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Laia Garrigó Invers iii September 2014



CONTENTS

8.2 Scenario 1: Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.3 Scenario 2: Sequencing by holding . . . . . . . . . . . . . . . . . . . . . 49

8.4 Scenario 3: Sequencing by CTA . . . . . . . . . . . . . . . . . . . . . . . 50

8.5 Use Case Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9 Use Case Analysis and Results 53

9.1 Baseline Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.1.1 Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.1.2 Path stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.1.3 Holdings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.2 Baseline vs Sequencing by holding Scenarios . . . . . . . . . . . . . . . . 56

9.2.1 Delay and holdings . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9.2.2 Fuel consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9.3 Baseline vs Sequencing by CTA scenarios . . . . . . . . . . . . . . . . . 58

9.3.1 Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9.3.2 Fuel consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9.3.3 Notification Distance . . . . . . . . . . . . . . . . . . . . . . . . . 61

9.4 General Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

IV Miscellaneous 65

10 Project Planning 67

10.1 Project tasks list and description . . . . . . . . . . . . . . . . . . . . . . 67

10.2 Gantt Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

11 About Advanced Logistics Group 69

12 Possible Further Developments 70

13 Conclusions 71

Bibliography 72
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Chapter 1

Aim of the Project

The aim of this project is to develop a flexible software tool dedicated to the assessment

of new ATM procedures in terms of aircraft performance.
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Chapter 2

Scope of the Project

The development of this project will consist of the following steps:

1. State of the art identification, which includes:

− Description of the current existing software dedicated to performance anal-

ysis;

− Familiarization with the performance model that will be used for trajectory

simulations;

− Identification and selection of the available programming tools to develop

the software.

2. Development of the new software called TAMS (Trajectory Analyzer and Modi-

fication Software), which can be divided in:

− Definition of the requirements and capabilities of the tool;

− Code writing;

− Code testing and validation report.

3. Application of the new software to a case of analysis, which includes:

− Definition of the use case and hypotheses

− Implementation of the software

− Analysis of the obtained results
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Chapter 3

State of the Art

3.1 Background: EUROCONTROL and SESAR

EUROCONTROL is an international organization focused on air traffic management.

It was founded in 1960, and it is composed of 38 Member States [1].

Its objective is to promote a uniform Air Traffic Management (ATM) system leading

to safer and more economic traffic flow throughout Europe. Four specific Key Perfor-

mance Areas are currently under special monitoring and optimization according to the

European Performance Scheme Regulation (No 390/2013): safety, capacity, efficiency,

security and environment.

EUROCONTROL is also involved in research, development and validation, and has led

the definition phase of the SESAR (Single European Sky ATM Research) project. This

is a long-term program formed by almost 300 projects that intends to provide Europe

a high-performance ATM infrastructure [2].

In its definition phase, SESAR has defined the European ATM Master Plan: the basis

for the new generation of European ATM systems for 2030, a roadmap that will help

achieve more sustainable and performing aviation in Europe [3].
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The target operational concept of this modernization plan is divided in three steps:

Step 1 Time-based Operations: a synchronized European ATM system focused on

flight efficiency and predictability.

Step 2 Trajectory-based Operations: a further-evolved flight efficiency with common

4D trajectory information between partners.

Step 3 Performance-based Operations: the implementation of a European high-performance

collaborative ATM system.

3.2 CTA: Controlled Time of Arrival

The objective of the first step is to synchronize trajectory information between Air

Traffic Control (ATC) and aircrafts through the Initial 4D Trajectory Management

concept.

The purpose is to optimize the arrival traffic at an airport assigning to each aircraft

a 2D point named Metering Fix (MF) and a time constraint: the Controlled Time of

Arrival (CTA) at this MF. This improves the reliability and accuracy of the arrival

sequence.

The procedure consists of a negotiation between ATC and the corresponding aircraft

when it is situated at a certain distance from the destination airport. The arrival man-

ager (AMAN) of the airport computes a CTA taking into account the arrival sequences

of all other aircrafts and the performance capabilities.

This SESAR concept has been summited to validation mainly through simulations and

some flight tests in Europe to demonstrate its technical feasibility under nominal oper-

ations [4]. Both methods have provided positive results, and more validation exercises

are planned until 2015.
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3.3 BADA: Base of Aircraft Data

This section presents BADA, an aircraft performance model designed for use in aircraft

trajectory simulations and predictions.

It is developed and maintained by EUROCONTROL through active cooperation with

aircraft manufacturers and operating airlines.

BADA can be used for:

− trajectory simulation in the air traffic modelling and simulation tools which are

used to support R&D, validation and assessment of new Air Traffic Manage-

ment (ATM) concepts, Air Traffic Control (ATC) procedures, advanced controller

decision support tools and equipment before they are introduced into operational

service;

− trajectory prediction in the ground based operational ATM systems (Flight Data

Processing Systems) to better plan traffic flows, reduce delays, operating costs

and minimize adverse environmental impact, and

− environmental studies in terms of aircraft emissions assessments.

BADA provides two different components: model specifications and datasets.

3.3.1 BADA Model Specifications

Model Specifications are theoretical fundamentals provided in form of generic polyno-

mial expressions. They are used to calculate aircraft performance parameters.

BADA Aircraft Performance Model is based on a kinetic approach to aircraft perfor-

mance modelling, which models aircraft forces. The motion model that is used within

BADA is a so-called Total Energy Model (TEM). TEM equates the rate of work done

by forces acting on the aircraft to the rate of increase in potential and kinetic energy.

It can be considered as being a reduced point-mass model.

This model provides the necessary equations to calculate performance parameters de-

pending on the engine type, the aircraft configuration, the aircraft mass and the alti-

tude. This section offers an overview of the possibilities that the model offers. For a

more detailed description, see Annex I: User Manual for the Base of Aircraft Data.

The performance parameters that can be calculated are the following:

Laia Garrigó Invers 7 September 2014



State of the Art

• Atmospheric properties (air pressure, temperature, density and speed of sound)

as a function of altitude.

• Aircraft speed schedule as a function of altitude, aircraft type and flight phase.

This schedule is provided in the BADA airline procedure model.

• Aircraft configuration (take-off, initial climb, cruise, approach and landing) as

a function of the altitude and aircraft speed.

• Aircraft restrictions in terms of altitude and minimum/maximum speed as

a function of aircraft type and mass.

• Aerodynamic variables (lift and drag) together with required and available

thrust for all flight phases and configurations.

• Thrust Specific Fuel Consumption (TSFC) and fuel flow as a function of all

parameters previously commented.

Laia Garrigó Invers 8 September 2014



Report

3.3.2 BADA Datasets

The equations mentioned above contain several coefficients characteristics of each air-

craft type. A dataset for a given aircraft contains the specific value of this coefficients

that particularize the BADA model for an aircraft type.

To examine the format of these files and the different coefficients provided, see Annex

I: User Manual for the Base of Aircraft Data.

Figure 3.1 shows the two different components that BADA provides. The model equa-

tions in terms of general coefficients can be observed on the left, while the corresponding

coefficients for a concrete aircraft (in this case a Boeing 767-300ER) are shown on the

right.

Figure 3.1: Representation of BADA components

The version used in this project will be BADA 3.11, released on May 2013. BADA 3.11

contains aircraft models for 405 different aircraft types. As exposed in [5], these models

currently cover 99.85% of the European air traffic as specified by the EUROCONTROL

Central Flow Management Unit (CFMU).

These 405 models can be divided into directly supported models and synonym models.

In directly supported models, aircraft’s datasets have been developed using data
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sources from aircraft manufacturers. This category contains 150 aircrafts. The syn-

onym models refer to the other 255 types that are redirected to one of the directly

supported aircrafts with similar performance characteristics.

BADA database is usually updated every year, adding coefficient corrections and new

models to the database. As mentioned in Section 5.1: Program Requirements, upcoming

new versions of BADA must be easily updated into TAMS .

