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“The secret of seeing is to sail on solar wind. Hone and spread your spirit, till you
yourself are a sail, whetted, translucent, broadside to the merest puff.”

Annie Dillard
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The computation of Earth-to-Moon trajectories constitutes an important and interesting
chapter of spacecraft trajectory design. The traditional techniques based on Hohmann
maneuvers and patched conics allowed the fast transfer of the Apollo’s to our natural
satellite in less than four days, and proved to be the only option for manned missions.
However, we are now in an epoch in which robotic missions dominate the exploration of
our planetary system and in particular in a historical and economical moment in which
in many situations "cost-efficient" is preferred to "time-efficient". Many alternative solu-
tions to the Earth-to-Moon transfer problem have been proposed based on dynamical
models and assumptions that imply long flight times: it is the case, for example, of the
low-energy transfers in the circular restricted three-body problem, where the gravita-
tional influence of the Sun is taken into account by letting the s/c travel as far as the
equilibrium points of the Sun-Earth system before flying back to the Earth-Moon system
and getting captured by the gravity field of the Moon.

In this work we investigate the design of Earth-to-Moon trajectories propelled by the
action of solar radiation pressure on a sail. Solar sails have been demonstrated in
orbit and are undergoing such a rapid technological development that they are being
applied also to the class of nanosatellites with off-the-shelf hardware components. We
formulate the trajectory design problem as an optimal control problem. Optimal control
is based on the theory of calculus of variations and on the Pontryagin minimum prin-
ciple. It is an indirect optimization method whose formulation is especially suitable to
problems where a control is present (in this case the acceleration produced by the mo-
mentum exchange between the solar radiation and the sail), and a cost function (such
as the transfer time) is to be minimized in the presence of end-point constraints (such
as the conditions for capture at the Moon). Therefore, this work shows how to solve an
Earth-to-Moon trajectory with solar sail propulsion applying the optimal control theory.
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Introduction

This study deals with the optimization of an Earth-to-Moon trajectory propelled
by a solar sail. The optimization method here considered is optimal control.

The result of an optimal control problem gives which is the optimum way of
solving it. By applying optimal control to an Earth-to-Moon trajectory with solar
sail propulsion, one obtains the most efficient way to orient the sail with respect
to the Sun in order to reach the Moon in the shortest time. In order to do this,
a dynamical model is set up and used together with the boundary conditions
of the mission to define the optimal control problem. Non-linear programming
plays an important role when solving optimal control problems, since the final
solution of these problems is not directly proportional to the inputs.

Since the 1960’s, a large part of the space research has been devoted to trajec-
tory optimization of orbit transfers including Earth-to-Moon and interplanetary
trajectories. Trip time is crucial to the design of spacecrafts and to ensure a
longer operational life. Another important factor to optimize is the fuel con-
sumption, since the less mass of fuel is used, the more payload the spacecraft
can carry. Nevertheless, we are in a historical and economical moment in which
cost efficiency is much more important than time efficiency. One of the main dif-
ferences between low-thrust and high-thrust is that the specific impulse, I, is
generally higher for low-thrust, which means that the efficiency of the engine
is also higher. High-thrust propulsion can boost the spacecraft with a powerful
acceleration, yet the energy is limited because the fuel onboard is limited as
well. On the other hand, low-thrust propulsion gives a continuous long-lasting
acceleration so the overall energy can be larger.

The study of low-energy transfers to the Moon by means of the restricted three-
body problem has been of significance throughout the last years (I'). This
method consists in performing a low-energy transfer to one of the Lagrangian
points of the Sun-Earth system and then going from this point to the Moon.

iX



Introduction

Nevertheless, these trajectories are not optimum and maybe, by using optimal
control, the fuel consumption or the time spent to reach the Moon could be re-
duced. Some Earth-to-Moon low-energy transfers have been carried out using
the optimal control theory, i.e., the SMART-1 mission (). Moreover, different
studies deal with the issue of optimal control for Earth-to-Moon trajectories us-
ing, for example, nuclear electric propulsion (1¥l), evolutionary neurocontrol (),
the restricted three-body problem of the Earth-to-Moon system (151, (1), ballistic
capture (1), etc. Nevertheless, not a single Earth-to-Moon transfer study with
optimal control has been carried out with solar sails.

Solar sails are considered to be a promising option for nean-term future space
missions. The spacecraft that have solar sails as propulsion system are pushed
by light particles from the Sun, which reflect off giant mirror-like sails. Given that
they carry no fuel and keeps accelerating over unlimited distances, it is one of
the possible technologies that can one day carry payload to the stars. Eventu-
ally, the continuous force of the sunlight on a solar sail may thrust spacecrafts
several times faster than traditional engines. Optimization of trajectories with

solar sail propulsion has been carried out, but mainly for Earth orbiting satellites
(181,19),

Since 1999, thanks to the Cubesat concept developed by Jordi Puig-Suari (Cal
Poly) and Bob Twiggs (Stanford University), nanosatellites are filling a niche in
space that larger spacecrafts, due to their high cost and long design-to-space
cycles, are not filling. Bearing in mind that, when a spacecraft is launched,
most of the weight consists in the launch fuel, space-exploration is devoting to
enhance the technology of nanosatellites. Given that cubesats are very small, it
has been demonstrated that solar sails of huge dimensions (['%!) can be folded
into them and they are considered a good propulsion system for nanosatellites.

This disseration presents how to solve the optimal Earth-to-Moon trajectory with
a solar sail as the propulsion system of the spacecraft. The outline of the dis-
sertation is as follows: Chapter 1 provides an overview of the optimal control
theory and how to solve an optimal control problem depending on the bound-
ary conditions; Chapter 2 deals with the dynamical model, including reference
frames, the solar sail model, the acceleration due to the terrestrial, lunar and
solar gravity field, the solar eclipses due to the Earth and the Moon and the
equations of motion of the spacecraft; Chapter 3 explains how to solve non-
linear problems and gives a mathematical background of the package used
to solve them (MINPACK-1); Chapter 4 states the problem of the dissertation,
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shows the conjugate equations that come from the optimal control theory, gives
an explanation on how the orbit integrator works and explains how to solve the
problem by means of MINPACK-1; finally, Chapter 5 gives an overview of this
project and provides its conclusions.
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Scope

The scope of this project can be divided into the following:
e Understand the optimal control problem as a two-point boundary value
problem and how to solve nonlinear problems.
e Research of missions where optimal control theory has been implemented.
e Research of solar sail missions.

e Development of a dynamical model with four bodies: the Earth, the space-
craft, the Moon and the Sun. The equations of motion of the spacecraft
are also found out.

e Statement of the two-point boundary value problem of the Earth-to-Moon
trajectory with solar sail propulsion.

e Implementation of the formulation into Fortran 95.
e Use of numerical methods to propagate the resulting orbit.
e Learning how to use MINPACK-1’s Fortran package to solve the problem.

Due to the difficulties encountered whilst carrying out the study, the final opti-
mum Earth-to-Moon trajectory is out of scope of this project.

Xii



Chapter 1

Trajectory optimization with
optimal control theory

Trajectory optimization is the process of designing a trajectory that minimizes or
maximizes some measure of performance within prescribed constraint bound-
aries. In this chapter we will present the theory of optimal control which is
the framework for the solution of the trajectory optimization problem. Optimal
control is an important subject in mathematics. It develops through calculus
of variations. However, we do not intend to provide an exhaustive and fully-
comprehensive discussion on this wide subject. For this, the reader is referred
to the specialized literature: 11,1121 [13] 1141 1151 [16] 1171 18] " Here we focus our at-
tention on the fundamental definitions and principles, and we work out some
examples in order to guide the reader through the possible types of boundary
conditions and lay the grounds to our specific application, i.e., the optimization
of a trajectory from the Earth to the Moon with solar sail propulsion. Section 1.1
reviews the history of optimal control theory with the formulation of the two-
point boundary value problem. Sec. 4.2 explains the optimal control problem
in terms of the two-point boundary value problem. Finally, sec. 1.3 presents
the four main problems that can be solved by optimal control depending on the
boundary conditions, and an example of each is included.

1.1 Introduction

Trajectory optimization began in earnest in the 1950s as digital computers be-
came available for the computation of trajectories. The first efforts were based

1



Trajectory optimization with optimal control theory

on optimal control approaches which grew out of the calculus of variations de-
veloped at the University of Chicago in the first half of the 20" century most
notably by Gilbert Ames Bliss. Pontryagin in Russia and Bryson and Bellmann
in America were prominent researchers in the development of optimal control.
Early application of trajectory optimization had to do with the optimization of
rocket thrust profiles in a vacuum and in an atmosphere.

Optimal control theory is a mathematical optimization method for deriving con-
trol policies. It deals with the problem of finding a control law for a given system
such that a certain optimality criterion is achieved. A control problem includes
a cost functional, that is a function of state and control variables, and a set of
differential equations describing the paths of the control variables that minimize
the cost functional.

We begin with a simple example. Consider a car traveling on a straight line
through a hilly road. The question is, how should the driver press the acceler-
ator pedal in order to minimize the total traveling time? Clearly in this example,
the term control law refers specifically to the way in which the driver presses
the accelerator and shifts the gears. The "system" consists of both the car
and the road, and the optimality criterion is the minimization of the total travel-
ing time. Control problems usually include ancillary constraints. For example,
the amount of available fuel might be limited, the accelerator pedal cannot be
pushed through the floor of the car, speed limits, etc. A proper cost functional is
a mathematical expression giving the traveling time as a function of the speed,
geometrical considerations, and initial conditions of the system. Another opti-
mal control problem is to find the way to drive the car so as to minimize its fuel
consumption, given that it must complete a given course in a time not exceed-
ing some amount. Yet another control problem is to minimize the total monetary
cost of completing the trip, given assumed monetary prices for time and fuel.

In more abstract and general terms, the problem consists in minimizing the
continuous-time cost functional

7 = Bx(to), to, x(t,), 1] + /tf Lix(t), u(t), fdt (1.1)

to

subject to the first-order nonlinear dynamic constraints

x(t) = fx(t),u(t),t]. (1.2)
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In the above equations, x(t) is the state, u(t) is the control and ¢ is the inde-
pendent variable (generally speaking, time). The terms ® and L are called the
endpoint cost and Lagrangian, respectively. Problems involving a cost only on
the final and initial state, which is the beginning and the end of the problem, i.e.,
d[x(to), to, x(ts), t¢], are referred to as Mayer problems, those involving only the
integral or running cost, i.e., ft';f Lix(t),u(t),t]dt, are called Lagrange problems
and costs of the form of Eq. 1.1 are referred to as Bolza problems. We admit
also a constraint on the final state

Yx(t), ] = 0. (1.3)

It should be noted that the optimal control problem as stated above may have
multiple solutions. Thus, it is more often the case that any solution is locally
minimizing. In the following, we shall assume that the initial condition x () = x,
and the initial time, ¢,, are specified and we shall write Eq. 1.1 as

7= [x(t)), 1] + / " Lix(t), u(t), 4 dt. (1.4)

to

1.2 The optimal control problem as a two-point boundary-
value problem

Optimal control problems are generally nonlinear and therefore they do not have
analytic solutions. As a result, it is necessary to employ numerical methods to
solve them. In the early years of optimal control (1950s to 1980s) the favored
approach for solving optimal control problems was that of indirect methods. In
an indirect method, the calculus of variations is employed to obtain the first-order
optimality conditions. These conditions result in a two-point (or, in the case of a
complex problem, a multi-point) boundary-value problem (TPBVP), i.e., a sys-
tem of differential equations together with a set of additional constraints, called
the boundary conditions. In other words, a solution to a boundary-value prob-
lem is a solution to the differential equations which also satisfies the boundary
conditions.
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1.2.1 Lagrange multipliers

In mathematical optimization, the method of Lagrange multipliers (named after
Joseph Louis Lagrange) is a strategy for finding the local maxima and minima of
a function subject to equality constraints. For instance, consider the optimiza-
tion problem

maximize g(z,y)

subject to ¢(z,y) = c.

We need both ¢ and ¢ to have continuous first partial derivatives. Then, we in-
troduce a new variable ), called a Lagrange multiplier, and study the Lagrange
function (or Lagrangian) A defined by

Az, y, ) = g(x,y) + A+ [g(z,y) — ¢, (1.5)

where the )\ term may be either added or subtracted. If g(z¢,yo) is @ maximum
of g(z,y) for the original constrained problem, then there exists \q such that
(x0,Y0,N\0) IS a stationary point for the Lagrange function (stationary points are
those points where the partial derivatives of A are zero). However, not all sta-
tionary points yield a solution of the original problem. Thus, the method of La-
grange multipliers represents a necessary condition for optimality in constrained
problems. Sufficient conditions for a minimum or maximum also exist.

