination node D. In a first approach, illustrated in Figure 2-2a, it 
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seems that the route B-A-D would be the one to choose as it is the shortest one. But 
when looking in detail, it can be seen that the links from B-A and A-D do not have 
two contiguous slices in the same portion of the OS and therefore the continuity 
and contiguity constraints are not satisfied if the route B-A-D is chosen. Because of 
this, another route must be selected, that is the shortest route satisfying the 
contiguity and continuity constraints. This is the case illustrated in Figure 2-2b, 
where the selected route is B-A-C-D and the assigned slot uses the slices {S5, S6} 
for this connection. 

a)

b)

S1 S2 S3 S4 S5 S6 S7 S8

S1 S2 S3 S4 S5 S6 S7 S8

 

Figure 2-2: RSA, continuity and contiguity constraints. 

2.1.3 Static and dynamic traffic 

Two different approaches can be considered for planning and operating 
communications networks: static and dynamic traffic scenarios [Gu04]. In static 
traffic scenarios, no changes are considered in the connections established during 
the working period of the network. Thus, the information about client demands to 
be served, i.e. the source and destination nodes and the required bandwidth, is 
known in advance. Since the routing of those demands can be computed before the 
network begins to operate and no changes are allowed during the working time, the 
optimality of the network planning is always kept. When the network resources are 



8  Fernando Morales Alcaide 

limited and some demands cannot be established, we can define the blocking rate 
as the proportion of those refused demands over the total. 

On the contrary, in dynamic traffic scenarios demands are not known in advance 
and connections are continuously set up and torn down. We assume that client 
requests arrive to the network following a certain probability distribution function.  

Moreover, connections remain active during a certain period of time, i.e. the service 
time, which can be also modelled by another probability function. The most 
common model for dynamic traffic is the Erlang model [ITU05], where arrivals are 
modelled following a Poisson probability function identified by the mean time 
between two consecutive arrivals, namely inter-arrival time (iat).  

When Poisson arrivals are assumed, the service time follows an exponential 
probability function identified by the mean holding time (ht). The inverses of iat 
and ht are called inter-arrival rate (λ) and service rate (µ), respectively. The traffic 
intensity (or offered load) can be computed as ht/iat or, alternatively, λ/µ and its 
unit is the erlang. The traffic intensity represents the mean number of established 
connections in a network at a random time. The source and destination of the 
demands are also random variables and they can follow several models, e.g. 
uniformly distributed, proportional to the distance between nodes, etc.  

As anticipated before, when the network does not contain enough free resources to 
establish a connection request, that connection is blocked. Then, we can define the 
blocking probability as the probability to refuse (block) a connection request at a 
random time. To compute the blocking probability of a network during a period of 
time, the amount of blocked connections is divided into the amount of connections 
requested. The blocking probability of a network is used to define and quantify the 
Grade of Service (GoS) of the network. 

2.1.4 Network recovery 

It is worth mentioning that a working optical network is subject to failures during 
its operation. In general, a recovery mechanism consists of a set of actions to return 
a network to its normal condition after a failure occurs, e.g.: a fiber cut. To quantify 
the quality of a recovery mechanism, two parameters can be defined and computed: 
resilience and availability. Resilience is generally defined as the capability of the 
network to continue into operation even when a failure occurs. On the other hand, 
availability is strictly defined as the probability that a network will be found in the 
operating state at a random time in the future [Gr03]. Note that a value equal to 
one represents that the network is always available. 

Two types of recovery mechanisms can be implemented to increase the availability 
of the network: restoration and protection. When restoration is implemented, the 
data flow affected by a failure is re-routed after the failure is detected, using 
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network spare capacity. Since some affected paths could not be re-routed due to the 
lack of capacity, the availability could be less than total. 

Aiming at increasing the availability, protection can be implemented; it consists in 
replacing the failed working connection with a pre-assigned backup path. If each 
backup path is dedicated to protect only one working connection, the scheme is 
called Dedicated-Path Protection (DPP). On the contrary, when a spectrum slot can 
be used to protect more than one working connection, the scheme is called Shared-
Path Protection (SPP). Note that the availability of DPP networks is equal to 1 for 
single fiber link failures. 

2.1.5 Basic concepts on restorability 

From now on, we will consider a set Q of failure scenarios. Each failure scenario 
q∊Q considers only one single link failure. Thus, an element q consists of a tuple 
containing the affected link and the set of affected demands D(q) in use of that link.  

When re-routing the set of affected demands of failure scenario q, there will be a 
particular set of network resources available for use, the network resources at 
failure time of failure scenario q. These are the available network resources before 
the link failure plus the set of resources in use by all affected demands (without 
including, obviously, the resources of the failed link that are useless during the 
failure). The set of affected demands shall be re-routed during the recovery time, 
which should be in the order of hundreds of milliseconds for real network operators 
[Ca14]. 

We say that an affected demand is restorable if it can be re-routed using the 
available network resources at failure time, without re-routing any other demand 
from )(qD . In case that a restoration lightpath could not be found, we will say that 

the demand is not restorable. The set of all lightpaths available for one demand 
)(qDd   using the available resources at failure time at scenario q, without re-

routing any other element of )(qD  is called the set of restored paths of d at q, 

denoted as ).,( dqLSP  

When trying to restore demands in a failure scenario, a combinatorial problem 
arises: each affected demand )(qDd   may have multiple restored paths 

).,( dqLSP  In addition, restoring multiple affected demands will require that none 

of these restored paths conflicts with each other. Of course, we would like to restore 
as many affected demands as possible. Thus, we define the set of restorations of a 

failure scenario q as )(2)( qDqZ  , whose elements are subsets of )(qD  – affected 

demands – which can be restored all at the same time using restoration paths that 
do not conflict with each other. Since every element )(qZz  is finite – since )(qD  

always it is – we can endow )(qZ  with a total order relation by means of the 
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cardinality of their elements. Thus, given )(, qZzy  , we can define the following 

order: .|||| zyzy   

From the total order and the finiteness of )(qZ , we deduce the existence of a 

maximal element when )(qZ is non-void and define ]1,0[qR  as the restorability 

coefficient (or, simply, restorability) of a failure scenario q, computed as follows: 

 
|)(|

max

qD

qz
Rq   (2.1)  

where zmax(q) is the maximum element in the ordered set )(qZ . Note that if )(qZ  

is void we define it as 0qR . 

There exists a weighted version of the previous coefficient that uses the bitrate of 
demands. Given the set of bitrates |)(|1,..., qDbb  requested from each affected demand 

of )(qD , we can rewrite the previous coefficient as: 

 








)(

max

qDj
j

qzi
i

q

b

b

R  (2.2)  

which expresses the proportion of restored bitrate with respect to the total bitrate 
affected by a failure, when )(qZ  is non-void and zero otherwise. Note that if the 

bitrate of all demands is the same, then equation (2.2) is equivalent to (2.1). In this 
project we will work with this definition. 

In some situations, it would be enough to restore not all affected demands ( 1qR ), 
but at least some. This can expressed by the choice of a restorability threshold 

denoted as ]1,0[thresholdR . Fixing a restorability threshold, we say that a link is 

vulnerable when the following condition is attained: 

thresholdq RR   (2.3)  

In this paper, we will consider the same restorability threshold for any failure 
scenario. 

2.1.6 Elements and protocols in flexgrid optical networks 

To operate a flexgrid optical network, a control plane based on a Path Computation 
Element (PCE) [Fa06] is deployed. The Path Computation Element Protocol 
(PCEP) [Va09] is used for communicating Path Computation Client (PCC) and the 
PCE. PCE computes routes in response to path computation requests (PC Req) sent 
by a PCC. To that end, the PCE queries the Traffic Engineering Database (TED) 
and runs algorithms implemented within PCE to solve the RSA problem. In 
addition to solve the RSA problem for a given LSP request, some other algorithms 
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are able to compute different type of requests, for example to perform elastic 
operations to increase or decrease the amount of spectrum allocated to the given 
LSP. The response (PC Rep) received by the PCC contains an Explicit Route Object 
(ERO) for the requested LSP. That ERO is then used by the Resource Reservation 
Protocol with Traffic Engineering extensions (RSVP-TE) [Aw01] during the 
signaling process. 

In addition, to be able to re-optimize the usage of network resources, a Label 
Switched Path Data Base (LSP-DB) and LSP delegation are also necessary [Cr13]. 
Therefore, the PCE is in fact an active stateful PCE with a Global Concurrent 
Optimization (GCO) module [Le09]. The GCO module provides functionalities for 
obtaining better network-wide solutions by computing paths for a set of queries 
grouped together. In that way, near-optimal solutions for path requests can be 
obtained. As an example, authors in [Ca14] use the GCO module for restoration 
purposes. Figure 2-3 summarizes the aforementioned network architecture. 

BV-OXCOptical layer

GCOTED

Control Plane

Data Plane

LSP-DB

PCC PCC
PCC

PCE AlgorithmsAlgorithmsAlgorithms

PCEP

RSVP-TE

 

Figure 2-3: Considered flexgrid network architecture 

2.1.7 OMNet++-based network simulator 

In this work, some of the defined optimization methods will be implemented and 
embedded in an OMNeT++-based simulator [As13] that emulates a real 
performance of a flexgrid optical network using the architecture described in 
previous section. This simulator is developed in OMNeT++ 4.5 using C++11 with 
BGL 1.53.0 and Xerces-C++ 3.1.1 libraries. The simulator is organized in a number 
of modules representing either logical or physical elements in flexgrid optical 
networks: BV-OXC, PCE, and TE links, among others. Additionally, a Network 
Configuration module is included in the simulator in order to centralize generic 
configuration parameters, such as the frequency slice width or the modulation 
efficiency. In order to cover a wide range of scenarios, those modules can be 
configured for each specific scenario. 
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Each component includes its own set of methods simulating realistic 
functionalities. These modules and the interaction between them emulate the 
architecture and the protocols described before. By combining and configuring 
nodes and connections among them, specific flexgrid optical network topologies can 
be created in a .ned file; experiments can be afterwards run over that topology. A 
Basic.ned file is already defined with a default configuration for each module. 

Each node with traffic generation capability generates new requests messages 
according to a Poisson process independently, i.e. without prior knowledge of the 
traffic generated by other nodes. The holding time of the connection requests is 
exponentially distributed with a configurable mean value. Connection’s destination 
is randomly chosen with equal probability (uniform distribution) among the rest of 
nodes with traffic generation capabilities. Different values of the offered network 
load are created by changing the inter arrival time while keeping the mean holding 
time constant. Furthermore, the bandwidth demand of each connection request is 
randomly selected according to a traffic profile. 

PCEP and RSVP-TE implementations are based on OMNeT++ messages which are 
exchanged between PCCs and PCE. Physical characteristics of control links can be 
emulated by configuring a number of parameters, such as transmission delay. 

To illustrate the interaction among the different modules Figure 2-4 represents the 
messages exchanged to establish a new LSP on the network. The source PCC for 
the requested LSP sends a PCEP PC Req message (message 1 in Figure 2-4) to the 
PCE requiring a new path computation. Upon the reception, PCE processes the 
message, finds the proper algorithm for that request and calls it (2); in the 
example, the selected algorithm is that for solving the RSA problem. After the 
algorithm finds a feasible solution, it builds the ERO with the route and spectrum 
allocation and returns it to PCE, which builds a PCEP PC Rep message, includes 
the ERO and sends it back to the originating PCC. Upon receiving the response 
message, the originating PCC starts the signaling process by sending a RSVP-TE 
PATH message to the next node in the route of the LSP. To that end, it uses the 
information in the received ERO. Once the destination PCC receives the PATH 
message, it allocates physical resources and sends a RSVP-TE RESV message back 
through the same path so that intermediate PCC allocate also physical resources. 
When the RESV message reaches the source PCC and the physical resources are 
allocated in the node, requested LSP is established. 

Apart from the modules and functionalities described above, a set of auxiliary 
classes for different purposes is considered, such as those for statistics and data 
input and output. Although OMNeT++ provides statistics functionalities, 
additional output files with the desired format can be created by implementing ad-
hoc classes. 
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Figure 2-4: Messages exchanged to establish a new LSP (from [As13]). 

Finally, it is worth noting that the proposed architecture can be extended with new 
modules and functionalities. Specifically, new algorithms can be implemented and 
tested easily by adding new C++ classes and making them accessible by the PCE. 
This will be done in this project to integrate the algorithm developed to solve the 
VINCI problem. 

2.2 Network planning 

2.2.1 Network planning cycle 

The design of a telecom network as a set of gradual consecutive upgrading steps 
cannot be planned at the starting time because of several aspects, such as traffic 
uncertainty, which make it impossible to compute precise solutions for the future. 
As a result, solving each design step taking as input precise data for the next 
period seems to be the most practical way to deal with the planning problem. 

Figure 2-5 shows the planning flow chart considered in this work [Ru14.1], where 
the following list of inputs involved in the process is assumed: 

 The Network Management System (NMS) managing the core network, 
implementing fault, configuration, administration, performance, and 
security (FCAPS) functions. 

 A Planning Department administrating the planning process, i.e., analyzing 
the network performance and finding bottlenecks, receiving potential 
clients’ needs, evaluating network extensions and new architecture, etc. 

 An inventory database containing all equipment already installed in the 
network, regardless they are in operation or not. 

 An Engineering Department, performing actions related to equipment 
installation and set-up. 
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 A planning tool in charge of computing solutions for each planning step. 
Several sub-problems related to network reconfiguration, planning, and 
dimensioning, among others, need to be solved. 
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Figure 2-5: Network planning flow chart 

We consider that a planning step begins when the planning tool receives a request 
that can be originated in different systems responding to different reasons: 

 Operators analyzing data gathered by the NMS detect that a planning step 
can be attempted to improve the performance of the current network. E.g., 
bottlenecks have been detected in some parts of the network and its current 
configuration will not be able to allocate expected traffic, so reconfiguration 
can be attempted. Note that these triggers arise asynchronously (i.e., 
without a predefined schedule). 

