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ABSTRACT 

This thesis deals with the assessment of the failure mechanism of a shallow landslide triggered by 

rainfall in a slope of unsaturated volcanic ashes, located at Cervinara, Italy. 

The region of Campania (Southern of Italy) had suffered in several occasions the consequences of 

this type of landslides. They have caused casualties, especially in the municipality of Cervinara. 

Additionally the quick growing of population in this region leads that to an increasing number of 

people exposed to a considerable risk.  

For this reason, in the last years, research efforts have been made to define effective alarm system. 

But, in order to define adequately an alarm system is necessary that the failure mechanism of this 

landslides be completely understood.  

This is why, in 2009 an instrumentation system was installed in a slope close to Cervinara to 

register the evolution of liquid pressure and water content within the slope. This monitoring system 

is still functional. Additionally a new test was developed in order to obtain information about the 

rainfall induced failure process. This test consists in a highly instrumented mock-up subjected to 

a specific rainfall intensity until failure    

One of the sessions of the last Italian Workshop of landslides (October 2013) was dedicated to the 

hydrological modelling of landslides, through a benchmark exercise named Round Robin test. This 

exercise was focus in three analysis scales: laboratory test, mock-up test (flume test) and real case. 

The benchmark considered two principal stages: back-analysis and prediction. For the back 

analysis phase the information provided consisted in different laboratory test, the characteristics 

and results of two different flume test, and the response of the monitoring station for the first seven 

months of 2011, as well as, the meteorological information for this months. Finally, the 

participants should simulate the response of an infiltration flume test with specific characteristics 

and the response to the real slope for an assigned record of precipitations and temperature. 

To realized property this predictions, not just to define adequately the model (Geometry, boundary 

conditions and coupling) is important, The selection of the parameters that represent better the 

behaviour observed is crucial, in especial the hydraulic characteristics. Which are the most 

complex when dealing with unsaturated soils. In this thesis special attention is paid to the 

determination of the water retention curve. 

Is important to mention that with predictions of failure time and the evolution of soil suction, of 

the flume test the modelling team was designated as winner of the benchmark on hydrological 

modelling of slopes at the Italian workshop on landslides, 23rd October 2013 
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RESUMEN. 

Este trabajo se centra en el mecanismo de falla de los deslizamientos superficiales detonados por 

lluvias en un talud conformado por cenizas volcánicas inicialmente no saturadas, ubicado en 

Cervinara, Italia. 

La región de Camapania (Sur de Italia) ha sufrido las consecuencias de este tipo de deslizamientos 

en varias ocasiones, generando en muchas muertes y daños a viviendas en especial en el municipio 

de Cervinara, además el rápido crecimiento de la población de esta zona, lleva a un importante 

incremento en el número de personas expuesto a un riesgo importante. 

Es por esta razón que en los últimos años se han realizado importantes esfuerzos para definir 

sistemas de alarma que sean efectivos. Para definir adecuadamente un sistema de alarma es 

primordial conocer a fondo el mecanismo de falla de estos deslizamientos. 

Por esta razón, desde el 2009 se viene monitoreando un talud cercano a Cervinara, en el cual se 

registra la evolución de los contenidos volumétricos de agua y presión de líquido en suelo, por 

otro lado, se ha desarrollado un ensayo laboratorio que busca obtener información específica sobre 

la falla de taludes debidos a lluvias, bajo condiciones delaboratorio, dicho ensayo consiste en un 

talud a escala que es instrumentado y sometido a una intensidad de lluvia especifica hasta que se 

produce la falla. 

En el último Italian Workshop of Landslides, realizado en Octubre del 2013 una de las sesiones 

estuvo dedicada a la modelación hidrológica de deslizamientos, para lo cual se llevó a cabo una 

competición entre modeladores de diferentes universidades (Benchmark). Esta competencia se 

centró en tres escalas diferentes de análisis: ensayos de laboratorio, talud a escala y caso real. 

El benchmark se dividió en dos fases: calibración y simulación, para la etapa de calibración la  

información presentada estaba conformada por: ensayos de laboratorio, características y respuesta 

de dos ensayos de infiltración sobre un talud a escala y la respuesta de la instrumentación del talud 

in situ para los primeros siete meses de 2011 así como la información meteorológica para estas 

fechas. Para la etapa de simulación se requirió calcular la respuesta para un determinado ensayo 

de infiltración y la respuesta del talud real para unas determinadas condiciones meteorológicas. 

Para realizar exitosamente estas predicciones es importante definir adecuadamente las 

características de los modelos: geometría, condiciones de contorno y acoplamiento; pero aún más 

importante es definir adecuadamente los parámetros que mejor reproduzcan el comportamiento 

observado, en especial las características hidráulicas, ya que estas son las que representan mayor 

complejidad al tratarse de suelos no saturados. Para este trabajo final de master se ha tenido 

especial cuidado en la determinación de la curva de retención. 

Es importante mencionar que con las predicciones realizadas para el talud a escala, el equipo de 

modelación fue seleccionado como ganador del ejercicio de benchmark, del tercer workshop de 

deslizamientos, octubre 23, 2013. 
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NOTATION 

 

A Constant for liquid phase relative permeability 

Ad Dry albedo 

Al Albedo 

Aw Wet albedo 

b Body forces 

Ca Specific heat of gas 

D Diffusion coefficient 

ds Time span between sunrise and sunset 

Eg Specific internal energy of the gas 

Et Evapotranspiration 

Es Specific internal energy of the soil 

Ev Evaporation 

fa Source/sink term of air 

fs source/sink term of solid 

fw source/sink term of water 

Hc Convected heat flux 

hao Free energy of air 

hla Free energy of liquid water 

hv Free energy of vapour 

Hs Sensible heat flux 

Hr Air relative humidity 

ic Conductive heat flux 

In Index cloud 

𝑖𝑔
𝑤 Diffusive flux of vapour 

J Square root of the second stress invariant of deviatoric stress 

ja Flux of air 

jEG Energy flux in the gas phase 

jEL Energy flux in the liquid phase 

jES Energy flux in the solid phase 

Js Advective flux of solid 

Jsr Surface runoff 

Jw Advective flux of water 
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𝑗𝑔
𝑎 Flux of air in gas phase 

𝑗𝑙
𝑎 Flux of air in liquid phase 

𝑗𝑔
𝑤 Flux of water in gas phase 

𝑗𝑙
𝑤 Flux of water in liquid phase 

K Intrinsic permeability 

k Von Karman´s constant 

LAI Leaf area index 

m Parameter for the tortuosity 

M Slope of critical state as a function of the lode angle 

n Parameter for the shape of the yield surface 

P precipitation 

𝑝̅ Neat mean stress 

Pat Atmospheric pressure 

Pc Preconsolidation stress at specific saturation 

Pg Gas pressure  

Pl Liquid pressure  

Pr Reference mean stress (LC curve) 

Ps Tensile strength due to suction 

Pc Preconsolidation stress at saturated conditions 

P0M Air entry value for macro - double porosity water retention curve 

P0m Air entry value for micro - double porosity water retention curve 

qg Gas flux 

ql Liquid flux 

R Runoff 

r Parameter for the spacing ratio of the yield surface 

Ra Incident radiation of atmosphere to soil surface 

ra Aerodynamic resistance 

Rg Incident solar radiation at the soil surface 

Rgl Maximum radiation at the soil surface 

rlc Parameter to control infinite suction (LC curve) 

Rn Net radiation 

Rs Incident solar radiation 

rs Leaf resistance 
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rsmin Minimum surface resistance 

rsmax Maximum surface resistance 

Sg Gas saturation degree 

Sl Liquid saturation degree 

Sls Maximum saturation degree 

Sr Soil radiation 

Srl Residual saturation degree 

𝑠𝑙
𝑎 Liquid saturation degree at anaerobiosis point 

𝑠𝑙
𝑓𝑐

 Liquid saturation degree at field capacity 

𝑠𝑙
𝑤 Liquid saturation degree at wilting point 

Ta Atmospheric temperature 

tm Time at noon 

T0 Soil temperature 

va Wind velocity 

veg Vegetation fraction 

w Weight factor for micro - double porosity water retention curve 

𝑤𝑔
𝑤 Vapour mass fraction 

𝑤𝑙
𝑎 Air dissolved mass fraction 

za Screen height 

z0 Ground surface of roughness 

 

GREEK SYMBOLS 

 Parameter to control stiffness (LC curve) 

 Emissivity 

 Porosity 

 Empirical parameter for calculation of evapotranspiration 

g Leakage coefficient 

 Slope of unload/reload compression curve 

s Parameter to account tensile strength due to suction 

 Slope of the normal compression curve 

dry Thermal conductivity of the dry porous media 

sat Thermal conductivity of the saturated porous media 
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M Shape of water retention curve for macro 

m Shape of water retention curve for micro 

rp Power for liquid phase relative permeability 

l Liquid density 

g Gas density 

ga Atmospheric gas density 

s Solid density

v Absolute humidity in the soil

va Absolute humidity in the atmosphere

vsat Saturated atmospheric absolute humidity 

a Water content at anaerobiosis point

fc Water content at field capacity 

w Water content at wilting point 

𝜃𝑔
𝑎 Apparent flux of air in gas phase 

𝜃𝑔
𝑤 Apparent flux of water in gas phase 

𝜃𝑙
𝑎 Apparent flux of air in liquid phase 

𝜃𝑙
𝑤 Apparent flux of water in liquid phase 

 Stress tensor

 Parameter for the tortuosity 

 Poisson ratio 
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1 CHAPTER 1                                                                                          

INTRODUCTION 

Rainfall-induced landslides are very common natural hazards. According to Leroueil (2001) 

water within the slopes is the most common landslide triggering mechanism. This type of 

landslides occurred in zones where the material is under unsaturated conditions which 

contributes to the shear strength of the material. 

The characteristics of water flow, liquid pressure variations and shear strength of the soils are 

the parameters that control the rainfall-induced slope failures. In fact the hydrological 

characteristics condition two principal aspects in the rain-induces landslides, determinate the 

occurrence of the landslide and defined the type of landslide triggered. 

The infiltration process in the unsaturated soils is a very complex phenomena compare to the 

infiltration in saturated conditions because, the initial conditions defined by the profiles of 

liquid pressure and water content are not simple and depend on the antecedent hydrological 

history. Additionally, the capability of retaining water and the hydraulic conductivity of an 

unsaturated soil depend in the soil suction. 

Usually, unsaturated soils present high values of matric suction which contributes to an 

additional shear strength. As the water infiltrates into the soil the matric suction reduces 

generating a decrease in the additional shear strength, causing the slope be more susceptible to 

failure. (Leroueil 2001; Rahardjo & Lee 2005; Rahardjo et al. 2011)    

In general, all the studies realized in this field are directed to manage the risk of this type of 

landslides. Several empirical and physical models have been developed in order to obtain the 

rainfall conditions that initiate the event. In some cases is considered that the landslide is 

generated by a main rainfall event with a defined relation of intensity-duration in other cases is 

considered a combination of antecedent rainfalls. However, is not possible to achieve a 

universal relationship between intensity – duration of the rainfall before a landslide event. 

(Rianna et al. 2014; Springman & Askarinejad 2012) 

In fact, Leroueil (2001) present several cases of landslides induced by rainfall with very 

different responses and triggering rainfall conditions. According to Springman & Askarinejad 

(2012) the key factors that affect the likelihood of a landslide are the location and origin of the 

slope. Which can be considered as constant in comparison with the other important parameters 

that control the environmental effects such as, meteorology, altitude, precipitations, vegetation 

and temperature. 

The behaviour of the soil in the unsaturated zone of a slope (above the water table) is governed 

by the transfer of water and energy between the soil and the atmosphere boundary. Which is 

controlled by the infiltration characteristics of the soil and the precipitation, but also to the 

evaporation conditions, which is affected by the sun radiation, temperature and vegetation 

conditions. The vegetation plays an important role, on the one hand the canopy intercept part 

of the rainfall water and on the other hand the water uptake of the roots affect the flux conditions 

of water thought the soil (Blight 1997; Comegna et al. 2013) 

The appropriated modelling of this relations, allows to obtain information about the evolution 

of the liquid pressure within the soil allowing to obtain the failure characteristics of the soil. 

For this thesis is used the finite element CODE_BRIGHT (Olivella et al. 1994) to developed 
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the modelling. The atmospheric boundary conditions is used with the aim to reproduce the 

atmospheric and vegetation conditions. 

The principal natural hazard at which Campania (Southern of Italy) region is submitted are the 

shallow-landslides induced by rainfall. Every year this type of slides causes casualties and 

damage to houses and structures.  

This region is covered by a shallow pyroclastic deposit with very high values of porosity (0.7 

– 0.75) layer over a fractured limestone and with a steep slope inclination. The principal 

characteristic of the landslides occurred in this type of material is that present very weak 

warning signals of failure and long travel distance which makes them very dangerous. 

For that reason important efforts are made to mitigate the risk of this slides but before a 

complete understanding of the failure mechanism is required. With this aim the site had been 

instrumented over the last years and additionally an infiltration laboratory test (flume test) was 

developed in order to evaluate the mechanism behaviour, considering just the rainfall effect. 

This test consist in a mock-up that is submitted to a specific rainfall intensity until the failure. 