1.2.2 The augmented functions

To include the differential equation constraints, we form the augmented cost
functional J,

o = oty (0, D)0 ]+ LX) 0 )~ (0]

(1.6)
where two time-varying Lagrange multiplier vectors » and A\ have been intro-
duced. The elements of A are called the costates of the system. Eq. 1.6 can be
expressed in a more compact form as

ty
Jo = ¢+ v +/ [L+ \T(f —x)]dt, (1.7)

to

which, after introducing the Hamiltonian H,

H=L+ )Y, (1.8)
4
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becomes .
f
Jo=¢+ v+ / (H — \T'x)dt. (1.9)

to

1.2.3 Necessary conditions for optimality: Pontryagin’s minimum princi-
ple

In order to determine the minimum of J,, we set to zero its variation

6Jo =0 = (Dyd+ D" v)6x(ts) + (Dsp + Dip" v) Sty + " v + Hét g

ty
+ / [DxH(SX + D, ,Hdéu — Mox + (D,\HT — XTCS)\)] dt, (1.10)

to
where D, = 0/0x, D, = 0/0ty, D\ = 0/0X and D,, = 0/0u. Integrating by parts
[ Moxdt yields
§J.=0 = (Duo+ Dp"v — NT)ox(ts) + (D¢ + D" v + H)dty + 7 ov

tf .
+ / [(DxH + Aéx + D, Hou + (DyH' — xT)5A| dt. (1.11)

to

Setting to zero the three terms between parentheses in the integral in Eq. 1.11
yields the Euler-Lagrange equations:

OH :

2R [0%], (1.12)
OH

u v (119)
OH « * g

Sy = @O g=x [ (1.14)

where [x*(t),u*(t)] is the given extremal for J,. Eq. 1.14 (state equation) and
Eq. 1.12 (costate equation) are called optimality conditions. Eq. 1.13 is the sta-
tionarity condition. Also the terms outside the integral in Eq. 1.11 must vanish,
providing the boundary conditions or transversality conditions:

D.¢+ D"y — XTI = 0 [0x(t5)], (1.15)
Dip+Dp'v+H = 0 [0t ], (1.16)

and the end point constraint equation

b=0  [5v). (1.17)
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Pontryagin’s minimum principle' states that the optimal state trajectory x*, opti-
mal control u*, and corresponding Lagrange multiplier vector A* must minimize
the Hamiltonian H so that

H[x*(t),u"(t), \"(t),t] < H[x"(t),u(t), \"(t), 1] (1.18)

for all time ¢ in the given domain and for all permissible control inputs u.

The beauty of using an indirect method is that the state and adjoint (i.e., \)
are solved for and the resulting solution is readily verified to be an extremal
trajectory. The disadvantage of indirect methods is that the boundary-value
problem is often extremely difficult to solve (particularly for problems that span
large time intervals or problems with interior point constraints).

1.3 Types of boundary conditions

Fig. 1.1 illustrates the possible boundary conditions of the system. We shall
analyse each of them separately: Fig. 1.1-a represents a problem to be solved in
a fixed terminal time, but where the ending point is free; Fig. 1.1-b shows a prob-
lem that has the time and the end point constrained; Fig. 1.1-c describes prob-
lems where either the ending point and the final time are free; finally, Fig. 1.1-d
represents problems where the ending point is fixed, yet the final time to reach
this point is free.

1.3.1 Fixed terminal time, free end point

In this case dt; = 0 and 6x; = 0x(tf). Concerning the boundary conditions,
Eqg. 1.16 vanishes. The initial condition xz(t,) is given. Furthermore, if there are
no terminal state constraint, Eq. 1.15 becomes

99

Mty) = 52 (x(t). (1.19)

For example, we shall study the minimum-drag nose shape in a hypersonic flow
(Fig. 1.2). The problem consists of finding the r(x) that minimizes the drag D for

"The principle was first known as Pontryagin’s maximum principle and its proof is historically based on
maximizing the Hamiltonian. The initial application of this principle was to the maximization of the terminal
speed of a rocket. However, as it was subsequently mostly used for minimization of a performance index,
it is normally referred to as the minimum principle.
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x(ry w1}
. f

_'ln-

(1 Bx(ey)

() (d)

Figure 1.1: The possible types of boundary conditions: a) fixed time, free end point; b)
fixed time, fixed end point; c) free time, free end point; d) free time, fixed end point.

FA [/
Flow
T(— T
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¥ —_—

p— ] ————

Figure 1.2: Minimum-drag nose shape (courtesy of('3l).

given values of the dynamic pressure (g), length of the body (/) and maximum
radius of the body (a). First of all, one should take into account that the variation
of the shape as a function of the radius r and the position x is given by

dr

tanf = ——
an Ir

(1.20)
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where tan @ is considered the control variable . The variation of the pressure
drag at zero angle of attack in a hypersonic flow is given by the following ex-
pression:

D 1 b
— = —[r(D)]? dx. 1.21
1 = 5l OF + [ s (1.21)
Then, let us define the Hamiltonian as
He A—u) (1.22)
14wl ' '
The Euler-Lagrange equations are:
: 0H u?
N o= A 1.2
or 14 u?’ (1.23)
oH ru®(3 + u?)
il e A N o 1.24
ou (1 + u?)? 0 (1.24)
Replacing the previous A into the Hamiltonian yields
3 2 2 3 2\ 3 2 3
o v ru (3+u)u:ru (1+u?) —ru (3—i—u):_ 2ru — constant.
T+u? (14 u?)? (1 + u?)? (1 + u?)?
(1.25)

Looking into Fig. 1.2, one obtains that the initial boundary condition is given by
r(0) = a. According to Eq. 1.53 and being ¢[r(l),1] = %[r(l)]{ the optimal value
of r(l) is

A = r(1). (1.26)

Thus, these two boundary conditions must be satisfied by the differential equa-
tion 1.20 and the conjugate equation 1.23. So, by replacing Eq. 1.26 into
Eq. 1.24, we obtain the last boundary condition:

u?(3 + u?)
r(l) {1 BN L:l =0, (1.27)

which yields u(l) = 1. Then, upon replacing u(l) in Eq. 1.25, the Hamiltonian

l
in the final boundary condition becomes —H = % which can be related to
Eq. 1.25 again, resulting in the radius of the body, r, being a function of the

slope, u: .
r (14 u?)
IR (1.28)
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By replacing Eq. 1.20 in Eq. 1.28 one obtains:

dx 1
- = _Z 1.2
dr u’ (1.29)
l—x “1d (1+u?)?
Lty [ relrery 1,
r(l) /Z wdu s (1.30)
l 1,3 1 7 1
LI R P 1.31
r(l) 4(4u§ ud 4 Ogu0> (1.31)

1.3.2 Fixed terminal time, fixed end point

In this case, §t; = 0 again. Consequently, Eq. 1.16 vanishes. Given that a fixed
end point implies a constrained function, one should bear in mind the following
constraint:

77/)[I<tf),tf] :0 (132)

The endpoint cost becomes:
d=¢+vi. (1.33)

Therefore, Eqg. 1.15 is used to solve the problem:

_ (0o oY
MN(ty) = (E + uTg)t:tf . (1.34)

Finally, the initial condition z(¢,) is given.

For example, the thrust-direction history, ¢(¢), is desired to be obtained when
transfering a rocket vehicle (with constant thrust, 7') from a given initial circular
orbit to the largest possible circular orbit operating for a given length of time, ¢;.
The problem at hand is illustrated in Fig. 1.3.

The equations that govern the motion are:

Fo= (1.35)
2 T :

0 = ”——ﬂﬁﬂ, (1.36)
Tt my— |mft

o = Wy Temso (1.37)

T mg—|ml|t’

where 7, & and © are the radial velocity of the spacecraft, the radial acceleration
of the spacecraft and the tangential acceleration of the spacecraft, respectively.
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%
1 \"
Fina
bty orbit "‘)‘\
)
b
\
Attracting
center
=0

r(0

Figure 1.3: Maximum radius orbit transfer in a given time (courtesy of('3).« is the radial
component of the velocity, v is the tangential component of the veolocity, m is the mass
of the spacecraft, i is the fuel consumption rate, r is the radial distance and p is the
gravitational parameter.

The boundary conditions are:

r(0) = ro, (1.38)

u(0) = 0, (1.39)

v0) = JE, (1.40)
To

Y1 = u(ty) =0, (1.41)

by = ulty) — T(’:f):o. (1.42)

Once the equations of motions are defined, the Hamiltonian, H, can be ob-
tained:

2 T si T
B ausn, (v__ﬁﬁﬂ)ﬂv <_@+ﬂ>, (1.43)
T

2 mg — |mlt T mg — |mit

Equation 1.73 turns into:

O =1r(ty) +riulty) + 1o {v(tf) - r('l:f)l : (1.44)

10
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Once the system is presented, each value of A is obtained by means of Eq. 1.12:

: v? 2 uv

A= =5+ E - (1.45)

he = —)\T+)\U§, (1.46)

. 2

o= e (1.47)
T T

Moreover, Eq. 1.13 must be also satisfied:

0H

O A, cosé— A, sin ¢ —————— — 0, 1.48
55 = Ducoso—asingl— e (1.48)
Ay

Eventually, the final boundary conditions are obtained by applying Equation
1.34:

_ Vo/ I
A(ty) = 1+2[r(tf)]3/2, (1.50)
Alty) = m, (1.51)
M(tr) = 1. (1.52)

To conclude, all the differential equations are to be solved subject to the initial
and final boundary conditions.

1.3.3 Free terminal time, free end point

In this case, 0x; = 0x(ts). If there are no terminal state constraint, Eq. 1.15
becomes:

Mip) = 92 (x(1y)) (1.59

On the other hand, taking into account that a é¢; exists in this problem, one
must recall Eq. 1.16 as a boundary condition in order to solve the problem:

56 06 B
[g + 2 L] =0 (1.54)

Finally, the initial condition z(t) is given.

11
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1.3.3.1 Minimum-time solutions

One should take into account Eq. 1.55 when the performance index of interest
is the minimum time to transfer the system from its initial to its final state:

=0 L=1, (1.55)
which implies that

J=1tr—ty (1.56)

Hence, the TPBVP is set as:
io= flzut), (1.57)
Atg) = 0, (1.59)
fax =0, (1.60)
(Ai)y, = -1 (1.61)

Finally, another way to express Eq.1.61 is saying that the Hamiltonian at ¢ ; must
be 0 for minimum-time problems: H(t¢;) = 0.

For example, a ship is travelling through a region of strong currents. The mag-
nitude and direction of the current are known as functions of position: u(z,y)
and v(z,y). Knowing that the velocity of the ship relative to the water is V, the
equations of motion are known:

t = Vcost+u(z,y), (1.62)
y = Vsinf+ov(x,y), (1.63)

being 6 the heading angle of the ship’s axis relative to the coordinate axes and
(x,y) the position of the ship. The aim is to minimize the time of the ship travel-
ling from A to B. The Hamiltonian, H, of the system is

H =X, (Vcost+u)+ A\,/(Vsinb +v) + 1. (1.64)

12
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The Euler-Lagrange equations are obtained using Eqg. 1.58 and Eq. 1.60:

ou ov

he = M= Mo (1.65)
. ou ov
A\ — _)\a:_ -\ —, 1.66
, 5, 5y (1.66)
‘;_ZI = A\ Vsinf—\,Vcosf =0, (1.67)
tang = 2 (1.68)
= Ax .

Adjoining Eq. 1.68 inside H, and knowing that this one must be 0 as the time is
being minimized, the following is obtained:

—cosf
- 1.69
As V 4+ ucosh +vsinf’ ( )
—sinf
- . 1.7
Ay V 4+ ucosf +vsinf (1.70)

Including both into one of the Euler-Lagrange equations, the following is ob-

tained: 5 5 5 5
0 = sin0>" + sinfcost | - — 20 ) — cos20". (1.71)
ox ox 0y oy

Finally, with the latter equation and both equations of motion, with the correct
guess of 0,4 , the desired minimum time paths will be given solving the problem
with numerical methods.

1.3.4 Free terminal time, fixed end point

Given that a fixed end point implies a constrained function, one should bear in
mind the following constraint:

Pla(ty). ty] = 0. (1.72)
The endpoint cost becomes:
d=0¢+viy. (1.73)

Therefore, Eqg. 1.15 is used to solve the problem:

v (06 60
AT(ty) = (595” M)Hf. (1.74)

13
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On the other hand, taking into account that a dt; exists in this problem, one
must recall Eq. 1.16 as a boundary condition in order to solve the problem:

0p g0 (0 poY
¢ {&” (5t+(§x+y oo )P 7Y (1.75)

Finally, the initial condition z(¢,) is given.

1.3.4.1 Minimum-time solutions

The difference between a minimum-time solution when the end point is fixed
and when it is not is that Eq. 1.75 becomes:

_ (%, 9%, _
Q= {1/ <5t+5xx)+1}ttf—0. (1.76)

Nevertheless, the previous equation still means that H(¢;) = 0 must be satisfied
for any feasible solution.

1.4 Application of the optimal control theory to our problem

This dissertation wants to deal with the optimal control problem of an Earth-
to-Moon trajectory with solar sail propulsion. The optimal solution obtained is
based on time, that is to say, the spacecraft should take the least possible time
to reach the Moon. In order to do this, given that the problem has a control
variable, which is the normal vector of the solar sail, a state, which are the dy-
namical equations of the spacecraft, and initial and final boundary conditions,
the problem can be treated with the TPBVP. The initial boundary conditions of
the problem are the position and velocity of the spacecraft in a Geostationary
Earth Orbit (GEO), and the final boundary conditions are the position and ve-
locity of the spacecraft in a Low-Lunar Orbit (LLO). Therefore, given that the
end point is constrained and the time of flight is free (and must be minimized),
one can realize that we are dealing with a problem with free terminal time and
fixed end point (Section 1.3.4). In order to apply the optimal control theory to
this problem, firstly the differential equations must be defined, which are the
dynamical equations from the Earth-to-Moon-Sun-spacecraft system.