 Planners request network re-planning to serve new clients or cover new 
areas. Contrary to reconfigurations coming from NMS, planning requests 
can be better synchronized with other network departments, such as the 
engineering department. 

The planning tool solves the design problem in two phases. Firstly, the network 
reconfiguration aims at reconfiguring the existing network resources and served 
traffic to meet target requirements. The solution of this problem consists in a set of 
actions that can be done in the network without purchasing and installing new 
flexgrid equipment. Therefore, the aim of this process is to exploit the possibilities 
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of the currently available resources as much as possible before purchasing and 
installing new equipment. 

Among others, some of the possible actions that could form a solution of this 
reconfiguration phase are, (i) modifying the physical intra-connectivity at central 
stations, (ii) moving physical devices, e.g., transponders, from one location to 
another in a different part of the network, and (iii) set-up and tear-down optical 
connections. Additionally, already purchased and installed network resources not 
yet activated can be put in operation in this phase. Thus, the reconfiguration 
process should process inventory data to decide whether some of these resources 
must be activated or not. It is worth highlighting that to implement such 
reconfigurations, the engineering department needs to perform manual actions 
that need to be scheduled and, therefore, not immediately processed. In fact, these 
manual interventions are usually performed during low activity periods since they 
might require temporally cutting some services, and therefore the whole 
reconfiguration process might last several weeks. 

In the case when network reconfiguration is not sufficient to fulfill all the 
requirements, the network upgrading process, the second phase of the migration 
problem, is started. Network upgrading involves several network planning and 
dimensioning sub-problems, such as migrating selected regions to flexgrid, 
enlarging the network to cover new areas, extending the core towards the borders, 
etc. Obviously, the overall objective is to find solutions minimizing the total cost of 
the planning step, including purchasing, installing and configuring new equipment. 

When a solution is found, the reconfiguration phase in invoked to guarantee that 
all the requirements can be met. If the solution is acceptable, it usually requires to 
be accepted by operators at the planning department, who then send it to the 
engineering department, which, in turn, organizes and schedules the set of 
processes that will physically implement the solution in the network. Although this 
whole process may take several weeks or even months to be completed, a new 
migration request can be started as soon as a subset of the new equipment is 
installed to partially reconfigure the network. 

2.2.2 Migration towards in-operation network planning 

As introduced before, the classical network planning life-cycle typically consists of 
several steps that are performed sequentially. The initial step receives inputs from 
the service layer and from the state of the resources in the already deployed 
network and configures the network to be capable of dealing with the forecast 
traffic, for a period of time. That period is not fixed and actual time length usually 
depends on many factors, which are operator and traffic type specific. Once the 
planning phase produces recommendations, the next step is to design, verify and 
manually implement the network changes. While in operation, the network 
capacity is continuously monitored and that data is used as input for the next 
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planning cycle. In case of unexpected increases in demand or network changes, 
nonetheless, the planning process may be restarted. 

As technologies are developed to allow the network to become more agile, it may be 
possible to provide response to traffic changes by reconfiguring the network near 
real-time. In fact, some operators have deployed Generalized Multi-Protocol Label 
Switching (GMPLS) control planes, mainly for service set-up automation and 
recovery purposes. However, those control only parts of the network and do not 
support holistic network reconfiguration. This functionality will require an in-
operation planning tool that interacts directly with the data and control planes and 
operator polices via OSS platforms, including the NMS. 
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Figure 2-6: Networks life-cycle. 

Assuming the benefits of operating the network in a dynamic way are proven, the 
classical network life cycle has to be augmented to include a new step focused on 
reconfiguring and re-optimising the network, as represented in Figure 2-6. We call 
that step in-operation planning and, in contrast to the traditional network 
planning, the results and recommendations can be immediately implemented on 
the network [Ve14.1]. 

To support dynamicity, however, the current network will need evolve to include a 
functional block between the service layer and the network elements to support 
multi-service provisioning in multi-vendor and multi-technology scenarios; two 
standard interfaces are required. Firstly, the north bound interface that, among 
other tasks, gives an abstracted view of the network, enabling a common entry 
point to provision multiple services and to provision the planned configuration for 
the network. Moreover, this interface allows coordinating network and service 
layer according to service requirements. Secondly, the south bound interface 
covering provisioning, monitoring, and information retrieval. 
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Finally, operators will typically require human-machine interaction, this is to 
ensure new configurations and network impact are reviewed and acknowledged, 
before being implemented in the network. 

2.2.3 ABNO Architecture and required functionalities for in-operation 
planning 

Standardisation bodies, especially the IETF, have been working to address all the 
above requirements, and as a result, the ABNO architecture is now being proposed 
as a candidate solution [Ki13]. The ABNO architecture consists of a number of 
standard components and interfaces (e.g. PCE) which, when combined together, 
provide a method for controlling and operating the network. A simplified view of 
the ABNO architecture is represented in Figure 2-7. 
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Figure 2-7: The ABNO architecture enabling in-operation planning 

Directly connected to the ABNO architecture, the in-operation planning tool can be 
deployed as a dedicated back-end PCE for performance improvements and 
optimisations. The back-end PCE is accessible via the PCEP interface, so the 
ABNO components can forward requests to the planning tool.  

Furthermore, in-operation network planning can only be achievable if planning 
tools are synchronised with the state of network resources, so new configurations 
can be computed with updated information, and those configurations can be easily 
deployed in the network. In the proposed architecture, the back-end PCE gathers 
network topology and current state of network resources, via the ABNO 
components, using protocols designed to convey link-state and traffic engineering 
information, such as BGP-LS.  
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2.2.4 Holistic network planning 

In holistic network planning, the planning tool has access to both, an inventory 
database with the available equipment and the current state of the network stored 
in the traffic engineering databases. Thus, when solving an optimization problem 
in this context, not only the data from operational data bases will be required, but 
also a new data structure containing information about hardware components, 
such as spare linecards and inactive optic fibers, and their corresponding 
relationship within the corresponding network. This new data structure is known 
as the inventory database, or Inventory DB for the sake of simplicity. 

Figure 2-8 presents such architecture. The central element is a planning tool that 
receives planning requests from the NMS. Each request must identify the specific 
planning algorithm to be executed, e.g. spare equipment placement. The algorithm 
can access both operation and inventory data to create an augmented graph of the 
networks to decide, e.g. which links need to be added. 

To illustrate how data collected from different DBs is related, Figure 2-9 shows the 
relationship among elements in the TED, LSP-DB, and inventory. Note that TED 
and LSP-DB are already related since a LSP is defined as a pair of nodes and a hop 
list with nodes and interfaces, identified by their id. 

The inventory DB contains, among other, equipment, linecards, and optical fibers 
that need to be related to nodes, interfaces, and links in the TED. Thus, ids of the 
elements in the TED are used in the inventory. Specifically, the equipment class 
includes the ted-optical-node-ref attribute linking to the node-id attribute of the 
optical-node class in the TED. In addition, an interface in the TED can be 
correlated with another in the inventory and an optical-fiber in the TED can be 
correlated with a fiber-link in the inventory. 

With the proposed element linkage, planning algorithms can get data and perform 
some computations. For instance, from data about physical locations, a planning 
algorithm can compute the distances from a node that needs to be expanded to a 
set of warehouses where linecards are placed; that way, the linecard at a shortest 
distance can be selected. 

The output of a planning request consists in a set of actions to be performed. For 
instance, to move a linecard from its current location to another warehouse in the 
spare equipment placement, or to install a linecard in a specific slot in an 
equipment. 
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Figure 2-8: Holistic network planning architecture. 
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Figure 2-9: Operation and inventory databases relationship. 

In the next section we present the proposed inventory model that consists of a set 
of related elements. In addition, the way to access some common data is also 
described. 

2.2.5 The inventory model 

The proposed inventory model is divided into three main blocks of classes: i) 
hardware-related; ii) fiber-related; and iii) building-related classes. A diagram is 
shown in Figure 2-10. 
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Figure 2-10: Class diagram summarizing the proposed inventory model. 

The hardware-related block includes equipment, linecard, and optical-amplifier 
classes. The main attributes of these elements are grouped into the so called 
hardware-attributes class. An equipment is modelled as container of card slots. A 
card (in this version of the inventory model only linecards are considered) can be 
plugged into one single slot provided that the slot and the card are compatible. 
Hence, the list of compatible card models for each slot is also considered. Regarding 
linecards, we consider each one with two interfaces for optical transmission and 
reception, with an optical signal reach. Table 2-1 summarizes the main attributes 
of key hardware-related classes. The hardware-attributes class includes the adm-id 
attribute to link each piece of hardware to any other external DB, and the 
identifier of the building. Finally, note that the attribute installed can be used to 
identify spare cards. 

The fiber-related block includes the fiber-link and the end-point classes; Table 2-2 
summarizes its main attributes. A fiber link is modelled as a number of spans with 
already connected optical amplifiers and the total link length. The two end-points 
of a fiber link include a reference to the building, the exact location of the patch 
panel within the building and within the patch panel where the fiber is terminated. 

Finally, the building class includes, in addition to the city and address of the 
building, its geographical coordinates for planning algorithms to compute distances 
between two buildings. 

Table 2-1: Main attributes of fiber-related classes. 

fiber-link end-point 

adm-id building-ref 

length location 

spans num-in-patch-panel 

active  

ted-optical-link-ref  
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Table 2-2: Main attributes of the building class. 

building 

adm-id 

short-name 

city 

address 

2.3 Operations Research 

In order to make the content of this project more understandable, we now introduce 
a well-known mathematical formulation to solve a basic planning problem in 
flexgrid optical networks, as well as a meta-heuristic intended to be used in 
following chapters. 

2.3.1 Formulation of Network Problems 

The problem we are dealing with is a kind of multi-commodity flow problem: 
multiple unitary flow demands between different source and destination nodes 
must be routed. It can be mathematically formulated using either the node-link or 
the link-path formulations. The node-link formulation considers every link as a 
choice for every demand flow and keeps the continuity of the flows. On the other 
hand, the link-path formulation uses a set of pre-computed routes between every 
pair of nodes origin-destination corresponding to a demand. 

Since the node-link formulation is the one selected along this project, we present an 
example for solving a single topology design problem based on [Ve14.2]. This 
problem aims at minimizing the amount of links needed to route a given set of 
demands. If a link is used by at least one demand, the link must be activated. 
Demands must be served by lightpaths accomplishing both spectrum continuity 
and contiguity constraints.  

The following sets and parameters are defined: 

N  set of nodes, index n. 

E  set of all links, index e. 

)(nE  set of links incident on node n, index e. 

D  set of demands, each identified by an unique LSP, index d. 

)(dC  set of all pre-computed slots for demand d, index c. 

S  set of spectrum slices, index s. 

csq  binary, equal to 1 if slice s is part of slot c; 0 otherwise. 
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do  origin node of demand d. 

dt  destination node of demand d. 

The decision variables are: 

decx  binary, equal to 1 if demand d is routed through link e and slot c; 0 
otherwise. 

ez  binary, equal to 1 if link e is activated; 0 otherwise. 

Thus, the formulation reads as follows: 


Ee

ezmin  (2.4)  

Subject to 

}.,{,,1
)( )(

dd
nEe dCc

dec tonDdx  
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The objective function (2.4) minimizes the amount of links to be installed. 
Constraints (2.5) to (2.7) find a lightpath for every demand. Specifically, constraint 
(2.5) ensures that one lightpath for each demand is created with end nodes equal to 
the source and destination of demand. Constraint (2.6) guarantees that each 
lightpath is a connected set of links using the same slot along the route, whilst 
constraint (2.7) assures that the route does not contain any loop. Finally, constraint 
(2.8) prevents that any slice in any link is used by more than one demand, while 
installing the link when any slice is used. 

Note that constraints (2.5) to (2.7) do not avoid the presence of cyclic paths. A cycle 
could be found in one specific case: where the source and destination nodes for one 
demand could be adjacent, using a single link to connect them and letting an 
arbitrary set of links to form a cyclic path using available resources, and with no 
use whatsoever. In this case, s simple post-processing removing such cycle could 
bring us the optimal solution. 

2.3.2 GRASP meta-heuristic 

The GRASP meta-heuristic is an iterative procedure consisting of a two-phase 
main algorithm which finds a good-quality solution at each iteration [Fe95]. Within 
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the first phase of the algorithm (constructive phase) one feasible solution is built by 
means of an ad-hoc randomized greedy algorithm. The degree of randomness is 
determined by the parameter  . Next, the local search phase, designed to explore 
the neighborhood of the solution, is applied aiming at improving the current 
solution. The procedure finish when some criterion is met, e.g.: a number of 
iterations without improving the best solution or a maximum execution time. Table 
2-3 shows the main algorithm of the GRASP meta-heuristic for minimization. 

Table 2-3: GRASP Main Algorithm. 

Procedure GRASP main Algorithm
begin  

x* = ∞. 
while stop criteria is not attained do 
x = constructivePhase(g(.), α); 
x = localSearch(f(.), x); 
if f(x)<f(x*) then 

x* = x; 
return x* 

end 
 

The constructive phase (Table 2-4) is characterized by a cost evaluation function (g) 
that allows ordering the elements to be included in the solution. At each 
constructive phase iteration, a candidate list (CL) containing all elements suitable 
to be included in the solution is created. Then, the restricted candidate list (RCL) is 
defined as a subset of CL containing the best elements given a certain g. The size of 
the RCL is determined by the   parameter. When 0 . RCL is equal to the best 
element, whereas when 1 , then RCL=CL.  

Table 2-4: GRASP Constructive Phase. 

