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Abstract

Today, several contemporary organizations collect various kinds of data, creating large data
repositories. But the capacity to perform advanced analytics over these large amount of data
stored in databases remains a significant challenge to statistical software (R, S, SAS, SPSS,
etc) and data management systems (DBMSs). This is because while statistical software provide
comprehensive analytics and modelling functionalities, they can only handle limited amounts of
data. The data management systems in contrast have capacity to handle large amount of data but
lack adequate analytical facilities. The need to draw on the strengths of both camps gave rise
to the idea of coupling databases and advanced analytical or statistical tools which seems very
promising and is gaining a lot of grounds.

This work studied the level of development of integration of a rising popular advanced ana-
lytical tool (R) with database systems (PostgreSQL, Oracle, DB2, SQL Server) and investigated
the analytic performance of such coupling vis-à-vis the performance of stand-alone implementa-
tion of (R). The results showed that the overall performance of coupling databases and R is about
two (2) times faster than performance of stand-alone R. In the case of some individual bench-
marks, the coupled systems (R+DBMS) performance is more than ten (10) times faster. How-
ever, there remain the challenges of efficient retrieval and passing of data to analytic functions,
code portability, indistinguishable or flat analytics performance on small datasets and integration
configuration snags with some of the well-known DBMSs. Although, stand-alone R performs
competitively well compared to DBMSs coupled with R in cases of very small datasets analytics,
the issue of data security still lingers.

Our conclusion is that coupling databases with advanced analytical tools (R) is a good con-
cept and technique which yields considerable performance gains for advanced analytics on sub-
stantial datasets provided retrieval and passing of data to the analytical functions are efficiently
done. Thus, we confirm the initial assertion or hypothesis but on the condition that significant
amount of data is involved in the process and the data is efficiently retrieved and passed to ana-
lytic functions. Overall, we recommend an integration which synergizes the robust DBMSs’ data
management capabilities and the rich statistical functionalities of advanced analytical tools for
complex analytics in-situ databases in all situations for faster performance and data security.

Keywords: Advanced analytics, in-database analytics, R, data management and analytics
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Chapter 1

INTRODUCTION

This introduction chapter examines the scientific background of the subject matter, looking at the
development and the need for advanced analytics, the motivation and significance of the study.
The chapter also touches on the research questions and presents rationales that hold or support
the theory of the study by formulation and declaration of the thesis statement or hypothesis. Also,
it clearly précis the scope of the study in terms of de-limitations and limitations.

1.1 Scientific Background

SQL/relational DBMSs are powerful systems for managing, querying, and aggregating data.
Nevertheless, performing complex analytics, drawing of inferences, making predictions, or fish-
ing out subtle relationships in data suffer performance difficulties and/or are hard with SQL/re-
lational DBMSs. In spite of this, several contemporary organizations presently collect various
kinds of data at very detailed level possible, creating large data repositories in various DBMS
and/or other data stores. Statistical software seem to provide answers for advanced analytics
needs of these organizations even though they also have their limitations. Hence, the ability to
carry out meaningful advanced analytics using various statistical analysis methods on data in
such repositories has become very critical for effectiveness, efficiency and competitiveness.

However, the need to perform the advanced analytics over the large amount of data stored
in databases remains a significant challenge to existing statistical software and data management
systems. On the one hand, statistical software provide rich functionality for data analysis and
modelling, but can handle only limited amounts of data. For instance, advanced analytical/statis-
tical tools like R and SPSS operate entirely in main memory. On the other hand, data management
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systems such as relational DBMS can store large amount of data, but provide insufficient analyt-
ical functionality. There is therefore a need to combine the data management capabilities of data
management systems (e.g. relational model/DBMS) with the statistical functionalities provided
by advanced analytical/statistical tools such as R in order to meet the challenge of delivering the
ever-growing sophistication of analytics to businesses.

The idea of in-database analytics seems very promising and is gaining a lot of grounds. This
is because taking algorithms to data rather than taking data to the algorithm in general has several
performance benefits and data security advantages. Additionally, R as an advanced analytical tool
has been receiving a lot attention in recent times, seeing major DBMSs providing means to work
with it in-database. There was therefore a need for a carefully planned, painstaking, extensive and
practical study into the analytic performance capabilities and possibilities of integrating advanced
analytical tools such as R with DBMSs to obtain detail insights. In light of this, the research topic
Coupling Databases and Advanced Analytical Tools (R) has been conceived for study.

Basically, most RDBMS are employing extended RDBMS features to power the embedded
execution of R. This is to help them to overcome the obvious performance problems associated
with the abusive use of SQL for advanced analytics (linear algebra operations). Facilities are
being provided for user-defined functions inside the DBMS that either implement certain matrix
operations or call R to perform the operations. However, these facilities come with varying
limitations with respect to performance, completeness and scalability. So prudence requires that
we first benchmark the performance, scalability and completeness of the solutions on offer before
considering usage [42].

R is an open-source language and environment. R programming language is one important
tool for computational statistics, visualization and data science [1]. It is used to interpret, inter-
act and visualize data. It is used by big technology companies, such as LinkedIn, Google and
Facebook, that thrives on analytics. Of late, R has been receiving a lot of attention and known
database management systems (DBMS) such as Oracle, PostgreSQL, SAP-HANA, Sybase, etc
are providing facilities for integrating with R. The question which then arises is: How does this

advanced analytical tool perform when coupled with the database systems?

Some studies involving analytics and databases have been done in times past. These include
Database Analytics Acceleration using FPGAs [44] for evaluating expensive analytics queries
while saving CPU resources; The MADlib Analytics Library or MAD skills, the SQL [25] which
introduces an open-source library of in-database analytic methods of SQL-based algorithms for
machine learning, data mining and statistics inside database engine; and Towards a Unified Ar-

chitecture for in-RDBMS Analytics [18] which presents a unified architecture for in-RDBMS
analytics with emphasis on faster implementation of new statistical techniques in RDBMS. Ad-
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ditionally, some performance benchmark tests and studies on R have also been carried out in
the past by others including Stefan Steinways [41], Donald Knuth [29] and Philippe Grosjean
[23][24]. These studies centred on comparing performance of versions of R implementations, R
implementation with and without some packages and R as analytical tool compared with other
analytical tools. Our work however, focuses on an aspect which has not received proper stud-
ies; the performance study of database integrated R implementations as against stand-alone R
implementation.

1.2 Motivation for the study

The choice of the study of the thesis topic, Coupling Databases and Advanced Analytical Tools

(R), was inspired by two main considerations: the development of analytics as an industry and
the increasing relevance of data mining which is to be driven by complex analytics.

In recent times, there has been an upsurge in the amount of data which organizations store
and/or analyze for information in their decision making process. According to [28], the gleaning
information and insights from these massive stores of data has become an industry in itself while
presentation of the information in an intuitive and easily obtainable means has become increas-
ingly challenging. Additionally, the important observations and conclusion by [42] cannot be
swept under the carpet. According to these observations, relevance of complex analytics will
increase dramatically along with increase in importance of data mining and other sophisticated
operations on data. This development is expected to be driven by advanced analytics prob-
lems with remarkable economic importance such as focused segmentation of customers, proper
placement of advertisements, and recommendation engines for various use. So, there will be a
transition from the basic analytics in traditional business intelligence systems to more advanced
analytics.

In light of the reasons given above, coupled with the fact that many organizations use SQL/
RDBMS to store, manage and process data for their information needs and/or for decision mak-
ing, there is a need for us to be able to exploit advanced statistical techniques and methods, which
abounds in advanced analytical/statistical tools like R, while not loosing the benefits of robust
data management and processing capabilities offered by RDBMSs. According to [42], Hadoop
does not seem to be a viable option since advanced analytics are not absolutely parallel. There-
fore, Hadoop will suffer significant performance problems, hence, not a rational consideration.
Nevertheless, the domain of advanced analytics can be seen as still in its formative years, and
the competition for systems that will eventually rule is open. Various major DBMSs are there-
fore being positioned in response to this and one of such move is the provision and the use of

3



extended RDBMS features that support R. It is therefore, important to study the current phase of
development of each of these systems and to evaluate the implementation approaches as well as
functionalities, performance and completeness the systems are offering, hence the choice of the
topic for study.

1.3 Thesis Statement (Hypothesis) Declaration

In general, we expect integration of advanced analytical tools (R) with DBMSs for the purpose
of performing complex analytics to provide benefits including the following: Provision of in-
database R analytic capability will enhance analytic performance, eliminate latencies required
for data movement (lag to extract data and deliver it to analytical platform) or eliminates data
movement and duplication, preserves data or information security and reduce latency time from
raw data to new information, exploit parallelism of database systems, expand analytical capabili-
ties of database systems, and promise reduced costs and risks. Based on these supposed benefits,
we arrived at the following hypothesis statement which establishes the premise of this research
work:

Coupling advanced analytical tool (R) with database systems leads to better and enhanced

analytic performance than stand-alone advanced analytical tool (R)

The experiments of the study therefore attempt to verify (validate or refute) this assertion. The
study also reasoned why and to what extent the hypothesis is right or wrong. In doing so, the
DBMSs were selected such that the architecture of R integration implementations are different
and as much as possible representative of the various architectural implementations options dis-
cussed in section 2.2 of chapter 2.

This thesis report presents the findings and analyses of mainly analytical performance among
database coupled implementations of R compared to stand-alone implementation of R. In spe-
cific terms, this work presents the current state of development (level of maturity) of integration
of R and DBMSs that were studied. The report compared and contrasted some integration imple-
mentations (identifying strengths and weaknesses), available functionalities (whether all base R
features are available in the coupled or integrated systems implementations or not) and analytic
performance results among the DBMSs as well as with a baseline of stand-alone R. The recorded
analytic performances, in line with the hypothesis or otherwise, from the empirical work (exper-
imental or benchmark tests results) were discussed and somehow explained with reference to the
architectural implementation of R integration by the various DBMSs that were studied.
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1.4 Research Questions

In an effort to gain insight into the appraisal of coupling databases and advanced analytical tool
(R), the study examined the following research questions:

(i) What is the current level of development (completeness) of integration of R with DMBS?

(ii) How is the performance of coupling databases with advanced analytical tool (R) compared
to stand-alone analytical tool (R)?

(iii) How is the scalability of coupling databases with advanced analytical tool (R) compared to
stand-alone analytical tool (R)?

(iv) What are the inherent implications of architectures of R integration that impact perfor-
mance?

(v) Are there any lessons to be learnt on the way forward?

The terms, completeness, performance and scalability, as used in the context of this study
have the following meaning: Completeness refers to the level of development of R integration
with DBMS. That is whether the functionalities available in stand-alone R are also available
in the in the R and DBMS integrated systems. Performance as used refers to the time taken
by the systems to perform analytic tasks. In other words, how fast the systems execute the
analytic routines. The shorter the time taken, the higher we rate the performance of the system.
Scalability as used in our context basically means how scalable the execution of analytic routines
by the systems are when the amount of data involved increase. The smaller the increase in the
time taken by a system to run the analytic tasks when data grows, the more scalable we say the
system is.

1.5 Scope of the study

This study focused on understanding the performance, scalability and completeness of some
selected DBMSs with regard to R integration implementation. This choice of scope is in line
with our motivation for the study as explained in section 1.2 of this chapter. The empirical work
(experiment) covers evaluation of matrix operations which form the core of advanced analytic
routines and functions. It also covers assessment of program execution control flows which of
course characterize automated or computer ran routines. The study does not cover benchmarking
of intra-command parallelism of matrix operations because it is a whole subject matter on its
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own and cannot be adequately dealt with within the available time for the study. Intra-command
parallelism as used here refers to breaking down a command into smaller parts and executing the
sub-parts in parallel or concurrently. This means that not only are jobs/tasks distributed across
processors but parts (sub-parts) of a job/task meant for an operator/command are ran in parallel
within the operator/command. In addition, only one set of computing configuration setup (RAM,
Speed, Core, OS, HDD, etc) was used for the experiment.

The benchmark tests carried out in this study were focused on coupling of R with only re-
lational DBMSs and did not cover non-relational DBMSs or NoSQL databases or data stores
(such as graph database-NeoDB; or document stores- MongoDB). This is mainly due to time
and resource constraints. The limited list of selected DBMSs used in the benchmark test include
Oracle, PostgreSQL, DB2 and SQL Server. R integration with other database systems such as
SAP HANA, Sybase RAP, and Cloudera Impala were only reviewed in the theoretical work.

The study focused on directly coupling R at only the data layer of analytical stack and did not
cover coupling R at the other levels/layers (analytic layer and presentation layer) in the analytic
stack shown in figure 2.1 on page 13 in section 2.2 of chapter 2. This is to allow us have enough
time to carry out the relevant experiments required to verify the expected benefits (mentioned in
section 1.3) of coupling R with DBMSs (data layer). It is also to ensure that our empirical work
is in alignment with the motivation and the need for the study so that we do not unjustifiably
invest time and effort in issues which are not of major concern.

Apart from accessing database objects (tables, views, etc) from within R environment or
directly accessing R functions inside databases, it must be noted that R can be indirectly coupled
with databases by first embedding the R routines as procedures inside applications written in
high level languages such as C#, C, C++, Java or COBOL. These external procedures can then
be called from the DBMSs to carry out the required analytics. Thus data layer integration of R
via the application layer. We did not cover this possibility in much detail since our focus is on
integrating R directly at the data layer.

Besides, due to inability to get allocation of the computing resources from the Hasso Plattner
Institute (HPI) Future SOC Lab as planned in the initial proposal, some DBMSs such as SAP
HANA which requires significant computing resources and configurations, and Sybase RAP for
which there is no free version were left out of the list of candidate DMBSs tested. In addition,
Cloudera Impala which uses Hadoop data sets (data stored in HDFS or HBase) and recommended
physical memory (impalad daemon) of 128 GB or higher for a node has also been left out owing
to no immediate availability of the required resources for the study.
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1.6 Contributions of the study

Most advanced analytics are founded on matrix calculations and are expressed as collections
of linear algebra operations. But performing substantial floating point operations in SQL will
possibly lead to awfully slow performance. So relational simulations of linear algebra operations
to carry out advanced analytics will often result in abysmal I/O and CPU performance. Also, such
simulations are hard to fathom and realize, and makes code maintenance an expensive venture.
Furthermore, SQL simulations are knotty for linear algebra operations that involves iterations
(loops or convergences).

In light of issues mentioned above, the study has contributed by scientifically proving, based
on the empirical results from the experiments, that better performance is achievable when databases
are coupled with advanced analytical tools such as R in carrying out complex analytics. It also
contributed that such an approach is the way to go for complex analytics that involves significant
amount of data. The study further pointed out that the R integration implementations in which
more of the advanced analytic functions have equivalent native SQL counterparts that are exe-
cuted in-database produces the best performance results. Closely linked to this point is a caveat
that the database resident data involved in the analytic process must be efficiently retrieved and
passed to the analytic functions, lest there will be worsen performance.

These contributions will be of immense use to statisticians, data analysts, researchers and
practising professionals in data management and analytics fields, and developers of database
management systems in the sense that it will provide them with relevant information as to how
the studied DBMSs compare to each other in respect of integration with R (base R).
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Chapter 2

TECHNOLOGIES REVIEW

In this chapter, we take a look at R and also examine the different DBMS architectures with
regard to R integration and implementation possibilities. There is also a discussion on the level
of development of R integration with respect to the various DBMSs examined.

2.1 Advanced Analytical Tool (R)

R is an open source programming language and environment for statistical computing (or anal-
ysis) and graphics (or visualization). It was originally developed by Ross Ihaka and Robert
Gentleman at the Statistics Department of the University of Auckland, New Zealand in 1993 in
attempt to meet the need for a language that would help them teach introductory statistics to their
students [27]. It is similar to the S language which was originally developed at Bell Labs. R
is now one of the trendy platforms for data analysis and visualization. It is a free, open-source
software with versions available for different operating systems including Windows, Mac OS X,
and Linux. It has a large and active worldwide support and research community. There are other
well-known statistical and graphing packages such as Excel, SAS, SPSS, Stata, Minitab, etc but
R has an edge over them in the sense that it has so many compelling features and benefits which
make it mostly the preferred one over the others. In examining the strengths and weaknesses of
R, we look at R from the two perspectives; R as a language and R as an environment.
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2.1.1 R as a Language (Implementation)

R is a language in the sense that it provides vocabulary (keywords) and a set of grammatical rules
(syntax) for instructing computers to perform specific tasks. It therefore enables programming
(creation of routines that control actions) of computers and/or expressing of algorithms espe-
cially statistical/analytical algorithms. As a language, the benefits and compelling features of R
according to [28], include the following:

(i) It is comprehensive and offers almost any type of data analytic techniques.

(ii) It is readily extensible and provides a tool to rapidly program new statistical methods.

(iii) It contains advanced statistical routines not yet available in other packages and new meth-
ods are made readily available for download periodically.

(iv) It provides a variety of graphical interfaces for use without need to learn a new language.

(v) It is cross-platform and runs on a wide array of operating systems (Windows, UNIX, Linux,
Macintosh) with different hardware specifications (both 32 and 64 bit processors).

2.1.2 R as an Environment (Workspace)

R is also a programming environment because it provides interactive workspace and a collec-
tion of facilities (processes, tools and physical settings) for developing, testing and debugging
programs in general and statistical/analytical algorithms in particular. Thus, R provides a set of
procedures and tools to develop source code of statistical/analytical algorithms. As an environ-
ment, the benefits and compelling features of R according to [28], include the following:

(i) It provides an excellent platform for interactive data analysis and exploration, and it has
contemporary graphics capabilities for complex data visualisations.

(ii) It provides means of rapidly programming new statistical methods, and importing and ex-
porting of data from/to a wide variety of sources.

Despite the benefits of R as a language, it (base R) is not without some weaknesses. Some of
the weaknesses of the base R include:

(i) It analyzes data in memory and so the amount of data that can be analyzed at a time is
constrained by the memory capacity of the machine that it runs on. There are however
a number of useful packages such as ff, bigmemory, filehash, ncdf, etc. which facilitate
storing data outside of R’s main memory (RAM) and hence overcome this problem.
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(ii) Memory management by base R is poor because R can rapidly consume all available mem-
ory. This can become an impediment when performing operations on larger datasets. This
problem can however be minimized by using 64-bit operating systems to access more mem-
ory than memory space accessible by 32-bit operating systems. Also, there are a number
of packages useful such as ff, bigmemory, filehash, ncdf, etc which facilitate storing data
outside of R’s main memory (RAM) [28].

(iii) Naturally, base R is single-threaded and does not allow multi-core parallel processing. This
becomes a stumbling block for faster performance of operations where parallelism could
speed up execution and delivery of results. However, a number of parallelism packages
have be developed to overcome this problem. Also, one can run multiple R sessions or
make multiple system (Rscript) calls to achieve parallel execution of task with R.

Largely, the major weaknesses according to [45], have been addressed in enhanced versions
of R, some of which have been commercialized by companies such as Revolution Analytics [1].
For instance, some modifications have been made to the core R engine and advancement of core
R algorithms so that they can run in parallel and thus enable exploitation of multiple processors
for speed. Also, they are distributed and run out of memory, subverting the limitations imposed
by memory size, and can be spread across a big cluster or cloud. A further step has also been
taken to develop a server version of R, which has the capacity to expose analytics functionality as
a web service API. This makes it possible to integrate R with data layer for advanced statistical
processing based on uploaded routines and analyses.

Since the design of R was largely influenced by two languages namely S, from Bell Labs,
which was created in the 1970s and Scheme by MIT [9], R adopted S syntax while using seman-
tics of Scheme. Ostensibly, R looks more like S. Despite the superficial similarity between R and
S, there exist two fundamental differences between S and R. These key differences lie in scoping
and memory management, a consequence from R’s Scheme heritage [8]. The distinctions are
précised in [21] as follows: The memory management technique employed in R allocates a fixed
amount of memory at start-up and manages it with an on-the-fly garbage collector. This means
that there is very little heap growth and as a result there are fewer paging concerns than are seen
in S. In the case of scoping, variables within functions in S are either local or global while func-
tions in R have access to the variables which were in effect before the definition of the function; a
lexical scoping notion of Scheme. Thus in S, global variables get manipulated by functions while
in R, it is the variables which are in existence at the time of the function definition. The implica-
tion is that free variables (variables that are neither function’s formal parameters nor function’s
local variables) within functions in S are determined by a set of global variables while same in R
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functions are determined by the environment in which the function is created.
R can be used as an interactive environment, or embedded scripts and models in packages

which are integrated with other software modules. It can be used to analyze data from scores
of varied data sources including external files or databases [27]. The use of R is rapidly gaining
grounds among the analyst community due to its numerous and increasing set of functions which
are made available as packages in the main repository called CRAN (The Comprehensive R
Archive Network) [51]. R is principally different from other statistical solutions such as SPSS,
SAS and the likes in the sense that R is a statistical programming language while the others are
statistical command languages. This distinction is key and gives R superiority over the others
when integrating with RDBMS. With the help of RODBC and RJDBC R-side drivers, R can
read SQL databases. Also, there are R-specific database drivers such as RMySql, RPostgreSQL,
RSQLite, and ROracle which allow more or less direct read from and/or write to a database from
R under the R-specific protocol (DBI) [27]. There is however no R-specific driver (RSQLServer)
for SQL Server.

2.2 Different DBMS Architectures of R Integration

Integration with R can be provided at different layers within the analytic stack. These layers
(shown in the figure 2.1 on page 13), according to [39] and [12] include the following:

(i) Data Layer (e.g. Oracle R Enterprise, Sybase RAP, SAP HANA, IBM Netezza).

(ii) Analytics Layer (e.g. SAS, IBM SPSS, RStudio, Matlab, Zementis).

(iii) Presentation Layer (e.g. Tableau, Jaspersoft BI Software, TIBCO Spotfire’s BI Dashboard).