14



Chapter 2

Dynamical model

The dynamical model adopted for this study is a Restricted Four-Body Problem
(RFBP) perturbed by the solar radiation pressure. The four bodies involved are
the spacecraft (s/c), the Earth, the Moon and the Sun. The restriction consists in
the fact that the s/c does not affect the motion of the other three bodies. Further-
more, such motion is assumed to be a prioriknown. The pressure exerted by the
solar radiation on the s/c constitutes a non-conservative perturbation and plays
the role of the propulsion system since it is exploited to drive the sail from an
initial geocentric orbit towards the Moon. The motion of the s/c is studied in an
Earth-centered inertial frame. In this chapter we define the RFBP. Section 2.1
is dedicated to the definition of reference frames and related transformations.
Section 2.2 illustrates the solar sail model and the acceleration produced by the
solar radiation pressure. Sections 2.3-2.5 describe the gravitational accelera-
tions acting on the s/c, whereas Section 2.6 deals with the double cone model
employed to take care of the solar eclipses. Finally, Section 2.7 presents the
system of equations that govern the motion of the s/c and a study of the variation
of each acceleration as a function of the height.

15
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2.1 Reference frames

2.1.1 The geocentric equatorial reference frame (GEQ)

The origin of GEQ (Fig. 2.1) is the center of mass of the Earth. GEQ is based on
the Earth’s Mean Equator and Equinox at 12:00 Terrestrial Time on 1 January
2000. The z-axis is aligned with the mean equinox, the z-axis is aligned with
the Earth’s spin axis or celestial North Pole. The y-axis is rotated by 90° East
about the celestial equator.

Spacecraft
g o]

[¥s1, Y51, E51)

Earth mass center

Figure 2.1: Representation of the GEQ reference frame!'9l.

2.1.2 The body-fixed reference frame

We shall indicate this reference frame (see Fig. 2.2 and?) by the names of its
axes, i.e., xp, y, and z,. The origin is set at the center of mass of the s/c and the
orientation is determined by the direction of thrust: y, is defined parallel to the
vector normal to the solar sail (see later) and, consequently, to the thrust; x; is
orthogonal to y, in the plane of the thrust direction; eventually, z, = x;, X y,.

2.1.3 Transformation from the body-fixed reference frame to GEQ

The equations of motion of the s/c shall be expressed in GEQ, but the thrust on
the sail is oriented according to the normal to the sail (see Sect. 2.2) and hence

16
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X (\ Pitch
—l}
v

Roll

AR\ Central
vy  Body

Figure 2.2: The body-fixed reference frame.

it is expressed in the body-fixed reference frame. The transformation required
to change from body-fixed to GEQ consists in two rotations. In particular (see
Fig. 2.3),

e a rotation around the z;,-axis by the angle —u (pitch) between the orbital
plane and the thrust direction;

e arotation around the new z-axis (called z;) by the angle — (yaw) between
the velocity of the spacecraft and the thrust direction (this angle belongs
to the orbital plane).

As a whole,
cos®y —siny 0 1 0 0
Ryoayontw = | siney  cosyp 0 |- | 0 cosp —sinp | . (2.1)
0 01 0 sinpg  cosp

Eventually, the overall transformation from body-fixed to GEQ is represented by
Ryoa2ontw - 1t shall be employed, for example, to express the thrust Fgp of the

17
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X1 = Xp

Figure 2.3: Rotation from the body-frame to NTW.

solar radiation pressure in GEQ:

Fspe cosy —siny 0 1 0 0
Fspy | = | sing  cos¢p 0 -] 0 cosp —sinp | Fsrp, (2:2)
Fsp, 0 01 0 sinpg  cosp
where
Fsrp = Fsrpn, (2:3)

n being the normal to the sail, parallel to the y,-axis (see Sect. 2.2).

2.2 The solar sail model

The photons of the solar radiation transfer momentum to a surface, thus exerting
a pressure on it. The solar radiation pressure Psy at a distance r from the Sun

is
| Pop = 22 <@>2 — 4563 <@>2 al (2.4)

c \r r/ m?2’
S, being the solar constant (here 1368 W/m?), c the speed of light in vacuum
and r( the astronomical unit (1 AU). When impinging upon a large surface, the
resulting force can be used to cause displacements, i.e., to propell a s/c. This is
the principle of solar sails. Following®l, different levels of simplification for the
optical characteristics of a solar sail result in different models for the magnitude
and direction of the force acting on the sail:

18
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¢ |deal Reflection Model (IRM): the surface is ideally reflective.

e Non-Perfect Reflection Model (NPRM): sophisticated model that takes into
account six optical coefficients of the solar sail film, each of which will be
further explained later.

e Simplified Non-Perfect Reflection Model (SNPRM): pseudo-ideal model
where the optical properties of the NPRM are simplified into a single coef-
ficient.

In the IRM the force Fsrp applied by the photons incident at an angle a with the
normal to a solar sail of area A is given by

Fsrp = (QPSRA cos? a) n, (2.5)

as shown in Fig. 2.4.

The NPRM (Fig. 2.5) parametrizes the optical behaviour of the sail film by the
optical coefficient set {p, s, ¢, &, By, By}, where p is the reflection coefficient,
s is the specular reflection factor, ¢, and ¢, are the emission coefficients of
the front and back side, respectively, and B; and B, are the non-Lambertian
coefficients of the front and back side, respectively. For example, the optical
coefficients for a solar sail with a highly reflective aluminum-coated front side
and with a highly emissive chromium-coated back side are: p = 0.88, s = 0.94,
e; = 0.05, ¢, = 0.55, By = 0.79, B, = 0.55. In this case force has the following
expression:

Fsrp = 2PsgAcosa[(ay cos o + az) n — agsin at] (2.6)

with t the vector tangent to the sail and a4, a, and a3 the derived optical coeffi-
cients:

1
ap = 5(1 + 5p)7 (27)
1 Efo — By
— = _ —p) L= 7 2.
ay 5 | Bl —=s)p+(1—p) e e (2.8)
1
as = 5(1 — 5p). (2.9)

Defining ¢, = a; cos a4 ag, 1, = azsina and ¢ = /¢ + ? allows to rewrite the
magnitude of the force as follows

Fsrp = (2PspAcosa) 1. (2.10)
19
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According to the SNPRM, s = 1 and ¢;B; = ¢,5,, which yields
Fsrp = PspAcosa[(1+ p)cosan — (1 — p)sinat]. (2.11)

The SNRPM reduces to the IRM when p = 1.

e, i t
’do?'i’ab,, o
> F.
n SRP
P T
1 %) “.
A =
‘é‘\e(.

sail

Figure 2.4: Ideal Reflection Model.

" sun-line

sail

Figure 2.5: Non-Prefect Reflection Model: m is parallel to Fsrp, 0 is the angle between
the direction of sunlight and Fsrp, and ¢ is the angle between n and Fspp.

The parameter called characteristic acceleration a.. is the acceleration imparted
to a solar sail that is orthogonal (o = 0°) to the direction of sunlight at 1 AU. For

the IRM 0P A
o rpy = — 2 (2.12)
m

whereas for the NPRM

2PSRA((11 + CLQ)

Qe NPRM = m . (2-1 3)

Defining the reflection efficiency 7., as

1 B —e,B
hir =t =3[k + B -9+ (1) (LEZUR) | 2y
€f-|—6b
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allows to unify the expression of the characteristic acceleration for the three

models:
_ 2PsrAnesy

m

(2.15)

C

For example, for a solar sail with a surface area of 50 m?, n.;; =1, « = 0° at 1
AU from the Sun, Fsgp =2PsrAn.ss cos® a = 456.3 uN.

The SNPRM is implemented in the trajectory analysis here presented, since
this model is constrained to give the same characteristic acceleration modulus
as the NPRM with 7.¢. Given that the overall mass, m, of the s/c is 6 kgs,
the acceleration of the s/c due to the solar radiation pressure in the body-fixed
reference frame is

F 2Py An. s cos2
asip = —t = =0 Terf €08 @ (2.16)

m

Recalling Eq. 2.2 and coupling it with Eq. 2.16, the acceleration of the s/c in
GEQ, ASRP is:

SRz cosy —siny 0 1 0 0 0
asry | =asgp | sinyy  cosyp O [-| O cosp —sinp [-| 1 |. (2.17)
SRz 0 01 0 sinpg  cosp 0

2.3 The acceleration due to the terrestrial gravity field

In first approximation, the Earth can be treated as a homogeneous spherical
body. As such, the gravitational potential Ug, that it produces at an external
point P is the same as that due to a point with the same mass located at its
center:

Uo(P) = CMg. (2.18)

r

Here G is the gravitational constant, My is the mass of the Earth and r is the
distance of P from the center. This potential is that which gives rise to two-
body Keplerian orbits around the Earth. However, the Earth is a non-spherical,
non-homogeneous body. And the closer we are to it the more important its
deviations from sphericity and homogeneity become. The standard way to rep-
resent its potential at an external point is by the following expansion in spherical
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harmonics (122)):

GMg

r

GMp = (Re\" — ’ '
* TEZ(TE) > Pum(sin @) Spmsinm),  (2.19)
m=0

n=2

UE(P> = UE(T7 ¢7 )‘) =

1+ Z (%) P (sin @) Chyy cos mA

n=2 m=0

where r, ¢ and A are, respectively, the radial distance from the center, the lati-
tude and the longitude of P in a body-fixed equatorial reference frame, the two
series are sums over the degree n and the order m, respectively, P,,, are the
associated Legendre functions of the second kind and C,,, and S,,, are the
Stokes coefficients, functions of the mass distribution within the Earth:

cos™ ¢ dvt™

P (sin ¢) 2ol d(sin ) (sin®¢ — 1)", (2.20)
B 1 B (n—m)!
Crm = Mg(Rg)" (2= 9om) (n+m)!
X /(T’)”Pmm(sin ¢') cosmNdME, (2.21)
B 1 B (n—m)!
Som = Mg(Rg)" (2= dom) (n+m)!
X /(T’)"an(sin @) sinmNdMpg. (2.22)

Note that all the Stokes coefficients of the kind S, are null by construction,
and the same holds for (', C1; and S;; which represent the coordinates of the
centre of mass of the body (they are zero in a reference frame with origin in the
center of mass of the Earth, such as GEQ), whereas Cy, = 1.

The Stokes coefficients are measured by a wide range of terrestrial, airborne
and spacecraft techniques. Global models exist such as EGM96[2%1, EGM2008[24],
GRACE®3]. Table 2.1 lists the fully-normalized Stokes coefficients C.,,,, Sy UP
to degree n = 3 and the associated standard deviations from the EGM96 model.
The full normalization consists in multiplying each F,,, by the factor ,,,,

(n —m)!

N = \/(2 — Som) (20 + 1)

and at the same time dividing each Stokes coefficient by the same factor.

The magnitude of the Stokes coefficients decreases as n increases. In general,
the spherical harmonics decrease in magnitude as n increases and r increases.
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3

Cnm

Snm

Aénm

Ag’nm

WWWWMNDMNON = = O

WN—-0MN—2 O =00

1.000000000000E+00
0.000000000000E+00
0.000000000000E+00
-0.484165371736E-03
-0.186987635955E-09
0.243914352398E-05
0.957254173792E-06
0.202998882184E-05
0.904627768605E-06
0.721072657057E-06

0.000000000000E+00
0.000000000000E+00
0.000000000000E+00
0.000000000000E+00

0.119528012031E-08
-0.140016683654E-05
0.000000000000E+00

0.248513158716E-06
-0.619025944205E-06

0.141435626958E-05

0.00000000E+00
0.00000000E+00
0.00000000E+00
0.35610635E-10
0.10000000E-29
0.53739154E-10
0.18094237E-10
0.13965165E-09
0.10962329E-09
0.95156281E-10

0.00000000E+00
0.00000000E+00
0.00000000E+00
0.00000000E+00
0.10000000E-29
0.54353269E-10
0.00000000E+00
0.13645882E-09
0.11182866E-09
0.93285090E-10

Table 2.1: Fully-normalized EGM96 Stokes coefficients up to degree 3 and their stan-
dard deviations.

For practical applications, the series over the degree is truncated at a maximum
index N which depends on the availability of the Stokes coefficients (see later)
and must be appropriately determined on the basis of the accuracy sought and
the relative importance of the neglected terms with respect to the level of the
inaccuracies associated to other perturbations (such as atmospheric drag, solar
radiation pressure, third-body accelerations, or even relativistic corrections to
gravity) acting on the s/c.

