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I. ABSTRACT 

Micro Array data contains the whole gene expression of a tissue, not a person as the 

gene expression of every tissue is different as different functions/genes are activated 

on each. Over the last years it has become a powerful tool in the diagnosis of genetic 

related diseases, and particularly cancer.  

This study has applied heterogeneous clustering techniques and defined consensus 

techniques in order to extract a robust partition from a Micro Array dataset. The 

different algorithms generate a variety of partitions which none of them is able to 

extract all the information that the dataset contains. Hence, it is required to find ways 

to combine these partial solutions in order to reach a comprehensive understanding of 

the dataset information. Existing methods in the literature underestimate the 

complexity of such process and suggest methods that do not cope with situations that 

arise from the combination of different solutions. 

At the same time, the available ground truth for the dataset used in the study cannot be 

granted full reliability what has made that the methods used are fully unsupervised. 

The ground truth has been considered, in the final results analysis phase, in order to 

have an estimate of the agreement with the oncologists diagnose. 

The data used is a Microarray dataset, GSE4290, from NIH database, with 180 

samples and 54613 probes (features) corresponding to a study on brain tumors. The 

approach used has been constructing a distance matrix from the dataset in order to 

reduce the dimensionality of the problem. 

In order to generate an ensemble of partitions, the clustering methods used have been 

chosen to be heterogeneous (Hierarchical Clustering, MSTKNN and Complex 

Networks based). For each of the algorithms used, a number of executions have been 

run with subsamples of the dataset. The results obtained for each subsample have been 

combined using an evolution of a well-known method for consensus clustering as is 

the work by Monti et al. in [1], that has been adapted to incorporate available 

information from the clustering methods used, in order to weight differently the 

partitions depending on their stability.  

In order to obtain a single partition the two more different results obtained from the 

three algorithms have been combined using robust consensus generating a unique 

partition that becomes the solution partition for the dataset. The experiment has been 

run for 6 different settings as the dataset has been normalized in several ways and two 

different distance functions have been applied.  

Finally, the robustness of the methodology proposed has been evaluated by repeating 

the experiments a number of times and the results compared among them using a 

battery of well-known similarity measures, both for the individual algorithm results 

and the proposed consensus solution. In addition, the variability of the different 

clustering methods has been measured using the membership coefficient of the 

consensus matrixes. The results show that the sought consensus occurs for one of the 

settings configuration used while the other configurations converge much later or do 

not converge at all. 
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The obtained partition has 6 clusters, one containing the whole control group, a second 

one containing most of the Oligoblastoma types and two others that split the 

Glioblastoma group. There are two small clusters with 5 and 1 samples respectively. 

The Astrocytoma group on the dataset has not been separated having a much smaller 

number of samples.  

The agreement of the result obtained with the physicians’ diagnosis has been measured 

using a modified Purity Index in order to consider, as it is the case, that the partitions 

obtained identify 2 subtypes of one of the brain tumor classes. 

As a direct application of the method, from the partitions obtained for the Microarray 

dataset GSE4290, it has been possible to identify the features (probes that correspond 

to genes) that better help to classify (diagnose) samples (patients) with several types of 

brain tumors.  

In order to achieve this, the features that explain the partitions have been extracted 

using the CM1 indicator and the results have been compared to other studies that have 

used the same dataset. The function of the genes identified corresponds, in a very high 

percentage, to genes related to oncological processes and metabolic pathways with an 

incidence in the development of the disease. 

The accuracy of 72% on the purity indicator is in the same level that the best results 

obtained in other studies using the same dataset. It is also in the same level of precision 

that several studies attribute to physicians when considering the varieties of tumors 

with higher degree of agreement in the diagnosis, Glioblastoma, while it significantly 

improves the diagnosis of other subtypes, for example Oligoblastoma. 

