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Abstract

Since the stop in the frequency increase in processors, chip multiprocessors

have become more relevant. A key aspect of chip multiprocessors is their mem-

ory hierarchy, specifically the shared last-level cache.

This project consists in analyzing different aspects of the memory hierar-

chy and understanding its influence in the overall system performance. The

aspects that will be analyzed are cache replacement algorithms, memory map-

ping schemes and memory page policies.

Abstract

Desde que la frecuencia en los procesadores dejó de incrementar, los chips

multiprocesador han ganado relevancia. Un aspecto clave de los chips multi-

procesador es la jerarqúıa de memoria, espećıficamente el último nivel de cache

compartida.

Este proyecto consiste en analizar diferentes aspectos de la jerarqúıa de

memoria y entender su influencia en el rendimiento del sistema. Los aspectos

que se analizaran son los algoritmos de reemplazo, los esquemas de mapeo de

memoria y las poĺıticas de página de memoria.

Abstract

Des que la freqüència als processadors va deixar d’incrementar, els chips

multiprocessador han guanyat rellevància. Un aspecte clau dels chips multi-

processador és la jerarquia de memòria, espećıficament a l’últim nivell de la

cache compartida.

Aquest projecte consisteix a analitzar diferents aspectes de la jerarquia de

memòria i entendre la seva influència al rendiment del sistema. Els aspectes

que s’analitzaran són els algorismes de reemplaçament, els esquemes de mapeig

de memòria i les poĺıtiques de pàgina de memòria.
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1 State of the Art

1.1 Cache memory hierarchy

One of the main issues in computer architecture is the time it takes to transfer an

element from the memory to the processor. This happens because the memory access

time is directly proportional to its size [1], so big memories will be slow, and fast

memories will be small.

This issue has been mitigated with the usage of caches. A cache is a small memory

that takes advantage of spatial and temporal locality in order to reduce the number

of accesses to memory, and thus the latency of an access. Nowadays, most processors

include 3 levels of cache: from L1 which is the smallest and fastest to L3 which is the

biggest and slowest (Figure 1).

L3

L2

L1

CPU

S
p
ee
d

S
ize

Memory

Figure 1: Cache hierarchy. The lower levers of the cache hierarchy have smaller access
time than the higher levels.

1.2 Chip multiprocessors

Since 1970, the performance of processors has been increased mostly because of the

frequency increase, as seen in Figure 2.
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Figure 2: Frequency in Intel microprocessors

Around 2003 the commercial processor’s frequency increase stopped growing at

the same rate. This was because of the increment in the static power in each gen-

eration. Since it was not affordable to dissipate the thermal heat generated by the

processor if they kept increasing the frequency, chip manufacturers chose to design

chips with more than one processor in order to keep the performance growing each

year.

In a chip multiprocessor the memory hierarchy has some private levels per processor

and a shared level. In most chips the L1 and L2 caches are private per processor and

the L3 is shared. (Figure 3)

L2

L1

CPU

L2

L1

CPU

L2

L1

CPU

...

...

...

L3

Network

Figure 3: Cache hierarchy in a chip multiprocessor. The two lower levels of the cache
hierarchy are private per processor and the last level is shared.
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1.3 Replacement algorithms

Since 2003, one important topic in computer’s architecture research has been the

replacement algorithms for the Shared Last-Level Cache (SLLC). A replacement al-

gorithm is in charge of deciding which line has to leave a cache set when it is full

and there is a miss. If the cache evicts a line and in a short period of time accesses

the same line, it will have to request the same line again, thus increasing the total

execution time.

Replacement algorithms try to predict which lines are going to be referenced more so

they are not evicted.

The classic approaches are Least Recently Used (LRU) [4] and Non Recently Used

(NRU). Some new alternatives are Least Recently Reused (LRR) [5], Non Recently

Reused (NRR) [6] or Thread-Aware Dynamic Re-Reference Interval Prediction (TADR-

RIP) [7][8]. An in-depth explanation of the algorithms is in the next section.

11



2 Replacement algorithms

In this section the classic replacement algorithms (LRU, NRU) along with new pro-

posals (LRR, NRR, SRRIP...) are explained.

2.1 Least Recently Used

One of the most known algorithms in cache line replacement is the LRU [16]. This

algorithm tries to exploit temporal locality in recently accessed lines. For this, LRU

keeps the lines that has been accessed most recently since it supposedly will be ac-

cessed in the near future.

LRU works like a stack. For each set, the least recently used (LRU) line is at the

bottom of the stack, while the most recently used (MRU) line is at the top. Whether

we have a miss or a hit, the referenced line will be inserted at the MRU position.

When there is a replacement the line at the LRU position of the stack will be evicted.

This algorithm is described in Figure 4.

miss or hit {

Put line at the MRU position

}

replacement {

Evict line at the LRU position

}

Figure 4: LRU algorithm

In Figure 5 we can see a brief sequence of accesses. Each cache set is divided in

8 slots, each one representing a line of the cache. Each line is identified by its tag.

The striped cache line represents the replacement candidate, in this case the line in

the LRU position.

When there is a hit (0x0000), the referenced line goes to the MRU position and the

other lines move forward in the stack. In the miss (0x00A4) the LRU line (0x00B1)

leaves the cache and the new line is inserted in the MRU position. The other lines

also move forward.
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Figure 5: LRU example. Sequence of cache accesses. The vertical groups of boxes represent
a cache set, being each box a line. Each line is identified by its tag in hexadecimal. The
striped lines are the eviction candidates.

LRU is not usually implemented in the Last Level Cache (LLC), since the cost of

the implementation increases with the associativity [13] [14].

2.2 Non Recently Used

Another well-known replacement algorithm is the NRU [17]. The purpose of NRU is

the same as LRU: to keep in cache the most recent lines in order to exploit temporal

locality. However, it uses less information than LRU. Instead of tracking the exact

order in which the lines are referenced, it only excludes the last referenced line against

eviction. By doing this it will have less precision when evicting a line, and probably

less hit rate. A specific implementation of NRU groups the lines in two categories:

recently used and non recently used.

In Figure 6 we see the NRU algorithm. In a hit or a miss it will mark the referenced

line as RU (Recently Used), and if all the other lines in the same set are also marked

to RU, it will mark them to NRU (Non Recently Used). When there is a replacement,

a random line of the NRU group is evicted.
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miss or hit {

Set RU line

if (all lines RU) {

Set NRU all lines

Set RU line

}

}

replacement {

Evict random line between the NRU

}

Figure 6: NRU algorithm

Figure 7 is an example of the behavior of the NRU algorithm. Each cache set is

divided in 8 slots, each one representing a line of the cache. Each set now has two

different line groups: the blank ones representing the RU lines and the striped ones

representing the NRU lines.

If there is a hit on a NRU line (0x0000) it is updated to RU. In a miss (0x00A4) a

random line of the NRU group (0x00B4) is evicted. Then the new line is inserted in

the RU group.
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Figure 7: NRU example. Sequence of cache accesses. The vertical groups of boxes rep-
resent a cache set, being each box a line. Each line is identified by its tag in hexadecimal.
The striped lines are the eviction candidates.

A simple NRU implementation would use one bit per cache line and a pointer to

select amongst the NRU lines.

