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Abstract

F
aced with increasing network services and number of users, requests to the servers
at those sites has significally skyrocketed. Moreover, most of these servers need to
run twenty-four hours a day, 7 days a week with a high reliability and availability.

Consequently, the tremendous growth of the Internet has led the requirement of multi-
server structures in order to deal with these effectiveness issues. A much higher processing
power may be provided by a set of computational elements than by a single one, even if it
presents a powerful capacity. Additionally, the global system throughput may greatly in-
crease by using properly these architectures. However, to make an efficient server network
is a difficult task. This is the main goal of this dissertation.

Efficiency may be increased if server network works in cooperation, distributing the
load. This is known as ”load balancing”. This technique may make that network is robust
and efficient, that means, overload are avoided at the same time that system resources are
well exploited.

Assuming that all servers present a same architecture, a deterministic dynamical model
is designed and a distributed control law inspired by consensus theory is developed. In
this way, the closed-loop ensures load balancing as well as asymptomatically stability.
Moreover, thanks to decentralized control, computational load is reduced and scalability
is possible. On the other hand, an attraction domain is estimated to ensure positive rates.

The effectiveness of the distributed control is validated by simulations in Matlab &
Simulink and Network Simulator 2.

Key words: load balancing, consensus control theory, Lyapunov stability server net-
work cluster, attraction domain.
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Résumé

F
ace à l’augmentation des services de réseau et le nombre d’utilisateurs, les perfor-
mances des serveurs Web ont fortement augmenté. En effet, la plupart de ces serveurs
doivent fonctionner 24 heures par jour, 7 jours par semaine avec une grande fiabilité

et disponibilité. Par conséquent, la grande croissance de l’Internet a conduit à l’exigence
de structures multiserveurs pour faire face à ces problèmes d’efficacité. Une puissance de
traitement beaucoup plus élevé peut être fournie par un ensemble d’éléments de calcul que
par un seul, même dans le cas qu’elle présente une grande capacité. De même, le débit
du système global peut augmenter considérablement en utilisant correctement ces archi-
tectures. Cependant, pour faire un réseau de serveur efficace est une tâche difficile. C’est
l’objectif principal de ce rapport.

L’efficacité peut être augmentée si le réseau du serveur fonctionne en coopération, à
l’heure de distribuer la charge. Ceci est bien connu comme ”équilibrage de charge”. Cette
technique permet de créer un réseau robuste et efficace, c’est-à-dire, les surcharge sont
évités en même temps que les ressources du système sont utilisées de façon optimale.

En considérant que tous les serveurs présentent une même architecture, un modèle dy-
namique déterministe est conçu et un droit de contrôle distribuée inspirée par la théorie du
consensus est développée. De cette façon, la boucle fermée assure une répartition équilibrée
de la charge et assure une stabilité asymptotique. En effet, grâce à un contrôle décentralisé,
la charge de calcul est réduite et permet au système d’être scalable. D’autre part, un do-
maine d’attraction est estimé pour assurer des débits positifs.

L’efficacité du contrôle distribué est validée par des simulations en Matlab & Simulink
et Network Simulator 2.

Mots clés : équilibrage de charge, théorie du contrôle par consensus, stabilité de
Lyapunov dans un groupe de serveurs, domaine d’attraction.
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Resumen

A
nte el gran incremento de los servicios de red y del número de usuarios, la demanda
de prestaciones de los servidores web se ha multiplicado. Además, la mayoŕıa de
estos servidores deben funcionar con total disponibilidad y fiabilidad venticuatro

horas al d́ıa, siete d́ıas a la semana. Este crecimiento de Internet ha dado lugar a una nueva
estructura computacional, ”los clústeres”. Con un grupo de servidos se puede proporcionar
una potencia de procesamiento superior que con uno solo, aunque este sea muy potente.
Asimismo, usando correctamente estas arquitecturas, se puede aumentar significativamente
el rendimiento global del sistema. Sin embargo, no es tan fácil utilizar eficientemente una
red de servidores. Este es el objetivo principal de este trabajo.

Si los servidores trabajan cooperativamente distribuyendo equilibradamente la carga de
trabajo se puede incrementar notablemente la eficiencia del sistema. Esta técnica se conoce
como ”Load balancing”. El balanceo de carga permite crear una red robusta y eficiente, es
decir, asegura que no haya perdidas de paquetes (sobrecargas) además de garantizar que
los recursos del sistema se estén utilizando óptimamente.

Suponiendo que todos los servidores presentan las mismas prestaciones, se ha desarro-
llado un modelo dinámico-determinista aśı como una ley de control distribuido inspirada
en la teoŕıa de consenso. De esta manera, el lazo cerrado asegura la distribución equilibra-
da de la carga y garantiza estabilidad asintótica. Gracias a un control descentralizado, la
carga computacional se reduce y permite que el sistema sea escalable. Finalmente, se ha
llevado a cabo un estudio del dominio de atracción para garantizar que los flujos de datos
sean positivos.

Se ha validado el modelo mediante simulaciones en Matlab & Simulink y Network
Simulator 2.

Palabras clave: balanceador de carga, control por consensus, estabilidad de Lyapunov
en un clúster, dominio de atracción.
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Resum

D
avant del gran increment dels serveis de xarxa i del nombre d’usuaris, la demanda
de prestacions dels servidors web s’ha multiplicat. A més, la majoria d’aquests
servidors han de funcionar amb total disponibilitat i fiabilitat vint-i-quatre hores

al dia, set dies a la setmana. El creixement d’Internet ha introdüıt una nova estructura
computacional, ”els clústers”. Amb un grup de servidors es pot proporcionar una potència
de processament superior a la d’un de sol, encara que sigui molt potent. Utilitzant cor-
rectament aquestes estructures es pot augmentar significativament el rendiment global del
sistema. Tanmateix, no és tan fàcil utilitzar eficientment una xarxa de servidors. Aquest
és l’objectiu principal d’aquest treball.

Es pot incrementar notablement l’eficàcia del sistema si els servidors treballen coope-
rativament i distribuint equilibradament la càrrega de treball. Aquesta tècnica s’anomena
“Load balancing”. El balanceig de càrrega permet crear una xarxa robusta i eficient, és a
dir, assegura que no hi hagi pèrdues de dades (sobrecàrregues) i garanteix que els recursos
del sistema s’estiguin utilitzant òptimament.

Suposant que tots els servidors tenen les mateixes caracteŕıstiques, s’ha desenvolupat
un model dinàmic i determinista aix́ı com una llei de control distribüıt inspirada en la te-
oria de consensus. D’aquesta manera, el llaç tancat assegura la distribució equilibrada de
la càrrega i garanteix estabilitat asimptòtica. Gràcies al control descentralitzat, la càrrega
computacional disminueix i permet que el sistema sigui escalable. Finalment, s’ha procedit
a estudiar el domini d’atracció per garantir que els fluxos de dades siguin positius.

S’ha validat el model mitjançant simulacions en Matlab & Simulink i en Network Si-
mulator 2.

Paraules clau: balancejador de càrrega, control per consensus, estabilitat de Lyapunov
en un clúster, domini d’atracció.
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Chapter 1

Introduction

1.1 Dynamic load balancing in distributed systems

T
he demand for high performance computing is increasing everyday. Usually, a sin-
gle server responding to all incoming requests for a website might not be able to
handle all the incoming traffic. As a result, pages will load very slowly and users

will have to wait for a long time to view website or users will not view the site-web, at
all, due to losses of requests. The computational power offered by a single computer is not
sufficient for treating all internet requests. In addition, this issue may be a problem for
many investigations areas [14]. Interconnecting a set of distributed computational elements
through a shared network, and employing them in a effective way, makes possible to achieve
performance not ordinarily reachable on a single computational element [5]. Actually, a
large-size server network cluster has power comparable to a supercomputer, but a much
lower cost. Moreover, there is another advantage: the server scalability improvement, what
makes the network more reliable. That is why nowadays their use is heavily increasing.

A typical distributed system will have a number of servers working independently with
each other. Each server contains an initial load, which represents the requests to be treated,
and each one may have a different processing capacity. For robustness and security reasons,
requests are evenly, fairly and effectively distributed over all processors, as a common par-
allel computer architecture [27]. For instance, no single server must be overburdened while
others remain in a idle state. Any strategy for load distribution is called load balancing.

Load balancing can be performed through a decentralised controller. For this purpose,
knowledge of the state of each individual server is needed. This knowledge is used to
judiciously assign incoming computational requests to suited server, according to some
load-balancing policy. Nevertheless, several features of the parallel computation environ-
ment should be captured. These include:

1. Incoming requests and throughputs.

2. Workload awaiting processing at each server (queue size).

1



3. Performance of each servers.

4. Computational requirements of each workload component.

5. Delays and bandwidth constraints of servers and network components involved in the
exchange of workloads.

6. Delays imposed by servers and the network on the exchange of measurements and
information.

In large-scale distributed computing systems where servers are physically or virtually
far from each other, there are a number of inherent time-delay factor that can seriously
change the expected performance of load balancing [13], [12]. In this work we are not going
to consider delays. This issue will be take into account in a future work.

Another issue related to load-balancing is the variation of processing information in
each server. The processor capacity may be different from each other in architecture,
operation system, CPU speed, memory size, and available disk space. The load-balancing
problem also needs to consider fault-tolerance and fault-recovery (consensus theory) [23].
This is another expected work. With all these factors taken into account, load-balancing
can be generalized into four basic steps:

Figure 1.1: Load balancing steps.

Several taxonomies of dynamic load balancing strategies exist. This is the approach
used in most of the existing load balancing solutions [16]. A comparison of various deter-

2



ministic methods is given in [30]. A discussion between static and dynamic load balancing
policies may be found in [15].

1.2 Contributions of this dissertation

This work proposes a strategy for load-balancing in a server network cluster. A determin-
istic dynamical model and a distributed control law inspired by consensus theory has been
performed. Its approach relies on a relevant dynamic model following deterministic control
theory specifically in the theory of multi-server systems [21].

Some assumptions are performed in order to propose a first solution. For instance, it is
assumed that all server present the same architecture. Likewise, request and throughput
are considered known and constant. The work is focused on an average model. Network
present an uniform bandwidth. Moreover, delays and server heterogeneity architecture is
not taken into account in this dissertation, as mentioned before.

The main goal in this report is not only to ensure that there is not losses of requests,
but also that the queues of each sever asymptomatically converge to an average level.
The model is shown to be globally stable if the rate-limiter is not saturated. Therefore,
the system must remain within the boundaries of a pre-specified admissible ”safe” region.
Otherwise, we lose global stability. Then, an estimation of an attraction domain has been
performed in order to estimate a set of initial conditions which ensures that we are in the
logical environment, for instance, negative traffics are avoided. Stability of dynamic model
is guaranteed by using Lyapunov’s direct method. A power comparison has been realised
to prove that the model implementation do not suppose a high increment of energy con-
sumption (green networking).

Finally, the load balancing control has been tested in a multi-paradigm numerical com-
puting environment (Matlab & Simulink) and in a discrete event network simulator (Net-
work Simulator 2). The traffic flow in Matlab-Simulink’s simulations was considered to be
as water flow. The servers were assumed to be water tanks. On the other hand, a Constant
Bit Rate (CBR) flown and the Internet protocol Use Datagram Protocol (UDP) were used
in NS2’s simulations.