For a trajectory starting at the radial distance of the geostationary orbit (GEO),
approximately 42000 km from the Earth center, truncating the expansion Eq. 2.19
at the second zonal harmonic is satisfactory for our purposes. The correspond-
ing potential at P looks like:

Usi(P) = Uppa(r, 6, \) = G]YE + GJYE (%)2 Py (sin ¢) Cyo. (2.24)
Upon substituting for Pyy() its expression (322 — 1)/2,
Py = %, (2.25)
and replacing C4 by the coefficient .J, (seel?®l),
Jo = —ChaV/5 = 1.08262668355 - 1072, (2.26)
Eq. 2.24 becomes
Usg(P) = Gi‘@ 1—Jy (%)2 (38““2# (2.27)
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Later on, as the s/c crosses a pre-defined boundary (see Sec. 2.7.1), the zonal
term can be neglected and Eq. 2.18 will be employed to determine the gravita-
tional acceleration due to the Earth from there to the Moon. We recall that the
second zonal harmonic describes the effect of the polar flattening of the Earth,
responsible for an axially-symmetric perturbation. Eventually, the acceleration
ap of the s/c as produced by Uy (in any of its above-listed forms) is given by

ap(P) = VUg(P). (2.28)
In particular,
GM
agp(P) = — T3Er (2.29)
and _ -
3 Re\” 5r2 — r?
eegk) e T
GMg 3 Rp\? 5r2 —r?
arp(P) = — 73 Ty = §J2 (_> Ty yr2 ’ (2.30)
_ §J @ i brz —r?
] Tz 2 2 r T 7'2 |

where use has been made of the fact that

e

2 2 2"
\/r$+ry+rz

(2.31)

sin ¢ =

2.4 The acceleration due to the lunar gravity field

The motion of the s/c in GEQ is perturbed by the lunar gravity field that, for
our purposes, can be approximated with the field generated by a point of mass
Myr.0n located at its center. The corresponding acceleration is

an (P) = GMuroon <(djTM - ;TM) , (2.32)
M M
where d, is the position vector of the Moon relative to the s/c, r;, the position
vector of the Moon in GEQ, and d,; and r,, the respective magnitude. Further-
more,
dy =ry —r. (2.33)

For the computation of Eq. 2.32 one needs to know the position of the Moon
in GEQ as a function of time. Accurate ephemerides are available through, for
example, the web site of the JPL Solar System’s Dynamics group!?”l. They can

24



Dynamical model

be retrieved in the form of osculating elements or state vectors in the preferred
reference frame at discrete time intervals. Then, such discrete data should be
interpolated to obtain a continuous representation through time. Given that our
study does not require such high accuracy, we resorted to the implementation
of approximate formulas providing mean orbital parameters for the Moon'. The
mean ecliptic orbital elements at the epoch 1 January 2000 at 12 TT are listed
in Table 2.2. The table also explains the meaning of the symbols employed.

anyo eMo WMo Mo | imo | Qo npo Tyo | Pomo | Pamo
km - ° ° ° © °/day days | years | years

384400 | 0.0554 | 318.15 | 135.27 | 5.16 | 125.08 | 13.176358 | 27.322 | 5.997 | 18.600

Table 2.2: Mean geocentric ecliptic orbital elements of the Moon at 1 January 2000, 12
TTE71, From left to right: semimajor axis, eccentricity, argument of the perigee, mean
anomaly, inclination, longitude of the ascending node, mean motion, orbital period,
period of the perigee, nodal period.

For a given time ¢, the mean anomaly M), the longitude of the ascending node
Qs and the argument of perigee w,,; are computed by the following linear rela-
tionships:

My = My + naro - 8, (2.34)
Wy = Wypo t+ PwMO - t. (236)

Then, the eccentric anomaly £, is approximated by solving Kepler’'s equation:
MM :EM—BMOSiHEM. (237)

The perifocal coordinates of the Moon in its orbital plane are:

Tpmp = CLMo(COS EM — GM()), (238)
Yvp = amor/1 — €38in Eyy, (2.39)
2vup = 0. (2.40)

'It is worthwhile emphasizing that the modular structure of the code that implements the dynamical
model allows to easily substitute this formulation with any other.
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Next, the position of the Moon in ecliptic coordinates is given by

Tmee = (coswnr cosQar — sinwys sin Qag cosi)xarp

—  (sinwas cos Qs + cosway sin Qs cos i) yarp, (2.41)
Ymee = (coswassinQar + sinwar cos Qs cos i)z rp

—  (sinwprsin Qs — coswas cos Qar cos 1) Yarp, (2.42)
ZMec = (Sinwarsinig)zip + (coswas sini)yarp. (2.43)

Eventually, a rotation around the z-axis of angle ¢ (the obliquity of the ecliptic,
equal to 23.43928° at J2000.0) yields the equatorial coordinates sought:

T = TMec (244)
Ym = YMecCOSE — Zpec sin €, (245)
ZM = YMeeSINE€ + Zpgee COSE. (2.46)

Fig. 2.6 illustrates the orbit of the Moon computed for a time interval of one year
since January 15 2014,

2.5 The acceleration due to the solar gravity field

The motion of the s/c in GEQ is perturbed by the Sun’s gravity field that, for
our purposes, can be approximated with the field generated by a point of mass
M., located at its center. The corresponding acceleration is

3

d
as(P) = GMsuy (d—ﬁ - ;) , (2.47)
S S

where rg the position vector of the Sun in GEQ, dg = rg—r is the position vector
of the Sun relative to the s/c and rg and ds the corresponding magnitudes. For
the computation of Eq. 2.47, one also needs to know the position of the Sun in
GEQ as a function of time. Accurate ephemerides can be found as well through
the web site of the JPL Solar System’s Dynamics group®®. The mean ecliptic
orbital elements of the Earth-to-Moon barycenter at the epoch 1 January 2000
at 12 TT are listed in Table 2.3. The table also explains the meaning of the
symbols employed.

. D — 245154 . , .
For a given time tg = J 36525 > 5, where JD is the Julian Ephemeris Date,

the semimajor axis ag, the eccentricity eg, the inclination g, the right ascension
of the ascending node (g, the longitude of the perihelion ws and the mean
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72000 72000 €.72000 €.72000 4.72000 1.72000
AU AU/cty 1/cty deg deg/cty deg
1.00000261 | 0.00000562 0.01671123 | -0.00004392 | -0.00001531 -0.01294668
272000 2 72000 T 72000 T7,72000 L j2000 L j2000
deg deg/cty deg deg/cty deg deg/cty
0 0 102.93768193 | 0.32327364 | 100.46457166 | 35999.37244981

Table 2.3: Mean ecliptic orbital elements of the Earth-to-Moon barycenter at 1 January
2000, 12 TT[8. From left to right and top to bottom: semimajor axis, rate of the semi-
major axis, eccentricity, rate of the eccentricity, inclination, rate of the inclination, right
ascension of the ascending node, rate of the right ascension of the ascending node,
longitude of the perihelion, rate of the longitude of the perihelion, mean longitude, rate
of the mean longitude (cty=century).

longitude Lgs of the Earth-to-Moon barycenter are computed by the following
linear relationships:

@.72000 + @.J2000 * ts,
€.72000 + €72000 * t5,
372000 + 172000 * L5,
Q72000 + Q72000 - ls,
72000 + W.72000 * T35

L 72000 + L 72000 - 5.

Therefore, the argument of the perihelion, wg, and the mean anomaly, Mg, are

computed:

wsg =

Mg =

Ls — wg,

LS — Wgs.

Then, the eccentric anomaly Eg is approximated by solving Kepler’s equation:

MS = ES — egsinEs.

(2.56)

The perifocal coordinates of the Earth-to-Moon barycenter in its orbital plane

are:

g, = ag(cosEg—eg),

ysp = agy/1—e%sinEg,

Z8p = 0.

27
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Next, the position of the Sun with reference to the Earth-to-Moon barycenter in
ecliptic coordinates is given by:

Tsee = (—coswscosQs + sinwgsinQgcosis)zsp

+ (sinwscosQg + cosws sin Qg cosis)ysp, (2.60)
Ysec = —(coswssinQsny + sinwg coss cosi)zsy

+ (sinwssinQg — coswg cos Qs cosig)ysp, (2.61)
Zsee = —(sinwassinig)zarp, — (coswassinis)yarp. (2.62)

Finally, a rotation around the z-axis of angle ¢ (the obliquity of the ecliptic, equal
to 23.43928° at J2000.0) yields the equatorial coordinates desired:

s = TSecy (263)
Ys = YSec COSE€ — Zgee SIN €, (2.64)
2§ = YSeeSIN € + Zge. COSE. (2.65)

Fig. 2.7 illustrates the orbit of the Sun computed for a time interval of one year
since January 1% 2014.

2.6 Eclipse model

2.6.1 Solar eclipses due to the Earth

There are two different ways of calculating eclipses: the cylinder model and
the double-cone model. The first one is not only much more simplified than the
latter, but it also disregards the penumbra caused by the Earth. Consequently, in
order to make the study more detailed, the best way to model the solar eclipses
caused by the Earth is with a double-cone geometry (Fig. 2.8).

Knowing the average distance between the Earth and the Sun, r¢ = 150 -
10% km, the Earth radius, Rz = 6378 km, and the Sun radius, Rg = 7 - 10° km,
all the geometry parameters inside Fig. 2.8 are obtained by the following formu-
lation:

{ Rg = (L+rg)sina | (2.66)

Rgp = Lsina

where L is the distance between the umbra cone vertex and the centre of the
Earth. Then,
(L+rs)Re = LRs, (2.67)
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which yields
rsRg 6
L=—"—"—=138-10" km. 2.68
Re _ In m (2.68)
As a result,
o =sin"! (%) = 0.26°, (2.69)

where « is the semiaperture of the umbra cone. In the same way as above,

, (2.70)

RS = (TS _Q) Sinﬁa
RE = QSinﬁa

where @ is the distance between the penumbra cone vertex and the centre of
the Earth. Then,

(rs — Q)Rp = QRs, (2.71)
which yields
TSRE 6
= 9P _135.10° km, 2.72
Q (Rp + s m (2.72)
Therefore, R
8= sin_l(aE) = 0.27°. (2.73)

where [ is the semiaperture of the penumbra cone. Finally,

h=(L+Q)tanB =1.29-10* km. (2.74)

If the s/c is on the same side as the Sun with respect to the Earth, it is not in
eclipse. Therefore, one should check if the s/c is inside the penumbra or umbra
regions in order to know whether it is in eclipse or not. In Fig. 2.8, y is the height
of the s/c on the antisun line, which is the axis of the umbra and penumbra
cones, and z is the projection of the position of the s/c on the antisun line:

T = Ugyp * I (2.75)

where uy,, is the Sun-Earth’s unit vector and r is the distance of the s/c from
the centre of the Earth. Then, the size of the penumbra cone, d; in Fig. 2.8, is
determined in the location of the s/c. Since the distance between T and U in
Fig. 2.8 is very small, d; is calculated through geometry as follows:

diy = xsinf ~xf (approximation of small angles). (2.76)
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Note that 5 ~ «, besides
_ s

rs
assuming that rg is much bigger than L. Consequently, d, (Fig. 2.8) equates
to d; and both distances are called d from now onwards. The radius of the
penumbra cone at the location of the s/c, r,, is given by:

a (2.77)

r, = Rp +d. (2.78)

Thus, if y > r,, the s/c is not in eclipse. Taking into account that the two seg-
ments indicated with d in Fig. 2.8 are equal under the approximation 5 ~ «, the
radius of the umbra cone at the location of the s/c, r, is given by:

rs =1Tp — 2d. (2.79)

As aresult, if y < r,, the s/c is in total eclipse.

If the s/c is located between r, and r,, it is in partial eclipse. In this case, one
proceeds to the computation of the circular segment of the disk of the sun that
is visible: we assume that the cut produced by the Earth’s disk is a line segment
(see Fig. 2.9).

Let us call £ the visible fraction of the angular diameter of the Sun:

_y_’rs
e=4 1" (2.80)

As a matter of fact, if y = r,, £ = 0 and the s/c is on the surface of the umbra
cone and hence in total eclipse, whereas if y = 2d + r,, £ = 1 and the s/c is
located on the surface of the penumbra cone and thus it is not in eclipse. o is
the angle indicated in Fig. 2.9:

sino = 2§ — 1. (2.81)
If £ =0 (total eclipse), 0 = —90°, whereas if ¢ = 1, 0 = +90° (no eclipse). Then,
v =m+20. (2.82)

The fraction of the visible portion is given by the area of the circular segment
subtended by ¢ (=¢/27) and the area of the triangle OAB (¢//2 + cososino)m
(here one is treating the sun’s disk as having unit radius).
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2.6.2 Solar eclipses due to the Moon

The best way to model the solar eclipses caused by the Moon is with a double-
cone geometry as well (Fig. 2.10).

Knowing the average distance between the Moon and the Sun, rg,;, the Moon
radius, R, and the Sun radius, Rg, all the geometry parameters are obtained
by the same formulation as for the Earth from Eq. 2.66 to 2.74:

rsyv R
Ly = —/——— =364232 k 2.83
M Rs — Rar 364232 km, ( )
co—1 Rm o
ap = sin — | =0.27°, (2.84)
Ly
rsy R
= ————— =363713.21 k 2.85
QM RM‘l‘RS m, ( )
By = sm—l(@):oz?a (2.86)
Qum
hy = (La + Q) tan By = 3430.39  km. (2.87)

As a result, since ay; ~ Gy and the Sun is much bigger than the Moon, all
the approximations carried out for the computation of Earth eclipses are also
considered for the Moon eclipses. Consequently, knowing that y,, is the height
of the s/c on the antisun line and x,, is the projection of the position of the s/c
on the antisun line

TM = Wsun—moon * TM—S- (288)

where u,,,—moon 1S the Sun-Moon’s unit vector and r,,_g is the distance of the
s/c from the centre of the Moon. Then, the size of the penumbra cone, d;,; in
Fig. 2.10, is determined in the location of the s/c. Since the distance between T
and U in Fig. 2.10 is very small, d;,, is calculated through geometry as follows:

diy = xpsin By ~ xSy (approximation of small angles). (2.89)

Under the approximation aforementioned, one have

ay = &, (2.90)
rsm
divy = doas = das. (2.91)

The radius of the penumbra cone at the location of the s/c, ., is given by:
pMm = RM + dM (292)
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Thus, if yar > 7,0, the s/c is not in eclipse. Taking into account that the two
segments indicated with d,, in Fig. 2.10 are equal under the approximation 3,; ~
ayy, the radius of the umbra cone at the location of the s/c, r,,/, is given by:

Tsm = Tpy — 2dag. (2.93)

As a result, if yy; < rspr, the s/c is in total eclipse. If the s/c is located between
rsm @nd r,yy, itis in partial eclipse. In this case, one proceeds to the computation
of the circular segment of the disk of the sun that is visible: we assume that the
cut produced by the Moon’s disk is a line segment (see Fig. 2.9). Let us call £
the visible fraction of the angular diameter of the Sun:

Yy—Ts

=" (2.94)

As a matter of fact, if yy; = 7,17, € = 0 and the s/c is on the surface of the umbra
cone and hence in total eclipse, whereas if y,; = 2dy + 750, € = 1 and the s/c
is located on the surface of the penumbra cone and thus it is not in eclipse. o is
the angle indicated in Fig. 2.9:

sino = 2§ — 1. (2.95)
If ¢ = 0 (total eclipse), 0 = —90°, whereas if ¢ = 1, 0 = +90° (no eclipse). Then,
Y =m+2Bu. (2.96)

The fraction of the visible portion is given by the area of the circular segment
subtended by ¢ (=¢/27) and the area of the triangle OAB (¢)/2 + cososino)m
(here one is treating the sun’s disk as having unit radius).