2.3 Least Recently Reused

Various algorithms have been studied in order to improve hit rates in the Last Level

Cache (LLC). One of them is the LRR. This algorithm is based on the assumption

that not all blocks referenced in the LLC will have reuse in the LLC, since the reuse

is exploited in the lower cache levels. Therefore, LRR will predict reuse on a line

referenced at least twice (the initial miss and a hit).

LRR groups the cache lines of each set in three different groups, as seen in Figure

8:

• Used

• Non-used reused
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• Non-used non-reused

The most priority group is the used one, since it means that this line is currently in

lower cache levels. The non-used reused group is where lines that have shown reuse

but are not in any private cache are. Finally, the least priority group is the non-used

non-reused group, composed by cache lines that have not been reused and are not

in any private cache. Each of this groups is ordered by Recently Used, just like the

LRU algorithm.

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

����������
����������
����������

����������
����������
����������

Used Non−used

Reused Non−reused

Eviction order

Figure 8: LRR groups

In Figure 9 we see the LRR algorithm. When there is a miss or a hit the referenced

line is moved to the MRU position of the used group. Additionally, on a hit the line

is marked as reused. On a replacement the LRU line of the less priority group that

exists is evicted. When a line is evicted from the last private cache, then the line

leaves the used group and goes to the non-used group that matches with its reused bit.
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miss {

Put line at the MRU position of the used group

}

hit {

Put line at the MRU position of the used group and mark reused

}

replacement {

if (non-used non-reused group not empty)

Evict line at the LRU position of the non-used non-reused group

else if (non-used reused group empty)

Evict line at the LRU position of the non-used reused group

else

Evict line at the LRU position

}

last private cache eviction {

if (reused) {

Put line at the MRU position of the non-used reused group

}

else {

Put line at the MRU position of the non-used non-reused group

}

}

Figure 9: LRR algorithm

In Figure 10 there is an example of how LRR works. The set is ordered by groups,

and inside each group by use temporality. The reuse bit is shown next to each line

tag.

In a hit (0x0012) the line is moved to the MRU position of the used group, and is

marked as reused. When there is a miss (0x00A4), the LRU line of the non-used

non-reused group (0x0000) is evicted. Finally, the new line is inserted in the used

group with the reuse bit set to 0.
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update eviction insertion
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Figure 10: LRR example. Sequence of cache accesses. The vertical groups of boxes
represent a cache set, being each box a line. Each line is identified by its tag in hexadecimal.
The bit next to each tag is the reuse bit.

When implementing LRR, its complexity increases with the set associativity like

LRU.

2.4 Non Recently Reused

NRR is an algorithm that simplifies the LRR implementation but keep its objectives,

analogously to NRU with LRU. The idea is to keep the same groups that LRR had

but without maintaining a temporal order inside the groups.

Figure 11 explains the NRR algorithm. When there is a miss or a hit the line is put

in the used group. On a hit, it is also marked as RR (Recently Reused), and if the

non-used non-reused group is empty, all the lines of the non-used reused group are

moved to the non-used non-reused group. On a replacement the eviction order is the

same as in LRR, but inside each group the line is randomly selected. When a line is

evicted from the last private cache it is moved to the non-used group that matches

its reuse bit.

18



miss {

Put line in the used group

}

hit {

Put line in the used group

Mark reused line

if (non-used non-reused group is empty) {

Move all non-used reused lines to non-used non-reused

}

}

replacement {

if (non-used non-reused group not empty)

Evict random line from the non-used non-reused group

if (non-used reused group not empty)

Evict random line from the non-used reused group

else

Evict random line

}

last private cache eviction {

if (reused) {

Put line in the non-used reused group

}

else {

Put line in the non-used non-reused group

}

}

Figure 11: NRR algorithm

In Figure 12 we can see an example of a hit and a miss. The set is divided in

three groups, maintaining no particular order inside each group. The reuse bit is next

to the tag of each line. When there is a hit the line on the non-used reused group

is moved to the used group. On a miss the replacement evicts a random line of the

non-used non-reused group, and then inserts the new line in the used group without

the reuse bit set.
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Figure 12: NRR example. Sequence of cache accesses. The vertical groups of boxes
represent a cache set, being each box a line. Each line is identified by its tag in hexadecimal.
The bit next to each tag is the reuse bit.

A simple NRR implementation will only need an extra reuse bit per cache line to

track the reuse and a pointer, since it uses the presence vector to know which lines

are in use.

2.5 Static Re-Reference Interval Prediction

Static Re-Reference Interval Prediction (SRRIP) [7] is based on the same idea as

NRR and LRR: to keep reused lines in the cache more time than non-reused lines.

However, its behavior is different from NRR and LRR. SRRIP gives each cache line a

value called Re-Reference Interval Prediction (RRIP). Lines with a high RRIP value

will be evicted before lines with lower RRIP value.

In Figure 13 we see the SRRIP algorithm. Each cache line has M bits to represent

the RRIP value. The highest RRIP value (2M-1) lines are the eviction candidates.

When a line misses, it gets a (2M-2) RRIP value and when it hits, it gets a 0 RRIP

value. In a replacement, if there are no more RRIP value of 2M-1, all RRIP values

are incremented. This way the eviction order will be temporally by reuse order.
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miss {

Put line and set RRIP to (2^M)-2

}

hit {

Set RRIP to 0

}

replacement {

while (not exists one line with RRIP (2^M)-1) {

Increment all RRIP by 1

}

Evict random line with RRIP (2^M)-1

}

Figure 13: SRRIP algorithm

In Figure 14 we can see an example of a hit and a miss. Each line has a RRIP

value between 0 and 3 (M = 2).

When there is a hit (0x0012) the line updates its RRIP value to 0. On a miss (0x004A)

the replacement evicts a random line between the lines with RRIP value 3 (2M-1) and

then inserts the new line with a RRIP value of 2 (2M-2).
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Figure 14: SRRIP example. Sequence of cache accesses. The vertical groups of boxes
represent a cache set, being each box a line. Each line is identified by its tag in hexadecimal.
The number next to it represents the RRIP value. The stripped lines are the eviction
candidates.
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2.6 Set Dueling

A problem with replacement algorithms in a chip multiprocessor is that committing

to a single replacement algorithm can be harmful for some of the programs. A solu-

tion to this problem is to use a dynamic insertion policy, which selects between two

different algorithms using Set Dueling [15].

A straightforward implementation of Set Dueling would be to use an extra tag di-

rectory for each cache line, keeping track of both algorithms and using the one that

misses the least. However, this is an expensive implementation and it is not used.

A cost-efficient way of implementing set dueling is via set samples. As seen in Figure

15 some sets implement one algorithm (1, 4) while others (2, 7) implement a different

one. These sets are the sample sets, and using a saturated counter we increase it when

one algorithm misses on its sample sets and decrease it when the other misses on its

sample sets. A sampling time is defined, and when that time passes, the counter is

reset to 0 and the winning algorithm is used in the rest of sets (0, 3, 5, 6) until the

next sampling time is up.
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Figure 15: Set Dueling. Some sets are the sample sets for each algorithm. When algorithm
0 misses on its sample sets it increases the counter, while an algorithm 1 miss on its sample
sets decreases it.