Procedure constructive Phase(g(.),α) 
begin  

x = Ø; 
Initialize CL; 
while CL ≠Ø do 
Build RCL(CL,g); 
Select s randomly from RCL; 
x = x U {s}; 
Update CL; 

return x 
end 

 

The following equation is used to create the RCL: 

    minmaxmin)(:, ggglgCLlgCLRCL    (2.9) 

where: 

 )(minmin lgg
CLl

  (2.10) 
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 )(maxmax lgg
CLl

  (2.11) 

Regarding the local search algorithm (Table 2-5), a neighborhood H of the solution 
x is built from a certain algorithm or function, for example, a simple exchange 
between one element in x and other not in x. Thus, depending on the improving 
strategy we can distinguish two cases: the best-improving and the first-improving 
strategies. While in the former all neighbors are investigated and the current 
solution is replaced by the best, in the latter the current solution moves to the first 
neighbor whose cost function value is smaller than that of the current solution. 

Table 2-5: GRASP local search. 

Procedure local Search(f(.),NB(.),x) 
begin  

Compute H(NB,x) 
while H≠Ø do 
Select x from H. 
Compute H(NB,x) 

return x 
end 

 

2.4 Summary 

In this section, we have reviewed the theoretical framework necessary to 
understand the aim of this project. We have seen how dynamic optical networks 
work, as well as the concept of restorability and holistic network planning. They 
will provide us with a proper structure to develop optimization methods to solve 
the network planning problem attempted in this project. 

In the following chapter we introduce the concept of incremental network planning 
problem as well as the statement of the VINCI problem, which is the central point 
of this project.  

 



 
 
 
 
 
 
 
 
 

Chapter 3.  

Incremental capacity planning 
problem 

This chapter introduces the optimization problem that is the focus of this project. 
After introducing the concept of incremental capacity planning for minimizing 
network vulnerability, the Vulnerability-aware Incremental Capacity Planning 
problem, hereafter referred to the VINCI problem, is stated. 

3.1 Introduction 

The incremental capacity planning problem consists in deciding the resources that 
need to be added to the network to reach the desired grade of service. Let us 
assume that the triggering event of incremental capacity planning is after a 
connection request could not be served. In such a case, the NMS might decide to 
request an in-operation network re-configuration, to reallocate the currently 
established LSPs, so as to make enough room for the new connection. In the case 
that the in-operation re-configuration could not find a feasible solution, it is clear 
that the only way to serve the connection request is by adding new resources to the 
network. 

To illustrate incremental capacity planning, let us assume that a request for a 
100Gb/s connection between X1-X6 in Figure 3-1a could not be served as a result of 
lack of resources in the network. The incremental capacity planning algorithm 
might decide that the optimal solution is adding a new optical link connecting X4 to 
X6, as shown in Figure 3-1b. To that end, the algorithm needs to know not only the 
current state of the network resources, represented by the TED, but also the 
capabilities of the physical equipment representing each optical node, the  
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Figure 3-1: Example of incremental capacity planning. 

availability of compatible linecards, available fiber links, etc., stored in an 
inventory database. 

Table 3-1 presents the main pseudocode that summarizes the steps to follow in 
order to solve the incremental capacity problem. Firstly, the network topology 
graph is setup at line 1. From lines 2 to 5 we retrieve the inventory data and obtain 
the hardware equipment and the free fibers. At line 6 the topology is augmented by 
means of adding the set of free fibers obtained the line above. 

Table 3-1: Incremental Capacity Planning Main Algorithm. 

INPUT TED, LSP-DB, Inventory, Rthreshold

OUTPUT LinksToAdd 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 

G(N, E) ← getTopology (TED) 
N.eq ← getEquipment (N, Inventory) 
C ← getLineCardsInWarehouse (N.eq, Inventory) 
NC ← computeCompatibility (N.eq, C) 
L ← getFreeFiberLinks (Inventory) 
G’(N, EUL) ← augmentTopology(G(N, E), L, C, NC) 
S ← getFreeSpectrum(TED) 
P ← getLSPs(LSP-DB) 
B ← getBuildings (building(N) U building(C), Inventory) 
K1 ← computeInstallCosts (C, N) 
K2 ← computeLinkCosts (E, L) 
solution ← solveMP (G’, C, NC, B, P, S, K1, K2, Rthreshold) 
if solution.infeasible then return INFEASIBLE 
return solution.L* 
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After this, we load the spectrum and lightpath data from the network at lines 7 
and 8. From lines 9 to 12, we load the data related with transport and installation: 
building locations and installation costs between warehouses and network nodes. 

Finally, at line 13 we solve the optimization problem behind the incremental 
capacity planning use case we are dealing with. The aim is to obtain a subset of L 
to be activated, thus improving some performance metric of the network. 
Nonetheless, several constraints shall be accomplished while solving this problem. 

Next, we give a detailed definition of the vulnerability minimization use case 
behind the VINCI problem. 

3.2 Vulnerability minimization use case 

This use case of incremental capacity planning problem is related to low 
restorability of currently served traffic. The triggering event here is the detection of 
vulnerable links in our network. We define a link as vulnerable when the 
restorability of the demands crossing that link is lower than a required threshold. 
Without loss of generality, we assume that link restorability is computed by means 
of the equation (2.2). 

When one or more vulnerable links are detected and assuming that re-routing 
affected demands does not change resources in use by not affected demands, the 
only way to ensure higher restorability in these links is by adding new resources to 
the network. Augmenting the topology we could solve the problem by restoring 
more demands than before, thus ensuring higher restorability and avoiding 
vulnerable links, but with extra costs.  

Figure 3-2a illustrates this idea. The percentages close to links show the current 
restorability in case of such link fails. Note that we assume single link failures, 
that is, no more than one failure can be present in the network at the same time. 
Considering a restorability threshold of 95%, there are two vulnerable links (X2-X6 
and X5 – X6). The topology can be therefore extended by adding a new link (X3- X6) 
that allows increasing the restorability of the vulnerable links above the required 
threshold. In fact, by adding new capacity resources, restorability can be either 
improved or kept invariant, but never can be decreased, as illustrated in Figure 
3-2b. 

At this point, we have all the necessary to state the VINCI problem in the following 
section. 
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Figure 3-2: Increasing capacity to ensure higher restorability. 

3.3 The VINCI problem 

We can state the VINCI problem as follows: 

Given: 

 The augmented network topology. 

 The set of failure scenarios, one for each vulnerable link. 

 The available network resources for each scenario. 

 Fiber links activation costs. 

 Spare linecards installation costs. 

 Nodal linecard compatibilities. 

 A global restorability threshold. 

Objective: 

 Minimize the cost of extending the network topology, consisting in the cost 
of activating new links and installing new linecards. 

Subject to the following constraints: 
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 Ensure restorability above the given threshold in all scenarios. 

 Provide restoration lightpaths in all scenarios. 

 Use the network available resources at failure time in every scenario. 

 Installed linecards must be compatible with end nodes and have reach 
enough to support their respective link lengths. 

 Satisfy nodal degree constraints when installing new linecards. 

 Any extension of the topology will be available from any failure scenario. 

In addition to the statement above, we assume the following constraints related to 
some optical network concepts introduced in Chapter 2: 

 Each demand is satisfied using a single lightpath.  

 Demands use the same spectrum assignment along the lightpath (i.e. no 
spectrum conversion is allowed) 

 Demands use symmetrical lightpaths for inbound and outbound connections 
(same route and spectrum in both directions). 

 We assume an initial scenario where all links are active and an arbitrary 
number of demands is satisfied. 

3.4 Summary 

In this section we have introduced the concept of incremental capacity planning for 
minimizing network vulnerability. After this, the statement of the VINCI problem, 
the optimization problem faced in this project, has been presented. 

In the next chapter, the formulation of the VINCI problem as integer linear 
programming is detailed. 

 





 
 
 
 
 
 
 
 
 

Chapter 4.  

ILP formulation 

As we introduced in the problem statement from Chapter 3, the problematic 
related with restorability and vulnerability involves several decision making. 
These decisions range from adding new links to assigning restoration paths and 
choosing specific inventory hardware. The large amount of binary decision 
variables makes this problem hard to solve optimally at first glance, thus creating 
the need of a mathematical model to provide optimal solutions. 

In this Chapter, we introduce a mathematical formulation in terms of a binary 
integer linear programming for the VINCI problem. This formulation extends the 
basic RSA formulation presented in 2.3.1 by adding the specific features of VINCI: 

 Considers several failure scenarios sharing the same topology. 

 Measures the number of not re-routed paths in each scenario. 

 Measures the restorability for each scenario, forcing this to be above a given 
threshold. 

 Considers capacity and inventory resources not available for use. 

 Adds a set of constraints related with inventory installation: linecard 
compatibility and reachability, and maximum nodal degree constraints due 
to slot capacity. 

4.1 Notation 

The following sets and parameters are necessary to define the problem: 

N  set of nodes, index n. 

)(nR  set of empty linecard slots at node n, index r. 

T  set of spare linecards, index t. 
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E  set of links, index e. 

)(nE  set of links incident on node n, index e. 

EL     set of inactive links, index l. 

Q  set of failure scenarios, index q. 

D  set of demands, each identified by an unique lightpath, index d. 

)(qD  set of demands in scenario q, index d. 

)(dC  set of all pre-computed slots for demand d, index c. 

S  set of spectrum slices, index s. 

ef  binary, equal to 1 if link e is already in use; 0 otherwise. 

qecg  binary, equal to 1 if any affected demand from scenario q can use slot c 
of link e; 0 otherwise. 

csq  binary, equal to 1 if slice s is part of slot c; 0 otherwise. 

rtm  binary, equal to 1 if linecard t is compatible with slot r; 0 otherwise. 

ntc  cost of installing linecard t in node n. 

ec  cost of activating link e. 

ekm  length in kilometres of link e. 

treach  reachable length in kilometres of linecard t. 

do  origin node of demand d. 

dt  destination node of demand d. 

db  bitrate in Gb/s of demand d 

rth restorability threshold. 
The decision variables (all of them binary) are: 

eru  binary, equal to 1 if a new link e is connected to slot r; 0 otherwise. 

rv  binary, equal to 1 if a spare linecard is installed in slot r; 0 otherwise. 

rty  binary, equal to 1 if linecard t is installed in slot r; 0 otherwise. 

dqw  binary, equal to 1 if demand d is not restored in the failure scenario q; 
0 otherwise. 

qdecx  binary, equal to 1 if demand d is routed through link e and slot c in the 
failure scenario q; 0 otherwise. 
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ez  binary, equal to 1 if link e is activated; 0 otherwise. 

4.2 Formulation 

The formulation of the VINCI problem is as follows: 
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The objective function (4.1) minimizes the cost of expanding the original network 
topology. The first sum computes the cost of activating the set of new links, and the 
second one computes the installation cost of those network cards required to 
activate the set of new links. 

For the sake of comprehension, we can split the set of constraints into two groups. 
The first one, related with routing and spectrum allocation of demands, and the 
second one, related with inventory assignment.  

Constraints (4.2) to (4.6) find routes and allocate spectrum for each affected 
demand in every failure scenario. In more detail, constraints (4.2) and (4.3) ensure 
that each affected demand will either be satisfied or not, without any spectrum 
assignment in this last case. Coefficients dqw  are responsible for this behaviour: 

when set to one, all variables qdecx  must be zero, thus removing any possible light 

path for that demand. When set to zero, constraints (4.2) to (4.5) force to serve the 
corresponding demand. Note that dqw  will be used to compute the restorability of 

each scenario. 

Constraint (4.4) guarantees that no light path will use more than one single 
channel along every link, from the source to its destination node (this is the so-
called spectrum continuity constraint). In conjunction with constraint (4.3), they 
ensure a nodal degree of either zero or two for every channel, for every demand, in 
every failure scenario. That is, if the demand is served, it must follow a non-
bifurcated path from source to destination. Note that constraint (4.5) bounds the 
routing binary variable to one if and only if there are free spectrum resources. 

Constraint (4.6) ensures that a spectrum slice in a link would be part of at most 
one light path. Coefficients csq  are responsible for using a contiguous set of slices 

from pre-computed channels, and coefficients qecg  prevent affected demands from 

using spectrum resources not available for use. This concludes the routing and 
spectrum assignment part of the problem. 

Constraint (4.7) stores the key point of this formulation: ensures restorability for 
every failure scenario above the given threshold. It is worth mentioning that this 
constraint is based on equation (2.2) to compute the link restorability. 

Constraints (4.8) to (4.13) deal with inventory assignment. Constraint (4.8) 
connects each new link to an available slot at each link end node. For each of these 
slots with a new connected link, an available linecard is installed by constraint 
(4.9), whereas constraints (4.10) and (4.11) ensure the compatibility of the installed 
card with the hosting slot. In addition, it is necessary to ensure that every linecard 
in the inventory can be used no more than once, which is guaranteed by constraint 
(4.12). Finally, constraint (4.13) avoids assigning linecards whose maximum reach 
is under the fiber link length. 
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4.3 Problem complexity and size 

The basic topology design problem (based on basic RSA constraints) presented in 
Chapter 2 was proved to be NP-complete in [Ch11] and [Wa11]. We can deduce as 
well the high complexity of this problem, since it includes several embedded RSA 
sub-problems, in addition to the new set of constraints related with restorability 
and the inventory. Therefore, we can deduce that the VINCI problem is NP-
complete. 

To finish this chapter, we present the (approximated) dimension of this problem in 
terms of the number of binary variables and constraints as a function of the sizes of 
the sets involved. Table 4-1 shows those expressions, where |*| represents the 
cardinality of the set. To really appreciate such dimensions, a simple computation 
based on the instances presented in Chapter 6 is here provided. Thus, even 
moderated-size instances from a topology with 8 nodes, 12 active links, 20 potential 
links to active, 160 spectrum slices, 2 vulnerable links and 60 affected demands per 
link generates approximately ILP instances with 6e5 binary variables and 5e6 
constraints. In view of these numerals, it is worth noting that solving the ILP will 
result in an unaffordable task even using powerful hardware and efficient solver 
implementations when facing real instances with hundreds of links and demands. 