2.6.3 Eclipses in geocentric orbits

In theory, there are two eclipse periods for GEO throughout a whole year. These
periods happen some days before and after the fall and spring equinoxes, with a
maximum eclipse duration of 1.2 hours the same day of the equinoxes. Conse-
quently, looking into Fig. 2.11, one can see that the formulation is correct since
the peak eclipse duration also happens the 215" of March and September and
is equal to 1.2 hours.
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Now, the eclipses due to the Moon and the Earth are going to be compared
between all the dynamical model programmed in Fortran and the STK when the
s/c is located at an orbit with the following characteristics:

Perigee height: h,. = 300 km,
apogee height: h,. = 35786 km,
Inclination: i, = 28.6°.

Again, the computations are carried out throughout an entire year by means of
the code and STK. Regarding the eclipses caused by the Earth, looking into
Fig. 2.12 left, the maximum eclipse duration matches with the 21* of March
and has a maximum duration of 2.25 hours. On the other side, the minimum
happens the 20" of September with a duration of 0.4 hours. These results
are similar to the ones obtained with the code (Fig. 2.12 right). Moreover, the
duration of the eclipses computed with STK equate to the ones computed with
the code as time passes. As far as the eclipses due to the Moon are concerned,
a partial eclipse is produced the 23" of October with a maximum duration of
0.33 hours. Actually, this partial eclipse also happens with STK, but at the
same time that an Earth eclipse occurs, thus it cannot be perceived in STK.

2.7 Equations of motion of the spacecraft

The motion of the spacecraft is determined by the forces described in the previ-
ous sections. An illustration of the dynamical model is shown in Fig. 2.14.

The acceleration of the satellite in the GEQ reference frame is composed by :
a:aE—l—aM—l—aS—l—f-aSR (297)
where the factor f takes into account whether the s/c is in eclipse (f = 0) or not

(f =1).

2.7.1 Variation of the accelerations as a function of height
In Fig. 2.15 it is shown the resulting orbit trajectory of a s/c subjected to a thrust

parallel to the velocity and equal to 16 m /N throughout a period of 160 days in
the dynamical model aforementioned (the spiralling in red).
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where the blue line is the Moon trajectory. All the acceleration components that
appear along all the above trajectory (and explained throughout the whole dy-
namical model chapter) are studied separately (Fig. 2.16) in order to understand
the order of magnitude of each one. The aim is to find out when the perturbation
due to Earth’s J2 parameter can be considered null. Therefore, how the differ-
ent accelerations in Eq. 2.97 vary whilst the distance of the s/c with respect to
the Earth increases are shown in Fig. 2.16.

Firstly, looking into Fig. 2.16, one can perceive that the acceleration due to the
solar radiation pressure does not vary whatsoever. One can also see that the
closer the s/c is of the Moon and the Sun, the more significant their accelera-
tion contributions become. On the other hand, it is easy to understand that the
further the s/c is from the Earth, the less noticeable the acceleration due to it’s
gravity field is. Therefore, it can be concluded that from 1.5 - 10° km onwards,
the acceleration due to the J2 parameter is several orders of magnitude smaller
than the perturbation caused by the Moon, the Sun, Fszp and the Earth’s spher-
ical gravity field. Thus, this parameter can be completely disregarded when the
satellite reaches this distance.
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y (m) x 10"

Figure 2.6: Approximate orbit of the Moon over one year: 3D view (top), zy-projection
(middle), yz-projection (bottom). 35
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1

Figure 2.7: Approximate orbit of the Sun over one year: 3D (top), zy-projection (mid-
dle), yz-projection (bottom). 36
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Figure 2.13: Duration of Moon eclipses.
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Moon

Figure 2.14: Dynamical model in the GEQ reference frame['%,
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Figure 2.15: Trajectory for a period of 160 days,

39



Dynamical model
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Figure 2.16: Variation of the accelerations of the s/c in a trajectory throughout 160
days.
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Chapter 3

Solution of nonlinear problems

Nonlinear problems are similar to linear problems because they imply an objec-
tive function and general constraints. Nevertheless, unlike linear sytems, non-
linear systems do not satisfy the superposition principle, i.e., the output of this
system is not directly proportional to the input. Given that the output of an opti-
mal control problem is not directly proportional to the input parameters, optimal
control problems are nonlinear. In order to face the problem presented in this
dissertation, MINPACK-1 is used. MINPACK-1 includes Fortran subprograms
for the numerical solution of systems of nonlinear equations. The subroutines
used from this package are further explained later. Section 3.1 describes the
difficulties of nonlinear programming and how to increase the probability of a
successful solution. Section 3.2 explains how MINPACK-1 works and the dif-
ferent subroutines that it includes. Finally, the mathematical background of the
subroutines used to solve our problem is explained in Section 3.3.

3.1 Nonlinear models

By means of the objective function, the state, the constraints and the Hessian
matrix (), nonlinear programs find out when and where there is a local maxi-
mum or minimum inside the problem. Yet, there is no way of knowing whether it
is a global optimum or not. What is more, there can be optimum solutions any-
where in nonlinear problems: at an extreme point, along an edge or in inside
of a feasible region. To make it worse, there could be many feasible regions
that are not connected since nonlinear constraints can twist and lead to many
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feasible regions where there could be a better optimal solution than in another
region (see Fig. 3.1).

Figure 3.1: Left: feasible regions. Right: evaluation of a region.

Another distinctive feature of nonlinear programs is that different starting points
may lead to different final solutions. This happens because the algorithm chooses
a direction for searching the optimal value, and finds the best value of the ob-
jective function in that direction. This solution is inside a valley, and multiple
starting points may end up in the same solution (peak of the valley). Nonethe-
less, if the starting point is inside another valley, the final solution would be
obviously different. Therefore, the best way to solve the problem is starting
the problem from many different initial points, despite being too much time
consuming. It tends to be difficult to find a feasible starting point: in most cases,
the problem does not converge and it is required to start the program again with
another starting point. It is therefore impossible to know exactly if the model is
unfeasible if no feasible solution is found because maybe the optimal solution
is reached with another starting point. Given that equations are continuously
twisting, finding a solution that satisfies the problem may be difficult, but even if
a solution is found out, it may be violated when the algorithm moves to another
point.

Choosing an algorithm to solve the problem may be also difficult given that there
are some who work taking into account the algebraic structure of the problem
(quadratic, polynomial, etc.) and others the shape of the problem (concavity
and convexity). The main drawback is that it is often difficult to know, for exam-
ple, whether the constraint is concave or not in the region of interest. Given that
these algorithms work iteratively improving the initial guess until certain condi-
tions are met, if the way the algorithm improves the initial point is different from
another algorithm, these two may lead to different solutions.

There are some issues to bear in mind in order to increase the probability of a
succesful solution:
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e Use an existing nonlinear problem solver.

Try a simpler formulation in order to increase the efficiency.

Know the characteristics of your model before choosing a solution algo-
rithm. MINPACK-1 is used in this thesis (34).

Try to provide a good starting point. The best way is to solve a similar
problem before and use this guess to solve the real problem.

Put bounds on all variables.

Try to make the most of the solver by setting its parameters into the ones
that give the best performance.

If the reader is interested to know more about nonlinear programming, the
reader can read®” andB",

3.2 MINPACK-1

MINPACK-1 is a fortran’s package that solves nonlinear problems. MINPACK-1
finds values for x4, xs,..., x,, that solve the system of nonlinear equations formed
by n functions:

filzy, o, ooyxy) =0, 1<i<n. (3.1)

A modification of Powell’'s hybrid algorithm is used to solves the previous sys-
tem, which is further explained later. This modification has two variants: one
that requires the user to calculate the functions fi,fs,...,f, and, next, the Ja-
cobian matrix is then calculated by a forward differential approximation (1*2) or
by an updated formula of Broyden (133l); another one that requires the user to
calculate the functions f1, f>,..., f, and the Jacobian matrix:

<5fi(x)>, 1<i<n, 1<j<n. (3.2)
dx;

The main advantage of providing the Jacobian matrix is more reliability and
therefore the program is much less sensitive to functions subject to errors.
However, writing the Jacobian matrix may also lead to mistakes. Depending
on whether the Jacobian matrix is available or not and if flexibility is required,
four subroutines inside MINPACK-1 can be used (Fig. 3.2).
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I1s the Jacobian
No

‘ matrix available? T
Is flexibility Is flexibility
B T \ N
L required? ‘0’ 25 required? b re

HYBRJ [ HYBRJ1 } ] HYBRD } HYBRD1

Figure 3.2: Decision tree for systems of nonlinear equations (34).

In order to solve our problem, given that the Jacobian matrix is not written
and flexibility is always welcome, HYBRD1 subroutine is used. A mathematical
background on how this subroutine works is presented in Section 3.3. Further
information about MINPACK-1 and other subroutines can be found in[34.,

3.3 Mathematical background of MINPACK-1

A n-dimensional Euclidean space is composed by the following real n-vectors:

X1

T2

Tn

whose Euclidean norm is:
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A function vector, F(z), with domain, n, and range, m, can be denoted as:

Fi(z)
FQ(.T)

Fo()

m = n for systems of nonlinear equations. Knowing that the solution at the end
of the computations (¢s) is previously known and measured, y, and comparing
it with the result obtained from the computations, g, F is obtained:

F=y-g. (3.6)
HYBRD1 seeks a solution xx to the problem
min [||F(z)|| : zeR"], (3.7)

being expected F(zx*) = 0 for problems where m = n.

Firstly, the user provides an initial guess x = x, to the solution of the problem.
Next, the algorithm determines a correction p to x in order to decrease the
residuals of F in the new point:

XL =X + p, (38)
and begins a new iteration with x, replacing x. Since the residuals are reduced,
[F(z + p)l| < [[F(2)]]- (3.9)

The correction p depends upon a diagonal scaling matrix, D, a step bound,
A, and an approximation J of the Jacobian matrix of F at x. The first two
parameters are set internally and the Jacobian matrix J, is set by means of a
forward differential approximation to ¥’(x). So, p is computed from

min [[|f + Jpl| : |[Dp[| < A, (3.10)

which is an approximate solution to min [||F(x + p)|| : ||Dp|| < A] and where f is
the vector of residuals of F at x. It works in such a way that if the problem does
not give a suitable correction, A is decreased and J updated. Then, the problem
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is solved again and this process is repeated until there is enough reduction of
the residuals, and then x is replaced by x + p, and a new iteration starts with
the new D, A and J. If there is a solution xx such that |[D(x — xx)|| < A, x+p
is a better approximation to xx than x.

It is important to point out that the algorithm is limited by the precision of the
computations (better performance with higher precision) and the algorithm is
designed to find only local solutions.

An important issue to deal with is how the convergence works. The criterion
used is based on the estimation of the distance between the current approxima-
tion x and the current solution of the problem xx:

[|D (x — xx) || < atol||Dx * ||, (3.11)

where ztol is the tolerance required for convergence. Nonetheless, since xx is
unknown, the best criterion for the convergence of x is denoted by the following
formulation:

A < ztol||Dx = ||. (3.12)

The convergence of F cannot be considered for systems of nonlinear equations
where F(xx) = 0 is the expected result, given that ||F(x)|| < (1 + ftol)||F (xx)||
and the comparison would fail unless F(x) = 0.

In nonlinar equations, J is determined more often by an updated formula of
Broyden rather than the forward difference approximation. The main disadvan-
tage of the latter is that it requires a tolerance ¢;.,, which is 0 in HYBRD1 sub-
routine and therefore it is useless (see Section 2.4 in4 for further information).
Hence, an overview of the updated formula of Broyden is explained next.

The updated formula of Broyden depends on the current approximation of x, p
and J:

F(e +p) — Fz) = Uol F’(x+0p)d0} b, (3.13)

fulfilling J . the following equation at x + p:
J.p=F(x+p) — F(x). (3.14)
Finally, the solution of the problem

min[||J —J||D:Jp =F(z+p) —F(z)], (3.15)

46



Solution of nonlinear problems

is given by
[F(z+p) ~ F(x) - Ip] (D"Dp)"

Je =4 Dp|P

(3.16)

The reasons why the latter formula is used in the algorithm is beyond scope of
this work.