Figure 3.2 shows BADA traffic coverage in 2012 European air traffic according to EU-

ROCONTROL CFMU.

Figure 3.2: European air traffic statistics for 2012

The new software will use BADA as the basis for aircraft performance modelling.

3.4 SAAM: System for traffic Assignment and Analysis

at a Macroscopic level

SAAM is an integrated system developed by EUROCONTROL. It is a modelling simu-

lation tool used in the context of Airspace, Network Planning and navigation activities.

It is based on BADA as an aircraft performance model.

SAAM’s functionalities can be divided into:

− Modelling: for the design of air traffic route networks. 4D trajectories can be

generated and applied on any airspace structure.

− Simulation: provides both controller workload and sector capacity analysis for

newly designed sectors.
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Figure 3.3: SAAM’s interface

− Analysis: different sources of data can be selected for analysis and comparisons,

using graphs showing variations of airspace load, entry rate, conflict...

− Visualization: SAAM can generate time based animations.

Some of SAAM functionalities interface are shown below.

Figure 3.4: SAAM 3D
densities

Figure 3.5: SAAM Route
Traffic Queries

SAAM is used for the development of this project in two different ways:

− As a TAMS validation tool to check analysis results and compare differences,

− To visualize route trajectories and modifications performed by TAMS .

us: validacio, criteri, visualitzacio
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Chapter 4

Objectives and Motivation of the

Project

The objective of this project can be divided in two different parts: the first one is

focused on the development of a new software tool, and the second one consists of the

application of this software to assessment and evaluation.

4.1 Tool Development

This project starts with the creation of a new software tool dedicated to performance

analysis named, from now on, TAMS (Trajectory Analyzer and Modification Software).

This software must be:

flexible the tool must be adaptable to a wide range of uses, compatible with other

existing tools, and also prepared for new updates;

reliable the tool must guarantee that the information provided is accurate and vali-

dated, identifying its limitations, capabilities and precision, and

user-friendly the software must be simple and efficient, providing an intuitive and

attractive interface.
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4.1.1 Tool advantages compared to existing simulation tools

As seen in Section 3.4: SAAM: System for traffic Assignment and Analysis at a Macro-

scopic level, SAAM is an integrated system used for operational planning. It provides

a wide range of functionalities oriented to airspace design, analysis and visualization.

Although its capabilities also include performance analysis and route modelling, this

program is focused to perform route network and airspace analysis at a macroscopic

level. This fact requires to treat with large amounts of data, which is achieved at the

expense of accuracy in calculations. SAAM has also restricted to users accredited by

EUROCONTROL.

The objective of TAMS is to focus in the functionality of route analysis provided by

SAAM and enhance it, adding more flexibility to user requirements and adaptability

to user inputs, with the improvement of accuracy in the results.

Moreover, TAMS will include several functionalities that are not available in SAAM,

focused to the further application of the software to new procedures assessment.

Figure 4.1: Comparison between SAAM and TAMS future functionalities
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4.2 Tool Application

Once the tool is developed and validated, the second part of the project consists of the

application of the software.

Its purpose is to evaluate the impacts in terms of performance that new procedures

would introduce in the current airspace. Not only to analyze these impacts but also to

simulate the conditions that the procedures would cause.

More concretely, this study has focused on the effects that the implementation of the

CTA would cause at the airport of Barcelona - El Prat.

4.2.1 Tool potential users: ANSPs and Airlines

Modelling and simulation tools are a key enabler to airspace design and optimization.

TAMS would be used as a support to R&D conducting a quantitative analysis of

potential airspace changes. New airspace concepts will be validated before introduced

into operational service.

Tool potential users are Air Navigation Service Providers (ANSPs) and airlines, as an

assessment for operating planning purposes. TAMS will permit to evaluate the perfor-

mance benefits of new procedures implementation by comparing different scenarios of

application.
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Part II

Development
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Chapter 5

Software Preparation

This chapter will be focused on the steps previous to the development of the program:

the software requirements definition and the selection of the tools that will be used to

develop it.

5.1 Program Requirements

A general overview of TAMS can be observed in Figure 5.1. It will receive user inputs

indicating their requirements, and the software will perform the appropriate calcula-

tions following BADA model to provide the desired output.

Figure 5.1: General overview of TAMS operation.
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5.1.1 System capabilities

List of software technical specifications in terms of capabilities.

Identifier REQ 01.010

Requirement
The program shall be able to calculate the total length and duration
of a certain route.

Identifier REQ 01.020

Requirement
Given the trajectory data of a group of routes, the program shall be
able to calculate the fuel consumption associated to each of them and
compute the total consumption.

Identifier REQ 01.030

Requirement
Given the trajectory data of a group of routes, the program shall be
able to calculate the aircraft emissions in terms of CO2 associated to
each of them and compute the total consumption.

Identifier REQ 01.040

Requirement
The program shall be able to identify the flight envelope of each air-
craft type, which contains aircraft’s limitations in terms of altitude
and speed.

Identifier REQ 01.060

Requirement
The program shall also be able to compute the total difference of a
given variable between two different routes. These variables may refer
to speed, fuel consumption or aircraft emissions.

Identifier REQ 01.070

Requirement
The program shall provide the dependencies between a given CTA,
the trajectory data (height and remaining distance) and the speed
modifications needed in order to accomplish this CTA.

Identifier REQ 01.080

Requirement
The program shall be able to sequence a group of routes respecting
the appropriate separations and aircraft restrictions.

5.1.2 Data processing and interface requirements

List of software technical specifications in terms of data processing.
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Identifier REQ 02.010

Requirement

The system shall be able to read and store operational text files pro-
vided by BADA, which contain aircraft characteristics, dimensions
and coefficients needed in all functions previously mentioned. These
files together occupy about 5 MB of space in the BADA version that
will be used (3.11).

Identifier REQ 02.020

Requirement
The system shall be able to read and process .so6 files, which will
contain the trajectory data (aircraft position and timing) needed in
the functions mentioned above.

Identifier REQ 02.030

Requirement The system shall be prepared to use upcoming new versions of BADA.

Identifier REQ 02.040

Requirement
The system shall display the results in text files when required, e.g. a
text file with the routes resulted from the program modifications, or
a text file with all performance parameters of a specific route.

Identifier REQ 02.050

Requirement
The system shall provide an attractive and intuitive interface, allowing
the user to get access quickly to the different use cases and scenarios.

5.2 Software Environment

Once the requirements are established, it is possible to choose the appropriate tools

that will be used to fulfill them. Since the main objective of this part is to develop new

software, it is necessary to determine two aspects [6]:

the programming language , which is used to write a series of human understand-

able computer instructions that can be read and translated into machine code,

and

the Integrated Development Environment (IDE) , which brings all the program-

mer tools that are necessary to create a program (editor, compiler, linker and

debugger).

5.2.1 Programming language selection

A large number of programming languages exist nowadays (see [7]). Two different

candidates have been studied:
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C++ Language

C++ is a middle-level programming language developed by Bjarne Stroustrup starting

in 1979. It was oriented to systems programming with performance, efficiency and

flexibility of use as its design requirements. C++ has also been found useful in many

other contexts, including desktop applications and entertainment software, such as

video games [8].

According to [8, 9], the advantages and disadvantages of this language can be summa-

rized in:

Advantages:

• It is a compiled language, since it is translated to the machine‘s native language

by a program called compiler. This factor makes C++ a really fast language.

• Because of its object-oriented structure, it is well-suited for large projects since

the code can be easily reused.

• It offers an large library support.

Disadvantages:

• Since C++ is a very broad language used for very different applications, it has a

more complicated syntax compared to other languages.

VBA Language

Visual BASIC for Applications (VBA), is a computer programming language developed

by Microsoft. It allows the development of user-defined functions and the automation

of certain processes and calculations.

VBA is nowadays a standard feature of Microsoft Office products, and it allows the user

to create structured programs directly in these Office products, such as Excel, Word

and Power Point [10].