(Olivares et al. 2009; Cascini et al. 2005; Damiano et al. 2012) 

This thesis deals with the assessment of rain-induced landslides, considering different scales of 

study: flume test and real slope, considering the response observed in conventional laboratory 

tests. Is important to mention that the flume test consider a dense monitoring system allowing 

to capture the principal aspects of the failure observed. 

This document is developed in five important chapters: Chapter 2 present the basic information 

available for the modelling exercise, considering the three scales of analysis the conventional 

laboratory test, the flume test and the real slope. The next section, Chapter 3 present the 

conceptual framework of analysis. In this chapter the thermo-hydro-mechanical coupling and 

the features of the atmospheric boundary condition are presented. Then, in Chapter 4 the 

numerical models are presented. Finally, Chapter 5 present the concluding remarks and future 

work. 
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2 CHAPTER 2                                                                                                     

BENCH-MARK: ROUND ROBIN TEST 

The region of Campania (Southern of Italy) is one of the most densely populated in Europe. 

This area had been subjected to a series of rainfall-induce flowslides which every year cause 

casualties an important damages to structures in this region. The fast population growth of this 

zone has generated an especial interest in the study of slope instability and early warning 

systems. The location of the zone is presented in Figure 2-1 

This area is covered by an unsaturated pyroclastic soil considerate as stable due to the beneficial 

effect of suction on shear strength (apparent cohesion). But during the rainy season the rainfall 

infiltration causes the saturation of the soil reducing the apparent cohesion and generating the 

failure of the slope. In the last century 5 important events have occurred causing around 1000 

casualties. One of the most important event occurred on December 16 of 1999 when a number 

of landslides were triggered in an area of almost 3.8 km2 only a few kilometres from Cervinara 

town and after a precipitation of about 50 hours. 

 
Figure 2-1 Cervinara slope location (Damiano et al. 2012) 

In general this landslides have succeed in slopes with and inclination between 35º to 45º and a 

regular stratification constituted by a pyroclastic deposit composed by alternating ashes and 

highly vesciculated pumices layers of less than a few decimetres. The ashes layers may reach a 

few meters lying on a fractured limestone. The shallow failure is parallel to the limestone 

bedrock. (Olivares & Tommasi 2008; Damiano et al. 2012; Greco et al. 2010; Olivares et al. 

2009) 

One of the sessions of the third edition of the Italian workshop of landslides (3rd IWL) which 

took place between 23 and 24 of October 2013, was dedicated to a Round Robin test on 

landslides hydrological modelling. The Round Robin test basically consists in a competition 

among modellers based on a basic information at different scales of observation: small samples 

(laboratory test), infiltration flume test and the field. 
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The benchmark exercise was divided into two parts: the first part the modellers have to calibrate 

their models based on the data provided. In the second part the modellers were challenged to 

simulate:  

- The response of a mock up flume test based just in the information of geometry, initial 

conditions and rainfall applied. 

- The response of the real slope for a determined record of precipitations and temperature 

data. 

2.1 BASIC INFORMATION 

2.1.1 Small samples 

In order to characterize the soil information of laboratory test over undisturbed and 

reconstituted specimens is given. 

Water retention curve and hydraulic conductivity 

To obtain the water retention curve 3 different types of test are presented: the transient test for 

infiltration and for evaporation (reconstituted sample), the pressure plate (reconstituted sample) 

and data obtained from suction controlled triaxial test (undisturbed sample). The data obtain 

are presented in Figure 2-2 suggest a bimodal water retention curve. As is expected for this type 

of soils characterized by the presence of itergranular and intragranular pores as was determinate 

in SEM observations realized in the pumices and ashes. (Olivares & Tommasi 2008) 

The saturated hydraulic conductivity data were achieved with constant head test for saturated 

samples. Figure 2-3 present the relation between the hydraulic conductivity (m/s) with the mean 

normal stress. The mean value of saturated hydraulic conductivity is 1.44 e-6 m/s. 

 
Figure 2-2 Water retention curve data 
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Figure 2-3 Saturated hydraulic conductivity 

Compressibility and shear strength in unsaturated conditions. 

Considering that the main goal of this exercise is the analysis of landslides triggered by rainfall 

in unsaturated soils. It is very important to have information of the compressibility of the soil 

and the shear strength both in saturated and unsaturated conditions. 

Four compressibility test results had been presented one for saturated conditions and 3 for 

unsaturated conditions with a suction value of 40 kPa. Figure 2-4a present the results achieved. 

The results of the compressibility test can be related with the results of the hydraulic 

conductivity test allowing to relate the values of K with the void index (e). See Figure 2-4b. 

  
Figure 2-4 Compressibility test a) Compressibility test data. b) Relation between hydraulic conductivity 

and void ratio  

 

On the other hand, the shear strength has been evaluated with triaxial test. Seven suction 

controlled triaxial test over undisturbed sampler were provided. The characteristics of all the 

test are summarized in Table 2-1 and Figure 2-5 present the response obtained.  

 
Table 2-1 Suction control test characteristics 

Sample 
Suction 

(kPa) 

Mean net stress 

(kPa) 

C71USP 74 157 

C70USP 74 89.3 

C22USP 43 90 

C4P1USP 44 60 

C61USP1 44 23 

C62USP1 74 22.4 

1Cu1040 11 28.8 
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Figure 2-5 Triaxial test results 

2.1.2 Flume test 

The flume infiltration test is a mock-up test that allows to reproduce and investigate the rainfall 

induced landslide under a controlled environment. The infiltration flume test apparatus enable 

to considered different combinations of geometry and inclination. For this investigation the 

dimensions has been selected considering the assumption of infinite slope (ratio 

length/thickness less of 1/10). 

In order to represent the characteristics of the actual slope the inclination considered is the 40º 

additionally the frictional contact between the soil and the limestone rock is simulated by 

calcareous grains glued at the bottom of flume and the sides of the flume are made of Plexiglas 

to simulate impervious boundaries. However, a geotextile drain is positioned at the foot of the 

slope to simulate a free flow boundary condition at this point. Figure 2-6 presents a sketch of 

the flume test equipment. 

The rainfall is simulated by spray nozzles fixed parallel to the slope to reproduce vertical 

rainfall, the intensity of the rainfall is controlled to avoid erosion in the soil surface. To control 

the rainfall applied the rainfall intensity is measured by a horizontal tipping bucket rain gauge 

(RG in Figure 2-6) located at the foot of the slope. The infiltration test have been carried on 

with a constant value of rainfall intensity. 

To evaluate the slope response the hydraulic and mechanical response are evaluated during the 

whole test. Considering four different measures: 

- Soil matric suction: Measured by minitensiometers installed at different positions and 

depths within the slope (MT in Figure 2-6). For this experiment conventional jet-fill 

type tensiometers.  

- Positive pore pressure: Carried out by miniature silicon diaphragm pressure transducer. 

This measures are realized at the bottom of the flume. (P in Figure 2-6) 

- Soil water content profiles: Obtain by Time Domain Reflectometry (TDR) metallic 

probes. The profile of suction is obtain through the inverse profiling method proposed 

by Greco (2006) that allows to retrieve the moisture distribution along the TDR metallic 

probe buried in the soil, (TDR in Figure 2-6) 

- Settlements: Monitored by laser sensors located at different zones of the slope with the 

optical axis perpendicular to the soil surface (LT in Figure 2-6). Based on the principle 
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of optical triangulation: a modulated light is projected on the soil surface and the 

distance is evaluated by the intensity of the reflected diffused light. 

 

 
Figure 2-6 Flume test Sketch (Greco et al. 2010) 

The pyroclastic deposit of the Cervinara slope is characterized by high values of porosity around 

70% to 75%. To reach this values of porosity and guarantied its homogeneity the soil sample 

has been generated in layers of 0.5 cm and employing the moist tamping technique. The 

deposition of the soil have been made in the flume in horizontal position once the suction value 

is equalized the flume is tilted to the inclination desired. (Greco et al. 2010; Olivares & 

Tommasi 2008; Olivares & Damiano 2007; Picarelli & Vinale 2007; Olivares et al. 2009) 

Two different infiltration experiments results has been presented (D3 and D4) both tests were 

carried on until the failure of the slide. The information offered consist in: geometry, rainfall 

intensity, and soil suction, settlements and liquid pressure records. The main characteristics of 

this tests are presented in Table 2-2 

Table 2-2 Main Characteristics of infiltration test 

Test 

Soil 

Thickness 

(cm) 

Slope 

Length 

(cm) 

Initial 

Porosity 

n0 

Rainfall 

intensity 

(mm/h) 

Initial mean 

suction 

(kPa) 

Duration of 

the test 

(min) 

D3 10 100 0.75 55 17.5 36 

D4 10 120 0.76 56 43 30 

 

Test D3 

This test present an initial mean suction of 17.5 kPa. The slope has been subjected to a rainfall 

intensity of 55 mm/h for 36 minutes. In order to evaluate the behaviour of the test has been 

installed: 6 mini tensiometers, 5 laser sensors displacement transducers, 6 pore pressure 

transducers, one TDR probe and with the aim of controlling the rainfall intensity a rainfall gauge 

has been installed at the toe of the slope. The location of the monitoring system is presented in 

Figure 2-7. 
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Although a dense monitoring system has been installed, the results presented for this test are 

the recorded by: minitensiometers T3, T4 and T6; laser sensors L1 and L3; pore pressure 

transducer P1, P3 and P5, and the TDR probe. Test D3 results are shown in Figure 2-8. 

 
Figure 2-7 Test D3 monitoring system 

  

  
Figure 2-8 Test D3 results, a) Minitensiometers b) laser sensors settlements transducers c) volumetric water 

content profile d) pore pressure transducers. 

 

a) b) 

c) d) 
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Test D4 

This test starts with a higher initial suction than test D3 43 kPa. The duration of this test is 30 

minutes with a rainfall intensity of 56 mm/h. As in the case of test D3 the monitoring system 

installed is composed by: 5 mini tensiometers, 5 laser sensors displacement transducers, 6 pore 

pressure transducers, one TDR probe and the rainfall gauge. The location of the monitoring 

system is presented in Figure 2-9. 

Just like the case of the test D3 not all the devices installed recorded appropriately the 

information. The evaluation of the test D4 has to be done based with the minitensiometers T2, 

T3, T4 and T6, the laser sensors L3 and L5 and the TDR probe, the Figure 2-10 present the 

response for the test D4 

 
Figure 2-9 Test D4 monitoring system 

  

 
Figure 2-10 Test D4 results, a) Minitensiometers b) laser sensors settlements transducers c) volumetric 

water content profile  

a) b) 

c) 
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2.1.3 Field monitoring station 

The site of study is located along the northeast slope of Mount Cornito near the town of 

Cervinara about 50km northwest of Naples, southern Italy. Close to the place were in 1999 a 

flowslide was triggered after a rainfall event of more than 24 hours. 

The slope present an almost constant inclination of 40º with an elevation between 550m to 

760m above the sea level. The pyroclastic deposit present a nearly continue thickness of 2.5 m. 

¡Error! No se encuentra el origen de la referencia. presents the typical layered soil cover. 

esides the slope is covered by woods mainly deciduous chestnuts (Castanea sativa) with few 

deciduous beeches (Fagus sylvatica) and also seasonal vegetation denser between May to 

September. Visual inspection show that roots present a maximum density in the first 0.4 m. 

In August 2009 an automatically hydrological monitoring station was installed .Since then the 

capillarity tension and volumetric water content has been measured by standard jet tensiometers 

and time domain reflectometry (TDR) respectively. The measures are taken every two hour 

additionally a rainfall gauge with hourly acquisition was installed. 

The instrumentation system consist in eight tensiometers and seven TDR metallic probes 

located at different depths between 0.6 and 1.6m grouped in two rows with 5 meters of 

separation. In addition some of the TDR probes are located close to the tensiometers in order 

to obtain a coupling between the volumetric water content and the capillarity tension. Figure 

2-11 present a sketch of the monitoring system installed. 

 
Figure 2-11 Typical stratigraphy and distribution of the field monitoring system. 

Further, close to the place of study two meteorological stations are located: the Santa Maria a 

Vico station and the Pietrastonia station. In this meteorological station the data of temperature 

is recorded. The climate data for year 2001: temperature and rainfall are summarized in Figure 

2-12. 

Figure 2-13 present the matric suction and volumetric water content response at four depths 

from January 1 of 2001 to July 27th 2001. This data can be compared with the rainfall measured. 

It is observed a directly relationship between the rainfall and the capillarity tension and the 

volumetric water content. 
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Figure 2-12 Climate data for Cervinara slope 

On the other hand, it is detected that during the summer the hydraulic behaviour of the soil is 

controlled by the water level of the aquifer in the fractured limestone rock. In fFigure 2-13 is 

observed that for the summer months the suction value is higher for the deepest tensiometers. 

(Greco et al. 2013; Damiano et al. 2012; Comegna et al. 2013) 

From June to August the data register by the TDR located at 1.00 m depth present a response 

that is inconsistent with the evolutions observed in the devices located above and below and the 

response observed with the tensiometers located at this depth. It is considered that the 

registration of this data present an error.    