The results have been validated by an expert in biomarkers in order to support the 

conclusions from a domain point of view also based on extense available literature on 

the topic. 
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II.  BACKGROUND AND MOTIVATION 

The term Bioinformatics was coined in 1970 by Paulien Hogeweg[2] with a much 

narrower meaning that it has nowadays. The concept has broadened while maturing 

supported by other, also emerging, technical and scientific disciplines such as 

Artificial Intelligence, Genetics Engineering and the rest of bio-x fields that constitute 

a solid cluster where each pillar reinforces the others while benefiting from them in a 

perfectly harmonious symbiosis. 

Currently we can describe Bioinformatics as the discipline that using diverse 

computing technologies studies and provides the technologies to capture, store and 

analyze the information related to biological processes. Within this wide definition, 

genetics occupies a central space. 

Bioinformatics has experienced a magnificent progress in the last decade, as can be 

read in [3]. The cost and time required for DNA sequencing has been reduced from 30 

days and 100K$ to 1 day and 3K$. The focus is now on analysis of the data that can be 

obtained at such affordable price as it is estimated that the information retrieved in one 

month takes 5 months to be analyzed. Despite this staggering progress made on 

Bioinformatics, or because of this, it can be considered a young discipline, with many 

and ambitious challenges ahead. 

Some of these challenges, that have inspired and guided this thesis are, according to 

[4], (1) the processing of large-scale robust genomic data, (2) the interpretation of the 

functional effect and the impact of genomic variation, (3) integrating systems and data 

to capture complexity and (4) make results clinically relevant so that they are 

translated into medical practice. Underlying needs to achieve this as explained in [5], 

are, even now (13 years after publication), (1)the understanding of the sources of noise 

and variation in Microarray experiments, (2) the combination of expression data with 

other sources of information to improve their range and quality and (3) the 

reconstruction of networks of genetic interactions in order to create integrated and 

systematic models of biological systems. 

It has been my desire to take advantage of this Master’s Thesis to modestly contribute 

to the field in a way that it produces a benefit to society (even if just tiny). This desire 

is the outcome of a summer stay at the Hunter Medical Research Institute (HMRI) in 

Newcastle (Australia) where I have had the opportunity to be exposed and learn about 

the research projects in place at the Center for Information Based Medicine (CIBM) 

under the supervision of Prof. Pablo Moscato. The focus of most of such projects is the 

discovery of Biomarkers that assist in the diagnosis of diseases with a genetic origin 

and the selection of treatments for the different illnesses subtypes.  

Cancer, being one of the most fatal diseases at a global level, is the one being object of 

more studies currently. Brain tumors have been the selected disease to study in this 

thesis. 
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III. INTRODUCTION 

Gene Expression Microarray Data based experiments typically fall into three types of 

problems, according to [6]: “(i) identification of new tumor classes using gene 

expression profile – unsupervised learning; (ii) classification of malignancies into 

known classes- supervised learning; (iii) identification of marker genes that 

characterize the different tumor classes – feature selection.” 

From a bioinformatics point of view, as stated in [5]: “clustering methods are now 

more routinely being evaluated with respect to criteria such as robustness, 

computational cost, clarity of cluster definitions and reproducibility”, introducing the 

desirable characteristics of the algorithms. 

At the same time, Kleinberg, in [7], states that no clustering algorithm exists that can 

satisfy three basic properties (scale-invariance, richness, consistency) that are required 

in order to grant clustering results major trust. In opposition to the former, Zadeh’s 

theory in [8], relaxes Kleinberg’s axioms, although restricted to clustering methods 

where the number of clusters is provided, to the identification of Hierarchical 

Clustering with Single Linkage as the only method satisfying the three basic axioms 

defined (scale-invariance, order-consistent, k-richness). 

As a consequence of this, it comes that different clustering algorithms may generate 

very different partitions depending on their characteristics, what represents a limitation 

that adds to the lack of specific meaningfulness result of the unsupervised nature of 

clustering. 