1.3 Presentation of LAAS-CNRS

Laboratory for Analysis and Architecture of Systems1 is a research unit of the Centre
National de la Recherche Scientifique2, the French National Centre for Scientific Research.

1LAAS’ oficial website: http://www.laas.fr/
2CNRS’ oficial website: http://www.cnrs.fr/
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LAAS conducts pluridisciplinary research in the areas of Information and Systems Sciences
and Technologies, within four domains:

• Micro and Nano Technologies

• Automatic control, Optimization and Signal Processing

• Critical Information Systems

• Robotics and Artificial Intelligence

LAAS’ research activities fall within the domain of Information Sciences and Technolo-
gies and address complex systems (artificial and sometimes natural) generally heteroge-
neous, and at different scales, to devise theories, methodologies and tools for modeling,
designing and controlling them. Research, innovation and transfer are tied. The lab has a
history of strong relationships with industry and works in a large number of collaborative
projects with international, national and regional industries of all size. LAAS was one of
the 20 first “Carnot Institutes”3 labeled in 2006.

It employs more than 650 persons (202 researchers and faculty members, 262 PhD
students, 68 post-docs and visiting researchers, 122 engineers and technicians and a larg
number of stagiaires). It divulge 900 annual publications per year and its annual opera-
tional budget is around 16 Me.

1.3.1 Team SARA

The laboratory is structured in 21 research teams, defined by a set of scientific subjects
and objectives and composed by researchers pursuing them. SARA research team’s work
addresses new generation networks and communicating systems and their applications.
Our research studies address the design, the planning, the deployment management and
the monitoring. Our contributions include the development of methods, models and tools
as well as the design and implementation of architectures, protocols and services. In
particular, our research work focuses on analysis, performance evaluation, control and
prototyping of software and communication platforms. The research challenges mainly
include mastering:

• Modeling and controlling scalable dynamic systems

• Designing systems with strong requirements (QoS, security) and highly constrained
(energy, resources)

• Handling continuity of services and their quality in mobile networks

• Elaborating dynamic and autonomous service-oriented and components-based soft-
ware architectures

3Oficial Carnot Institutes’ website: http://www.instituts-carnot.eu/fr/
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1.4 Organization of the dissertation

The report is organized as follows. In Chapter 2, it is presented an overview of existing load-
balancing strategies. A briefly discussing on the different schemes is illustrated. Chapter
3 exposes the problem formulation. It is also introduced the dynamic load balancing
model. Then, a description of the control law based on a consensus algorithm is proposed
in Chapter 4. Chapter 5 presents the simulations results in Matlab - Simulink and in
Network Simulator 2. Finally, Chapter 6 draws some conclusions and future work.

5



Chapter 2

State of art. Load balancing policies

I
n this chapter, a brief overview of the different taxonomies of load-balancing policies
are defined, followed by an overview of previous work in the field, see for instance [6]. In
the last section is described a brief introduction of the distributed control performed

in the LAAS-CNRS.

2.1 Brief overview of taxonomy of load balancing poli-

cies

Figure 2.1: Load balancing taxonomy.
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Firstly, a discussion about different taxonomies is given in the first part of this chapter.
Figure 2.1 shows the organisation of the different load-balancing schemes that are described
below.

2.1.1 Static versus dynamic

Static load distribution, also known as deterministic scheduling, assigns a given job to a
fixed server or node. Every time the system is restarted, the same binding task-server
(allocation of a task to the same server) is used without considering changes that may
occur during the system’s lifetime. Moreover, static load distribution may also characterize
the strategy used at runtime, in the sense that it may not result in the same task-server
assignment, but assigns the newly arrived jobs in a sequential or fixed fashion. For example,
using a simple static strategy, jobs can be assigned to nodes in a round-robin fashion so that
each server executes approximately the same number of tasks. Dynamic load-balancing
takes into account that system parameters may not be known beforehand and therefore
using a fixed or static scheme will eventually produce poor results. A dynamic strategy is
usually executed several times and may reassign a previously scheduled job to a new node
based on the current dynamics of the system environment.

2.1.2 Distributed versus centralized

This division usually falls under the dynamic load-balancing scheme where a natural ques-
tion arises about where the decision is made. Centralized policies store global information
at a central location and use this information to make scheduling decisions using the com-
puting and storage resources of one or more servers. This scheme is best suited for systems
where an individual server’s state information can be easily collected by a central station
at little cost, and new jobs arriving at this centralized location are then redirected to sub-
sequent nodes. The main drawback of this scheme is that it has a single point of failure.
In distributed scheduling, the state information is distributed among the nodes that are
responsible in managing their own resources or allocating tasks residing in their queues to
other servers. In some cases, the scheme allows idle servers to assign tasks to themselves
at runtime by accessing a shared global queue. Note that failures occurring at a particular
node will remain localized and may not affect the global operation of the system. Another
scheme that fits between the two types above is the hierarchical one where selected nodes
are responsible for providing task scheduling to a group of servers. The nodes are arranged
in a tree and the selected nodes are roots of the subtree domains.

2.1.3 Local versus global

Local and global load-balancing fall under the distributed scheme since a centralized scheme
should always act globally. In a local load-balancing scheduling, each server polls other
servers in its neighbourhood and uses this local information to decide upon a load transfer.
This local neighbourhood is usually denoted as the migration space. The primary objective

7



is to minimize remote communication as well as to efficiently balance the load on the
servers. However, in a global balancing scheme, global information of all or part of the
system is used to initialize the load-balancing. This scheme requires a considerable amount
of information to be exchanged in the system which may affect its scalability.

2.1.4 Cooperative versus non-cooperative

Within the realm of distributed dynamic global scheduling, two mechanisms can be dis-
tinguished involving the level of cooperation between the different parts of the system. In
the non-cooperative or autonomous scheme, each node has autonomy over its own resource
scheduling. That is, decisions are made independently of the rest of the system and there-
fore the node may migrate or allocate tasks based on local performance. On the other
hand, in cooperative scheduling, processes work together toward a common system-wide
global balance. Scheduling decisions are made after considering their effects on some global
effective measures (for example, global completion time).

2.1.5 Adaptive versus non-adaptive

Adaptive and non-adaptive schemes are part of the dynamic load-balancing policies. In
an adaptive scheme, scheduled decisions take into consideration past and current system
performance and are affected by previous decisions or changes in the environment. If one
(or more parameters) does not correlate to the program performance, it is weighted less
next time. In the non-adaptive scheme, parameters used in scheduling remain the same
regardless of system’s past behaviour. An example would be a policy that always weighs
its inputs the same regardless of the history of the system behaviour. Confusion may arise
between in distinguishing dynamic scheduling and adaptive scheduling. Whereas a dynamic
solution takes environmental inputs into account when making its decision, an adaptive
solution (which is also dynamic) takes environmental stimuli into account to modify the
scheduling policy itself.

2.1.6 One-time assignment vs dynamic reassignment

In this classification, the entities to be scheduled are considered. The one-time assignment
of a task may be dynamically done but once it is scheduled to a given server, it can never
be rescheduled to another one. On the other hand, in the dynamic reassignment process,
jobs can migrate from one node to another even after the initial placement is made. A
negative aspect of this scheme is that tasks may endlessly circulate about the system
without making much progress.

2.1.7 Sender/Receiver/Symmetrical initiated

Techniques of scheduling tasks in distributed systems have been divided mainly into sender-
initiated, receiver-initiated and symmetrically-initiated. In sender-initiated algorithms,
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the overloaded nodes transfer one or more of their tasks to several under-loaded nodes. In
receiver-initiated schemes, under-loaded nodes request tasks to be sent to them from nodes
with higher loads. In the symmetric approach, both the under-loaded as well as the loaded
nodes may initiate load transfers.

2.2 State of the art about load balancing strategies

In this section, several load balancing strategies introduced in early works are described.
This policies were compared by Banawan and Zeidat in [4].

Many aspects of servers systems performance can be investigated using queueing net-
work models. In using these models, hardware resources are represented by service centres
at which jobs may queue and compete for service. Depending on the goal of the study,
different levels of details may be included in such a model. The level of details determines
the complexity of the model. In order to study the performance of load sharing in heteroge-
neous multicomputer systems we use the Multiple Queue Multiple Server (MQMS) model
shown in Figure 2.2. Each server represents a node in the system whose queue corresponds
to the ready queue at that node. The workload is modeled as a single stream of jobs. Each
newly arrived job is assigned to some node according to the scheduling policy used. This
model is more realistic than the Single Queue Multiple Server (SQMS) that was used in
other studies [25] [20].

Figure 2.2: Multiple Queue Multiple Server Model.

Consider the simple heterogeneous multiple servers system model shown in Figure 2.2.
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Each server is modeled as a queue/server pair. This is a typical open queueing model for N
independent servers. Server i is assumed to be characterized completely by its mean service
rate µi. Thus, the total service rate of the system is µ =

∑N
i=1 µi. Jobs enter the system at

mean rate λ. Their interarrival times may be modeled as a sequence of independent iden-
tically distributed random variables. The distribution may be assumed to be exponential
with a mean of 1/λ. The instantaneous state q of the system is a snapshot of the workload
distribution among the system components and can be expressed as q = (q1, q2, . . . , qN),
where qi is the number of jobs in the queue i including the job in service. An arriving job
is routed to server i with probability pi where the routing decision is based on the outcome
of an independent trial. Since one of the N servers must be chosen,

∑N
i=1 pi = 1. Each

server manages its queue of jobs in first-in-first-out priority order. The processing time
of a job on server i may be modeled as an independent exponentially distributed random
variable with mean 1/µi.

As mentioned earlier, there are two main approaches to load sharing, namely static and
dynamic policies. Static policies use fixed branching probabilities according to which jobs
are assigned to the nodes. They are simple, easy to implement and have minimal runtime
overhead. However, they lack the flexibility of making scheduling decisions based on the
current state of the system which can be used to alleviate transient congestions, in addition
to any long term imbalance. A brief description of these policies is given below.

2.2.1 Some static policies

Speed-Weighted random splitting policy (SWS) [7]

According to SWS, a new arrival is assigned to node i with probability pi given by:

pi =
µi

µ
,

where µi is the service rate of node i and µ is the total service rate of the system. See
Figure 2.2.

Load-Dependent static policy (LDS)

The LDS policy uses branching probabilities pk that minimize the response time averaged
over all jobs executed by the system. These branching probabilities are obtained by solving
the following nonlinear optimization problem:

min
pi

R =
m∑
i=1

pi
µi − λpi

,

subject to the constraints:
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m∑
i=1

pi = 1, µi > λpi, i = 1, . . . ,m,

where λ is the aggregate arrival rate to the system and µi is the service rate of node i. See
Figure 2.2.

2.2.2 Some dynamic policies

Shortest queue policy (SQ)

This policy assigns each new arrival to the node that currently has the least number of
jobs in its queue. Winston [31] established that this policy is optimal for homogeneous
system under certain assumptions.

Shortest expected delay (SED) [3]

The SED policy, based on the MQMS model, can be either centralized where new tasks
arrive to a central server and then assigned to subsequent nodes, or distributed where each
available node can insert new jobs into the system. A cost function is evaluated for each
node and the job is sent to the corresponding node that produces the minimum cost. The
cost SED(i) is actually the expected time to complete the new job at server i and is given
by:

SED(serveri) =
qi + 1

µi

,

where qi is the queue length at node i and µi is its service rate of node i.