 

  
Figure 2-13 Slope response a) Matric suction b) volumetric water content 
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3 CHAPTER 3                                                                                            

CONCEPTUAL FRAMEWORK OF THE ANALYSIS. 

The triggering processes presented in the landslides occurred in Cervinara region has been 

associated always to rainfall events. The rain-induce failure are mainly caused by the infiltration 

of the rainfall water. The evolution of liquid pressure within the slope depends on the 

characteristics of the rainfall, the material parameters such as: permeability, water retention 

curve, and consolidation parameters, and on the interaction with the atmosphere like infiltration, 

runoff, evaporation, and evapotranspiration. (Leroueil 2001 ) 

The process that controlled the climatic actions include: the moist process, the radiation, heat 

exchange, the air mass motion and the interactions with the ground components like the 

vegetation. Figure 3-1 presents a scheme of the effects and interaction between the different 

fluxes, In general the atmospheric – soil interaction is controlled by the boundary condition 

fluxes (Noilhan & Planton 1989): 

- The vapour flux: the sum of the evaporation (E) and the evapotranspiration (Et). 

- The energy flux: the addition of sensible heat (Hs), latent heat (Hc) and net radiation, Rn 

(function of the solar radiation (Rg), the atmospheric radiation (Ra) and surface radiation (Sr). 

- The liquid flux: The addition of the precipitation (P), and runoff (R). 

 
Figure 3-1  Fluxes involved in the soil-water-energy balance 

The thermo-hydro-mechanical coupling process within the soil follows the physical laws that 

is presented next in a general point of view. The overall formulations are reported by Olivella 

et al. (1994) and Vaunat et al. (2012). Although, the problem to be analyse is related to the 

climatic actions and its mechanical effects, the coupling considered will be Hydro-Mechanical 

for the case of the flume test. Since the test is realise under isothermal conditions and Thermo-

Mechanical for the real slope. 
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3.1 MATHEMATICAL FORMULATION OF THE COUPLED PROBLEM. 

Partially saturated materials are three-phase media composed by solid, liquid and gas phases. 

The main species considered are: mineral (solid skeleton), water and air this last two can be 

presented even in liquid phase or gaseous phase like: the liquid water, dissolved air in water, 

water vapour or dry air. 

The description of the Thermo-Hydro-Mechanical state of the partially saturated materials is 

defined by a set of state variables: Solid velocity (𝑢̇𝑥, 𝑢̇𝑦 , 𝑢̇𝑧), liquid pressure (pl), gas pressure 

(pg) and temperature (T). Their evolutions are controlled by the balance equations (mass, heat, 

and momentum), the constitutive equations and the equilibrium restrictions. The complete 

formulation implemented in the finite element code CODE_BRIGHT is presented in Olivella 

et al. 1994 

When a porous media is submitted to thermal, hydraulic and/or mechanical actions. They may 

have responses involving interactions between the different species that composed the media. 

For example, the thermal changes can generate the mechanical deformation due to thermal 

expansion of the solid and the water this generates an increasing in the saturation degree, due 

to the thermal expansion of the water. On the other hand, the process of flux of liquid phase is 

affected by the temperature due to the relation of the vapour diffusion and viscosity with 

temperature and to the mechanical changes due to the variation of porosity related to the 

mechanical deformations.  

In addition to the main coupling the secondary coupling control the dependency of the materials 

and interstitial fluids parameters on the state variables. Figure 3-2 presents a scheme of the 

different coupling considered in the formulation of the THM model, distinguishing the main 

coupling and the secondary coupling (in italic in the figure). Is important to take in to account 

that all the coupling are not necessary to be active it depends on the characteristics of the 

problem. In unsaturated soils the deformation of the materials are related to the Terzaguhi´s 

effective stress 𝜎 = 𝜎 − 𝑝𝑤 giving the main coupling between the stress equilibrium and the 

water balance.  

The balance equations allows interaction between the different phases and species. This 

equations are: the mass balance of each specie considered (solid skeleton, water and air), the 

balance of energy and the balance of momentum, which gives the stress equilibrium.  

 Mass Balance:  

Water: 
𝜕

𝜕𝑡
(𝜃𝑙

𝑤𝑆𝑙𝜙 + 𝜃𝑔
𝑤𝑆𝑔𝜙) + ∇(𝑗𝑙

𝑤 + 𝑗𝑔
𝑤) + 𝑓𝑤 = 0 

Eq. 3-1 

Air: 
𝜕

𝜕𝑡
(𝜃𝑙

𝑎𝑆𝑙𝜙 + 𝜃𝑔
𝑎𝑆𝑔𝜙) + ∇(𝑗𝑙

𝑎 + 𝑗𝑔
𝑎) + 𝑓𝑎 = 0 

Eq. 3-2 

Solid: 
𝜕

𝜕𝑡
(𝜌𝑠(1 − 𝜙)) + ∇(𝑗𝑠) + 𝑓

𝑠 = 0 

Eq. 3-3 
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 Energy Balance:  
𝜕

𝜕𝑡
(𝐸𝑠𝜌𝑠(1 − 𝜙) + 𝐸𝑙𝜌𝑙𝑆𝑙𝜙 + 𝐸𝑔𝜌𝑔𝑆𝑔𝜙) + ∇(𝑖𝑐 + 𝑗𝐸𝑠 + 𝑗𝐸𝑙 + 𝑗𝐸𝑔) + 𝑓

𝑞 = 0 

Eq. 3-4 

 Balance of momentum 

∇σ + 𝑏 = 0 
Eq. 3-5 

The notation employed in the balance equations is summarized in Table 3-1 

Table 3-1 Notation for balance equations 

Notation for balance equations 

𝜃𝑝
𝑒 Apparent flux of the specie e in the phase p. 

𝑗𝑝
𝑒 Flux of the specie e in the phase p. 

𝑆𝑙 Liquid saturated degree  

𝑆𝑔 Gas saturation degree  

𝜙 Porosity 

𝜌𝑒 Density of specie e 

𝐸𝑒 Specific internal energy of specie e 

𝑖𝑐 Conductive heat flux 

𝑗𝐸𝑝 Energy flux in phase p 

𝑓  Source/ sink term  

σ Stress tensor 

b Body forces 

 

 Species (e): Water (w), Air (a), Soil (s) 

Phases(p): Water (w), Air (a), Soil (s) 

 
Figure 3-2 Overall scheme of THM coupling 
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As presented by Olivella et al. (1996) the balanced equations formulated are define in terms of 

unknown variables which are related with the state variables through the constitutive equations 

and equilibrium restrictions. Which in many cases constitute the secondary coupling. Table 3-2 

present a list of principal constitutive equations and equilibrium restrictions.  

Moreover, to complement the problem is important to consider the boundary conditions and 

restrictions which are added to the mathematical problem as nodal fluxes or tensions. The 

proposed THM formulation allows to apply several conditions at the boundaries of the problem: 

displacement, temperature, liquid and gas pressures or, forces and fluxes. 

Table 3-2 Constitutive equations and equilibrium restrictions 

Equation Variable name Variable 

Constitutive equations   

Darcy´s law Liquid and gas volumetric flux 𝑞𝑙 𝑞𝑔  

Fick´s law Diffusive flux of vapour 𝑖𝑔
𝑤 

Fourier´s law Conductive heat flux 𝑖𝑐 
Retention curve Liquid phase degree of saturation 𝑆𝑙 
Mechanical constitutive model Stress tensor 𝜎 
Phase density Liquid density 𝜌𝑙 
Gas law Gas density 𝜌𝑔 

   

Equilibrium restrictions   

Henry´s law Air dissolved mass fraction 𝑤𝑙
𝑎 

Psychrometric law Vapour mass fraction 𝑤𝑔
𝑤 

The formulation presented before is supplemented with the mechanical constitutive model 

CASM developed by González (2011) an enhanced formulation of the original CASM model 

established by Yu (1998). This mechanical model includes the dependency of the yield 

envelope of the material on suction according to the framework developed by Alonso et al. 

(1990). An interesting feature of this model is the flexible definition of the shape of the yield 

envelope presented by Eq. 3-6 that allows a well-reproducing the shear strength of the material 

on the dry side of the critical state. 

𝑓 = (
√3  𝐽

𝑀𝜃(𝑃̅ + 𝑃𝑠)
)

𝑛

+
1

ln 𝑟
ln (

𝑃̅ + 𝑃𝑠
𝑃𝑐 + 𝑃𝑠

) 

Eq. 3-6 

Where, 𝑝̅ is the mean net stress, J is the square root of the second stress invariant of deviatoric 
stress tensor, Mθ the slope of the critical state line as a function of Lode angle, 𝑃𝑐 is the 
presconsolidation value , 𝑃𝑠 is a tensile strength due to s suction, the variation of 𝑃𝑐 and Ps  with 
suction, follows the formulation described in Alonso et al. 1990. Finally, the parameters n and 
r refer to the shape and size of the yield surface. The parameter n specify the shape of the yield 
surface while r is a spacing ratio which controls the location of the intersection of the critical 
state line with the yield surface. 

 

 



 

 

- 16 - 

 

3.2 DOUBLE-POROSITY WATER RETENTION CURVE. 

The volcanic ashes of the Cervinara slope present an important percentage of sandy component 

with a significant amount of non-plastic silt. This material is characterized by the presence of 

intergranular and intragranular pores. During SEM observations was found that the itergranular 

pores have a size comparable to that found in coarsest particles. (Olivares & Tommasi 2008). 

For this reason is concluded that this soil is characterized by a bimodal pore size distribution. 

According to Casini et al. (2012) the heterogeneity of the pore size distribution has an effect in 

the water retention properties. Although the water retention curve for different type of soils is 

well fitted with a Van Genuchten curve, for this kind of materials is more realistic if is used a 

multimodal retention model. Defined as a linear superposition of sub-curves of the Van 

Genuchten type defined by Eq. 3-7 

𝑒𝑤 + 𝑒𝑤𝑟𝑒𝑠
𝑒 − 𝑒𝑤𝑟𝑒𝑠

=∑𝑤𝑖 [
1

1 + (𝛼𝑖𝑠)𝑛𝑖
]
𝑚𝑖

𝑘

𝑖=1

 

Eq. 3-7 

Where 𝑒𝑤 is the water ratio (Sr e), k the number of sub-curves, 𝑤𝑖 the weighting factors for 

each sub-curve, and  𝛼𝑖, 𝑚𝑖,, 𝑛𝑖 are the parameters for each sub-curve. 

The Water retention curve plays an important role in the formulation used. It enable to calculate 

the value of liquid saturation degree employed in the water and air mass balance and in the 

energy balance. For this reason is very important to obtain the most realistic water retention 

curve. 

Therefore, the water retention curve implemented in the formulation follows the idea of the 

multimodal retention curve for two pore sub-systems or curves. Identified are micropores or 

intragranular and macropores or intergranular. The bimodal water retention curve follows the 

Eq. 3-8 

𝑆𝑒 =
𝑆𝑙 − 𝑆𝑟𝑙
𝑆𝑙𝑠 − 𝑆𝑟𝑙

= (1 − 𝑤) [1 + (
𝑃𝑔 − 𝑃𝑙

𝑃
)

1
1−𝜆𝑀

]

−𝜆𝑀

+ 𝑤 [1 + (
𝑃𝑔 − 𝑃𝑙

𝑃𝑚
)

1
1−𝜆𝑚

]

−𝜆𝑚

 

Eq. 3-8 

𝑃 = 𝑃0𝑀
𝜎

𝜎𝑚
 , 𝑃𝑚 = 𝑃0𝑚

𝜎

𝜎𝑚
  

Where w is the weight factor for the micro, 𝑃0𝑚, 𝑃0𝑀 are the values for the air entry values for 

the micro and macro respectively,𝜆𝑚, 𝜆𝑀 the parameters related to the shape of the retention 

curve for the micro and macro respectively. 𝑆𝑙 the saturation degree, 𝑆𝑙𝑠 the maximum 

saturation degree and 𝑆𝑟𝑙 the residual saturation degree. Figure 3-3 present the bimodal water 

retention curve obtain for the laboratory data presented in section 2.1.1. This water retention 

curve is compared with a Van Genuchten approximation (monomodal water retention curve) as 

was expected the more realistic approximation is achieved with the bimodal water retention 

curve.  
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Figure 3-3 Bimodal water retention curve 

3.3 ATMOSPHERIC BOUNDARY CONDITION. 

The atmospheric and vegetation actions encompass mass and heat exchanges at the ground 

surface. Including evaporation, rainfall, radiation and sensible heat (see Figure 3-1). 

Additionally the vegetation boundary condition consider transpiration and heat exchanges. 

According to Vaunat et al. (2012), the energy received by the soils come from the sun radiation 

which is a shortwave radiation. At the top of the atmosphere the incident solar radiation (Rs) 

depends on: the energy emitted by the sun (1376 W/m2), the distance between the sun and the 

earth, the latitude and the current time. The atmosphere and clouds reflect and absorbed part of 

the incident radiation. For that reason the radiation at soil surface (Rg) is lower than Rs. The 

relation between Rg and Rs depends on: the cloudiness, the atmosphere absorptivity, and the 

travel length across the atmosphere that depends on the latitude and current time.  