In short, there is no guarantee on the kind of separation a clustering algorithm is going 

to generate. The only certainty is that it will, in a certain but unknown space, maximize 

the difference between members of different clusters while minimizing the difference 

between cluster members and that to a certain resolution, as the number of clusters 

may be different. The reason for that being the unsupervised nature of the process, 

there is no constrain in the kind of separation among samples that will be extracted. 

This being the case, it must be considered when analyzing a complex dataset using 

clustering, that the algorithm applied may not be able to extract all the relevant 

information implicit in the dataset. From this, it comes as a direct conclusion that it is 

necessary to apply a variety of algorithms and try to combine the results obtained from 

the different algorithms to produce a partition that represents all the groups in the data. 

Bearing in mind these guidelines, the objective of this work has been to define a 

methodology that can be used to obtain robust and reliable partitions of datasets from 

very heterogeneous partitions generated by different clustering algorithms applied to 

the same dataset. From the partition, the genes that help to explain the separation will 

be extracted and assessed its relevance to explain the tumor classification. 
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IV. STATE OF THE ART 

Both clustering and bioinformatics are hot topics that have generated numerous 

publications. A comprehensive study of the state of the art on any of either topics or 

the combination of them would suppose an overwhelming effort that would consume 

the time this thesis is supposed to take. Hence, this section is a brief review of the 

literature in order to have a first insight of the current status of the field. It is then a 

best effort task that would require a deeper research in order to be considered 

complete, what is beyond the objective of this thesis.  

A. Microarray 

Genetic data commonly proceeds from Microarray chipsets. A Microarray chipset can 

be seen as a tray full of microscopic spots, called probes, containing, each, multiple 

identical DNA strands that match to one of the genes the human (or other organism) 

genome has. The human genome contains 21K genes. Several probes correspond to the 

same gene. The mapping of the probes to the matrix position in the Microarray surface 

is precisely registered. The manufacturing process of Microarray chips is alike to that 

of a microprocessor. 

The process of extracting a genetic signature of a certain tissue using Microarray 

technology requires a lot of steps involving manual processes and bio-chemical 

reactions making it quite sensitive. Rather than explaining the process how a 

microarray experiment is performed, what is not a core knowledge of this Masters, 

those requiring an explanation can view the following interactive and highly 

pedagogical tutorial available from Utah University[9]. 

http://learn.genetics.utah.edu/content/labs/microarray/ 

 
Figure 1 Tutorial on Genetics and Microarray Data 

From the explanations about the process it can be quickly observed that the process is 

far from exact and hence data proceeding from Microarray data is affected by high 

variability on its measures due to the many noise sources that along the whole process 

can affect the sample. 

http://learn.genetics.utah.edu/content/labs/microarray/
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In this case, the Affymetrix Human Genome U133 Plus 2.0 Microarray chipset has 

been used. This chipset contains 54613 probes mapping to the whole human genome. 

Being well established the variability of Microarray experiments they are designed 

with normalization controls so that the measurements are tractable with a reasonable 

level of confidence that guides the researchers that use it to make the adequate data 

pre-processing of the information. 

Many techniques have been developed in order to address the main complexities 

inherent to Microarray data. From a sampling on the vast existing literature [10-13], a 

large group is related to Pre-processing (including Image Analysis), Normalization and 

Outlier detection. Other important problems addressed are related to the link of the 

biological information in the processing algorithm from the beginning in order to 

guide any search/combinatorial process involved. A third group tackles the different 

uses that the data can be given (class prediction, classification or discovery). Finally, 

the techniques are applied to specific problems (diseases / organisms). Clustering 

appears recurrently as an effective technique for class discovery and also related to 

feature selection as a means of validation of the extracted features. 

B. Clustering 

As aforementioned, clustering is the AI technique commonly used in Bioinformatics 

for class discovery. The literature provides many examples in which the use of 

clustering techniques have permitted to discover or re-discover, new subtypes of 

different diseases. In [14], Alizadeth et al. discover a new variety of lymphoma: “have 

conducted a systematic characterization of gene expression in B-cell malignancies” 

while, in [15] Golub et al., “A class discovery procedure automatically discovered the 

distinction between acute myeloid leukemia (AML) and acute lymphoblastic leukemia 

(ALL) ". 