According to [9, 10], the advantages and disadvantages of this language can be sum-

marized in:

Advantages:

• It is a language relatively easy to learn, user-friendly and facilitates the use of

visual applications.
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• The final product can be distributed only by copying the original file where it has

been created, such as the Excel file.

• It offers an large library support.

Disadvantages:

• It is an interpreted language. As opposed to compiled languages, interpreted

languages are directly read and executed by the interpreter. This process leads

to run slower and less efficiently.

• The final product is not a stand-alone program, it is attached to the Excel file

where it has been created.

• Moreover, this dependence can lead to incompatibilities between Excel versions.

• Its simplicity leads to more limited functions and possibilities compared to C++.

For all these reasons previously exposed, the programming language selected for this

project is C++.

5.2.2 IDE Selection

Once the programming language is selected, it is necessary to choose the appropriate

IDE compatible with this language. Two candidates have been compared: Qt Creator

and Microsoft Visual C++.

Qt and its supporting tools are developed as an open source project. It is also a cross-

platform application, which means that can operate on multiple computer platforms

and operating systems such as Windows, Mac OS X or Linux [11].
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In this case, the decision has not been as immediate as compared to language selection.

Both environments are powerful, flexible IDEs adapted to GUI1programming [11, 13].

However, open source software and cross-platform adaptability (and also personal pref-

erence) have made Qt Creator the Integrated Development Environment chosen for this

project.

Figure 5.2: Qt and its cross-platform user experience can connect its applications to
any operating system and devices.

1Graphical User Interface, a type of interface that allows users to interact with a program through
graphical icons and visual indicators[12].
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Chapter 6

Software Functionalities

6.1 Functions Classification

The functionalities of TAMS can be divided in three different blocks, as shown in

Figure 6.1. The first one is based on route and aircraft analysis, either to obtain the

characteristics of a given route or the limitations of a particular aircraft.

The second block is focused on route modifications. As its name implies, it adjusts the

trajectory of a group of routes following the requirements introduced by the user. These

modifications have sequencing and merging purposes, and they have been created for

the Use Case application.

Finally, TAMS has one extra function called DataDownload Function. Its objective is

to download actual route trajectories to create new traffic files.

Figure 6.1: Diagram of TAMS blocks and functions
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6.2 Software input: Traffic Files

The main input of TAMS functions are traffic files. These files contain information

about the trajectory of single route or group of routes in a text format.

EUROCONTROL has developed the DDR Project (Demand Data Repository Project),

which provides airspace planners and airspace users the past European traffic demand

obtained from the CFMU, among other features. All European flights from 2011 up

to now are available for registered users acredited by EUROCONTROL. For further

details of this project, see [14].

The route information provided in these files consists of: origin and destination of the

flight, route aircraft and callsign together with the route trajectory segmented in several

parts. For each segment, the following data is presented:

− UTC time and date of the beginning and the end of the segment.

− Flight level begin and end.

− Corresponding latitude and longitude coordinates.

This information is stored in a traffic file: a text file with .so6 extension. Figure 6.2

shows a traffic file example of flight KAC102, flying from Heathrow Airport (London)

to Lyon Saint Exupery Airport (France) on January 1st 2014.

Figure 6.2: Example of the first lines of a traffic file

Each line is composed of 20 columns. The information contained in each line is shown

in Table 6.1.

Two different types of traffic files can be found in the DDR database: ”m1” traffic files

and ”m3” traffic files.

• m1 traffic files contain the last filled flight plan trajectory of the route. It

corresponds to the scheduled flight, the route that the aircraft should follow

established previous to its departure.

• m3 traffic files contain the flight plan trajectory enhanced with radar data. As

a consequence, it represents a more realistic route.
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0 Segment name 10 Date begin (yymmdd)

1 Origin 11 Date end (yymmdd)

2 Destination 12 Latitude begin (minute decimale)

3 Aircraft type (ICAO code) 13 Longitude end (minute decimale)

4 Time begin segment (hhmmss) 14 Latitude end (minute decimale)

5 Time end segment (hhmmss) 15 Longitude end (minute decimale)

6 Flight level begin segment 16 Flight ID

7 Flight level end segment 17 Sequence (line number)

8 Status 18 Segment length (NM)

9 Callsign 19 Color

Table 6.1: Components of a single traffic file line

Traffic files are also used in other modelling simulation programs such as System for

traffic Assignment & Analysis at Macroscopic level (SAAM) to model, analyze & visu-

alize route network. Figure 6.3 shows both m1 and m3 files of the flight KAC102 using

SAAM to display them.

Figure 6.3: Route visualization of the m1 file (red) and m3 file (purple) of flight
KAC102.

With this information it is possible to describe the 4D trajectory of a route. This files

will be used by TAMS to analyze routes and modify them.
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6.3 Functions Description

6.3.1 Route Analysis Function

Given a traffic file containing route trajectory data (see Section 6.2: Software input:

Traffic Files), it is possible to obtain route’s main characteristics: its length, duration,

consumed fuel, and the carbon dioxide (CO2) emitted during fuel combustion.

This analysis allows comparing two routes quantitatively, and also to evaluate the

modifications made on a single route in terms of time reduction or fuel consumption.

The Route Analysis function is the main function of TAMS , and it is used as a tool to

reflect the direct benefits of the new procedure’s implementation.

General procedure

The method used in TAMS to analyze a route will be called, from now on, as Step by

Step. This method can be summarized in three parts:

1. Route discretization: division of the route in several segments.

2. For each segment, calculation of the required variables (length, time, fuel and
CO2) based on BADA model.

3. Once the last segment has been analyzed, calculation of the final variables taking
into account the contributions of each segment.

This method can be summarized in Figure 6.4 as an example to obtain the consumed

fuel of a route. Detailed explanation of the method can be found in Annex II: TAMS

Functions.

Figure 6.4: Flow chart of Route Analysis Function
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Interface and options

The Route Analysis function is flexible and adaptable to user requirements. As seen in

Figure 6.5, several options are available once the traffic file is loaded.

First option corresponds to the analysis method. If desired, it is possible to use an-

other method to analyze routes, such as the method used by SAAM. This option is

implemented only to validate TAMS analysis (see Chapter 7: Software Validation).

Another option used for validation purposes is the possibility to maintain aircraft mass

constant during the analysis, or rather take into account mass variation caused by the

consumed fuel.

It is also possible to analyze a route only from Top Of Descent (TOD). In this

case,TAMS omits the climb and cruise parts of the flight and only evaluates aircraft

performance from TOD to landing. This option is used in the Use Case analysis (see

Chapter 8: Use Case Definition).

Finally, the output generated by TAMS can be either generic or detailed. This option

is explained further in this section.

Figure 6.5: Route Analysis Function interface

Laia Garrigó Invers 27 September 2014



Software Functionalities

Function outputs

Once the analysis is concluded, TAMS generates a text file with the results of the

analysis as shown in Figure 6.6. The information provided consists of:

− Date and time of the analysis

− Name of the traffic file analyzed with the total routes contained in it

− Method and characteristics of the analysis

− List of flights with corresponding data and results

Figure 6.6: Output of the Route Analysis Function

If desired, it is possible to obtain a detailed analysis of each route (see Figure 6.7),

containing the following information for each segment of the route:

− Initial and final flight levels

− Segment phase and configuration

− Aircraft mass and speed (TAS)

− Thrust, lift, drag, ROCD and fuel flow

− Segment and total time, distance, fuel and CO2

Figure 6.7: Detailed output of the Route Analysis Function for flight EZY62AH
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6.3.2 Flight Envelope Function

The flight envelope of an aircraft defines the combinations of speed and altitude at

which the aircraft can fly without exceeding its limitations [15].

On the one hand, the Flight Envelope Function can be used for informational purposes.