Scale invariance plays an important role in MINPACK-1. Scale invariance ap-
plies to the invariance of individual functions and it is a desirable feature for
optimization problems. Hence, one can work with either problem and obtain
equivalent results. Algorithms of nonlinear equations are scale invariant if, given
problems related by the change of scale such as

F'(z) = oF(Dyx), (3.17)
x, = Dy'xo, (3.18)

being « a positive scalar and Dy a diagonal matrix with positive entries, x and
x’ generally satisfy
x' =D 'x. (3.19)

HYBRD1 is scale invariant if, and only if, the scaling matrix satisfies:
D) = aDyD,. (3.20)

where D, and Dj are the initial scaling matrices of the respective problems
defined by F and x, and by F’ and xj, respectively. In HYBRD1 subroutine,
since it deals with nonlinear problems, the initial scaling matrix is specified by
the contents of the array DI AG and scale invariance is achieved if only Eq. 3.20
is satisfied. HYBRD1 is coded so as to never losing the scale invariance by
changing the elements that are 0 to 1 at the starting point.

Finally, all the information about HYBRD1 subroutine together with an example
is provided inf34,
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Chapter 4
Simulations Setup

In this chapter, we present the TPBVP for a trajectory from GEO to the Moon
using a sail driven by solar radiation pressure and controlled by two angles, i.e.,
the yaw angle, v, and the pitch angle, ;.. The dynamical model as presented in
Chapter 2 includes all the accelerations acting on the s/c. However, when deal-
ing with optimization problems, it is never a good idea to start the computations
with the full dynamical equations. Rather, a simplified, approximated model is
first solved and then used as initial guess for the complete model. In addition, a
good integrator should be chosen to guarantee a good orbit propagation and a
correct solution of the problem. By means of using the dynamical and conjugate
equations of the simplified model, some simulations of the resulting non-optimal
trajectory are also carried out in order to check if the results are reasonable. We
start this chapter by presenting the problem in conjunction with all the assump-
tions required to solve it (Section 4.1). Section 4.2 shows the TPBVP of the
problem stated in Section 4.1. This TPBVP is found out taking into account
the optimal control theory. Section 4.3 explains the integrator used to perform
the orbit propagation together with a detailed study of the chosen tolerance and
step size.

4.1 Statement of the problem

As far as this study is concerned, it is senseless to set a problem where all the
perturbations and forces are taken into account on the grounds that there would
be much more difficulties in the convergence of the final results. Moreover, if one
sets out a problem where all the perturbations are taken into account, it is easier
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to make mistakes in the formulation since there are much more parameters to
take into account.

Therefore, a simplified dynamical model governed by the Kepler’s law of motion
around a central body without perturbations is going to be assumed. This cen-
tral body changes depending on if the s/c is under the gravity field of the Earth
or of the Moon. Besides, the perturbation upon the s/c due to the solar radia-
tion pressure plays the role of the propulsion system. This perturbation exerted
upon a solar sail of 50 m? and with a weight, m, of 6 kg is considered to have a
constant value of 456.3 uN throughout all the study. The GEQ reference frame
is chosen for carrying out the study. As a result, the dynamical equations are
simplified into:

PF=—-—+4+ : (4.1)

where p is the gravitational parameter of either the Earth (up = 398600.4418
km3s~2) or the Moon (j3; = 4902.8000 km3s™2).

Inside the Earth-Moon system, there are five points of equilibrium (Lagrangian
points) where a third body of negligible mass compared to the other two can
remind still if its velocity is null (2%). The main reason for that is because the
gravitational forces between the three bodies cancel out at these points in an
inertial frame and, therefore, there is an equilibrium of accelerations. The La-
grangian point of interest for our problem is L1, which lies on the line between
the Earth and the Moon (see Fig. 4.1). As a result, one can design a mission
taking advantage of the L1 Lagrangian point, given that if the s/c reaches this
point with the required velocity, it can be captured by the Moon’s gravity field
more easily.

In optimal control problems, the convergence of the results becomes a serious
issue to deal with. Looking into several papers devoted to optimization of Earth-
to-Moon trajectories, such asf®®! Bl €1 and®7) or Bruce Conway’s book devoted
to trajectory optimization, 38, the convergence of the results of a problem where
the initial boundary conditions are in GEO and the final boundary conditions are
in a Low-Lunar Orbit (LLO) is almost impossible given that there are a huge
amount of computations in a trajectory of such dimensions. Consequently, the
problem is divided into two segments: one segment consists of the optimal
trajectory of the s/c from GEO until the L1 Lagrangian point, where the main
motion of the s/c is governed by the Earth’s gravity field; the other segment
consists of the optimal trajectory of the s/c from the L1 Lagrangian point until a
LLO, where the main motion of the s/c is governed by the Moon’s gravity field.
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Figure 4.1: Effective potentials in the Earth-to-Moon system.

The orbit of the Moon is computed in order to know where it is at the current
position of the s/c and, consequently, where the L1 Lagrangian point is (as it
can be seen in Section 4.2.1). Besides, the orbit of the Sun is also computed in
order to know the direction of the solar radiation pressure at the position of the
s/c.

4.2 The two-point boundary value problem

Given that the problem is going to be divided into two parts, two TPBVP are
required, one for each segment.

4.2.1 TPBVP from a GEO to the L1 Lagrangian Point

From the dynamical model, the following equations of motion are obtained:

e = U, (4.2)

I (4.3)

o= (4.4)

b, = _ue;’z . 2PspAneyy cos? (arccos (dgy - 1)) ng, (4.5)
r m

5 - _,u;z;y N QPSI:;meff cos? (arccos (dg, - n)) n, (4.6)

. _M;;"z N 2Psf:7;477€ff cos? (arccos (dg, - n)) n., (4.7)
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where dg, is the unit vector from the Sun to the s/c (ds, = (r — rg)/|r — rg|)
; Psr is the solar radiation pressure; A is the area of the solar sail; 7.y, is the
reflection efficiency of the solar sail; m is the mass of the s/c; n is the normal
direction of the solar sail in the GEQ frame:

Ny — oS (L Sin Y
n =|mn, | =| cospcosy |, (4.8)
N, sin

where ¢ and p are the yaw and pitch angle, respectively. From now on, kg, =
2PspAness
—

For our study, the optimal control problem consists in finding an optimum-time
solution. Therefore, the final time ¢, has to be minimized. Following the theory
of optimal control, a general performance index, J, can be given in terms of the
final time:

J =1t —to. (4.9)

The previous equation implies that ¢[r(t;), v(ts),ts] = 0 and Lr(t), v(¢),t] = 1.
The mass of the s/c is fixed, given that solar sails are propelled by solar radiation
pressure and not by fuel. The initial state is also fixed:

I'(t(]) = Iy, V(to) = Vp. (41 O)

Here, ry is the initial position of the s/c in GEO and vy is the velocity of the s/c
in such position.

The optimal control problem can be transformed into a TPBVP by means of the
Pontryagin’s Maximum Principle (PMP). The Hamiltonian, H, of the problem
only depends upon the equations of motion of the s/c:

el'z
H = )\rxvx + Aryvy + )\rzvz + )\vm |:_ ”TS + ksun (dSu : n)2 nw]

+ )\Uy [_% + ksun (dSu : n>2 ny:| + )\UZ [_ M;:Z + kS“” (dS” ) n)2 nzi|

+ 1, (4.11)

where A, Ay, A @nd Ay, Ay, A, are the Lagrangian multipliers (costates)
associated with the states r and v. The derivative of the costates, that are
termed Euler-Lagrange equations, are :
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Svw = ﬁf = Ny — 3‘; T (Ao + Avyry + m) Foun ot + Aty + Avarz)
Ay = gz =\ ’;;j - S’jjy (MoaTs + AugTy + Aoss) — 2ksun Moala + Aoglty + Avsiz)
Ao = gi = Ao 31:357“3 (NP 4 AuyTy + Aoat2) = 2hgun (Noalta + Aoy + Apaniz)

X {dsum)x <|I' ﬁer| (r_rslr—rsP TSZ>> (@19
Aow = —% = Ay (4.15)
Aoy = gz = Ay (4.16)
Aoy = —gvH =\ (4.17)

In order to reach the optimality condition, i—fj = 0 must be satisfied for ¢, <
t < ty, u(t) being the control parameter. The optimal n that can minimize H
is sought. Given that the term inside H (Eq. 4.11) that must be minimized is
Esun(dsy - )2 (Apanz + Ayyny + Apznz), 1 should be based on dg, and A,. The
problem at hand is illustrated in Fig. 4.2.

L4

Figure 4.2: Direction of n, dg,, and \,.
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One should notice in Fig. 4.2 that n is in the same plane as dg, and A,. In
Fig. 4.2, 5 is the angle between dg, and \,:

dg, -\,
B—arccos( ;s iy ) (4.18)

Since dg,, A\, and 5 are known, o must be minimized in order to minimize H.
Given that n only multiplies k.., in Eq. 4.11, the following is only considered
when minimizing H:

H' = keyn(dg, -n)*(A\, -n) = —d*cos?(a)\, cos(m — a — )

= —kond®\, cos®(a) cos(m — a — B), (4.19)

being n =1 and d = 1. Therefore:

OH'
oo

= —2kgmcosasinacos(m —a — B) + kg cos® asin(r — a — )

= —2sinacos(m —a — ) + cosasin(m —a — §) =0, (4.20)

where the ftrivial solution cosa = 0 is obtained when o = g Nevertheless, this
solution is meaningless. Simplifying Eq. 4.20 yields:

2tana = tan(m —a — f) = —tan(a + ), (4.21)

t t
Cotana — _Jamottanf (4.22)
1 —tanatanf
—2tana + 2tan’atan S = tana 4+ tanp, (4.23)
2tan’atanf — 3tana —tan 8 = 0, (4.24)
3+ /9 + 8tan? 8
t = ) 4.25
e 4tan [ ( )

From EqQ. 4.25, one obtains 2 possible solutions of a and their resulting conju-
gates, given that « is obtained by means of a tangent. However, these conju-
gates are excluded because the arrangement of the vectors in Fig. 4.2 would
not be achieved with them. As a result, since we are minimizing the time, the «
that gives the minimum H in Eq. 4.19 is chosen.

Once « is obtained, one should proceed to the computation of n. In order to do
this, firstly one should compute the following normal vector, norm, with \,, and
dg,:

norm = dg, X Ay, (4.26)
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v
Al
vector, r,,.-, IS computed:

where \,, =

Then, by means of dg, and norm, the following normal

Tporm = Norm X dg,. (4.27)

Finally, an « rotation of dg, and r,,,., about norm vector leads to the normal
vector of the solar sail, n:

n = dg, cos () + Tporm sin (@) . (4.28)

The s/c must reach the L1 Lagrangian Point of the Earth-to-Moon system. One
should pay attention that the Moon moves on its orbit and, given that L1 position
depends on the position of the Moon, L1 moves as well. Taking into account
the latter, the final state of the s/c can be defined by the following boundary
conditions, which must be satisfied for any feasible solution:

U1 = r(ty) — KpiTyoeon(ty) =0, (4.29)
% = V(tf) - KleMoon(tf) = O, (430)

where K, = 0.828125 and represents the fraction of the average distance be-
tween the Earth and the L1 Lagrangian Point; r...(tr) is the position of the
Moon at the final state; va.on(ty) is the velocity of the Moon at the final state.
One should know that L1’s position varies along the line between the Earth
and the Moon since the orbit of the Moon is not circular whatsoever. How-
ever, this assumption is correct for a first approximation. As a result, being
olr(ty), v(ty),ts] = 0 given that it is a minimum-time optimization problem, one
obtains the following final boundary condition:

® = v [r(ty) — KiiTaroon(ts)] + va [V(ts) — KriTaroon () Qsoon(ts)],  (4.31)

where v and v! are the chosen Lagrangian parameters to satisfy Eq. 4.29 and
Eq. 4.30. Hence, following the optimal control theory, the costates in the final
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state are:
Malty) = ], = (4.32)
Ary(ts) :gimw:%’ (4.33)
As(ty) = git:W::””’ (4.34)
&wﬂzggm:%, (4.35)
&Nﬂzgngm, (4.36)
xﬂgzgiwz@. (4.37)

Finally, considering a free time transfer, the following additional equation has to
be added:

dd
=1 Tt =0 4.38
{dt * L ’ (4.38)
where, o 5o 50
ot Tt 4.39
a ot ot (4.39)
For each equation of motion, Eq. 4.38 turns into:
5T
| TVl +1=0, (4.40)
Lot |,
.
| Ty +1=0, (4.41)
| ot ],
.
| Ty +1=0, (4.42)
Lot |,
09 MeTxf 9 B
|:E‘| . -+ Doy |:_ 7”3 - ksun (dSuff . Il) nm] + 1= 0’ (443)
0P Helyf )
{5L+”4_r3+@w“%fﬂ)%%4:& (4.44)
00 Melzf 9
|:E:| + Vs, [_ 7”3_ + ksun (dSu—f . Il) nz] +1=0. (445)

ty

o0 ,
Bt] can be considered null since ® does not depend implicitly on the time.
t

The differential Eq. 4.2- 4.7 and Eq. 4.12-4.17 are solved subject to the bound-
ary conditions of Eqg. 4.10 and Eq. 4.32-4.37, with the choice of the parameters
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v{, vl and t; available to satisfy the boundary conditions (Eq. 4.29, Eq. 4.30,
Eq. 4.38).