Additionally, the radiation absorbed by the clouds is released with direction to the space and 

with direction to the earth (Ra) but in the shape of long wave radiation. The ground surface 

receives both type of radiation waves. Finally part of the energy is reflected by the soil based 

with the albedo of the surface. Defined as the radio between the incident wave and the reflected 

wave which depends on characteristics of the surface such as colour or material. The albedo is 

also influenced by the saturation degree of the material since the albedo of the water is two 

times lower that the albedo for the dry soil. 

The remaining part of the energy is stored in the soil some of this energy is released to the 

atmosphere by convection and the soil radiation. Moreover, the difference between the ground 

surface and the atmosphere produces the conductive flux, the advection flux and the heat 

transport through the mass fluxes that cross the surface like: air, liquid water or vapour. Finally 

the soil radiation (Sr) that is a long wave radiation is control by the emissivity of the soil. On 

the other hand the energy that is not released to the atmosphere controls the temperature changes 

of the soil which has an important role in the evaporation of water. 

In bare grounds, the evaporation is given by the difference of water potential between the 

atmosphere (vapour) and the soil (liquid and vapour). While this two potential not be in 

equilibrium there is vapour diffusion from the soil to the atmosphere this effects are also 

controlled by the aerodynamic effect of the wind. Besides that, within the soil the potential of 

liquid and gas phase of the water must be in equilibrium generating the evaporation of liquid 
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water. However, the change of phase process consumes heat so the process will be also 

conditioned to the energy availability. 

Penman, (1948) introduce the concept of potential evaporation. In order to obtain a rational 

approach for the maximum value of evaporation based on the availability of heat in the medium.  

This concept is true for irrigated fields or wet climates but for semi-arid and non-irrigated areas 

the evaporation will be imitated by the availability of water. In this cases the actual evaporation 

will be lower than the potential evaporation. 

Another important contribution for hydric balance in the vadose zone is the net infiltration 

which is the amount of rain water that do not is intercepted by the vegetation, evaporated or 

come into runoff. The infiltration rate depends on: the inclination of the  slope, the state of 

compaction of the surface, and the moisture content of the material (Blight 1997) 

The vegetation plays an important role in the hydric balance. Very important in zones with an 

important presence of vegetation like the case of Cervinara region. The transpiration process of 

the plants which basically consist in the vaporization of the liquid water at the plant leaves to 

the atmosphere. This water is previously absorbed from the soil by the roots plants. Is important 

to take into account the difference between the evaporation and transpiration, the first one is 

the process whereby the liquid water convert in to vapour at the ground surface. The water can 

be evaporated from different surface such as lakes, rivers, pavements or soils. While the 

transpiration is just the liberation of vapour from the plant. 

Therefore, when the herbage is small the water lost correspond basically to the evaporation 

process but once it grows the transpiration will be predominant. Basically the vegetation acts 

as bypass between the soil surface and the deepest zone of direct evaporation. The main factors 

that influence the transpiration rate are: water and energy available in the soil, leaf and root 

density, root depth, vegetation type, atmosphere relative humidity and temperature.  

The most important changes in water content normally occur close to the surface. In the first 

meters called active zone the water potential varies between negative values (suction) during 

dry periods to lightly positive values during wet seasons. The fluctuations of water pressure 

underneath of the active zone act as the response to the solicitations generated in the active zone 

in absence of other effects or solicitations. 

The variations in pore water pressure. For instance, in suction values are highly influenced by 

changes in the flux boundary conditions. They are: infiltration, evaporation and transpiration 

which are controlled by the climatic actions. According to Leroueil (2001) the infiltration in 

unsaturated soils is more complex than in saturated soils, because the initial conditions depend 

in antecedent hydrological conditions and the parameters that control the infiltration in soils 

such as water retention curve and hydraulic conductivity depend on soil suction. 

The atmospheric process and vegetation present a very complex behaviour. For this reason with 

the aim of a geotechnical modelling some simplifications has to be considered. Mainly the 

model do not consider the atmosphere as a hole but as combination of fluxes acting at the soil 

surface as a boundary condition. On the other hand, vegetation is considered as a nonlinear sink 

term of water mass applied at a defined depth (root depth). Additionally, the atmospheric 

boundary condition has to be compatible with the formulation that controls the behaviour in the 

soil which should be able to consider the Thermo-hydro-mechanical coupling presented before. 

The formulation for the atmospheric boundary condition considered in the atmospheric – 
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vegetation module of CODE_BRIGHT is summarized hereinafter. Figure 3-4 presents a 

scheme of the different fluxes considered in the atmospheric boundary condition  

 

Figure 3-4 Scheme of flux involved in the atmospheric boundary condition 

 

3.3.1 Gas flux. 

 

The gas flux is controlled by the Darcy´s law, in terms of the atmospheric pressure (Pat) is: 

 
atggg PPq    

Eq. 3-9 

           

Where g  is the leakage coefficient, and gP  is the gas pressure. This flux carries two species 

dry air and vapour, the dry air flux is represented by Eq. 3-10 where 𝑤𝑔
𝑤 is the mass fraction of 

vapour. 

𝐽𝑎 = (1 − 𝑤𝑔
𝑤)𝑞𝑔 

Eq. 3-10 

3.3.2 Flux of water. 

The flux of water at the surface is given by the sum of: precipitation P, ground evaporation Ev, 

the advective flux of vapour 𝐽𝑔
𝑤 and the surface runoff Jsr. Is important to take in to account that 

the precipitation considered is the difference between the real precipitation and the part 

intercepted by the rainfall. 

𝑗𝑤 = 𝑃 + 𝐽𝑔
𝑤 + 𝐸𝑣 + 𝐽𝑠𝑟 

Eq. 3-11 

The evaporation is presented by Eq. 3-12. Where veg is the vegetation fraction defined as the 

greened area per unit of area of ground, ra is the aerodynamic resistance, 𝜙 is the stability factor, 

𝜅 is the von Karman´s constant (generally 0.4), 𝑣𝑎 is the wind velocity, 𝑧0 is the ground surface 

roughness associated to the canopy height, 𝑧𝑎 is the screen height at which the values of wind 
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velocity and atmosphere absolute humidity (𝜌𝑣𝑎) are measured, and  𝜌𝑣 is the absolute humidity 

of the soil. 

𝐸𝑣 = (1 − 𝑣𝑒𝑔)
1

𝑟𝑎
(𝜌𝑣𝑎 − 𝜌𝑣)                         𝑟𝑎 =

(ln (
𝑧𝑎
𝑧0
))

2

𝑘2𝑣𝑎𝜙
 

Eq. 3-12 

The advective flux of water, is evaluated by  

 

𝑗𝑔
𝑤 = {

𝑤𝑔
𝑤 𝑞𝑔                       𝑖𝑓 𝑃𝑔 > 𝑃𝑔𝑎

𝜌𝑣𝑎
𝜌𝑔𝑎⁄  𝑞𝑔             𝑖𝑓 𝑃𝑔 ≤ 𝑃𝑔𝑎

 

Eq. 3-13 

Finally the surface runoff is defined as the flow rate of water that do not is infiltrated into the 

soil. For this reason is considered that infiltration only occurs when the atmospheric pressure 

(Pga) is higher than the ground pore pressure (Pl) in which case the surface runoff will be null, 

see Eq. 3-14 where 𝛾𝑤 is the ground surface liquid leakage coefficient. 

 

𝑗𝑠𝑟 = {
𝛾𝑤 (𝑃𝑙 − 𝑃𝑔𝑎)                    𝑖𝑓 𝑃𝑙 > 𝑃𝑔𝑎
0                                           𝑖𝑓 𝑃𝑙 ≤ 𝑃𝑔𝑎

 

Eq. 3-14 

3.3.3 Flux of energy. 

The flux of energy is determined by the sum of: the sensible heat (Hs), the heat flux convected 

by the mass fluxes (Hc) (the most important is the latent heat of vaporization carried by water 

mass flux) and the net radiation (Rn). See Eq. 3-15 

𝐽𝑒 = 𝐻𝑠 + 𝐻𝑐 + 𝑅𝑛 
Eq. 3-15 

The sensible heat is calculated through the aerodynamic diffusion relation. Presented in Eq. 

3-16 where 𝐶𝑎 is the specific heat of gas, 𝜌𝑔𝑎 is the atmospheric gas density, 𝑇𝑎 the atmospheric 

temperature, 𝑇0the soil temperature, and 𝑟𝑎 is the aerodynamic resistance previously described. 

𝐻𝑠 = 𝜌𝑔𝑎𝐶𝑎
1

𝑟𝑎
(𝑇𝑎 − 𝑇0) 

Eq. 3-16 

On the other hand, the convected heat flux is computed taking into account the internal energy 

of liquid water, vapour and air, according to:  

𝐻𝑐 = ℎ𝑣(𝐸𝑣 + 𝐽𝑔
𝑤) + ℎ𝑙𝑎(𝑃 + 𝐽𝑙

𝑤) + ℎ𝑎0𝐽𝑎 
Eq. 3-17 

Where, 𝐽𝑙
𝑤 is the flux of water in liquid phase, P is the precipitation, 𝐽𝑎 is the flux of air 

and ℎ𝑣 , ℎ𝑙𝑎  and ℎ𝑎0 are the free energy of vapour, liquid water and air. Finally the net radiation 

is the part of heat flux that considers the solar and atmospheric radiation given by Eq. 3-18 
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𝑅𝑛 = (1 − 𝐴𝑙)𝑅𝑔 + 𝜀 𝑅𝑎 − 𝑆𝑟 

𝑆𝑟 = 𝜀𝜎𝑠𝑇𝑎
4 

Eq. 3-18 

For the calculation of Rn. Rg is the solar short wavelength radiation, Ra is the long wavelength 

atmospheric radiation, σs is the Stefan-Boltzman constant (5.67×10-8 J s-1 m-2 K-4), ε is the 

ground emissivity and Al is the albedo of the soil, this last two parameters are function of the 

degree of saturation (Sl), according to: 

𝐴𝑙 = 𝐴𝑑 + (𝐴𝑑 − 𝐴𝑤)(𝑆𝑙
2 − 2𝑆𝑙) 

𝜀 = 0.9 + 0.05𝑆𝑙 
Eq. 3-19 

Where Ad and Al are the dry and wet albedo. The atmospheric log wavelength radiation could 

be measured in the field. In case that this data are not available the atmospheric radiation Ra 

can be estimated as a function of the atmospheric temperature and the atmospheric absolute 

humidity according to Eq. 3-20 

𝑅𝑎 = 𝜎𝑠 𝑇𝑎
4( 0.605 + 0.048√1370𝜌𝑣𝑎) 

Eq. 3-20 

In order to calculate the values for direct solar radiation Rg a sinusoidal function presented in 

Eq. 3-21 could be used. ds is the time span between the sunrise and sunset, tm is the time at noon 

and RG is the daily solar radiation calculated thought an empirical relation as function of the 

latitude, the index cloud and current date. 

𝑅𝑔 = {

𝜋 𝑅𝐺
2 𝑑𝑠

sin (
(𝑡 − 𝑡𝑚 + 0.5𝑑𝑠)𝜋

𝑑𝑠
)   if 𝑡𝑚 − 0.5𝑑𝑠 ≤ 𝑡 ≤ 𝑡𝑚 + 0.5𝑑𝑠

0                                                          otherwise

 

Eq. 3-21 

3.3.4 Evapotranspiration. 

The transpiration is the process whereby the plant loss vapour of water from the leaves or 

another aerial part of the plant. This water is previously took from the soil by the roots. This 

process occurs due to the gradient in relative humidity between the plant and the atmosphere. 

The plant control this flux through chemo-thermo-hydraulical actions at cell level. For that 

reason the modelling of this process is very complex.  

The general approach widely used in agricultural engineering considers the modelling of 

transpiration by applying the effect of this release vapour at canopy level (Sellers et al. 1986). 