Table 4-1: VINCI problem size 

# of binary variables  |||||||||||||||| TERNCEDQ   

# of constraints   |||||||||||||||||| TRNSCDNEQ   

4.4 Summary 

In this chapter, the ILP formulation of the VINCI problem has been presented. In 
light of the complexity and the size of the problem, we conclude the need of 
providing another method to solve this problem to be able to offer results in an 
affordable way. In next chapter, we introduce a heuristic based on the GRASP 
meta-heuristic framework intended to provide a good balance between solution 
quality and computation time. 

 





 
 
 
 
 
 
 
 
 

Chapter 5.  

Heuristic approach 

As argued in the previous chapter, solving the VINCI problem with an ILP could be 
expensive in terms of time and computation resources. Hence, a heuristic approach 
is required in order to obtain a good balance between solution quality and 
computation time. 

The heuristic presented consists in a main constructive algorithm that includes a 
GRASP meta-heuristic to be solved for each failure scenario. The proposed 
randomized constructive procedure and the consideration of different criteria to 
sort failure scenarios before processing them provide the needed diversification to 
effectively explore the problem solution space. 

5.1 Main algorithm 

The purpose of the main algorithm is to compute different solutions iteratively, 
according to some differentiator behavior in each iteration in order to increase the 
chances of finding a better solution. 

Table 5-1 shows the main algorithm of the VINCI problem we are facing. After 
initializing some variables and augmenting the current topology with the potential 
links to be added from the inventory (lines 1 to 4), the main algorithm runs for a 
certain number of iterations. Each iteration solves sequentially each failure 
scenario and accumulates the set of resources to use from the inventory (links and 
linecards). The order in which the failure scenarios are processed can be either 
randomly or greedily chosen. Note that, while the former criteria just need one 
main iteration, the latter must be executed few times in order to ensure enough 
diversity in the solution construction.  

We can classify the code executed in each iteration into 3 phases. The first one, the 
pre-processing phase (lines 5 to 10), resets all necessary variables to their original 
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state, since they will carry changes from the last iteration, preparing this way the 
inventory and the network for the next phase. 

The second phase, or processing phase, is responsible for computing the solution of 
that current iteration, including the execution of the GRASP meta-heuristic in each 
failure scenario. In this phase, the inventory as well as the set of paths from the 
failure scenario are modified in order to construct a solution. This phase starts at 
line 11 and ends at line 20 or 24. 

In the last phase we post process the solution obtained after the processing phase. 
We compare the constructed solution against the best solution obtained at that 
point (incumbent solution), and perform the necessary changes. 

Table 5-1: Main algorithm 

INPUT: G(V,E), Inv0, Q0, sortMode, maxMainIte, maxGraspIte, α, rth 
OUTPUT: (incumbent,incumbentCost) 
 

1: L ← getNewLinks(G,Inv0) 
2: G ← extendTopology(G,L) 
3: incumbent.cost ← +∞ 
4: incumbent.feasible ← false 
6: for 1..maxMainIte do 
5: iterSol.feasible ← true
7: setCost(E,1) 
8: setCost(L,100) 
9: Q ← sort(sortMode,Q0) 
10: Inv ← Inv0 
11: for each q ∈ Q do 
12: releaseWorkingPaths(G,D(q)) 
13: disableFailureLink(q) 
14: graspSol ← doGRASP(Inv,G,D(q),maxGraspIte,α,rth) 
15: releaseRestoredPaths(G,D(q)) 
16: enableFailureLink(q) 
17: allocateWorkingPaths(G,D(q)) 
18: if graspSol.feas = false then 
19: iterSol.feas ← false 
20: break 
21: else 
22: updateCosts(sol.links ∩ L, 1) 
23: iterSol.inv ← decreaseInventory(graspSol.inv) 
24: if iterSol.feas = true then 
25: iterSol.cost ← computeCost(iterFibers,iterLcards) 
26: if iterSol.cost < incumbent.cost then  
27: incumbent.cost ← iterSol.cost 
28: incumbent.feas ← true 
29: incumbent.inv ← iterSol.inv 
30: if incumbent.feasible then
31: return INFEASIBLE 
32: else 
33: return (incumbent) 



Chapter 5 – Heuristic approach 39 

5.1.1 Pre-processing phase 

Each main iteration starts with an instance of the original inventory, and a fixed 
cost for each link of the topology. The solution for that iteration is also initialized 
empty at this point. 

At line 9 of the pseudocode, the set of failure scenarios is sorted according to one of 
the following sorting criteria: 

 greedy-sorted: failure scenarios are sorted in descendent order of number of 
affected demands. In other words, those scenarios with a higher number of 
affected demands are processed before those with a lesser number. 

 random-sorted: the set of failure scenarios is randomly sorted. Note that this 
option adds significant diversity when several failure scenarios are 
processed. 

5.1.2 Processing phase 

Once the necessary data has been set up at the beginning of the iteration, each 
failure scenario is processed, respecting the order established by the sorting 
criterion explained before. The following steps will be followed in each scenario: 

 Line 12: Remove from the network the demands affected by the failure 
scenario. This action releases the capacity used for those demands in its 
current route. 

 Line 13: Disable the vulnerable link of failure scenario. Recall that this link 
cannot be used for restoring paths. 

 Line 14: Apply the GRASP-based algorithm (doGRASP function) to restore 
the affected demands. This phase will update the current topology with the 
new resources necessary to ensure the restorability threshold for this failure 
scenario. 

 Line 15 - Remove all restoration paths done by the GRASP algorithm. This 
is the first step needed to prepare the network for processing the next 
failure scenario. 

 Line 16 - Enable again the vulnerable link. 

 Line 17 - Restore the network capacity resources to its original state. 

 Lines 18 to 23 - Check whether the obtained solution is feasible or not. 
Moreover, costs and inventory are updated according to the results provided 
by the doGRASP function. Specifically, costs of new links to install found in 
this iteration are set as they were really installed. In this way, they can be 
reused for next failure scenarios without adding additional cost to the 
solution. Note that inventory needs to be accordingly updated not only in 
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terms of the new links to install but also in terms of the linecards needed to 
support new links installation. 

5.1.3 Post-processing phase 

A main algorithm iteration ends when every failure scenario is successfully 
processed or when anyone of them returns infeasible at doGRASP – see line 20. In 
the former case, the current iteration solution is compared against the best solution 
found obtained so far. At line 24 of the pseudocode, we check if the solution from 
that iteration is feasible or not. In case of feasibility, all the inventory necessary for 
every failure scenario will be supplied to function getCost – at line 25. This function 
is responsible for computing the cost of the solution, consisting in the activation of 
new added fibers, installation of linecards and their transport from buildings 
(warehouses) to nodes. At line 26, the iteration solution updates the incumbent one 
if the cost of the former is lower than the cost of the latter. Eventually, the 
heuristic returns the incumbent solution if found. 

Following, the doGRASP function is described in detail. 

5.2 GRASP-based heuristic 

The doGRASP algorithm is a customization of the GRASP meta-heuristic. As we 
will see, this customization is intended to convert this meta-heuristic to a 
vulnerability-specific heuristic. This adaptation does not implement the local 
search phase, only the constructive phase. 

Table 5-2 shows the pseudocode of the doGRASP algorithm, which follows the 
basics of the GRASP meta-heuristic introduced in the background chapter. The 
specifications needed to understand the procedure behind the doGRASP algorithm 
are described in following subsections. 

5.2.1 Input data and initialization 

Each call to doGRASP accepts the following input: the affected demands of the 
failure scenario and the current state of the inventory, as well as the all necessary 
configuration parameters. Each GRASP iteration will start from this same input 
data. This is, the links cost and inventory state at the beginning of each iteration 
will be always equal to the supplied input data. 

Lines 1-3 of Table 5-2 shows the initialization needed at the beginning of each 
doGRASP execution. Basically, it consists in initializing the incumbent solution. 
Then, the main body of the algorithm is run for a given number of iterations 
(maxGraspIte), each one starting with the initialization of the iteration solution 
and the creation of the CL (lines 4 to 8).  
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Table 5-2: doGRASP algorithm. 

INPUT: Inv,G,D(q),maxGraspIte,α,rth 
OUTPUT: graspSol 
 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 

graspSol ← ⌀ 
graspSol.cost ← ∞ 
graspSol.feas ← false 
for 1..maxGraspIte do 

iteSol ← ⌀ 
iteSol.inv ← Inv 
Generate CL from D(q) and Inv 
iteRth ← 0 
while CL ≠Ø && iteRth<rth do 

Build RCL from CL, g, and α following eq (2.9) 
Select d randomly from RCL 
Update iteRth 
iteSol.paths ← iteSol.paths U {d.path} 
Update link costs of G 
Allocate(G,d.path) 
Update iteSol.inv 
Update CL 

if iteRth≥rth then 
if cost(iteSol)<graspSol.cost then 

graspSol ← iteSol 
graspSol.cost ← cost(iteSol) 
graspSol.feas ← true 

Release(G,iteSol.paths) 
return (graspSol) 

5.2.2 Candidate elements 

In our case, the GRASP heuristic will be applied to single failure scenarios, with no 
direct relation between them. The set of possible candidates is the set of affected 
demands of that scenario. The only relation between scenarios will be the 
modification of the inventory as well as the link costs, without affecting the 
structure of the GRASP heuristic in any case. 

5.2.3 Evaluation cost of candidate elements 

The following steps test whether an affected demand can be added to the CL or not 
(all included in lines 7 and 16): 

 A restored path must exist. This path is computed with the RSA algorithm 
presented in [Ca12], which basically extends the Dijkstra algorithm for 
computing shortest paths [Di59] including spectrum allocation. 

 All non-installed links in the restored path must be installable using the 
available inventory equipment, all of them at the same time. 

 If all the above conditions are satisfied, the affected demand is inserted into 
the CL. Otherwise it is rejected. 
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As introduced in Chapter 2, the cost evaluation function g allows ordering the 
elements to be included in the solution. In our problem, this function is based on 
the inventory and the available network resources at failure time embedded into 
the extended topology. The associated cost of a candidate is the cost of its restored 
path. The cost of a restored path is the sum of the costs of its links. From the main 
pseudocode in Table 5-1, links from topology will have rather a cost of 1 or 100 at 
the beginning of each main iteration following the next rule: if a link existed prior 
to the topology extension, it will have a cost of 1; it will have a cost of 100 if it was 
added to the topology as a result of the extension. These costs can be modified 
during doGRASP algorithm execution. Note that we arbitrarily fix these costs to 1 
and 100, being other values also valid. The rationale behind this set up is to 
promote the use of installed links and force using new links to install only when 
current resources are not enough to restore the affected demands. This explanation 
is extended in next section. 

5.2.4 Candidate callback function 

When a candidate is chosen and popped from the RCL (line 11), the iteration 
solution is updated (lines 12 and 13) and costs of links in the restoration path are 
changed to 1 (line 14). The reason behind this can be explained in terms of 
penalties: the first time a link of length 100 is used, it makes no sense to keep such 
a high cost, because it will have already been decided to activate it and other 
demands could take profit from it, instead of choosing among other high cost links. 
Note that the restoration path must be setup in order to allocate the capacity 
resources used by it (line 15). 

The inventory required to activate such links is occupied and stored in the solution 
object corresponding to that GRASP iteration (line 16). The modified links before 
mentioned are stored as well. Before attempting to add a new element in the 
solution, the CL must be updated (line 17). 

5.2.5 Stop condition 

In the standard formulation, the GRASP meta-heuristic stops when it reaches an 
empty RCL. The remaining solution becomes feasible or not depending on some 
parameters – usually one will decide it depending on whether the CL is empty or 
not. In this particular version, however, we are not going to use any of these 
conditions.  

Instead, we will use a stop condition based on the restorability coefficient of the 
failure scenario being processed (line 9). Recall that candidates are a subset of the 
set of affected demands. Then, if the RCL is not empty but the restorability 
coefficient is already above the given threshold, the solution will be feasible and the 
GRASP iteration will end successfully (line 18). On the other hand, if the 
restorability coefficient could not be increased above the threshold – even with a 
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non-empty RCL – the solution will be inevitably infeasible and the GRASP 
iteration will prematurely stop as well. 

If the iteration solution is feasible and it improves the incumbent one, the 
incumbent solution is properly updated (lines 19 to 22).  

5.2.6 Output data 

A doGrasp call will return the best solution among all GRASP iterations. It could 
return an infeasible solution as well. This solution will be used in the remaining 
steps of the processing phase in order to update the network and the inventory 
with the following information: 

 The set of linecards and fibers necessary to perform demands restoration in 
that failure scenario – we will mark them as occupied from this point on. 

 A subset of links from the topology extension which are being used by the 
restored demands. Recall that we will change the cost of these links to one 
from this point on. 

Proceeding this way, next failure scenarios from the same main iteration will 
dispose of updated routing costs as well as the updated version of the inventory. 
Recall that each new main iteration will reset the inventory to its original state at 
the pre-processing phase. 

5.3 Complexity analysis 

Next, we analyze the complexity of the heuristic presented above. 