The approaches taken to provide clustering solutions are of different nature: neural 

networks (SOM), spectral, genetic algorithms or probabilistic models are just some of 

the techniques applied to the problem.  

Some well-known state of the art studies have been published that summarize in a very 

comprehensive way the work done in this field. From [16] and [17], the following 

classification of clustering methods can be extracted:  
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Figure 2 Classification of clustering methods 

If we survey [6, 10-13, 18] the clustering algorithms used in the study of 

Microarray(MA) Data we find that the most widely used are very traditional non-

sophisticated ones, like Hierarchical Clustering (HC) (in any of the linkage varieties) 

or among Partitional: the K-means family and Self Organizing Maps (SOM), as 

referred in[19]. A third approach is based on the application of component analysis 

and value decomposition (like PCA or SVD) to transform the data into a different 

feature space. It is very common also to apply Two-way clustering, consisting in 

clustering not only the samples but also the features (sometimes in an interdependent 

way) what helps in feature selection. Some other less traditional approaches have also 

been successfully applied to MA clustering like SQVT, a form of divisive HC, or 

kernel-PLS, a predictive model. CAST(Cluster Affinity Search Technique)[20, 21], 

CLICK(Cluster Identification via Connectivity Kernels)[21, 22], CURE[23] or 

PAM(Partition Around Medioids) [24, 25] are also examples that have appeared 

several times during the literature review either as methods to benchmark to or 

inspiration for new methods.  

Some clustering methods used in Bioinformatics, and in particular the ones selected in 

this work, are based on measuring the pairwise distance in the feature space of the 

samples to generate a distance matrix. A wide range of options have been proposed as 

distance functions to be used: Minkowsky[26] in any of its particular cases (Euclidean, 

Manhattan, Maximal), Mahalanobis[26] and Pearson( see section VI.B.2) or Kullback-

Leibler[27] are just some of them.   

In order to measure the quality of the results obtained a variety of metrics exists. These 

metrics fall into different categories. Graph measures are related to some variety of 

Modularity. Modularity calculates the difference between inter-cluster and intra-cluster 

edge weights, giving a measure of the modular structure of the network defined by the 

partition being evaluated. A general version of the Modularity that considers weighted 

and un-weighted networks [28] is: 
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Equation 1 Modularity 

where wij is the weight/strength of the edge connecting samples i and j, wx is the sum 

of all the edges of node x, 2w the sum of weights of all the nodes in the network (note 

that every edge will be added twice, what explains the 2 factor) and the δ(Ci, Cj) is the 

Kronecker function indicating whether samples i and j are in the same cluster. The 

higher the modularity value, the better is the partition.  

Supervised measures, also known as externally supported, are based on some 

calculation performed on the confusion matrix obtained by crossing the obtained 

partition with the ground truth for the data set. Mutual Information, Variation of 

Information, Jaccard Index, Rand Index, Mirkin Metric, Wallace Index and some 

Normalized and Adjusted versions of them are just a few examples of this family. On 

Appendix XI.D an overview of the main indicators and the ones used in this study is 

included. 

Among unsupervised methods, Silhouette [29-31] and Dunn [29, 32-34] are the most 

referenced ones. Both indexes are based on relationships among maximum inter-

cluster distances and some variety of maximum or average intra-cluster distance.  

In respect to metrics, [29] states, that any Cluster Validity Index chosen will be biased 

towards some of  the desirable properties of a cluster result (compactness, separability, 

connectivity) that may be different from the criterion applied by the clustering method. 

Hence, it is required to carefully choose any metric used for this purpose.  

The similarity with modularity methods is evident, the difference being that 

Modularity is based on weights among samples edges what does not require a 

complete connection among samples. Distances, in addition, can be seen as some form 

of inverse of weights, meaning that for two samples being on the same cluster, 

intuitively, it will be the case that there will be either small distances or large weights 

among the samples. 