According to Noilhan & Planton (1989) this effect depends on the difference between the 

vapour density of the atmosphere (𝜌𝑣𝑎), and the leaf. Since the relative humidity within the leaf 

is close to 100%, the vapour density at the leaf is considered as saturated (𝜌𝑣𝑎𝑠𝑎𝑡) which 

depends only in the temperature. The transpiration is computed as:  

𝐸𝑡 = 𝑣𝑒𝑔 
1

(𝑟𝑎 − 𝑟𝑠)
 (𝜌𝑣𝑎𝑠𝑎𝑡 − 𝜌𝑣𝑎) 

Eq. 3-22 



 

 

- 22 - 

 

Where ra is the aerodynamic resistance and veg is the vegetation fraction both parameters 

previously described, rs is the leaf resistance defined as the resistance to the transfer of water 

from the root zone to the leaf surfaces. Calculated according to Eq. 3-23 

𝑟𝑠 =
𝑟𝑠𝑚𝑖𝑛
𝐿𝐴𝐼

 [
𝐹1

𝐹2 𝐹3 𝐹4 
] 

Eq. 3-23 

Where 𝑟𝑠𝑚𝑖𝑛 is the minimum surface resistance, which is depends on the type of plant. It is 

considered a maximum value of surface resistance (𝑟𝑠𝑚𝑎𝑥 ) of 5000 s/m. LAI is the leaf area 

index, defined as the area cover by leaves per square meter of ground. In general terms the 

relation 
𝑟𝑠𝑚𝑖𝑛

𝐿𝐴𝐼⁄  remains constant. Finally, F1, F2, F3 and F4 are functions widely used in 

agricultural engineering defined as presented below 

𝐹1 = 

1 + (
2
𝐿𝐴𝐼  

0.55 𝑅𝑔
𝑅𝑔𝑙

)

(
1.1
𝐿𝐴𝐼  

𝑅𝑔
𝑅𝑔𝑙
) + 

𝑟𝑠𝑚𝑖𝑛
𝑟𝑠𝑚𝑎𝑥

 

Eq. 3-24 

The function F1 considers the influence of the photosynthetically active radiation equal to 0.55 

Rg. Rgl represents the maximum value for Rg 30 W/m2 for the cases of the forests this is the case 

of the Cervinara region. The function F2 represents the capacity to extract water from the soil 

depending on the water content (), according to Eq. 3-25 

𝐹2 =

{
 
 

 
 

0                                       𝑖𝑓 𝜃 ≤ 𝜃𝑤
𝜃 − 𝜃𝑤
𝜃𝑓𝑐 − 𝜃𝑤

                          𝑖𝑓 𝜃𝑤 ≤ 𝜃 < 𝜃𝑓𝑐

1 − 𝜃

1 − 𝜃𝑎
                                𝑖𝑓 𝜃 ≥ 𝜃𝑎

 

Eq. 3-25 

Where, 𝜃𝑤 is the water content at the wilting point it is the threshold below plants cannot extract 

more water from the soil. Noilhan & Mahfouf (1996) consider that this value corresponds to a 

suction value of 1.5 MPa. 𝜃𝑓𝑐 represents the field capacity which is the water content remaining 

after a downward gravity drainage correspond to a low value of hydraulic conductivity 

(0.1mm/day) (Noilhan & Mahfouf 1996). This parameter is also associated to a value of suction 

between 0.01 to 0.05 MPa. Finally 𝜃𝑎  is the anaerobiosis point that represent the water content 

at which the metabolism of the plant begging to loose efficiency. 

Function F3, considers the effect of atmosphere vapour pressure deficit which is very important 

because when this happens the stomata close. In eEq. 3-26 𝛾  is an empirical parameter. 

 Last but not least, function F4 introduces the dependence in air temperature governed by Eq. 

3-27. 

𝐹3 = 1 − 𝛾 (𝜌𝑣𝑎𝑠𝑎𝑡 − 𝜌𝑣𝑎) 
Eq. 3-26 

𝐹4 = 1.0 − 0.0016(298 − 𝑇𝑎)
2 

Eq. 3-27  
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4 CHAPTER 4                                                                                                       

NUMERICAL MODELS 

The slope failure in unsaturated soils is controlled by the characteristics of: water flow, pore-

water pressure, and shear strength of the soils. These parameters are highly influenced by the 

flux boundary conditions like: precipitation or evaporation. In general the rainfall-induced 

landslides are basically determined by the infiltration of water in the materials however this 

process is very complex 

The objective of the Round Robin test is to carry on a benchmark exercise in which modellers 

be able to considering information at different scales of observation. As well as the capability 

of reproducing the response and make predictions taking into account the complexity of the 

process developed during the rainfall-induced landslides. 

The numerical models were developed with the finite element method formulation, CODE-

BRIGHT settled by the department of geotechnical engineering and geo-sciences (UPC) 

(Olivella et al. 1994) to model Thermo-Hydro-Mechanical problems in geological media. The 

atmosphere and vegetation contributions were modelled by a special flux boundary condition 

recently implemented (Saaltink et al. 2011). The formulation considered was presented in 

chapter 3. 

In order to maintain the intention of the benchmark exercise the numerical simulations were 

developed considering the same scales of observations considered: laboratory experiments, 

flume infiltration test and field slope, as is presented hereinafter. 

4.1 LABORATORY SCALE. 

The laboratory experiments are realized in order to establish at small scale the parameters that 

will control the soil behaviour. Section 2.1.1 presents the basic results of the test performed to 

the Cervinara ashes. One of the tests performed is the suction controlled triaxial test which gives 

an idea about the resistance of the soil. The adequately understanding and modelling of this test 

will provided the shear strength parameters that control the failure of the soil under unsaturated 

conditions. 

For the modelling of the suction controlled triaxial test three stages were considered. First the 

sample is submitted to an isotropic stress, then the suction is imposed and finally the sample is 

load at constant strain rate. In total 6 different test were evaluated which characteristic are listed 

in Table 4-1 

Table 4-1 Suction controlled triaxial test characteristics 

Test 
Sample depth 

(m) 
Initial Suction 

(kPa) 
Suction 

imposed (kPa) 
Isotropic stress  

(kPa) 

1Cu1040 3.5 10.0 11.0 28.8 

C4P1USP 4.0 9.0 44.0 60.0 

C22USP 3.5 10.5 43.0 90.1 

C70USP0 3.5 11.05 74.0 89.3 

C62USP 1.0 14.0 74.0 22.43 

C61USP1 1.0 15.0 44.0 23.0 

The modelling of these tests is developed employing a hydro-mechanical coupling over a 2D 

model considering a vertical symmetric axis. Figure 4-1 Model boundary conditionspresents a 
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summary of all boundary conditions considered during the calculation of the suction controlled 

triaxial test. The mechanical model considered is the CASM model (González 2011) and the 

water retention curve correspond to a bimodal water retention curve presented in Figure 3-3. 

Additionally the intrinsic permeability correspond to the mean value obtained during the 

experimental test (1.44 e-13 m2). Table 4-2 presents the parameters considered  

 
Figure 4-1 Model boundary conditions 

Table 4-2 Mechanical and Hydraulic parameters. 

Mechanical data Hydraulic data 

General parameters Specific parameters Retention curve Intrinsic permeability 

 0.3 Pr (MPa) 0.005 P0M (MPa) 0.0075 Darcy´s law 

 0.035 rlc 0.95  0.7 K (m2) 1.44e-13  

 0.25  50 P0m (MPa) 0.120 Liq. phase rel. Permeability 

r 2 s 0.04 m 0.55 Generalized power function 

n 2 ks 0.13 w 0.53 A 1 

M 1.32   Srl 0 rp 4.5 

cs 32.8   Sls 1   

The principal result obtained from this test is the evolution of the deviatoric stress with the axial 

deformation presented in Figure 4-2. Is important to observe that the behaviour of all the cases 

is satisfactorily reproduced by the model even for the case of the test 1Cu1040 which present a 

peak response. In all the cases the value of final stress is well obtain, even so, in some test the 

value is reached earlier than in the test. This is due to the value of  considered correspond to 

the value obtained with the compressibility test presented in section 2.1.1. In general the values 

of obtained with the compressibility test are lower that the values observed during test like 

the triaxial test. 
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Figure 4-2 deviatoric stress vs a. 

Aditionally, to evaluate the hydraulic response of the material. Is important to observe the 

evolution of water content during the equilibration of suction phase. For this stage the unique 

process involved is the hydraulic. Figure 4-3 presents the results achieved where dw represent 

the variation in water content. It is concluded that with the hydraulic parameters considered the 

evolution of water content is adequately reproduce by the modelling.  

 
Figure 4-3 water content variation 

Is interesting to evaluate the effect of the stress path imposed to the samples in the evolution of 

the yield surface described by González (2011) and Alonso et al. (1990). To complemente the 

mechanical parameters presented in Table 4-2 is necessary to determinate the value for the 

preconsolidation stress at saturated conditions (P0). This material is considered as normally 

consolidated. Which means that the precosolidation stress (Pc) depends only in the current stress 

condition at the samples extraction depths. For samples extracted at 1m the pre-consolidation 

stressnat saturated conditions considered is 28 kPa and for samples taken between 3.5m and 4m 

the value considered is 60 kPa. 
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As was presented before the stress path considered correspond to 3 different stages/paths: 

1. The sample is load under an isotropic stress. 

2. The suction desired is imposed, maintaining the stress. 

3. The sample is load at constant strain rate (2.33e-6 m/s) maintaining the stress. 

For unsaturated materials the yield surface is defined in a three-dimensional space composed 

by: the mean stress (P), the deviatoric stress (Q) and the suction (S). The variation of this surface 

is presented in two different planes: the P vs Q and the plane P vs S.  

Two different cases are considered as example to see the evolution of yield surface. The sample 

C70USP presented in Figure 4-4 and sample C61USP presented in Figure 4-5. This two samples 

were extracted at two different depths the first one at 3.5m depth while the second one at 1m. 

For this reason the preconsolidation stress considered are different. 

Taking into account, the values of preconsolidation stress and the characteristics of the tests 

presented in Table 4-1 (row 4 and 6). It is observed that for sample C70USP the path 1 (load 

under isotropic stress) generates a change in the LC curve. While for sample C61USP this 

process is developed in the elastic zone consequently without generating any change in the yield 

surface. For that reason the LC after the path 2 is equal to the initial LC. Hence the increment 

in suction maintaining the value of mean stress do not affect the yield surface it occurs under 

elastic conditions. 

Finally for the load at constant strain rate (stage 3) is observed that for sample C70USP this 

process is developed under the plastic zone as is shown in Figure 4-4a. While for sample 

C61USP the begging of this load process is settled in the elastic zone presented in Figure 4-5a. 

The difference of the response is appreciated in the figure of the deviatoric stress vs axial strain, 

(Figure 4-4c and Figure 4-5c) where is apreciated that for the sample C61USP the initial strains 

present a linear relation with the deviatoric stress. That is to say elastic strains which are control 

by the parameter of load/reload (). Although, for sample C70USP this relation is not linear 

since the begging of the load stage, this means that the strains are plastic from the beginning of 

the phase. 
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Figure 4-4 Yield surface variation for sample C70USP. a) p vs q plane b) p vs suction plane a) q vs axial 

strain 

 
 

 
Figure 4-5 Yield surface variation of sample C61USP a) p vs q plane b) p vs suction plane a) q vs axial 

strain 

In order to model the test the most realistic possible during the final stage (the load under 

constant rate strains) the constant value of suction was imposed as a boundary condition at the 

top of the sample. For that reason, is very interesting to evaluate the variation of suction during 

this stage shown in Figure 4-6. When the sample is load the deformation generated produced a 

reduction in the air volume in the sample. Therefore, the porosity decrease leading to a fall in 

the values of suction but as the value of suction is been imposed at a boundary of the sample. 

a) b) 

c) 

a) b) 

c) 
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The variation of suction reaches a constant value as an equilibration of both process: the 

mechanical and the hydraulic. 

 
Figure 4-6 variation of suction during load under constant strain rate 

 

4.2 FLUME TEST. 

The flume test consist in a mock up experiment over a slope model design to investigate the 

mechanism of failure of the rainfall-induced landslides. For this reason the flume is highly 

equipped with instrumentation devices. In fact during the test the values of: suction, water 

content profiles, liquid pressure and settlements are measured. The complete description of the 

instrumentation and the test procedure is presented in section 2.1.2. 

As is presented in section 2.1.2 the method used to create the slope is the moist tamping. This 

process consist in the creation of the sample by layers. The material of each layer is deposited 

and then is compacted by applying a quasi-static load until the material reach the volume needed 

according to the value of porosity desired. (Frost & Park 2003). 

Additionally, at least one of the minitesiometers installed is located in the profile where the 

values of water content are measured allowing to relate this two values. Which present an idea 

of the water retention curve for this tests. Figure 4-7 presents the water retention curve obtain 

for the flume test based with the data obtained from the minitensiometers T3 in test D3 and 

minitensiometers T4 and T6 in test D4.  

The water retention curve obtained from the laboratory tests present a value of air entry higher 

than the value obtain from the flume test response. This variances are attribute to the differences 

in density and anisotropy. Besides that is very difficult to recreate the large pores in the 

recreation of samples like is the case of the moist tamping procedure. Similar responses are 

presented in Askarinejad et al. (2011) and Askarinejad et al. (2012). 
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Figure 4-7 Flume test water retention curve 

Beyond the difference with the data obtain in the laboratory tests. It is important to take into 

account that the results obtain from test D3 and test D4 present a discrepancy especially for 

higher values of suction. For a saturation degree of 0.3 test D3 present lower values of suction 

than for test D4 this difference could lead to differences in the value of the initial saturation 

degree during the modelling. 

According to Askarinejad et al. (2012) the hydraulic conductivity of unsaturated soils is 

function of the pores structure and the relative amount of pore fluid in the system. For this 

reason this parameters can vary from: reconstituted samples, undisturbed samples and in situ 

conditions. The value of intrinsic permeability was calibrated trough back analysis. Moreover 

taking into account the Kozeny´s equation the relation between the intrinsic permeability and 

the porosity for the flume test analysis is obtained and is presented in Figure 4-8. 

 
Figure 4-8 Intrinsic permeability considered for flume test analysis. 