2.7 Dynamic Re-Reference Interval Prediction

When the re-reference interval of the lines mapped to a set is bigger than the number

of ways of the cache, SRRIP does not reuse any cache lines. To avoid this scenario,

Bimodal Re-Reference Interval Prediction (BRRIP) is proposed. BRRIP inserts most

22



cache lines with a distant re-reference interval prediction (value of 2M-1) and some

lines with a long re-reference interval prediction (value of 2M-2).

However, in cases where this does not happen, using BRRIP would decrease perfor-

mance. Set dueling is used to select which algorithm is better for each execution.

Dynamic Re-Reference Interval Prediction (DRRIP) is the algorithm that uses Set

dueling to choose between SRRIP and BRRIP.

2.8 Dynamic Re-Reference Interval Prediction with Protec-

tion

In DRRIP a block present in lower level caches can be evicted if its RRIP value is

2M-1. This is not the desired behavior under the hypothesis that lines present in

lower caches will be eventually reused.

Dynamic Re-Reference Interval Prediction with Protection (DRRIP+) protects the

lines present in the lower cache levels when there is an eviction. When a block present

in the lower cache levels is about to be evicted, its RRIP value is decremented by

one and a new candidate is selected. Only when all the remaining candidate lines are

present in the lower level cache one of them will be evicted.

2.9 Thread-Aware Dynamic Re-Reference Interval Predic-

tion

Since a multicore processor can have multiple programs running at the same time,

there could be a program that would benefit from BRRIP and another that would

harm from it. TADRRIP [4] addresses this problem. Instead of having a single policy

selection counter and a group of sample sets, it has as many counters and groups of

sample sets as processors. This way each program can have the algorithm that suits

it best, without being influenced by other programs.
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3 Simulation

Simulations will be run in order to compare the different replacement algorithms and

its influence in the performance of the system. First we explain the Simulator tools

used. Then we explain the simulated system and specifically the memory hierarchy.

3.1 Simulator

In order to simulate the system we need to use 3 different simulation tools, as shown

in Figure 16.

3.1.1 SIMICS

SIMICS is a functional simulator that can run unchanged programs for specific ar-

chitectures (for example x86-64, ARM, MIPS, SPARC...). The operating system

simulated in SIMICS is Solaris.

3.1.2 GEMS: Ruby

General Execution-driven Multiprocesor Simulation (GEMS) is a suite of diverse mod-

ules that implement extra functionalities to SIMICS. In this simulation we use Ruby,

a memory hierarchy simulator. Ruby simulates the whole cache hierarchy, including

the L1i, L1d, L2 and L3, its internal networks and the replacement algorithms. It

also simulates the coherence protocol specified in the Specification Language Includ-

ing Cache Coherence (SLIC) domain specific language.

3.1.3 DRAMSim2

DRAMSim2 is a module that simulates the DRAM. Amongst its functionalities it can

simulate different page policies, such as open page and close page, different mapping

schemes and also take energy measurements.
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DRAM
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DRAMSIM2

RUBY

CPUsSIMICS

Simulation tool Component simualted

Figure 16: Simulation tools used

3.2 Simulated system

The simulated system is formed by 8 SPARC IV processors, 8 L1 caches, 8 L2 caches,

a shared L3 cache divided in 4 banks and 4 memory controllers each one connected

to an L3 bank. The memory lines have a size of 64B. In Figure 17 we see a schematic

representation of the simulated system.

Proc 0
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L1 d

L1 i

L1 d

L1 i
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L2

L1 d

L1 i

Proc 7

DRAM

DRAM

DRAM

DRAM

...

L3

L3

L3

L3

...

...

Figure 17: Simulated system

3.2.1 Caches and DRAM specification

The cache and DRAM characteristics are shown in Table 1.
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Private L1i / L1d 32KB, 4-way, 64B line size, LRU replacement,

1-cycle access latency

Private L2 256KB, 8-way, 64B line size, LRU replacement,

7-cycle access latency

Shared L3 8MB inclusive (4 banks of 2MB each), 64B line

size. Each bank: 16-way, 10-cycle access latency

DRAM 32GB divided in 4 cache controllers, 8 ranks,

64K rows, 1K columns, DDR3 1333 MHz

Table 1: Cache and DRAM characteristics

In the simulations we will vary the replacement algorithm used in the L3 cache in

order to analyze their behavior. The replacement algorithms user are: LRU, NRU,

LRR, NRR, DRRIP and DRRIP+. The DRRIP and DRRIP+ implementations will

use RRIP values of 3 bits.

The L2 and L3 cache address mapping is seen in Figure 18.

6211

BankSetTag

6

L2 cache address

L3 cache address

SetTag

9

Offset

Offset

Figure 18: L3 mapping

3.2.2 DRAM mapping and page policy

We will simulate two different DRAM mappings, shown in Figure 19:

• Mapping 1

In the mapping 1, dirty line evictions from the L3 cache can or can not be mapped

to the same bank and rank. The access latency will be lower if they are mapped to

different bank and rank than the same.

• Mapping 2

In the mapping 2, when there is a miss in the L3 cache that generates a dirty line evic-

tion, both the read and the write will map to the same memory bank and rank, and
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different row, since the bits that map the set in the L3 cache are the same. This means

that in a dirty line eviction the latency will always be equal or higher than mapping 1.

BankRankColumn

Bank

2

L3 cache address

M1 DRAM address

M2 DRAM address

Tag Set

1116 6

RowBankRank Column Channel

Offset

RowMatrix

Matrix Row

3 3 32

ChannelRow

1716

Figure 19: DRAM mapping

Another simulation parameter will be the page policy. We will simulate a DRAM

with open and close page:

• Open page

After each access it holds the row for a certain time or until it hits 4 times in the sense

amplifiers. If the next access goes to the same row, it will save the time needed for

a precharge-activate, but if it fails it will have to issue a precharge-activate, making

the latency for this access increase. The DRAM behavior is explained in depth in the

Annex B.

• Close page

Each access has to issue an activate and after the read/write a precharge.

3.3 Benchmarks

In the simulation we use 50 different benchmarks. Each benchmark has 8 applica-

tions executing (one per processor). The applications have been randomly selected

amongst the SPEC 2000 applications. The entire benchmark list is shown in Table 2.

For each benchmark we will simulate 500M cycles for filling the caches. This cycles we

will not track statistics because of all the misses it would have in all the replacement

algorithms. Afterwards, we simulate 1000M cycles generating statistics.
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0 GemsFDTD tonto soplex soplex leslie3d xalancbmk zeusmp bwaves

1 milc milc gromacs zeusmp gromacs gromacs calculix mcf

2 gcc mcf povray leslie3d h264ref lbm namd gcc

3 libq. h264ref leslie3d sjeng zeusmp wrf omnetpp tonto

4 sphinx3 mcf povray libq. lbm leslie3d bwaves hmmer

5 libq. perlbench gobmk dealII dealII soplex leslie3d astar

6 omnetpp astar milc perlbench leslie3d libq. milc zeusmp

7 namd h264ref gobmk gromacs GemsFDTD bzip2 mcf GemsFDTD

8 h264ref bzip2 soplex sjeng perlbench gobmk zeusmp gcc

9 gamess zeusmp dealII hmmer astar GemsFDTD gcc sjeng

10 sjeng perlbench leslie3d sjeng sphinx3 wrf calculix calculix

11 sphinx3 mcf soplex bzip2 tonto sjeng mcf gamess

12 soplex h264ref bwaves gromacs soplex milc astar libq.