Given a certain aircraft with its corresponding mass, it is possible to obtain its flight

envelope. The user has to select:

− The aircraft of analysis. All BADA models are loaded and displayed on a list.

− If desired, it is possible to change the reference mass that BADA assigns to each

aircraft by any other mass inside aircraft capabilities.

− The required output speed: it can be shown in terms of CAS, TAS or Mach (see

Annex I, Section 3.1 to know the differences between speeds).

The interface of this function is shown in Figure 6.8.

Figure 6.8: Flight Envelope Function interface

On the other hand, this function is also used as a controller in the rest of TAMS

functions. When the software has to modify a route or assign the aircraft speed at a

particular point in time, it must be certain that the aircraft is flying inside its perfor-

mance limitations.
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General procedure

The procedure to obtain the flight envelope is summarized in Figure 6.9. Detailed

explanation can be found in Annex II: TAMS Functions.

Figure 6.9: Flow chart of Flight Envelope Function

This analysis consists on calculating, for each altitude, the minimum and maximum

speeds of the aircraft. These speeds are found applying five different restrictions on

aircraft performance:

1. Thrust Restriction: Aircraft speed is limited by the available engine thrust. This

limitation occurs when the maximum thrust available equals the required thrust.

2. Stall Restriction: Stall occurs when the wing can not provide enough lift to

maintain the aircraft in level flight, which may occur at low speed.

3. Low Speed Buffeting Limit: Aeroelastic effect that can appear because of airflow

separation exciting some parts of the aircraft.

4. Maximum operating speeds: constant CAS speed and Mach that should not be

overcame to ensure aircraft operability. Provided by the aircraft manufacturer.

5. Maximum altitude: There is a certain altitude where the lift generated by the

wing can not overcome aircraft weight to increase flight level, and an increment

in speed no longer results in an altitude raise.

Each restriction provides a candidate for the minimum and/or maximum speed. In the

case of minimum speed, the final result will be the maximum of the candidates, since

it is the most restrictive. Same procedure with maximum speed.
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Function outputs

The flight envelope of the aircraft is provided in a text file. Figure 6.10 corresponds

to the flight envelope of a Boeing 737-700 in TAS speed. The corresponding graphic is

shown in Figure 6.11, with the most limiting restriction at each altitude.

Figure 6.10: Flight Envelope Function output

This aircraft can fly until 40250 ft. At low altitudes, the stall speed is the dominant

restriction for Vmin. Since CAS stall speed is constant with altitude, TAS airspeed

increases at the aircraft gets higher. From 15000 ft to its maximum altitude, speed is

limited by buffeting.

Referring to maximum speed, at low altitudes the aircraft is limited by its maximum

operating speed (VMO). This value is a constant CAS that implies increasing TAS

with altitude, since air density decreases. Above 26000 ft, maximum operating Mach

number (MMO) becomes the dominant restriction. From 26000 ft to 36000 ft (below

tropopause) constant MMO implies decreasing TAS with altitude. Above tropopause,

since temperature remains constant, TAS has the same behaviour.

Figure 6.11: Boeing 737-700 flight envelope representation
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6.3.3 Holding Implementation Function

This function is used to simulate the second scenario of the Use Case. Given a group of

routes, this scenario simulates how all trajectories would be if the delay was absorbed

exclusively by holdings. The justification and hypotheses taken can be found in Section

8: Use Case Definition.

General procedure

The procedure to apply the holding function is summarized in Figure 6.12.

Figure 6.12: Flow chart of Holding Implementation Function

The general procedure starts with the original traffic file that the user introduces.

Flights appearing in this file are sorted by timing and queued. The program continues

calculating the separations between each flight and the required delay to accomplish

them.

With a delay associated to each aircraft, the calculation to the corresponding holdings

is straightforward. The original trajectory is finally modified.

Interface and options

The interface of the Holding Implementation Function in shown in Figure 6.13.

In addition to the traffic file with the modified trajectories, it is also possible to export a

text file named Holding Report with the delays and holdings (explained in next section).
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Figure 6.13: Holding Implementation Function interface

Function outputs

Once the calculations are done, TAMS provides two different files. The first one corre-

sponds to the modified traffic file with the necessary holdings inserted to the routes.

The second file is named Holding Report and it contains a list of each flight with the

delays and holdings associated to each flight as shown in Figure 6.14.

Figure 6.14: Holding Report example
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6.3.4 CTA Implementation Function

This function is used to simulate the third scenario of the Use Case. Given a group of

routes, this scenario simulates how all trajectories would be if the delay was absorbed

sequencing by CTA. The use of this function and hypotheses taken can be found in

Section 8: Use Case Definition.

General procedure

The procedure to apply the CTA function is summarized in Figure 6.15.

Figure 6.15: Flow chart of CTA Function

The procedure is quite similar to the previous one. Flights appearing in the input

traffic file are sorted by timing and queued. The program continues calculating the

separations between each flight and the required delay to accomplish them.

The difference between the Holding Implementation function and this one is the modi-

fication done to each route to accomplish its CTA. TAMS modifies aircraft speed from

the moment its CTA has been notified to the arriving point.

Interface and options

Once the traffic file is loaded, TAMS enables several options to implement CTA.

The notification point of the CTA (i.e. the point of the route where the aircraft is

informed of its CTA) can either be when the aircraft enters Barcelona TMA or when

it is situated at a fix distance to the airport.

Besides the output traffic file, the user can also export two different text files with

detailed information of the simulation. These documents are explained in next section.

Laia Garrigó Invers 34 September 2014



Report

Figure 6.16: CTA Implementation Function interface

Function outputs

Once the calculations are done, TAMS provides three different files:

− The first one corresponds to traffic file with the modified route trajectories.

− The second file is named CTA Report and it contains a list of each flight with

the delays and CTA associated to each flight as shown in Figure 6.17.

− Finally, a text file named CTA Modifications contains detailed information of

requirements and modifications done for each segment of the route (Figure 6.18).

Figure 6.17: CTA Report example

Figure 6.18: CTA Modifications example for one single flight
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6.3.5 DataDownload Function

This function is to create new traffic files with real-time trajectories. The necessary

information to create them is obtained from FlightRadar24, a website that provides

real-time information about flights that are airborne.

The necessity of this function together with its use in the Use Case and more details,

can be found in Section 8: Use Case Definition.

General procedure

This function connects TAMS to FlightRadar24 website, and downloads the informa-

tion displayed every certain period of time. The procedure to obtain this information

is shown in Figure 6.19.

Figure 6.19: Flow chart of the DataDownload Function

It consists of:

1. The user introduces its inputs to TAMS :

− the flights he wants to download (e.g. flights flying to Barcelona-El Prat)

− the download frequency (e.g. 15 seconds): at every download, TAMS obtains

the position and information displayed in the website. Higher frequencies
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lead to more precise traffic files.

− the total duration of the session (e.g. 4 hours).

2. Start of first download: TAMS accesses to FlightRadar24 website and gets a list

of all flights that are airborne at that moment.

3. TAMS filters the flights according to user inputs.

4. The information of the flights that accomplish user filters is stored.

5. If the 4 hour period has elapsed, create the traffic file with all information down-

loaded during the session. Else, start a new download after the 15 seconds of the

example.

Interface

Figure 6.20 shows the interface of DataDownload Function while running:

Figure 6.20: DataDownload Function interface
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Function outputs

Once the download is complete, TAMS provides a traffic file with the trajectories of

every route found during the download session.

This file is created with the same format than the traffic files from EUROCONTROL,

so the information of route trajectories can be analyzed or modified in the same way.

It is also compatible with other modelling programs like SAAM.

6.4 General Overview

Figure 6.21: Overview of TAMS ’s functions

Laia Garrigó Invers 38 September 2014



Report

Chapter 7

Software Validation

7.1 Validation Objectives

Any new software development needs to be submitted to validation phase in order to

find possible mistakes. It is an essential procedure with the final objective to ensure its

reliability.