Firstly, the topology costs are reset in order to restore possibly changed costs from 
the previous iteration. These steps have a complexity proportional to E + L, since 
every link from the topology must be revised. Next, the set of failure scenarios is 
sorted. In the worst case – the greedy sorting –this step will have a complexity of 

QQ log . The best case is given by the random sort, which shuffles all scenarios 

with a complexity of Q . We consider here the worst case complexity. Next, each 

scenario is processed making use of the GRASP heuristic, whose complexity is 
||||log|||| TNNDk  . Assume that GRASP performs k iterations, and each of 

them has to compute a restored path for each affected demand – D in the worst 
case. Restored paths are computed using the Dijkstra algorithm, of complexity 

NN log , which justifies the expression above. The term T refers to the number of 

linecards to be processed in the worst case to install the set of new links of that 
scenario. Therefore, grouping every term explained so far and simplifying, we end 
with an overall complexity of  ||||log||||||log|||||| TNNDkQQLE  . 
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5.4 Summary 

In this chapter, the heuristic designed to solve the VINCI problem has been 
presented. Consisting in a main algorithm that runs a GRASP-based heuristic 
inside, the heuristic explores a variety of feasible solutions in the aim of finding a 
good quality solution. Moreover, the overall complexity of the algorithm is low, 
since it basically consists in running iterations of sets of shortest path 
computations over a network. 

In the following chapter, both ILP and heuristic methods will be evaluated through 
numerical results. 

 



 
 
 
 
 
 
 
 
 

Chapter 6.  

Numerical results 

In previous chapters, we have defined the VINCI problem and offered two different 
approaches for solving it, namely, an ILP model and a GRASP-based heuristic. 
This chapter is devoted to present numerical results from solving the VINCI 
problem with the aforementioned methods. The chapter starts introducing the 
details of the reference scenario and illustrates a solution of the problem by means 
of snapshots of the visualization tool developed within the project. Then, 
comparison between the ILP and the heuristic is provided, as well as an exhaustive 
analysis on the heuristic performance. In view of all these results, conclusions are 
eventually presented. 

6.1 Reference scenario 

6.1.1 Network configuration and inventory 

All network topologies presented in this chapter are based on two core networks 
(depicted in Figure 6-1). The TEST topology was specifically created for testing 
different solving methods and configurations, while the DT topology, which 
represents the optical core network of the operator Deustche Telekom in Germany, 
is provided with the aim to extend further conclusions for real optical networks. 

For each of these two reference networks, we have created three topologies 
corresponding to different inventory configurations. Starting from a certain 
amount of non-active links (i.e. |L|), each topology increases the amount of active 
links by adding few of the links in the former set. In this way, we can evaluate how 
the VINCI problem would adapt to incremental networks in a realistic way. 
Moreover, we are increasing the amount of network scenarios to offer a wider set of 
numerical results. Thus, a total number of 6 different topologies are used in this 
numerical analysis, whose main attributes are summed up in Table 6-1. Note that 
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TEST_8_12 and DT_12_20 correspond to the topologies depicted in Figure 6-1 but 
adding the set |L| of inactive links. 
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Figure 6-1: Reference networks 

Table 6-1: Main characteristics of TEST-based and DT-based topologies 

name |N| |E| |L| 

TEST_8_12 8 12 16 

TEST_8_16 8 16 12 

TEST_8_20 8 20 8 

DT_12_20 12 20 46 

DT_12_25 12 25 41 

DT_12_30 12 30 36 

 

Regarding the amount of linecards available in the inventory, we provided enough 
to ensure that every link in L could be installed if necessary, regardless of the 
capacity in terms of slots in network nodes. We considered two types of cards (short 
and long reach) with around unitary cmt costs. On the contrary, link installation 
costs ce were set in the order of 104 cost units. To restrict the amount of new 
installed links, we fix the amount of node slots able to hold a linecard to 8, so that 
the degree of a node can never exceed this value. For the sake of simplicity, we 
have considered a unique centralized warehouse to store all linecards. 

Finally, we considered two different optical spectrum configurations: 1 THz and 4 
THz, both fragmented into slices of 6.25GHz. The first configuration, used for ILP 
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evaluation due to its lower size, generates 160 spectrum slices, whereas the second 
one, which is a more realistic configuration, involves 640 slices. 

6.1.2 Instance generation 

By means of the OMNeT++-based simulator presented in Chapter 2, instances for 
the VINCI problem using the already defined network configurations have been 
created. To obtain an instance, the following procedure was executed: 

1. The simulator was run for a given offered load, so that a blocking 
probability in the steady-state is reached (e.g. 1%) 

2. The bulk restoration algorithm described in [Ca14] was implemented in the 
PCE and run to detect which links had its restorability lower than a 
predefined threshold. 

3. If vulnerable links were found, then the input data for both ILP and 
heuristic methods was collected and the execution of the VINCI problem 
triggered. 

We fixed the restorability threshold to 95% for every instance. By properly tuning 
the offered load, we obtained instances with a wide range on the number of 
vulnerable links and affected number of demands per link. In all experiments we 
consider demands of 100 Gb/s, consuming each of them 6 spectrum slices. 

6.1.1 Hardware and implementation details 

All instances were solved in an Intel Core i7-4770 @ 3.40GHz processor with 4 
cores and 16 GB of RAM running Ubuntu 14.04 64 bit. 

We implemented the ILP in MATLAB R2014b using IBM CPLEX 12.5.1 as solver 
engine. Thus, each time a problem instance was generated, a XML containing all 
the necessary input data for the ILP was created. For checking purposes, an HTML 
5 visualization tool, using KineticJS was used to graphically plot ILP solutions. On 
the other hand, the heuristic was integrated in the OMNeT++ 4.5 simulator, 
specifically as an independent ad-hoc class accessible from the GCO module. 

6.2 Visualizing VINCI solutions 

For illustration purposes, Figure 6-2 shows a small instance for the topology 
TEST_8_12 by means of the HTML5 visualization tool. To the left, the list of 
possible failure scenarios as well as the original network state is own. We can also 
observe the list of demands established in the network, being the working path of 
demand 6 depicted over the network in the center of the figure. Note that demand 
6 (depicted in green, from node 3 to 8) crosses a vulnerable link. In fact, the 
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restorability of this link is below the threshold because such demand 6 cannot be 
restored using the available network resources. 

 

Figure 6-2: Affected demand (green) and its corresponding failure link (red). 

 

The solution provided by the ILP is shown in Figure 6-3. We can observe that a 
new link has been added between nodes 1 and 3 (dotted line). This link is necessary 
to restore demand 6. Indeed, it was added to the network in order to ensure a 
restoration path for that affected demand. Note that the restoration path (in blue) 
actually uses the new link and the free resources in previously existing links. 
Although alternative routes bypassing the vulnerable link could be found, the 
residual capacity (not shown in the figure) avoids finding a shorter route. In the 
upper-right corner of the figure, the restorability of this link is showed after the 
network is extended, showing a value of 100%. The activation cost is displayed as 
well. 
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Figure 6-3: Restored demand (blue) using a new link (dashed). 

6.3 ILP vs heuristic comparison 

In this section, we compare the ILP and heuristic solutions for several instances in 
terms of objective function and execution time. Unfortunately and due to time and 
computational limitations, we got few ILP solutions since they need for several 
hours of computing each of them. 

We launched instances for all TEST-based networks and for DT_12_20, each of 
them with a fixed spectrum of 1 THz (i.e. 160 slices). The number of vulnerable 
links of each instance ranged from 1 to 4. We limited the CPLEX execution time 
(again, to be able to obtain a set of instances during project execution) to 10 hours 
and the optimality gap to 0.01%. 

From the experiment above, we got 9 instances where the ILP solution was 
obtained before reaching the time limit of 10 hours. For those instances (ranging 
between 500,000 and 3,500,000 binary variables), the heuristic with the best 
observed configuration reached the same objective function value than that from 
solving the ILP. However, execution times were enormously different, as can be 
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seen in Figure 6-4. The figure compares the time to generate and solve the ILP and 
the time to solve the heuristic. A logarithmic scale was applied to the time axis in 
order to let a proper visualization. In summary, a difference of 2 orders of 
magnitude between the generation time and solving time in the ILP, as well as a 
difference of 7 orders of magnitude when comparing only the generation time of the 
ILP versus the heuristic solving time is observed. 

From Figure 6-4, we can observe a couple of important points. On the one hand, the 
ILP generation time – this is, the time it takes to prepare and populate all 
constraints to the CPLEX model object – predominates over the solving time. 
Specifically, the order of magnitude of the generation time lies between 5 and 6 – 
thousands of seconds (i.e. several hours). On the other hand, despite the fact that 
the ILP takes few seconds to solve, there exists a difference of approximately three 
orders of magnitude in contrast with the solving time of the heuristic, since this 
last takes only a few milliseconds to solve the same instance. 

Before taking conclusions of this comparison, let us analyze few instances where 
the ILP did not reach the optimal solution after 10 hours. Note that these instances 
needed several hours for generating the problem (as seen in Figure 6-4) and more 
than 10 hours to obtain the optimal solution. Table 6-2 provides relevant 
information about three suboptimal solutions. We can observe that the first two 
instances had a GAP near to 100% with an ILP objective function remarkably 
worse than the heuristic one. Therefore, we can easily deduce that the ILP could 
not reach the integer optimal solution in these two cases. The last instance, 
however, did not reached the established GAP of 0.01%, but kept close to it with a 
value of 0.04%. As we can see in this case, the solution provided by the heuristic is 
almost the same, since both solutions installed one single link with the same cost 
for the linecard installation. The only difference is that the activated link from the 
ILP was approximately 8 km shorter than the link provided by the heuristic, which 
represents a negligible difference between both solutions. 

In light of the previous results and despite the fact that the comparison performed 
lacks from exhaustiveness due to the limitations of this project, we can conclude 
that the GRASP-based heuristic provides high-quality solutions (optimal or near-
optimal in our study) in affordable running times several orders of magnitude 
lower than those of the ILP. Finally, note that solving the ILP for larger instances 
considering larger DT topologies and 4 THz of spectrum was not possible due to the 
impossibility to generate the problem, even when a large working memory of 
3072GB and few TB of disk space were tuned. Therefore, we choose the heuristic 
approach to solve the VINCI problem for realistic instances. 

In the next section, an exhaustive analysis of the heuristic is done in order to find 
the best configuration and its performance. 
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Figure 6-4: Execution time comparison: ILP vs. heuristic. 

Table 6-2: Results of sub-optimal instances after 10 hours 

# 
variables 

# 
constraints 

ILP heuristic 

optimality 
gap 

obj. 
func. 

# new 
links 

obj. 
func. 

# new 
links 

solving 
time  

(sec) 

793804 263408 98.56% 80296 8 10034 1 0.013 

1319065 346105 97.43% 90325 9 10034 1 0.015 

672256 211264 0.04% 10034 1 10042 1 0.009 

6.4 Heuristic performance 

In this last part of the chapter, we make a deeper study of the heuristic with the 
aim of finding the optimal configuration. For this study, we used a spectrum width 
of 4 THz – 640 slices – to fit the real spectrum size of flexgrid optical networks. The 
number of instances generated to perform this numerical analysis was 4250, as a 
result of the multiple combinations of the set of parameters that define each 
instance, namely, topology, network load, sorting criterion, number of main and 
GRASP iterations (maxMainIter, maxGraspIter) and α. A table with part of the raw 
results presented in this section is available in Appendix B. 

First of all, let us analyze the best configuration for the α parameter of the GRASP-
based heuristic. To this aim, we have fixed maxGraspIter to 100. Moreover, in case 
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of using the random-sorted criterion for failure scenarios, maxMainIter was set to 
10. Figure 6-5 shows the average value objective function as a function of the α 
parameter separated into the TEST-based and DT-based topologies. Furthermore, 
Table 6-3 shows the optimal value of α observed for each topology and overall. In 
addition, we can see three measures of the relative solution gain in each case. The 
first represents the gain of using the optimal value of α instead of α=0 for the 
greedy-sorted criterion. The same applies for the second row, except that the 
comparison is done for the random-sorted criterion. The third row shows the 
relative solution gain when using an optimal α and the random-sorted criterion, 
when compared against using the greedy-sorted one. 
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Figure 6-5: Objective function as a function of α 

Table 6-3: α configuration and relative gains 

 test DT overall 

Optimum α (αopt) >0.5 0.5 0.5 

% gain (αopt/ α=0) [greedy] 2.5% 8.9% 4.9% 

% gain (αopt/ α=0) [random]  9.5% 6.8% 7.7% 

% gain (random/greedy) [αopt] 19.5% 15.2% 17.4% 

 

As can observed, the lowest objective function value is always reached at α=0.5 for 
any network and sorting criterion. This characterizes strongly the best α parameter 
configuration for this heuristic. In fact, using this value improves the quality of the 
solution up to a 10% with respect to consider α=0. Note that the latter case will 
allow reducing the computational time since no GRASP iterations are necessary. 
Nevertheless and since we are dealing with a planning problem where execution 
time is not strongly restricted, it is preferable to use this optimal α and increase 
the total computational time in the hope of finding a significantly better solution. 
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Moreover, it is worth noting that the random-sorted criterion highly improves the 
greedy-sorted one (near to 20% of gain). 

Once the best α parameter have been found, let us analyze how the heuristic 
converges to the best solution as a function of the execution time. Figure 6-6 shows 
the on-average incumbent objective function along the execution time when α=0.5 
is selected. It is clear that the heuristic quickly converges to a solution close to the 
best obtained one. For example, for the DT-based topologies and random-sorted 
criterion, a solution only 5% far from the best found solution is obtained in only 
0.25 seconds, which is approximately the 20% of the total execution time. Note that 
the random-sorted criterion always produces a better solution than the greedy-one 
for any given execution time. This result allows us finally selecting the random-
sorted criterion as the best choice. 