The mechanical parameters considered correspond to the parameters obtained from the 

laboratory experiments more specifically from the suction controlled triaxial tests presented in 

section 4.1, Table 4-3 presents a summary of the parameters considered. 
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Table 4-3 Mechanical and hydraulic parameters - flume test 

Mechanical data Hydraulic data 

General parameters Specific parameters Retention curve Intrinsic permeability 

 0.3 Pr (MPa) 0.0005 P0M (MPa) 0.0006 Darcy´s law 

 0.035 rlc 0.95 M 0.6 K (m2) =0.75 1.8e-11 

 0.25  50 P0m (MPa) 0.080 K (m2)=0.76 2.0e-11 

r 2 s 0.04 m 0.55 K(m2)=0.65 5.9e-12  

n 2 ks 0.13 w 0.45 Liq. phase rel. permeability 

M 1.32   Srl 0 Generalized power function 

cs 32.8   Sls 1 A 1 

       4.5 

The values considered for the initial stress and pre-consolidation stress are crucial to reproduce 

adequately the mechanical response of this test. Especially because the failure is not caused by 

the imposition of a stress but, due changes in suction. The value of initial stress and pre-

consolidation stress will determine the proximity to yield stress and for instance the failure time. 

 To achieve this values the process of production of the slope was modelled. For this purpose a 

horizontal flume have been considered with the same measures of the final flume but with an 

initial porosity higher than the value reported as initial for the soaking test. This value has been 

supposed because it was not measured. Then this flume is subjected to a static load later the 

load is removed. The value of load imposed was calibrated with the final value of porosity 

which should be equal to the porosity of the test. Is very interesting to observe that this process 

generate an anisotropic distribution of tensions generating a higher value of stress in the 

horizontal direction. 

Although, the phenomena analyses correspond to a mechanical failure due to the soaking 

process (hydro-mechanic process) 2 different types of 2D models were considered to evaluate 

the performance. The first one considers just the hydraulic process and the second one 

contemplates the hydro-mechanical coupling. This two models are developed especially to see 

the effect of the mechanical coupling over the hydraulic process. The geometry of the models 

correspond to the transversal view of the flume. The general boundary conditions considered 

are presented in Figure 4-9 where the green lines represent displacement boundary condition 

and the blue lines the flux boundary conditions. To reproduce the effect of the drainage element 

placed at the foot of the slope the boundary condition imposed considers that the outwards flow 

is zero if the liquid pressure is lower than the atmospheric pressure, but is higher than zero if 

the liquid pressure equals the atmospheric pressure (the soil reaches saturation). This boundary 

conditions avoids that the liquid pressure exceeds the atmospheric pressure but allowing that 

the liquid pressure be lower than the atmospheric pressure. 
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Figure 4-9 Flume test, boundary conditions. 

4.2.1 Flume test D3. 

This test was carried over a flume of 100 cm of length with an initial suction of 17.5 kPa and 

an initial porosity of 0.75. The complete description of the test is presented in section 2.1.2. In 

order to evaluate the response of the test a dense system of instrumentation was installed. Even 

so, not all the devices record appropriately the information. Figure 4-10 presents the devices of 

which the information is available.  

    
Figure 4-10 Geometry and location of instrumentation devices a) transversal section b) Planar view   

(T-minitensiometers P- liquid pressure transducers L- Laser sensors (settlements) TDR – Moisture profile) 

The failure process experimented during this test consist in a mechanical failure due to a 

soaking process which produce the reduction of suction therefore the reaching of the yield 

surface. As was presented before the determination of the initial stress during the test is crucial 

for the failure calculation. To obtain these values or at least an initial stress situation appropriate 

to the process used for assembling the test. The method use for the creation of the sample was 

modelled. With this purpose a horizontal flume has been considered with a supposed initial 

porosity of 0.8. It is load with a vertical stress of 10 kPa then is unloaded. After this process the 

value of porosity obtained is equal to the value considered as initial for the soaking test. The 

stress condition over the flume after that the static load is removed has been considered as the 

initial stress condition for the soaking process. For the flume test D3 the stresses obtain are in 

the horizontal direction (xx) 4.3 kPa, and for the vertical direction (xx) 0.5 kPa, the value of 

preconsolidation pressure considered is 2.6 kPa. 

a) b) 
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Two different modelling conditions were considered to evaluate the response of this test a 

hydraulic model (H) and a hydro-mechanical coupling (HM). During the test the variation of 

suction within the flume test is recorded by 3 minitensiometers, 2 almost at the bottom of the 

flume (T3 and T4), but at different positions, and other at the middle of the flume (T6). Figure 

4-11  presents the response obtain during the test compared with the behaviour obtain with the 

models. The evolution of suction is adequately simulated by the numerical models.  

There are no many differences between the responses obtain with the hydraulic and the hydro-

mechanical models. Furthermore, is interesting to observe that when infiltration starts the 

tensiometer located at the top of the flume (T6) registered an early and quick decrease in suction 

well-reproduced by the model. Tensiometers T3 and T4 respond also with a sharp decrease in 

suction but delayed for five minutes with respect to T6. This kind of response indicates the 

advance of a wetting front, well-captured by the model. 

 
Figure 4-11 suction time evolution, test D3  

 (Continuous line: data recorded, dash line: hydraulic model, dot line: hydro-mechanical model) 

The evolution of suction was complemented with liquid pressure transducers installed at the 

bottom of the flume which location are shown in Figure 4-10. For the geometry consider 

(transversal section) the liquid pressure transducers P1 and P3 are located at the same point. 

Figure 4-12 presents the response obtain. Although, the response observed during the test is not 

achieved with the model is interesting to observe the differences of the response between the 2 

models. The values of liquid pressure are lower for the mechanical models, but the trend is very 

similar.  

The measurements indicates that the liquid pressure starts to be higher than zero earlier in the 

liquid pressure transducers located closer to the top of the slope, but when the failure moment 

is close the values of liquid pressure are higher close to the foot of the slope. The latter 

phenomena is well reproduced by the model. This is caused to the infiltration characteristics of 

the test that close the foot of the slope the water accumulated include the vertical infiltration, 

due to the rainfall, and the transversal flow caused by the gravity and the impervious boundary 

condition of the bottom of the flume. 
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Figure 4-12 Liquid pressure time evolution, test D3   

(Continuous line: data recorded, dash line: hydraulic model, dot line: hydro-mechanical model) 

Another important response recorded during the test is the evolution of the water content. With 

this aim a profile of water content is obtain employing a new technique developed by Greco 

(2006). Several number of profiles are obtain in order to evidence its evolution with time. Figure 

4-13 presents the response obtain with the hydraulic model.  

It is considered that the value of water content at the bottom (z = 0cm) at the first profile (55 

seconds) should be the initial water content. This is to say, the value of water content that 

correspond to a suction of 17.5 kPa. Is important to observed that the value obtain at this point 

with the model is very different to the data measured due to the water retention curve considered 

that is subjected to the differences observed between the results of test D3 and D4.  

 
Figure 4-13 Volumetric water content profiles, hydraulic model, Test D3 

To avoid this error the value considered is the increment in water content instead of the 

complete value as is shown in Figure 4-14 were the response obtain with the mechanical model 

is presented also. It is important to observed that until the time 1289 seconds the trend of the 

volumetric water content is well reproduced by the models in the other three profiles the value 

of water content at the bottom is well achieved but the rest of the profile is very different. 
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 The measures indicated partial saturation of the upper part of the soil layer during the first 10 

mins, followed by the deepening of the infiltration front that reaches layer bottom between 10 

and 20 mins. From that time on, saturation increases more rapidly at the bottom than at the top 

of the sample and water content profiles travel to the right while becoming more vertical. This 

general pattern is consistent with the front-type advance of hydration evidenced by suction 

monitoring. After 32 mins, there is a new increase of water content at the top of the sample, of 

more difficult interpretation. Model captures qualitatively well the hydration pattern and also 

the quantitative change of water content at the base of soil layer.  

The soaking process shown with the models generates an initial infiltration evidenced by higher 

values of water content at the top like what is expected. Once the water reaches the bottom and 

found an impervious boundary the water flows to the foot of the flume leading to higher values 

of water content at the bottom of the flume than in the top. Is also important to observe that 

when the mechanical process is considered the water content is higher. This is due to the 

reduction of the pores size due to the settlements which leads to higher values of water content. 

 
Figure 4-14 Delta of volumetric water content, test D3                                                                                                     

(light blue: hydraulic model, dark blue: hydro-mechanical model) 

Last but not least, the failure process is evidenced by the laser sensors transducers installed to 

obtain the settlements produced during the process. Two laser sensors are considered which 

location is presented in Figure 4-10. During the test the failure was registered at the 36 minutes 

(2160 seconds) with the model developed the failure was produced at the 2191 seconds when 

the model presented convergence problems. Just 30 seconds of difference with the measured 

data. Figure 4-15 presents the time evolution of the settlements recorded and achieved by the 

numerical model. Two additional points located at the foot of the flume and at the top (see 

Figure 4-16) were considered for the settlements time evolutions. With the numerical model an 

adequately value of final settlements registered during the test: 5 mm is achieved, even so, the 

trend obtain with the model is quite different of the one. With the model the collapse settlements 

are not well reproduced 
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Figure 4-15 Settlements time evolution, test D3                                                                                                                   

(continuous line: data recorded, dash line: hydro-mechanical model) 

Figure 4-16, shows the mesh deformed at the end of the failure process and the location of the 

additional points were the settlements are measured. The landslide failure is clearly evidenced. 

Further, is important to evaluate the evolution of the shear strains during the process presented 

in Figure 4-17 were is observed that by 1571 seconds the shear strains began to be developed. 

Finally by the 2191 seconds the shear band is complete developed generating the failure in the 

slope. 

 
Figure 4-16 Mesh deformation at failure, test D3 (deformation factor: 2) 
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Figure 4-17 Shear strains evolution, test D3 a) time: 110 seconds b) time: 1571 seconds c) time: 1951 seconds 

d)time: 2191 seconds (failure) 

 

4.2.2 Flume test D4. 

The flume test D4 present an initial suction higher than the considered for the test D3 (43 kPa) 

this test is carried on over a flume of 1.20 m of length and 0.1 m of high. The complete 

description of this test in presented in section 2.12.  

Like in test D3, many instrumentation devices were installed. But just a few devices record 

appropriately the information which location is presented in Figure 4-18. The transversal 

section presented in that figure represents the geometry considered for the model. 

  
Figure 4-18 Geometry and location of instrumentation devices, test D4 a) transversal section b) Planar view   

(T-minitensiometers L- Laser sensors (settlements) TDR – Moisture profile) 

a) b) 

a) 

c) 

b) 

d) 
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The initial porosity of this test (0.76) is very similar to the porosity of test D3 (0.75) for this 

reason the stress condition that has been considered as the initial is the same for both test: 4.3 

kPa in the horizontal direction (xx), 0.5 kPa for the vertical direction (xx), the preconsolidation 

pressure considered is 2.4 kPa. 

On the other hand, the value of intrinsic permeability have been obtain with the kozeny´s 

relation presented in Figure 4-8. Even so, this value have been calibrated. The value of intrinsic 

permeability considered is 1.9 e-11. Taking into account these consideration the results obtain 

for this test are presented hereinafter. 

For this test just 3 types of data are considered: evolution of suction, settlements and water 

content evolution. In the case, for the time evolution of suction three different points are 

evaluated: two at the middle of the flume (T2 and T3) and one at the bottom of the flume (T4). 

Identify with the letter T in Figure 4-18. In this case the effect of wetting front is evidenced also 

but with a delay of almost nine minutes. Figure 4-19 presents the comparison of the response 

obtain considering the mechanical coupling and without considering this coupling. 

The characteristics of test D3 and Test D4 are very similar, especially the initial porosity and 

rainfall imposed, the important difference between this two tests is the initial mean suction. The 

value of the suction is a controlling parameter in the infiltration of water process. It controls the 

relative permeability which leads that the permeability of the test D3 (lower suction) be higher 

than the permeability of test D4 (higher suction). This feature could explicate why the delay 

between the measures realised in the middle and in the bottom in test D3 is lower than in test 

D4. 

 
Figure 4-19 Time-evolution of suction for test D4 

 (Continuous line: data recorded, dash line: hydraulic model, dot line: hydro-mechanical model) 

The volumetric water content profiles are obtain by the technique developed by Greco (2006). 

Like in the case of test D3, the initial value of water content is not determinate adequately by 

the model. For this reason, instead of evaluated the evolution of water content the delta of water 

content are evaluated and presented in Figure 4-20. It is observed that the trend obtain by the 

model until the time 1264 seconds is very similar to respond measured but, the measures data 

experiments a larger increases of water content since time 453 seconds. On the other hand, in 

this case the water content tends to a constant value at the top of the flume. Additionally just 

like in the case D3, when the mechanical process is coupled the water content is higher than 

when the problem considered is just the hydraulic process. 
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Like in the test D3 the response presented at the begging of the test consist in higher values of 

water content at the top of the flume but, at the end of the test the higher values of water content 

are at the bottom. This feature is due to once the soaking starts the infiltration is vertical but, 

when the water reaches the bottom it has to flow to the foot of the slope. This generates that at 

end of the test close to the foot of the slope the water flows to that point from 2 different 

directions.  Is important to observe that for test D4 the change in the trend of the water content 

(more amount of water at the bottom than at the top) occurs at 1600 seconds while, for test D3 

this process happens 300 seconds earlier (1300). This is attributed to the changes in relative 

permeability due to suction. 