Clustering, due to its unsupervised nature, is a common and powerful tool in 

bioinformatics as it provides a second diagnosis isolated from that obtained from other 

sources. The possibility of misdiagnosis, what is common even when made by highly 

qualified doctors, must be taken in consideration when analyzing the data. A brief 

summary of some papers on the reliability of tumor diagnosis by physicians can be 

found in Appendix XI.G. Both studies confirm the lack of consensus in glioma 

diagnosis with percentages of non-agreement typically around 30% in the best case 

that can get to 70% for certain subtypes. 
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C. Clustering methods 

The number of available clustering methods is endless as it is the literature about the 

topic. This study is based in three different Clustering algorithms that have different 

characteristics but that have something in common: the three can be applied to a 

distance or weight matrix for the dataset. 

1) Hierarchical Clustering(HC) 

Hierarchical Clustering (HC) is a wide family of algorithms rather than an algorithm 

itself. It has plenty of variants whose common ground is the fact that rather than 

generate a single partition, a series of nested partitions are obtained. The series of 

partitions are characterized for having strict borders, that is, if two elements are in 

separate clusters in the partition with k clusters, the same elements will always be in 

separate clusters for any partition with k’>k clusters. 

Naturally, a first classification of HC separates the methods in two groups, bottom-up 

or aggregative and top-down or divisive. 

a) Bottom-up methods 

Bottom-up methods start from the list of samples and at each step put together the 

closest two elements. The two elements are removed from the list and a new element 

(cluster) is added with distances to the rest of elements of the list calculated according 

to the selected linkage criteria. 

Several are the linkage methods most commonly used that can be classified in two 

groups. In the first linkage criteria group we find the methods Single, Complete, 

Average or Weighted Linkage. On the second group we find Centroids, Median and 

Ward linkage. See Appendix XI.D for a whole description and discussion of the 

methods. 

The first group has a common characteristic; they are computationally more affordable 

than the second group as all distance generation for the generated clusters can be 

generated from the original distance matrix. This makes the clustering calculation 

independent of the dimensionality of the feature space what in the dataset is very high 

and would introduce a computational overhead.  

b) Top Down methods 

In top-down methods the best partition at each step cannot be easily identified. Hence, 

many methods are based on search of a local optimum. Examples of top-down 

methods, as described in [6], chapter 4, are the Tree Structure Vector Quantization and 

Macnaughton-Smith.  

The former is based on K-means, as it is based on recursively applying a 2-means 

clustering to each obtained partition until the whole dataset has been separated in 

individual clusters. 

The latter is based on finding the point with greatest mean dissimilarity to other points. 

This point will be the centroid of the new group and the points in the group moved one 

at a time until no member is closer to the splinted group. 
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c) Disadvantages of Hierarchical Clustering 

In general, HC has been accused of important shortages compiled in [26] “ Kaufman 

and Rousseeuw (1990) commented that hierarchical clustering suffers from the defect 

that it can never repair what was done in previous steps. Morgan and Ray (1995) 

showed that hierarchical clustering suffers from lack of robustness, non-uniqueness, 

and inversion problems that complicate interpretation of the hierarchy.”  

2) Multi-resolution clustering based on complex networks 

The algorithm was first published in [28] , with subsequent enhancements  in    

[35] and permits evaluating the system being studied at multiple scales or resolutions. 

To make this possible, the diagonal of the correlation matrix is modified increasing the 

value in every iteration. Each iteration represents a new version of the network for 

which a partition is generated while the modularity of the network is optimized. 

The effect of modifying the diagonal of the correlation matrix is equivalent to adding a 

self-loop to each node whose weight is incremented along the process. The self-loop 

acts as a modifier of the node strength to become an individual cluster instead of being 

co-clustered with his neighbors. The effect of the self-loop in the whole network 

causes the emergence of different partitions for each self-loop value. 