In view of Figure 6-6, it is clear that we can increase the number of GRASP 
iterations to increase the execution time and increase the probability of obtaining 
an even better solution. In this regard, since the heuristic took up to 3 seconds and 
considering that we could have up to few hours to solve the problem in real life, we 
could highly increase this couple of parameters to try to improve the obtained 
solution as much as possible. 
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Figure 6-6: Objective function as a function of execution time 

After selecting the configuration consisting in the random-sorted criterion with 
α=0.5, we analyze whether the selected value for maxMainIter (fixed to 10) was 
large enough. Figure 6-7 shows the average and maximum number of main 
algorithm iterations needed to found the incumbent solution for the DT-based 
instances. Obviously, as the amount of vulnerability scenarios increases, it requires 
more iterations of the main algorithm to find the incumbent. Although, in average, 
around 7 iterations are needed to solve instances with 6 vulnerable links, the 
maximum reaches 10 iterations. Therefore, for instances with higher or equal 
number of scenarios, a higher number of main iteration should be 
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Figure 6-7: Incumbent main iteration analysis for DT-based instances 

necessary. However, as argued before for the number of GRASP iterations, the 
number of main iterations could be extended to ensure reaching the incumbent 
solution in a main algorithm iteration farther from the fixed limit. 

Finally and after a detailed analysis on the solved instances, we realized that some 
of the best obtained solutions return a topology adding no extra links. This is, the 
restoration algorithm used to detect vulnerabilities found instances with 
vulnerable links that, actually, could be successfully restored if the problem of 
restoring demands after a failure was better solved. Recall that a stringent time 
limitation is imposed to find a solution for such restoration algorithm and, 
consequently, better restoration paths could be found. This behavior is depicted in 
Figure 6-8, where the amount of problem instances with the need of installing, at 
least, one new link is depicted as a function of the time to solve the VINCI problem. 
The execution time is normalized to the time invested for the restoration algorithm 
to detect vulnerabilities, being 1 this mentioned time.  

What can be concluded from Figure 6-8 is that when investing a similar (or 
moderately higher) execution time for solving VINCI than the time for 
vulnerabilities detection, the heuristic returns new links in the 100% of the tested 
instances. Nonetheless, when the computational effort to solve VINCI increases, 
not only better solutions are obtained (as seen in previous figures) but also 
instances that do not really need additional capacity resources rise. Concretely, 
when the computational effort increases 10 times, only the 66% of instances with 
one vulnerable link need of a capacity extension. For instances with 2 vulnerable 
links, it is necessary to invest 40 times more than the detection algorithm to 
decrease the number of instances with increased capacity to a 71%.  

In light of this behavior, it is clear that a more complex heuristic for the planning 
process, although providing better solutions, would imply a larger difference with 
the restoration algorithm. This is the main reason we do not go further in adding 
intensification mechanisms (e.g. a local search phase) to the heuristic. 
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Figure 6-8: % of instances with new links vs time for DT-based topologies. 

6.5 Summary 

In this chapter we provided numerical evidence to evaluate the performance of both 
ILP and heuristic methods. A first comparative analysis allows highlighting 
differences in orders of magnitude between solving times. In fact, the heuristic 
approach reached the optimal solution in execution times up to 7 orders of 
magnitude lower than the total time needed to generate and solve the ILP. 

Once the heuristic has been shown as the most affordable method to solve VINCI, a 
fine tuning has been provided by means of solving and analyzing a large set of 
heterogeneous instances. Results illustrated that the random-sorted criterion with 
α=0.5 and a large number of iterations is the best configuration. The time needed 
to solve the larger instances with this configuration needs no more than 5 seconds. 
Therefore, there is enough room to increase the computational effort since 
execution time could reach several hours (if necessary) in a real environment in the 
hope of finding even better solutions. 

As a final conclusion, one can easily state that improving the restoration algorithm 
will lead to invoking the VINCI problem less number of times. This could be done 
in case of improving the restoration algorithm without surpassing the stringent 
time limitations of dynamic restoration. On the contrary, we may have to ensure 
solutions that the restoration algorithm could always detect above the restorability 
threshold by adding additional constraints or post-processing obtained solutions 
before returning them. This situation shall be studied in the future. 

 





 
 
 
 
 
 
 
 
 

Chapter 7.  

Concluding Remarks 

7.1 Contributions and work impact 

The main contribution of this work is the study of the problem of incremental 
capacity planning for vulnerability minimization. The so-called VINCI problem has 
been stated, formulated, and solved for the first time in this project. In order to 
solve the VINCI problem, an ILP formulation and a heuristic have been designed, 
implemented, and tested by means of a wide set of instances. 

From the results, the heuristic method has been proven as a fast and efficient way 
to obtain near-optimal solutions for the VINCI problem. Note that the heuristic 
was implemented as a new module in a multi-purpose flexgrid optical network 
simulator implementing standard recommendations. In this way, we ensure the 
real applicability of this method for solving this new use case on incremental 
capacity planning for networks in operation. 

This work has been developed as part of the research work of the Optical 
Communications Group (GCO) at the UPC. In addition to the extension of its 
network simulator by adding the aforementioned module for solving the VINCI 
problem (thus enriching the capabilities of such simulator), part of the methodology 
and results in this project will be shortly included in a conference paper and 
hopefully extended to an indexed journal paper. 

7.2 Personal Evaluation 

For the achievement of this project, I was introduced to the optical networks field 
by means of reading specific papers and the valuable help of my advisors. I studied 
the RSA algorithm as a first step to understand the idea behind the VINCI 
problem. After that, I studied the inventory structure and applied some 
mathematical modelling ideas present in some set covering and traffic problems 
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learned in my career. I am thankful to my advisors for their enlightening tips that 
helped me understand the multi scenario structure present in the ILP formulation. 
This all helped me to properly formulate the VINCI problem introduced in this 
work. 

After the ILP formulation work, I was introduced into OMNeT++ so as to 
implement the VINCI heuristic. I am glad to have had the inexhaustible source of 
answers from my advisors and people from the GCO, without those I could have 
never finished the heuristic implementation. I have improved my programming 
and modeling skills a lot since I started this work with them.  

Personally, working with a group of professional and competitive researchers was a 
great experience for my career. Moreover, I was part of a research project from the 
development of the idea. I worked on it during its process, its implementations as 
well as the study of the results and the possible improvements.  

I also attended an internal workshop, where I could devise the almost endless 
amount or possibilities that the optical networks field offer for operations research 
and programming. I was surprised to find such an interesting source of problems 
that suits so well for a mathematician. I would like to highlight as well the 
constant and significant dedication that this project requires and the enormous 
effort that it meant as my first step in research.  

Last but not least, I cannot end without giving thanks to my family and friends. 
Their constant love and support are the main reasons behind my willingness to 
work; without them I could not have finished this work. 

7.3 Future Work 

As denoted in Chapter 6, the comparison between ILP and heuristic should be 
extended to really validate the latter method. In addition, larger instances 
generated from other reference topologies with higher number of nodes and links 
should be conducted. 

The conflict between the detection algorithm and the VINCI heuristic mentioned in 
Chapter 6 should be also analyzed in detail. Thus, an improvement of the 
restoration algorithm or the adaption of the VINCI problem to deal with scenarios 
with no need of extending the network could be possible lines to follow. We should 
keep in mind the stringent execution time requirements of the restoration 
algorithm if an improvement of this was intended. 

Finally, solving the VINCI problem in a traffic evolution scenario, where the 
network is periodically extended in response to small and continuous traffic 
changes is a must. In this way, a practical application of the VINCI problem will be 
done. In this regard, the VINCI problem could be compared against other 
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alternatives on incremental capacity planning, e.g. extending the network when 
the blocking probability reaches a given threshold. 

 





 
 
 
 
 
 
 
 
 

Apendix A. Implemented Code 

function REST_model(Data, CPLEX_Params) 
 
timeMountIni = clock; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                           Routing data                             %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
nN = Data.('nN'); %% Number of nodes. 
nE = Data.('nE'); %% Number of links (active and inactive). 
nD = Data.('nD'); %% Number of demands. 
nC = Data.('nC'); %% Number of slots (links). 
nS = Data.('nS'); %% Number of slices. 
nQ = Data.('nQ'); %% Number of failure scenarios. 
 
MatNE    = Data.('MatNE');   %% Matrix nN x nE: incidences between nodes-
links. 
MatD     = Data.('MatD');    %% Matrix nD x  3: demands MatD[i] = [source, 
destination, bitrate, xpos, ypos] . 
MatDC    = Data.('MatDC');   %% Matrix nD x nC: slots tat demand d can use. 
MatCS    = Data.('MatCS');   %% Matrix nC x nS: slices that are part of each 
slot c. 
MatQD    = Data.('MatQD');   %% Matrix nQ x nD: affected demands from each 
scenario 
MatF     = Data.('MatF');    %% Matrix  1 x nE: vector of inactive links. 
MatQEC   = Data.('MatQEC');  %% Matrix nQ x nE x nC: available slots per link 
for re-allocation in failure scenario q. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                            Inventory data                                 
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
nT = Data.('nT'); %% Number of available linecards. 
nR = Data.('nR'); %% Nuber of slots (linecard slots; active and inactive); 
 
MatNR    = Data.('MatNR');   %% Matrix nN x nR: slots (linecards) de cada 
nodo. 
MatRT    = Data.('MatRT');   %% Matrix nR x nT: compatibilities/costs between 
nodes and linecards (0 incompatible; cost otherwise). 
MatCostE = Data.('MatCostE');%% Matrix  1 x nE: vector of link activation 
costs. 
MatA     = Data.('MatA');    %% Matrix  1 x nE: vector of link lengths. 
MatB     = Data.('MatB');    %% Matrix  1 x nT: vector of linecard reaches. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%                                General data                                  
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Restorabilty threshold 
R_th = Data.('R_th'); 
net_params(5) = R_th; 
 
TILIM=CPLEX_Params.('TILIM'); 
GAP=CPLEX_Params.('GAP'); 
 
end 
 
%*********************** Obj. function *************************% 
 
fprintf('Adding objective function\n'); 
tic 
% (1) 
cplex = Cplex();   
cplex.Model.sense = 'minimize';   
objFunc = zeros(nvar,1); 
%% Only inactive links 
for e=1:nE 
 if MatF(1,e) == 0 
  objFunc(z(e)) = MatCostE(1,e); 
 end 
end 
for n=1:nN 
 for r=1:nR 
  if MatNR(n,r) == 0 
   continue; 
  end 
  for t=1:nT 
   objFunc(y(n,r,t)) = MatRT(r,t); 
  end 
 end 
end 
toc 
 
%*********************** Variables ***************************% 
 
fprintf('Adding variables\n'); 
tic 
lb = [zeros(nvar,1)]; 
ub = [ones(nvar,1)]; 
ctypes = char(ones(1,nvar)*('B')); 
cplex.addCols(objFunc, [], lb, ub, ctypes); 
toc 
 
%************************* Constraints ************************% 
 
constraints = 0; 
 
fprintf('Adding (2) and (3) \n'); 
tic 
% (2) y (3) 
for q=1:nQ 
 for d=1:nD 
  if MatQD(q,d) == 0 
   continue; 
  end 
  origin = MatD(d,1); 
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  target = MatD(d,2); 
  for n=1:nN 
   row = zeros(1,nvar); 
   if n == origin || n == target 
    row(w(q,d)) = 1; 
   else 
    row(w(q,d)) = 2; 
   end 
   for e=1:nE 
    for c=1:nC 
     row(x(q,d,e,c)) = 
MatNE(n,e)*MatDC(d,c)*MatQEC(q,e,c); 
    end 
   end 
   if n == origin || n == target 
    cplex.addRows(1, row, 1); 
   else 
    cplex.addRows(0, row, 2); 
   end 
   constraints = constraints + 1; 
  end 
 end 
end 
toc 
fprintf('Adding (4)\n'); 
tic 
% (4) 
for q=1:nQ 
 for d=1:nD 
  if MatQD(q,d) == 0 
   continue; 
  end 
  for c=1:nC 
   if MatDC(d,c) == 0 
    continue; 
   end 
   origin = MatD(d,1); 
   target = MatD(d,2); 
   for n=1:nN 
    if n == origin || n == target 
     continue; 
    end 
    for e=1:nE 
     if MatNE(n,e) == 0 
      continue; 
     end 
     row = zeros(1,nvar); 
     row(x(q,d,e,c)) = MatQEC(q,e,c); 
     lb = 0; 
     for e1=1:nE 
      if e1 == e 
       continue; 
      end 
      k = MatNE(n,e1)*MatQEC(q,e1,c); 
      row(x(q,d,e1,c)) = -k; 
      lb = lb - k; 
     end 
     cplex.addRows(lb, row, 0); 
     constraints = constraints + 1; 
    end 
   end 
  end 
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 end 
end 
toc 
fprintf('Adding (5)\n'); 
tic 
% (5) 
for q=1:nQ 
 for e=1:nE 
  for s=1:nS 
   row = zeros(1,nvar); 
   row(z(e)) = -1; 
   for d=1:nD 
    if MatQD(q,d) == 0 
     continue; 
    end 
    for c=1:nC 
     row(x(q,d,e,c)) = MatDC(d,c)*MatCS(c,s); 
    end 
   end 
   cplex.addRows(-1, row, 0); 
   constraints = constraints + 1; 
  end 
 end 
end 
toc 
fprintf('Adding (6)\n'); 
tic 
% (6) 
for e=1:nE 
 row = zeros(1,nvar); 
 row(z(e)) = 1; 
 cplex.addRows(MatF(1,e), row, 1); 
 constraints = constraints + 1; 
end 
toc 
fprintf('Adding (7)\n'); 
tic 
% (7) 
for q=1:nQ 
 row = zeros(1,nvar); 
 ub = 0; 
 for d=1:nD 
  if MatQD(q,d) == 0 
   continue; 
  end 
  row(w(q,d)) = 1; 
 end 
 cplex.addRows(0, row, (1-R_th)*sum(MatQD(q,:))); 
 constraints = constraints + 1; 
end 
toc 
fprintf('Adding (8)\n'); 
tic 
% (8) 
for n=1:nN 
 for e=1:nE 
  if MatNE(n,e) == 0 || MatF(1,e) == 1 
   continue; 
  end 
  row = zeros(1,nvar); 
  row(z(e)) = -1; 
  for r=1:nR 
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   if MatNR(n,r) == 0 
    continue; 
   end 
   row(u(n,e,r)) = 1; 
  end 
  cplex.addRows(0, row, 0); 
  constraints = constraints + 1; 
 end 
end 
toc 
fprintf('Adding (9), (10) and (12)\n'); 
tic 
% (9), (10) y (12) 
for n=1:nN 
 for r=1:nR 
  if MatNR(n,r) == 0 
   continue 
  end 
  % Constraint 9 
  row = zeros(1,nvar); 
  row(v(n,r)) = -1; 
  for e=1:nE 
   if MatNE(n,e) == 0 
    continue 
   end 
   row(u(n,e,r)) = 1; 
  end 
  cplex.addRows(0, row, 0); 
  % Constraint 10 
  row = zeros(1,nvar); 
  row(v(n,r)) = -1; 
  for t=1:nT 
   if MatRT(r,t) ~= 0 
    row(y(n,r,t)) = 1; 
   end 
  end 
  cplex.addRows(0, row, 0); 
  % Constraint 12 
  row = zeros(1,nvar); 
  lb = 0; 
  for e=1:nE 
   if MatNE(n,e) == 0 
    continue; 
   end 
   row(u(n,e,r)) = MatA(1,e); 
  end 
  for t=1:nT 
   row(y(n,r,t)) = -MatB(1,t); 
   lb = lb - MatB(1,t); 
  end 
  cplex.addRows(lb, row, 0); 
  % 3 more constraints 
  constraints = constraints + 3; 
 end 
end 
toc 
fprintf('Adding (11)\n'); 
tic 
% (11) 
for t=1:nT 
 row = zeros(1,nvar); 
 for n=1:nN 
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  for r=1:nR 
   if MatNR(n,r) == 0 || MatRT(r,t) == 0 
    continue; 
   end 
   row(y(n,r,t)) = 1; 
  end 
 end 
 cplex.addRows(0, row, 1); 
 constraints = constraints + 1; 
end   
toc 
 