Adaptive separable policy (AS) [29]

Adaptive separable policy (AS), also based on the MQMS model, is an improvement over
the SED policy in that it estimates the completion time of a new arrival at a node by
adjusting the service rate of the server based on its utilization. It uses the cost function:

AS(serveri) =
qi + 1

µiρi
,

where ρi is the utilization of node i, qi is the queue length at node i and µi is its service
rate of node i.

Never queue policy (NQ) [24]

NQ policy does not allow a job to wait in a queue if there is an idle node available. If more
than one idle node is available, the new job is sent to the fastest node that has the largest
1/µi term. On the other hand, if all nodes are busy, the SED policy is used.
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Maximum throughput policy (TP)

The TP policy schedules the next arrival to the node that maximizes the system throughput
during the next interarrival period. Chow and Kohler [7] developed the following expression
for the system throughput during the next interarrival period:

TP (q1, q2, . . . , qm) =
N∑
i=1

λ[

qi−1∑
k=1

(1− qi
k
)(

µi

λ+ µi

)k − qiln(
λ

λ+ µi

)],

where λ is the aggregate arrival rate to the system, qi is the queue length at node i and µi

is its service rate of node i. See Figure 2.2.

TP can be thought of as a reward function that depends on the queue lengths of all
nodes. It is evaluated for each possible assignment and the new job is assigned to the one
that yields maximum reward.

Greedy throughput policy (GT)

Similar to the TP policy, GT policy aims at maximizing system throughput. However, it
uses another reward function that was derived by Nelson and Towsley [9]. A new job is
assigned to the node that maximizes the reward function:

GT (serveri) = (
µi

µi + λ
)qi+1,

where λ is the aggregate arrival rate to the system, qi is the queue length at node i and µi

is its service rate of node i. See Figure 2.2.

The gradient model (GM)

In Gradient Model (GM) [18], the underloaded nodes notify the other nodes about their
state, and overloaded nodes respond by transmitting jobs to the nearest lightly loaded
node. Therefore, loads migrate in the system in the direction of the underloaded nodes
guided by the proximity gradient. A global balance state is achieved computationally by
successive localized balances.

At every step of the algorithm, each node compares its load to a Low-Water Mark
(LWM) and a High-Water Mark (HWM) thresholds. The node is set to the underloaded
state if it has a load less than LWM and to the overloaded state if it has a load greater
than HWM. Underloaded nodes set their proximity to zero and all other nodes p set their
proximity according to:

proximity(i) = min(proximity(nk)) + 1,
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where nk denote the neighboring nodes of node i. The node’s proximity is defined as the
shortest distance from itself to the nearest lightly loaded node in the system.

Figure 2.3: Gradient model example.

Subsequently, all overloaded nodes send a fraction δ of their loads in the direction of
the lowest proximity. The algorithm is illustrated in Figure 2.3.

Note that no measure of the degree of unbalance is found using this algorithm, but
only that one exists. When an imbalance occurs, the number of excess tasks can only
be known to be greater than HWM-LWM. Hence, the HWM, LWM, and the fraction δ
parameters have a critical impact on the stability and performance of the algorithm and
should therefore be wisely chosen.

The gradient model policy cannot be used in distributed systems since the nodes are
not connected in a certain topology such as a mesh or hypercube. This fact renders the
proximity concept useless. Moreover, the proximity algorithm is a cascading function and
therefore requires a considerable amount of time to be evaluated in large-scale networks
where delays are prominent.

However, a modification to the algorithm may be suitable for P2P networks such as
Freenet where nodes are only aware of their immediate neighbors. Consequently, the
proximity concept becomes valid and the algorithm may become useful.

Sender (Receiver) initiated diffusion (SID/RID) [8]

The SID policy is a highly distributed local approach which makes use of near-neighbor
load information to apportion surplus load from heavily loaded servers to underloaded
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neighbours in the system. Global balancing is achieved as tasks from heavily loaded neigh-
bourhoods diffuse into lightly loaded areas in the system. It is a local, near-neighbour
diffusion approach which employs overlapping balancing domains to achieve global balanc-
ing. The scheme is purely distributed and asynchronous. Each server acts independently,
apportioning excess load to deficient neighbours.

For the SID policy, the balancing process is triggered whenever a node i receives from
a neighboring node k a load update lk less than a preset threshold Llow(lk < Llow). After
that, the node i proceeds by calculating the domain load average L̄i.

L̄i =
1

K + 1
(li +

K∑
k=1

lk),

where K is the number of neighboring nodes. The load balancing algorithm continues if
the local excess load (li − L̄i) is greater than a preset threshold Lthreshold. Load δk is then
transferred from node i to each neighbor in proportion to its deviation from the domain
calculated using:

hk =

{
L̄i − lk if lk < L̄i,

0 otherwise.

δk = (li − L̄i)
hk∑K
k=1 hk

The RID policy is the converse of the SID strategy, where underloaded servers requisition
load from heavily loaded neighbours. However, to avoid instability due to delays and aging
in the load exchange information, the overloaded nodes transmit tasks up to the half of
their current load. SID and RID are illustrated in Figure 2.4.

Figure 2.4: SID and RID examples.

This scheme is distributed, asynchronous, and topology independent as opposed to the
GM policy that is best suited for nodes arranged in a hypercube or mesh fashion. However,
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the same problem arises in defining the local domain where the balancing process should
take place. Moreover, as indicated earlier, the domains should overlap to an extent that is
sufficient to achieve global balancing.

The algorithms implemented in this thesis are based on the SID scheme without re-
stricting the balancing process to a local domain, but rather expanding it to the global
system.

Hierarchical Balancing Method (HBM)

The Hierarchical Balancing Method (HBM) strategy [30] arranges the nodes in a hierarchy,
thereby creating balancing domains at each level. For a binary tree organization, all nodes
are included at the leaf level (level 0). Half the nodes at level 0 become subtree roots at
level 1. Subsequently, half the nodes again become subtree roots at the next level and so
forth until one node becomes the root of the whole tree.

Global balancing is achieved by ascending the tree and balancing the load between
adjacent domains at each level in the hierarchy. If at any level, the imbalance between the
left and right subtrees exceeds a certain threshold, each node in the overloaded subtree
sends a portion of its load to the corresponding node in the underloaded subtree.

Figure 2.5: Hierarchical organization of 8 server with hypercube interconnections.

The advantage of the HBM scheme is that it minimizes the communication over- head
and therefore can be scaled to large systems. Moreover, the policy matches hypercube
topologies well. In fact, the dimensional exchange approach [8] designed for hypercube
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systems is similar to the HBM method in the sense that it proceeds by load-balancing
per domain basis. Here, each domain is defined as one dimension in the hypercube. The
hierarchical organization of an eight-server hypercube is shown in Figure 2.5.

This scheme is clearly not suitable for systems with large network delays for the fol-
lowing reasons. As the balancing process proceeds on to the next level in the tree, critical
changes occurring at lower levels may not propagate quickly due to delays. Therefore,
corrections may not reach higher domains in time and may thereby result in an imbalance
at the global level. Moreover, although the scheme is decentralized, a failure at root nodes
especially at high levels in the tree, renders a global balance state unattainable. Conse-
quently, this scheme is not suitable for Internet-scale distributed systems since nodes may
become unreachable at any time, and will therefore affect the balance state of the system
if such nodes happen to be roots for subtree domains.

Dimension exchange method (DEM) [8], [10]

The DEM strategy is similar to the HBM scheme in that small domains are balanced first
and then combine to form larger domains until ultimately the entire system is balanced.
This differs from the HBM scheme in that it is a synchronized approach. The DEM strategy
was conceptually designed for a hypercube system but may be applied to other topologies
with some modifications. In the case of an N server hypercube configuration, balancing
is performed iteratively in each of the log N dimensions. All server pairs in the first di-
mension, those servers whose addresses differ in only the least significant bit, balance the
load between themselves. Next, all server pairs in the second dimension balance the load
between themselves, and so forth, until each server has balanced its load with each of its
neighbors.

Figure 2.6: DEM strategy.

The scheme is illustrated in Figure 2.6 for an eight-server hypercube. The strategy
could be extended to an MxM mesh topology by ”folding” the mesh in each dimension
[log M ] times. In this case, server pairs would no longer be directly linked to one another
and communication costs would be higher.

Performing the balancing steps in a synchronized manner ensures that the entire system
will achieve a balanced load. Balancing is initiated by any underloaded server which has a
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load that drops below a preset threshold:

Lp < Lthreshold

This server broadcasts a load balancing request to all other servers in the system.
Global synchronization is particularly difficult in highly parallel systems where a global
broadcast from a single point may be costly. Large systems equipped with special broadcast
mechanisms may, however, be suited to this approach. This scheme has theoretically been
shown to outperform a synchronous diffusion approach in terms of the overhead incurred
to reach a uniform distribution from an unbalanced state. The theoretical analysis does
not include the synchronization overhead to initiate the balancing process.

2.3 Load balancing by automatic control

The computational load of the strategies described above is rather high. In order to
efficiently assign a new load arrival, these policies must realise a new calculus to allocate
the task in the server that best suits. On the other hand, automatic control methods
relies on managing the input rate in each server. Schedule decisions take into account
current and past system performance. In addition, processes should work together toward
a common system-wide global balance, so that global information of all of the system
is used to initiate the load-balancing. Therefore, the computational load is reduced and
scalability is achieved.
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Chapter 3

Load balancing control

T
his report proposes a dynamic and distributed control strategy for activity man-
agement of network servers. Our approach relies on performing a control law which
is adaptive, cooperative, global and that satisfies dynamic reassignments. In this

section it is described the queue management problem of a set of servers that treat external
requests. Then, a distributed dynamic and deterministic control law has been performed.

3.1 Problem formulation

Consider a system composed by a source S that distributes the request rate A among a
set of N servers (see Figure 3.1). The treated requests rate is Y , and it is assumed to be
the computational power of each server. It is supposed to be constant and prespecified.
The main goal of the servers is to perform the input requests rate. The input rate and the
output rate are as follows:

A = [a1 a2 . . . aN−1 aN ]
T

Y = [y1 y2 . . . yN−1 yN ]
T .

Assumption 1 The overall workload of the system is conserved:

N∑
i=1

ai =
N∑
i=1

yi.

To perform suitable processing of the workload coming from the source, we equip each
agent with a queue which is able to locally store the requests arriving form the source
and still not processed. Consequently, we introduce for each i ∈ N the state queue length
qi ∈ <≥0, whose variation q̇i corresponds to the difference between the requested rate com-
ing form the source and the maximum processing rate yi. Note that special care has to be
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Figure 3.1: The considered system with N = 3 servers.

taken that any solution t 7→ qi(t) to the proposed dynamic satisfies qi(t) ∈ <≥0 for all t ≥ 0.

In any rate, it is supposed that the servers have different initials loads:

q0 = [q01 q02 . . . q0N−1
q0N ]

T . (3.1)

Thereby, the model in compact form is:

q̇ = A− Y + u, (3.2)

where u is the control law that balance the load.

Problem 1 Our aim is to evenly distribute the workload of the system (3.1)-(3.2).

Remark 1 Once load balancing is got, simulations for a more general case like time vary-
ing incoming rates A(t), will be performed.