13 sphinx3 sjeng GemsFDTD zeusmp soplex namd dealII bzip2

14 omnetpp bwaves gobmk wrf soplex astar milc dealII

15 leslie3d gromacs leslie3d gobmk omnetpp xalancbmk gcc GemsFDTD

16 soplex namd bzip2 cactusADM gromacs leslie3d calculix leslie3d

17 zeusmp zeusmp xalancbmk leslie3d xalancbmk bwaves sjeng povray

18 libq. soplex astar calculix bzip2 GemsFDTD hmmer milc

19 libq. omnetpp zeusmp bwaves zeusmp calculix gobmk gcc

20 gobmk povray calculix cactusADM tonto GemsFDTD milc cactusADM

21 wrf mcf gobmk gromacs calculix tonto gamess bzip2

22 soplex dealII sphinx3 gobmk soplex perlbench mcf gromacs

23 milc tonto namd bwaves povray bwaves gamess hmmer

24 gcc h264ref gobmk bzip2 GemsFDTD sphinx3 h264ref omnetpp

25 sphinx3 zeusmp dealII h264ref leslie3d xalancbmk namd perlbench

26 gcc namd perlbench hmmer xalancbmk wrf xalancbmk milc

27 gamess gcc wrf perlbench gcc GemsFDTD sphinx3 povray

28 bzip2 bzip2 lbm GemsFDTD gromacs xalancbmk zeusmp bwaves

29 sphinx3 bzip2 cactusADM gamess sjeng dealII milc hmmer

30 xalancbmk tonto mcf calculix zeusmp calculix gromacs mcf

31 dealII gcc xalancbmk tonto mcf calculix gamess gamess

32 leslie3d libq. gcc sphinx3 milc bwaves dealII wrf

33 namd povray xalancbmk soplex cactusADM gamess soplex hmmer

34 calculix gamess perlbench sphinx3 GemsFDTD omnetpp omnetpp namd

35 gamess sphinx3 astar bzip2 hmmer soplex perlbench calculix

36 sjeng gobmk milc astar GemsFDTD zeusmp tonto wrf

37 leslie3d calculix gcc omnetpp sphinx3 wrf bwaves libq.

38 leslie3d mcf astar gcc gcc cactusADM bwaves leslie3d

39 hmmer soplex wrf dealII bwaves povray perlbench sjeng

40 bwaves dealII gobmk wrf zeusmp gromacs soplex leslie3d

41 xalancbmk wrf sphinx3 GemsFDTD tonto povray mcf bwaves

42 gamess tonto GemsFDTD bzip2 zeusmp gcc soplex cactusADM

43 dealII leslie3d namd gobmk tonto gcc h264ref calculix

44 tonto bwaves zeusmp wrf sphinx3 zeusmp leslie3d cactusADM

45 gromacs sphinx3 soplex namd wrf sjeng sphinx3 sjeng

46 gobmk gcc dealII soplex hmmer omnetpp cactusADM povray

47 lbm sphinx3 lbm milc lbm GemsFDTD gromacs povray

48 tonto lbm milc dealII sjeng gamess h264ref tonto

49 calculix sphinx3 gromacs zeusmp xalancbmk hmmer perlbench namd

Table 2: Benchmarks. Each benchamrk has eight applications running, one in each pro-
cessor.
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4 Results

In this section the results of the simulations are presented. First, we explain the

replacement algorithms performance, the eviction distribution and the energy con-

sumption. Then we compare the open page and the close page policies. Finally, we

analyze the mapping schemes.

4.1 Replacement algorithms

We will analyze the performance, evicts distribution per L3 bank and memory energy

consumption for each replacement algorithm.

4.1.1 Performance

In Figure 20 we can see the speedup (CPI) over LRU of the different algorithms.

The benchmarks are sorted by the DRRIP+ speedup, since it is the replacement

algorithm that achieves better results overall. LRR and NRR are near DRRIP+ in

performance, this is because the three algorithms protect the cache lines present in

lower cache levels. DRRIP performs better in some benchmarks and worse in others,

meaning that sometimes it is beneficial not to protect the lines present in the L2

cache. Finally, NRU is the worse algorithm, showing almost no improvement over

LRU.
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Figure 20: Performance of the different replacement algorithms over LRU. The bench-
marks are ordered by DRRIP+ speedup.

In Figure 21 we see that the relation between the speedup and the misses of the

DRRIP. It is clearly shown that the more misses, the higher the CPI is. The other

algorithms show the same relation.

Figure 21: Relation between the performance and the misses of DRRIP. The benchmarks
are ordered by DRRIP+ speedup.

4.1.2 Miss distribution

Ideally, in the L3 cache the distribution of misses should be equal between the dif-

ferent banks. However, in a lot of the benchmarks this distribution is more irregular

than it should be. In Figure 22 we see an example of a distribution where an L3 bank
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can notably have more misses than the others.

Figure 22: Miss distribution by L3 bank. We can see the distribution of the L3 misses
between the L3 banks for each replacement algorithm in the benchmark 33.

4.1.3 Energy consumption

In Figure 23 we can see the DRAM energy reduction over LRU for each replacement

algorithm in all the benchmarks. The benchmarks have been ordered by DRRIP+

energy reduction. DRRIP+ is the one that reduces more energy, together with LRR

and NRR. As it happened with the performance, DRRIP has more energy reduction

in some cases and less in others. This is due the fact that the less the L3 cache misses,

the less accesses to the DRAM, making the memory consume less energy.
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Figure 23: DRAM energy reduction over LRU. The benchmarks are ordered by DRRIP+
energy reduction.

4.2 Page policy

Both the open page (Figure 24) and close page (Figure 25) policies perform almost

exactly in all the benchmarks. The benefit of open page over close page is based

on the assumption that there will be page hits in the memory. However, there are

less than 1% of hits in memory accesses, making it behave similar to close page. A

reason for this low amount of hit percentage is that the DRAM closes the page after

a certain time without a hit or after 4 hits. A possible improvement for increasing the

hit percentage would be to increase the time for the page to remain open or increase

the number of hits before the page closes.
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Figure 24: CPI and MPKI with Open Page. We can see the CPI and the MPKI for each
replacement algorithm and program of benchmark 20.

Figure 25: CPI and MPKI with Close Page. We can see the CPI and the MPKI for each
replacement algorithm and program of benchmark 20.

4.3 Mapping scheme

Between the two mapping schemes used (described in Section 3.2.2 DRAM mapping

and page policy) there is no notable difference in all the benchmarks (Figure 26 and

Figure 27). In a dirty line eviction in mapping 2, both the read and the write map
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to the same bank and rank, but different lines. In mapping 1, it can map the same

line but it is highly improbable.

Figure 26: CPI and MPKI with Mapping 1. We can see the CPI and the MPKI for each
replacement algorithm and program of benchmark 11.