 
Figure 4-20 Delta of volumetric water content, test D4                                                                                                   

(light blue: hydraulic model, dark blue: hydro-mechanical model) 

The failure process is showed by the hydro-mechanical model. It is shown by the measurement 

of the settlements at the top of the flume test. For test D4 the devices considered are L3 and L5 

this 2 devices are located at the same point if is considered just the transversal view (see Figure 

4-18). 

 The response obtain with the model is compared with the behaviour measured in Figure 4-21 

this data are complemented with two additional points located at the top and at the foot of the 

slope. The exactly position of this additional points is presented in Figure 4-22.  

With the model the failure estimated is 1756 seconds (29.2 minutes) just 44 seconds earlier than 

what is reported in the test (1800 seconds) even so, the settlements behaviour suggest that the 

failure is around the 1750 seconds. With the model not just the time of failure is well predicted 

the value of the settlements achieved are similar to the values measured. Although, the failure 

obtain with the mechanical model is instantaneous for this reason the trend of settlements is 

different to the measured in the test. The collapse settlements are not appreciated.  
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Figure 4-21 Settlements time evolution Test D4                                                                                                                  

(continuous line: data recorded, dash line: hydro-mechanical model) 

Figure 4-22 present the mesh deformed after the test where is observed the crown and the foot 

of the landslide generated by the failure and slide of the material. Due to the reduction in suction 

caused by the soaking process. As the settlements registered are around the 8 mm (8% of the 

height) the deformation is larger by a factor of 2, in order to observe better the deformations 

generated.  

 
Figure 4-22 Mesh deformation at failure, test D3 (deformation factor: 2) 

Equally important is the time evolution of the shear strains presented in Figure 4-23 which 

shows the distribution of the shear strains for 4 different moments during the test D4. It is 

observed that by the time 1570 seconds the generation of the shear band begin. It is evidenced 

by a concentration of shear strains at the foot of the slide and the failure is guide by the bottom 

of the flume. Finally the crown crack is developed. 
 

Top 

Foot 
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Figure 4-23 Shear strains evolution, test D4 a) time: 108 seconds b) time: 1570 seconds c) time: 1700 seconds 

d)Time: 1756 seconds (failure) 

4.2.3 Flume test C4. 

The principal objective of the benchmark exercise was the prediction of the behaviour of a 

flume test with specific characteristics of: geometry, porosity, initial suction and rainfall. Using 

the information of test D3 and D4, and the laboratory test realized. The test to be predicted is 

the test C4, which principal characteristics are listed in Table 4-4. 

Table 4-4 Characteristics of test C4 

Test 

Soil 

Thickness 

(cm) 

Slope 

Length 

(cm) 

Initial 

Porosity 

n0 

Rainfall 

intensity 

(mm/h) 

Initial mean 

suction 

(kPa) 

C4 10 110 0.65 60 52 

The information that should be presented was: 

 Time of slope failure  

 Time evolution of soil suction, at locations were the minitensiometers were installed, T 

in Figure 4-24   

 Soil surface settlements at the location were the laser sensors transducers were installed, 

L in Figure 4-24   

 Pore water pressure at the bottom, at locations were the pressure transducers were 

installed, P in  Figure 4-24   

a) 

c) 

b) 

d) 
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Figure 4-24 Geometry and location of instrumentation devices for test C4, from information of Round Robin 

contest 

The modelling process of this test is the same employed for the test D3 and D4. Two different 

model conditions are considered: a hydraulic model and a hydro-mechanical model essentially 

to evaluate the difference in the response obtain with this two conditions. The geometry 

considered for the model is presented in Figure 4-25. Just like in the two cases showed earlier 

the geometry considered is a transversal section of the flume which leads that in some cases 

two instrumental devices be located at the same point. 

 
Figure 4-25 Geometry of the model (transversal section) and location of instrumentation devices, test D4 

(T-minitensiometers L- Laser sensors (settlements) TDR – Moisture profile) 
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The initial porosity of test C4 (0.65) lower than the porosity considered for test D3 and D4. 

This change will generate important differences in the hydraulic and mechanical parameters. 

For the hydraulic conditions the value of intrinsic permeability should be corrected with the 

porosity. This variation is presented by the kozeny´s law shown in Figure 4-8. The value of 

intrinsic permeability consider is 5.9 e-12 m2.  

Further, for the mechanical behaviour the condition of initial stress has to be different. Inasmuch 

as the value of the porosity is lower a high static load will be necessary during the sample 

preparation to achieve the value of porosity desired. Considering an initial porosity of 0.77 the 

static stress needed is 50 kPa which leads a stress condition of: 5.5 kPa at the horizontal 

direction (xx), and 0.4 kPa for the vertical direction (xx). Additionally, the value of 

preconsolidation pressure considered is 3.2 kPa 

Olivares & Tommasi (2008) present the response for different flume test. One of the cases 

reported present similar characteristics of the test C4. For this reason the response obtain with 

the model will be compared with the performance presented in this paper. Taking into account 

that the precise location of the devices is not reported. The response registered is presented in 

terms of soil suction and settlements. 

Figure 4-26 presents the time evolution of soil suction. The most important characteristic 

observed is the effect of advance of wetting from that generates that the superficial devices (T5, 

T3 and T6) suffer a decrease in suction earlier than the deeper tensiometers (T2, T4, T7 and 

T8). The same feature is observed in the flume test response registered in Olivares & Tommasi 

(2008). On the other hand when the mechanical coupling is considered the behaviour observed 

is very similar to the performance of the hydraulic problem but, for the hydraulic problem the 

values of suction are slightly high. 

 
Figure 4-26 Time-evolution of suction for test C4, from Olivares & Tommasi (2008) 

 (dash line: hydraulic model, dot line: hydro-mechanical model) 

The time of failure of the slide and the settlements are obtain with the hydro-mechanical 

coupled problem. The model present convergence problems at the time 2215 seconds. It is 

considered that this convergence problems are attributed to high values of strain, that is to say, 

the failure of the slide. For this reason the time of failure is 2215 seconds (about 37 minutes). 

Conversely of the response observed in the test D3 and D4, the performance report by Olivares 

& Tommasi (2008) for test C4 consider settlements of less than 1mm until 2000 seconds.  
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The response achieved by the model is very similar to the behaviour registered but, at the failure 

the flume suffer settlements of almost 8 mm as is presented in Figure 4-27. In this case two 

additional points are evaluated also one at the foot of the landslide, and other at the top of the 

slide. Is important to mention this predictions of failure time and the evolution of soil suction, 

were designated as winner of the class A benchmark on hydrological modelling of slopes at the 

Italian workshop on landslides, 23rd October 2013.  

 
Figure 4-27 Settlements time evolution, test C4, from Olivares & Tommasi (2008)                                                                                                                  

The evolution of liquid pressure at the bottom is not reported by Olivares & Tommasi (2008). 

Even so, the response obtain by the models is shown in Figure 4-28. Observed that for this test 

the liquid pressure reaches positive values at 2100 seconds in the hydraulic model and in all the 

points evaluated the response obtain with the hydro-mechanical model present lower values of 

liquid pressure than the presented in the hydraulic model. 

 
Figure 4-28 Liquid pressure time evolution, test C4   

(Continuous line: data recorded, dash line: hydraulic model, dot line: hydro-mechanical model) 

 

Furthermore, the failure process presented by this test is very similar to the response presented 

in test D3 and D4. Figure 4-29 show the evolution of shear strains similarly to the cases 

presented before the failure is characterized by a shear band limitated by the bottom of the 

flume test. The development of this shear band is observed from time 1355 where the shear 

strains concentrate at the foot of the slope. Figure 4-29d present the shear strains developed at 

the failure over the deformed mesh. 
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Figure 4-29 Shear strains evolution, test C4 a) time: 165 seconds b) time: 1315 seconds c) time: 2066 seconds 

d) time 2215 seconds (deformed mesh, factor:2) 

4.3 REAL SLOPE. 

The principal aim of the study that developed of the flume test is to obtain better information 

about superficial landslides triggered by rainfall. In order to obtain better explanations of the 

rain-triggered landslides. The analysis is focus in the slopes of Cervinara, southern of Italy.This 

zone is very susceptible to rainfall induced landslides. (Olivares et al. 2009) 

With this purpose, the slope of Cervinara located in the mountainous area. 50km northwest of 

Naples, southern Italy has been equipped with an automatic instrumentation station to record 

the evolution of water content and liquid pressure every two hours since august 2009. This 

system is complemented with a rainfall gauge. The characteristics of the slope and the field 

monitoring system are presented in section 2.1.3 

After two years of field monitoring Comegna et al. (2013) concluded that: the slope present 

very little surface runoff, in general the soil is always far from saturation (the volumetric water 

content rarely exceed 0.4) and that the aquifer plays an important role in the evolution of the 

soil suction at all depths. Every year from May on the level in the aquifer decrease generating 

an increase in the soil suction in the superior layers. This feature is evidenced in the fact that 

the suction increasing trend in the deepest tensiometers is steeper than above. 

In fact, Greco et al. (2013) present the evolution of water potential which evidences that during 

the summer the vertical water flux is always directed downward toward the bed rock. Even 

when not rainfall is registered. This response is very typical of the mountains of southern 

Apennines during the dry seasons. Unfortunately from the variations of water level within the 

aquifer not precise information is available. 

a) 

c) 

b) 

d) 
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In general, the soil stratification of this site can be defined by three layers: the first 1.5 meters 

are constituted by a mixture of pumices and ashes, above a layer of 1.0 m tick of pumices laying 

upon the fractured limestone. One of the most important features of the monitoring system is 

that in some cases values of water content and suction are measures at the same depth. With the 

aim to define the water retention curve for each layer considered. This pairs of values are obtain 

form the devices located at 0.6 m and 1.0 m placed in the layer of pumices and ashes and the 

devices at 1.7 m depth at layer of ashes. 

Furthermore, the response appreciated with this devices suggest that the shape of the water 

retention curve (WRC) that better define the in situ behaviour is a double porosity WRC. Like 

what happens with the laboratory and flume test. Moreover, this WRC is different to the one 

define with the laboratory test and with the flume test. Due to the differences in the conditions 

of flux generated by the characteristics of the test or/and sample preparation. Figure 4-30 

present the water retention curve considered for the pumices and the ashes. It is observed that 

like was presented in section 2.1.3 the data that correspond to higher values of suction for the 

device located at 1.0 depth present an inconsistent behaviour. 

 
Figure 4-30 Water retention curve for field monitoring exercise. 

As has been mentioned earlier, in this region the rainfall-triggered landslides are very common. 

The failure is caused by the decrease of water suction due to the infiltration of rainfall. The 

hydraulic characteristics of the material and the rainfall conditions play an important role in this 

process even though these are not the only conditions that control the water infiltration in the 

material. The parameters that govern the evaporation, the flux of energy and the flux of gas, are 

very important also. Inasmuch as, they controlled the amount of water available to infiltrate 

across the soil surface. For this reason, in order to model the response of the soil suction and 

volumetric water content the climatic actions is necessary to consider a Thermo-Hydraulic 

coupling. 

The rainfall and temperature available correspond to year 2011. On the other hand the 

information of tensiometers and water content presented correspond to the first seven months 

of this year. This information is shown in section 2.1.3. The aim of the Thermo-Hydraulic 

model considered is to well reproduce the behaviour of liquid pressure and water content within 

the slope based on the information available. 

The geometry considered for the numerical model consist in a 2D column with 3 m width and 

5 m height which leads to consider 2.5 m of the limestone in the model. Additionally the slope 
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is covered by a wood which present some permanent vegetation and other seasonal vegetation 

that become denser from May to September. Greco et al. (2013) report that the roots of this 

plants present the maximum density in the first 0.4 m but, the presence of roots can reach 1.5 

m depth, in this case the depth of root considered is 0.4 m. Figure 4-31 presents the geometry 

considered for the model.  

 
Figure 4-31 Geometry of model for the field slope 

According to Rahardjo & Lee (2005) and Leroueil (2001) the conditions of pore pressure and 

saturation degree before the rainfall event determinate the hydraulic conductivity and the 

quantity of water required to the soil reaches saturation. Even though the determination of these 

values is very complex. They depend on the antecedent hydraulic condition.  

For this reason, although the profile of liquid pressure for first day of simulation (01/01/2011) 

is known (see Figure 4-33 a) Initial conditions b) boundary conditionsan equilibrium time is 

considered, that is to say, several number of years are modelled with the same atmospheric 

conditions until the response is stable. Figure 4-32 present the results for a 1095 days (3 years) 

equilibrium time modelling were the atmospheric conditions are the same for each year. Is 

important to observe that for year 2 and 3 the response is equal for this reason it is considered 

that at this moment the response is stable.  

On the other hand, Figure 4-33 present the boundary conditions considered for the model and 

the initial conditions of suction. The boundary conditions represent the atmospheric actions 

over the slope and the effect of the root zone. Additionally a boundary condition considered at 

the bottom allows the flow of the water across this boundary. Further, considering in this 

boundary a special liquid pressure boundary condition the effect of the decreasing in water level 

within the aquifer can be included. 