3.2 Consensus Control

3.2.1 Connection graph among servers

According to the activities of the servers, the adjacent matrix is defined as:

Ad = [adij] =

{
1 if i 6= j,

0 if i = j,

and the diagonal matrix ∆ as,

∆ =

{
0 if i 6= j,∑

k∈N,k 6=i adik if i = j.
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Therefore, the Laplacian matrix representing the undirected graph is given by:

L = ∆− Ad. (3.3)

The Laplacian matrix of an undirected graph is a symmetric positive semi-definite
matrix. It is worth mentioning that the resulting Laplacian represents the complete graph
among the agents like the network shown in Figure 3.1.

3.2.2 Proposed control law

The aim of this work is to ensure that the network is robust and efficient through a balanced
load distribution. It is proposed a control law that assigns an input ui to each server i to
fulfil the following proposition:

Proposition 1 All queue lengths converge to the average point:

lim
t→+∞

qi = q∗,

where q∗ is the average point.

Using model (3.1)-(3.2) and the Laplacian matrix (3.3), we may select a dynamic dis-
tributed controller, that represents the flux exchanged between servers. The controller is
defined as:

u = −KpLq + qc (3.4)

q̇c = −KiLq, (3.5)

where Kp and Ki ∈ <≥0 are the proportional and integral gains, respectively. This control
refers to a classical consensus algorithm for simple integrator multi-agent systems [21],
which ensures that the length of the queues converge to desirable level q∗.

In the following lemma, it is presented an important property which defines (3.4) and
(3.5).

Lemma 1 The distributed control law (3.4) and (3.5) satisfies the compete processing
condition given in (3.2), and all queue lengths converge to the same average level, q∗.

Proof 1 The proof is straightforwardly derived from (3.3) in (3.4) and (3.5).
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3.2.3 Lyapunov estability

A function is defined:

V = qTLq +
(qc + A− Y )2

Ki

. (3.6)

The corresponding derivative is:

V̇ = 2qTLq̇ + 2
q̇c(qc + A− Y )

Ki

.

Using (3.2), (3.4) and (3.5), the results is:

V̇ = −2Kpq
TLq ≤ 0.

This implies asymptotic stability.
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Chapter 4

Attraction domain

4.1 Introduction

S
ystem constraints are present in almost all control applications. Actuator saturation,
rate-limiters and forbidden regions in the state space, for instance, may be found in
many control designs. Such constraints are typically disregarded and the resulting

control law is applied to the actuator. In some situations, the global stability character may
be lost, resulting in local stability of the desired operating behaviour within a bounded
region of attraction [1]. In this way, if the designed control law is ud = α(x), where
x is the state variable, the actual control signal is u = γ(ud) = γ(α(x)), where γ is a
saturation-like function. In fact, the local stability property is not usually affected by
these constraints, since in a neighbourhood of the desired attractor they are not active,
that is, γ(α(x)) = α(x). Assume there is a forbidden region in the state space. This means
that the system state must remain within the boundaries of a pre-specified admissible safe
region. Non-linear control books contain an abundance of stability analysis examples in
which constraints are not present [17], [28]. There exist various methods for estimating the
region of attraction [11]. An estimation of the attraction domain of a boost inverter can
be found in [2].

4.2 Method application

Assumption 2 There is a widely known radially unbounded Lyapunov function V (x), in
which a compact positively invariant set Ω, ∂V

∂x
f(x, α(x)) ≥ 0. Let M be the largest invariant

subset of the set for which V̇ = 0 en Ω.

By the LaSalle invariance principle, assumption (2) guarantees that the trajectories of the
unconstrained model converges to M . It is implicitly assumed that this is the desired
behaviour. Notice that if the original Lyapunov theorem is used to prove global stability,
the previous assumption is also fulfilled. Assumption (2) also guarantees local stability for
the system.
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The key is to ensure that the system state remains within the boundaries of the region
where saturations are not active, thus introducing new constraints. A conservative esti-
mation of the region of attraction can then easily be obtained. The idea of the method is
schematically shown in Figure 4.1. The advantage is to obtain relatively easy an estimation,
however, it is compromised by the fact that it may be far too conservative. Nevertheless,
in many problems this simple idea may give satisfactory results.

Figure 4.1: Estimated attraction domain where the constraints are not active.

The model proposed (3.2) has a rate-limiter:

ratei = ui + ai ≥ 0, (4.1)

where ratei ∈ <≥0. Any solution t 7→ ratei(t) has to satisfy ratei(t) ∈ <≥0 for all t ≥ 0.
This constraint is caused because the servers have a single input and a single output, so
load balancing is carried out on the server entry.

Taking into account (4.1) into (3.2), a (conservative) estimation for the attraction
domain of the system with constraints is given by the following theorem:

Theorem 1 Under Assumptions 1 and 2, assume that there exists a constant c > 0 such
that in the set Ωc = {x : V (x) ≥ c−1}, the constraints (4.1) is satisfied. Then, all trajecto-
ries of the system with constraints starting at Ωc converges to M ∩ Ωc.

Proof 2 Since in Ωc the constraints are satisfied, the result for the unconstrained system
are valid in Ωc. Therefore, V̇ = 0 in Ωc and Ωc is positively invariant. Furthermore, since
V (x) is radially unbounded Ωc is compact. The statement can be validated by applying
LaSalle’s invariance principle.

Remark 2 Since M ∩ Ωc ⊂ M , the theorem guarantee the desired asymptotic behaviour
for the system with constraints.
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Using Theorem 1, the problem is reduced to finding a value c > 0 such that (4.1) the
points where V (x) ≥ 0.

Problem 2 Maximize c−1:

s.t. : V (x)− c−1 ≤ 0 (4.2)

ui + ai ≥ 0 i = 1, . . . , N.

Notice that the constraints are satisfied at the points on the boundary of Ωc and in the
interior of the set V (x)− c−1 < 0.

Theorem 2 Consider the system (3.2), the control law (3.4) and (3.5), the Lyapunov
function (3.6) and the constant c > 0, then Problem 2 is equivalent to solving: cY TY −KpY

TL Y T

−KpLY Y TY L 0

Y 0 Y TY In
Ki

 ≥ 0. (4.3)

Proof 3 Defining:

x1 , q x2 , qc + A− Y, (4.4)

where x1,x2 ∈ <Nx1.

From equation (3.4), (3.5) and (4.4), we obtain:

u = −KpLx1 + x2 − A+ Y ∈ <Nx1. (4.5)

Then, equation (4.1) can be rewritten using (4.5) as:

KpLx1 − x2 ≤ Y.

Multiplying on the left by 2Y T :

2Y TY ≥ 2Y TKpLx1 − 2Y Tx2. (4.6)

Minimizing c, multiplying on the left (4.2) for 2Y TY , and from (4.6), the attraction
domain is:

2Y TY ≥ cY TY xT
1Lx1 + cY TY

xT
2 Inx2

Ki

+ Y TY ≥ 2Y TKpLx1 − 2Y Tx2.

Rewriting the last inequality in matrix form: 1
x1

x2

T  Y TY −KpY
TL Y T

−KpLY cY TY L 0

Y 0 cY TY In
Ki

 1
x1

x2

 ≥ 0,

and applying the Schur complement, we obtain (4.3).
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Chapter 5

Simulations results

A
five-server network cluster has been considered. Therefore, we have to define the
input rate A the output rate Y (treated requests), the initial load q0 and the
controller gains Kp and Ki. We will use the following values of the parameters

described above:

N = 5

A = [3.8 4.2 2 3 2]T · 103 pkt/s

Y = [3 5 2 2.25 2.75]T · 103 pkt/s

q0 = [4500 4000 3500 4775 4225]T pkt.

For simplicity, we take:

Kp = Ki = 1.

Thus, the constant c that maximize the attraction domain is:

c−1 = 2.9328 · 107.

Using these parameters some simulations are performed: in Matlab / Simulink to val-
idate the theory developed; and in NS2 to validate the controller in a more realistic envi-
ronment.

The model developed is shown to be scalable and robust in the ”safe” region. However,
we can not ensure stability within the ”forbidden” region.
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5.1 Simulation using Matlab-Simulink

The traffic flow in Matlab-Simulink’s simulations was considered to be as water flow. The
servers were assumed to be water tanks. The structure of the matlab model is shown in
Figure 5.1, 5.2 and 5.3. The script can be found in Appendix A.

Figure 5.1: Model structure.

Figure 5.4 shows that all queue length converge asymptotically to the average level
4200 pkt.

5.2 Simulation using Network Simulator 2

NS2 simulator is based on two languages: an object oriented simulator, written in C++,
and a OTcl (an object oriented extension of Tool Command Language - Tcl) interpreter,
used to execute user’s command scripts. NS2 has a rich library of network and protocol
objects. There are two class hierarchies: the compiled C++ hierarchy and the interpreted
OTcl one, with one to one correspondence between them. The compiled C++ hierarchy
allows us to achieve efficiency on the simulation and faster execution times. This is in
particular useful for the detailed definition and operation of protocols. This allows one to
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Figure 5.2: Control structure.

Figure 5.3: Model structure.
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reduce packet and event processing time. Then in the OTcl script provided by the user,
we can define a particular network topology, the specific protocols and applications that
we wish to simulate (whose behaviour is already defined in the compiled hierarchy) and
the form of the output that we wish to obtain from the simulator. The OTcl can make use
of the objects compiled in C++ through an OTcl linkage that creates a matching of OTcl
object for each of the C++.

NS2 is a discrete event simulator, where the advance of time depends on the timing of
events which are maintained by a scheduler. An event is an object in the C++ hierarchy
with an unique ID, a scheduled time and the pointer to an object that handles the event.
The scheduler keeps an ordered data structure with the events to be executed and fires
them one by one, invoking the handler for the event.

Thus, the script used in this report has been developed in Tool Command Language
(Tcl). Actually, the script was performed for N servers, that is to say, it is a generic script.
Finally, an energy study has been carried out.

5.2.1 Network topology

N + 1 nodes have been created nodes. The extra node represent the source S. Figure 5.5
shows the network topology through the graphic interface of NAM.

Links are unidirectional and its bandwidth is the rate of treated requests yi. The man-
agement queue policy is characterized as DropTail, First In First Out (FIFO). Moreover,
the links have initial queue length as (3.1) and the maximum capacity is set to 10000 pkt.

Once we had defined the topology, it’s time to set the traffic flow. To that end, it’s
necessary to define routing, the agents and applications that use them.

A Constant Bit Rate (CBR) application is used. Constant bit rate encoding means that
the rate at which a codec’s output data should be consumed is constant. CBR is useful
for streaming multimedia content on limited capacity channels since it is the maximum bit
rate that matters, not the average, so CBR would be used to take advantage of all of the
capacity.

An Use Datagram Protocol (UDP) is also used. The UDP is one of the core members
of the Internet protocol suite. With UDP, computer applications can send datagrams to
other hosts on an Internet Protocol (IP) network without prior communications to set up
special transmission channels or data paths.

The UDP source is node N0 (Agent/UDP) and the UDP destination are each of the
N servers (Agent/Null).

In order to get initial queue length (3.1), we apply during 0.2 s the rate:

rate0 = [2.55 2.5 1.95 2.6125 2.3875]T · 104 pkt/s. (5.1)
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Figure 5.5: Nam tool.

Once we have the desired queue length, we apply the control law as (4.1).