The functionality that has been summited to a more exhaustive validation is the Route

Analysis function, because of its relevance in TAMS as well as the possibility to validate

it quantitatively. This chapter will focus on the validation of this function.

SAAM (see Section 3.4: SAAM: System for traffic Assignment and Analysis at a

Macroscopic level) will be used as a reference for the validation of TAMS . The proce-

dure will consist of analyzing several routes with both programs: TAMS (the program

to be validated) and SAAM. These two programs have different procedures to analyze

route trajectories, with distinct hypotheses and criteria. For this reason, the results

obtained with TAMS cannot be expected to be identical that the ones provided by

SAAM. The purpose of this comparison is to identify the causes of the discrepancies:

if they are caused by the difference in the analysis procedure, the discrepancy will be

justified. Otherwise the difference will be considered as an error of the software and it

will have to be rectified.
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7.2 Validation Run

7.2.1 Validation scenario

The input file in the validation process has to contain a number of representative routes

in order to ensure an exhaustive validation. It also has to be similar to the ones that will

be used in TAMS application. For these reasons, the traffic file summited to validation

will be the next one:

− Number of flights: 288

− Destination of flights: LEBL Airport

− Date: 01.01.2014

− Type of traffic file: Scheduled (m1)

− File name: 20140101 m1 LEBL

7.2.2 Different analysis procedures

So far it has been commented the Step by Step method used by TAMS together with

the BADA model. The combination of a method and a model define a technique for

the analysis.

SAAM is also based on BADA but it uses a different method to analyze routes. This

other method has been reproduced in TAMS to compare both results.

In order to justify the differences observed in route calculations, another analysis tech-

nique has been used. It is a combination of the two techniques: it uses SAAM’s analysis

method to calculate general results but instead of using SAAM’s model (which is a com-

bination between a simplified BADA model and other sources), it uses exclusively the

simplified BADA model. The usefulness of this technique will be explained below.

For a clearer view of the three techniques, see Figure ??. It reflects their corresponding

methods and models.

7.2.3 Analysis for validation

Every route in the traffic file will be summited to four different types of analysis using

the three techniques mentioned above. Those are:
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Figure 7.1: Chart relating each technique with its model and method.

− Analysis 0. With the original SAAM program.

– Program: SAAM.

– Analysis technique: SAAM’s method with SAAM’s model.

– Objective: These results will be used as the reference values.

− Analysis 1. SAAM Copy: A code simulating SAAM’s technique (both model

and method) has been implemented in TAMS .

– Program: TAMS .

– Analysis technique: SAAM’s method with SAAM’s model.

– Objective: If the results obtained with the original SAAM and the copy im-

plemented in TAMS are exactly the same, it means that SAAM’s technique

has been correctly identified.

− Analysis 2. Merged technique:

– Program: TAMS .

– Analysis technique: SAAM’s method with BADA model.

– Objective: The differences between these results compared to the ones of

Analysis 1 must be due to a discrepancy between SAAM’s aircraft models

and BADA’s.

− Analysis 3. Program’s default technique, without considering mass variations.

– Program: TAMS .

– Analysis technique: Step by step method and BADA model.

– Objective: The differences between these results and Analysis 2 results must

be due either to the simplification in the BADA model from Analysis 2 or

to the differences between Step by Step method and SAAM’s method.
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7.2.4 Possible causes of discrepancies

The possible causes that may lead to significant differences between the analysis are

explained below. When one of these causes occur in the analysis of a route, a function

has been implemented to TAMS in order to show a notification. Those functions (or

causes) are:

− Missing aircraft information in one of the models. It is possible that either

SAAM or BADA model do not have performance information about a concrete

aircraft. In this case, the comparison would not be possible.

− BADA and SAAM Performance tables are totally unrelated. It may

be possible because SAAM’s model is a combination of BADA model and other

sources. For this reason, in some cases the performance of an aircraft in SAAM

and BADA model may be unalike.

This situation would justify the discrepancies between Analysis 1 and 2. A func-

tion called comparePerformanceTables has been implemented in TAMS to iden-

tify those aircrafts with significantly different performance tables.

− Different aircraft assignation with BADA and SAAM. Not all aircrafts

have their own model, some of them are redirected to another aircraft (called

synonym) with equivalent performance characteristics. However, this assignation

may not be the same in BADA model and SAAM model.

This situation would justify the discrepancies between Analysis 1 and 2. A func-

tion called compareSynonyms has been implemented in TAMS to identify those

aircrafts with different model assignation.

− Route with cruise segment below FL30. In this case, SAAM method would

ignore the consumption and emissions of those segments. This situation would

cause discrepancies between Analysis 2 and 3. In the Route Analysis function, a

counter has been added to indicate how many segments in the route are below

FL30 in cruise configuration.

− Null Thrust Descent Coefficients in BADA model. Some aircrafts do not

have these coefficients, which are used in thrust descent calculation.

This situation would cause discrepancies between Analysis 2 and 3. In the Route

Analysis function, a function has been added to indicate if the route aircraft have

these coefficients nulls.

− Partial Route Trajectory. In case the input file proceeds from real trajectory

data, it is possible that the trajectory is not entirely defined. In other words,
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it only contains part of the route. In this case, SAAM’s method would lead to

significant errors in route calculation.

This situation would cause discrepancies between Analysis 2 and 3. In the Route

Analysis function, a function has been added to indicate how many segments of

the route belong to cruise, climb or descent configuration. These counters may

indicate if the route is not completed.

7.3 Validation Criteria

The criteria established referring to error percentages between analysis is the following:

a) Between analysis 1 and 0 (SAAM copy and SAAM original), the maximum er-

ror allowed is of 1%. Since it pretends to be an exact reproduction of SAAM

technique, only a small margin of discrepancy is accepted.

b) The percentage of error allowed in analysis 2 and 3 with respect to 0 is fo 10%.

Since these analysis use different model and/or methods, the obtained results do

not have to be identical. All other errors between 0 and 10% will be considered

acceptable.

c) In case the differences are justified with one of the functions previously mentioned,

they will not be considered as an error in the software.

Laia Garrigó Invers 43 September 2014



Software Validation

7.4 Validation Results

The four analysis previously commented have been applied to the traffic file from Jan-

uary 1st with its 288 flights, using SAAM for Analysis 0 (reference) and TAMS for

Analysis 1 to 3. Theoretically, all the discrepancies between reference results must be

justified with one of the causes explained before and the corresponding notification

should be activated.

− Analysis 1 (SAAM copy) conflictive flights : All flights reproduce identical results

with respect to SAAM original results, no conflictive flights are found.

− Analysis 2 (Merged Technique) conflictive flights :

Flight MaxError Justified Cause of discrepancy

SIA378 12% YES Significantly different performance tables

LGL35Z 13,2% YES Significantly different performance tables

VQBGA 110,1% YES Different aircraft assignation

Table 7.1: Analysis 2: Conflictive flights

− Analysis 3 (TAMS technique) conflictive flights. The first three flights are the

same ones found in Analysis 2 comparison with an extra error, since the error is

accumulated as we use a more different method from the previous one.

Flight MaxError Justified Cause of discrepancy

SIA378 12% YES Significantly different performance tables

LGL35Z 34,2% YES Significantly different performance tables

VQBGA 111,6% YES Different aircraft assignation

AFR1348 16,3% YES Different aircraft assignation

VLG7333 13,2% NO

BEY131H 13,9% YES Thrust coefficients nulls

AFR1048 16,3% YES Different aircraft assignation

Continues on next page ↪→
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Flight MaxError Justified Cause of discrepancy

AEA5454 38,1% YES Thrust coefficients nulls

YUBZZ 12,4% YES Thrust coefficients nulls

Table 7.2: Analysis 3: Conflictive flights

7.5 Validation Conclusion

The validation process performed in the previous section leads to a list of conclusions:

− SAAM analysis technique is correctly identified and represented in the TAMS ,

which means that the deduction of SAAM’s technique together with its hypothe-

ses and criteria are correct.