Nonetheless, as defined by the scope of this study in section 1.5 of chapter 1, we focused
on the integration at the data layer, hence a presentation of a brief architectural review of R
integration with some well-known DBMSs. When we take integration of R at the data layer,
there are alternative approaches to implement it. These alternative means of integrating R at
the data layer are outside-in, inside-out and embedded [3][10]. In outside-in arrangement, R
is connected to the database using Java Database Connectivity or Open Database Connectivity
(JDBC or ODBC) and R retrieves (pulls) the data to be analyzed from the database. In inside-

out arrangement, data is transferred (pushed) to R from within the database and the aggregated
and/or analyzed results sets are sent back from R to the database. The embedded arrangement is
where the R environment (part of R environment) and/or the R code execution is made an integral
part of the core DBMS.
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Figure 2.1: Broad classification of different layers within BI analytic stacks

The following are architectural overview of R integration with some DBMSs for analytics:

2.2.1 ORACLE R Enterprise

Oracle R Enterprise (ORE) is a component of Oracle Advanced Analytics (OAA), an option of
Oracle Database Enterprise Edition, enables execution of R scripts within SQL queries. There is
a set of packages built on top of the R engine to allow R computations to be executed in-database.
Queries to the database can thus include a call to an R script registered in the database R script
repository. Oracle has mixed approach or allows for the three approaches of integrating R with
databases (refer to table 2.3 on page 31). The in-database R script execution is made possible by
the following components in the Oracle R Enterprise:

(i) Oracle R Enterprise (ORE) Transparency Layer- This component houses set of R packages
with functions to connect to the database and use R functionality in-database. It avails the
database objects (tables, views, etc) to the R environment as if they were native R objects.
The ORE transparency layer converts R commands and scripts into SQL equivalents and
exploit the scalability of the database as a compute engine.

(ii) Oracle In-Database Statistics Engine- This component has a collection of statistical proce-
dures and functions that match statistical libraries frequently used. It extends the databases
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statistical functions library and advanced analytical computations by providing support for
the entire R language and the statistical functions available in the base R and selected R
packages. R commands and scripts are translated and executed seamlessly.

(iii) Embedded R Execution- Oracle R Enterprise packages on the server support the execution
of R commands within SQL queries and PL/SQL statements. Embedded R is executed in
spawned R engines that can run in parallel. Embedding R enables execution of R algorithms
on very large data stores and scheduling embedded R for lights-out processing.

R closures (functions) can be executed using an R or SQL API while exploiting data paral-
lelism, and producing complex visualisations and results. R functions that do not map to any
native functions are handled by extproc remote procedure calls to multiple R engines running on
multiple database servers or nodes. Generally, Oracle database employs the external procedure
agent, extproc, to support external procedures. Oracle R Enterprise exploit extproc to support in-
database execution of R. When the external procedure is invoked, the Oracle database starts an
extproc agent and the established connection is used to pass instructions to the agent for execut-
ing the procedure. The agent loads required DLL or shared library, runs the external procedure,
and passes back results returned by the external procedure. The interfaces, known as Embedded-

Layer RQ Functions, pass streams of data to multiple instances of R for parallel processing in
either row by row, group of rows, or table of rows fashion.

The three layers can be distinguished in the following ways: While the transparency layer
intercepts all R commands/scripts and converts them into SQL counterparts for database native
execution, the ORE statistics engine acts as a database library, housing both the native database
statistical functions and other functions found in base R and selected R packages. The Embedded
R Engine however enables data parallel execution, efficient data transfer between the database
and the R engine and support leveraging of computing resources such as memory, processors,
etc. Figure 2.2 on page 15 shows architecture of Oracle R Enterprise with the three components.

ORE provides two interfaces for the embedded R execution: an interface for R and another
interface for SQL.

(i) The R Interface for Embedded R Execution: The R interface facilitates interactive exe-
cution of R scripts at the database server from the client R engine. This interface offers
a number of functions for the embedded R execution. The functions include ore.doEval,
ore.tableApply, ore.rowApply, ore.groupApply and ore.indexApply. The execution of R
code with in-database R engine in the R interface is planned by the ore.doEval and the
results returned to the desktop for further analytic operations. The R interface returns the
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Figure 2.2: Architecture of Oracle R Enterprise. Adapted from [26]

results to the client as R objects that can also be passed as arguments to R functions. The
need to dispatch data from the database to R is eliminated. Rather, the R function is posted
to the database where the functions are processed in parallel and the results are only re-
trieved into R’s memory if required for further operations or analysis in R.

(ii) The SQL Interface for Embedded R Execution: The SQL interface enables interactive ex-
ecution from any SQL interface such as SQL Developer or SQL Plus. It also makes it
possible for R scripts to be incorporated in production database-based systems. To facil-
itate executing R scripts in the SQL interface, ORE offers a number of SQL embedded
R executions functions. These functions include rqEval, rqTableEval, rqRowEval and rq-

GroupEval. The SQL interface allows results to be stored directly in the database. Before
invoking the R scripts from SQL, the R script has to be first created in the database’s R
script repository. Once the script is created, it can be invoked via SQL.

Table 2.1 on page 16 presents the embedded R functions offered by the two interfaces pro-
vided by ORE. These functions are well explained in Oracle R Enterprise User’s Guide [34].
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R Interface Function SQL Interface Function Purpose

ore.doEval rqEval Invoke stand-alone R scripts
ore.tableApply rqTableEval Invoke R script with full table input
ore.rowApply rqRowEval Invoke R script one row at a time, or

multiple rows in ”chunks”
ore.groupApply rqGroupEval Invoke R script on data indexed by

grouping column
ore.indexApply N/A Invoke R script N times
ore.scriptCreate – Create an R script in the database
ore.scriptDrop – Drop an R script in the database

Table 2.1: Embedded R functions of ORE interfaces. Adapted from [30]

The following code snippets give the syntax and illustrates simple use of the functions, start-
ing with the R interface functions;

Listing 2.1: Function ore.doEval()

#SYNTAX:

ore.doEval(FUN[, ..., FUN.VALUE = NULL, FUN.NAME = NULL])

#EXAMPLE:

myIFunctionExx <- ore.doEval(

function() {

myFunction <- t(c(1:5))

myFunction

}, ore.connect = TRUE);

This invokes stand-alone R script (function) named myFunction in the R script repository of
the database without input data.

Listing 2.2: Function ore.tableApply()

#SYNTAX:

ore.tableApply(X, FUN[, ..., FUN.VALUE = NULL,

FUN.NAME = NULL, parallel = FALSE])

#EXAMPLE:

myIFunctionExx <- ore.tableApply(

dbrestbl,

function(dat) {

m <- mean(dat); s <- sd(dat);

res <- c(mean = m, stddev = s);

res});
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This invokes R script with an entire table named dbrestbl provided as input all at once to the
function.

Listing 2.3: Function ore.rowApply()

#SYNTAX:

ore.rowApply(X, FUN[, ..., FUN.VALUE = NULL,

FUN.NAME = NULL, rows = 1, parallel = FALSE])

#EXAMPLE:

myIFunctionExx <- ore.tableApply(

dbrestbl,

function(dat) {

m <- mean(dat); s <- sd(dat);

res <- c(mean = m, stddev = s);

res},

rows=25);

This activates multiple parallel invocation of R script with a chunk size of 25 rows of a table
named dbrestbl provided as input at a time to the running functions.

Listing 2.4: Function ore.groupApply()

#SYNTAX:

ore.groupApply(X, INDEX, FUN[, ..., FUN.VALUE = NULL,

FUN.NAME = NULL, parallel = FALSE])

#EXAMPLE:

myIFunctionExx <- ore.groupApply(dbrestbl,

INDEX = dbrestbl$age_grp,

parallel = TRUE,

function(dat) {

library(ORE)

ore.connect("rquser", "orcl", "localhost", "rquser")

c(mean=mean(dat), stddev=sd(dat));

})

In this case, the data table named dbrestbl is partitioned by the age_grp variable, the mean
and the standard deviation are computed, and then combined as results for output.

Listing 2.5: Function ore.indexApply()

#SYNTAX:

ore.indexApply(times, FUN[, ..., FUN.VALUE = NULL,
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FUN.NAME = NULL, parallel = FALSE])

#EXAMPLE:

myIFunctionExx <- ore.indexApply(5,function (x, scale = 50) x / scale)

This example causes the function to be ran five (5) times, with each run of the function invoked
in separate engine at the database server.

Listing 2.6: Function ore.scriptCreate()

#SYNTAX:

ore.scriptCreate(name, FUN)

#EXAMPLE:

ore.scriptCreate("myNumberSquaresAndCubes",

function () {

numbers <- 1:25;

squares <-(numbersˆ2); cubes <-(numbers ˆ3);

data.frame(Number=numbers, Square=squares, Cube=cubes);

})

This creates an R script named myNumberSquaresAndCubes in the database which can then
be used by name in other embedded R script functions.

Listing 2.7: Function ore.scriptDrop()

#SYNTAX:

ore.scriptCreate(name, FUN)

#EXAMPLE:

ore.scriptDrop("myNumberSquaresAndCubes")

This drops an R script named myNumberSquaresAndCubes from the database repository.

The SQL functions provided for in-database R script execution (lights-out processing) may
activate multiple in-database R engines based on parallelism configurations of the database. The
syntax of each of these functions with simple examples are given as follows:

Listing 2.8: Function rqEval()

--SYNTAX:

rqEval(

cursor(select * from table-2),

’select <column list> from table-3 t’,
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<R closure name of registered-R-code>

)

--EXAMPLE:

begin

sys.rqScriptCreate(’dbregfxn’,

’function() {

nbrs <- 1:25

dfnbrs <- data.frame(Numbers = nbrs,

IsEven=abs(nbrs%%2)==0,

Squares = nbrsˆ2,

Cubes = nbrsˆ3)

dfnbrs

}’);

end;

select *
from table(rqEval(

NULL,

’select 1 Numbers, 1 dfnbrs from dual’,

’dbregfxn’));

begin

sys.rqScriptDrop(’dbregfxn’);

end;

Listing 2.9: Function rqTableEval()

--SYNTAX:

rqTableEval(

cursor(select * from table-1),

cursor(select * from table-2),

’select <column list> from table-3 t’,

<R closure name of registered-R-code>

)

--EXAMPLE:

begin

sys.rqScriptCreate(’dbregfxn’,

’function(x, param) {

dat <- data.frame(x, stringsAsFactors=F)

cbind(dat, ROWPROD = apply(dat,1, prod))

}’);

end;

select * from table(rqTableEval(

cursor(select * from dbrestbl),
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NULL,

’select t.*, 1 rowprod from dbrestbl t’,

’dbregfxn’ ));

begin

sys.rqScriptDrop(’dbregfxn’);

end;

The example uses all rows from the table dbrestbl as input to the R function that takes no ad-
ditional parameters. It output result comprising the entire input data in addition to the computed
ROWPROD of values.

Listing 2.10: Function rqRowEval()

--SYNTAX:

rqRowEval(

cursor(select * from table-1),

cursor(select * from table-2),

’select <column list> from table-3 t’,

<from table-1 or num_rows>,

<R closure name of registered-R-code>

)

--EXAMPLE:

begin

sys.rqScriptCreate(’dbregfxn’,

’function(x, param) {

dat <- data.frame(x, stringsAsFactors=F)

cbind(dat, ROWPROD = apply(dat,1,prod))

}’);

end;

select * from table(rqRowEval(

cursor(select * from dbrestbl),

NULL,

’select t.*, 1 rowprod from dbrestbl t’,

1,

’dbregfxn’ ));

begin

sys.rqScriptDrop(’dbregfxn’);

end;

The example illustrates passing one row at a time from the table dbrestbl to the R function
with no parameters required by the function. The function output is the input table dbrestbl
with additional column ROWPROD which is computed as products of the columns of the row
(ROWPROD).
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Listing 2.11: Function rqGroupEval()

--SYNTAX:

rq*Eval(

cursor(select * from table-1),

cursor(select * from table-2),

’select <column list> from table-3 t’,

<grouping col-name from table-1>,

<R closure name of registered-R-code>

)

--EXAMPLE:

CREATE PACKAGE numbersPkg AS

TYPE cur IS REF CURSOR RETURN dbrestbl%ROWTYPE;

END numbersPkg;

CREATE FUNCTION numbersGroupEval(

inp_cur numbersPkg.cur,

par_cur SYS_REFCURSOR,

out_qry VARCHAR2,

grp_col VARCHAR2,

exp_txt CLOB)

RETURN SYS.AnyDataSet

PIPELINED PARALLEL_ENABLE (PARTITION inp_cur BY HASH (age_grp))

CLUSTER inp_cur BY (age_grp)

USING rqGroupEvalImpl;

The example defines numbersGroupEval, a private version of rqGroupEval(), since
there is no rqGroupEval() function (it is a virtual function). The data cursor uses all data
from dbrestbl, and one single grouping column, age_grp, is defined for use for the data
cursor.

2.2.2 SAP HANA

The execution of R codes by integrating with SAP HANA is achieved by means of two of the
alternative approaches of the data layer integration. These approaches of coupling R with SAP
HANA are outside-in and inside-out (refer to table 2.3 on page 31). The architectural arrange-
ment of these two approaches are shown in the figures 2.3 and 2.4 on page 22.

In the outside-in arrangement, HANA retains its usual traditional database role and connec-
tion from R is established using JDBC/ODBC. In another way, SAP RHANA package can be
employed to transfer huge amounts of columnar datasets. In the case of inside-out setup, huge
amount of data is transferred to R from within HANA. The aggregated and/or analyzed results
sets are sent back from R to HANA.

We take a delve into the inside-out setup. Figure 2.5 on page 23 gives more details and
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Figure 2.3: R and HANA Integration- Outside-in. Adapted from [4]

Figure 2.4: R and HANA Integration- Inside-out. Adapted from [4]

specifics of inside-out integration for execution of embedded R codes in HANA stored proce-
dure. The database uses external R environment to execute R codes which are embedded in SAP
HANA SQL code in the form of a RLANG procedure. The calculation engine of the SAP HANA
database is extended to support data flow graphs (calculation models) describing logical database
execution plans. The data flow graphs have nodes which can be native (resident) database op-
erations or custom operations, one of which is the R operator. As usual of the operators of the
calculation model, the R operator consumes input objects and returns a result table. However,
unlike native database operations, custom operators (and for that matter R operator) are not re-
stricted to a static implementation. Their implementation are independently amendable for each
node. For an R operator, this is realized by the R function code, which is passed as a string
argument to the operator.
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Figure 2.5: Integrated Architecture of SAP HANA. Reprinted from [38]

The arrival of the calculation model plan execution at the R-Operator causes the calculation
R-Client of the engine to send a request via Rserve mechanism to create a dedicated R process
on the R host. The Rserve is a TCP/IP server which enables the use of R capabilities from
various languages devoid of necessity to initialize R or link against R library [48]. Subsequently,
the R-Client transfers the R function code and its input tables to this R process, and triggers R
execution. On completion of execution of the function by the R process, the result which is in
the form of vector-oriented R data frame is returned to the calculation engine for conversion to
appropriate form.

One key benefit of this architectural arrangement where the overall control flow is positioned
in-database is that the database system can activate multiple R processes to run in parallel devoid
of any concern to parallelize execution within a single R process because database execution
plans are naturally parallel.

2.2.3 PostgreSQL (Postgres)

There are basically three ways to couple R and Postgres, namely via RODBC package, RPost-
gres interface or PL/R which supports limited types of functionality and only some versions of
R. Thus, Postgres permits alternative approaches to R integration with the data layer (refer to
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table 2.3 on page 31).

Postgres uses its extended RDBMS feature known as PL/R to exploit user-defined functions
inside it (as a data manager) to call R to perform the matrix operations required for complex
analytics. Postgres support for external function languages for which wrappers exist as well
as the languages the base engine supports eases how R is run in Postgres. The PL/R extension
enables running of R inside Postgres database in order to carryout advanced analytics in a simple,
and controlled manner. The PL/R provides a procedural language interface to R from Postgres.
The procedural languages enable us to script functions that are called within database queries.
PL/R allows writing of Postgres functions and aggregate functions in the R statistical computing
language. The PL/R loads an R interpreter into the Postgres backend process to facilitate in-
database running of R code.

PL/R offers almost all the possibilities of writing functions in the R language and there exists
commands for accessing the database through the Postgres Server Programming Interface (SPI)
and to raise messages using elog(). Access to the database backend internals is not possible
except by gaining operating system level access under the permissions of the Postgres user id, as
with a C function. Due to this security implication, it is not safe to allow unprivileged database
users to use this language. It is better installed as an un-trusted procedural language so that only
database privileged users can create functions with it. Also, diligence is required when writing
PL/R functions so as to ensure that it is not exploited for unintended purposes. Besides, there is
an implementation restriction such that PL/R procedures cannot be used to create input/output
functions for new data types.

The RODBC and RProgreSQL provide the traditional means (outside-in approach) of cou-
pling Postgres with R. The RODBC package enables ODBC database connectivity of R with
Postgres database while RPostgreSQL package provides Database Interface (DBI) compliant
driver for R to access Postgres database.

2.2.4 IBM DB2

In order to be able to execute R scripts in DB2 database, the extended database feature of DB2
can be exploited. This allows embedded SQL user-defined functions and routines to be written
in other languages such as C, C++, COBOL, etc to perform analytic operations within any SQL
statement that returns a single scalar value, row or a table. This means that apart from the
traditional means (outside-in approach) of integrating R and DB2 using RODBC/RJDBC, R
script execution can indirectly be embedded in DB2 by first embedding the R rountines inside
external stored procedures or functions written in some high level languages such as C, C++, or
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COBOL. The external stored procedures are compiled, linked, and cataloged into a load library
which is made accessible to a stored procedure workload manager (WLM) address space [13].

The consequence of the use of WLM by external stored procedure is that of slower perfor-
mance compared to native stored procedure. This is because native stored procedures do not
run in WLM address space but only engage the WLM during debugging. All the codes of na-
tive stored procedures run under users’ task with users’ DB2 thread merely switching to SQL
procedures package upon stored procedure call. This eliminates queuing and delays as well as
decrease dispatch overhead [13], thus making native stored procedures generally faster than ex-
ternal stored procedures. Nonetheless, when it comes to external stored procedures, keeping a
procedure in the WLM address space eliminates the need of loading the procedure from the load
library, hence improving overall execution performance of the external stored procedure than
when not resident in the WLM. The bind of the Database Request Module, DBRM (SQL state-
ments), is performed and a CREATE PROCEDURE statement is ran to define the procedure to
DB2 [13]. The architectural arrangement is shown in the figure 2.6.

Figure 2.6: DB2 External Stored Procedure Architecture. Adapted from [11]

When the external procedures are called from SQL scripts in DB2 to carry out the required
analytics, the DB2 database services address space (DBM1) searches for the procedure in the
SYSIBM.SYSROUTINES catalog (a table that contains a row for every routine). It then obtains
available Task Control Block (TCB) for use by the stored procedure, and the stored procedure
address space is instructed to execute the stored procedure. Procedures which are not resident in
the WLM address space are loaded from the load library. For a stored procedure to execute, con-
trol is passed to the procedure and on encountering embedded SQL statement in the procedure,
control is passed back to the DBM1 address space for execution and the result returned to the
stored procedure address space. Upon eventual completion of the stored procedure execution,
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control is returned to the DBM1 address space and the final results are returned.

The architecture of R integration with DB2, to a large extent, is similar to that of SAP HANA.
However, DB2 architecture slightly differ from the described architecture of SAP HANA in the
sense that the execution of R script is initiated from within HANA and the data and code shipped
to the external R engine while in the DB2 architecture explained, the execution of the R scripts
starts from the R external engine and the required data is pulled from DB2 database into the
external R environment for analysis. Nonetheless, the indirect embedding of R execution in DB2
via an application layer (embedded SQL programs in C and C++) is not our focus. We therefore,
did not cover this technique in much details as our focus is on integrating R directly with the data
layer.

Figure 2.7 shows the traditional means of integrating R and DB2 using RODBC/RJDBC.
The packages (RJDBC and RODBC) are founded on Database Interface (DBI) conventions for

Figure 2.7: R connectivity options for DB2. Adapted from [27]

R . The DBI package hold virtual classes which are implemented by underlying database driver.
RJDBC and RODBC respectively use JDBC and ODBC compliant database drivers to facilitate
exchange of data between the DB2 database and the R engine.

2.2.5 MS SQL Server

R integration with SQL Server DBMS is not well developed compared to that of the other
DBMSs such as Oracle, Postgres, Sybase RAP, etc. The clear option available for working with R
and SQL Server is the traditional technique (outside-in). With this technique, R simply integrates
with SQL Server using RODBC package and ODBC connection. The RODBC package imple-
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ments ODBC database connectivity and enables commencement of database interactions from
R to the SQL Server database. There is however no clearly defined means of directly calling R
from SQL Server SQL queries. The RODBC makes available two groups of functions; the inter-
nal odbc commands which implement low-level access to C-level ODBC functions with similar
names and the sql functions which operate at a higher level to read, save, copy and manipulate
data between data frames and SQL tables.

The architectural arrangement of the traditional integration approach of using R together with
SQL Server is the same as the generic ODBC connection architecture as shown in figure 2.8. The

Figure 2.8: ODBC Architecture. Adapted from [47]

ODBC architecture has four (4) components, which as per the understanding from [47], will work
for the SQL Server database and the R program/engine as follows:

(i) The Application Programming Interface invokes ODBC functions to connect to the SQL
Server database, send and receive data, and disconnect.

(ii) The Driver Manager provides information to the R engine, dynamically loads required
drivers on demand and provides argument and state transition checking.

(iii) The Driver processes ODBC function calls and manages all exchanges between the R en-
gine and the SQL Server database. It also translates standard SQL syntax into native SQL
of the SQL Server DBMS if required.
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(iv) The Data Source comprises the data and the SQL Server database engine.

The RODBC package provides access to the database (SQL Server database) through the ODBC
interface. The primary functions are given in table 2.2.

Function Description

odbcConnect(dsn, uid=””, pwd=””) Open a connection to an ODBC database

sqlFetch(channel, sqtable) Read a table from an ODBC database into a data
frame

sqlQuery(channel, query) Submit a query to an ODBC database and return the
results

sqlSave(channel,mydf,tablename=
sqtable, append = FALSE)

Write or update (append=True) a data frame to a table
in the ODBC database

sqlDrop(channel, sqtable) Remove a table from the ODBC database

close(channel) Close the connection

Table 2.2: Functions provided by RODBC. Adapted from [28]

We must however note that, just as in the case of DB2, R can be indirectly ran in SQL Server
database (indirect embedding) by exploiting CLR or the external procedure feature of writing
procedure in other languages (such as C, C++ or C#) other than SQL. For instance, by using
common language runtime (CLR), we can define a stored procedure, with embedded R routines,
as a static method of a class in a C# program and then compile this into an assembly. Then by en-
abling CLR integration feature of the SQL Server, we can register (using CREATE ASSEMBLY

statement) this assembly created from the C# program (which has the embedded R routines)
inside the database, and then create (using CREATE PROCEDURE statement) database stored
procedures or functions that reference the registered assembly. Thus, the database stored proce-
dures or functions that references the assembly eventually get indirect access to the R routines
embedded in the assembly and so the routines can be called from within the database.