5.2.2 Model discretization

As mentioned before, the Network Simulator 2 is a discrete event network simulator. Hence,
an approximated discretization of the control law (3.4) is performed using the Backward
Euler method, a first-order numerical procedure for solving ordinary differential equations
(ODEs) with a given initial value:

dy(t)

dt
= f(y(t), x(t)) (5.2)

y[kT ] = y[(k − 1)T ] + Tf(y(t), x(t)). (5.3)

Hence,

u(t) = −KpLq −
∫

KiLq, (5.4)

where T is the sampling interval which we fix it in 50 ms.
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Figure 5.6a shows as the discretization does not change the behavior of the model. In
Figure 5.6b, we may see that the rate is always positive for t ≥ 0, ratei(t) ∈ <>0.

In order to create a more realistic environment, we apply some noise in CBR application.
In this case, the input rate is A(t). Figure 5.7a and 5.7b shows that the system keeps robust.
The system converges at any times to the average value of the queue length q∗(t).

5.2.3 Power consumption (ECOFEN)

Wired networks are increasing in size and their power consumption is becoming a matter
of concern. In order to evaluate power consumption in the considered network, we use
End-to-End energy Cost mOdel and simulator For Evaluating power consumption in larg-
scale Networks (ECOFEN) [22]. This module was designed and developed in NS-2. It
provides the instantaneous energy consumption of each equipment taking into account the
traffic and the type of employed equipment. This model is based on the Adaptive Link
Rate (ALR) which adapts transmission rates depending on link use-rate.

In this model, it is only considered as consuming equipments the facilities that are
plugged and that consume electricity. This means that the link are not considered as
consuming equipments. However, their ”cost” is reflected in the equipments they link.
The energy consumption E of an equipment depends on the power consumption P of the
equipment which varies over time t. For a given time period with a length equals to T , the
energy is given by:

E(T ) =

∫ T

0

P (t)dt. (5.5)

And for a given equipment (router, repeater, Ethernet card), the energy consumed by
a transfer is given by:

E = Eboot + Ework + Ehalt,

where Eboot and Ehalt can be equal to zero in the case that there is not needed neither
booting nor halting the equipment. The energy Ework consumed during the transfer in-
cludes two costs: a fixed cost Eidle, which correspond to the energy consumed when the
equipment does nothing (no transfer), and a variable cost which depends on the traffic.
These two costs depends on:

• BD: the bandwidth used by the transfer.

• L: the length in time of the transfer.

• The cross traffic on this equipment: for instance, if several transfers are using a
router, its consumption must not be counted several times. We rather want to divide
it by the number of transfers for a fixed cost.
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• The type of equipment (router, NIC, ...).

The fixed part Eidle consist only of the latter parameter, the three other ones are vari-
able and are linked to time [19]. These interactions between networks usage and energy
consumption are the subject of several power cost models. Classical models include mod-
els with link rate switching which have a strong dependence to the link rate and a slight
dependence to transmission rate as shown in Figure 5.8 by the line labeled Adaptive Link
Rate (ALR). This graph does not show the energy and the time required to switch from
one link rate to another one. Another classical but less realistic model is the proportional
power cost model. This model is not realistic for current network equipments.

Figure 5.8 theoretically represents the power consumption of a port, for example, during
a transfer. The line labeled Adaptive Link Rate shows how the port power consumption is
influenced by the actual transmission rate. With ALR techniques, only several link rates
are possible. For instance, for a 10Gb/sport, the possible link rates are: 10Mb/s, 100Mb/s,
1Gb/s and 10Gb/s. These possible link rates are represented by the parameters BDi on the
x-axis of Figure 5.8. But, each transmission rate is possible for a port: transmission rate
is not a discrete function. Thus, for instance, when the port is transmitting at 20Mb/s,
it consumes the energy needed to adapt (with ALR) the link rate to 100Mb/s (because
10Mb/s < 20Mb/s < 100Mb/s), plus some energy due to the actual traffic (with a linear
dependence) as represented on Figure 5.8.

In the following, this model considers that the power function Pwork presents a strong
dependence to the equipment state and a small dependence to the traffic. Using the nota-
tion of Figure 5.8, the power function Pwork can be written as a function of the bandwidth
BD:

Pwork =



P0 if BD = 0,

α1BD + P1 if BD ∈ ]0;W1],
...

αiBD + (Pi − αiBDi−1) if BD ∈ ]BDi−1;BDi],
...

αnBD + (Pn − αnBDn−1) if BD ∈ ]BDn−1;BDn],

(5.6)

where αi ∈ <+ are the slopes of the different linear sections (power levels) delimited by the
BDi (the different transmissions rate levels) and Pi define the start power of each different
level.

Therefore, let’s compare the power consumption of the considered system to the system
without the control law (see Figure 5.9a and 5.9b).

Note 1 In Figure 5.9b, the server’s 3 graphic rate is exactly the same that server’s 5
graphic rate.
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Note 2 Note that in Figure 5.9a losses are not avoided. The queue length in Server 1 and
server 3 are saturated.

We proceed to evaluate the power consumption of each node in both systems, with the
control law and without the control law. Results shows that the power consumption of the
node 0 (source), are equal in both systems. Nevertheless, there are slight differences in the
other nodes (servers). See Figure 5.10a and 5.10b.

In Figure 5.9b one can see that the power of server 2 and server 5 switch to another
level. That is because its queue length go to 0. This fact cause a light increase of the total
power. Figure 5.11 shows the power results.

It is worth mentioning that the considered system without the load balancing control
law is not efficient due to the losses of packets. The queue length of servers 1 and 3 reach
the upper limit of 10000 pkt. Thereby, packets begin to get lost and the system becomes
inefficient. Consuming less than 2W more, it is possible to achieve a efficient performance.
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Figure 5.6: Simulation in NS2.
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Figure 5.7: Noise simulation in NS2.
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Figure 5.8: Models of power cost as a function of bandwidth on a router port [22].
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Figure 5.9: Simulation in NS2 - system without control law.
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Figure 5.10: Power consumption of servers’ nodes.
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Chapter 6

Conclusions and future work

T
his report proposes a distributed control law for a server network cluster. A control
law based on consensus theory is computed to manage the queue length of each
server in order to perform load balancing. Moreover, the computational load of

this policy is significantly lower compared with other load balancing strategies, thereby,
data loss are reduced. Likewise, the system becomes robust and scalable.

Moreover, a methodology for the estimation of the region of attraction that takes sys-
tem physical constraints into consideration has been introduced. The method is based on
the search for a Lyapunov level surface where the constraints are satisfied.

The distributed control is designed in a general way to be implemented in large server
structures.

Simulation results shows that the deterministic dynamical model only consume less
than 2W , compared to the system without control law. This consumption increase is not
significant for the network. Additionally losses are avoid being that the queue length con-
verge to the average level and never goes to saturation.

This work has provided a publication in ”XXXV Jornadas de Automática, JA2014,
Valencia, Spain” as ”Control de balanceo de carga de un grupo de servidores de red” [26].

6.1 Future work

Futures works will aim at considering:

• Delays in packets and data transmission.

• Control law extension with A(t) (variable input).

• Introduce distance notions.
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• Other constraints like saturations.

• Hybrid control for switching on-off the nodes for improving energy consumption.

• Improve energy consumption with load balancing control law.
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Appendix A

Simulation’s code of Matlab-Simulink

A.1 Control model script

1 c l e a r a l l ;
2 c l o s e a l l ;
3

4

5 % −− PARAMETERS −− %
6

7 g l oba l A Y kp k i q i n i t f i n a l qsat min qsat max ;
8

9 t f i n a l =8;
10

11 N=5;
12

13 a=1000;
14 y=1000;
15 A=[3.8 4 .2 2 3 2 ] ’∗ a ;
16 Y=[3 5 2 2 .25 2 . 7 5 ] ’∗ y ;
17

18 kp=1;
19 k i =1;
20

21 qsat min=0;
22 qsat max=8000;
23

24

25 % −− INITIAL CONDITIONS OF THE STATE −− %
26

27 q i n i = [ 4500 ; 4000 ; 3500 ; 4775 ; 4225 ] ;
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28

29

30 % −− CONNECTION MATRIX −− %
31

32 g l oba l L ;
33

34

35 L = ones (N,N) ∗(−1)+diag (N∗ones (N, 1 ) ) ;
36

37

38 % −− SIMULINK −− %
39

40 sim ( ’model6 . s l x ’ ) ;
41

42

43 % −− PLOT −− %
44

45 f i g u r e (1 )
46

47

48 g r id on
49 hold on
50 p lo t ( tout , q ( : , 1 ) , ’ r ’ )
51 p lo t ( tout , q ( : , 2 ) , ’−xg ’ )
52 p lo t ( tout , q ( : , 3 ) , ’−−b ’ )
53 p lo t ( tout , q ( : , 4 ) , ’ :m’ )
54 p lo t ( tout , q ( : , 5 ) , ’ .−c ’ )
55

56 x l ab e l ( ’Time [ s ] ’ )
57 y l ab e l ( ’Queue [ pqt ] ’ )
58

59 l egend ( ’ s e r v e r 1 ’ , ’ s e r v e r 2 ’ , ’ s e r v e r 3 ’ , ’ s e r v e r 4 ’ , ’ s e r v e r 5 ’ )
60

61 s e t ( f i n d a l l ( gcf , ’ type ’ , ’ axes ’ ) , ’ f o n t s i z e ’ ,14)
62 s e t ( f i n d a l l ( gcf , ’ type ’ , ’ t ex t ’ ) , ’ f o n tS i z e ’ ,14)
63

64 saveas ( gcf , ’ queue matlab ’ , ’ pdf ’ )
65 saveas ( gca , ’ queue matlab ’ , ’ epsc ’ ) ;
66

67

68 f i g u r e (2 )
69

70
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71 g r id on
72 hold on
73 p lo t ( tout , r a t e ( : , 1 ) , ’ r ’ )
74 p lo t ( tout , r a t e ( : , 2 ) , ’−xg ’ )
75 p lo t ( tout , r a t e ( : , 3 ) , ’−−b ’ )
76 p lo t ( tout , r a t e ( : , 4 ) , ’ :m’ )
77 p lo t ( tout , r a t e ( : , 5 ) , ’ .−c ’ )
78

79 x l ab e l ( ’Time [ s ] ’ )
80 y l ab e l ( ’ Rate [ pqt/ s ] ’ )
81

82 %legend ( ’ s e r v e r 1 ’ , ’ s e r v e r 2 ’ , ’ s e r v e r 3 ’ , ’ s e r v e r 4 ’ , ’ s e r v e r 5 ’ , ’
Or ientat ion ’ , ’ ho r i zon ta l ’ , ’ Location ’ , ’ BestOutside ’ )

83 s e t ( f i n d a l l ( gcf , ’ type ’ , ’ axes ’ ) , ’ f o n t s i z e ’ ,14)
84 s e t ( f i n d a l l ( gcf , ’ type ’ , ’ t ex t ’ ) , ’ f o n tS i z e ’ ,14)
85

86 saveas ( gcf , ’ rate mat lab ’ , ’ pdf ’ )
87 saveas ( gca , ’ rate mat lab ’ , ’ epsc ’ ) ;

A.2 Attraction domain script

1 c l e a r a l l ;
2 c l o s e a l l ;
3 c l c
4

5

6 q0=[4500 4000 3500 4775 4225 ] ;
7

8 %Syst Parameters ;
9 N=5;

10

11 L = ones (N,N) ∗(−1)+diag (N∗ones (N, 1 ) ) ;
12

13

14 a=1000;
15 y=1000;
16 A=[3.8 4 .2 2 3 2 ] ’∗ a ;
17 Y=[3 5 2 2 .25 2 . 7 5 ] ’∗ y ;
18