The weight of this self-loop, referred as r, needs to be within a range that makes 

possible to create partitions that have from 1 to the total number of nodes clusters. 

Since we are modifying the network at each step there is no relationship among the 

modularity obtained for every iteration. 

The algorithm is non-parametric as the minimum and maximum required values for r 

can be automatically calculated. Both positive and negative weights can appear in the 

graph. R can also take negative values, even when the matrix is strictly positive, as it is 

the case. The higher r, the more clusters will appear in the partition obtained, although 

it is not monotonic and due to the stochasticity of the algorithms used there may be a 

decrease in the number of clusters as r grows, as can be observed in Figure 12. The 

increase on the number of clusters does not have a fixed slope and different regions 

will have different derivatives. 

 

 

 

Figure 3 Number of clusters as function of R showing the stable number of clusters for two datasets 
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Figure 3 shows the evolution on the number of clusters for the whole r spectrum of 

two examples in [36]. The number of clusters covers the whole range of number of 

partitions. The diverse plateaus show the size of the stable partitions in the dataset. 

3) MSTKNN 

MSTKNN[21] is a technique developed at the CIBM Research Centre. The algorithm 

is based on the intersection of two independently generated graphs. On one side, the 

Minimum Spanning Tree of the graph made by the pairwise distance matrix of the 

samples. On the other side, the k-Nearest Neighbor for the same base graph. For the 

second graph, k is defined automatically as the minimum k that makes the graph fully 

connected. The intersection of the two connected graphs does not need to be connected 

as in the generation of the MST graph, having to avoid the creation of loops will cause 

that different edges than the ones included in the k-NN graph are used. 

 
Figure 4 MSTKNN applied to the GSE4290 dataset 

The method, as can be understood from its definition, is highly variant depending on 

the samples. The separations in a result partition will correspond to the removal of 

edges that being in the MST graph where not in the k-NN graph. This means that the 

edge was not one of the k best edges. The weakest edges in the MST graph are the 

ones that the intersection process causes to disappear. 

In Figure 4, the result of applying the MSTKNN to the original dataset distance matrix 

can be seen. A total of 4 clusters are generated. Different node colors correspond to 

different sample diagnosis. 

This method is the one generating a wider variety of partitions when subsampling is 

applied as it depends a lot on the samples being clustered.  
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D. Consensus clustering 

With all this information, and recalling the introduction, it becomes necessary to find 

methods to combine the different partitions that are result of the different clustering 

algorithms that may be applied in order to obtain a 360º view of the dataset. 

A disruptive method, and widely adopted, for combination of multiple partitions is [1], 

that defines a method to select automatically the number of clusters that best represents 

the dataset. As this algorithm is the basis for the implemented in this study a more 

complete description follows. 

The algorithm takes a series of partitions of the same dataset and combines the 

partitions with the same number of partitions (k) into a single partition. To achieve 

this, a consensus matrix is computed, Equation 2, where each (i, j) position of the 

matrix corresponds to the ratio number of times in the same cluster for samples (i, j), 

M
(h)

(i,j), divided by the number of times in one of the dataset sub-samplings, I
(h)

(i,j) 

used to generate the range of partitions. The matrix is in the [0, 1] range, meaning for 0 

that the two samples are never in the same cluster, and for 1 that the two samples are 

always in the same cluster. 

 
Equation 2 Consensus Matrix 

From the consensus matrix for each k a Cumulative Distribution Function (CDF) is 

obtained. Each point on the curve indicates the number of elements in the matrix 

whose value is less than the abscissa value.  

 
Equation 3 Cumulative Distribution Function for consensus 

In a second step, the Area Under the Curve (AUC) of this CDF is calculated and 

finally the relative increment respect to the previous (or largest so far) k is computed. 

The method states that the best k to cluster the dataset corresponds to the one with 

greatest relative increase of the AUC. The relative increase is measured respect to the 

largest AUC for smaller k’s than the one being measured. 