The issue of limited development of the integration of SQL Server with other advanced an-
alytical tools (e.g. R) could to some extent be attributed to the fact that a lot of work has be put
into SQL Server to have its own in-database data mining or analytics facility. SQL Server now
has some highly advanced analytics and data mining features which simplify building of even
sophisticated analytics and data mining solutions. The analytics feature is integrated into the
steps of the data life cycle for discovering insights buried in data. Also, the analytic functional-
ity, to some extent, can be extended and enhanced to create intelligent solutions. But compared
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to R, there is almost limitless analytics possibilities in terms of functionalities, flexibility, exten-
sibility, adaptability and community support (packages) obtainable in R. So, directly integrating
SQL Server with R will provide a more powerful in-database SQL Server Analytics solution,
combining the analytic prowess, customizability, extensibility and huge community support of R
with the user-friendliness and robust data management capability of SQL Server DBMS.

2.2.6 SYBASE RAP

Sybase RAP is the Sybase database edition for the financial market. It is an integrated real-
time analytics platform with capacity to capture, store, and analyze market-related and trade-
related data for both real-time and historical analyses [35]. It provides integration with R thereby
allowing for faster analytic algorithm development and extensive back-testing on historical data.

For embedded approach of R integration with database, Sybase RAP integrated analytics plat-
form for R has two (2) key components namely RAPCache (an in-memory cache) and RAPStore

(a historical database). The RAPStore is a column-oriented SQL database, which stores massive
amounts of historical data in compressed form for high performance analytics and querying by
several concurrent users. The RAPStore invokes R programs using SQL code, extending the
RAPStore analytics capability and making R functions available as SQL functions in-database.
The RAPCache is an in-memory SQL programming language database with query and transac-
tional capabilities offered via a standard SQL interface and provides immediate access to new
data on arrival.

Functions that run on R server are accessed via the RAPStore User-Defined Functions (UDF)
infrastructure and invoked as SQL functions within RAP. The UDFs can be written in C or C++
to be invoked via standard SQL language. The UDFs in turn invoke R programs. Thus, functions
in R can be invoked using SQL in the RAPStore. Figure 2.9 shows invocation of R function using

Figure 2.9: Invoking R Functions Using RAPStore UDF Features. Reprinted from [35]

RAPStore UDF feature. In a traditional way (outside-in approach to data layer integration), data
from the historical store can be accessed from R using the RJDBC package, which allows JDBC
access to the RAPStore.

29



2.2.7 CLOUDERA IMPALA

Cloudera Impala is an open source MPP (Massively Parallel Processing) query engine [14].
It runs natively on Apache Hadoop and supports low-latency, interactive queries on Hadoop
datasets stored in HDFS (Hadoop Distributed File System) or HBase [46]. Cloudera Impala uses
Hadoop as a storage engine but distant itself from MapReduce algorithms, and rather employ
distributed queries, a concept inherited from MPP databases. This takes away the need to move
(migrate datasets into specialized analytic systems) or transform (change data to proprietary for-
mats) data and so processing of hefty datasets (using MapReduce) and running of interactive
queries can take place on the same system using the same data and meta-data in carrying out
analysis. R integrates with Impala by means of outside-in approach to data layer integration.
This is done using generic Impala ODBC or JDBC driver in a similar fashion as discussed for
ODBC and SQL Server in sub-section 2.2.5 on page 26. Integrating R with Impala facilitates
fast, interactive querying on top of Hadoop datasets and data can be further processed or visual-
ized within R. Figure 2.10 shows a diagram of how JDBC/ODBC can connect R with Cloudera
Impala.

Figure 2.10: Cloudera Impala ODBC drivers. Reprinted from [46]

2.3 Choice of DBMS+R for Empirical Work

Having reviewed the developments on the implementation of R integration with the DBMSs,
table 2.3 on page 31 summarizes the possible ways of coupling R with the reviewed DBMSs.
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DBMS Embedded Outside-In/Inside-Out

Oracle YES: ORE Server YES: ROracle,JDBC
PostgreSQL YES: PLR YES: RPostgres,RODBC
Sybase RAP YES: RAP Store- UDF(C,C++) YES: RJDBC
SQL Server NO: But (CLR, Ext Proc) YES: RODBC
DB2 NO: But (CLR, Ext Proc) YES: RJDBC,RODBC
Cloudera Impala NO YES: ODBC,JDBC
SAP HANA NO YES: RODBC,RJDBC,RHANA

Table 2.3: Summary of coupling R with some DBMS

The choice of the DBMSs for the empirical work was made by considering the following
points:

(i) Differing architecture of R integration implementation

(ii) Representativeness of well-known DBMSs/vendors

(iii) Level of development of R integration

(iv) Availability and accessibility of DBMSs for testing

(v) Active on-going R integration development work or consideration efforts/suggestions

(vi) More generic or non-proprietary nature of the DBMSs

(vii) Fair and objective performance evaluation with respect to other DBMSs

In consideration of these factors, we selected four (4) DBMSs for our empirical work (analytic
performance benchmarks). The selected DBMSs are Oracle, PostgreSQL, DB2 and SQL Server.

2.4 Information (Data) Security

According to [49] and [40], the fundamental goals of security are the attainment of confiden-

tiality, integrity and availability (CIA) of information resources. This CIA principle is generally
used as benchmark for appraisal of information systems’ security. We explain the three (3) es-
sential goals with reference to [43] as follows: confidentiality is the prevention of unauthorized
disclosure of information, either in storage, processing or transit; integrity is the assurance of
accuracy of information such that there is no unauthorized altering of data while in storage, pro-
cessing or transit; and availability is ensuring that information is ready for authorized use when
needed.
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Applying the CIA principle, we note that there are data/information security consequences
when using stand-alone analytical tools in performing analytics. This is because the data involved
have to be first retrieved from the DBMS, prepared into the required format and then stored in
a file (flat file) before the analysis. The means of creating, storing and exchanging the data files
in readiness for analysis by stand-alone analytical tools often leave sensitive data vulnerable.
Additionally, data stored in flat files are generally less secure (accidental deletion, virus attack,
etc.) than their DBMS counterparts.

We have identified the following issues as additional security challenges that come with using
stand-alone advanced analytical tools in performing analytics on data kept in files instead of
directly coupling these analytical tools with databases to perform analyses.

(i) The files in which the data is kept are usually not part of managed database solution where
some minimum level of built-in security (authentication and authorization) is guaranteed.
Therefore, there is higher risk for breach of confidentiality of the data.

(ii) Most often, in cases where users attempt their own encryption of data by with even third-
party tool-kits, problems often arise and immediate availability of the data for analysis is
jeopardized. Also, the likelihood of infringement on the integrity of the data is increased.

(iii) Also, many a time, there are no security policies (either system enforced or human en-
forced) regarding handling (for e.g. how data is stored or transferred) of data retrieved
from DBMS into these files for analysis by stand-alone tools. So, the CIA goals are readily
overlooked.

(iv) Moreover, data kept in flat files are just secure as the host operating system, the file permis-
sions or the file/system protecting programs unlike DBMSs which have added advantages
of granular access controls, inherent auditing, encryption and event notification.

(v) Finally, we note that there is scanty information on best practices for securing flat data files
and avoiding or mitigating the risks of data kept in these files.

These issues often lead to data/information security beaches and so coupling databases with ad-
vanced analytical tools is a better secured approach to analytics than using stand-alone analytical
tools with flat data files.
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Chapter 3

METHODOLOGY

This chapter presents the methodological and scientific approach that was employed in the study.
Specifically, it clarifies the design and planning of the practical steps of conceptualisation, im-
plementation and evaluation. It covers the research approach, data collection and analysis tech-
niques used, and how the results were interpreted. The chapter ends with a discussion on relia-
bility and validity techniques employed in the study.

3.1 Research Approach

According to [16], there are three (3) key elements that go into a research approach. These
elements, known as knowledge claims, strategies of inquiry, and methods, combine or contribute
to determine whether a research approach is mostly qualitative, quantitative or mixed. [16]
explains that: stating knowledge claims means starting a research with certain assumptions about
what will be learnt and how these will be learnt during the study; the strategies of inquiry refers
to the decisions that guides direction for procedures employed in the research design; and the
methods refers to the specific means or techniques of collecting and analysing data.

In our study, the choice of postpositivist (empirical observation and measurement, and hy-
pothesis verification) knowledge claims, experimental design strategy of inquiry, and methods
of measuring/rating/analyses of performance results put our research approach as mainly quan-

titative. [16] defines a quantitative research approach as an approach in which the researcher
basically resort to postpositivist claims of knowledge development such as test of theories and
use of measurement and observation, employs strategies of inquiry like experiments, and collects
statistical data with specific or preset tools.
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Our choice of quantitative research approach in the study was due to the specificity of the
goals of the study; the need to collect numeric performance data (quantitative data) from exper-
iments and carry out various kinds of numeric-based analyses. This study started with tools and
technologies review by examining relevant materials, especially recently cited materials includ-
ing technical manuals, articles, white papers, implementation reviews, books, websites, etc from
the internet and the library.

3.2 Data Collection and Sample Selection

This was basically done by the collection of primary data from the experiments (benchmark
performance tests) that have been carried out. Data was collected from the repeated executions
of the experiments. Since the study adapted and used the R benchmark test scripts, the data
was collected from the execution of tests for Matrix Calculation, Matrix Functions and Program
Control. All the resulting performance data from the tests in exception of outliers were sampled
or collected for use.

We used input data in the form of two-dimensional data array which is typical of real world
data usually analyzed. This data used for the experiment was generated in R such that the data set
consists of floating-point numbers of 1,000 observations (columns) by 16,000 variables (rows).
We employed a popular stochastic process (a representation of evolution of a random variable or
system over time) known as Brownian Motion [6][5] and used Donsker’s theorem to generate the
experimental input data (hypothetical stock array) so that its visual representation is similar to
stock option prices. The simplicity and clarity of this approach made us opted for it to generate
the hypothetical stock distribution option data for the experiment, barring the fact that Brownian
Motion is no longer considered as the real distribution of stock options.

Nonetheless, the principle used is very clear and simply explained by [22] as follows;
if Yi is a sequence of k variables normally distributed as elements or terms;
and Xi a series given as

Xi = (Y1 + . . .+ Yi) · (
√

i

k
)

or

Xi =

i∑
n=1

(Yn) · (
√

i

k
) (3.1)

then the series Xi can stand-in for the Brownian Motion.
The code snippets in listing 3.1 on page 35 illustrates how the data generation was realized in R
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with the technique.

Listing 3.1: Generation of experimental input data

nobs = 1000; #One thousand observations (e.g. days)

nvar = 16000; #Ten thousand variables (e.g. stocks)

z = rep(0, nobs*nvar);

x <- matrix(z, nrow = nvar, ncol= nobs, byrow=TRUE);

for (j in 1:nvar) {

set.seed(j);

y = rnorm(nobs);

x[j,] = y;

for (i in 1: nobs){

x[j, i] = round( 1/sqrt(nobs)*(sum(y[1:i])*sqrt(i)), 2);

}

}

write.csv(x, file = "E:/stockDnldDir/stockHis3.csv");

Thus, from matrix (X) point of view, we had 16,000 rows by 1,000 columns for our data array.
The structure of this data array is illustrated by table 3.1. Each of the cell contains floating-point

matrixX obs1 obs2 ... obs1000
var1
var2
var3
...
var16000

Table 3.1: Data array (matrix or data frame) of generated data set

number for a specific observation (obsi) of a particular variable (varj). Therefore, we have a
data array made up of a total of 16 million cells (16, 000 × 1, 000). The same data array was
used throughout the analytic performance tests, with each script running the benchmark seven (7)
times and the mean values were taken and used for the analyses after eliminating the minimum
and maximum run-time values as reported in Appendix B. For the scalability assessment, the
tests were also ran on the first one (1) million cells as well as the first four (4) million cells for
standalone R and Oracle.

We note that one challenge encountered has to do with limited number of columns (fields)
allowed in tables in some of the DBMSs. For instance, the CRETE TABLE statement failed in
SQL Server when the number of columns exceeded the maximum allowable number of 1024
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columns. In the case of Oracle, a maximum allowable number of 1000 columns in a table holds.
So, in order to have same .csv file data in all the DBMSs used in the test, we decided to use
tables (data frame) with 1000 columns which we were able to create in all the DBMSs without
problem.

3.3 Data Analysis

The data collected for the various performance test categories were analyzed category-wise.
These categories include Matrix Calculation, Matrix Functions and Program Control. This facil-
itated objective analysis of the performance of the systems that were studied under the various
performance categorisations. Various numeric-based (such as min-max normalization/scaling)
and graphically-based (like bar/line charting) analytical processes were employed in the analysis
of the empirical data to quantify and visualize the performance differences of the systems tested.

3.4 Results Interpretation

The results from the analyses of the empirical data were interpreted with reference to the archi-
tectural implementation of R integration with the DMBSs that were studied, and the categories
of the tests conducted. The interpretation covers the strengths and weaknesses of the various im-
plementations with regard to respective specific categories of analytic performance and overall
analytic performance. Moreover, the interpretation was done in the context of the hypothesis,
précising the extent to which it holds, or otherwise. The interpretation concluded by pointing
out the strong points or features of R integration implementation, of the best performed database
systems, which support optimal or better analytical performance.

3.5 Data Verification and Reliability

Data was collected from several repetitions of each experiment so as to counteract the effect of
skewed one-time run or execution. The mean values of the data from the various repetitions were
used in the analyses. This helped to ensure reliability. Also, an automated verification (using
scripts) of the data were carried out to ensure that outliers (very extreme values) in the result were
identified and eliminated before proceeding with analyses. Of course, we only expected outliers
in the results to come from a peremptory interruption of the system, causing some variability
in the recorded measurements. There is no guarantee of absolute avoidance of this problem
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because such is the design of modern systems and a practical work-around is to remove the
results of runs that suffer such problem. This was achieved with the aid of an R package named
mvoutlier package (multivariate outlier detection based on robust methods) [19]. The following
code snippet illustrates;

Listing 3.2: Outlier Detection

install.packages("mvoutlier"); #install mvoutlier package

library(mvoutlier); #load the mvoutlier package

data(bmresults); #load recorded experimental results

uni.plot(bmresults); #uni.plot(bmresults, symb=TRUE);

The other potential issues that could undermine the results during the measurements were ade-
quately catered for by the additional control measures that were instituted in the experimental
design and execution as detailed in chapter 4 (section 4.5) of this report.
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Chapter 4

EXPERIMENTAL DESIGN

In this chapter titled experimental design, we explain the various benchmark tests and the core
and fundamentals of the codes or scripts used to implement these tests. We also describe the
empirical settings of the study and how the controlled experiment was setup to guarantee that ac-
curate and required data was collected from the experimental runs for analyses and interpretation
to provide answers to our research questions of interest.

4.1 Research Design

The study adopted and adapted a known (community-developed) R benchmark test scripts (R
Benchmark 2.5) [24], as well as some Revolution Analytics benchmarks [2] to compare perfor-
mance of integrating R with databases such as Oracle, PostgreSQL, DB2 and SQL Server, as
well as with stand-alone R. The benchmark tests covered Matrix Calculation, Matrix Functions

and Program Control categories.

The empirical work involved three main levels: setup, execution and analysis. In the setup
level, the design and adaptation of the benchmark of the tests were defined. This included declar-
ing the datasets and data types and sizes, test tasks, performance measures and test re-run strate-
gies and number of re-runs. Each script runs the benchmark seven (7) times and the average
values were taken and used for the analyses after the elimination of minimum and maximum
run-time values as reported in Appendix B. At the execution level the defined setups were exe-
cuted (ran) and performance data collected. Finally, the performance data collected was analyzed
using exploratory and inferential methods in the analysis level.

39



4.2 The Benchmarks Tests:
The different analytic performance tests with R

The benchmark tests employed in this study are adaptations of the generally accepted benchmark
tests which are founded on computations which usually form the core part of analytic solutions of
many real-world problems. These computations often take greater fraction of compute time and
so our capability to speed up these fundamental computations implies faster results for quicker
decision making.

In the creation of our tests to measure the analytic performance of databases coupled with
R, we adapted R Benchmark 2.5 community-developed test scripts [24] to give us assessment
of general performance of R coupled with databases. The test scripts are grouped into three (3)
categories of benchmarks namely Matrix Calculation (five tests), Matrix Functions (eight tests)
and Program Control (five tests), according to the characteristics they evaluate. In addition to
the individual units of tests in the three test groupings, we also included in the second test group
some other additional adopted/adapted R benchmark tests (Revolution RevoR Enterprise Bench-

mark) [2] developed by Revolution Analytics [1] in order to cover as much core of analytics
computations as possible for the benchmarking. These tests included Singular Value Decom-

position, Principal Components Analysis and Linear Discriminant Analysis. The tests simulate
common real-world computations employed in advanced analytics. The following sections give
brief descriptions of the tests included in the three benchmark categories which were eventually
used for our study.

4.2.1 Matrix Calculation

This test involves performing Transposition (t), Exponentiation (ˆ), Sorting (sort), Matrix Multi-

ply or Cross-Product (crossprod), and Equation Solving (solve) of our data in a data structure of
two-dimensional array (matrix or data.frame). The following code snippet illustrates the use of
commands/functions for the tasks.

Listing 4.1: Matrix Calculations

#(i) Transposition:

y <- t(x);

#(ii) Exponentiation:

z <- xˆy;

#(iii) Sorting:
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y <- sort(x, method="quick");

#(iv) Matrix Multiply/Cross-Product:

y <- crossprod(x); #Or: y <- t(x) %*% x;

#(v) Equation Solving:

z <- solve(crossprod(x), crossprod(x,y));

The full code used for the implementation of the test to time execution of these tasks are listed
in Appendix A.

The Matrix Calculation benchmark group of tests contributes to assess the capacity to carry
out some common matrix computations. These computations include matrix creation, transposi-
tion and deformation which contribute to evaluate the ability to create and manipulate matrices.
The creation of normally distributed random matrix and taking the power of its elements helps
to evaluate speed of random matrix processing, element by element. The sorting of random
values benchmark contributes by way of testing the speed of sorting operation while matrix
cross-product contributes to evaluate matrix multiplication operations. Lastly in this group of
benchmark is linear regression over matrix which helps to test speed of evaluation of linear mod-
els.

The operations in this benchmark group can be adversely impacted by database integrated
with R implementation architectures that entail or rely on transfer of data and R functions from
the database to an external (out-of-database) R engine or environment in order to run the R
commands for the task or operations such as in the case of SQL Server, DB2, SAP HANA and
in some way Oracle (in cases where R commands do not have matching native functions in the
in-database statistics engine). The reason for the impact of such architectures on these operations
is that the transfer of data and/or input R commands to the external R environment and the return
of the results to the database will impose some time lag costs and so such implementations will
suffer performance degradation. As such we did not expect as much performance from SQL
Server, DB2, and SAP HANA compared to Postgres and Oracle for this benchmark group of
tests.

4.2.2 Matrix Functions

The adapted tests from the Matrix Functions benchmark group of the R Benchmark 2.5 include
performing of Fast Fourier Transform (fft), Cholesky Decomposition (chol), Eigenvalues(eigen)

and Determinant (det). As noted early on, we also extended this benchmark category by in-
cluding some tests which were adapted from Revolution RevoR Enterprise Benchmark. These
additional tests include Singular Value Decomposition (svd), Principal Components Analysis
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(prcomp/princomp) and Linear Discriminant Analysis (lda). The following code snippet shows
the commands/functions employed for these tasks.

Listing 4.2: Matrix Function

#(i) Fast Fourier Transform:

y <- fft(x)

#(ii) Eigen Values:

y <- eigen(x, symmetric=FALSE, only.values=TRUE)$Value

#(iii) Determinant:

y <- det(x)

#(iv) Cholesky Decomposition/ Factorization:

y <- chol(x)

#(v) Inverse:

y <- solve(x) # y <- qr.solve(x) ***A Bit Faster

#(vi) Singular Value Decomposition:

y <- svd (x,nu=0,nv=0)

#(vii) Principal Components Analysis (PCA):

y <- prcomp(x) #P <- princomp(x, cor=TRUE)

#(viii) Linear Discriminant Analysis (LDA):

y <- lda(x$v1˜ x$v2+x$v3, data=x);

The complete codes used to realize the tests to time execution of all these tasks are in Appendix A.
A quick general check online ([50]) provides clear and simple ideas and insights in to these matrix
operations which we explain accordingly as follows:

Cholesky Factorisation of matrix is used to find answers to linear systems of equations with
a symmetric positive definite coefficient matrix, to compute correlated sets of pseudo-random
numbers, etc. Given a symmetric positive definite matrix M, the Cholesky decomposition is
an upper triangular matrix U with strictly positive diagonal entries such that M = U ∧ (T )U .
Cholesky Factorisation is available in R as a function named chol().

Singular Value Decomposition (SVD) is a matrix factorisation scheme that employs tech-
niques of linear algebra to do decomposition. SVD algorithm is used in data mining to gain
better insights into huge datasets by showing simplified and essential dimensions of an otherwise
massive dataset. It helps in reducing huge datasets by removing redundant data (attributes) that
are linearly dependent on others from standpoint of linear algebra and can thus help to minimise
the number of attributes used in data mining. Given an i× j matrix of real or complex numbers,
M, the SVD is factorisation of M into M = UAV T where U is a matrix whose dimensions are
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i× i; V is another matrix whose dimensions are j × j; A is a matrix whose dimensions are i× j

(same dimensions as M). Also, UTU = Ii and V TV = Ij where Ii and Ij are identity matrices
with sizes of i and j respectively. SVD is implemented in R as an in-built function named svd().
The function basically takes R’s native matrix as input and output R’s data frame composed of
U, A and V.

Principal Component Analysis (PCA) is a useful statistical technique which has common
application in finding patterns in data of high dimension. The data is expressed in such a way
as to highlight similarities and differences therein. This makes PCA a powerful technique for
analysing high dimensional data because once patterns in the data are established, the data can be
compressed by reducing the number of dimensions, without any significant loss of information.
According to [17] and [52], PCA has some associations with k-means clustering that facilitate
clustering of data of high dimension by reducing the data to possible representative minimal
set of only indispensable or essential dimensions. PCA is accessible in R as a function called
prcomp() or princomp().

Linear Discriminant Analysis (LDA) is a classification technique employed in advanced ana-
lytics to find linear combination of features which characterises or separates two or more classes
of objects or events. The result is used to reduce dimension prior to classification or used as lin-
ear classifier. LDA has a close relationship with variance analysis and regression analysis, which
as well attempt to express one dependent variable as a linear combination of other features or
measurements [20][31]. LDA is available for use in R as a function named lda().