4.2.2 TPBVP from the L1 Lagrangian Pointto a LLO

The following equations of motion are obtained when the s/c’s motion is gov-
erned by the Moon’s potential gravity field:

To = Uy, (4.46)

Ty = Uy, (4.47)

r, = v, (4.48)

Ve = — d3 + sun( SuM'n) Ny, ( - )
M

) d

b, = —“’chlgMy + Kyun (dsanr - 0)% 1y, (4.50)
M

. drs

v, = —'uj\fl?)M + koun (dguns - 1)’ 1, (4.51)
M

where dg, is the unit vector from the Sun to the s/c (dsua = (dar—rsar)/|dar—
rsi|) ; das is the position of the s/c relative to the Moon (dy; = r — ry); rsas is
the position of the Sun relative to the Moon (rsy; = rs — ray); s is the Moon’s
gravitational parameter; Psg is the solar radiation pressure; A is the area of the
solar sail; n.s; is the reflection efficiency of the solar sail; m is the mass of the
s/c; n is the normal direction of the solar sail in the GEQ frame:

Ny — COS 1 Sin Y
n =|mn, | =| cospcosy |, (4.52)
N, sin

where ¢ and p are the yaw and pitch angle, respectively.

The optimal control problem also consists in finding an optimum-time solution
and the final time ¢, has to be minimized. Therefore, the performance index, J,
is again:

J =ty —to. (4.53)
The previous equation implies that ¢[r(t), v(ts),ts] = 0 and L[r(t), v(t),t] = 1.
The mass of the s/c is fixed, as the initial state also is:

I'(to) = KLlr]VIoon(tO)v V(tO) = KLlrMoon(tO)QMoon- (454)
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Here, t, is the final time when the s/c arrived to the L1 Lagrangian point in
segment 1 and, therefore, r(t,) and v(t,) is the position and velocity of the s/c
at L1, respectively.

The optimal control problem can be transformed into a TPBVP by means of the
PMP. The Hamiltonian, H, of the problem only depends upon the equations of
motion of the s/c:

duva
H = )\T:EUM:B + )\ryUMy + )\rvaz + )\va: |:_ MZ%M + ksun (dSuM ' Il)2 n:r:|

d dars
+ >\vy —Iu]\fi?) My + ksun (dSuM ’ Il)2 7’Lyi| + )\vz |:— /M\ZIZZSM + ksun (dSUM ' Il)2 n2:|
M M

4o, (4.55)

where A, Ay, A @nd Ay, Ay, A, are the Lagrangian multipliers (costates)
associated with the states r and v. The Euler-Lagrange equations are:

. 0H 3pnrdara
A, = — _ Amﬂ_y _ “MTM (Moaare + Moydary + Mozdarz) — 2keun
Sdare &, &,
X (/\vxnx + /\vyny + /\Uznz> (dSuM : Il)
% < Ny _ (dM—rSM) 'n(dM;v_TSMac)) (4 56)
|dM —I‘SM\ |dM —1°SM|3 ’ '
. H
/\ry = —5— = Ayy'u—M - 3”]\/[5dMy ()\wchz + /\vydMy + /\vszz) - 2ksun
ddary d3, dy,
X (/\vxnx + )‘vyny + /\Uznz> (dSuM ' Il)
(gt )l row) s
|dM _rSM| |dM —I“SM|3 ’
. H
/\TZ _ ) — )\Uz'u—M . B,UMsz (/\udeac + )\vydMy + )\vszz> — kaun
Sdars &, &,
X (Avana + Ay + Avnz) (dsuns - 1)
% ( n, _ (dM - I‘SM) "n (sz - TSMZ)> (4.58)
\dM—I‘SM\ |dM—I‘SM‘3 7
L A (4.59)
6UM$
. O0H
Aoy = — = Ay 4.60
, o = (4.60)
Aoy = — o _ N (4.61)
§UMZ

The optimal n that can minimize H is sought. Given that the term inside H
(Eq. 4.55) that must be minimized is kg, (dsuns - 1)*(Apzne + Ay + Apaniz),
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should be based on dg, and A,. The problem at hand is illustrated in Fig. 4.3.

dSu M

o
\f{ av

T
-

Figure 4.3: Direction of n, dg,s and \,.

In Fig. 4.3, 3 is the angle between dg,, and \,:

d :
B = arccos (%{AAU) . (4.62)

Since dg,, A\, and § are known, o must be minimized in order to minimize H.
Given that n only multiplies k., in Eq. 4.55, the following is only considered
when minimizing H:

H' = kon(dsuy -n)*(N, - n) = —d* cos*(a) A, cos(m — a — f3)
= —kgund* )\, cos? () cos(m — a — f3), (4.63)

being n =1 and d = 1. Therefore:

0H'

5 = —2kgum cosasinacos(m — a — B) + kg cos® asin(r — a — )
o

= —2sinacos(m —a — ) + cosasin(m —a — ) =0, (4.64)

where the trivial solution cos a = 0 is obtained when o = g Nevertheless, this
solution is again meaningless. Simplifying Eq. 4.64, one reaches the following
equation to compute « as a function of j.

3+ /9 +8tan? 3 (4.65)

tana =
4tan 3

Again, the conjugate angles of Eq. 4.65 are excluded and the chosen « is the
one that minimizes H.

Once « is obtained, one should proceed to the computation of n. In order to do
this, firstly one should compute the following normal vector, norm, with \,, and
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dSuM:
norm = dg, s X Ay, (4.66)

Aol
vector, r,,.m, IS computed:

where \,, = Then, by means of dg,); and norm, the following normal

Cporm = NOrm X dg, - (4.67)
Finally, an « rotation of dg, and r,,,,.,, about norm vector leads to n:

n = dgyns €08 () + Tpopm sin (a) . (4.68)

Taking into account that the s/c must reach a LLO, the final state of the s/c can
be defined by the following boundary conditions, which must be satisfied for any
feasible solution:

1/}1 = I'(tf) — I'LLO<tf) = 0, (469)
1/}2 = V(tf) — VLLO<tf) = 0, (470)
where r; 0 = 300 metres above the surface of the Moon and v, ;¢ is the velocity

of the s/c in such position. As a result, being ¢[r(tf), v(ts),t¢] = 0 given that it
is @ minimum-time optimization problem,

© =] [r(ty) —rrro(ty)] +vg [V(tr) = viro(ty)], (4.71)

where v and v are the chosen Lagrangian parameters to satisfy Eq. 4.69 and
Eq. 4.70. Hence, following the theory of optimal control, the costates in the final
states are:

Ara(ty) = 52;1 =Y (4.72)
Aolty) = 521 — (4.73)
As(ty) = 62(}:[2 oy, =0 (4.74)
Az(ty) = 5?);1 oy, =V (4.75)
Alty) = (ﬁy T (4.76)
Ao:(ty) = 5iiz =V (4.77)
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Finally, considering a free time transfer, the following additional equation has to
be added:

dd
Q = —_— 1 == 4.7
[ sl ] 0 (4.79)
where, dd 60 5
=4 g 4.7
it ot szt (4.79)
For each equation of motion, Eq. 4.78 turns into:
VizVrroz +1 =0, (4.80)
V1yVLLOy + 1= O, (481)
Vi:Vrro. +1 =0, (4.82)
Vog {_w - ksun (dSu]M—f : Il)2 nx:| +1= 07 (483)
TLLo
Vay |:_ MJWZ;LLO?J + ksun (dSuM—f ' 1’1)2 ny:| +1= 07 (484)
TLro
Vs, [—w + koun (dsurs—s - n)° nz] +1=0. (4.85)
TLro

The differential Eq. 4.46- 4.51 and Eq. 4.56-4.61 are solved subject to the
boundary conditions of Eq. 4.54 and Eq. 4.72-4.77, with the choice of the pa-
rameters v{, vJ and ¢, available to satisfy the boundary conditions (Eq. 4.69,
Eq. 4.70, Eq. 4.78).

4.3 Orbit propagation

In order to obtain the position and velocity of the s/c along the transfer orbit, the
s/c’s velocity and acceleration must be integrated. In order to do this, an existing
numerical integrator is used. The integrator model mainly used to solve space
trajectories is the Runge-Kutta-Fehlberg (RKF) method. Numerical methods
are used to guarantee an accurate numerical integrator. A description of the
numerical methods used by a RKF integrator applied to our problem is going to
be explained in Section 4.3.1. Nonetheless, for further information about this
method, the reader can go through!3% 140 ori41],
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4.3.1 Runge-Kutta-Fehlberg 7(8)

RKF of 8 order (RKF 7(8)) is more accurate than RKF of either 4" or 5'* order
given that it is able to update the step of the computations, h, automatically.
This step is updated in such a way that if the changes in the computations
are big, the step size becomes larger, but if these changes are small, the step
size becomes shorter. This ability to automatically modify the step is called the
embedded method.

In order to know the time discretization of the integrator, the following is used:

where t; is the time when the calculations are performed (current state of the
s/c), h is the chosen step and «, is a vector with 13 coefficients (see Ap-
pendix A).

The aim of the integrator is to create a matrix, f, with 13 columns (m = 13), each
of which includes the derivatives of the dynamical and conjugate equations.
That is to say, each column will be filled by the following differential equations:

dif = : (4.87)

where t, v, ), and A, are the equations of the TPBVP. dif changes in each
column given that x; is modified every iteration using the following formulation:

X; = X; + 6m,nhf12,m (488)
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where 3,,,, is a matrix that includes the coupling coefficients of the RKF 7(8)
(see Appendix A), n = m — 1, h is the stepsize of the integrator and x; is:

TI'
Ty

Tz

X; = : (4.89)

where r, v, A, and ), are the equations of the TPBVP.

In the first iteration, x; matches with the current state of the s/c in the transfer
orbit. Next, for m = 1, Eq. 4.87 is obtained by means of the TPBVP. Then, the
first column of fi3; is filled with Eq. 4.87. In the next iteration, for m = 2, the new
x; is obtained thanks to Eq. 4.88. Therefore, the new derivatives are obtained
by means of the TPBVP and the second column of £, , is filled with them. The
same procedure is carried out from m = 3 to m = 13 until matrix f is totally filled.

Once matrix f is obtained, two estimations of x are obtained from the 7** and
8" order of the integrator:

x; = hfcy, (4.90)
Xg = thg, (491)

being c; and cg two vectors with 13 coefficients (see Appendix A). The maximum
truncation error, e...., is obtained from both previous equations:

Cmar = X7 —Xg| = le1 ez ... en1 enn, (4.92)
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Then, the allowable truncation error, e,;..,, is Obtained by:

12
dd = ) |xs(i)], (4.94)
=1
€ ow = 140.01dd, (4.95)
Callow = 66;1101;17 496)

being ¢ a tolerance selected by the user. Finally, the updated step, 7/, is given
by:

h' = 0.9h (e“”ow) , (4.97)

emam
being 8 the order of the RKF integrator. A maximum and minimum step, 4.
and h,,;, respectively, are defined so as to guarantee that 4 is inside a reason-
able interval when carrying out the computations.

Finally, when ¢,,.. < euiow, the new state of the s/c inside the transfer orbit is
defined by xg. Then, the orbit keeps propagating until the time reaches the final
time, tf.

4.3.2 Setting the error tolerance for the integrator

If the tolerance, ¢, is very small, the computations may take an unnecessary
and probably huge amount of time; on the other hand, if € is very high, the
resulting position and velocity of the s/c may not be as accurate as if ¢ was
smaller. Consequently, an optimal value of ¢ should be found out so as to reach
an agreement between an accurate result and the time employed to perform the
computations.

In order to do this, a simplified problem is studied. The starting point of this
transfer orbit is a Geostationary Transfer Orbit (GTO) with a perigee height of
6671 meters, and the orbit is going to be propagated throughout 1 period of
the GTO (10"33™™). The thrust of the s/c is always constant and parallel to the
velocity (456.3 uN). At the end of this transfer, the variation of the position and
velocity as a function of ¢ is studied. ¢ is modified frome =1-10"°to e = 1-10713.
Fig. 4.4 shows the resulting transfer orbit throughout this period.

Fig. 4.5 and 4.6 show the variation of the position and velocity of the s/c as a
function of . When the tolerance reaches ¢ = 1 - 1077, both components of

63



Simulations setup

?
D e e s s e an s g s T o e S B B N .

- Initial GTO :
———Transterence orbit |’

y(m;

Figure 4.4: Orbit propagation for studying the tolerance.

either the position and velocity tend to an asymptotic value. The behaviour of
each component is carefully assessed:

e 1, varies from 6688768 meters to 6688772 meters. A variation of 4 meters
can be considered negligible.

e 1, varies from -351620 meters to -351500 meters. 120 meters in an orbit
can be also considered insignificant.

e v, varies from 308.32 m/s to 308.22 m/s. The total variation is 0.1 m/s,
which is very small.

e v, varies from 10130.325 m/s to almost 10130.33 m/s. A variation of 0.01
m/s is almost null.

As a result, the best tolerance to chooseise =1-10"".

64



Simulations setup

4.3.3 Setting the step size

The maximum and minimum step, h,... and h,,;,, respectively, are defined in
order to guarantee that a certain accuracy in the computations is always main-
tained. In order to do this, using the same simplified problem as in Sec. 4.3.2,
the variation of the step throughout a transfer of 20 days is studied. The result-
ing transfer orbit can be seen in Fig. 4.7.

The parabolic variation of i in Fig. 4.8 shows that, when the s/c is close again
to the perigee of the initial GTO, the required h for the integrator to perform
the computations is smaller given that the velocity of the s/c is bigger here than
when it is next to the apogee of the initial GTO. Therefore, the integrator requires
less time to perform the calculations. The further the s/c is from the Earth, the
more time the integrator requires to perform all the computations given that the
velocity of the s/c is smaller. Thus, h,,.. is taken as 400 seconds. On the other
hand, h,.;, is chosen of 10 seconds because it would be very unusual a lower
stepsize.