− 3,12% of flights in this traffic file differ between SAAM results and TAMS results,

due to the discrepancies between both analysis techniques. Since the causes of

these differences have been identified, they are not considered as an error of the

software, just a different criteria applied in the calculations.

− The number of flights which has not been possible to identify the cause of the

error represent a 0,3% of total flights. Since it is a really small percentage, it is

not considered as relevant.

− As the analysis technique distances from the original SAAM technique, errors

between results are accumulated and increased as it was expected.

With these conclusions, the validation process is considered complete.
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Chapter 8

Use Case Definition

8.1 Purpose

This part corresponds to the application of the software developed to a use case of

analysis. More concretely, the effects associated with the implementation of CTA have

been studied. The airport of analysis has been Barcelona - El Prat (LEBL). This study

has been performed with the collaboration of air traffic controllers from Gavà, who

have offered their expert advices to select the appropiate hypotheses for the analysis.

The study has been performed with the comparison of three different scenarios:

First Baseline scenario, which corresponds to the study of the current situation of Air

Traffic Management at LEBL.

Second Sequencing by holding scenario. It is a simulated scenario that pretends to

represent the worst case scenario situation.

Third Sequencing by CTA scenario. It is a simulated scenario that pretends to repre-

sent the situation at LEBL airport with the implementation of the CTA.

The comparison between scenario 2 and 1 will be used to observe the efficiency of the

LEBL airport nowadays. On the other side, the comparison between scenario 3 and 1

will be used to observe the improvements that could imply the use of sequencing by

CTA.

The days of study with their selected time slots are shown in next chapter.
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8.2 Scenario 1: Baseline

The analysis of this scenario follows the next characteristics:

− It is a non-simulated scenario

− This scenario reflects the current situation at LEBL airport: delay is absorbed

with speed adjustments, vectorings and, only in high demand situations, holdings.

− In case of light air traffic, route trajectory reductions and Continuous Descent

Operations are also applied by air traffic controllers.

− Input file: the input file for this scenario are real route trajectories downloaded

from FlightRadar24 website. Traffic files provided by EUROCONTROL are not

accurate enough to represent the holdings and vectorings of the current situation.

Instead, FlightRadar24 website displays real time information about aircraft tra-

jectories around the world with higher accuracy. For this reason, a functionality

has been added to TAMS : the possibility to connect to this website and download

the information of interest for the user in real-time and store it in a traffic file.

Figure 8.1 shows the website information transformed into a traffic file by TAMS .

− The traffic file downloaded with TAMS in the selected time window has been

analyzed with the Route Analysis function.

Figure 8.1: FlightRadar24 website (left) and traffic file downloaded by TAMS (right)
corresponding to a single route

8.3 Scenario 2: Sequencing by holding

The second scenario follows the next characteristics:
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− It is a simulated scenario

− It represents the worst case situation: delay is absorbed only with holdings, no

other modifications are applied by air traffic controllers.

− Input file: m3 file of the day of study, filtering the flights corresponding to the

selected time slot.

− Modifications: TAMS uses Holding Implementation function to introduce the

required holdings. Hypotheses:

– TAMS identifies the arrival time of each flight to TEBLA waypoint, which

is the point where the queue will be applied.

– TAMS establishes a separation time between each aircraft equivalent to a 5

NM separation (separation time will depend with the type of aircraft).

– Each flight has associated a delay depending on the separation time that

TAMS has computed for each flight. This delay will be absorbed in the

corresponding Initial Approach Fixed (IAF), characteristic of each flight.

– Holdings are performed at the IAF, starting with a Flight Level (FL) 70

altitude and leaving a vertical separation of 1000 ft between flights in case

several holdings occur simultaneously at the same IAF.

– Once the aircraft has absorbed its delay, it continues with the trajectory

established in the original traffic file until landing.

− The traffic file generated by TAMS simulating this scenario is analyzed with the

Route Analysis function.

8.4 Scenario 3: Sequencing by CTA

The last scenario is characterized by:

− It is a simulated scenario

− It represents the implementation of the CTA at LEBL airport.

− Input file: m3 file of the day of study, filtering the flights corresponding to the

selected time slot.

− Modifications:TAMS uses CTA Implementation function to introduce CTA nec-

essary modifications. Hypotheses:
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– The procedure followed by TAMS to associate a delay to each aircraft is the

same that in scenario 2.

– CTA constraint is the arrival time to TEBLA that TAMS has assigned to

each aircraft.

– To absorb delay, the aircraft reduces its speed with the necessary modifica-

tions to achieve TEBLA waypoint at the indicated time.

– The distance where the aircraft are notified of their CTA is adjustable by

the user. In the case of study this distance equals 100 NM.

– The original trajectory of the aircraft (from the m3 file) is not modified.

Route modifications only are applied in terms of speed.

− The traffic file generated by TAMS simulating this scenario is analyzed with the

Route Analysis funciton.

8.5 Use Case Hypotheses

The study has been executed according to the following general hypotheses:

− Runway configuration: RWY 25R/25L, since it is the conventional configuration

for arrivals at LEBL airport (see Figure 8.2).

− Runway maximum capacity: 40 aircrafts per hour.

− Routes have been analyzed only from TOD. Since TAMS modifies trajectories

only nearby the airport, modifications in climb or descent phases are not relevant

for this study and can contaminate the results.

Figure 8.2: Runway configuration for the use case analysis

The characteristics of the selected time slots for the study are summarized in Table 8.1.

All days have been selected randomly to study all possibilities.

Laia Garrigó Invers 51 September 2014



Use Case Definition

Number Date Day Slot Duration [min] Flights

1 04.05.2014 Sunday 19.00 - 21.00 120 30

2 05.05.2014 Monday 18.45 - 20.15 90 17

3 01.06.2014 Sunday 19.00 - 21.30 150 40

4 02.06.2014 Monday 19.00 - 21.00 120 27

5 12.06.2014 Thursday 17.00 - 21.00 240 68

6 13.07.2014 Sunday 19.00 - 22.00 180 68

7 20.07.2014 Sunday 16.10 - 20.50 280 74

8 30.07.2014 Wednesday 18.00 - 19.30 90 23

9 31.07.2014 Thursday 16.15 - 20.30 255 64

10 08.08.2014 Friday 16.15 - 21.10 295 90

TOTAL 1820 501

Table 8.1: Selected days and time slots for the study
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Chapter 9

Use Case Analysis and Results

This chapter starts with a detailed comparison between the scenarios studied. The

analysis is focused on a single day to observe the particular behavior of each flight:

Day 6 (13.07.2014), a 3 hour slot with 68 flights. It has been considered representative

since its general results are similar to the total results of the study.

Finally, an overview of the general results is done at the end of the chapter. It is

important to mention that all percentages and absolute values are referred to the descent

phase of the flight, since routes have been analyzed from TOD.

9.1 Baseline Scenario

9.1.1 Demand

The number of aircraft inside Barcelona TMA during the day of analysis have been

represented in Figure 9.1, in order to justify the results obtained in the following parts.

As it is shown, highest demand corresponds to a 20-minute peak from 20:50 to 21:20

local time with 13 aircrafts inside the TMA flying to LEBL. Lowest demand corresponds

to the end of the slot (22:00).

Figure 9.1: Number of aircrafts inside Barcelona TMA
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9.1.2 Path stretching

Real trajectories from baseline scenario have been compared with their corresponding

scheduled flight (m1) in terms of total length. Results for the day of analysis can be

found in Table 9.1.

% Path stretching Flights

[-40, -30) 1

[-30, -20) 1

[-20, -10) 6

[-10, 0) 4

[0, 10) 5

[10, 20) 19

[20, 30) 19

[30, 40] 13

Table 9.1: Percentage of path stretching in real flights compared to scheduled flights

Effectively, path stretching is commonly used: 56 flights (which corresponds to a 82 %

of all slot flights) have expanded their trajectory and 13 flights have enlarged it more

than a 30%. Flights with higher elongation and higher reduction respectively have been

represented using SAAM to observe both scheduled and real trajectories and identify

possible causes. Scheduled routes are represented in purple and real routes in green.