The Matrix Functions benchmark group of tests contributes to the evaluation of execution
pace of some pre-programmed matrix functions. The Fast Fourier Transform benchmark eval-
uates the speed of performing Fast Fourier Transform which is largely employed in processing
signal information. The benchmark which employs Eigen value computation assists to assess ex-
ecution of multivariate analyses while the one that involves determinant computation evaluates
performance of functions in matrix calculation packages. Cholesky decomposition also con-
tributes to check performance of pre-programmed functions while the Inverse operation bench-
mark throws in evaluation of computationally intensive functions in Analytics.

The Matrix Functions group of tests can be negatively impacted by database coupled with R
implementation architectures which employ separate workload manager address space and load
library for R functions as in the case of DB2 where sometimes when the procedures which are not
resident in the Workload Manager address space are first loaded from the load library resulting
in some overheads and tardiness. As such, we expected better performance of the other DBMSs’
execution of R routines compared to that of DB2 for this benchmark category of tests.
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4.2.3 Program Control (Programmation)

This benchmark evaluates performance of both implicit and explicit control flow or control struc-
tures (recursion, iteration, decision) by using vector calculations (Fibonacci numbers), matrix
calculation (Hilbert matrix), recursive tasks with Grand common divisors of pairs, loops perfor-
mance evaluation with Toeplitz’s matrix and collective tasks using Escoufier’s method on matrix.
The following code snippet, taken from the R Benchmark 2.5 [24], shows the use of commands/
functions and control structures employed for these tasks.

Listing 4.3: Program Control

#(i) Fibonacci numbers calculation:

y <- (phiˆx - (-phi)ˆ(-x))/sqrt(5);

#(ii) Creation of Hilbert matrix:

y <- rep(1:x, x);

dim(y) <- c(x, x);

y <- 1 / (t(y) + 0:(x-1));

#(iii) Grand common divisors of pairs:

z <- gcd2(x, y); #gcd2 is a recursive function

#(iv) Creation of Toeplitz matrix:

#Intentional timing loop timing (faster alternative exist)

for (i in 1:500) {

for (j in 1:500) {

x[j,i] <- abs(i - j) + 1

}

}

#(v) Escoufier’s method on matrix:

# Calculation of Escoufier’s equivalent vectors

p <- ncol(x)

vt <- 1:p

vr <- NULL

RV <- 1:p

vrt <- NULL

for (j in 1:p) {

Rvmax <- 0

for (k in 1:(p-j+1)) {

x2 <- cbind(x, x[,vr], x[,vt[k]])

R <- cor(x2)

Ryy <- R[1:p, 1:p]

Rxx <- R[(p+1):(p+j), (p+1):(p+j)]

Rxy <- R[(p+1):(p+j), 1:p]

Ryx <- t(Rxy)

rvt <- Trace(Ryx %*% Rxy) /

sqrt(Trace(Ryy %*% Ryy) *
Trace(Rxx %*% Rxx))
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if (rvt > Rvmax) {

Rvmax <- rvt

vrt <- vt[k]

}

}

vr[j] <- vrt

RV[j] <- Rvmax

vt <- vt[vt!=vr[j]]

}

The entire code used for the tests to time the execution of these tasks is listed in Appendix A.
Program Control or Programmation benchmark group of tests contributes by way of helping

to assess the speed and efficiency of executing control flows, such as looping, iteration, deci-
sion or recursions, when performing analytic tasks or running analytics scripts (as against Matrix
Functions which evaluates pre-programmed or customized functions). The Fibonacci numbers
and Hilbert’s matrix benchmark tests enable assessment of speed of evaluating intrinsic control
flows of vector and matrix calculations in R scripts. The Grand common divisors of pairs bench-
mark contributes to check performance of recursive functions execution while the benchmark
which draws on Toeplitz’s matrix assesses the speed of loops execution. Finally, the benchmark
which employs Escoufier’s method contributes to assess performance on collective or grouping
of these programming characteristics in one run.

On the issue of performance expectations for this benchmark group with respect to databases’
R implementations, the architectures which have execution control stationed in-database but with
actual R command execution handled as calls to external R engine will suffer performance prob-
lems. In other words, the architectures that employ repeated or recurrent calls (transfer of exe-
cution control) between an external (out-of-database) R engine or environment and the database
in order to run R commands will underperform. This is because the program control (especially
recursions and iterations) test will impose time and stack space costs as a result of managing
stack and also the comparative tardiness/delay of the R command execution calls. The conse-
quence of the to-and-fro actions between handling of the tasks execution (by the R engine or
environment) and the overall execution control (by the database) will likely amount to overheads
in the exchanges and the back and forth communication or synchronisation. As such we expected
performance of SQL Server, DB2, SAP HANA and Oracle (to some degree) to be affected. Or-
dinarily, we did not expect SAP HANA and Oracle to perform exceedingly well, compared to the
other DBMSs or stand-alone R, in this group of tests because their capacity to activate multiple
R processes to run in parallel cannot be effectively exploited in this case. But the in-database
execution of R, especially in the case of Oracle, leaves the performance expectations irresolute.
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Table 4.1 shows the benchmark categories and summaries of characteristics assessed by the
various tests employed for each category.

Benchmark Category Benchmark Function Characteristic Assessed

Matrix Calculations:
Common Matrix
Computations

Transposition Flipping (transpose) computations
Exponentiation Exponential computations
Sorting Sorting of vector or factor
Cross-Product Cross-product computations
Equation Solving Solving linear system of equations

Matrix Functions:
Computationally-intensive/
Pre-programmed/
Package-functions

Fast Fourier Transform Fourier Analysis/Transform
Eigen Values Multivariate analysis
Determinant Matrix calculation with

pre-programmed function
Cholesky Decomposition/
Factorisation

Pre-programmed function

Inverse Computationally intensive function
Singular Value
Decomposition

Matrix factorization/
decomposition (rotation & scaling)

Principal Components
Analysis

Finding pattern/data reduction/
orthogonal transformation

Linear Discriminant
Analysis

Dimensionality reduction/ linear
classification

Program Controls:
Custom Function
(Recursions, Iterations,
Decisions)

Fibonacci numbers
calculation

Inherent control flow of vector
calculation

Creation of Hilbert matrix Matrix calculation in scripts
Grand Common Divisors of
Pairs

Recursive computations

Creation of Toeplitz Matrix Loops execution
Escoufier’s Method on
Matrix

Collective/grouped programming
characteristics

Table 4.1: Summary of characteristics assessed by the benchmarks
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4.3 Computing Resource Configurations

Table 4.2 details the configuration of the computing resources employed to carry out the bench-
mark tests.

Resource Configuration

Processor Brand Intel (model F1X66EA#ABU)
Processor Type Intel Core i7
Processor Speed 2.4 GHz
Processor Count 4
RAM Size 8 GB
Computer Memory Type DDR3 SDRAM
Hard Drive Size 1 TB
Operating System Windows 8 (64-bit)
Brand Hewlett Packard
Virtual Memory 8192MB/8GB

Table 4.2: Details of computing configurations

4.4 Performance Results Measurement

Basically, there are two (2) R functions for timing codes and these are proc.time() and
system.time().

The proc.time() function measures the amount of time (in seconds) that a currently
running R process has already taken in executing. In order to use this function, one applies the
notion of a stop-watch by first taking note of the start time, running all the codes being timed,
and then recording the end time and deducting the start time from the end time. The result of
the difference between the start and end times gives the time taken to execute the codes. The
following code snippet illustrates a simple use of proc.time() to measure the time R takes
to execute some codes:

Listing 4.4: Timing with proc.time()

x <- rnorm(500000)

y <- rep(NA, 500000)

#Start the watch!
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ptm <- proc.time()

y <- x * 5

#Stop the watch!

proc.time() - ptm

user system elapsed

0.00 0.02 0.02

The results are presented as three time values under the headings user, system, and elapsed.
The user and system times are respectively measures of total user and system CPU times of the
running R process and any child processes on which it waited. The elapsed time is the actual
elapsed time since the process was started. It is the difference in times since the start of the
timing clock. This is equal to the sum of user and system times if the chunk of code was run
altogether. The values for user and system times are defined by the operating system (OS) of the
system on which the code was run. According to [37], User time is the CPU time charged for the

execution of user instructions of the calling process whiles System time is the CPU time charged

for execution by the system on behalf of the calling process.

The system.time() function takes as argument R expressions and an optional logical
value (with default value of TRUE) which indicates whether garbage collection should be per-
formed just before the timing or not. The system.time() function returns the times an
expression (which is passed as argument) takes to execute. In order to use system.time()
to time codes, one may have to write function wrappers around the routines or methods be-
ing timed and pass the function as an argument to the system.time(). As stated early
on, system.time() merely calls proc.time(), evaluates the expression being timed,
then calls proc.time() again and then returns the difference between the results of the two
proc.time() calls. The following snippet of codes demonstrates the use of system.time()
to time codes.

Listing 4.5: Timing with system.time()

x <- rnorm(500000)

mymult <- function(x){

return(x*5)

}

system.time(y <- mymult(x))

user system elapsed

0.02 0.00 0.01

The results of system.time() has the same meaning as discussed for proc.time().

48



But, as can been seen from the code listing, the system.time() superficially differ from
proc.time() in that there is no need to explicitly record the start and end times, and then
find the difference between these times to get the time taken to execute codes. All these are
automatically handled by the function unlike the case of proc.time() where one have to
explicitly take care of these. The preference of use of either one of the two functions over the
other basically depends on the nature of the code being timed. In our evaluation (analytic per-
formance benchmark tests), we employed system.time() throughout the evaluation because
it allowed us to put collections of code lines written for the various benchmarks into blocks and
just wrapped it around the code blocks to access the performance metrics. It also made writing,
debugging and enhancement updates of our codes clearer and simpler as we have very clear seg-
regation of our objective; focus on writing the codes for the analytic tasks first and thereafter the
timing or evaluation of the codes for the tasks.

4.5 Experimental Controls

Since the validity of the experiment is directly affected by its construction and execution, we
attached extreme importance to the design and execution of the experiment using a number of
control measures. These measures are explained as follows:

Regarding the use of system.time() to measure the performance of the various opera-
tions or routines of the benchmark scripts, the timing evaluation of the same expression can vary
significantly depending on whether the evaluation activates a garbage collection or not. In order
to surmount this problem we made sure that our test environment was in a clean state before
timing the test codes. This was done by using a function called gc(), garbage collection. We
were also aware of the fact that the default for system.time() function is to call garbage
collection prior to evaluation of an expression, but since we had already explicitly called gc(),
we did not state it again in the call to system.time() for timing our codes. For example;

Listing 4.6: Calling garbage collection function, gc()

invisible(gc());

exec_time <- system.time({

a <- t(b + c);

})[3]

This forces garbage collection (gc()) to be carried out just before the timing evaluation of the
expression.

We avoided experimental bias, the favouring of certain outcomes over others, and made our
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inferential task easier by limiting the number of factors at play, using exactly the same computing
resource configuration for the various DBMSs tested. In more concrete terms, we maintained the
same amount of computing resources and environment in carrying out the tests on all the DBMSs.
Thus we controlled configuration variables such as RAM, Speed, OS, HDD, etc. This provided
levelled grounds to compare and contrast results from the tests.

Also, to avoid effect of one-off extreme results on the overall outcome of the study, several
timing runs were performed for each type of experiment on the DBMSs and the mean values
used in the analyses. This is because systems can be peremptorily interrupted and so it is impor-
tant to carry out many runs to check for variability and nullify differences to improves overall
measurements. This helped to ensure reliability and objectivity as any effect of slight fluctuation
in results from one run to another is nullified by the average results.

Lastly, we employed deletion of temporary objects and objects that were no longer needed
during each re-run. This was achieved by calling rm(”obj1”, ”obj2”) to remove specific objects
(obj1, obj2) from memory or rm(list=ls()) which removes all objects from memory, effectively
providing a clean state for the runs. Also, daemons running on the experimental system were
stopped to ensure that they do not unjustifiably compete for and share in the resources that were
available to the experimental setup/environment.

The use of these fundamental control mechanisms in our experimental design and execution
effectively ensured elimination and mitigation of potential disparities that may have arisen in the
deployment and running of the benchmark and removed both expected or unexpected problems.

4.6 Setting up and Configurations of Test Environment

The following are some details about the setup and configuration of integrating R with the four
(4) DBMS evaluated in the analytic performance benchmark testing.

4.6.1 R + Oracle Experimental Setup

With reference to the guides Oracle Database Installation Guide [32], Oracle R Enterprise In-

stallation and Administration Guide [33] and Oracle R Enterprise User’s Guide [34], the follow-
ing tasks were performed in order to get Oracle R Enterprise (ORE) server up and running on the
experimental machine:

(i) Oracle Database 12c (64-bit) was installed.

(ii) Open Source R 2.13.2 was then installed.
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(iii) Then Oracle R Enterprise Server 1.1 was installed.

(iv) Thereafter, Oracle R Enterprise Client Supporting Packages
(ROracle_1.1-9, DBI, png_0.1-4) were installed.

The packages are installed in $ORACLE_HOME/R/library.

Configuring extproc for embedded R execution:
The default configuration of extproc, for use by Oracle R Enterprise for embedded R execu-
tion, was maintained and so no changes were made to either listener.ora or tnsnames.ora.
The environment variables in table 4.3 were set.

Variable Value

R HOME C:\Program Files\R\R-2.13.2
PATH %ORACLE_HOME%\bin
ORACLE SID orcl
ORACLE HOME E:\app\Orauser\product\12.1.0\dbhome_2
R LIBS USER E:\app\Orauser\product\12.1.0\dbhome_2\R\library

Table 4.3: Environment variable settings for ORE

Note:
%ORACLE_HOME% = E:\app\Orauser\product\12.1.0\dbhome_2

%R_HOME% = C:\Program Files\R\R-2.13.2

After the installation, the following post-installation steps were carried out:

Creation of ORE user:
A user, RQUSER, for Oracle R Enterprise was created by running the script (demo_user.bat)
that came with the Oracle R Enterprise server.

Listing 4.7: Creating ORE User

> demo_user.bat
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Granting of privileges to the ORE user:
Some essential privileges (CREATE TABLE, CREATE PROCEDURE, CREATE VIEW,
CREATE MINING MODEL) were granted to the user (RQUSER).

Listing 4.8: Granting privileges to the ORE user

SQL> GRANT CREATE TABLE TO RQUSER;

SQL> GRANT CREATE PROCEDURE TO RQUSER;

SQL> GRANT CREATE VIEW TO RQUSER;

SQL> GRANT CREATE MINING MODEL TO RQUSER;

Granting of RQADMIN Role to ORE user:
The RQADMIN, a role created by the Oracle R Enterprise server installation was granted to the
RQUSER. This role is required by a user in order to be able to execute embedded R.

Listing 4.9: Granting RQADMIN role right

SQL> GRANT RQADMIN TO RQUSER;

4.6.2 R + Posgres Experimental Setup

We used PL/R which is the driver that implant the R interpreter in Postgres to facilitate in-
database R execution. With the help of the PL/R Users Guide [15], we carried out the following
setup tasks on the experimental machine:

(i) Installation of PostgreSQL 9.3.2 Database (64-bit).

(ii) Installation of Open Source R 2.13.2.

The environment variables in table 4.4 were set.

Variable Value

R HOME C:\Program Files\R\R-2.13.2
PATH C:\Program Files\R\R-2.13.2\bin

Table 4.4: Environment variable settings for Postgres PL/R

Afterwards, the PostgreSQL Server service was restarted on the experimental system in order for
the changes to take effect and then the following post-installation procedures were carried out:
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Language Installation into Database:

Listing 4.10: PL/RLanguage Installation

--Language Installation (manually) into Database

CREATE FUNCTION plr_call_handler()

RETURNS LANGUAGE_HANDLER

AS ’$libdir/plr’ LANGUAGE C;

CREATE LANGUAGE plr HANDLER plr_call_handler;

Loading PL/R functionality into the database:
In order to enable the use of PL/R in PostgreSQL database, we created language and support
functions in the PostgreSQL database and then loaded the help functions into the database. The
PL/R was enabled in our database by running the following command on the database.

Listing 4.11: Enabling PL/R functionality in database

CREATE EXTENSION plr;

Testing creation and calling of PL/R functions:
The following helper functions were created and tested.

Listing 4.12: Testing PL/R functionality
--Empty body function: function name same as R function

CREATE OR REPLACE FUNCTION paste(text, text)

RETURNS text[] AS ’’ LANGUAGE ’plr’;

SELECT paste(’Hello’,’World’);

--Non-empty body function: function name not same as R function

CREATE OR REPLACE FUNCTION mufxn()

RETURNS float[] AS

’

n<-c(1:10);

m<-mean(n);

s<-sd(n);

res<-c(mean=m, stddev=s);

res<-as.matrix(res);

res;

’

LANGUAGE ’plr’;

SELECT mufxn();
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4.6.3 R + DB2 Experimental Setup

The following tasks were carried out on the experimental machine in setting up DB2 to work
with R:

(i) Installation of IBM DB2 Express-C 10.5 (64-bit)

(ii) Installation of Java (64-bit)

(iii) Installation of Open Source R 2.13.2. [RGUI environment (64-bit client)]

(iv) Installation of RJDBC package from RGUI

Listing 4.13: Installing RJDBC Package

> install.packages("RJDBC");

After the installation, testing of RJDBC loading and connecting to the database to retrieve data
was performed as follows:
R was started and the package was loaded:

Listing 4.14: Loading RJDBC Package

> library(RJDBC);

Then the DB2 JDBC driver was loaded:

Listing 4.15: Loading DB2 JDBC Driver

> jcc = JDBC("com.ibm.db2.jcc.DB2Driver",

"C:/Program Files/IBM/SQLLIB/java/db2jcc4.jar");

A database connection was then established:

Listing 4.16: Loading RJDBC Package

> channel = dbConnect(jcc,

"jdbc:db2://localhost:50000/SAMPLE",

user="sedem", password="********");
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A test query was run on a sample data (selecting all records from the stockHist table) in the
DB2 database and the results put into a data frame and then output to the console:

Listing 4.17: Test query on data

> rst = dbSendQuery(channel, "SELECT * FROM stockHist");

> dfr = fetch(rst, -1);

> dfr;

4.6.4 R + SQL Server Experimental Setup

The following tasks were carried out on the experimental machine in setting up SQL Server to
work with R:

(i) Installation of SQL Server 2012 (64-bit).

(ii) Installation of Open Source R 2.13.2. [RGUI environment (64-bit client)]

(iii) Installation of RODBC package from RGUI

Listing 4.18: Installing RODBC Package

> install.packages("RODBC")

After deciding on the 64-bit client, we configured an ODBC DSN, rConnectSqlServer, to
connect to the database using SQL Native Client 11.0 driver. Then testing of RODBC loading
and connecting to the database to retrieve data was performed as follows:

Listing 4.19: Loading RJDBC Package

> library(RODBC)

> channel <-odbcConnect("rConnectSqlServer ", uid="sa", pwd="**********")

> dataArray <- sqlQuery(channel, "SELECT * FROM stockHist")

> head(dataArray)

> close(channel)

>

>

> library(RODBC)

> channel<-odbcConnect("rConnectSqlServer")

> dataArray<-sqlFetch(channel,’stockHist’)

> head(dataArray)

> odbcClose(channel)
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SQL Server can also run R via Common Language Runtime (CLR) Integration. To achieve
this, the following tasks were carried out to enable use of SQL scripts that indirectly run R
with the initiation from the database: We created the usual R script files required to be ran.
Then we wrote a high level language (C# CLR) utility program that calls R (by making use of
R.NET library [36]) and pass R commands to it for execution (it used source() command
and passed the full path of the R script file). The program was then built/compiled to get the
corresponding dynamic link library (.dll file). Afterwards, the CLR integration feature of the
SQL Server was enabled. Again, in the SQL Server database, an assembly was created from the
DLL obtained. Finally stored procedures were created based on the assembly and SQL queries
that make use of the stored procedures were written and ran with the name of the R script files
as input parameters. Likewise, these same tasks are applicable to DB2 in case R needs to be run
via Common Language Runtime (CLR) Integration. But in the case of DB2, the CLR assembly
is kept outside the database away from the stored procedure definitions located in-database.

The approach of passing R script file as a parameter in the SQL queries has a number of
advantages which include the following:

(i) One can run or modify the R script file without having to recompile the C# utility program
for a new a DLL, which will require update of the assembly and related stored procedures,
as long as the name remains same

(ii) There is no need to struggle with the laborious and error-prone task of stringing all the R
commands in the C# utility program that creates the needed DLL.

(iii) The process that runs the code (R script) of the stored procedure runs in the SQL Server
process space.

(iv) It allows for portability of R codes as we do not need to modify existing R script files in
order to run them from database.
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Chapter 5

EMPIRICAL FINDINGS

In this chapter, the primary results from the experiments are presented. Other (secondary) results
and how they were computed from the primary results are also presented in this chapter while
the next chapter analyzes the evidence thereof either in agreement or otherwise with the thesis
statement declaration.

The table 5.1 on page 58 provides records of the average execution times for the various
benchmark categories employed in the study as discussed in section 4.2 (sub-sections 4.2.1,
4.2.2 and 4.2.3) on pages 40 through 44. However, the details of the execution times for each
of the individual benchmark tests in the three categories by the various DBMSs are captured in
Appendix B (B.1, B.2 and B.3). In table 5.1 and other tables of results, the MCxx are the Ma-
trix Calculations benchmark results, while the MFxx are the Matrix Functions benchmark results
and the PCxx are the Programmation or Program Control benchmark results. In specific terms,
the following are the representations of the tests; MC01: Transposition; MC02: Exponentiation;
MC03: Sorting; MC04: Matrix Multiplication/ Cross-Product; MC05: Equation Solving; MF01:
Fast Fourier Transform; MF02: Eigen Values; MF03: Determinant; MF04: Cholesky Decompo-
sition/ Factorization; MF05: Inverse; MF06: Singular Value Decomposition; MF07: Principal
Components Analysis; MF08: Linear Discriminant Analysis; PC01: Fibonacci numbers calcula-
tion; PC02: Creation of Hilbert matrix; PC03: Grand common divisors of pairs; PC04: Creation
of Toeplitz’s matrix; PC05: Escoufier’s method on matrix.