4.3.4 Non-dimensional units

The time that the code takes to finish all the computations is very large given
that the orbit integrator performs multiple iterations in order to propagate all
the transfer orbit of our problem. One reason why it takes so long is because
the parameters and equations are working with dimensions. As a result, an
optimum solution to decrease the time of the computations would be setting
without dimensions the position, the acceleration, the velocity, the time and the
thrust. All the previous parameters are respectively non-dimensioned with the
following:

dygy = 6378145 m, (4.98)

Gagm = 9.80655 m/s’, (4.99)

Vadm = V dadmaadm Hl/S, (4100)
d

togm = —2 (4.101)
Vadm

Fadm = MOQgdm N. (4102)
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4.3.5 Trajectory simulations from the Earth to L1

Once ¢, h,.q. and h,,;, of the integrator are established, it is time to test if the dy-
namical and conjugate equations work properly. In order to do this, the TPBVP
of the first segment (Sec. 4.2.1) is studied.

One can seein Eq. 4.25 that a and, therefore, n depend upon the initial values of
A~ and \,. Hence, the resulting orbit may vary depending on these parameters.
In order to see if the dynamical model and the TPBVP is properly coded, two
different tests with different values of A\, and )\, are carried out. The orbits are
propagated throughout 40 days.

The first orbit propagation (Fig. 4.9) is obtained with the following random values
of A, and \,:

6.2490750 —4.8332992
Ar = 0.5814762 |, A, = 1.8523355 . (4.103)
7.0112307 4.2072336

One can see in Fig. 4.9 that, with the values of Eq. 4.103, the s/C’s trajectory
is decreasing towards the Earth. A clean orbit propagation is obtained and
therefore, the code works properly.

The second orbit propagation (Fig. 4.10) is obtained with the following random
values of A\, and \,:

5.2450419 4.5592717
A= —9.8397239 |, A, = | 1.1610007 | . (4.104)
—4.0788961 9.4155392

One can see in Fig. 4.10 that, with the values of Eq. 4.104, the s/C’s trajectory is
now increasing. A clean orbit propagation is obtained and, therefore, the code
works properly.

One should bear in mind that the axes of the both figures are non-dmiensioned
with the parameters of Sec. 4.3.4.
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4.4 TPBVP solution by means of HYBRD1

The problem consists of finding which are the optimal initial A, and )\, that fulfil
the boundary conditions imposed in the TPBVP. Given that it is impossible to
know an initial approximation of A\, and \,, for the starting point of the nonlinear
problem, random numbers are going to be chosen to fill the two vectors.

Random numbers are commonly used in optimization and integration problems,
and these are randomly chosen by means of Montecarlo’s method (4?l). This
method relies on repeated random sampling to obtain numerical results and
this simulation is repeated many times in order to obtain a distribution of an
unknown probabilistic entity. The interval of the random numbers that are going
to be used for A,y and )\, in this problem is between -10 and 10.

The final time of the orbit propagation, ¢, is free and unknown. Therefore, an
approximate t¢; should be also guessed to start the computations. In order to
guess this t;, a s/c with a constant thrust of 456.3 1N parallel to the velocity is
propagated from GEO towards an approximated distance to L1 (318000 km).
One can see in Fig. 4.11 the final orbit propagation from GEO to 318000 km.
This s/c takes 297 days to reach that distance. As a result, one should take
into account that the s/c will take longer to reach L1 with a solar sail than with a
constant thrust parallel to the velocity. Looking into['%l, it has been demonstrated
that a non-optimal trajectory lasts 2.9 years to reach the Moon. Therefore,
taking into account that the trajectory is optimum in our project, ¢, is chosen
randomly between 400 days to 600 days in order to carry out the computations
with HYBRD1.

Therefore, when the compilation of the program starts, a set of 7 random num-
bers are chosen, three for )\, three for A\, and another one for t;. Then, the
main code calls HYBRD1. In order to work properly, the user must provide to
HYBRD1 a subroutine, called FCN, to calculate the residuals of the function F.
This subroutine shall be as efficient as possible, since the time spent by the
algorithm is strongly influenced by the time spent in FCN.

Inside FCN, firstly the departure point of the s/c is computed, just as the Julian
Date in order to precisely locate the Moon and the Sun at the moment of the
departure. At the starting point of the transfer orbit, the position and the velocity
of the s/c is computed, ry and vy, and these are included in conjunction with the
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random )\, and )\, into:

Xo = . (4.105)

>‘vy0
>\v20

Next, the orbit is propagated throughout the period of time t; by means of the
RKF 7(8) integrator, and, when the s/c reaches the final point, the position at
this point is compared with the position of L1, r;,, at ¢;:

Fi = ru(ty) —ra(ty), (4.106)
Fo = ryni(ty) —ry(ty), (4.107)
Fs = r.i(ty) —r.(ty). (4.108)

(4.109)

The s/c’s velocity at the end of the orbit propagation is also compared with the
required for the s/c in order to be captured by the Moon’s sphere of influence,

Vcapt-
F4 chapt(tf) — Vx(tf), (41 1 0)
F; Vyeapt (t7) — vy (L), (4.111)
F6 Vzcapt(tf) — Vz(tf) (41 1 2)
(4.113)

Finally, since it is a free time problem, the Hamiltonian, H, at the end of the
propagation must be 0:
Fr; = H(ty). (4.114)

Given that a nonlinear system with 7 inputs (A9, A, and ¢;) and 7 outputs (F) is
obtained, it can be solved with HYBRD1 without any problem. By means of the
residuals of F, by using all the mathematical background explained in Sec. 3.3,
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HYBRD1 is in charge of finding a correction p, and hence iterating with the aim
of finding an optimal solution. HYBRD1 stops working when:

e The problem has converged.

e The tolerance is too small and there is no further improvement in the ap-
proximate solution of x.

e lteration is not making good progress because the last five jacobian eval-
uations have not improved.

e lteration is not making good progress because the last ten iterations are
not improving.

Once HYBRD1 has finished, then another set of random numbers are used for
Aros Awo @nd ¢ and the procedure starts again. This procedure is repeated until
two solutions that have converged to the same result are found out in order to
reassure that this solution is correct.
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Figure 4.10: Resulting orbit of the second test.
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Chapter 5

Conclusions

The conclusions of this project are extensive, but firstly | would like to outline that
its high level of difficulty together with its high level of maths and computation
skills have helped me to learn how to deal with a real project, which might have
a future impact into the development of solar sails and missions using optimal
control.

With respect to the trajectory analysis, firstly the complete dynamical model
explained in Chapter 2 has been completely coded in Fortran 95. The s/c has
a total mass of 6 kg and its propulsion system consists in a solar sail of 50 m?.
In order to guarantee a good propagation of the orbit, several tests were carried
out in order to compute the optimum parameters for the RKF 7(8) integrator.
Once the orbit integrator worked efficiently, other tests have been carried out
in order to see how the accelerations due to the Sun, the Moon and J2, vary
as a function of the height. All these computations are performed taking into
account an ideal reflecting solar sail and a thrust that is always tangent to the
transference orbit. Inside this code, a study of the eclipses generated by the
Earth and the Moon is also included. This eclipses are computed by means of
a double-cone eclipse model.

As far as optimal control is concerned, the project has provided the reader a
good insight into how to solve optimal control problems, showing that most of
engineering problems that deal with optimitation can be solved with this method
very efficiently. Regarding the way to solve optimal control problems, the difficul-
ties and main drawbacks of nonlinear programming have also been presented.
This project sticks to the idea that MINPACK-1 is a good Fortran library that
solve nonlinear problems and can be used by anyone who understand about
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nonlinear programming. Due to its flexibility and amount of different subrou-
tines, most of nonlinear problems can be solved with this library.

The problem is simplificated in order to reach a solution more easily. When
trying to find out the TPBVP of this simplificated problem, firstly we tried to
differenciate H as a function of the pitch and yaw angles (x and 1), resulting in
the following:

0H
— = 0=Fksun (dsu- n)2 (Avz sin e sin pp — Ay costpsin p + Ay, cos 1)

+  (—Apzsine cos pr + Ay oS cos o+ Ay, sin p1) X 2kgyy, (dsy, - D)

(ry — rsg)sinpsiny — (ry, — ryy,)sinpcosty + (r, — ry;) cos p

X . (5.1)

v — r
H
(;_1/1 = 0= —kun (dgy - 1)% O 1 (Mg COS Y + Ay 5i0 1))

+  (Apesine cos pr — Ay cos 9 cos ft — Ay, sin p1) X 2Ky, (dgy - 1) cos p
" (ry — rsg)cost) + (ry — rgy) sin@/). (5.2)

lr — r

Nevertheless, since we needed 1 and v explicitly for not solving the previous
equations by means of numerical methods, we had to proceed to differenciate
H as a function of the radiation incidence angle, «. Finally, a becomes the
control parameter in the TPBVP and therefore the normal vector, n, is always
pointed towards the optimal direction in order to give the maximum thrust to the
s/c for every period of the transference orbit.

Once the dynamical equations and the conjugate equations from the TPBVP
are obtained, some tests are carried out in order to see if the code works. In
this tests, the reader can perceive that depending on the values of the initial A,
and )\, the resulting orbit is different.

Finally, it has been studied how to solve this problem by means of MINPACK-
1. 500 iterations of HYBRD1 are required in order to find which are the best
Ao and Ao and which is the minimum final time of the propagation. What is
more, as it was fairly explained in Chapter 3, MINPACK-1 needs to iterate an
undefined number of times the orbit propagation in order to reach the optimum
solution. This in conjunction with the huge amount of days (360-600 days) that
means every propagation until the L1 point concludes that the time that the code
needs to be working in order to reach the final result is very huge, maybe days.
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In addition, this project entails difficulties of high magnitudes when trying to
understand nonlinear programming and how to solve optimal control problems.
Hence, these are the main reasons why the optimal Earth-to-Moon trajectory is
out of scope of this project.

Nevertheless, our team will definitely continue working until the optimal Earth-
to-Moon trajectory is found out.
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Runge-Kutta-Fehlberg 7(8)
coefficients

The four coefficients that are used in the integrator RKF 7(8) are presented
hereunder:

am=10 2/27 1/9 1/6 5/12 1/2 5/6 1/6 2/3 1/3 1 0 1], (A1)

0 0 0 0 0 0 0 0 0 0
2/27 0 0 0 0 0 0 0 0 0

1/36  1/12 0 0 0 0 0 0 0 0

1/24 0 1/8 0 0 0 0 0 0 0

5/12 0 -—25/16 25/16 0 0 0 0 0 0

0.05 0 0 0.25 0.2 0 0 0 0 0

Bumn = | —25/108 0 0  128/108 —65/27 125/54 0 0 0 0
31/300 0 0 0 61/225  —2/9  13/900 0 0 0

2 0 0 —53/6  704/45 —107/9  67/90 3 0 0

—91/108 0 0 23/108 —976/135 311/54 —19/60 17/6 —1/12 0
2383/4100 0 0 —341/164 4496/1025 —301/82 2133/4100 45/82 45/164 18/41

3/205 0 0 0 0 —6/41  —3/205 —3/41 3/41 6/41

| —1777/4100 0 0  —341/164 4496/1025 —289/82 2193/4100 51/82 33/164 12/41

(A.2)

¢ = [41/840 00 0 0 34/105 9/35 9/35 9/280 9/280 41/840 0 0},
(A.3)

082[0 0 0 0 0 34/105 9/35 9/35 9/280 9/280 0 41/840 41/840}.
(A.4)
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Appendix B

Budget

In this section we present the budget of the Study of Earth-Moon trajectories
with solar sail propulsion project. Firstly, one should take into account that this
budget is stated as if the engineer started from zero, that is to say, buying the
computers, licenses, etc. Hence, the software and hardware used is taken into
account. Tab. B.1 shows a detailed budget, but an outline is presented next.

Nine months were spent on the project, most of them on part-time basis. This
amounts a total of 615 hours of man hours. Taking into account that the price
per hour is 15 e, the total cost of the engineering work is 9225 e¢. Power con-
sumption is also included in this budget due to the extensive processing time:
approximately 600 hours, hence the electic power consumed is 66 e. The soft-
ware and hardware employed sum up a total cost of 4123 e. As a result, the
total cost is close to 13414 e.
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Concept Quantity(h) | €/h | Cost(€)
Mission analysis

Research of missions 35 15 525
Optimal control bibliography 40 15 600
Nonlinear programming bibliography 25 15 375
Subtotal of the mission analysis 100 15 1500
Code implementation

Formulation development 100 15 1500
Implementation of the formulation into fortran 125 15 1875
MINPACK-1 application 100 15 1500
Matlab representations 40 15 600
Subtotal of code implementation 365 15 5475
Writing of the report 150 15 2250
Subtotal of worked hours 615 15 9225
Simulations

Trajectory simulations 500 0.11 55
Other tests and results 100 0.11 11
Subtotal of simulations 600 0.11 66
Hardware

PC (Intel Core 2 Quad CPU Q8400 3Gb-RAM@ 2.67GHz) 1000
MacBook Pro (2 GHz Intel core i7 8Gb-RAM) 2000
Subtotal of hardware 3000
Software

Microsoft Windows 8 (Student) 0
Matlab 8.3 R2014a (Win64) 500
Microsoft Visual Studio 2012 (Student) 0
Intel Fortran Composer XE 2013 622.57
STK 10 (Student) 0
TeXlive 2013 + Texmaker 4.1.1 0
Subtotal of software 1122.57
Total 615 13414

Table B.1: Budget of the Study of Earth-Moon trajectories with solar sail propulsion

project.
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