Figure 27: CPI and MPKI with Mapping 2. We can see the CPI and the MPKI for each
replacement algorithm and program of benchmark 11.
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5 Project description and planning

5.1 Project description

The main goal of the project is to compare how different replacement algorithms

behave in the cache. We will also analyze the behavior of memory mapping schemes

and memory page policies. In order to achieve that goal, we will use simulation

software. Part of the software is provided by companies (SIMICS), but we will also

work with modified code by researchers (GEMS). The modified code includes the

implementations of the replacement algorithms.

The project will have three parts that will be repeated several times:

• Simulation set up

All the simulation scripts have to be programmed, the simulation code has to

be compiled and installed and the different algorithms have to be understood.

• Simulation run

The different simulations will be ran. In this part of the project more software

will have to be modified.

• Result analysis

Once we have the simulation results, they will be interpreted and we will do the

process again with different parameters.

5.1.1 Objectives

The main goal of the project is to analyze the behavior of the replacement algorithm

inside a Chip Multiprocessor (CMP).

In order to achieve the goal, we will analyze:

• How the different content management policies used in the Last Level Cache

(LLC) impact the performance of the overall system.

• The distribution of misses in the LLC.

5.1.2 Risks

Although other unknown risks may happen, the most important risks are the follow-

ing:
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• Already modified software

The software that we will use has already been modified in order to imple-

ment the different protocols. This means that the existing software has to be

understood and reviewed in case there are mistakes.

• Project planning

We must also take into consideration the time that we have to make the project.

The project planning in Section 5.2 explains in depth this problem.

5.1.3 Methodology

Since we want to test the behavior of a hardware component, there are two approaches

to the methodology: hardware simulation and on chip testing.

• Hardware simulation

Using simulation software reproduces the behavior of a real chip. The bench-

marks run slow since the system is being simulated. On the plus side it is

cheaper since we only have to pay the software licenses and hardware on where

it runs.

• On chip testing

It consists in producing different chips with the desired algorithms and running

the benchmarks. The benchmarks executions are fast because we are executing

on actual hardware, but the cost of designing and manufacturing a new chip is

really high.

For logistic and economic reasons, we will simulate the hardware using software sim-

ulation tools.

5.1.4 Tools

The work tools are classified in two: hardware resources and software tools.

• Hardware resources: We will use two hardware tools:

– Computer cluster: a 153 shared node computer cluster will be used to

execute the simulations. The cluster has Intel Xeon processors and 64GB

of RAM memory and 1TB of data storage per processor.
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– Desktop computer: a desktop computer will be used as a client in order to

launch the simulations and program.

• Software tools: The different software tools we will use are the following:

– SIMICS software [9]: a functional simulator of computer system. It will

simulate a SPARC processor and run Solaris.

– GEMS memory emulation software [10]: a module that simulates the mem-

ory hierarchy system and is attached to the SIMICS simulator.

– DRAMSim2 emulation software: a module that simulates the DRAM.

– SQL database: we will set up a database in order to store and consult the

simulation results.

– GNUplot: this software helps to plot different statistics.

– Bash scripts: used in order to automatize the simulation execution and

data processing.

5.2 Temporal planning

5.2.1 Estimated project duration

The estimated project duration is approximately 4 months: it starts on February

17th and finishes by June 27th. The effective work days once removed holidays and

weekends are 82, which divides the number of total hours of the final project (450-500)

meaning that the effective time invested in the project is about 5 hours per day.

5.2.2 Project tasks

The different tasks of the project are explained, as well as the dependencies between

them and some other considerations.

• Control meetings

These meetings with the directors of the project and a university professor

(Angel Olive) will be held once or twice a week, with a duration of about 2

hours each meeting. In these meetings the author of the project will explain his

progress and current situation.
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• GEP course

The GEP course is a course on project management that must be completed in

the first weeks of the final project. It includes several partial deliveries covering

different areas of project management. At the end of the project a final delivery

containing all the other deliveries and a presentation about the project will be

done.

• Simulation software installation

The functional simulation (SIMICS) and simulator (GEMS) software must be

compiled and installed on the cluster that we will use for the simulation. This

task includes modifying the Makefiles in order to include different paths, envi-

ronmental variables and libraries amongst others.

• Database setup

In order to access all the simulation data easily it is convenient to set up a

database. The setup includes creating the tables, programming the inserts and

the queries.

• Simulation scripts programming

In order to run hundreds of simulation’s the process must be automatized. For

programming these scripts we need to understand the cluster’s queueing system.

• DRAM module study

The DRAM module that we will add to the existing GEMS software will be

studied and the different options for adding the module to the software will be

evaluated.

• Replacement algorithm study

In order to test the influence in the performance of the different replacement

algorithms we must understand them. This involves reading different papers

and understanding the implementations of these algorithms.

• Simulation software modifications

The GEMS memory system simulation software must be modified. These modi-

fications include the addition of the DRAM module and the obtaining of specific

statistics about the simulation. We will use Doxygen in order to understand

the code that we have to modify.
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• Simulation execution, results treatment and analysis

This three tasks generate a cycle: first we run a simulation, then we parse the

results, add them to the database, plot and analyze them. We will do this

process several times since we will want to obtain different statistics.

• Graphic scripts programming

Various graphics will need to be generated from the multiple results in order to

help analyzing the simulations. This task will consist in testing different plot

organizations to conclude the optimal for the result analysis.

• Mapping schemes study

In order to test the influence in the performance of the different mapping func-

tions we must understand them.

• Final document writing

The final document with all the conclusions must be written. This process will

be done in parallel with the development of the project.

• Lecture preparation

Final lecture preparation. The slides of the presentation will also be done.

• Final lecture

Final lecture exposition and the afterwards questions of the tribunal.
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5.2.3 Task estimated time and dependencies

In Table 3 we see the estimated time of each task and its dependencies. In Figure 28

we see the Gantt chart of the project.

ID Task Time (h) Dependencies

1 Control meetings 40

2 GEP course 80

3 Simulation software installation 20

4 Database setup 24

5 Simulation scripts programming 14

6 DRAM module study 25

7 Replacement algorithm study 25

8 Simulation software modifications 40 6, 7,1 3

9 Simulation execution * 3, 5, 8

10 Simulation results treatment 50 12

11 Result analysis 80 12

12 Graphic scripts programming 16

13 Mapping schemes study 25

14 Final document writing 90

15 Lecture preparations 20

16 Final lecture 3 14, 15

552

Table 3: Task estimated time and dependencies

* Simulation execution time is not accounted for here because is not personal work

time.
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5.2.4 Gantt chart

Figure 28: Gantt chart



5.2.5 Action plan

In order to ensure that everything goes as planned or to discuss different solutions in

case there are any problems, there will be one or two meetings every week with the

project directors.

Additionally, two weeks of the project have not been assigned to any particular task

in case extra time is needed.

5.2.6 Validation method

In order to ensure the correctness of the data, the resulting measures will be calculated

using different methods. Additionally, on the results analysis any abnormality will

be studied in order to ensure that is its real behavior and not an error.

5.3 Project budget

The resources are divided into 3 groups: human resources, software resources and

hardware resources.