%*********************** Solve *****************************% 
 
fprintf ('\nSolving problem...\n'); 
 
timeMount = etime(clock, timeMountIni); 
timeSolveIni=clock; 
solve(cplex); 
timeSolve=etime(clock, timeSolveIni); 
disp(cplex.Solution.statusstring); 
 
try 
    printSolution(cplex.Solution.objval,cplex.Solution.x,timeSolve,timeMount); 
catch exception 
 fprintf ('Exception found.\n'); 
end 
 
function solve(cplex) 
 % Solve 
 fprintf ('Problem mounting:\n%i variables and %i 
constraints.\n\n',nvar,constraints); 
 size(cplex.Model.A) 
 cplex.Param.mip.strategy.file.Cur=2; 
 cplex.Param.workmem.Cur=3072; 
 cplex.Param.threads.Cur=7; 
 % Set InfoCallback 
 cplex.InfoCallback.func = @stopCB; 
 cplex.InfoCallback.data.tilim = 36000; 
 cplex.InfoCallback.data.MipGap = 0.001; 
 cplex.InfoCallback.data.timeSolveIni = clock; 
 cplex.solve(); 
end 
 
%********************* Solution ************************% 
 
function printSolution(objVal,X,timeSolve,timeMount) 
  
 % Generate output data... 
 
end 
 
% Callback function 
function stop = stopCB(info, data) 
 if (~isempty (info.IncObj)) 
  currentGap = abs(info.MipGap); 
  elapsedTime=etime(clock, data.timeSolveIni); 
  stop = (currentGap < data.MipGap) || (elapsedTime > data.tilim); 
 end 
end 
 
end 



 
 
 
 
 
 
 
 
 

Apendix B. Heuristic Results 

This is an extract of 200 instances that belong to the set of 4250 instances used for 
the heuristic performance analysis. They correspond to the TEST_8_12 network 
using the random sorting criterion, and a limit of 10 and 100 GRASP iterations. 

Legend: 

 network: network topology used. 

 vul: number of failure scenarios. 

 sort: sorting criterion used – greedy or random. 

 alpha: GRASP alpha parameter. 

 maxGraspIter: GRASP number of iterations. 

 maxMainIter: main number of iterations. 

 obj_total: objective function total cost. 

 obj_link: partial obj. function cost – link activation. 

 obj_cards: partial obj. function cost – linecard installation. 

 inst: number of new links installed into the topology. 

 total_time: heuristic computation time. 

 inc_time: time when the incumbent is found. 

 inc_iter: iteration where the incumbent is found. 

 

network vul sort alpha 

max 

Grasp 

Iter 

max 

Main 

Iter 

obj_total obj link 
obj 

cards 
inst total_time inc_time inc_iter 

test_8_12 2 random 0 10 10 10034.1 10014.1 20 1 0.0441615 0.00442293 1 

test_8_12 6 random 0 10 10 10040 10020 20 1 0.139862 0.0140392 1 

test_8_12 4 random 0 10 10 10034.1 10014.1 20 1 0.0952769 0.00967251 1 
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test_8_12 7 random 0 10 10 20076.5 20036.5 40 2 0.136688 0.0410888 3 

test_8_12 2 random 0 10 10 10034.1 10014.1 20 1 0.0355269 0.00357675 1 

test_8_12 6 random 0 10 10 20068.2 20028.2 40 2 0.128279 0.0259998 2 

test_8_12 2 random 0 10 10 10034.1 10014.1 20 1 0.040137 0.00403858 1 

test_8_12 2 random 0 10 10 10034.1 10014.1 20 1 0.0361154 0.00723331 2 

test_8_12 4 random 0 10 10 10034.1 10014.1 20 1 0.0979682 0.0196969 2 

test_8_12 3 random 0 10 10 10034.1 10014.1 20 1 0.0554684 0.00561054 1 

test_8_12 1 random 0 10 10 10034.1 10014.1 20 1 0.0165859 0.00165118 1 

test_8_12 2 random 0 10 10 10034.1 10014.1 20 1 0.0435129 0.00440017 1 

test_8_12 2 random 0 10 10 10034.1 10014.1 20 1 0.0286144 0.00285567 1 

test_8_12 2 random 0 10 10 10034.1 10014.1 20 1 0.0274832 0.0109691 4 

test_8_12 0 random 0 10 10 0 0 0 0 6.70758e-05 1.83371e-06 1 

test_8_12 2 random 0 10 10 10034.1 10014.1 20 1 0.0314793 0.00314457 1 

test_8_12 2 random 0 10 10 10034.1 10014.1 20 1 0.0293009 0.00586164 2 

test_8_12 2 random 0 10 10 10034.1 10014.1 20 1 0.0363507 0.0109294 3 

test_8_12 1 random 0 10 10 10034.1 10014.1 20 1 0.0126428 0.00126839 1 

test_8_12 0 random 0 10 10 0 0 0 0 6.80506e-05 1.75104e-06 1 

test_8_12 2 random 0.1 10 10 10034.1 10014.1 20 1 0.0441942 0.00443016 1 

test_8_12 6 random 0.1 10 10 10040 10020 20 1 0.140137 0.0140439 1 

test_8_12 4 random 0.1 10 10 10034.1 10014.1 20 1 0.0954828 0.00966109 1 

test_8_12 7 random 0.1 10 10 20076.5 20036.5 40 2 0.137069 0.0410083 3 

test_8_12 2 random 0.1 10 10 10034.1 10014.1 20 1 0.0352809 0.0035737 1 

test_8_12 6 random 0.1 10 10 20068.2 20028.2 40 2 0.128615 0.0259671 2 

test_8_12 2 random 0.1 10 10 10034.1 10014.1 20 1 0.0399914 0.00405182 1 

test_8_12 2 random 0.1 10 10 10034.1 10014.1 20 1 0.0360609 0.00722367 2 

test_8_12 4 random 0.1 10 10 10034.1 10014.1 20 1 0.0983963 0.0197396 2 

test_8_12 3 random 0.1 10 10 10034.1 10014.1 20 1 0.0552594 0.00559116 1 

test_8_12 1 random 0.1 10 10 10034.1 10014.1 20 1 0.0165941 0.00165325 1 

test_8_12 2 random 0.1 10 10 10034.1 10014.1 20 1 0.0436468 0.00439975 1 

test_8_12 2 random 0.1 10 10 10034.1 10014.1 20 1 0.0286457 0.0028576 1 
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test_8_12 2 random 0.1 10 10 10034.1 10014.1 20 1 0.0273236 0.0109445 4 

test_8_12 0 random 0.1 10 10 0 0 0 0 6.78057e-05 1.89462e-06 1 

test_8_12 2 random 0.1 10 10 10034.1 10014.1 20 1 0.0314277 0.00314667 1 

test_8_12 2 random 0.1 10 10 10034.1 10014.1 20 1 0.0293377 0.00586709 2 

test_8_12 2 random 0.1 10 10 10034.1 10014.1 20 1 0.0365298 0.0109439 3 

test_8_12 1 random 0.1 10 10 10034.1 10014.1 20 1 0.0126391 0.00126562 1 

test_8_12 0 random 0.1 10 10 0 0 0 0 6.78976e-05 1.77343e-06 1 

test_8_12 2 random 0.3 10 10 10034.1 10014.1 20 1 0.0440607 0.00442869 1 

test_8_12 6 random 0.3 10 10 10040 10020 20 1 0.140457 0.0140199 1 

test_8_12 4 random 0.3 10 10 10034.1 10014.1 20 1 0.0955061 0.00966703 1 

test_8_12 7 random 0.3 10 10 20076.5 20036.5 40 2 0.136237 0.040999 3 

test_8_12 2 random 0.3 10 10 10034.1 10014.1 20 1 0.0354262 0.0035687 1 

test_8_12 6 random 0.3 10 10 20068.2 20028.2 40 2 0.12808 0.0260056 2 

test_8_12 2 random 0.3 10 10 10034.1 10014.1 20 1 0.0401122 0.0040407 1 

test_8_12 2 random 0.3 10 10 10034.1 10014.1 20 1 0.0359176 0.00722321 2 

test_8_12 4 random 0.3 10 10 10034.1 10014.1 20 1 0.0983744 0.0197076 2 

test_8_12 3 random 0.3 10 10 10034.1 10014.1 20 1 0.055221 0.0055989 1 

test_8_12 1 random 0.3 10 10 10034.1 10014.1 20 1 0.0165873 0.00165244 1 

test_8_12 2 random 0.3 10 10 10034.1 10014.1 20 1 0.0437647 0.00440755 1 

test_8_12 2 random 0.3 10 10 10034.1 10014.1 20 1 0.028648 0.00285683 1 

test_8_12 2 random 0.3 10 10 10034.1 10014.1 20 1 0.0273545 0.0109486 4 

test_8_12 0 random 0.3 10 10 0 0 0 0 6.96171e-05 1.82982e-06 1 

test_8_12 2 random 0.3 10 10 10034.1 10014.1 20 1 0.0313539 0.00314154 1 

test_8_12 2 random 0.3 10 10 10034.1 10014.1 20 1 0.0292734 0.00585395 2 

test_8_12 2 random 0.3 10 10 10034.1 10014.1 20 1 0.0365556 0.0109461 3 

test_8_12 1 random 0.3 10 10 10034.1 10014.1 20 1 0.0126437 0.00126605 1 

test_8_12 0 random 0.3 10 10 0 0 0 0 6.8574e-05 1.76973e-06 1 

test_8_12 2 random 0.5 10 10 10034.1 10014.1 20 1 0.0432272 0.00433171 1 

test_8_12 6 random 0.5 10 10 10040 10020 20 1 0.137229 0.0136317 1 

test_8_12 4 random 0.5 10 10 10034.1 10014.1 20 1 0.0924644 0.00927845 1 
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test_8_12 7 random 0.5 10 10 20076.5 20036.5 40 2 0.13445 0.0402372 3 

test_8_12 2 random 0.5 10 10 10034.1 10014.1 20 1 0.0349051 0.00353573 1 

test_8_12 6 random 0.5 10 10 20068.2 20028.2 40 2 0.124763 0.0253863 2 

test_8_12 2 random 0.5 10 10 10034.1 10014.1 20 1 0.0394038 0.00396255 1 

test_8_12 2 random 0.5 10 10 10034.1 10014.1 20 1 0.0356056 0.00712634 2 

test_8_12 4 random 0.5 10 10 10034.1 10014.1 20 1 0.0953593 0.0191788 2 

test_8_12 3 random 0.5 10 10 10034.1 10014.1 20 1 0.0542584 0.00555285 1 

test_8_12 1 random 0.5 10 10 10034.1 10014.1 20 1 0.0159952 0.00159386 1 

test_8_12 2 random 0.5 10 10 10034.1 10014.1 20 1 0.0427739 0.00433105 1 

test_8_12 2 random 0.5 10 10 10034.1 10014.1 20 1 0.027737 0.00276594 1 

test_8_12 2 random 0.5 10 10 10034.1 10014.1 20 1 0.0271019 0.0108288 4 

test_8_12 0 random 0.5 10 10 0 0 0 0 6.87541e-05 1.83802e-06 1 

test_8_12 2 random 0.5 10 10 10034.1 10014.1 20 1 0.0309073 0.00308819 1 

test_8_12 2 random 0.5 10 10 10034.1 10014.1 20 1 0.0288713 0.00578595 2 

test_8_12 2 random 0.5 10 10 10034.1 10014.1 20 1 0.0358698 0.010771 3 

test_8_12 1 random 0.5 10 10 10034.1 10014.1 20 1 0.0121807 0.00122402 1 

test_8_12 0 random 0.5 10 10 0 0 0 0 6.74911e-05 1.8096e-06 1 

test_8_12 2 random 0.9 10 10 10034.1 10014.1 20 1 0.0432923 0.00433269 1 

test_8_12 6 random 0.9 10 10 10040 10020 20 1 0.137593 0.0136669 1 

test_8_12 4 random 0.9 10 10 10034.1 10014.1 20 1 0.0929842 0.00927437 1 

test_8_12 7 random 0.9 10 10 20076.5 20036.5 40 2 0.133919 0.0400376 3 

test_8_12 2 random 0.9 10 10 10034.1 10014.1 20 1 0.0348918 0.00353283 1 

test_8_12 6 random 0.9 10 10 20068.2 20028.2 40 2 0.124305 0.0252269 2 

test_8_12 2 random 0.9 10 10 10034.1 10014.1 20 1 0.0394111 0.0039677 1 

test_8_12 2 random 0.9 10 10 10034.1 10014.1 20 1 0.0355892 0.007122 2 

test_8_12 4 random 0.9 10 10 10034.1 10014.1 20 1 0.0958436 0.0191801 2 

test_8_12 3 random 0.9 10 10 10034.1 10014.1 20 1 0.0539511 0.00554781 1 

test_8_12 1 random 0.9 10 10 10034.1 10014.1 20 1 0.0159929 0.00160037 1 

test_8_12 2 random 0.9 10 10 10034.1 10014.1 20 1 0.0428703 0.00433142 1 

test_8_12 2 random 0.9 10 10 10034.1 10014.1 20 1 0.0277881 0.00277321 1 
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test_8_12 2 random 0.9 10 10 10034.1 10014.1 20 1 0.0270324 0.0107961 4 