19 %n=s i z e (A, 1 ) ;
20 %m=s i z e (B’ ) ;
21

22 % i n i c i a l i z a t i o n
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23 s e t lm i s ( [ ] ) ;
24

25 % Var iab le d e c l a r a t i on
26

27 Kp = 1 ;
28 Ki = 1 ;
29 Kiinv = inv ( ( Ki ) ) ;
30 gamma = lmivar ( 1 , [ 1 0 ] ) ;
31

32

33 %LMI terms d e c l a r a t i on
34

35

36 lmitermsat=1;
37 lmiterm ([− lmitermsat 1 1 gamma] ,Y’∗Y, 1 ) ;
38 lmiterm ([− lmitermsat 1 2 0] ,−Y’∗L∗Kp) ;
39 lmiterm ([− lmitermsat 1 3 0 ] ,Y’ ) ;
40 lmiterm ([− lmitermsat 2 2 0 ] ,Y’∗Y∗L) ;
41 lmiterm ([− lmitermsat 3 3 0 ] ,Y’∗Y∗ eye (N)∗Kiinv ) ;
42

43 LMIs = ge t lm i s ;
44

45 n = decnbr (LMIs) ;
46 c = ze ro s (1 , 1 ) ;
47

48 f o r j =1:n ,
49 [ gammaj ] = defcx (LMIs , j , gamma) ;
50 c ( j ) =(gammaj) ;
51 end
52

53 opt ions = [1 e−5 ,0 , 0 , 0 , 0 ] ;
54 [ copt , xopt ] = mincx (LMIs , c , opt ions ) ;
55

56

57 gammaf = inv ( ( dec2mat (LMIs , xopt , gamma) ) )
58

59

60 %te s t
61 qc=sq r t (Ki∗(gammaf−q0∗L∗q0 ’ ) )
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Appendix B

Simulation’s code of Network
Simulator 2

B.1 Main script

1 source /home/mtalaver / r e p o r t p f e / s o ub r o u t i n e s . t c l
2 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 #
4 # Defau l t s e t t i n g s
5 #
6 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7

8 #−−−−−−−−−−−−−−−−SIMULATION SETTINGS−−−−−−−−−−−−−−−−#
9

10 #NUMBER OF SERVERS
11 s e t numSERVERS 5
12

13 #SIMULATION TIME
14 s e t s imu la t i on t ime 8 .26
15

16 #TIME WHEN LOAD BALANCING STARTS
17 s e t s t a r t l o a d ba l a n c i n g 0 . 2
18

19 #END OF SIMULATION
20 s e t s top t ime [ expr ( $ s imu la t i on t ime+$ s t a r t l o ad ba l a n c i n g ) ]
21

22 #−−−−−−−−−−−−−−−−CONTROL SETTINGS−−−−−−−−−−−−−−−−#
23

24 #SAMPLING PERIOD
25 s e t T 0 .05
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26

27 #POPORTIONAL CONTROLLER
28 s e t kp 1
29

30 #INTEGRAL CONTROLLER
31 s e t k i 1
32

33 #−−−−−−−−−−−−−−−−INPUT AND OUTPUT SETTINGS−−−−−−−−−−−−−−−−#
34

35 #INITIAL INPUT ( packets / seg )
36 #TIME BETWEEN [0 , s t a r t l o a d b a l a n c i n g ]
37 #IN ORDER TO NOT START THE LOAD BALANCING WITH AN EMPTY SEVER
38 s e t FILL pkt (1 ) 25500
39 s e t FILL pkt (2 ) 25000
40 s e t FILL pkt (3 ) 19500
41 s e t FILL pkt (4 ) 26125
42 s e t FILL pkt (5 ) 23875
43

44 #INPUT [A] ( packets / seg ) − TIME BETWEEN [0 , s t op t ime ]
45 s e t input pkt (1 ) 3800
46 s e t input pkt (2 ) 4200
47 s e t input pkt (3 ) 2000
48 s e t input pkt (4 ) 3000
49 s e t input pkt (5 ) 2000
50

51 #OUTPUT [Y] ( packets / seg ) − TIME BETWEEN [0 , s t op t ime ]
52 s e t bandwidth pkt (1 ) 3000
53 s e t bandwidth pkt (2 ) 5000
54 s e t bandwidth pkt (3 ) 2000
55 s e t bandwidth pkt (4 ) 2250
56 s e t bandwidth pkt (5 ) 2750
57

58 #−−−−−−−−−−−−−−−−LINKS SETTINGS−−−−−−−−−−−−−−−−#
59

60 #QUEUE LIMIT OF THE LINK ( packets )
61 s e t q l im i t 10000
62

63 #DELAY OF THE LINK (0)
64 s e t de l ay 0ms
65

66 #−−−−−−−−−−−−−−−−LOAD BALANCING SETTINGS−−−−−−−−−−−−−−−−#
67

68 #DIMENSIONS OF SEVER’ S QUEUE AND CONTROL
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69 #dim [ u k , u o l d , q k , q o ld ] = numSERVERS x 1
70 s e t u k ( rows ) $numSERVERS
71 s e t u k ( c o l s ) 1
72 s e t u o ld ( rows ) $numSERVERS
73 s e t u o ld ( c o l s ) 1
74 s e t q k ( rows ) $numSERVERS
75 s e t q k ( c o l s ) 1
76 s e t q o ld ( rows ) $numSERVERS
77 s e t q o ld ( c o l s ) 1
78

79 #INITIAL CONDITIONS OF SEVER’ S QUEUE AND CONTROL
80 #[ u o l d , q o ld ] = [ 0 ]
81 f o r { s e t i 1} { $i<=$numSERVERS} { i n c r i } {
82 s e t u o ld ( $ i , 1 ) 0
83 s e t q o ld ( $ i , 1 ) 0
84 }
85

86 #CONNEXION MATRIX − dim [ L ] = numSERVERS x numSERVERS
87 array s e t L {
88 rows $numSERVERS
89 c o l s $numSERVERS
90 }
91 f o r { s e t i 1} { $i<=$numSERVERS} { i n c r i } {
92 f o r { s e t j 1} {$j<=$numSERVERS} { i n c r j } {
93 i f { $i==$j } { s e t L( $ i , $ j ) [ expr ($numSERVERS−1) ]
94 } e l s e { s e t L( $ i , $ j ) −1
95 }
96 }
97 }
98

99 #RATE SATURATION ( pkts / seg )
100 s e t rate max pkt 100000
101 s e t rate min pkt 0
102

103 #−−−−−−−−−−−−CONVERSION OF UNITS ( packets to b i t s )−−−−−−−−−−−−#
104

105 #1 packet = 125 bytes
106 s e t p a c k e t s i z e by t e s 125
107

108 #1 packet = 1000 b i t s
109 s e t p a c k e t s i z e b i t s [ expr ( $pa ck e t s i z e by t e s∗8 ) ]
110

111 #INITIAL INPUT ( b i t s / s )
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112 f o r { s e t i 1} { $i<=$numSERVERS} { i n c r i } {
113 s e t FILL( $ i ) [ expr ( $FILL pkt ( $ i ) ∗ $p a c k e t s i z e b i t s ) ]
114 }
115

116 #INPUT ( b i t s / s )
117 f o r { s e t i 1} { $i<=$numSERVERS} { i n c r i } {
118 s e t A( $ i ) [ expr ( $ input pkt ( $ i ) ∗ $ p a c k e t s i z e b i t s ) ]
119 }
120

121 #OUTPUT ( b i t s / s )
122 f o r { s e t i 1} { $i<=$numSERVERS} { i n c r i } {
123 s e t bandwidth ( $ i ) [ expr $bandwidth pkt ( $ i ) ∗ $ p a c k e t s i z e b i t s ]
124 }
125

126 #SATURATION ( b i t s / s )
127 s e t rate max [ expr ( $ r a t e max pk t∗$packe t s i z e b i t s ) ]
128 s e t rate min [ expr ( $ r a t e m in pk t∗$pa ck e t s i z e b i t s ) ]
129

130

131 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
132 #
133 # Main Sc r i p t
134 #
135 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
136

137

138

139 #CREATE A SIMULATOR OBJECT
140

141 s e t ns [ new Simulator ]
142

143 #OUTPUT FILES
144

145 s e t f [ open ou t . t r w]
146 $ns t r a c e−a l l $ f
147

148 s e t nf [ open out.nam w]
149 $ns namtrace−al l $nf
150

151 f o r { s e t i 1} { $i<=$numSERVERS} { i n c r i } {
152 s e t queue ( $ i ) [ open q s e r v e r ( $ i ) . t r w]
153 s e t r a t e ( $ i ) [ open r a t e s e r v e r ( $ i ) . t r w]
154 }

49



155

156 #CREATE NODES
157

158 f o r { s e t i 0} { $ i < [ expr ($numSERVERS+1) ]} { i n c r i } {
159

160 s e t n ( $ i ) [ $ns node ]
161

162 i f ( [ expr ($i==0) ] ) {
163 $n ( $ i ) l a b e l ”SOURCE”
164 } e l s e {
165 $n ( $ i ) l a b e l ”SERVER $ i ”
166 }
167 }
168

169 #NODES LINKS
170

171 #SOURCE − SERVER i
172 f o r { s e t i 1} { $i<=$numSERVERS} { i n c r i } {
173 c o n f i g l i n k 0 $ i [ expr ( $bandwidth ( $ i ) ) ] $de lay DropTail
174 }
175

176 #NODES POSITIONS
177

178 #$ns duplex−link−op $n (0) $n (1 ) o r i e n t l e f t
179 #$ns duplex−link−op $n (1) $n (2 ) o r i e n t right−up
180 #$ns duplex−link−op $n (1) $n (3 ) o r i e n t l e f t
181 #$ns duplex−link−op $n (1) $n (4 ) o r i e n t right−down
182 #$ns duplex−link−op $n (3) $n (5 ) o r i e n t r i g h t
183

184 #QUEUE MONITORING
185

186 #SOURCE − SERVER i
187 f o r { s e t i 1} { $i<=$numSERVERS} { i n c r i } {
188 s e t qmon( $ i ) [ $ns monitor−queue $n (0 ) $n ( $ i ) ”” $T ]
189 }
190

191 #−−−−UDP AGENTS−−−−#
192

193 #UDP AGENT SOURCE − SERVER i
194

195 f o r { s e t i 1} { $i<=$numSERVERS} { i n c r i } {
196

197 s e t udp se rve r ( $ i ) [ new Agent/UDP]
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198 $ns attach−agent $n (0 ) $udp se rve r ( $ i )
199 s e t n u l l s e r v e r ( $ i ) [ new Agent/Nul l ]
200 $ns attach−agent $n ( $ i ) $ n u l l s e r v e r ( $ i )
201

202 #CBR TRAFFIC SOURCE
203

204 s e t c b r s e r v e r ( $ i ) [ new Appl i ca t ion / T r a f f i c /CBR]
205 $ c b r s e r v e r ( $ i ) s e t type CBR
206 $ c b r s e r v e r ( $ i ) s e t packe tS i z e $pa ck e t s i z e by t e s
207 $ c b r s e r v e r ( $ i ) s e t r a t e $FILL( $ i )
208 $ c b r s e r v e r ( $ i ) s e t random f a l s e
209 $ c b r s e r v e r ( $ i ) attach−agent $udp se rve r ( $ i )
210