 
Equation 4 Area Under the Curve 
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Equation 5 Delta AUC 

In order to measure the stability of the clustering, the membership coefficient can be 

defined for each cluster according to Equation 6 and from the average of clusters for 

the whole partition. 

 

                   

Equation 6 Individual cluster membership coefficient 

   
 

 
 ∑     

 

   

 

Equation 7 Partition membership coefficient 

 
Figure 5 Data points, consensus matrixes and CDF from [1] . 
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Figure 5 shows for two synthetic datasets, the data points, the consensus matrixes 

obtained for the true k (k=5) and (k=4) and the AUC for all K’s, showing in yellow 

and blue the curves for the mentioned k’s. In the second row, the separation among 

clusters is clearer and so are the consensus matrixes and the differentiation between the 

consecutive AUC. For k>5 there is virtually no increase in the AUC. 

The algorithm has several drawbacks, as it is the need of visually inspecting the curves 

to assess if the first k (k=2 and ∆AUC= ∞ as it compares to 0) is a better partition 

than the best k obtained from the algorithm definition. This is not a problem in our 

case, where we want the process to be automatic, as our dataset has 5 different classes 

so any partition with only 2 clusters will not be relevant for our purposes as we expect 

to be able to differentiate at least 3 different large clusters in our dataset. If the best 

partition corresponds to k=2 we would not take it and consider instead the second best 

option, without this fact being relevant for our purposes. 

In order to resample the dataset, the authors suggest sub-sampling the feature set and 

taking subsets of the probes in the microarray matrix. Given that for this study the aim 

is to obtain the most representative biomarkers a different alternative will be used and 

the subsampling will be done for samples (patients). This, as will be shown, has some 

important benefits. 

The method assigns the same weight to all the original partitions what is far from 

realistic as some algorithms like K-means require K to be defined blindly and others 

like hierarchical clustering produce a whole range of partitions for any K but not all of 

them have the same stability, as will be discussed later. 

In [24], the authors differentiate between consensus clustering and robust consensus 

clustering and contribute a method who can produce both. The latter corresponds to 

the cluster that results from considering the strict assignment agreement of samples to 

the same cluster in several original partitions. The method permits combination of 

partitions from different algorithms. The weighted-kappa indicator is used, that is in its 

conception a supervised metric.  

In [37], a consensus method is proposed based on a probabilistic (and generative) 

model where the different partitions obtained from a selected clustering algorithm are 

averaged. The concept of refined consensus clustering is used to solve the complexity 

introduced when the consensus clustering presents heterogeneity, a concept that will 

keep some attention in this study. For the same topic, a solution is suggested in [38] 

that measures when the consensus matrix obtained can be merged. The main remaining 

problem for the approach is that no alternative is proposed other than discarding them.  

[25] is built directly on the work in [1], the method taken as basis in this study, to 

extend the method in order to make possible the combination of partitions from 

multiple algorithms by assigning arbitrary weights to the different methods. The 

method is still naïve in considering each of the individual partitions as equally 

weighted. 
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In [29], the consensus algorithm incorporates a variable weight for each k, that is 

calculated from a Cluster Validity Index (i.e. Dunn, Silhouette,… ).  

The stability and accuracy of consensus clusters is largely improved respect to the 

average of the individual partitions generated by multiple runs of the same algorithms, 

as is stated in [39]. 

With all this information, it can be expected that the application of consensus 

clustering techniques helps to improve the result obtained by individual algorithms. 

Furthermore, key elements to be considered in the algorithm have been identified such 

as differentiated weighted partitions or the choice of appropriate Cluster Validity 

Indexes (CVI). 

Last but not least, the techniques found in the literature, [1, 24, 25, 37, 38] , have been 

successfully used with microarray datasets creating a solid ground to build the 

algorithm required for this study. 
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V. DATASET 

A. Main Characteristics 

Being restricted by ethical and regulatory constraints, a public dataset on brain tumors 

has been used for the study keeping in mind that the developed methodology should be 

able to be used in the future with other samples part of ongoing research for which a 

ground truth may not be available. 