5.3.1 Budget justification

The results of the project will have an impact in the performance of a multiprocessor

chip. Since companies that manufacture chips need to improve the performance in

each generation in order to keep competing, and these companies have high revenue

(order of thousands of millions), the cost of this project is affordable. Furthermore

the results of these project will be applicable to all kinds of processors: from mobile

phones to desktop computers or supercomputers; because all chips nowadays are

multiprocessor.

5.3.2 Human resources

There are three different tasks in the project: developer, analyst and project manager.

Based on the Gantt diagram used for the time schedule, we can conclude that 40 hours

(project meetings) will be of project managing, 268 hours (algorithm study and paper

writing) will be of analyzing and 164 hours (programming different applications) will

be of developing.

In Table 4 we can see the price per hour, as well as the total price after adding the

31% social security tax. The salaries have been consulted from a salary study [11].
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Resource Price (AC/h) Time (h) Subtotal (AC) Total (AC)

Developer 20 164 3.280 4.297
Analyst 25 268 6.700 8.777
Project manager 35 40 1.400 1.834

472 11.380 14.908

Table 4: Human resources costs

5.3.3 Software resources

The memory system simulator GEMS is an open source simulator from the Univer-

sity of Wisconsin, and is free of cost. The SIMICS simulator is a software tool from

the company Wind River, and costs 7.500AC per year, representing a cost of 2.500AC

since we will use it for 4 months. The DRAMSim2 module is open source from the

University of Maryland.

5.3.4 Hardware resources

There are two different hardware costs: computer depreciation and cluster rental.

The computer costs 1.200AC, and its depreciation cost will be 200AC, since we will use

it 4 out of the 24 amortization months.

The cluster rental price is 0,40AC [12] per hour per core, this price includes the elec-

tricity cost and any necessary maintenance. The execution time is the following:

6 hours

simulation
∗50 simulations∗6 algor∗2 page policies∗2 mapping schemes = 7.200 hours

In Table 5 the total price with tax (21%) is calculated:

Resource Price (AC/h) Time (h) Subtotal (AC) Total (AC)

Servers 0,4 7.200 2.880 3.484
Computer 200 242

3.080 3.726

Table 5: Hardware resources costs
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5.3.5 Total budget

The final budget for the project is shown in Table 6.

Resource Total cost (AC)

Human capital 14.908
Software resources 2.500
Hardware resources 3.726

21.134

Table 6: Total costs

5.4 Sustainability

5.4.1 Social impact

Since the results of the project will improve a multiprocessor’s chip performance, new

and more powerful applications will be possible. It will also be possible to run the

same applications faster, which will represent cost and power savings.

5.4.2 Environmental impact

In the simulations we will also evaluate the power consumption of each alternative.

This means that instead of only comparing the performance, we will also compare

the power consumption and the performance per power consumption.
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A Cache coherence protocol

A.1 High level description

A multiprocessor system can have one or more multiprocessor chips, each one with two

private cache levels and a shared cache level. The L1 cache level has separate caches

for data and instructions, while the L2 cache level stores both data and instructions.

The shared cache L3 is divided in banks, with a different controller each bank. There

is an interconnection network that connects L2 caches, L3 banks and the memory

directory. We can see a representation in Figure 29:

Proc 0

Proc 1

L1 d

L1 i

L1 d

L1 i

L2

L2

L2

L1 d

L1 i

Proc 7

DRAM

DRAM

DRAM

DRAM

...

L3

L3

L3

L3

...

...

Figure 29: Memory hierarchy description

A.1.1 Protocol

The L3 shared cache is inclusive and knows about all the copies in the L2s. This

information is stored using one bit per cache line in a presence vector.

The L2 caches have three stable states:

• M: the cache line has been modified and its value is not updated in the L3

cache.

• S: the cache line has not been modified, it can be present in more than one L2

cache.

• I: the cache line is invalid, needs to fetch it from L3 cache.

The L3 stable states are the following:
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• M: the cache line has been modified and the memory value is not updated.

• O: the cache line is owned by this L3, and it is responsible for serving it to other

L3 caches.

• S: the cache line has not been modified.

• I: the cache line is invalid, needs to fetch it from memory.

• SS: the cache line has copies in at least one of the private L2 caches.

• SO: the cache line has copies in at least one of the private L2 caches and it has

been modified, the memory value is not updated.

• MT: a L2 cache has the block in exclusivity and the L3 copy is not updated.

A.1.2 Events

• L2 miss: GETS

The cache L3 controller immediatly replies to the request if it is on one of this states:

M, S, O, SS or SO.

If the state is MT, the L3 cache controller requests the L2 cache that has the block

that releases the exclusivity. The L2 cache line changes to the S state and sends

a copy to the L3 cache. Finally, the L3 cache sends a copy to the L2 cache that

requested for the line.

If the block is in I state, the L3 makes a request to the directory. The directory

requests another chip or the memory for the data. If it asks another chip, the same

chip is the one that sends the block. If not the memory fetches and sends the line.

• L2 miss: GETX

The L3 controller replies right away if the line is in M state.

If the line is in MT state, the L3 controller sends an invalidation request to the L2

that has the line exclusivity. This cache invalidates the line and sends a copy of it to

the L3 cache. Finally, the L3 cache sends the copy to the L2 cache that requested it.

If the line is in O, S or I state, the L3 controller makes a request to the directory. Then

the L3 receives the number of invalidations (and the line in I state) before answering

the L2 that made the request.

Finally, if the line is in SS or SO state, the L3 sends invalidations to all the L2 that
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have the line. After the acknowledgements the L3 sends the line and exclusivity to

the L2 requestor.

A.1.3 Other considerations

• An L3 cache replies to all the L2 replacements.

• An L2 cache replies to all the invalidation petitions from L3.

• The network between chips is point to point and keeps the order of the messages.

• The network between the L3 and L2s is point to point and keeps the order of

the messages.

A.2 Protocol implementation

In this section the implementation of a simple protocol is explained. First, we an-

nounce the hypothesis for this implementation. Then we explain the different L2

and L3 requests and the transient states. Finally, we explain the state diagrams and

transitions. However, in the protocol used in the simulations the L3 will be able to

miss (there will be a memory) and there will be concurrency of L2 petitions.

A.2.1 Hypothesis

The hypothesis for this simplification of the protocol are:

• There is only one chip multiprocessor.

• There are no misses in the L3 cache. We suppose that the L3 acts as memory

and directory.

• There is only one L2 cache petition at the same time.

In Figure 30 we can see a scheme of the memory system hierarchy proposed.
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Figure 30: Memory system hierarchy

A.2.2 Requests

L2 uses a MSI protocol. Table 7 shows the different L2 requests.

L2 Request Description

GETS Line request for a data read

GET INSTR Line request for an instruction read

GETX Line request for a write

UPGRADE Line exclusivity request for a write

PUTS Line eviction request for an unmodified line

PUTX Line eviction request for a modified line

Table 7: L2 to L3 requests

All L2 requests are answered by the L3 as seen in Table 8.

50



L2 to L3 request L3 to L2 reply

GETS DATA: data line

GET INSTR DATA: data line

GETX DATA: data line

UPGRADE DATA: data line

PUTS ACK: acknowledgement

PUTX ACK: acknowledgement

Table 8: L2 requests and L3 replies

In order to treat an L2 request, the directory (L3) can request:

• Invalidations to L2 caches that have copy of a line.