test_8_12 0 random 0.9 10 10 0 0 0 0 6.76029e-05 1.83007e-06 1 

test_8_12 2 random 0.9 10 10 10034.1 10014.1 20 1 0.0306867 0.00307783 1 

test_8_12 2 random 0.9 10 10 10034.1 10014.1 20 1 0.0288521 0.00578071 2 

test_8_12 2 random 0.9 10 10 10034.1 10014.1 20 1 0.0359659 0.010778 3 

test_8_12 1 random 0.9 10 10 10034.1 10014.1 20 1 0.0121864 0.00122325 1 

test_8_12 0 random 0.9 10 10 0 0 0 0 7.26902e-05 1.77028e-06 1 

test_8_12 2 random 0 100 10 10034.1 10014.1 20 1 0.435242 0.0440488 1 

test_8_12 6 random 0 100 10 10040 10020 20 1 1.39467 0.139611 1 

test_8_12 4 random 0 100 10 10034.1 10014.1 20 1 0.944083 0.0959224 1 

test_8_12 7 random 0 100 10 20076.5 20036.5 40 2 1.35368 0.40466 3 

test_8_12 2 random 0 100 10 10034.1 10014.1 20 1 0.349562 0.0356157 1 

test_8_12 6 random 0 100 10 10040.6 10020.6 20 1 1.27527 0.889564 7 

test_8_12 2 random 0 100 10 10034.1 10014.1 20 1 0.395433 0.0401994 1 

test_8_12 2 random 0 100 10 10034.1 10014.1 20 1 0.355462 0.0715703 2 

test_8_12 4 random 0 100 10 10034.1 10014.1 20 1 0.97208 0.194323 2 

test_8_12 3 random 0 100 10 10034.1 10014.1 20 1 0.546289 0.0553993 1 

test_8_12 1 random 0 100 10 10034.1 10014.1 20 1 0.164191 0.016487 1 

test_8_12 3 random 0 100 10 10034.1 10014.1 20 1 0.540435 0.0557147 1 

test_8_12 2 random 0 100 10 10034.1 10014.1 20 1 0.282657 0.0284657 1 

test_8_12 2 random 0 100 10 10034.1 10014.1 20 1 0.269548 0.108588 4 

test_8_12 1 random 0 100 10 10034.1 10014.1 20 1 0.177099 0.0178525 1 

test_8_12 2 random 0 100 10 10034.1 10014.1 20 1 0.309185 0.0310144 1 

test_8_12 2 random 0 100 10 10034.1 10014.1 20 1 0.289154 0.0584302 2 

test_8_12 2 random 0 100 10 10034.1 10014.1 20 1 0.359276 0.108123 3 

test_8_12 2 random 0 100 10 10034.1 10014.1 20 1 0.263236 0.0264003 1 

test_8_12 0 random 0 100 10 0 0 0 0 6.8571e-05 1.76229e-06 1 

test_8_12 2 random 0.1 100 10 10034.1 10014.1 20 1 0.434758 0.0440245 1 

test_8_12 6 random 0.1 100 10 10040 10020 20 1 1.38931 0.138688 1 

test_8_12 4 random 0.1 100 10 10034.1 10014.1 20 1 0.945944 0.0961351 1 
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test_8_12 7 random 0.1 100 10 20076.5 20036.5 40 2 1.35627 0.406255 3 

test_8_12 2 random 0.1 100 10 10034.1 10014.1 20 1 0.349099 0.0353503 1 

test_8_12 6 random 0.1 100 10 10040.6 10020.6 20 1 1.28148 0.893932 7 

test_8_12 2 random 0.1 100 10 10034.1 10014.1 20 1 0.395439 0.0402322 1 

test_8_12 2 random 0.1 100 10 10034.1 10014.1 20 1 0.354707 0.071264 2 

test_8_12 4 random 0.1 100 10 10034.1 10014.1 20 1 0.973922 0.195421 2 

test_8_12 3 random 0.1 100 10 10034.1 10014.1 20 1 0.546146 0.0552883 1 

test_8_12 1 random 0.1 100 10 10034.1 10014.1 20 1 0.163881 0.0164771 1 

test_8_12 3 random 0.1 100 10 10034.1 10014.1 20 1 0.540582 0.0557768 1 

test_8_12 2 random 0.1 100 10 10034.1 10014.1 20 1 0.282306 0.0284816 1 

test_8_12 2 random 0.1 100 10 10034.1 10014.1 20 1 0.269113 0.10856 4 

test_8_12 1 random 0.1 100 10 10034.1 10014.1 20 1 0.176731 0.0177859 1 

test_8_12 2 random 0.1 100 10 10034.1 10014.1 20 1 0.30954 0.0312012 1 

test_8_12 2 random 0.1 100 10 10034.1 10014.1 20 1 0.289422 0.0585774 2 

test_8_12 2 random 0.1 100 10 10034.1 10014.1 20 1 0.359918 0.108235 3 

test_8_12 2 random 0.1 100 10 10034.1 10014.1 20 1 0.26342 0.0264569 1 

test_8_12 0 random 0.1 100 10 0 0 0 0 6.80404e-05 1.77065e-06 1 

test_8_12 2 random 0.3 100 10 10034.1 10014.1 20 1 0.434771 0.0440019 1 

test_8_12 6 random 0.3 100 10 10040 10020 20 1 1.38793 0.138712 1 

test_8_12 4 random 0.3 100 10 10034.1 10014.1 20 1 0.942998 0.0957601 1 

test_8_12 7 random 0.3 100 10 20076.5 20036.5 40 2 1.36245 0.407465 3 

test_8_12 2 random 0.3 100 10 10034.1 10014.1 20 1 0.349953 0.0354583 1 

test_8_12 6 random 0.3 100 10 10040.6 10020.6 20 1 1.27575 0.889904 7 

test_8_12 2 random 0.3 100 10 10034.1 10014.1 20 1 0.394832 0.0401767 1 

test_8_12 2 random 0.3 100 10 10034.1 10014.1 20 1 0.355496 0.0716043 2 

test_8_12 4 random 0.3 100 10 10034.1 10014.1 20 1 0.973086 0.195243 2 

test_8_12 3 random 0.3 100 10 10034.1 10014.1 20 1 0.546619 0.0552429 1 

test_8_12 1 random 0.3 100 10 10034.1 10014.1 20 1 0.163879 0.0164846 1 

test_8_12 3 random 0.3 100 10 10034.1 10014.1 20 1 0.540033 0.0557102 1 

test_8_12 2 random 0.3 100 10 10034.1 10014.1 20 1 0.282398 0.0284751 1 
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test_8_12 2 random 0.3 100 10 10034.1 10014.1 20 1 0.269132 0.10848 4 

test_8_12 1 random 0.3 100 10 10034.1 10014.1 20 1 0.177882 0.0179031 1 

test_8_12 2 random 0.3 100 10 10034.1 10014.1 20 1 0.309932 0.0312397 1 

test_8_12 2 random 0.3 100 10 10034.1 10014.1 20 1 0.288978 0.0583666 2 

test_8_12 2 random 0.3 100 10 10034.1 10014.1 20 1 0.359575 0.108257 3 

test_8_12 2 random 0.3 100 10 10034.1 10014.1 20 1 0.263975 0.0265527 1 

test_8_12 0 random 0.3 100 10 0 0 0 0 6.78855e-05 1.81551e-06 1 

test_8_12 2 random 0.5 100 10 10034.1 10014.1 20 1 0.427364 0.0431466 1 

test_8_12 6 random 0.5 100 10 10040 10020 20 1 1.36081 0.134864 1 

test_8_12 4 random 0.5 100 10 10034.1 10014.1 20 1 0.916878 0.092209 1 

test_8_12 7 random 0.5 100 10 20076.5 20036.5 40 2 1.33138 0.39719 3 

test_8_12 2 random 0.5 100 10 10034.1 10014.1 20 1 0.344586 0.0351241 1 

test_8_12 6 random 0.5 100 10 10040.6 10020.6 20 1 1.24361 0.864471 7 

test_8_12 2 random 0.5 100 10 10034.1 10014.1 20 1 0.391258 0.0398074 1 

test_8_12 2 random 0.5 100 10 10034.1 10014.1 20 1 0.35145 0.070893 2 

test_8_12 4 random 0.5 100 10 10034.1 10014.1 20 1 0.946952 0.189522 2 

test_8_12 3 random 0.5 100 10 10034.1 10014.1 20 1 0.536941 0.0553131 1 

test_8_12 1 random 0.5 100 10 10034.1 10014.1 20 1 0.15729 0.0158397 1 

test_8_12 3 random 0.5 100 10 10034.1 10014.1 20 1 0.528837 0.0549859 1 

test_8_12 2 random 0.5 100 10 10034.1 10014.1 20 1 0.274423 0.0275576 1 

test_8_12 2 random 0.5 100 10 10034.1 10014.1 20 1 0.266642 0.107492 4 

test_8_12 1 random 0.5 100 10 0 0 0 0 0.172144 0.0173095 1 

test_8_12 2 random 0.5 100 10 10034.1 10014.1 20 1 0.304689 0.0306905 1 

test_8_12 2 random 0.5 100 10 10034.1 10014.1 20 1 0.28533 0.0575247 2 

test_8_12 2 random 0.5 100 10 10034.1 10014.1 20 1 0.354846 0.106746 3 

test_8_12 2 random 0.5 100 10 10034.1 10014.1 20 1 0.25901 0.0259812 1 

test_8_12 0 random 0.5 100 10 0 0 0 0 6.82604e-05 1.75813e-06 1 

test_8_12 2 random 0.9 100 10 10034.1 10014.1 20 1 0.425888 0.0429666 1 

test_8_12 6 random 0.9 100 10 10040 10020 20 1 1.36151 0.135162 1 

test_8_12 4 random 0.9 100 10 10034.1 10014.1 20 1 0.917353 0.0921957 1 
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test_8_12 7 random 0.9 100 10 20076.5 20036.5 40 2 1.3325 0.39741 3 

test_8_12 2 random 0.9 100 10 10034.1 10014.1 20 1 0.344644 0.0350975 1 

test_8_12 6 random 0.9 100 10 10040.6 10020.6 20 1 1.24337 0.864428 7 

test_8_12 2 random 0.9 100 10 10034.1 10014.1 20 1 0.3889 0.0396744 1 

test_8_12 2 random 0.9 100 10 10034.1 10014.1 20 1 0.350156 0.0703363 2 

test_8_12 4 random 0.9 100 10 10034.1 10014.1 20 1 0.948319 0.190147 2 

test_8_12 3 random 0.9 100 10 10034.1 10014.1 20 1 0.536094 0.0552499 1 

test_8_12 1 random 0.9 100 10 10034.1 10014.1 20 1 0.157554 0.0158454 1 

test_8_12 3 random 0.9 100 10 10034.1 10014.1 20 1 0.528872 0.0546737 1 

test_8_12 2 random 0.9 100 10 10034.1 10014.1 20 1 0.274299 0.027495 1 

test_8_12 2 random 0.9 100 10 10034.1 10014.1 20 1 0.266504 0.107153 4 

test_8_12 1 random 0.9 100 10 0 0 0 0 0.171738 0.0173217 1 

test_8_12 2 random 0.9 100 10 10034.1 10014.1 20 1 0.30501 0.03084 1 

test_8_12 2 random 0.9 100 10 10034.1 10014.1 20 1 0.284594 0.0575808 2 

test_8_12 2 random 0.9 100 10 10034.1 10014.1 20 1 0.355124 0.107187 3 

test_8_12 2 random 0.9 100 10 10034.1 10014.1 20 1 0.259302 0.0260236 1 

test_8_12 0 random 0.9 100 10 0 0 0 0 6.75146e-05 1.78653e-06 1 



 
 
 
 
 
 
 
 
 

Acronyms 

CF Central Frequency 

CL Candidate list 

Gb/s Gigabits per second 

GCO Global Concurrent Optimization module 

GHz Gigahertz 

ILP Integer linear programming problem 

LSP Label Switched Path 

LSP Label Switched Path 

OS Optical Spectrum 

OXC Optical Cross Connect 

RCL Restricted candidate list 

RSA Routing and Spectrum Allocation 

TED Traffic Engineering Database 

THz Terahertz 

VINCI Vulnerability-aware incremental capacity problem. 
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