In order to obtain good overall reflection of the results, we employed a simple application of
statistical concept of min-max normalisation. We normalized the results from the various bench-
marks before aggregating them. This was done using a simple but robust approach of scaling
the values by linear transformation of the form f(x) = ax + b, thereby putting the different
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Benchmark Stand-alone R PostgreSQL Oracle DB2 SQL Server

MC01 9.65 18.62 0.44 3.86 3.71
MC02 14.86 23.95 5.88 9.01 8.90
MC03 10.17 19.40 1.26 4.40 4.25
MC04 16.54 25.82 7.71 10.55 10.68
MC05 57.79 77.22 40.97 48.69 46.15

MF01 12.45 22.70 4.15 8.09 6.71
MF02 100.98 110.94 100.49 95.27 94.91
MF03 19.21 28.51 10.34 13.4 13.46
MF04 48.50 57.97 40.13 42.79 42.53
MF05 58.79 68.68 51.73 53.54 53.16
MF06 67.7 76.90 59.45 61.59 61.65
MF07 215.18 226.36 212.74 213.41 209.26
MF08 47.61 57.75 39.46 42.50 43.06

PC01 2.71 2.78 2.77 2.70 2.77
PC02 0.30 0.40 0.31 0.28 0.29
PC03 0.63 0.60 0.43 0.65 0.66
PC04 0.51 0.50 0.51 0.53 0.51
PC05 0.38 0.38 0.36 0.38 0.38

Table 5.1: Average runtime results (time in seconds)

ranges for the various benchmarks into one scale and giving a notionally common scale. This
made adding up of the various results meaningful since the effects of certain gross or absolute
influences are removed. To put the transformation, f(x) = ax+ b, in concrete terms, we used

Xnorm = Nmin +
(Xdat −Dmin)

(Dmax −Dmin)
× (Nmax −Nmin); (5.1)

where:
Xdat is the value being normalized;
Dmin is the lower bound of result range;
Dmax is the upper bound of result range;
Nmin is the lower bound of normalized range (pegged at 1);
Nmax is the upper bound of normalized range (pegged at 10);
Xnorm is the result of the value normalized (normalized value).

For example, to normalize SQL Server’s average run-time value for the test MC01, we com-
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puted it using the following values as input:
Xdat = 3.71;
Nmin = 1;
Nmax = 10;
Dmin = 0.44;
Dmax = 18.62;
Xnorm =?

Substituting these values into our value normalisation equation 5.1 gives us

Xnorm = 1 +
(3.71− 0.44)

(18.62− 0.44)
× (10− 1)

Xnorm = 2.61883 ≈ 2.62

which is given as the normalized value of the MC01 benchmark result for SQL Server in table 5.2.
This normalized values table (table 5.2) gives the complete results of normalizing the average
run-times obtained (refer to table 5.1 on page 58).

Benchmark Dmax Dmin Nmax Nmin Stand
Alone R

Postgre
SQL

Oracle DB2 SQL
Server

MC01 18.62 0.44 10.00 1.00 5.56 10.00 1.00 2.69 2.62
MC02 23.95 5.88 10.00 1.00 5.47 10.00 1.00 2.56 2.50
MC03 19.40 1.26 10.00 1.00 5.42 10.00 1.00 2.56 2.48
MC04 25.82 7.71 10.00 1.00 5.39 10.00 1.00 2.41 2.48
MC05 77.22 40.97 10.00 1.00 5.18 10.00 1.00 2.92 2.29

MF01 22.70 4.15 10.00 1.00 5.03 10.00 1.00 2.91 2.24
MF02 110.94 94.91 10.00 1.00 4.41 10.00 4.13 1.20 1.00
MF03 28.51 10.34 10.00 1.00 5.39 10.00 1.00 2.52 2.55
MF04 57.97 40.13 10.00 1.00 5.22 10.00 1.00 2.34 2.21
MF05 68.68 51.73 10.00 1.00 4.75 10.00 1.00 1.96 1.76
MF06 76.90 59.45 10.00 1.00 5.26 10.00 1.00 2.10 2.13
MF07 226.36 209.26 10.00 1.00 4.12 10.00 2.83 3.18 1.00
MF08 57.75 39.46 10.00 1.00 5.01 10.00 1.00 2.50 2.77

PC01 2.78 2.70 10.00 1.00 2.12 10.00 8.88 1.00 8.88
PC02 0.40 0.28 10.00 1.00 2.50 10.00 3.25 1.00 1.75
PC03 0.66 0.43 10.00 1.00 8.83 7.65 1.00 9.61 10.00
PC04 0.53 0.50 10.00 1.00 4.00 1.00 4.00 10.00 4.00
PC05 0.38 0.36 10.00 1.00 10.00 10.00 1.00 10.00 10.00

Table 5.2: Normalized-average runtime results (normalized to range [1,10])
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Table 5.3 gives the aggregated results of the average run-time benchmark results after the
normalization. Thus, for each of the three benchmark category, we sum up the normalized values
of the results of the individual tests for respective systems (stand-alone R and R integrated with
DBMSs).

Benchmark Stand-Alone R PostgreSQL Oracle DB2 SQL Server

MC 27.02 50.00 5.00 13.14 12.37
MF 39.18 80.00 12.96 18.72 15.66
PC 27.45 38.65 18.13 31.61 34.63

OVERALL 93.65 168.65 36.09 63.46 62.66

Table 5.3: Overall normalized average run-time results

The results are also presented in charts as shown in figures 5.1, 5.2, 5.3 and 5.4 on pages 60
through 63 for easy and clear observation of the performance differences among the various
systems assessed for the benchmark categories.

Figure 5.1: Chart of overall benchmark results (average run-times)

The chart in figure 5.1 shows the average overall analytical performance of the various sys-
tems tested. Clearly, Oracle’s performance lead all the others with a particularly impeccable per-
formance compared to PostgreSQL and stand-alone R. The overall performance of PostgreSQL
was the worst which was quite unexpected. The performance of SQL Server and DB2 come
next after Oracle’s, with SQL Server having a slight edge over DB2. The overall performance of
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stand-alone R trailed the overall performances of the DBMSs in exception of PostgreSQL which
is quite startling. This development is discussed further in chapter 6 to identify the possible
causes of this result.

Having seen the overall performance of the various systems, we delve a little deeper to ex-
amine the various benchmark categories that constitute the overall result. We therefore, present
the respective charts of the three benchmark categories as follows:

Figure 5.2: Chart of Matrix Calculation (MC) benchmark results (average run-times)

As reflected by the results in table 5.1 on page 58, it is clear that in the first benchmark
category, Matrix Calculations (MC), Oracle performed very well leading in all the five tests. This
is followed by SQL Server and DB2 which have about the same performance results, but with
SQL Server having a slight edge over DB2. It can be seen that the performance of PostgreSQL
trailed in all the five tests in this category. Stand-alone R performed poorly compared to the
others but better than PostgreSQL. More discussions on these results are made in section 6.1 of
chapter 6. It is interesting to also note that the performance of Oracle compared to stand-alone
R ranges from about 1.4 to 21.9 times faster in the various tests and from 1.8 to 42.3 compared
to PostgreSQL. Figure 5.2 shows the overall performance ranking in this category with Oracle
outpacing the rest while PostgreSQL trailed all the others.

In the second benchmark category, Matrix Function (MF), Oracle maintained performance
lead in most of the tests (six out of the eight tests- MF01, MF03, MF04, MF05, MF06 and
MF08) but with a snag performance in two of the tests (MF02 and MF07) which saw SQL
Server leading in those two. Further discussions on these results are advanced in section 6.2

61



Figure 5.3: Chart of Matrix Function (MF) benchmark results (average run-times)

of chapter 6. It is remarkable to observe that the performance of Oracle in two of the tests
(MF01 and MF03) is approximately two and three times faster than stand-alone R while same
compared to PostgreSQL is about three and five times faster. Again, SQL Server and DB2 have
comparable performances except in those couple of tests that SQL Server led the rest. The
general performance positioning in this benchmark category is shown in the chart in figure 5.3
which shows Oracle lead but with close contention from SQL Server.

In the last category of benchmark, Program Control (PC), Oracle lead in the overall test. This
is followed by stand-alone R, outperforming DB2, SQL Server and PostgreSQL. Once more,
SQL Server and DB2 have about the same performance. One significant observation in this
benchmark category is that there seems not to be very clear-cut performance differences by the
various systems. There are mixed performances from the various systems and PostgreSQL also
lead in one of the tests (PC04). This test, PC04, is a looping program control test using Toeplitz
matrix and does not involve passing of database resident data for analytics which would have
otherwise caused hitch in PostgreSQL’s performance. Moreover, there is no need for parallelism
when looping and so PostreSQL performed well. We discuss these results in section 6.3 of
chapter 6. Figure 5.4 on page 63 gives a graphical view, in a bar chart, of the overall performance
results of this benchmark category.

In testing analytics execution scalability, where we ran the benchmarks for different amounts
of analyzed datasets (1 million cells, 4 million cells and 16 million cells), we observed that
increases in execution time for routines with increased data are smaller for Oracle+R compared
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Figure 5.4: Chart of Program Control (PC) benchmark results (average run-times)

to stand-alone R. The results are found in Appendix B.7 on page 120. This means that R coupled
with DBMSs perform better than stand-alone R when it comes to analytics execution scalability.
It is also important to note that stand-alone R simply does not work for very huge that datasets.

Regarding the results of the experiments, there is one observation worth mentioning. We
realized that the results obtained with average run-times is about the same as that obtained when
minimum run-times were used. In other words, the performance patterns recorded remain exactly
the same while there are no significant variations in the actual recorded values. This indicates the
robustness of the experimental design and the running of the tests in the controlled environment
because reliability of the figures of the results from the experimental runs is high.
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Chapter 6

DISCUSSIONS ON THE
FINDINGS

In this chapter, discussions on the empirical findings are presented and the implications emanat-
ing from the findings are also put forward. The discussions involve analyses of the empirical
results, as presented in the previous chapter (chapter 5), to unearth the extent of agreement or
otherwise with the thesis statement declaration (hypothesis). We proceed to examine and discuss
the findings from the benchmark categories as follows:

6.1 Matrix Calculation (MC) Results

The overarching impressive performance of Oracle is understandable as Oracle first finds match-
ing/equivalent functions to use in-database. For instance, the transparency framework and statis-
tics engine support several common operators and functions including matrix multiplication,
cross-product, solve and exponentiation. Since this benchmark category basically involves com-
mon functions, it is obvious that the native equivalent functions are implemented in the Oracle’s
in-database statistic engine, hence the tremendous performance. Even in cases where there are
not matching native functions, Oracle has the capacity to spawn multiple R engine sessions for
parallel execution of tasks [7]. The performance of SQL Server and DB2 are as expected and
the slight lead by SQL Server can be explained to have been caused by the advantage of storing
the CLR assemblies with the embedded R routines in-database as opposed to a totally out-of-
database R routines execution (or storing of CLR assemblies with embedded R routines in file
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system) in the case of DB2.

The disagreeable surprise performance came from PostgreSQL which saw a deteriorated
performance compared to even stand-alone R. This result triggered further investigations to find
out exactly what accounted for the worsen performance. Some database configuration parameters
(especially, the shared buffer) tweaking (changing default value of 128MB through the values
256MB, 512MB and 1024MB) were undertaken which resulted in insignificant performance
improvement. This was not enough to even be on a par with the performance of stand-alone R.
The shared buffers configuration parameter sets the amount of memory the database server uses
for shared memory buffers. It determines how much memory is dedicated to PostgreSQL to use
for caching data.

Our investigation revealed that when a task does not require significant amount of data to be
passed to the R functions, such as in the case of PC benchmark category, PostgreSQL performed
competitively well, almost as Oracle. Further experiment to confirm or refute this finding was
carried out. This additional experiment involves timing only the retrieval of database resident
data as matrix (codes of the experiment listed in Appendix A.6) and the result, as presented in the
table 6.1, corroborate the finding of first investigation.

Retrieving DB Data Run-1 Run-2 Run-3 Run-4 Run-5 Run-6 Run-7 Total Average

Oracle 0.15 0.14 0.14 0.14 0.14 0.15 0.14 1.00 0.14
PostgreSQL 20.12 19.05 19.12 19.12 19.03 19.11 19.12 134.67 19.24

Table 6.1: Timing of retrieving database resident data (time in sec)

Thus, it takes the database integrated R far less time to retrieve the data in Oracle than in Post-
greSQL. This therefore implies that for optimum performance, the manner and technique used
to access data when databases are coupled with advanced analytical tools is so crucial that if not
handled well, there could be a weaken performance.

For the purpose of benefit of hindsight, it is worth stating that one of our challenge was the
initial thought that the observed depreciated performance of PostgreSQL was probably because
of the obnoxiously wide (1000 columns) nature of the table hosting the input data to be passed to
the analytic functions. This is because while such wide tables may be pinned in RAM Cache for
faster data retrieval by some database systems, others may not, making them slow on data access.
RAM Cache (also known as Cache Store, Memory Cache or L2 Cache) is basically a high-speed
memory or storage mechanism made of static RAM (SRAM) and offered in CPUs in order to
speed up access to data and instructions stored in RAM.

However, additional investigation revealed that the time taken to directly fetch rows from

66



the wide table (SELECT * FROM stockHist) in PostgreSQL using psql is more than dou-
ble (2.66 times) the time taken to do same in Oracle using sqlplus. This implies that the poor
performance of PostgreSQL-coupled-R during the analytics using the database resident data is
not exclusively the consequence of the PostgreSQL-coupled-R’s implementation but also the
database itself (data retrieval). This implication was further corroborated as we also found out
that keeping less number of columns (10) but more rows (essentially the same number of cells)
produces similar snag performance, dispelling the initial idea that the problem was being caused
by the wide nature of the table.

6.2 Matrix Function (MF) Results

The difference in performance margins between Oracle on one hand and SQL Server and DB2
on the other hand is not as big as in the case of matrix calculations benchmark category of tests.
This could be attributed to the fact that the tests here involve invocation of package functions or
pre-programmed and custom functions which are not likely to have matching/equivalent native
functions in Oracle. Thus, Oracle, SQL and DB2 will be using similar techniques of executing
the functions in out-of-database R engine but with Oracle having an advantage of its rqTableEval

command, used in the Oracle benchmark. This is because the rqTableEval command enables
invocation of R script/function with entire table provided as input all at once, and also ensures
efficient data transfer between the database and the spawned R engines [34]. Also, these per-
formance improvement gaps compared to stand-alone R are a bit less. This is due to overheads
generally associated with loading appropriate analytic function libraries before function exe-
cution and/or use of out-of-database R environment. So, part of the total performance gains
obtained by the DBMSs compared to R are eroded, hence the less performance gaps. Yet, the
poorer performance of PostgreSQL can be attributed to this overhead of out-of-database exe-
cution of custom-made R tasks by the DBMSs, coupled with the PostgreSQL’s revealed issue
(through the experiment of timing just the retrieval of database resident data as matrix listed in
Appendix A.6) of inefficient retrieval and passing of data, as previously discussed during the
case of matrix calculation results in the latter part of section 6.1.

6.3 Program Control (PC) Results

The program control category of benchmark does not involve any significant amount of data and
so it was not unexpected when we had stand-alone R performed better or equally well. The im-
plication of this observation is that for less data intensive analytics, stand-alone R still remains
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a viable and competitive option, barring other concerns such as data security. Furthermore, this
benchmark category somewhat confirms our previous analysis that the unexpected poor perfor-
mance from PostgreSQL was partly due to the inefficient retrieval and passing of data to the R
analytic functions. This is because PostgreSQL also performed competitively well in this bench-
mark category as compared to its performance in the other two benchmark categories which
involve analytic operations on data stored in tables within the database.

Oracle’s unmatched performance in the other two benchmark groups is of course due to the
architectural arrangement which makes use of in-database statistics engine and multiple spawn-
ing of R sessions. But in this benchmark (PC) category, the tests were mainly about program
control (loops and recursions, no significant data involved) for which there is no actual need for
in-database analytical engine and parallel execution. Therefore PostgreSQL’s R implementation
and even stand-alone R, both of which do not have such performance enhancing Oracle’s R im-
plementation features, were able to perform equally well because those features could not be
exploited in this group of tests.

In order to confirm that the performances by the various systems in this benchmark cate-
gory are not significantly different, a paired t-test was performed using the two extreme result
sets (Postgres’ and Oracle’s) for the benchmark category. The mean performance difference
(M = 0.06, SD = 0.074, N = 5) was not significantly greater than zero, t(4) = 1.69, two-tail
p = 0.166, providing evidence that there is no notable or considerable difference in the perfor-
mances of the two DBMSs. A 95% C.I. about mean performance difference is (−0.036, 0.148).
Hence, given the little variability in the performance results, the performance difference could
have been just as low as an average of 0.036 seconds to a high of 0.148 seconds (see the 95%

confidence interval) which are not substantially apart. So, in essence, the different architectural
arrangements of R implementation by the database systems virtually have no impact on perfor-
mance as far as programmation (program control) of analytical processing is concerned.

6.4 Overall Results

On the whole, Oracle’s performance lead all the others. This is then followed by performance
from SQL Server, DB2, Stand-alone R and PostgreSQL in the respective orders listed. Owing to
the closeness of the performance results of DB2 and SQL Server, we again conducted a paired

t-test to establish if there is significant difference in their overall performances. The mean per-
formance difference (M = 0.48, SD = 1.143, N = 18) was not significantly greater than zero,
t(17) = 1.77, two-tail p = 0.094, providing indication that there is no significant difference
in the performance of the two DBMSs. The disappointing performance from PostgreSQL was

68



mainly due to data accessibility issues. This means that the techniques for making data avail-
able to analytic functions/routines play critical role as far as in-database analytics performance
is concerned.

Database resident data retrieval/transfer techniques can make or break performance and so
special effort must be directed towards best possible methods. For instance, retrieving and pass-
ing of entire table of data at one go as in the case of Oracle produces better results. Ideally,
providing support for data-parallel processing (i.e. multiple partitioning of data so that the sub-
parts are separately processed in parallel) will produce better results in data-intensive analytic
tasks where parallelism may be exploited. Oracle does have this feature known by name as the
functions rqTableApply(), rqGroupApply() and rqRowApply() as introduced in sub-section 2.2.1
under section 2.2 of chapter 2. Implementation of similar features by other DBMSs for efficient
retrieval and transfer of data to analytic functions/routines will boost performance.

6.5 Implications of the findings to the research questions

Having examined and discussed the experimental results, recommending coupling databases and
advanced analytical tools cannot be overemphasised. Such an arrangement would help to achieve
better analytical performance, data security, system reliability and enhanced system management
in general. But an important point of note which the empirical findings revealed is that retrieval
and passing of data to analytical routines is very crucial and must be given proper attention if
considerable performance gains are to be achieved.

The study also established a relation between the architectural arrangement of database sys-
tems integrated with advanced analytical tools (R), and the various analytic performance gains
achievable. Oracle integration with R serves as a good example. It revealed that the architec-
tural arrangement that produces the best performance results is a design that has native database
equivalent of analytic functions executed within database. This arrangement only calls external
full-blown advanced analytic engine into action when no native function match of the analytic
function or command is found during execution. This implies that the more native function
equivalent or match of analytic functions there are in-database, the greater the performance im-
provements or gains.

Returning to our research questions, we provide the following answers as implied from the
study:

(i) What is the current level of development (completeness) of integration of R with DMBS?

From our review of advanced analytical tools (R) and the various DBMS we note that the
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level of development (completeness) of integration of R with DMBS is growing. Most
capabilities of stand-alone R (base R) are obtainable from the DBMSs which make provi-
sion for integrating and executing R. There is however room for improvement and this is
evidenced in the in-database analytics strategies being pursued by the various well-known
DBMSs vendors such as Teradata, SAP, EMC (Greenplum), Oracle and IBM by opening up
ways of database systems integration with advanced analytical tools such as R and SPSS.

(ii) How is the performance of coupling databases with advanced analytical tool (R) compared

to stand-alone analytical tool (R)? Coupling databases with advanced analytical tools pro-
duces better performance compared to stand-alone R provided the data being analyzed is
efficiently retrieved for analytic functions/routines as pointed out by our findings. Addition-
ally, efficiently passing data is equally important as seen in the case of Oracle’s rqTableEval

which passes entire table as input at one go, improving performance. Absence of these will
rather lead to a worsen performance as seen in the case of PostgreSQL. However, for less
data-intensive analytic tasks, the performance of stand-alone analytical tools remain equally
competitive.

(iii) How is the scalability of coupling databases with advanced analytical tool (R) compared

to stand-alone analytical tool (R)? The scalability of coupled database and advanced ana-
lytical tool (R) is a better compared to stand-alone analytical tool (R) [refer to scalability

tests result table and charts in Appendix B.7 on page 120]. It is important to mention that
for very large datasets, stand-alone R simply does not work and that is where the scalability
advantage of the coupled system (R+DBMS) becomes hugely manifested. This is because
DBMSs by design are scalable with respect to changing conditions such as growth in data
volumes, increased workloads and users, and evolving business requirements. For coupled
systems that are handled within this same scalable infrastructure, the analytics capacity
likewise scale. There is also additional benefit of reduced data transfer and centralized
deployment.

(iv) What are the inherent implications of architectures of R integration that impact perfor-

mance? The innate parallelism nature of databases inure to the benefit of running R analyt-
ics in database resulting in higher performance. Likewise, the scalability of database sys-
tems facilitates and enhances support for growth in data volumes, user numbers and work-
loads when integrated with R for analytics. Thus, analytics implemented with databases
coupled with R are highly scalable. However, DBMS architectures extended with R ana-
lytic functionalities, in the form of user-defined functions, are limited by sanctioned exten-
sions of the vendor. For universal, robust analytics with database systems, a full framework
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capable of executing advanced or statistical third-party code is required. R integration ar-
chitecture with an in-database analytic engine produces higher performance. In case of
light-weight (not having all functionalities) in-database analytic engines, there is a need
to call external full-fledged analytic engine into action when the computations cannot be
ran in database. So, database resident data would be transferred to R engine located out-
side the database and this causes reduction in the margin of performance gains attainable.
However, when the architecture allows for activation of multiple instances of the external
analytic engine, an equally good performance results are obtainable. To recap, the location
of the analytic engine with respect to the database, the existence or development of native
SQL equivalent of analytic functions, the extent of exploitation of database parallelism and
the scalability of databases all in one way or the other impact performance of databases
coupled with advanced analytical tools.

(v) Are there any lessons to be learnt on the way forward? The key lesson to be learnt which
came about as a result of unexpected snag performance from PostgreSQL DBMS is that
the technique employed for retrieving and passing data to analytic functions makes huge
impact on the analytic performance regardless of how fast the substantive analytic task is
performed. Therefore, caution must be exercised, taking into consideration this factor when
evaluating potential solutions for adoption. More so, the concept of coupling databases and
advanced analytical tools applies best to analytics which involves considerable amount of
data. This is evidenced in the results of our first two benchmark categories (MCs and MFs)
which involve significant datasets and produces higher performance results for databases
coupled with R. Besides, we think that coupling of databases and advanced analytical tool
will very well apply to real-time and recurrent analytics as well as analytics which is cross-
functional. This is because of its (coupled systems) preferred centralized deployment, and
the elimination of the time lag or delay associated with preparing and moving data to stand-
alone analytical or statistical tools.
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Chapter 7

CONCLUSIONS AND FUTURE
STUDIES

In this chapter, the conclusions of our study are presented and suggestions for future studies are
advanced.