Figure 9.2 corresponds to a flight whose real route has been enlarged 31% with respect

to scheduled. This case exemplifies the vectoring service provided by ATC to absorb

delays. Figure 9.3 shows another flight with high enlargement. This case corresponds

to a 30% stretching and it is due to holdings.

Figure 9.2: Flight
BAW486 with 31% of
path stretching

Figure 9.3: Flight
EZY63DR with 30%
of path extension due to
holding
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On the other hand, flight with most path reduction are shown in Figure 9.4 and Figure

9.5. The last one is caused by a continuous descent applied instead of a step down

approach. Both modifications have been applied in lower demand timing.

Figure 9.4: Flight
AZA080 with 24% of
path reduction

Figure 9.5: Flight
EZY33XT with 35%
of path reduction

9.1.3 Holdings

The number of holdings during the time slot has also been computed and it is shown

in Figure 9.6. A total of 11 holdings have been observed in the 3 hour window.

Results exposed are consistent with the two demand peaks observed in Figure 9.1.

This fact confirms the hypotheses of this first scenario: holdings are executed in high

demand slots but not with high accumulations.

Figure 9.6: Number of holdings during time slot
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9.2 Baseline vs Sequencing by holding Scenarios

The Sequencing by holding scenario is analyzed and compared to baseline to observe

the benefits of the current situation in LEBL airport.

9.2.1 Delay and holdings

The first result presented is the delay assigned to each flight by TAMS to respect the

minimum separations. Flights sorted by they arrival time with its corresponding delays

are shown in Figure 9.7.

Figure 9.7: Delay per flight in Sequencing by holding scenario

It can be seen that delay increases with time, accumulating up to 42 minutes of holding.

This high delay implies that simultaneous holdings must occur at their corresponding

IAF, as it is shown in Figure 9.8. Comparing Figure 9.6 with this case, a significant

increase of holdings can be observed: from 3 in the baseline scenario to 15 simultaneous

in the sequencing by holding.

9.2.2 Fuel consumption

A comparison between baseline and sequencing by holding scenario is done in terms of

fuel consumption. All flights in baseline scenario represent high reductions in terms of

fuel consumption compared with this worst case scenario. The only exception are two

flights where no delay is applied in holding scenario, so the comparison is done directly

between original trajectories.
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Figure 9.8: Number of holdings during time slot in baseline and holding scenarios

The flight with maximum savings in baseline corresponds to 89% of fuel savings. As

expected, it is also the flight with maximum delay associated (42 minute delay).

Figure 9.9: Baseline scenario fuel savings with respect to Sequencing by holding scenario

The general results in terms of fuel consumption for this first comparison in shown in

Table 9.2:

Baseline scenario compared with Sequencing by holding

Total routes analyzed 68

Time horizon 180 min

Fuel savings 63263 kg - 75,4%

Fuel savings per flight 930 kg/flight

Fuel savings per hour 21087 kg/hour

Table 9.2: General fuel consumption comparison of the day of analysis
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9.3 Baseline vs Sequencing by CTA scenarios

The second analysis is done comparing the Baseline scenario with the Sequencing by

CTA, to observe the benefits that CTA implementation could introduce.

9.3.1 Delay

TAMS has associated a CTA to each aircraft and its corresponding delay. These delays

are significantly reduced compared to the delays of the Sequencing by holding scenario,

as shown in Figure 9.10 (maximum delay in CTA is a 4 minutes delay, compared with

the 42 minutes of the previous scenario).

Figure 9.10: Comparison of delay per flight in Sequencing by CTA and by holding
scenarios

The main difference between both flight sequencing is that in holding scenario delay

accumulates with time. If an aircraft has associated a 15 seconds delay, following the

scenario hypotheses it corresponds to a 2 minute holding, which increments the timing

separation for the next aircraft in 1min 45sec that otherwise in CTA scenario would

not be necessary. This fact makes Sequencing by CTA much more efficient in terms of

delay.

9.3.2 Fuel consumption

The distribution of the savings in fuel consumption of CTA scenario is shown in Figure

9.11. Most flights (49/65) would experience positive savings with the CTA implemen-

tation, up to a 46%. Otherwise, the rest of flights (19/65) are not benefited from this

sequencing concept, arriving to a 64% increment. This results are explained below.
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Figure 9.11: Sequencing by CTA scenario fuel savings with respect to Baseline scenario

The factors that affect fuel consumption are commented below.

1. Influence of step down approach

Flight VLG8021 is the one with higher losses with CTA in the slot analyzed. Its

trajectory is represented in Figure 9.12. The main difference observed is that the

trajectory from the simulation is following a step down approach while the real route is

performing a more continuous descent. This fact increases consumption considerably

since in cruise phase the fuel flow is higher than in descent. This difference can be

observed in Figure 9.13, where the kilograms of fuel per each segment is compared. In

the first 50 NM of the descent, the continuous descent has consumed 12 kg of fuel while

the step down approach needed 134 kg.

Figure 9.12: Flight VLG8021 descent trajectories: Scenario 3 (green) and Baseline
(blue)

It is important to mention that the 3D trajectory of the route is not modified in CTA

Implementation Function, so the consumption differences in this flight are not caused

by the CTA Implementation.

2. Speed modification

Speed reduction in descent phase does not always imply less consumption. Figure 9.14
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Figure 9.13: Consumed fuel comparison between both scenarios, flight VLG8021

shows the speed profiles of flight VLG8021 in both scenarios. It can be seen how the

CTA Implementation Function has reduced considerably the aircraft speed from 100

NM before landing. Relating this figure with Figure 9.13, fuel consumption increases

during the last part of the descent compared to the real route. This fact is caused by

the fact that descending at lower speeds, the aircraft has to start approach and landing

configurations (e.g. using slats and flaps, increase thrust) which increments drag and

therefore fuel consumption.

Figure 9.14: Speed profile comparison between both scenarios, flight VLG8021

3. Holding avoidance

The flights that get the most benefit of this CTA implementation are usually the ones

with holdings in the baseline scenario. This implementation eliminates the use of

holdings to absorb delay, since the flight arrives at the metering fix at the required

time to continue with its route.

Figure 9.15 represents both trajectories of flight WZZ202, the one with most fuel savings

in Sequencing by CTA scenario (46%).
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Figure 9.15: Flight WZZ202 descent trajectories

The combination of these three factors defines the savings or costs of the CTA scenario.

For this day of analysis, the results in terms of fuel consumption are shown in Table

9.3.

Sequencing by CTA compared to Baseline scenario

Total routes analyzed 68

Time window 180 min

Fuel savings 1784 kg - 8,6%

Fuel savings per flight 26,2 kg/flight

Fuel savings per hour 595 kg/hour

Table 9.3: General fuel consumption comparison of the day of analysis

9.3.3 Notification Distance

One last factor to analyze is the influence of the CTA notification distance. This factor

affects two aspects: aircraft speed and fuel consumption.

Since the CTA assigned to each aircraft is independent of the notification distance, if

the notification point (NP) is closer to the airport, the aircraft will be forced to reduce

its speed abruptively than for further NPs. This fact can be observed in Figure 9.16,

where two different notification distances have been compared: 70 NM and 120 NM.

Also the original speed of the aircraft (without CTA implementation) and minimum

speed are represented.
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Figure 9.16: Speed schedule variation with NP distance

Several notification distances have been applied to this day of study (at the TMA entry,

100 NM, 125 NM, 150 NM and 200 NM) to observe how the total fuel consumption

would be affected (see Figure 9.17).