• An exclusive copy of the line in L2 to be sent to L3.

In the first case, the directory waits for the invalidation acknowledgements before

answering the requestor. In the second, the directory wait the cache to send the line

before replying the requestor.

The different directory requests to L2 are seen in Table 9 and its replies in Table 10.

Directory request Description

DG Send the cache line and change to S state

INV Send the cache line and change to I state

INV S Send the cache line

Table 9: Directory requests to L2

Directory to L2 request L2 to directory reply

DG DATA: data line

INV DATA: data line

INV S INV ACK: confirmation

Table 10: Directory requests and L2 replies
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A.2.3 States

The stable states of the L3 cache are shown in Table 11.

Stable state Description Possible L2 states

S No L2 caches have a copy of the line I

SS At least one L2 cache has a copy of the line At least one S, others I

MT An L2 cache has the line in exclusivity One in M, others I

Table 11: L3 stable states

In Table 12 the transient states of the L3 cache are explained:

Transient state Description

MO Waiting for an L2 cache to provide the line for a read

MV Waiting for L2 caches with copy to invalidate

MIT Waiting for an L2 cache to provide the line for exclusivity

Table 12: L3 transient states

A.2.4 State diagrams and transitions

In Figure 31 we see the full state diagram for the simple coherence algorithm proposed.
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Figure 31: L3 states and transitions

In order to explain in detail the different transitions, we will analyse separately

each L2 request.

• GETS and GET INSTR

S and SS

If the line is in the S or SS state, the line is directly sent to the L2 requestor, and

the L2 that requested for the line is added to the presence vector. The following state

after this request is the SS state.

MT

If the line is in the MT state it means that one L2 cache has it in exclusivity.

The L3 controller asks for the line to the L2 cache that has it, and requests it to

downgrade the exclusivity to the block. When it gets the response it sends the line

to the requestor. When waiting for the response the line is in the MO state, and the

line finishes in the SS state. Finally the L2 requestor is added to the presence vector.
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Figure 32: GETS and GET INSTR transitions

• GETX and UPGRADE

S

If there are no L2 copies of the line the line is sent to the requestor. The line state

is MT and the requestor is added to the presence vector.

SS

If the request is an UPGRADE and the only L2 that has the line is the requestor,

it can upgrade directly without waiting.

If is an UPGRADE but other L2 caches also have the line, it has to send invali-

dation messages to all the other L2s. It waits in the MV state until it receives all the

acknowledgement answers, and then it allows the requestor to upgrade and ends in

the MT state. It removes the previous L2 sharers from the presence vector.

If the request is a GETX it must invalidate all the L2 existing copies before send-

ing the data. It also waits in the MV state until all the L2s have replied, and then

sends the data and goes to the MT state. It removes the L2 previous sharers from

the presence vector and adds the L2 requestor.

MT

The L3 requests for the data to the L2 cache that has exclusivity on the line. It

waits on the MIT state until the L2 replies with the data, and then it is sent to the

L3 cache and goes back to the MT state. It updates the presence vector removing

the old L2 owner and adding the L2 requestor.
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Figure 33: GETX and UPGRADE transitions

• PUTS and PUTX

SS

If the L2 requestor is the only one that has the cache line, the presence vector is

emptied and the line goes to the S state.

If there are more L2 sharers of the line, the L2 requestor is removed from the

presence vector. MT

The evicted line is sent to the L3 cache and the L2 requestor is removed from the

presence vector. Since no L2 caches have the line it goes to the S state.
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Figure 34: PUTS and PUTX transitions
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B DRAM behavior

In this section we explain how a Dynamic Random-Access Memory (DRAM) works.

First, we introduce the DRAM internal organization, then we explain the different

DRAM states. Afterwards, we talk about the temporal constraints between different

accesses and finally we speak about the energy consumption of DRAM.

B.1 Memory system

As we can see in Figure 35, each DRAM is composed of a Memory controller and

a number of Dual In-line Memory Module (DIMM)s, which are the physical boards

attached to the system. Each of these DIMMs has a number of chips, and both sides

of the DIMM can have chips.

Memory

controller

D
IM

M
1

D
IM

M
0

Figure 35: DRAM DIMMs. Two DIMMs connected to the Memory controller via two
logical buses.

The memory controller is connected to the DIMMs via two buses, one for com-

mands and the other for data. The command bus is unidirectional while the data bus

is bidirectional. All devices are connected to the same clock, which is exclusive for

the DRAM and different from the processor one.

Some of the DIMM chips can be for error-correcting and we will not take those into

consideration. A rank is a group of chips that are accessed in parallel in order to
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serve a memory access (usually 8 chips). Inside each chip of the rank the accessed

position is the same. A DIMM can have one rank per side of the memory module or

just a rank in one side.

In each chip there are storage groups called banks, as seen in Figure 36. The access

to each bank is independent and a group of banks can be accessed at the same time.

However since they share the same I/O interface the concurrency is limited.

Banks

D
IM

M
0

MUX

I/O

Figure 36: DRAM banks. Eight DRAM banks inside a chip share the same I/O interface.

In an access, each chip supplies a number of bits each cycle (usually 64 bits),

and this number sets the total of bytes read per access. This number of bits are

usually sent in a burst during consecutive clock cycles. In order to decrease the time

of the burst, in both the rising and falling edge of the memory clock a transfer is made.

In order to supply a number of bits in parallel, each bank is divided in arrays as

shown in Figure 37. Each array accesses the same line and row at the same time,

supplying one bit each array.
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Figure 37: DRAM arrays. Each bank is divided in eight arrays, in order to access them
concurrently.

In a read a row is selected using the row decoder, and it is sent to the sense am-

plifiers. Then the column decoder selects the desired bit. In a write the process is

the same but with the difference that it does not go through the sense amplifiers.

In Figure 38 we see a memory cell. Each cell stores a bit in a transistor that acts

as a capacitor. When a cell is accessed by the word line, the bit is sent through the

bit line.
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Figure 38: DRAM cell. Each bit is stored in a transistor that works as a capacitor and
addressed through the bit and word line.

B.2 DRAM states

The commands used to access the DRAM are explained in Table 13.

Command Description

ACTIVATE Send a row from the array to the sense amplifiers

READ Read from the line at the sense amplifiers

WRITE Write to the memory

PRECHARGE Get the open line back to the DRAM

REFRESH Refresh the DRAM

Table 13: DRAM commands

In Table 14 we see a simplification of the different states and their description.

State Description

Idle Ready to activate

RowActivate A row in the sense amplifiers

Precharging Waiting for the PRECHARGE to finish

Refreshing Refreshing a row

PowerDown Memory not active

Table 14: DRAM states
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Figure 39 shows the state diagram for the DRAM. When in the Idle state the

DRAM receives an ACTIVATE, it goes to the RowActivate state, and it remains

there while there are READs and WRITEs. From RowActivate it goes to Precharg-

ing when it receives a PRECHARGE command. It remains in the Precharging state

a specific amount of time, and then goes back to Idle. When in the Precharging state,

no commands are processed.