7.1 Conclusions

Even though our work focused on relational DBMS and R, it is obvious that our findings are to
a large extent potentially applicable to other types of DBMS and/or advanced analytical tools or
statistical packages. From the outcome of the study the following conclusions have been reached:

(i) We cannot overemphasis the several benefits that if one requires analysis of data, it must
be done from within the database. Also, there is more to data (e.g. linear algebra concepts
required for advanced data analytics) than just relational model. Embedding statistics/ad-
vanced analytics into relational databases can be likened to a two-edged sword in that if
done well the results are tremendously good, else very bad.

(ii) Statistical algorithms are inclined to linear algebra, rather than relational algebra which
forms the foundation for SQL and RDBMS. It is therefore important not to throw caution
to the wind when coupling relational databases and advanced analytical tools in order to
realize synergy of the two. Also, a point of note is that research in the field of statistics con-
tinues to find novel algorithms and implementations while research into relational database
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is almost grinding to a halt. Therefore, merging the two worlds can be very beneficial
especially to the relational database world.

(iii) Looking into the future, in-database analytics is going to be a critical requirement because
analytics will be integrated with many applications to deliver insight in one way or the
other. In other words, the need for separate analytics application will be eliminated or
substituted for applications with embedded advanced analytics functionalities. For exam-
ple, there would be advanced analytical/statistical algorithms offered as a service where
complex optimized and up-to-date statistical routines will be provided and consumed on-
demand basis.

(iv) Of course, one challenge will be tackling the integration with applications written in numer-
ous different programming languages. Service Oriented Architecture/SOBI will become
even more useful in this situation. Also, APIs will provide answers to the difficulties of
integration by facilitating provision of analytics for consumption. This will basically entail
provision of a programmable interface that defines analytical function/procedure indepen-
dent of any programming language. Our implementation of R integration with SQL Server
database by exploiting SQL Server CLR feature to deploy an assembly with embedded R
routines in-database is one such approach. Such integrations using APIs should not neg-
atively impact performance because the APIs will just provide the analytic algorithm that
will be sent to the database (function shipping) for the analytic processing. Thus, a case of
sending algorithm to data (function-shipping) instead of data to algorithm (data-shipping)
and so we expect the impact on performance to be positive.

(v) The challenge of having to implement from scratch each new advanced/statistical technique
in the DBMSs, which inevitably leads to a sophisticated and protracted development pro-
cess is eliminated by coupling databases with advanced analytical tools (R). This brings
about several benefits particularly performance upgrades. It is in line with this that there
is intense pursuit among DBMSs vendors to offer even more sophisticated analytics inside
database.

(vi) The manner in which data is effectively and efficiently pulled or pushed to analytic func-
tions or routines is very critical and hugely impact overall in-database analytics perfor-
mance. A case of note is PostgreSQL where there seems not to be a very efficient way of
doing it, leading to huge cost and hence poor in-database analytics performance in contra-
diction to expectations.
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(vii) Finally, in recommending coupling databases and advanced analytical tools such as R, we
note that the architecture of choice must help to facilitate efficient retrieval and passing
of data from the database objects (tables, procedures, etc) to the analytic functions, lessen
or eliminate data movement, reduce run-time overheads, maintain data security, and also
reduce development overheads for introducing new and maintaining existing advanced an-
alytics code in the DBMSs.

7.2 Future Studies

This study has brought up some matters that are worth further investigation. Notable among the
subject matters resulting from this study which require further examination in order to advance
the understanding of the performance of coupling advanced analytical tools (R) with databases
include the following topics;

(i) Benchmarking of in-memory databases such SAP HANA, column-oriented databases like
Vertica or databases systems which require substantial main memory (RAM) such as Cloud-
era Impala. Also, benchmarking performances of document-oriented storage database sys-
tems such as MongoDB and Cassandra is important.

(ii) Comparison of the order of change in performance (improvement or deterioration) by inte-
grating R with relational databases and NoSQL databases.

(iii) The maximum extent of improvement that parallelism and scalability can bring about in
the coupled systems (R+DBMSs).

(iv) Running the same benchmarks on different operating systems, and also with varying amount
or size of datasets to measure performance differences brought about by these factors.

(v) Effective and efficient retrieval and passing of database resident data to analytic/statistical
functions for optimum overall analytics performance. A case of PostgreSQL’s abysmal
performance could be taken on as a starting point.

(vi) Benchmarking on datasets with varied attribute properties and comparing the performance
differences or similarities with respect to the different attributes’ characteristics of the
datasets.
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Appendix A

Benchmark Codes

A.1 Codes for benchmark on stand-alone R

Listing A.1: Codes for benchmark on stand-alone R (Adapted from [24][2])

#==Adapted from R Benchmark 2.5 and RevoR Enterprise Benchmark=====

runs <- 7; # Number of times the tests are ran

times <- rep(0.00, 7); # Initialise result vector for the runs

#Setup connecton to data source============================

channel <- "E:/stockDnldDir/stockHist.csv";

#==========================================================

#MC. Matrix Calculation====================================

#==========================================================

remove("a", "b")

#

#MC01. Transposing*****************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- as.matrix(read.csv(channel, header = TRUE, sep = ","));

b <- t(a);

dim(b) <- c(2000, 8000);

a <- t(b);

})[3]

}

cat(c("\n\n\n","MC01. Transposing- Results(sec) of 7 Runs:", "\n"));

print(round(times, 2)); #print(times) OR paste(times);
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#**********************************************************

remove("a", "b")

#

#MC02. Exponentiation**************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- (abs(as.matrix(read.csv(channel, header = TRUE, sep = ","))))ˆ1000;

})[3]

}

cat(c("\n\n\n","MC02. Exponentiation- Results(sec) of 7 Runs:", "\n"));

print(round(times, 2)); #print(times) OR paste(times);

#**********************************************************

remove("a", "b")

#

#MC03. Sorting**********************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- sort(as.matrix(read.csv(channel, header = TRUE, sep = ",")), method="quick")

})[3]

}

cat(c("\n\n\n","MC03. Sorting- Results(sec) of 7 Runs:", "\n"));

print(round(times, 2)); #print(times) OR paste(times);

#**********************************************************

remove("a", "b")

#

#MC04. Cross-Product***************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- crossprod(as.matrix(read.csv(channel, header = TRUE, sep = ",")))

})[3]

}

cat(c("\n\n\n","MC04. Cross-Product- Results(sec) of 7 Runs:", "\n"));

print(round(times, 2)); #print(times) OR paste(times);

#**********************************************************

remove("a", "b")

#

#MC05. Solving Linear Regression****************************
a <- 0; b <- 0;

for (i in 1:runs) {

b <- as.double(1:4000)

invisible(gc())

times[i] <- system.time({
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a <- solve(crossprod(array(as.matrix(read.csv(channel, header = TRUE, sep = ",")), dim =

c(4000, 4000))),

crossprod(array(as.matrix(read.csv(channel, header = TRUE, sep = ",")), dim = c(4000,

4000)),b))

})[3]

}

cat(c("\n\n\n","MC05. Solving Linear Regression- Results(sec) of 7 Runs:", "\n"));

print(round(times, 2)); #print(times) OR paste(times);

#**********************************************************

#MF. Matrix Functions======================================

#==========================================================

remove("a", "b")

#

# MF01. Fast Fourier Transform*****************************
a <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- fft(as.matrix(read.csv(channel, header = TRUE, sep = ",")))

})[3]

}

cat(c("\n\n\n","MF01. Fast Fourier Transform- Results(sec) of 7 Runs:", "\n"));

print(round(times, 2)); #print(times) OR paste(times);

#**********************************************************

remove("a")

#

#MF02. EigenValues*****************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- eigen(array(as.matrix(read.csv(channel, header = TRUE, sep = ",")), dim = c(4000, 4

000)), symmetric=FALSE, only.values=TRUE)$Value

})[3]

}

cat(c("\n\n\n","MF02. EigenValues- Results(sec) of 7 Runs:", "\n"));

print(round(times, 2)); #print(times) OR paste(times);

#**********************************************************

remove("a", "b")

#

#MF03. Determinant*****************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- det(array(as.matrix(read.csv(channel, header = TRUE, sep = ",")), dim = c(4000, 400

0)))

})[3]
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}

cat(c("\n\n\n","MF03. Determinant- Results(sec) of 7 Runs:", "\n"));

print(round(times, 2)); #print(times) OR paste(times);

#**********************************************************

remove("a", "b")

#

#MF04. Cholesky Decomposition*******************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- chol(crossprod(array(as.matrix(read.csv(channel, header = TRUE, sep = ",")), dim =

c(4000, 4000))))

})[3]

}

cat(c("\n\n\n","MF04. Cholesky Decomposition- Results(sec) of 7 Runs:", "\n"));

print(round(times,2)); #print(times) OR paste(times);

#********************************************************

remove("a", "b")

#

#MF05. Inverse*****************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- solve(array(as.matrix(read.csv(channel, header = TRUE, sep = ",")), dim = c(4000, 4

000)))

})[3]

}

cat(c("\n\n\n","MF05. Inverse- Results(sec) of 7 Runs:", "\n"));

print(round(times, 2)); #print(times) OR paste(times);

#*******************************************************

remove("a", "b")

#

#MF06. Single Value Decomposition***********************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- svd(array(as.matrix(read.csv(channel, header = TRUE, sep = ",")), dim = c(4000, 400

0)), nu=0, nv=0)

})[3]

}

cat(c("\n\n\n","MF06. Single Value Decomposition- Results(sec) of 7 Runs:", "\n"));

print(round(times, 2)); #print(times) OR paste(times);

#*******************************************************
remove("a", "b")

#

#MF07. Principal Component Analysis**********************
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a <- 0; b <- 0;

for (i in 1:runs) {

a <- rnorm(2500*2500); dim(a) <- c(2500, 2500)

invisible(gc())

times[i] <- system.time({

a <- prcomp(array(as.matrix(read.csv(channel, header = TRUE, sep = ",")), dim = c(4000,

4000)))

})[3]

}

cat(c("\n\n\n","MF07. Principal Component Analysis- Results(sec) of 7 Runs:", "\n"));

print(round(times, 2)); #print(times) OR paste(times);

#********************************************************

remove("a", "b")

#

#MF08. Linear Discriminant Analysis**********************
a <- 0; b <- 0;

for (i in 1:runs) {

m <- 16000

n <- 1000

g <- 5

k <- round (m/2)

invisible(gc())

times[i] <- system.time({

require (’MASS’)

a <- lda(fac ˜.,

data=data.frame(read.csv(channel, header = TRUE, sep = ","), fac=sample (LETTERS[1:g],

m,replace=TRUE)),

prior=rep(1,g)/g,

subset=sample(1:m, k))

})[3]

}

cat(c("\n\n\n","MF08. Linear Discriminant Analysis- Results(sec) of 7 Runs:", "\n"));

print(round(times, 2)); #print(times) OR paste(times);

#**********************************************************

#PC. Program Control=======================================

#==========================================================

remove("a", "b")

#

#PC01. Fibonacci Numbers Calculation (Vector Calculation)**
a <- 0; b <- 0; phi <- 1.6180339887498949

for (i in 1:runs) {

a <- floor(runif(3500000)*1000)

invisible(gc())

times[i] <- system.time({

b <- (phiˆa - (-phi)ˆ(-a))/sqrt(5)

})[3]

}
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cat(c("\n\n\n","Fibonacci Numbers Calculation (Vector Calculation)- Results(sec) of 7 Runs

:", "\n"));

print(round(times, 2)); #print(times) OR paste(times);

#**********************************************************

remove("a", "b", "phi")

#

#PC02. Hilbert Matrix (Matrix Calculation)*****************
a <- 3000; b <- 0

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

b <- rep(1:a, a); dim(b) <- c(a, a);

b <- 1 / (t(b) + 0:(a-1))

})[3]

}

cat(c("\n\n\n","PC02. Hilbert Matrix (Matrix Calculation)- Results(sec) of 7 Runs:", "\n")

);

print(round(times, 2)); #print(times) OR paste(times);

#**********************************************************

remove("a", "b")

#

#PC03. Grand Common Divisors of Pairs***********************
c <- 0

gcd2 <- function(x, y) {if (sum(y > 1.0E-4) == 0) x else {y[y == 0] <- x[y == 0]; Recall(y

, x %% y)}}

for (i in 1:runs) {

a <- ceiling(runif(400000)*1000)

b <- ceiling(runif(400000)*1000)

invisible(gc())

times[i] <- system.time({

c <- gcd2(a, b)

})[3]

}

cat(c("\n\n\n","PC03. Grand Common Divisors of Pairs- Results(sec) of 7 Runs:", "\n"));

print(round(times, 2)); #print(times) OR paste(times);

#**********************************************************

remove("a", "b", "c", "gcd2")

#

#PC04. Toeplitz Matrix (Loops)*****************************
b <- 0

for (i in 1:runs) {

b <- rep(0, 500*500); dim(b) <- c(500, 500)

invisible(gc())

times[i] <- system.time({

for (j in 1:500) {

for (k in 1:500) {

b[k,j] <- abs(j - k) + 1

}

}
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})[3]

}

cat(c("\n\n\n","PC04. Toeplitz Matrix (Loops)- Results(sec) of 7 Runs:", "\n"));

print(round(times, 2)); #print(times) OR paste(times);

#**********************************************************

remove("b", "j", "k")

#

#PC05. Escoufier’s Method**********************************
p <- 0; vt <- 0; vr <- 0; vrt <- 0; rvt <- 0; RV <- 0; j <- 0; k <- 0;

x2 <- 0; R <- 0; Rxx <- 0; Ryy <- 0; Rxy <- 0; Ryx <- 0; Rvmax <- 0

# Calculate the trace of a matrix (sum of its diagonal elements)

Trace <- function(y) {sum(c(y)[1 + 0:(min(dim(y)) - 1) * (dim(y)[1] + 1)], na.rm=FALSE)}

for (i in 1:runs) {

x <- abs(rnorm(45*45)); dim(x) <- c(45, 45)

invisible(gc())

times[i] <- system.time({

# Calculation of Escoufier’s equivalent vectors

p <- ncol(x)

vt <- 1:p

vr <- NULL

RV <- 1:p

vrt <- NULL

for (j in 1:p) {

Rvmax <- 0

for (k in 1:(p-j+1)) {

x2 <- cbind(x, x[,vr], x[,vt[k]])

R <- cor(x2)

Ryy <- R[1:p, 1:p]

Rxx <- R[(p+1):(p+j), (p+1):(p+j)]

Rxy <- R[(p+1):(p+j), 1:p]

Ryx <- t(Rxy)

rvt <- Trace(Ryx %*% Rxy) /

sqrt(Trace(Ryy %*% Ryy) *
Trace(Rxx %*% Rxx))

if (rvt > Rvmax) {

Rvmax <- rvt

vrt <- vt[k]

}

}

vr[j] <- vrt

RV[j] <- Rvmax

vt <- vt[vt!=vr[j]]

}

})[3]

}

cat(c("\n\n\n","PC05. Escoufier’s Method- Results(sec) of 7 Runs:", "\n"));

print(round(times, 2)); #print(times) OR paste(times);

remove(list=ls())

cat("\n\n\n\n\n#****************--- End of Test ---\n\n")**************
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A.2 Codes for benchmark on Oracle DBMS

Listing A.2: Codes for benchmark on Oracle DBMS (Adapted from [24][2])

--==Adapted from R Benchmark 2.5 and RevoR Enterprise Benchmark=====

select * from table(rqTableEval(

cursor(select * from STOCKHIST),

NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’mc01_transposeF’));

select * from table(rqTableEval(

cursor(select * from STOCKHIST),

NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’mc02_exponentiateF’));

select * from table(rqTableEval(

cursor(select * from STOCKHIST),

NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’mc03_sortF’));

select * from table(rqTableEval(

cursor(select * from STOCKHIST),

NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’mc04_crossproductF’));

select * from table(rqTableEval(

cursor(select * from STOCKHIST),

NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’mc05_solveF’));

--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

--===============================================================================

select * from table(rqTableEval(

cursor(select * from STOCKHIST),

NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’mf01_fastfouriertransformF’));

select * from table(rqTableEval(

cursor(select * from STOCKHIST),

NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’mf02_eigenvalueF’));
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select * from table(rqTableEval(

cursor(select * from STOCKHIST),

NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’mf03_determinantF’));

select * from table(rqTableEval(

cursor(select * from STOCKHIST),

NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’mf04_choleskydecompositionF’));

select * from table(rqTableEval(

cursor(select * from STOCKHIST),

NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’mf05_inverseF’));

select * from table(rqTableEval(

cursor(select * from STOCKHIST),

NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’mf06_singlevaluedecompositionF’));

select * from table(rqTableEval(

cursor(select * from STOCKHIST),

NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’mf07_principalcomponentanalysisF’));

select * from table(rqTableEval(

cursor(select * from STOCKHIST),

NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’mf08_lineardiscriminantanalysisF’));

--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

--===============================================================================

select *
from table(rqEval(NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’pc01_fibonaccinumbersF’));

select *
from table(rqEval(NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’pc02_hilbertmatrixF’));

select *
from table(rqEval(NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,
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’pc03_grandcommondivisorsF’));

select *
from table(rqEval(NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’pc04_toeplitzmatrixF’));

select *
from table(rqEval(NULL,

’select 1 Run1, 2 Run2, 3 Run3, 4 Run4, 5 Run5, 6 Run6, 7 Run7 from dual’,

’pc05_escoufiersmethodF’));

--@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

--===============================================================================

begin

sys.rqScriptCreate(’mc01_transposeF’,

’function(dat){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

remove("a", "b")

#

#MC01. Transposing***********************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- as.matrix(dat);

b <- t(a);

dim(b) <- c(2000, 8000);

a <- t(b);

})[3]

}

#cat(c("\n\n\n","MC01. Transposing- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

#****************************************************************************
}’);

end;

begin

sys.rqScriptCreate(’mc02_exponentiateF’,

’function(dat){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

remove("a", "b")

#

#MC02. Exponentiation***********************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

86



invisible(gc())

times[i] <- system.time({

a <- (abs(as.matrix(dat)))ˆ1000;

})[3]

}

#cat(c("\n\n\n","MC02. Exponentiation- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

#****************************************************************************
}’);

end;

begin

sys.rqScriptCreate(’mc03_sortF’,

’function(dat){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

remove("a", "b")

#

#MC03. Sorting******************************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- sort(as.matrix(dat), method="quick")

})[3]

}

#cat(c("\n\n\n","MC03. Sorting- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

#****************************************************************************

}’);

end;

begin

sys.rqScriptCreate(’mc04_crossproductF’,

’function(dat){

runs <- 7; # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

remove("a", "b");

#

#MC04. Cross-Product*************************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc());

times[i] <- system.time({

a <- crossprod(as.matrix(dat));

#a <- crossprod(array(as.matrix(dat), dim = c(4000, 4000)),b);

})[3]
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}

#cat(c("\n\n\n","MC04. Cross-Product- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

#****************************************************************************
}’);

end;

begin

sys.rqScriptCreate(’mc05_solveF’,

’function(dat){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

remove("a", "b")

#

#MC05. Solving Linear Regression*************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

b <- as.double(1:4000)

invisible(gc())

times[i] <- system.time({

a <- solve(abs(crossprod(array(as.matrix(dat), dim = c(4000, 4000)))),

abs(crossprod(array(as.matrix(dat), dim = c(4000, 4000)),b)));

})[3]

}

#cat(c("\n\n\n","MC05. Solving Linear Regression- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

#****************************************************************************
}’);

end;

begin

sys.rqScriptCreate(’mf01_fastfouriertransformF’,

’function(dat){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

remove("a", "b", "c", "qra")

#

# MF01. Fast Fourier Transform**************************************************
a <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- fft(as.matrix(dat))

})[3]

}

#cat(c("\n\n\n","MF01. Fast Fourier Transform- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

#****************************************************************************
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}’);

end;

begin

sys.rqScriptCreate(’mf02_eigenvalueF’,

’function(dat){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

remove("a", "b")

#

#MF02. EigenValues*************************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- eigen(array(as.matrix(dat), dim = c(4000, 4000)), symmetric=FALSE, only.values=

TRUE)$Value

})[3]

}

#cat(c("\n\n\n","MF02. EigenValues- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

#****************************************************************************

}’);

end;

begin

sys.rqScriptCreate(’mf03_determinantF’,

’function(dat){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

remove("a", "b")

#

#MF03. Determinant*************************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- det(array(as.matrix(dat), dim = c(4000, 4000)))

})[3]

}

#cat(c("\n\n\n","MF03. Determinant- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

}’);

end;

begin

sys.rqScriptCreate(’mf04_choleskydecompositionF’,
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’function(dat){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

remove("a", "b")

#

#MF04. Cholesky Decomposition*************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- chol(crossprod(array(as.matrix(dat), dim = c(4000, 4000))))

})[3]

}

#cat(c("\n\n\n","MF04. Cholesky Decomposition- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

}’);

end;

begin

sys.rqScriptCreate(’mf05_inverseF’,

’function(dat){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

remove("a", "b")

#

#MF05. Inverse*************************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- solve(array(as.matrix(dat), dim = c(4000, 4000)))

})[3]

}

#cat(c("\n\n\n","MF05. Inverse- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

#****************************************************************************
}’);

end;

begin

sys.rqScriptCreate(’mf06_singlevaluedecompositionF’,

’function(dat){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

remove("a", "b")

#
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#MF06. Single Value Decomposition**********************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- svd(array(as.matrix(dat), dim = c(4000, 4000)), nu=0, nv=0)

})[3]

}

#cat(c("\n\n\n","MF06. Single Value Decomposition- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

}’);

end;

begin

sys.rqScriptCreate(’mf07_principalcomponentanalysisF’,

’function(dat){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

remove("a", "b")

#

#MF07. Principal Component Analysis********************************************
a <- 0; b <- 0;

for (i in 1:runs) {

a <- rnorm(2500*2500); dim(a) <- c(2500, 2500)

invisible(gc())

times[i] <- system.time({

a <- prcomp(array(as.matrix(dat), dim = c(4000, 4000)))

})[3]

}

#cat(c("\n\n\n","MF07. Principal Component Analysis- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