Figure 9.17: Total consumed fuel as a function of NP distance
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9.4 General Results

In this section the general results of the study are summarized in terms of length, time,

fuel and CO2. Figure 9.4 shows the percentage results of savings between scenarios for

each day of the study:

. Savings Seq by CTA compared to Baseline

Date Length Time Fuel CO2 Length Time Fuel CO2

04.05.14 28.2% 37.0% 58.3% 58.3% 9.5% 7.5% 14.7% 14.7%

05.05.14 5.9% 14.8% 33.3% 33.3% 14.7% 12.1% 16.3% 16.3%

01.06.14 63.7% 67.7% 85.2% 85.2% 7.4% 10.4% 6.8% 6.8%

02.06.14 13.7% 22.9% 48.7% 48.7% 9.2% 6.2% 2.5% 2.5%

12.06.14 39.5% 47.7% 71.4% 71.4% 9.3% 6.3% -0.2% -0.2%

13.07.14 45.8% 52.9% 75.2% 75.2% 7.9% 8.7% 8.6% 8.6%

20.07.14 39.3% 41.6% 65.8% 65.8% 9.0% 17.6% 20.4% 20.4%

30.07.14 38.0% 45.5% 69.8% 69.8% 9.6% 11.2% 10.1% 10.1%

31.07.14 33.7% 40.8% 63.7% 63.7% 8.2% 9.1% 15.2% 15.2%

08.08.14 36.6% 43.3% 67.5% 67.5% 7.2 % 8.6 % 7.8% 7.8%

Table 9.4: Results of each scenario and day

Saving percentage of Baseline scenario compared to Sequencing by Holdings:

% Length % Time % Fuel % CO2

40.0 46.5 69.9 69.9

Table 9.5: Baseline scenario fuel savings for this study

Saving percentages of Sequencing by CTA compared to Baseline scenario:

% Length % Time % Fuel % CO2

8.6 10.0 10.5 10.5

Table 9.6: Sequencing by CTA scenario fuel savings for this study

Focusing into fuel consumption and CTA scenario, it is also possible to obtain the

savings in kilograms per flight and per hour:

Total routes analyzed 501

Slot 1820 min

Fuel savings 16185 kg - 10,5%

Fuel savings per flight 32.3 kg/flight

Fuel savings per hour 534 kg/hour

Table 9.7: Mean fuel consumption savings with Sequencing by CTA scenario
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Table 9.8 shows the percentage and minutes of use of both East and West configurations

at LEBL airport, from January to July 2014.

Config JAN FEB MAR APR MAY JUN JUL

West (%) 94.65 94 79.23 72.09 85.72 76.19 72.82

West (min) 28169 25266 23578 20762 25509 21943 21670

East (%) 5.35 6 20.77 27.91 14.28 23.81 27.18

East (min) 1591 1614 6182 8038 4251 6857 8090

Table 9.8: Percentages and minutes of use of West and East configurations at LEBL
airport

Since East configuration has not been analyzed in this study, the results can only be

applied to West configuration. Assuming that the same behavior as studies in the Use

case replicates regularly through the whole semester, it would lead to:

Minimum savings per year: 2544328 kg of fuel

9.5 Conclusions

The conclusions of these results can be summarized in:

− The hypotheses for the Baseline scenario were consistent with the results: most

flights enlarge their trajectory to absorb delay (82% in the day of the example),

which reduces the necessity of holdings (11 holdings in the three hour slot).

− This situation is highly efficient compared with the worst case scenario (Sequenc-

ing by holdings). Baseline scenario reduces the maximum delay in the example

day from 42 minutes to 11. This leads to a significant reduction in fuel consump-

tion, with a 69.9 % mean value in the 10 days of the study. All analyzed days

respond positively to the Baseline scenario.

− The implementation of CTA at LEBL airport could lead to a even more efficient

traffic management. According to the studied use case, this could be of the order

of 10%. Several factors are involved in the fuel consumption calculation, such as

the notification point, the type of approach and the speed reduction. The com-

bination of all them does not always imply fuel savings with the implementation

of CTA, but the mean values show a positive response.
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Part IV

Miscellaneous
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Chapter 10

Project Planning

10.1 Project tasks list and description

1. Project planning

1A Project phases definition

1B Gantt diagram elaboration

2. State of the art and documentation

2A BADA v3 capabilities: identification of BADA possibilities and specifica-

tions.

2B SAAM capabilities: identification of SAAM functions and possible applica-

tions in the software.

3. Project requirements

3A Program capabilities: definition of the required functions

3B Calculation methods: theoretical calculations previous to code programming

3C Programming language and IDE selection: analysis of different possibilities

and selection of the most suitable for the project.

4. Tool development

4A Functions description: inputs and outputs of each function.

4B Code development: code writing of the different functions

4C Validation: checking of correct structure and execution of each function.
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5. Use case implementation

5A Use case definition: hypotheses and characteristics of the case study.

5B Development of required tools: in case use case requires extra functionalities

of the software.

5C Use case analysis: analysis of the results obtained and conclusions.

6. Project drafting: writing of the corresponding documents to deliver with the

project.

10.2 Gantt Diagram

Figure 10.1: Gantt Diagram of the project
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Chapter 11

About Advanced Logistics Group

This project has been entirely developed in Advanced Logistics Group (ALG), a trans-

portation, infrastructure and logistics consultancy which offers strategic and integral

consultancy solutions.

ALG has a strong international presence, with 2000 delivered projects in more than 50

countries worldwide in the last 25 years.

Referring to the aviation sector, ALG offers consulting services such as operations,

infrastructure planning and development, or IT & technology systems. It has an ex-

tensive experience in aviation, which represents a 40% of the activity. The company

has worked for airlines and general aviation operators, airports, ANSPs and public

administrations. Its aviation team is composed by 40 aviation consultants.

In the field of Air Navigation Services, ALG has a large experience as strategic advisors

with clients including AENA, NATS or EUROCONTROL.
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Chapter 12

Possible Further Developments

TAMS is the first design of a performance analysis and modelling tool that can be

easily extended to further applications. The combination of a potent programming

language like C++, a model to simulate aircraft performance and a wide database of

almost all aircrafts flying in the European airspace, lead to a powerful tool opened to

a wide range of applications.

Referring to the functionalities that are already implemented, some improvements can

be achieved. The speed profile assigned in the Sequence by CTA scenario can be

modified to increase the fuel consumption savings, using a speed profile more similar

to the aircraft optimum speed.

It could be also studied to extend the optimization to all phases of the flight, either in

terms of optimum speed or optimum altitude to encounter the minimum fuel consump-

tion.

The study of CTA implementation can be applied equally to other procedures in phase

of validation and analysis. Some examples could be Continuous Descent Operations

(CDOs) or Continuous Climb Operations (CDAs).

Finally, the implementation of TAMS with another automated tool developed within

the same company could be studied. This other tool, ProCAD, is used for the design

of navigation procedures at the airport that could be validated using TAMS .
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Chapter 13

Conclusions

Both objectives of the project have been successfully achieved. On the one hand, TAMS

has accomplished the requirements established at the initial phase. All functionalities

have been implemented correctly, performing successfully the validation exercise.

During the development of the project new obstacles have appeared, which have evolved

to new functionalities of the program and their corresponding added value (i.e. the

DataDownload function).

TAMS has proved to be a reliable software for performance analysis, adaptable to user

requirements and compatible with other existing simulating tools.

On the other hand, the application of TAMS in the use case has lead to interesting

results. Barcelona - El Prat has been identified as an airport with efficient air traffic

management, reflected by the corresponding savings.

Finally, the study of the CTA implementation effects at LEBL airport has shown a

positive response. As a preliminary study, it supports the implementation of new ATM

procedures that will lead to a modernization of Air Traffic Management in the European

context.

The combination of a powerful programming language such as C++ with a widespread

database like BADA has resulted in a flexible and reliable software tool. TAMS can

be easily extended to the study of other new operational concepts, and be supportive

to the R&D improvements to ATM operations of the European ATM Master Plan.
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