 
Figure 4-32 equilibrium time (0.60 m depth) 
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Figure 4-33 a) Initial conditions b) boundary conditions 

The pyroclastic materials (pumices and ashes) found in Cervinara region are characterized by 

high values of porosity between 0.70 and 0.75. In this case the value of porosity considered is 

0.70. In order to reduce the unknown parameters it had been considered that the thermo – 

hydraulic parameters for the pumices and the ashes will be the same. Changing just the WRC 

because this is the only information available that make differences between this two layers.  

The value of intrinsic permeability was calibrated. For the superior layers (pyroclastic soil) the 

value considered is 5e-13 m2 and for the limestone: 4.5 e- 14 m2. The water retention curve 

used for the limestone was the same than for the pumices and the value of porosity for this 

material is 0.25 (Typical value for fractured rocks). Table 4-5 Thermo-Hydraulic 

parameters.presents a summary of the thermo-hydraulic parameters considered 

Table 4-5 Thermo-Hydraulic parameters. 

Property  Pumices and ashes Ashes Limestone 

Porosity  0.7 0.7 0.25 

Intrinsic permeability 

Darcy´s law 

K (m2) 5e-13 5e-13 5e-13 

Liq. phase rel. permeability 

Generalized power function 

A 1 1 1 

rp 3 3 3 

Water retention curve 

Double porosity WRC 

P0M (kPa) 1.4 1.2 1.2 

 0.45 0.5 0.5 

P0m (kPa) 25 75 75 

m 0.75 0.6 0.6 

w 0.18 0.43 0.43 

Srl 0 0 0 

Sls 1 1 1 

Diffusive flux of vapour 

Fick´s law 

D (
m2Pa

sKn
⁄ ) 5.90e-6 5.90e-6 5.90e-6 

 1 1 1 

n 2.3 2.3 2.3 

Conductive flux of heat 

Fourier´s law 

sat (𝑊𝑚 𝑘⁄ ) 1.2 2.3 2.3 

dry (𝑊𝑚 𝑘⁄ ) 1.2 2.3 2.3 
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Besides the thermo-hydraulic characteristics of the material, the evolution of liquid pressure 

within the soil is governed by the parameters that control the ground atmosphere interface and 

the evapotranspiration (vegetation parameters) presented in section 3.3. 

The characteristics of evaporation and evapotranspiration are controlled mostly by the values 

of the aerodynamic resistance (ra) and vegetation fraction (veg), as is presented in section 3.3. 

Noilhan & Planton (1989) shown that the value of veg fraction for a forest is 0.99. On the other 

hand the parameter ra depends on: the screen height (za), the ground surface of roughness (z0) 

and the wind velocity. The value of ground surface roughness depends on the height of the 

vegetation. Greco et al. (2013) report that at the slope the vegetation reaches 15 m leading a 

value of z0 equal to 0.7. The value of za has to be calibrated. Additionally Greco et al. (2013) 

and Comegna et al. (2013) present the typical value of some of  the parameters that control 

evaporation and evapotranspiration. 

The values of temperature and rainfall should be completed with the wind velocity, index cloud 

and air relative humidity values in order to have the hydrological conditions complete, the 

radiation had been calculated based with the temperature and location, as is shown in section 

3.3.3.  

The missing information had been obtain by the average annual information recorded in the 

hydrological station of the Capodichino Airport (Naples international airport) (WeatherSpark 

2014). It is reported a mean wind velocity of 2m/s, a mean relative humidity of 0.7. Finally the 

value mean index cloud present an important variation during the summer, the mean value 

observed is 0.5, but for the summer months this value decrees until a value of 0.3. Table 4-6 

present the summary of meteorological, vegetation and ground-atmosphere interface 

parameters 

Table 4-6 meteorological, vegetation and ground-atmosphere interface parameters 

Meteorological 

data 

Ground/atmosphere 

interface 
Vegetation 

Wind velocity 

(m/s) 
va 2 Albedo Al 0.25 Vegetation fraction veg 0.99 

Air relative 

humidity 
Hr 

0.

7 

Roughness 

coefficient 
z0 0.7 

Limit global radiation 

(
𝐽
𝑠𝑚2⁄ ) 

𝑅𝑔𝑙 30 

Index cloud In 
0.

5 

Screen 

height 
za 2.2 

Min surface resistance 

(s/m) 
𝑟𝑠𝑚𝑖𝑛 400 

Summer index 

cloud 
In 

0.

3 

Leakage 

coefficient 
No ponding 

condition 
-1e6 

Max surface resistance 

(s/m) 
𝑟𝑠𝑚𝑎𝑥 2800 

    
Leaf area index 

(m2/m2) 
LAI 2.5 

    Wilting point   𝑠𝑙
𝑤 0.05 

    Field capacity     𝑠𝑙
𝑓𝑐

 0.33 

    Anaerobiosis point     𝑠𝑙
𝑎 0.98 

The aerodynamic resistance is probably the most controlling parameter in the calculation of 

evaporation, see Eq. 3-12 and depends in characteristics of the vegetation of the place and on 

the hydrological characteristics of the site. Most important the value depends in height to which 

the absolute air humidity and wind velocity are measured. In this case this data is not available. 

Moreover, the wind velocity and air humidity not are measured at the location of study. For this 

reason a sensibility analysis has been realized to evaluate the effect of this parameter.  Figure 

4-34 present the effect of the aerodynamic resistance. It is important to observe that when the 
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value of ra is higher the evaporation is lower which leads to higher values of suctions. Especially 

during the summer. Additionally this effect is higher close to the surface but even so at 1.4 m 

the effect can be appreciated. The value used for the model is ra = 4. 

  
Figure 4-34 Effect of ra a) 0.60 m depth b) 1.40 m depth 

Apart from the climatic actions, the slope is subjected to the influence of an aquifer located in 

the limestone which decreases in water level during the summer plays an important role in the 

hydraulic conditions of the material above this rock. Comegna et al. (2013) present the 

importance of taking into account the evolution of the aquifer water level within the 

hydrological model for this slope.  

The behaviour of this aquifer is not well known, for this reason there is not information available 

of the evolution of the water level within the aquifer. But is well known that the decreases of 

this water level causes the increment in liquid suction in the pyroclastic materials. In order to 

reproduce the effect that the aquifer present in the soil a special boundary condition is 

implemented at the bottom of the model which consist in a ramp of suction. This will lead that 

during the summer the flow will be mostly downward, regardless the atmospheric conditions.  

Comegna et al. (2013) consider that the effect of this aquifer begging in May. Additionally that 

this aquifer could be modelled by a linear reservoir model with a time constant around 60 to 90 

days. This parameter suggest the velocity for the drainage in this case for the reduction in the 

aquifer water level. Considering this. The boundary condition considerer to simulate the effect 

of the aquifer consist in a ramp of suction that begging at the end of May. At this time the value 

of liquid pressure begging to decrease over 60 days until a value of 0 kPa. This value is constant 

until the end of the summer. At the end of September the value of liquid pressure increased over 

60 days until recover the initial value (0.1 kPa) 

The liquid pressure boundary conditions considered at the bottom of the model, with the aim to 

reproduce the effect of the aquifer is presented in Figure 4-35. In Figure 4-37 Results of back-

analysis for the data provided a) 0.60 m depth b) 1.0 m depth c) 1.40 m depth     d) 1.70 m 

depthis appreciated the importance to consider the effect of the aquifer. Without this boundary 

conditions is not possible to achieve the response observed by the instrumentation system. 

a) b) 
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Figure 4-35 Liquid pressure boundary condition 

Taking into account all the considerations presented above. The model is realized including the 

concept of equilibrium time and the effect of the aquifer coupled with the atmospheric boundary 

condition presented in section 3.3. In order to obtain a better response, but without consuming 

many calculation time five years are considered to obtain the stationary response. The first three 

years without considering the effect of the aquifer. Figure 4-36 present the response of the time 

modelling considered. It is important to observe the effect of the aquifer that generates higher 

values of suction. 

 
Figure 4-36 Complete time modelling. 

Figure 4-37 present the results obtain with the model for the back analysis time provided. In all 

the depths considered the model reproduce adequately the behaviour measured. Though, the 

lower peaks of suction are not well reproduce by the model. 
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Figure 4-37 Results of back-analysis for the data provided a) 0.60 m depth b) 1.0 m depth c) 1.40 m depth     

d) 1.70 m depth                                                                                                                                                           

(continuous line: model used, with daily atmospheric data, dash line: With hourly atmospheric data dot 

line: model without the aquifer effect) 

Even thought, the rain gauge located at site present record the data each hour. The atmospheric 

data considered for the modelling are the daily data with the aim to reduce the calculation time. 

Figure 4-37 presents the comparison between the results obtain with the daily atmospheric data 

and the hourly atmospheric data, is evidenced that the approach realized do not represent any 

error in the simulation.  

Finally, Figure 4-38 presents the response of the liquid pressure expected for year 2011 with 

the model presented and Figure 4-39 represent the evolution of water content. It is observed 

that as was expected the suction reaches its maximum values at the end of the summer. The 

volumetric water content evolution obtain with the model fits with the data measured in the 

soil. Although, the volumetric water content at depth 0.3 is slightly lower than the values 

measured probably because at this depth the roots of the vegetation are very dense. In general 

the trend in all depths is adequately reproduced. On the other hand, the departure observed for 

the last two months in Figure 4-39C is to be related to the discrepancy existing between the 

suction-water content relationship measured from January to May 2011 (blue points close to 

the green ones in Figure 4-30)  and after this period (blue points close to red ones). The causes 

for such a sudden jump in time of the instrumentation results have to be further investigated.  

a) 

c) 

b) 

d) 
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Figure 4-38 Liquid pressure evolution obtain for year 2011 a) 0.60 m depth b) 1.0 m depth c) 1.40 m depth 

d) 1.70 m depth 

 

 

  

  
Figure 4-39 Volumetric water content evolution obtain for year 2011 a) 0.30 m depth b) 0.60 m depth c) 1.00 

m depth d) 1.70 m depth

a) 

c) 

b) 

d) 

a) 

c) 

b) 

d) 
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5 CHAPTER 5                                                                                                

CONCLUSIONS AND FUTURE WORK 

 

5.1 CONCLUDING REMARKS  

The region of Cervinara had been submitted in several occasions to rain-induced landslides. This 

zone is covered by unsaturated pyroclastic materials with a very high porosity. Which makes it 

very susceptible to collapse.This conditions coupled with the important inclination of the slope 

makes that the Cervinara pyroclastic soils very susceptible to failure caused by the decreasing in 

suction which leads to a reduction in shear strength. 

The characteristics of this material had been evaluated at different scales: laboratory tests, slope 

scale and the real slope. The most important characteristic evidenced at all levels is that this 

material present a double porosity. This is to say, the material present an important quantity of 

pores with a size of intergranular pores but also a considerable quantify of intragranular pores. For 

this reason the implementation of a bimodal water retention curve had been very important to 

obtain adequately results at all the scales of analysis considered. 

Even so, it is evidenced that hydraulic behaviour is influenced by the scale effect. In other words, 

the hydraulic characteristics of the material are different for the three scales study. on the other 

hand, the mechanical behaviour was properly defined by the response observed during by the test 

realize at the laboratory scale. 

The flume test, is an interesting test that leads to evaluate the behaviour of the triggering of shallow 

landslides the model realized for this scale well reproduces the failure process observed with the 

test. But, for the cases of high porosity the response achieved do not reproduce the settlements due 

to collapse, although, it is able to well reproduce the failure moment and well evidenced the 

landslide failure.  

On the other hand, the evolution of water content for this test was carried on with a new technique 

that allows to obtain the profile of water content installing just one TDR probe. It was observed 

that the profiles measured agree with the infiltration process expected for this type of test. The 

response achieved with the model, also present the trend expected, but present some discrepancy 

for the moment when failure is close.  

Finally, for the real slope of Cervinara is observed that the hydraulic process that occurs within 

the soil corresponds to a response over a Thermo-hydraulic process as a reply of the atmospheric 

process that occurred at the interface ground-atmosphere. Additionally in this region the effect of 

the aquifer located in bedrock generates an important influence in the material above this effect 

can be represented by a boundary conditions that generates a suction ramp within the rock. 

The evaporation and evapotranspiration fluxes present an important effect in the response achieved 

within the material. The back-analysis over these parameters appears to be an eminently suited 

strategy. 

The prediction presented for test C4 was designated as winner of the benchmark on hydrological 

modelling slopes at the Italian Workshop on Landslides, 23rd October 2013. 
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5.2 FUTURE WORK 

The failure of slopes triggered by rainfall is a complex phenomenon, as had been presented it 

involves a different types of process, hydraulic, thermal and mechanical, in order to improve the 

results presented and the analysis of the triggering process of this type of landslides, is important 

to consider the next lines: 

- Improve the mechanical model implemented in the flume test, allowing to obtain the 

collapse settlements evidenced in the measures realized. 

- Improve the effect of the vegetation in the slope response, and evaluate the effect of 

different roots depth. 

- Consider the mechanical response of the real slope, in order to observe the settlements 

expected for the atmospheric climatic action. This response should be coupled with real 

data measures. 

-  Evaluate the effect of slope inclination on the results of the numerical model, consider the 

real geometry of the model, and evaluate the effect of the inclination in the response of 

liquid pressure. 
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