#****************************************************************************
}’);

end;

begin

sys.rqScriptCreate(’mf08_lineardiscriminantanalysisF’,

’function(dat){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

remove("a", "b")

#

#MF08. Linear Discriminant Analysis*******************************************
a <- 0; b <- 0;

for (i in 1:runs) {

m <- 16000

n <- 1000

g <- 5
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k <- round (m/2)

invisible(gc())

times[i] <- system.time({

require ("MASS")

a <- lda(fac ˜.,

data=data.frame(dat, fac=sample (LETTERS[1:g],m,replace=TRUE)),

prior=rep(1,g)/g,

subset=sample(1:m, k))

})[3]

}

#cat(c("\n\n\n","MF08. Linear Discriminant Analysis- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

}’);

end;

begin

sys.rqScriptCreate(’pc01_fibonaccinumbersF’,

’function(){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

#remove(list=ls())

remove("a", "b")

#

#PC01. Fibonacci Numbers Calculation (Vector Calculation)*************************
a <- 0; b <- 0; phi <- 1.6180339887498949

for (i in 1:runs) {

a <- floor(runif(3500000)*1000)

invisible(gc())

times[i] <- system.time({

b <- (phiˆa - (-phi)ˆ(-a))/sqrt(5)

})[3]

}

cat(c("\n\n\n","Fibonacci Numbers Calculation (Vector Calculation)- Results(sec) of 7

Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

}’);

end;

begin

sys.rqScriptCreate(’pc02_hilbertmatrixF’,

’function(){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

#remove(list=ls())

remove("a", "b", "phi")

#

#PC02. Hilbert Matrix (Matrix Calculation)***************************************
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a <- 3000; b <- 0

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

b <- rep(1:a, a); dim(b) <- c(a, a);

b <- 1 / (t(b) + 0:(a-1))

})[3]

}

cat(c("\n\n\n","PC02. Hilbert Matrix (Matrix Calculation)- Results(sec) of 7 Runs:", "\n

"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));***********

********************************************************
}’);

end;

begin

sys.rqScriptCreate(’pc03_grandcommondivisorsF’,

’function(){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

#remove(list=ls())

remove("a", "b")

#

#PC03. Grand Common Divisors of Pairs*******************************************
c <- 0

gcd2 <- function(x, y) {if (sum(y > 1.0E-4) == 0) x else {y[y == 0] <- x[y == 0]; Recall

(y, x %% y)}}

for (i in 1:runs) {

a <- ceiling(runif(400000)*1000)

b <- ceiling(runif(400000)*1000)

invisible(gc())

times[i] <- system.time({

c <- gcd2(a, b) # gcd2 is a recursive function

})[3]

}

cat(c("\n\n\n","PC03. Grand Common Divisors of Pairs- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

}’);

end;

begin

sys.rqScriptCreate(’pc04_toeplitzmatrixF’,

’function(){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

#remove(list=ls())

remove("a", "b", "c", "gcd2")

#
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#PC04. Toeplitz Matrix (Loops)*******************************************
b <- 0

for (i in 1:runs) {

b <- rep(0, 500*500); dim(b) <- c(500, 500)

invisible(gc())

times[i] <- system.time({

for (j in 1:500) {

for (k in 1:500) {

b[k,j] <- abs(j - k) + 1

}

}

})[3]

}

#cat(c("\n\n\n","PC04. Toeplitz Matrix (Loops)- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

}’);

end;

begin

sys.rqScriptCreate(’pc05_escoufiersmethodF’,

’function(){

runs <- 7 # Number of times the tests are ran

times <- rep(0.00, 7); # Initialize result vector for the runs

#remove(list=ls())

remove("b", "j", "k")

#

#PC05. Escoufiers Method*******************************************
p <- 0; vt <- 0; vr <- 0; vrt <- 0; rvt <- 0; RV <- 0; j <- 0; k <- 0;

x2 <- 0; R <- 0; Rxx <- 0; Ryy <- 0; Rxy <- 0; Ryx <- 0; Rvmax <- 0

# Calculate the trace of a matrix (sum of its diagonal elements)

Trace <- function(y) {sum(c(y)[1 + 0:(min(dim(y)) - 1) * (dim(y)[1] + 1)], na.rm=FALSE)}

for (i in 1:runs) {

x <- abs(rnorm(45*45)); dim(x) <- c(45, 45)

invisible(gc())

times[i] <- system.time({

# Calculation of Escoufiers equivalent vectors

p <- ncol(x)

vt <- 1:p

vr <- NULL

RV <- 1:p

vrt <- NULL

for (j in 1:p) {

Rvmax <- 0

for (k in 1:(p-j+1)) {

x2 <- cbind(x, x[,vr], x[,vt[k]])

R <- cor(x2)

Ryy <- R[1:p, 1:p]

Rxx <- R[(p+1):(p+j), (p+1):(p+j)]

Rxy <- R[(p+1):(p+j), 1:p]

Ryx <- t(Rxy)

rvt <- Trace(Ryx %*% Rxy) /
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sqrt(Trace(Ryy %*% Ryy) *
Trace(Rxx %*% Rxx))

if (rvt > Rvmax) {

Rvmax <- rvt

vrt <- vt[k]

}

}

vr[j] <- vrt

RV[j] <- Rvmax

vt <- vt[vt!=vr[j]]

}

})[3]

}

#cat(c("\n\n\n","PC05. Escoufiers Method- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

}’);

end;
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A.3 Codes for benchmark on Postgres DBMS

Listing A.3: Codes for benchmark on Postgres DBMS (Adapted from [24][2])

--==Adapted from R Benchmark 2.5 and RevoR Enterprise Benchmark=====

SELECT mc01_transposeF5(’SELECT * FROM stockHist’);

SELECT mc02_exponentiateF5(’SELECT * FROM stockHist’);

SELECT mc03_sortF5(’SELECT * FROM stockHist’);

SELECT mc04_crossproductF5(’SELECT * FROM stockHist’);

SELECT mc05_solveF5(’SELECT * FROM stockHist’);

SELECT mf01_fastfouriertransformF5(’SELECT * FROM stockHist’);

SELECT mf02_eigenvalueF5(’SELECT * FROM stockHist’);

SELECT mf03_determinantF5(’SELECT * FROM stockHist’);

SELECT mf04_choleskydecompositionF5(’SELECT * FROM stockHist’);

SELECT mf05_inverseF5(’SELECT * FROM stockHist’);

SELECT mf06_singlevaluedecompositionF5(’SELECT * FROM stockHist’);

SELECT mf07_principalcomponentanalysisF5(’SELECT * FROM stockHist’);

SELECT mf08_lineardiscriminantanalysisF5(’SELECT * FROM stockHist’);

SELECT pc01_fibonaccinumbersF5();

SELECT pc02_hilbertmatrixF5();

SELECT pc03_grandcommondivisorsF5();

SELECT pc04_toeplitzmatrixF5();

SELECT pc05_escoufiersmethodF5();

CREATE OR REPLACE FUNCTION mc01_transposeF5(text)

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("a", "b")

#

#MC01. Transposing***********************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- as.matrix(pg.spi.exec(arg1));

b <- t(a);

dim(b) <- c(2000, 8000);

a <- t(b);

})[3]

}

cat(c("\n\n\n","MC01. Transposing- Results(sec) of 7 Runs:", "\n"));

return(round(times, 2)); #print(round(times,2)) OR paste(times);

#****************************************************************************
’

LANGUAGE plr;
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CREATE OR REPLACE FUNCTION mc02_exponentiateF5(text)

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("a", "b")

#

#MC02. Exponentiation***********************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- (abs(as.matrix(pg.spi.exec(arg1))))ˆ1000;

})[3]

}

cat(c("\n\n\n","MC02. Exponentiation- Results(sec) of 7 Runs:", "\n"));

return(round(times, 2)); #print(round(times,2)) OR paste(times);

#*******************************************************************************
’

LANGUAGE plr;

CREATE OR REPLACE FUNCTION mc03_sortF5(text)

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("a", "b")

#

#MC03. Sorting******************************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- sort(as.matrix(pg.spi.exec(arg1)), method="quick")

})[3]

}

cat(c("\n\n\n","MC03. Sorting- Results(sec) of 7 Runs:", "\n"));

return(round(times, 2)); #print(round(times,2)) OR paste(times);

#*******************************************************************************
’

LANGUAGE plr;

CREATE OR REPLACE FUNCTION mc04_crossproductF5(text)

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("a", "b")
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#

#MC04. Cross-Product*************************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- crossprod(as.matrix(pg.spi.exec(arg1)))

})[3]

}

cat(c("\n\n\n","MC04. Cross-Product- Results(sec) of 7 Runs:", "\n"));

return(round(times, 2)); #print(round(times,2)) OR paste(times);

#*******************************************************************************
’

LANGUAGE plr;

CREATE OR REPLACE FUNCTION mc05_solveF5(text)

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("a", "b")

#

#MC05. Solving Linear Regression*************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

b <- as.double(1:4000)

invisible(gc())

times[i] <- system.time({

a <- solve(crossprod(array(as.matrix(pg.spi.exec(arg1)), dim = c(4000, 4000))),

crossprod(array(as.matrix(pg.spi.exec(arg1)), dim = c(4000, 4000)),b))

})[3]

}

cat(c("\n\n\n","MC05. Solving Linear Regression- Results(sec) of 7 Runs:", "\n"));

return(round(times, 2)); #print(round(times,2)) OR paste(times);

#*****************************************************************************
’

LANGUAGE plr;

CREATE OR REPLACE FUNCTION mf01_fastfouriertransformF5(text)

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("a", "b")

#

# MF01. Fast Fourier Transform**************************************************
a <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({
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a <- fft(as.matrix(pg.spi.exec(arg1)))

})[3]

}

cat(c("\n\n\n","MF01. Fast Fourier Transform- Results(sec) of 7 Runs:", "\n"));

return(round(times, 2)); #print(round(times,2)) OR paste(times);

#*****************************************************************************
’

LANGUAGE plr;

CREATE OR REPLACE FUNCTION mf02_eigenvalueF5(text)

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("a", "b")

#

#MF02. EigenValues*************************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- eigen(array(as.matrix(pg.spi.exec(arg1)), dim = c(4000, 4000)), symmetric=FALSE,

only.values=TRUE)$Value

})[3]

}

cat(c("\n\n\n","MF02. EigenValues- Results(sec) of 7 Runs:", "\n"));

return(round(times, 2)); #print(round(times,2)) OR paste(times);

#*****************************************************************************
’

LANGUAGE plr;

CREATE OR REPLACE FUNCTION mf03_determinantF5(text)

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("a", "b")

#

#MF03. Determinant*************************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- det(array(as.matrix(pg.spi.exec(arg1)), dim = c(4000, 4000)))

})[3]

}

cat(c("\n\n\n","MF03. Determinant- Results(sec) of 7 Runs:", "\n"));

return(round(times, 2)); #print(round(times,2)) OR paste(times);

#*****************************************************************************
’
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LANGUAGE plr;

CREATE OR REPLACE FUNCTION mf04_choleskydecompositionF5(text)

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("a", "b")

#

#MF04. Cholesky Decomposition*************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- chol(crossprod(array(as.matrix(pg.spi.exec(arg1)), dim = c(4000, 4000))))

})[3]

}

cat(c("\n\n\n","MF04. Cholesky Decomposition- Results(sec) of 7 Runs:", "\n"));

print(round(times,2)); #print(round(times,2)) OR paste(times);

#*****************************************************************************
’

LANGUAGE plr;

CREATE OR REPLACE FUNCTION mf05_inverseF5(text)

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("a", "b")

#

#MF05. Inverse*************************************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- solve(array(as.matrix(pg.spi.exec(arg1)), dim = c(4000, 4000)))

})[3]

}

cat(c("\n\n\n","MF05. Inverse- Results(sec) of 7 Runs:", "\n"));

return(round(times, 2)); #print(round(times,2)) OR paste(times);

#*****************************************************************************
’

LANGUAGE plr;

CREATE OR REPLACE FUNCTION mf06_singlevaluedecompositionF5(text)

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs
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remove("a", "b")

#

#MF06. Single Value Decomposition**********************************************
a <- 0; b <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- svd(array(as.matrix(pg.spi.exec(arg1)), dim = c(4000, 4000)), nu=0, nv=0)

})[3]

}

cat(c("\n\n\n","MF06. Single Value Decomposition- Results(sec) of 7 Runs:", "\n"));

return(round(times, 2)); #print(round(times,2)) OR paste(times);

#*****************************************************************************
’

LANGUAGE plr;

CREATE OR REPLACE FUNCTION mf07_principalcomponentanalysisF5(text)

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("a", "b")

#

#MF07. Principal Component Analysis********************************************
a <- 0; b <- 0;

for (i in 1:runs) {

a <- rnorm(2500*2500); dim(a) <- c(2500, 2500)

invisible(gc())

times[i] <- system.time({

a <- prcomp(array(as.matrix(pg.spi.exec(arg1)), dim = c(4000, 4000)))

})[3]

}

cat(c("\n\n\n","MF07. Principal Component Analysis- Results(sec) of 7 Runs:", "\n"));

return(round(times, 2)); #print(round(times,2)) OR paste(times);

#*****************************************************************************
’

LANGUAGE plr;

CREATE OR REPLACE FUNCTION mf08_lineardiscriminantanalysisF5(text)

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("a", "b")

#

#MF08. Linear Discriminant Analysis*******************************************
a <- 0; b <- 0;

for (i in 1:runs) {

m <- 16000; n <- 1000; g <- 5; k <- round (m/2);

invisible(gc())
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times[i] <- system.time({

require ("MASS");

a <- lda(fac ˜.,

data=data.frame(pg.spi.exec("--SELECT * FROM stockHist"),

fac=sample (LETTERS[1:g],m,replace=TRUE)),

prior=rep(1,g)/g, subset=sample(1:m, k))

})[3]

}

cat(c("\n\n\n","MF08. Linear Discriminant Analysis- Results(sec) of 7 Runs:", "\n"));

return(round(times, 2)); #print(round(times,2)) OR paste(times);

#*******************************************************************************
’

LANGUAGE plr;

CREATE OR REPLACE FUNCTION pc01_fibonaccinumbersF5()

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("a", "b")

#

#PC01. Fibonacci Numbers Calculation (Vector Calculation)*************************
a <- 0; b <- 0; phi <- 1.6180339887498949

for (i in 1:runs) {

a <- floor(runif(3500000)*1000)

invisible(gc())

times[i] <- system.time({

b <- (phiˆa - (-phi)ˆ(-a))/sqrt(5)

})[3]

}

cat(c("\n\n\n","Fibonacci Numbers Calculation (Vector Calculation)- Results(sec) of 7

Runs:", "\n"));

print(round(times,2)); #paste(times);

#*******************************************************************************
’

LANGUAGE plr;

CREATE OR REPLACE FUNCTION pc02_hilbertmatrixF5()

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("a", "b", "phi")

#

#PC02. Hilbert Matrix (Matrix Calculation)***************************************
a <- 3000; b <- 0

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

b <- rep(1:a, a); dim(b) <- c(a, a);
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b <- 1 / (t(b) + 0:(a-1))

})[3]

}

cat(c("\n\n\n","PC02. Hilbert Matrix (Matrix Calculation)- Results(sec) of 7 Runs:", "\n

"));

print(round(times,2)); #paste(times);

#*******************************************************************************
’

LANGUAGE plr;

CREATE OR REPLACE FUNCTION pc03_grandcommondivisorsF5()

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("a", "b")

#

#PC03. Grand Common Divisors of Pairs*******************************************
c <- 0

gcd2 <- function(x, y) {if (sum(y > 1.0E-4) == 0) x else {y[y == 0] <- x[y == 0]; Recall

(y, x %% y)}}

for (i in 1:runs) {

a <- ceiling(runif(400000)*1000)

b <- ceiling(runif(400000)*1000)

invisible(gc())

times[i] <- system.time({

c <- gcd2(a, b) # gcd2 is a recursive function

})[3]

}

cat(c("\n\n\n","PC03. Grand Common Divisors of Pairs- Results(sec) of 7 Runs:", "\n"));

print(round(times,2)); #paste(times);

#*******************************************************************************
’

LANGUAGE plr;

CREATE OR REPLACE FUNCTION pc04_toeplitzmatrixF5()

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("a", "b", "c", "gcd2")

#

#PC04. Toeplitz Matrix (Loops)*******************************************
b <- 0

for (i in 1:runs) {

b <- rep(0, 500*500); dim(b) <- c(500, 500)

invisible(gc())

times[i] <- system.time({

for (j in 1:500) {

for (k in 1:500) {
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b[k,j] <- abs(j - k) + 1

}

}

})[3]

}

cat(c("\n\n\n","PC04. Toeplitz Matrix (Loops)- Results(sec) of 7 Runs:", "\n"));

print(round(times,2)); #paste(times);

#*******************************************************************************
’

LANGUAGE plr;

CREATE OR REPLACE FUNCTION pc05_escoufiersmethodF5()

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

remove("b", "j", "k")

#

#PC05. Escoufiers Method*******************************************
p <- 0; vt <- 0; vr <- 0; vrt <- 0; rvt <- 0; RV <- 0; j <- 0; k <- 0;

x2 <- 0; R <- 0; Rxx <- 0; Ryy <- 0; Rxy <- 0; Ryx <- 0; Rvmax <- 0

# Calculate the trace of a matrix (sum of its diagonal elements)

Trace <- function(y) {sum(c(y)[1 + 0:(min(dim(y)) - 1) * (dim(y)[1] + 1)], na.rm=FALSE)}

for (i in 1:runs) {

x <- abs(rnorm(45*45)); dim(x) <- c(45, 45)

invisible(gc())

times[i] <- system.time({

# Calculation of Escoufier equivalent vectors

p <- ncol(x)

vt <- 1:p

vr <- NULL

RV <- 1:p

vrt <- NULL

for (j in 1:p) {

Rvmax <- 0

for (k in 1:(p-j+1)) {

x2 <- cbind(x, x[,vr], x[,vt[k]])

R <- cor(x2)

Ryy <- R[1:p, 1:p]

Rxx <- R[(p+1):(p+j), (p+1):(p+j)]

Rxy <- R[(p+1):(p+j), 1:p]

Ryx <- t(Rxy)

rvt <- Trace(Ryx %*% Rxy) /

sqrt(Trace(Ryy %*% Ryy) *
Trace(Rxx %*% Rxx))

if (rvt > Rvmax) {

Rvmax <- rvt

vrt <- vt[k]

}

}

vr[j] <- vrt
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RV[j] <- Rvmax

vt <- vt[vt!=vr[j]]

}

})[3]

}

cat(c("\n\n\n","PC05. Escoufiers Method- Results(sec) of 7 Runs:", "\n"));

print(round(times,2)); #paste(times);

’

LANGUAGE plr;
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A.4 Codes for benchmark on DB2 DBMS

Listing A.4: Codes for benchmark on DB2 DBMS

//CLR with C# Part:======================================

// public class clsbenchmarkdb2

public static void univIndb2Rexe(string name, out string text)

{

text = name;

REngine.SetEnvironmentVariables();

REngine engine = REngine.GetInstance();

string rscriptfile = "source(’E:/RESEARCH/SCRIPTS/sqlserver_benchmark/";

rscriptfile = rscriptfile + name.Trim() + "’);"; //".r’)";

string[] rOutput = engine.Evaluate(rscriptfile).AsCharacter().ToArray();

text = string.Join("", rOutput);

engine.Dispose();

}

--==Database Part:=======================================

CREATE OR REPLACE PROCEDURE univIndb2Rexe(IN inPAR VARCHAR(60), OUT outPAR VARCHAR(60))

SPECIFIC univIndb2Rexe

LANGUAGE CLR

PARAMETER STYLE GENERAL

DYNAMIC RESULT SETS 0

PROGRAM TYPE SUB

EXTERNAL NAME ’E:\RESEARCH\clrbenchmarkdb2\clrbenchmarkdb2\bin\Debug\clrbenchmarkdb2.dll:

clrbenchmarkdb2.clsbenchmarkdb2!univIndb2Rexe’;

GRANT EXECUTE ON PROCEDURE univIndb2Rexe TO sedem;

GRANT EXECUTE ON SPECIFIC PROCEDURE univIndb2Rexe TO sedem;

GRANT EXECUTE ON PROCEDURE univIndb2Rexe TO PUBLIC;

GRANT EXECUTE ON SPECIFIC PROCEDURE univIndb2Rexe TO PUBLIC;

CALL univIndb2Rexe (’mc01_transpose.r’ , ?);

106



A.5 Codes for benchmark on MS SQL Server DBMS

Listing A.5: Codes for benchmark on SQL Server DBMS

//CLR with C# Part:======================================

//public class BenchmarkProc

[Microsoft.SqlServer.Server.SqlProcedure]

public static void univIndbRexeA(string name, out string text)

{

REngine.SetEnvironmentVariables();

REngine engine = REngine.GetInstance();

string rscriptfile = "source(’E:/RESEARCH/SCRIPTS/sqlserver_benchmark/";

rscriptfile = rscriptfile + name.Trim() + "’);"; //".r’)";

string[] rOutput = engine.Evaluate(rscriptfile).AsCharacter().ToArray();

SqlContext.Pipe.Send(name.Trim().ToUpper() + "- Results(sec) of 7 Runs:\n");

text = string.Join("", rOutput);

engine.Dispose();

}

[Microsoft.SqlServer.Server.SqlProcedure]

public static void univIndbRexeB(string name, out string text)

{

REngine.SetEnvironmentVariables();

REngine engine = REngine.GetInstance();

// Initializes settings:

engine.Initialize();

// Returning data via SqlDataReader:

SqlConnection sqlConn = new SqlConnection("context connection=true");

SqlCommand sqlCmd = new SqlCommand("SELECT * FROM stockHist", sqlConn);

sqlConn.Open();

DataTable sqlDt = new DataTable();

sqlDt.Load(sqlCmd.ExecuteReader());

int ncol = sqlDt.Columns.Count;

int nrow = sqlDt.Rows.Count;

// .NET Framework array to R vector:

NumericMatrix datStockHist = engine.CreateNumericMatrix(nrow,ncol);

for (int row = 0; row < sqlDt.Rows.Count; ++row)

{

for (int col = 0; col < sqlDt.Columns.Count; col++)
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{

datStockHist[row, col] = (double)sqlDt.Rows[row][col];

}

}

//Pass the data to R environment

engine.SetSymbol("datStockHist", datStockHist);

sqlConn.Close();

//Call source R file script to take over

string rscriptfile = "source(’E:/RESEARCH/SCRIPTS/sqlserver_benchmark/";

rscriptfile = rscriptfile + name.Trim() + "’);"; //".r’)";

string[] rOutput = engine.Evaluate(rscriptfile).AsCharacter().ToArray();