211 $ns connect $udp se rve r ( $ i ) $ n u l l s e r v e r ( $ i )
212 }
213

214 #−−−−TRAFFIC START−−−−#
215

216 #SOURCE − SERVER i
217

218 f o r { s e t i 1} { $i<=$numSERVERS} { i n c r i } {
219 $ns at 0 . 0 ” $ c b r s e r v e r ( $ i ) s t a r t ”
220 }
221

222 #−−−−CALL PROCEDURES−−−−#
223

224 $ns at $ s t a r t l o ad ba l a n c i n g ” record ”
225

226 $ns at $ s t a r t l o ad ba l a n c i n g ” l oad ba l anc ing ”
227

228 $ns at $s top t ime ” f i n i s h ”
229

230 #−−−−STARTING THE SIMULATION−−−−#
231

232 puts ”STARTING SIMULATION”
233 $ns run

B.2 Subroutines

1 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 #
3 # Soubrout ines
4 #
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5 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6

7

8 #−−−−FINISH OF THE SIMULATION−−−−#
9

10 proc f i n i s h {} {
11

12 g l oba l numSERVERS ns f nf queue ra t e
13

14 $ns f lu sh− t race
15 c l o s e $ f
16 c l o s e $nf
17

18 f o r { s e t i 1} { $i<=$numSERVERS} { i n c r i } {
19 c l o s e $queue ( $ i )
20 c l o s e $ ra te ( $ i )
21 }
22

23 puts ”RUNNING NAM”
24 exec nam out.nam &
25 e x i t 0
26 }
27

28 #−−−−MULTIPLY 2 MATRICES−−−−#
29

30 # in t e r n a l r ep r e s en t a t i on matr ix :
31 # m( rows ) − number o f rows
32 # m( c o l s ) − number o f columns
33 # m(1 , 1 ) m(1 , 2 ) . . . m( $ i , $ j ) − e lements o f the matrix
34

35 proc matrix mult { ml1 ml2 } {
36

37 g l oba l numSERVERS
38

39 upvar 1 $ml1 m1
40 upvar 1 $ml2 m2
41

42 i f { [ expr ($m1( c o l s ) ) ] != [ expr ($m2( rows ) ) ] } {
43 puts ” e r r o r : matrix inne r dimensions must agree ”
44 } e l s e {
45 f o r { s e t i 1} { $i<=[ expr ($m1( rows ) ) ]} { i n c r i } {
46 f o r { s e t j 1} {$j<=[ expr ($m2( c o l s ) ) ]} { i n c r j } {
47 s e t aux 0
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48 f o r { s e t k 1} {$k<=[ expr ($m1( c o l s ) ) ]} { i n c r k} {
49 s e t aux [ expr ( $aux+$m1( $ i , $ k )∗$m2( $k , $ j ) ) ]
50 }
51 s e t m( $ i , $ j ) $aux
52 }
53 }
54 s e t m( rows ) [ expr ($m1( rows ) ) ]
55 s e t m( c o l s ) [ expr ($m2( c o l s ) ) ]
56 re turn [ array get m]
57 }
58 }
59

60 #−−−−LINKS CONFIGURATION−−−−#
61

62 # l i n k between node i and node j
63 # bandwidth l i n k = bw
64 # delay l i n k = delay
65 # way to handle over f l ow at the queue = qtype
66

67 proc c o n f i g l i n k { i j bw delay qtype} {
68

69 g l oba l ns n q q l im i t
70

71 $ns s implex− l ink $n ( $ i ) $n ( $ j ) $bw $delay $qtype
72 $ns queue− l imit $n ( $ i ) $n ( $ j ) $ q l im i t
73 }
74

75 #−−−−CONTROL LOAD BALANCING − PI CONTROLLER−−−−#
76

77 proc l oad ba l anc ing {} {
78

79 g l oba l T numSERVERS qmon L q k q o ld u k u o ld kp k i A Y
80 g l oba l p a c k e t s i z e b i t s s top t ime c b r s e r v e r
81 g l oba l rate min rate max
82

83 #SIMULATOR INSTANCE
84

85 s e t ns [ S imulator i n s t anc e ]
86 s e t now [ $ns now ]
87

88 #TIME AFTER WHICH THE PROCEDURE SHOULD BE CALLED AGAIN
89

90 s e t time $T
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91

92 #QUEUE FROM ROUTER TO SERVER i ( packets )
93

94 f o r { s e t i 1} { $i<=[ expr ($numSERVERS) ]} { i n c r i } {
95 s e t q k ( $ i , 1 ) [ expr [ $qmon( $ i ) s e t pkt s ] ]
96

97 puts ” q$ i =”
98 puts ” $q k ( $ i , 1 ) ”
99

100 }
101

102 #CONTROL LAW − PI CONTROLLER
103 #[ u (k )=u (k−1)−kp.L.q (k )+(kp−ki.T ) . L . q (k−1) ]
104

105 array s e t aux1 [ matrix mult L q k ]
106 array s e t aux2 [ matrix mult L q o ld ]
107

108 f o r { s e t i 1} { $i<=$numSERVERS} { i n c r i } {
109 s e t c [ expr (−$kp∗$aux1 ( $ i , 1 )+($kp−$ki∗$T ) ∗$aux2 ( $ i , 1 ) ) ]
110 s e t u k ( $ i , 1 ) [ expr $u o ld ( $ i , 1 )+$ c ∗ $p a c k e t s i z e b i t s ]
111 }
112

113 #RATE SATURATION
114

115 f o r { s e t i 1} { $i<=$numSERVERS} { i n c r i } {
116 s e t aux rate ( $ i ) [ expr ($A( $ i )+$u k ( $ i , 1 ) ) ]
117

118 i f { $aux rate ( $ i )<$rate min } {
119 $ c b r s e r v e r ( $ i ) s e t r a t e $rate min
120

121 } e l s e i f {$rate max<$aux rate ( $ i )} {
122 $ c b r s e r v e r ( $ i ) s e t r a t e $rate max
123

124 } e l s e {
125 $ c b r s e r v e r ( $ i ) s e t r a t e $aux rate ( $ i )
126 }
127 }
128

129 #FOLLOWING STATE − [ u (k−1) = u (k ) , q (k−1) = q (k ) ]
130

131 f o r { s e t i 1} { $i<=$numSERVERS} { i n c r i } {
132 s e t q o ld ( $ i , 1 ) $q k ( $ i , 1 )
133 s e t u o ld ( $ i , 1 ) $u k ( $ i , 1 )
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134 }
135

136 #TIME DISPLAY
137

138 puts ”−−−−−−−time−−−−−−−”
139 puts ”$now”
140 puts ”−−−−−−−−−−−−−−−−−−”
141

142 #CALL THE PROCEDURE AGAIN
143

144 $ns at [ expr ($now+$time ) ] ” l oad ba l anc ing ”
145 }
146

147 #−−−−DATA RECORD−−−−#
148

149 proc record { } {
150

151 g l oba l numSERVERS qmon queue ra t e c b r s e r v e r T
s t a r t l o a d ba l a n c i n g

152

153 #GET AN INSTANCE OF THE SIMULATOR
154

155 s e t ns [ S imulator i n s t anc e ]
156

157 #TIME AFTER WHICH THE PROCEDURE SHOULD BE CALLED AGAIN
158

159 s e t time $T
160

161 #BYTES ON QUEUE AND LINKS RATE
162

163 #SOURCE i − SERVERS i
164 f o r { s e t i 1} { $i<=$numSERVERS} { i n c r i } {
165 s e t q ( $ i ) [ expr [ $qmon( $ i ) s e t pkt s ] ]
166 s e t r ( $ i ) [ expr [ $ c b r s e r v e r ( $ i ) s e t r a t e ] ]
167 }
168

169 #GET THE CURRENT TIME
170

171 s e t now [ $ns now ]
172

173 #WRITE IT TO THE FILES
174

175 #SOURCE − SERVERS i
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176

177 f o r { s e t i 1} { $i<=$numSERVERS} { i n c r i } {
178 puts $queue ( $ i ) ” [ expr ( $now−$start load ba lanc ing ) ] $q ( $ i ) ”
179 puts $ ra te ( $ i ) ” [ expr ( $now−$start load ba lanc ing ) ] $r ( $ i ) ”
180 }
181

182 #CALL THE PROCEDURE AGAIN
183

184 $ns at [ expr $now+$t ime∗0.5 ] ” record ”
185 }

B.3 Energy consumption

These following scripts of modified NS2 source code are provided by the Ph.D. student
Wael Zouaoui.

B.3.1 TCL scripts

traceurtcl.tcl

1 source /home/mtalaver / ns−al l inone−2.35 /ns−2.35/ energy /
e n e r g y t c l . t c l

2

3 Traceur i n s tp r o c setEnergyNode args {
4 s e t sim [ Simulator i n s t anc e ]
5

6 $sim in s t va r Node
7 s e t nb [ Node s e t nn ]
8

9 f o r { s e t i 0} { $ i < $nb} { i n c r i } {
10 $Node ( $ i ) i n s t v a r energynode
11 s e t energ [ s e t $Node ( $ i ) $energynode ]
12 $energ setNode $Node ( $ i )
13 }
14 }
15

16 Traceur i n s tp r o c a f f i c h e args {
17

18 g l oba l T
19

20 s e t sim [ Simulator i n s t anc e ]
21

22 $sim in s t va r Node
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23 s e t nb [ Node s e t nn ]
24

25 f o r { s e t i 0} { $ i < $nb} { i n c r i } {
26 $Node ( $ i ) i n s t v a r energynode
27 s e t energ [ s e t $Node ( $ i ) $energynode ]
28

29 $energ i n s t v a r wTotal
30

31 s e t va l [ expr [ $ s e l f recup $energ ] ]
32

33 s e t t [ expr [ $ s e l f temps ] ]
34 puts ” $ i $t $va l ”
35 }
36

37 s e t t [ expr $t+$T∗0.5 ]
38 $sim at $t ” $ s e l f a f f i c h e ”
39 }
40

41 Traceur i n s tp r o c updateEnergyNode args {
42 s e t sim [ Simulator i n s t anc e ]
43

44 $sim in s t va r Node
45 s e t nb [ Node s e t nn ]
46

47 f o r { s e t i 0} { $ i < $nb} { i n c r i } {
48 $Node ( $ i ) i n s t v a r energynode ne ighbor
49 s e t energ [ s e t $Node ( $ i ) $energynode ]
50 $energ i n s t v a r nbInt
51

52 s e t nbInt [ l l e n g t h $ne ighbor ]
53 }
54 }

energytcl.tcl

1 #methode bugee , a e v i t e r d ’ u t i l i s e r
2

3 EnergyNode i n s tp r o c setNode node {
4 $ s e l f setNodeC $node
5 }
6

7 # pour e t e i nd r e un noeud energet iquement
8 EnergyNode i n s tp r o c turnOff nombre {
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9 s e t sim [ Simulator i n s t anc e ]
10 $ s e l f s e t S t a t e f a l s e
11 $ s e l f turnOffNeighbors
12 }
13

14 EnergyNode i n s tp r o c setNbInt nombre {
15 $ s e l f i n s t v a r nbInt
16 s e t nbInt nombre
17 }

B.3.2 C++ scripts

traceur.cc

1 #inc lude ” t ra c eu r . h”
2 #inc lude ” s imu lato r . h”
3 #inc lude <iostream>
4 #inc lude ” energy . h”
5