Each certain time, all the banks of a chip make a REFRESH, that is recover the

electric charge they hold. Then they wait in the Refreshing state until it finishes and

go back to Idle. In order to initiate a REFRESH all DRAM banks of a chip must be

in the idle state.

A DRAM can go into low power under certain circumstances. We suppose that it

can happen when all the banks of a chip are in Idle, then with a memory controller

signal they go to the PowerDown state until the controller wakes them up again.

Idle

Pre

Charge

Power

Down

Row

ActivateRefresh

controller

signal

controller

signal

REFRESH

WRITE

READ

PR
EC
H
A
R
G
E

ACTIVATE

Figure 39: DRAM states and transitions

B.3 Temporal constraints

In this section we explain the different restriction times between two consecutive

commands, although sometimes a sequence of commands has to be taken into con-

sideration. The accesses can be to the same bank, different banks but same rank or
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different ranks. In Table 15 we see a list of the abbreviations used.

Abbreviation Meaning

RL Read Latency

BL Burst Length

WL Write Latency

tRCD Row to Column Delay

tRAS Row Access Strobe

tRP Row Precharge

tRC Row Cycle: tRAS + tRP

tWR Write Recovery

tCCD Column to Column Delay

tRTP Read to Precharge

tWTR Write to Read

tRRD Row activation to Row activation Delay

tRTRS Rank to Rank Switch

Table 15: DRAM latencies. Times indicated with a preceding t (tRAS, tRCD...) are
expressed in DRAM cycles.

• Same bank

Before a READ or WRITE command, the row must ACTIVATE. tRCD is the

time that has to pass between these commands. In order to open another row from

the same bank, first there must be a PRECHARGE and then an ACTIVATE. The

time between ACTIVATEs is tRC.

The burst length of the data is BL and since each cycle there are two transmissions,

for the whole transfer we must wait BL/2.
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ACT READ WRITE PRE

READ tRCD max(tCCD,BL/2) WL+BL/2+tWTR

WRITE tRCD RL+BL/2-WL max(tCCD,BL/2)

PRE tRAS tRTP WL+BL/2+tWR

ACT tRC tRP

Table 16: DRAM same bank accesses delays. The columns are the previous commands
and the rows are the following commands. Times indicated with a preceding t (tRAS,
tRCD...) are expressed in DRAM cycles.

• Different bank same rank

When the consecutive accesses are to different banks, the ACTIVATE command

can be sent to one bank while accessing the other one, thus increasing productivity.

ACT READ WRITE

READ max(tCCD,BL/2) WL+BL/2-RL

WRITE RL+BL/2-WL max(tCCD, BL/2)

ACT tRRD

Table 17: DRAM different bank same rank accesses delays. The columns are the previous
commands and the rows are the following commands. Times indicated with a preceding t
(tRAS, tRCD...) are expressed in DRAM cycles.

• Different rank

If the consecutive accesses are to different ranks, the delays are the same as in the same

rank and different bank, since they are also different banks, but adding the delay to

switch to the other rank: tRTRS. There is also no delay between ACTIVATEs because

they can be issued in parallel to both ranks.

READ WRITE

READ max(tCCD,BL/2)+tRTRS WL+BL/2-RL+tRTRS

WRITE RL+BL/2-WL+tRTRS max(tCCD, BL/2)+tRTRS

Table 18: DRAM different rank accesses delays. The columns are the previous commands
and the rows are the following commands. Times indicated with a preceding t (tRAS,
tRCD...) are expressed in DRAM cycles.
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B.4 Energy consumption

The energy and power are computed with the ACTIVATE-PRECHARGE pair, the

READ, WRITE and REFRESH commands.

B.4.1 ACTIVATE-PRECHARGE

During the ACTIVATE time there is a current consumption and thus power consump-

tion as seen in Figure 40. When the line is closing in the PRECHARGE there is also

energy consumption. The energy consumption during the ACTIVATE-PRECHARGE

period will be called EACT.

Current

IDD0

IDD2N, IDD3N

Time

tRAS tRP

tRC

PRE

ACT

Figure 40: ACTIVATE-PRECHARGE current through time

The average current consumption between an ACTIVATE and a PRECHARGE

will be called IDD0. There is also background energy consumption. The average

current consumption during the tRAS period is called IDD3N, and the one during the

tRP period IDD2N.

Thus, the average current coming only from the ACTIVATE and PRECHARGE

commands is:

IACT =
IDD0 ∗ tRC − IDD3N ∗ tRAS − IDD2N ∗ (tRC − tRAS)

tRC

Then the energy consumption is:

EACT = IACT ∗ V ∗ tRC
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And the average power, being ACTPREnum the number of ACTIVATE-PRECHARGE

commands:

PACT =
EACT ∗ ACTPREnum

Time

B.4.2 READ and WRITE

In a READ command, the current in the BL/2 period is called IDD4R. The average

current of a READ, subtracting the background energy is:

IREAD = IDD4R− IDD3N

The energy consumption is:

EREAD = IREAD ∗ V ∗BL/2 ∗ tCK

And the average power, being READnum the number of READ commands:

PREAD =
EREAD ∗READnum

Time

The WRITE command is the same as the READ, except the use of IDD4W instead

of IDD4R and the use of WRITEnum instead of READnum.

Current

Time

(BL/2)*tCK

IDD4R

IDD3NREAD

Figure 41: READ current through time
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B.4.3 REFRESH

In a REFRESH command all the banks from a chip are refreshed. During the refresh

period (tRFC) the current is IDD5. In order to compute the REFRESH current we

must subtract the background current:

IREFRESH = IDD5 − IDD3N

The energy consumption is:

EREFRESH = IREFRESH ∗ V ∗ tRFC

And the power, being REFRESHnum the nuber of REFRESH commands:

PREFRESH =
EREFRESH ∗REFRESHnum

Time
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Glossary

benchmarks Set of programs that serve as a point of reference against which differ-

ent hardware can be compared. 37

BRRIP Bimodal Re-Reference Interval Prediction. 22

cluster Set of connected computers that work together so that in many aspects they

can be viewed as a single system. 37, 39, 44

CMP Chip Multiprocessor. 36

DIMM Dual In-line Memory Module. 58

DRAM Dynamic Random-Access Memory. 58

DRRIP Dynamic Re-Reference Interval Prediction. 23

DRRIP+ Dynamic Re-Reference Interval Prediction with Protection. 23

GEMS General Execution-driven Multiprocesor Simulation. 24

LRR Least Recently Reused. 11, 15

LRU Least Recently Used. 11, 12

mapping functions Algorithm used to decide where in the cache a new line is

allocated. 40

NRR Non Recently Reused. 11, 18

NRU Non Recently Used. 11, 13

replacement algorithm Algorithm used when a cache set is full in order to select

the evicted line. 39

simulation Process of mimicking the internal behavior of an existing target. The

result of a simulation is that the simulation model will emulate the target. 39,

40

SLIC Specification Language Including Cache Coherence. 24
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SLLC Shared Last-Level Cache. 11

SRRIP Static Re-Reference Interval Prediction. 20

TADRRIP Thread-Aware Dynamic Re-Reference Interval Prediction. 11, 23
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