SqlContext.Pipe.Send(name.Trim().ToUpper() +"- Results(sec) of 7 Runs:\n");

text = string.Join("", rOutput);

engine.Dispose();

}

--==Database Part=====================================

ALTER DATABASE Benchmarkdb SET TRUSTWORTHY ON;

--ALTER DATABASE Benchmarkdb SET TRUSTWORTHY OFF;

USE Benchmarkdb

GO

EXEC sp_changedbowner ’sa’

ALTER DATABASE Benchmarkdb SET TRUSTWORTHY ON

CREATE ASSEMBLY sqlclrBenchmark

FROM ’E:\RESEARCH\clrbenchmark\clrbenchmark\bin\Debug\clrbenchmark.dll’

WITH PERMISSION_SET = UNSAFE;

CREATE PROCEDURE sp_univIndbRexeA

@inPAR nchar(500),

@outPAR nchar(500) OUTPUT AS

EXTERNAL NAME sqlclrBenchmark.[clrbenchmark.BenchmarkProc].univIndbRexeA;

CREATE PROCEDURE sp_univIndbRexeB

@inPAR nchar(500),

@outPAR nchar(500) OUTPUT AS

EXTERNAL NAME sqlclrBenchmark.[clrbenchmark.BenchmarkProc].univIndbRexeB;

DECLARE @outPAR nchar(500)

EXEC sp_univIndbRexeA @inPAR=’pc01_fibonaccinumbers.r’, @outPAR=@outPAR output

PRINT @outPAR;

DECLARE @outPAR nchar(500)

EXEC sp_univIndbRexeB @inPAR=’mc01_transpose.r’, @outPAR=@outPAR output

PRINT @outPAR;
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A.6 Codes for timing data retrieval in Oracle and Postgres

Listing A.6: Timing retrieval of data for analytics with R in Oracle and PostgreSQL

--Code for timing retreival of data in Oracle

--============================================

begin

sys.rqScriptCreate(’pass_data’,

’function(dat){

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

a <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <- (dat);

#a <- as.matrix(dat);

})[3]

}

#cat(c("\n\n\n","Retrieving Data- Results(sec) of 7 Runs:", "\n"));

data.frame(Runtimes=t(round(times,2))); #data.frame(Runtimes=round(times,2));

#****************************************************************************
}’);

end;

select * from table(rqTableEval(

cursor(select * from STOCKHIST),

NULL,

’select 1 Run1 from dual’,

’pass_data’));

--Code for timing retrieval of data in PostgreSQL

--===============================================

CREATE OR REPLACE FUNCTION pass_data(text)

RETURNS double precision[] AS

’

runs <- 1 # Number of times the tests are ran

times <- rep(0.00, 1); # Initialize result vector for the runs

a <- 0;

for (i in 1:runs) {

invisible(gc())

times[i] <- system.time({

a <<- pg.spi.exec(arg1);
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#a <<- as.matrix(pg.spi.exec(arg1));

})[3]

}

cat(c("\n\n\n","Retrieving Data- Results(sec) of 1 Runs:", "\n"));

return(round(times, 2)); #print(round(times,2)) OR paste(times);

’

LANGUAGE plr;

SELECT pass_data(’SELECT * FROM stockHist’);
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Appendix B

Benchmark Results

B.1 Matrix Calculation (MC) Benchmark Results

The table below shows the detail results obtained from the run of the benchmarks for Matrix
Calculation.

MC01 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone-R 13.71 9.84 8.85 8.81 8.78 8.75 8.78
PostgreSQL 18.62 18.51 18.63 18.63 18.80 18.64 18.53
Oracle 0.42 0.58 0.49 0.41 0.40 0.40 0.41
DB2 6.25 3.85 3.45 3.41 3.33 3.34 3.41
SQL Server 6.75 3.72 3.14 3.09 3.08 3.08 3.08

MC02 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 14.20 14.79 15.04 15.11 15.03 14.92 14.92
PostgreSQL 23.92 23.96 23.92 23.99 23.95 23.94 23.96
Oracle 6.02 6.00 5.80 5.81 5.89 5.81 5.80
DB2 8.92 9.00 9.03 9.04 9.05 9.00 9.03
SQL Server 8.52 9.02 8.98 8.91 8.98 9.03 8.87

MC03 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 9.94 10.07 10.34 10.03 10.35 10.00 10.44
PostgreSQL 19.39 19.42 19.34 19.34 19.46 19.43 19.44
Oracle 1.37 1.35 1.22 1.22 1.21 1.22 1.21
DB2 4.24 4.29 4.45 4.43 4.41 4.46 4.50
SQL Server 4.02 4.25 4.32 4.33 4.30 4.31 4.25

MC04 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 16.27 16.61 16.56 16.59 16.59 16.56 16.57
PostgreSQL 25.82 25.78 25.83 25.79 25.92 25.88 25.74
Oracle 7.81 7.69 7.68 7.69 7.71 7.67 7.69
DB2 10.56 10.48 10.55 10.48 10.83 10.44 10.53
SQL Server 10.39 10.64 10.72 10.72 10.83 10.75 10.74

MC05 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 58.39 57.70 57.67 57.69 57.58 57.74 57.78
PostgreSQL 77.16 77.10 77.17 77.33 77.11 77.32 77.34
Oracle 41.15 41.00 40.92 40.92 40.93 40.87 41.00
DB2 46.45 51.63 49.04 47.52 49.17 47.48 49.57
SQL Server 46.64 46.04 46.21 45.95 46.00 46.16 46.07

Table B.1: Matrix Calculation (MC) benchmark results (time in seconds)
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B.2 Matrix Functions (MF) Benchmark Results

The table below shows the detail results obtained from the run of the benchmarks for Matrix
Function.

MF01 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 13.12 13.12 12.33 12.28 12.09 12.12 12.07
PostgreSQL 22.78 22.65 22.67 22.62 22.63 22.84 22.68
Oracle 4.27 4.14 4.10 4.17 4.11 4.13 4.15
DB2 7.92 8.69 7.77 10.86 7.58 6.94 6.84
SQL Server 6.66 7.15 6.66 6.62 6.67 6.61 6.58

MF02 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 100.86 100.26 101.15 101.03 101.17 101.15 101.22
PostgreSQL 111.48 110.89 110.78 111.17 110.75 110.78 110.70
Oracle 94.16 94.14 97.55 105.01 105.37 104.81 102.41
DB2 94.72 95.33 95.29 95.53 95.66 95.29 95.09
SQL Server 94.16 94.88 94.97 95.27 94.97 95.23 94.89

MF03 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 19.30 19.20 19.25 19.20 19.21 19.20 19.14
PostgreSQL 28.51 28.61 28.63 28.41 28.42 28.50 28.48
Oracle 10.45 10.31 10.28 10.33 10.30 10.31 10.37
DB2 13.30 13.47 13.51 13.49 13.28 13.27 13.51
SQL Server 13.45 13.43 13.52 13.41 13.54 13.41 13.47

MF04 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 48.66 48.30 48.56 48.41 48.58 48.51 48.48
PostgreSQL 57.96 58.02 58.06 57.91 58.00 57.86 57.95
Oracle 40.31 40.13 40.11 40.11 40.07 40.06 40.12
DB2 42.74 42.72 43.04 42.59 42.74 42.90 42.79
SQL Server 42.75 42.56 42.63 42.37 42.46 42.39 42.56

MF05 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 58.72 59.05 58.59 58.90 58.76 58.78 58.74
PostgreSQL 68.65 68.68 68.59 68.64 68.80 68.89 68.54
Oracle 51.78 51.53 51.42 53.05 51.62 51.40 51.32
DB2 53.42 53.55 53.62 53.59 53.66 53.62 53.33
SQL Server 52.97 53.40 53.14 53.11 53.17 53.16 53.20

MF06 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 67.41 67.61 67.64 67.61 67.75 67.94 67.94
PostgreSQL 76.85 77.00 76.95 76.75 76.86 76.96 76.94
Oracle 59.58 59.29 59.43 59.42 59.51 59.50 59.42
DB2 62.26 61.39 61.59 61.50 61.46 61.50 61.40
SQL Server 60.83 61.95 61.28 62.45 61.81 61.72 61.50

MF07 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 216.48 215.68 214.96 214.95 214.77 214.62 214.78
PostgreSQL 225.39 228.48 226.34 226.50 225.56 226.27 225.95
Oracle 213.78 213.02 212.22 212.68 212.56 212.56 212.33
DB2 210.85 210.06 214.64 210.84 222.93 210.58 213.97
SQL Server 208.35 208.14 207.88 209.94 209.60 211.12 209.80

MF08 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 47.48 47.16 47.78 47.70 47.70 47.66 47.78
PostgreSQL 57.93 57.69 57.56 57.97 57.86 57.72 57.54
Oracle 39.55 39.42 39.26 39.81 39.50 39.33 39.38
DB2 41.78 42.63 42.55 42.50 42.61 42.58 42.87
SQL Server 45.14 42.19 42.25 42.25 42.14 42.89 44.59

Table B.2: Matrix Functions (MF) benchmark results (time in seconds)
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B.3 Program Control (PC) Benchmark Results

The table below shows the detail results obtained from the run of the benchmarks for Program
Control.

PC01 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 2.68 2.70 2.73 2.70 2.70 2.69 2.75
PostgreSQL 2.75 2.74 2.75 2.72 2.78 2.87 2.85
Oracle 2.80 2.77 2.77 2.75 2.75 2.77 2.76
DB2 2.70 2.69 2.72 2.70 2.69 2.71 2.70
SQL Server 2.81 2.84 2.81 2.75 2.73 2.72 2.73

PC02 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 0.39 0.33 0.26 0.27 0.28 0.28 0.28
PostgreSQL 0.39 0.40 0.39 0.40 0.41 0.39 0.39
Oracle 0.33 0.32 0.29 0.31 0.32 0.29 0.29
DB2 0.26 0.33 0.28 0.28 0.27 0.26 0.27
SQL Server 0.29 0.33 0.28 0.28 0.28 0.28 0.28

PC03 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 0.27 0.47 0.84 0.75 0.58 0.89 0.62
PostgreSQL 0.59 0.64 0.63 0.54 0.61 0.60 0.60
Oracle 0.34 0.44 0.46 0.46 0.40 0.47 0.45
DB2 0.28 0.50 0.84 0.64 0.86 0.76 0.66
SQL Server 0.28 0.53 0.62 0.70 0.84 0.82 0.84

PC04 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 0.52 0.52 0.50 0.50 0.51 0.55 0.50
PostgreSQL 0.50 0.50 0.48 0.50 0.50 0.49 0.50
Oracle 0.52 0.51 0.50 0.52 0.51 0.52 0.52
DB2 0.53 0.58 0.53 0.53 0.51 0.52 0.52
SQL Server 0.51 0.52 0.52 0.50 0.51 0.52 0.52

PC05 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run7

Stand-Alone R 0.37 0.37 0.38 0.38 0.38 0.42 0.36
PostgreSQL 0.36 0.39 0.37 0.39 0.37 0.38 0.38
Oracle 0.36 0.36 0.37 0.36 0.36 0.36 0.35
DB2 0.36 0.37 0.37 0.43 0.37 0.37 0.39
SQL Server 0.36 0.43 0.38 0.37 0.37 0.37 0.37

Table B.3: Program Control (PC) benchmark results (time in seconds)
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B.4 Summary (averages) of Benchmark Results

The table below shows the summary of results obtained from the run of the benchmarks.

Benchmark Stand-Alone R PostgreSQL Oracle DB2 SQL Server

MC01 9.65 18.62 0.44 3.86 3.71
MC02 14.86 23.95 5.88 9.01 8.90
MC03 10.17 19.40 1.26 4.40 4.25
MC04 16.54 25.82 7.71 10.55 10.68
MC05 57.79 77.22 40.97 48.69 46.15

MF01 12.45 22.70 4.15 8.09 6.71
MF02 100.98 110.94 100.49 95.27 94.91
MF03 19.21 28.51 10.34 13.40 13.46
MF04 48.50 57.97 40.13 42.79 42.53
MF05 58.79 68.68 51.73 53.54 53.16
MF06 67.70 76.90 59.45 61.59 61.65
MF07 215.18 226.36 212.74 213.41 209.26
MF08 47.61 57.75 39.46 42.50 43.06

PC01 2.71 2.78 2.77 2.70 2.77
PC02 0.30 0.40 0.31 0.28 0.29
PC03 0.63 0.60 0.43 0.65 0.66
PC04 0.51 0.50 0.51 0.53 0.51
PC05 0.38 0.38 0.36 0.38 0.38

Table B.4: Average runtime results (time in seconds)
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Benchmark Dmax Dmin Nmax Nmin Stand
Alone R

Postgre
SQL

Oracle DB2 SQL
Server

MC01 18.62 0.44 10.00 1.00 5.56 10.00 1.00 2.69 2.62
MC02 23.95 5.88 10.00 1.00 5.47 10.00 1.00 2.56 2.50
MC03 19.40 1.26 10.00 1.00 5.42 10.00 1.00 2.56 2.48
MC04 25.82 7.71 10.00 1.00 5.39 10.00 1.00 2.41 2.48
MC05 77.22 40.97 10.00 1.00 5.18 10.00 1.00 2.92 2.29

MF01 22.70 4.15 10.00 1.00 5.03 10.00 1.00 2.91 2.24
MF02 110.94 94.91 10.00 1.06 4.44 10.00 4.17 1.26 1.06
MF03 28.51 10.34 10.00 1.00 5.39 10.00 1.00 2.52 2.55
MF04 57.97 40.13 10.00 1.00 5.22 10.00 1.00 2.34 2.21
MF05 68.68 51.73 10.00 1.00 4.75 10.00 1.00 1.96 1.76
MF06 76.90 59.45 10.00 1.00 5.26 10.00 1.00 2.10 2.13
MF07 226.36 209.26 10.00 1.02 4.13 10.00 2.84 3.20 1.02
MF08 57.75 39.46 10.00 1.00 5.01 10.00 1.00 2.50 2.77

PC01 2.78 2.70 10.00 1.03 2.15 10.00 8.88 1.03 8.88
PC02 0.40 0.28 10.00 1.11 2.59 10.00 3.33 1.11 1.85
PC03 0.66 0.43 10.00 1.00 8.83 7.65 1.00 9.61 10.00
PC04 0.53 0.50 10.00 1.02 4.01 1.02 4.01 10.00 4.01
PC05 0.38 0.36 10.00 1.00 10.00 10.00 1.00 10.00 10.00

Table B.5: Normalised-average runtime results (normalised to range [1,10])

Benchmark Stand-Alone-R PostgreSQL Oracle DB2 SQL Server

MC 27.02 50.00 5.00 13.14 12.37
MF 39.23 80.00 13.02 18.79 15.74
PC 27.58 38.67 18.22 31.74 34.74

OVERALL 93.82 168.67 36.24 63.67 62.85

Table B.6: Overall normalised average runtime results
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B.5 Summary (minimum) of Benchmark Categories

The table below gives the summary of results obtained from the benchmarks categories.

Benchmark Stand-Alone-R PostgreSQL Oracle DB2 SQLServer

MC01 8.75 18.51 0.40 3.33 3.08
MC02 14.20 23.92 5.80 8.92 8.52
MC03 9.94 19.34 1.21 4.24 4.02
MC04 16.27 25.74 7.67 10.44 10.39
MC05 57.58 77.10 40.87 46.45 45.95

MF01 12.07 22.62 4.10 6.84 6.58
MF02 100.26 110.70 94.14 94.72 94.16
MF03 19.14 28.41 10.28 13.27 13.41
MF04 48.30 57.86 40.06 42.59 42.37
MF05 58.59 68.54 51.32 53.33 52.97
MF06 67.41 76.75 59.29 61.39 60.83
MF07 214.62 225.39 212.22 210.06 207.88
MF08 47.16 57.54 39.26 41.78 42.14

PC01 2.68 2.72 2.75 2.69 2.72
PC02 0.26 0.39 0.29 0.26 0.28
PC03 0.27 0.54 0.34 0.28 0.28
PC04 0.50 0.48 0.50 0.51 0.50
PC05 0.36 0.36 0.35 0.36 0.36

Table B.7: Minimum runtime results (time in seconds)
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Benchmark Dmax Dmin Nmax Nmin Stand-
Alone-R

Postgre
SQL

Oracle DB2 SQL
Server

MC01 18.51 0.40 10.00 1.00 5.15 10.00 1.00 2.46 2.33
MC02 23.92 5.80 10.00 1.00 5.17 10.00 1.00 2.55 2.35
MC03 19.34 1.21 10.00 1.00 5.33 10.00 1.00 2.50 2.39
MC04 25.74 7.67 10.00 1.00 5.28 10.00 1.00 2.38 2.35
MC05 77.10 40.87 10.00 1.00 5.15 10.00 1.00 2.39 2.26

MF01 22.62 4.10 10.00 1.00 4.87 10.00 1.00 2.33 2.21
MF02 110.70 94.14 10.00 1.00 4.33 10.00 1.00 1.32 1.01
MF03 28.41 10.28 10.00 1.00 5.40 10.00 1.00 2.48 2.55
MF04 57.86 40.06 10.00 1.00 5.17 10.00 1.00 2.28 2.17
MF05 68.54 51.32 10.00 1.00 4.80 10.00 1.00 2.05 1.86
MF06 76.75 59.29 10.00 1.00 5.19 10.00 1.00 2.08 1.79
MF07 225.39 207.88 10.00 1.00 4.46 10.00 3.23 2.12 1.00
MF08 57.54 39.26 10.00 1.00 4.89 10.00 1.00 2.24 2.42

PC01 2.75 2.68 10.00 1.00 1.00 6.14 10.00 2.29 6.14
PC02 0.39 0.26 10.00 1.00 1.00 10.00 3.08 1.00 2.38
PC03 0.54 0.27 10.00 1.00 1.00 10.00 3.33 1.33 1.33
PC04 0.51 0.48 10.00 1.00 7.00 1.00 7.00 10.00 7.00
PC05 0.36 0.35 10.00 1.00 10.00 10.00 1.00 10.00 10.00

Table B.8: Normalised-minimum run-time results (normalised to range [1,10])

Benchmark Stand-Alone-R PostgreSQL Oracle DB2 SQL Server

MC 26.09 50.00 5.00 12.28 11.69
MF 39.10 80.00 10.23 16.90 15.01
PC 20.00 37.14 24.41 24.62 26.86

OVERALL 85.19 167.14 39.64 53.80 53.57

Table B.9: Overall normalised minimum runtime results
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B.6 Chart of minimum run-times benchmark results

Figure B.1: Chart of overall benchmark results (minimum run-times)

Figure B.2: Chart of Matrix Calculation (MC) benchmark results (minimum run-times)
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Figure B.3: Chart of Matrix Function (MF) benchmark results (minimum run-times)

Figure B.4: Chart of Program Control (PC) benchmark results (minimum run-times)
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B.7 Scalability Test Results

The table below shows the results obtained from the scalability test runs.

R-
Benchmark

1-million-
cells-r

4-million-
cell-r

16-million-
cells-r

dTimes1-
4mc-r

dTimes1-
16mc-r

dTimes4-
16mc-r

MC1 0.72 2.49 9.65 1.77 8.93 7.16
MC2 1.02 3.65 14.86 2.63 13.84 11.21
MC3 0.76 2.58 10.17 1.82 9.41 7.59
MC4 1.15 4.15 16.54 3.00 15.39 12.39
MC5 2.19 9.74 57.79 7.55 55.60 48.05
MF1 0.75 2.87 12.45 2.12 11.70 9.58
MF2 2.61 15.42 100.98 12.81 98.37 85.56
MF3 0.99 3.63 19.21 2.64 18.22 15.58
MF4 1.38 7.31 48.50 5.93 47.12 41.19
MF5 1.66 9.21 58.79 7.55 57.13 49.58
MF6 1.72 9.77 67.70 8.05 65.98 57.93
MF7 3.86 28.00 215.18 24.14 211.32 187.18
MF8 3.63 14.69 47.61 11.06 43.98 32.92

Oracle-
Benchmarks

1-million-
cells-ore

4-million-
cell-ore

16-million-
cells-ore

dTimes1-
4mc-ore

dTimes1-
16mc-ore

dTimes4-
16mc-ore

MC1 0.04 0.13 0.44 0.09 0.40 0.31
MC2 0.37 1.48 5.88 1.11 5.51 4.40
MC3 0.10 0.34 1.26 0.24 1.16 0.92
MC4 0.48 1.93 7.71 1.45 7.23 5.78
MC5 0.72 5.26 40.97 4.54 40.25 35.71
MF1 0.15 0.73 4.15 0.58 4.00 3.42
MF2 1.91 13.34 100.49 11.43 98.58 87.15
MF3 0.18 1.30 10.34 1.12 10.16 9.04
MF4 0.66 5.13 40.13 4.47 39.47 35.00
MF5 0.86 6.97 51.73 6.11 50.87 44.76
MF6 0.92 7.60 59.45 6.68 58.53 51.85
MF7 3.20 26.45 212.74 23.25 209.54 186.29
MF8 2.74 12.44 39.46 9.70 36.72 27.02

Table B.10: Results of scalability test runs
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The following figures show charts of difference in run-times for different data load scalability
tests.

Figure B.5: Scalability result chart- dataset increase from 1 to 4 million cells

Figure B.6: Scalability result chart- dataset increase from 1 to 16 million cells
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Figure B.7: Scalability result chart- dataset increase from 4 to 16 million cells

Coded Name Full Meaning

1-million-cells-r Average run-times for 1 million cells in R (sec)
4-million-cell-r Average run-times for 4 million cells in R (sec)
16-million-cells-r Average run-times for 16 million cells in R (sec)
dTimes1-4mc-r Difference in run-times between 1- and 4- million cells in R (sec)
dTimes1-16mc-r Difference in run-times between 1- and 16- million cells in R (sec)
dTimes4-16mc-r Difference in run-times between 4- and 16- million cells in R (sec)

1-million-cells-ore Average run-times for 1 million cells in Oracle (sec)
4-million-cell-ore Average run-times for 4 million cells in Oracle (sec)
16-million-cells-ore Average run-times for 16 million cells in Oracle (sec)
dTimes1-4mc-ore Difference in run-times between 1- and 4- million cells in Oracle (sec)
dTimes1-16mc-ore Difference in run-times between 1- and 16- million cells in Oracle (sec)
dTimes4-16mc-ore Difference in run-times between 4- and 16- million cells in Oracle (sec)

Table B.11: Legend for coded names in scalability test result tables and charts
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