6 s t a t i c c l a s s TraceurClass : pub l i c Tc lClass {
7

8 pub l i c :
9 TraceurClass ( ) : Tc lClass ( ”Traceur ” ) {}

10

11 TclObject∗ c r e a t e ( int , const char∗ const ∗){
12 re turn (new Traceur ( ) ) ;
13 } ;
14 } c l a s s t r a c e u r ;
15

16 Traceur : : Traceur ( ) {}
17 Traceur : : ˜ Traceur ( ) {}
18

19 i n t Traceur : : command( i n t argc , const char∗ const ∗ argv )
20 {
21 Tcl& t c l = Tcl : : i n s t anc e ( ) ;
22 i f ( argc == 2)
23 {
24 i f ( strcmp ( argv [ 1 ] , ”temps” ) == 0)
25 {
26 t c l . r e s u l t f ( ”%f ” , Scheduler : : i n s t ance ( ) .

c l o ck ( ) ) ;
27 re turn (TCL OK) ;
28 }
29 }
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30 i f ( argc == 3)
31 {
32 i f ( strcmp ( argv [ 1 ] , ” recup” ) == 0)
33 {
34 Energy∗ en e r g i e = ( Energy ∗) TclObject : :

lookup ( argv [ 2 ] ) ;
35 t c l . r e s u l t f ( ”%f ” , energ i e−>somme( ) ) ;
36 re turn (TCL OK) ;
37 }
38 }
39 re turn ( TclObject : : command( argc , argv ) ) ;
40 }
41

42 void Traceur : : recv ( Packet ∗ , Handler ∗) {}

traceur.h

1 #i f n d e f TRACEURH
2 #de f i n e TRACEURH
3

4 #inc lude ” ob j e c t . h”
5

6 c l a s s Traceur : pub l i c NsObject
7 {
8 pub l i c :
9 i n t command( i n t argc , const char∗ const ∗ argv ) ;

10 Traceur ( ) ;
11 ˜Traceur ( ) ;
12 void recv ( Packet ∗ , Handler ∗) ;
13 } ;
14

15 #end i f

energy.cc

1 #inc lude ” energy . h”
2

3 // v i en t de NS2 , l i e l a c l a s s e c++ a la c l a s s e t c l
4 s t a t i c c l a s s EnergyClass : pub l i c Tc lClass {
5

6 pub l i c :
7 EnergyClass ( ) : Tc lClass ( ”EnergyNode” ) {}
8

9 TclObject∗ c r e a t e ( int , const char∗ const ∗){
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10 re turn (new Energy ( ) ) ;
11 } ;
12

13 } c l a s s e n e r g y ;
14

15 // Constructeur
16 Energy : : Energy ( )
17 {
18 // Lien ent r e v a r i a b l e s c++ et v a r i a b l e s t c l
19 bind ( ” nbInt ” , &nbInt ) ;
20 bind ( ”wPerS ” , &wPerS ) ;
21 bind ( ”wPerI ” , &wPerI ) ;
22 bind ( ”wPerByte ” , &wPerByte ) ;
23 b ind boo l ( ” s t a t e ” , &s t a t e ) ;
24 bind ( ”BD1 ” , &BD1) ;
25 bind ( ”BD2 ” , &BD2) ;
26 bind ( ”BD3 ” , &BD3) ;
27 bind ( ”P01 ” , &P01) ;
28 bind ( ”P12 ” , &P12) ;
29 bind ( ”P23 ” , &P23) ;
30 bind ( ” nb event ” , &nb event ) ;
31

32 t a i l l e 1 =0;
33 tps1=0;
34 deb i t i n s t an t an e =0;
35 conso in s tan tanee =0;
36

37 nbPktSent=0;
38 }
39

40 // Destructeur
41 Energy : : ˜ Energy ( ) {
42 }
43

44 //permet d ’ appe l e r une methode c++ a pa r t i r de t c l
45 i n t Energy : : command( i n t argc , const char∗ const ∗ argv )
46 {
47 Tcl& t c l = Tcl : : i n s t anc e ( ) ;
48

49 i f ( argc == 2)
50 {
51 i f ( strcmp ( argv [ 1 ] , ” t a r g e t ” ) == 0)
52 {

60



53 i f ( t a r g e t != 0) {
54 t c l . r e s u l t ( t a rg e t −>name ( ) ) ;
55 r e turn (TCL OK) ;
56 }
57 }
58 //bugee , a ne pas u t i l i s e r
59 i f ( strcmp ( argv [ 1 ] , ” turnOffNeighbors ” ) == 0)
60 {
61 n e i g hbo r l i s t n od e ∗ l i s t e ;
62 do
63 {
64 // t c l . r e s u l t f (” s e t sim [ Simulator

i n s t anc e ]\n $sim rtmodel−at %
f down $n (” , ) ;

65 l i s t e = l i s t e −>next ;
66 }
67 whi le ( l i s t e != 0) ;
68 }
69 }
70 e l s e i f ( argc == 3)
71 {
72 i f ( strcmp ( argv [ 1 ] , ” t a r g e t ” ) == 0)
73 {
74 i f (∗ argv [ 2 ] == ’ 0 ’ )
75 {
76 t a r g e t = 0 ;
77 r e turn (TCL OK) ;
78 }
79 t a r g e t = ( NsObject ∗) TclObject : : lookup (

argv [ 2 ] ) ;
80 i f ( t a r g e t == 0)
81 {
82 t c l . r e s u l t f ( ”no such ob j e c t %s ” ,

argv [ 2 ] ) ;
83 r e turn (TCL ERROR) ;
84 }
85 re turn (TCL OK) ;
86 }
87 i f ( strcmp ( argv [ 1 ] , ”setNodeC” ) == 0) //permet d ’

i n i t i a l i s e r l a v a r i ab l e ind iquant l e noeud
88 {
89 node = (Node ∗) t c l . lookup ( argv [ 2 ] ) ;
90 re turn (TCL OK) ;
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91 }
92 }
93 re turn ( NsObject : : command( argc , argv ) ) ;
94 }
95

96 void Energy : : recv ( Packet∗ p , Handler∗ h)
97 {
98 send (p , h) ;
99 }

100

101 // ve r s i on avec c a l c u l du deb i t in s tantane tous l e s NB EVENT
paquets envoyes

102 void Energy : : send ( Packet∗ p , Handler∗ h)
103 {
104 // r e cupe ra t i on de l a t a i l l e du paquet t r a i t e ( en o c t e t s )
105 double pktS i ze = HDRCMN(p)−>s i z e ( ) ;
106 // r e cupe ra t i on date evenement
107 double eventTime = Scheduler : : i n s t anc e ( ) . c l o ck ( ) ;
108

109 i f ( nbPktSent==nb event )
110 {
111 deb i t i n s t an t an e = 8∗ t a i l l e 1 /( eventTime−tps1 ) ;
112 tps1=eventTime ;
113 t a i l l e 1 =0;
114 nbPktSent=0;
115

116 // c a l c u l de l a consommation in s tantane d ’ apres
l e modele ALR

117 i f ( d eb i t i n s t an t an e < BD1 )
118 conso in s tan tanee = wPerByte ∗

deb i t i n s t an t an e /8 + P01 ;
119

120 e l s e i f ( (BD1 < deb i t i n s t an t an e ) && (
deb i t i n s t an t an e < BD2) )

121 conso in s tan tanee = wPerByte ∗ (
deb i t i n s t an tane−BD1) /8 + P12 ;

122

123 e l s e i f ( (BD2 < deb i t i n s t an t an e ) && (
deb i t i n s t an t an e < BD3) )

124 conso in s tan tanee = wPerByte ∗ (
deb i t i n s t an tane−BD2) /8 + P23 ;

125 }
126 e l s e
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127 {
128 t a i l l e 1+=pktS ize ;
129 nbPktSent++;
130 }
131

132 // emis s ion du paquet ve r s l ’ ob j e t c i b l e
133 t a rg e t −>recv (p , h) ;
134 }
135

136 // renvo i e l a consommation d ’ en e r g i e du noeud .
137 double Energy : : somme( )
138 {
139 i f ( ! s t a t e )
140 re turn 0 ;
141 e l s e
142 re turn (wPerS + nbIn t e r f a c e ( ) ∗wPerI +

conso in s tan tanee ) ;
143 }

energy.h

1 #i f n d e f ENERGYH
2 #de f i n e ENERGYH
3

4 #inc lude ” ob j e c t . h”
5 #inc lude ”node . h”
6 #inc lude ” s imu lato r . h”
7 #inc lude ”packet . h”
8

9 // c l a s s e qui occupe de l ’ e n e r g i e d ’un noeud
10 c l a s s Energy : pub l i c NsObject {
11

12 pub l i c :
13 Energy ( ) ;
14 ˜Energy ( ) ;
15 //permet appe l e r des methodes c++ a pa r t i r de t c l
16 i n t command( i n t argc , const char∗ const ∗ argv ) ;
17 //methode qui r envo i e au t ra c eu r l a consommation ene r g i e

pendant l a d e rn i e r e seconde
18 double somme( ) ;
19

20 i n l i n e Node∗ energynode ( ) { re turn node ;}
21 i n l i n e double nb In t e r f a c e ( ) { r e turn nbInt ;}
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22

23 //methode renvoyant e s t imat ion de l a conso pour l e
c on t r o l e admiss ion

24 double e s t imat ion ( double surcharge ) ;
25

26 protec ted :
27 // conso du coeur
28 double wPerS ;
29 // conso par i n t e r f a c e
30 double wPerI ;
31 // conso par o c t e t
32 double wPerByte ;
33 // c ’ e s t un booleen , s i a o f f , l e noeud consomme 0
34 i n t s t a t e ;
35 //nombre d ’ i n t e r f a c e s du noeud
36 double nbInt ;
37 //noeud auquel c e t ob j e t appar t i en t
38 Node∗ node ;
39

40 // v i en t de NS2
41 void recv ( Packet ∗ , Handler∗ ca l l ba ck = 0) ;
42

43 i n l i n e void send ( Packet∗ p , Handler∗ h) ;
44 NsObject∗ t a r g e t ;
45

46 double t a i l l e 1 ;
47 double tps1 ;
48 double d eb i t i n s t an t an e ; // en b i t s par

seconde
49 double conso in s tan tanee ; // en Watts
50

51 // BDi = deb i t s s e u i l s ALR en b i t s par seconde
52 double BD1;
53 double BD2;
54 double BD3;
55 double P01 ;
56 double P12 ;
57 double P23 ;
58

59 i n t nbPktSent ;
60

61 i n t nb event ;
62 } ;
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63 #end i f

B.3.3 Print energy consumption data

1 # But du s c r i p t : c a l c u l de l a consommation du noeud c i b l e au
cours du temps

2 # Ut i l i s a t i o n : awk −f s e pa r a t i on en e r g i e node . awk −v targetNode=
numero du noeud cib le input . in > output noeud c ib l e . out

3 # A adapter : Rien !
4

5 BEGIN {
6 id = 0 ;
7 }
8 {
9 node = $1 ;

10 temps = $2 ;
11 conso = $3 ;
12

13 i f ( node == targetNode )
14 {
15 i n s t an t [ id ] = temps ;
16 en e r g i e [ id ] = conso ;
17 id++;
18 }
19 }
20 END {
21 f o r ( pac id = 0 ; pac id < id ; pac id++ )
22 {
23 p r i n t f ( ”%f %f \n” , i n s t an t [ pac id ] , e n e r g i e [ pac id

] ) ;
24 }
25 e x i t 0
26 }
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