The dataset is made of 180 samples (patients), with a control group of 23 individuals 

that have a diagnosis of epilepsy this implying that their brain is not a healthy one and 

some gene signature divergence may not be related to the disease being studied but to 

epilepsy disorders. 

The study has patients with 3 different types of tumors and, for two of the types, 

subtypes have also been identified. The classes and distribution can be seen in the 

following table:  

 
Table 1 Class distribution in GSE4290 

In [40], the authors define that clustering has some limits on the size of the partitions 

that can be identified. This resolution limit is defined as:  

  √  

being n the number of samples. In this study we have n=180 then l=13.41 

Given that for some of the subtypes, namely A2 and O3, the number of samples is 

below the resolution limit aforementioned, 7 and 12 respectively, for the study we will 

work with the Class Partition, with 4 main classes (C, G4, A, O) and a small group of 

Unclassified samples. 

The microarray platform used is Affymetrix Human Genome U133 Plus 2.0, that 

contains 54613 probes, providing complete coverage of the human genome, 21K 

genes. The complete technical description can be found here: 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL570 

While the number of samples in the dataset may seem small (for typical datasets in the 

AI data repositories) it is indeed quite large in the context of Microarray data and 

genetic studies. In the NCBI database, there are only 1210 that have 180 samples or 

Number Percentage Number Percentage

Control C 23 13% 23 13%

Glioblastoma Grade IV G4 77 43% 77 43%

Astrocitoma Grade II A2 7 4%

Astrocitoma Grade III A3 19 11%

Oligoblastoma Grade II O2 38 21%

Oligoblastoma Grade III O3 12 7%

Unclassified U 4 2% 4 2%

180 100% 180 100%

Sub-Class Class

26

50

14%

28%

GSE4290 Class Distribution

CLASS

Total
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more out of 681.887 datasets for the species Homo Sapiens. This places the dataset in 

the 99.8 percentile in terms of number of samples. 

The existence of unclassified samples in the dataset is not negative by itself and may 

produce some benefits. While it is true that no category can be assigned to the samples, 

given that our dataset is relatively small, and considering that clustering is an 

unsupervised method, it has been decided to keep the samples in the dataset for our 

study. The reason is that these samples may help to create the solution partition either 

because they help to connect nodes, acting as bridges among them, i.e. two samples 

that are close to an unclassified sample may get clustered together when otherwise 

they would be separated and consequently they may be separated from other nodes. At 

the same time, if we didn’t use them, we should better go for a supervised technique 

and make full use of the available ground truth, with the required caution given the 

accuracy that can be expected from it. Chances are that these samples are particularly 

difficult to classify. 

B. Data Acquisition 

Microarray Data studies produce a CEL file, that contains the result of scanning the 

different samples, without any processing. For this study, the already pre-processed 

information has been used as without having access to the manufacturer tools and 

processing software making a good normalization is difficult although can be done and 

in some cases may be necessary, for example, if samples from different platforms must 

be compared as in [41].  

According to [42], the original study that made the dataset available, the dataset was 

processed following manufacturer defined protocol and using the manufacturer 

provided software in order to analyze very specific genes related to brain tumors: 

“the CEL files were normalized to a median-intensity array, and model-based 

expression values were calculated using PM/MM difference model. Based on the latest 

annotation from Affymetrix NETAFFX service, four probe sets for SCF(KITLG)gene 

were present in each chip. The signal intensities of each probe set were used for 

analyzing SCF (KITLG) expressions. The significance in differential SCF (KITLG) 

expressions in different grades of gliomas versus human non tumor brains was 

determined using log2-transformed expression values by standard unpaired two-tailed 

Student’s t test of two groups without assuming equal variance between groups.” 
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VI. METHODS 

The method proposed has the following process pipeline, which will be explained in 

detail in this chapter. The first row, acquisition, with green background, corresponds to 

the process performed by the authors of the dataset. The rest of the sections have been 

developed as part of this study. 

 
Figure 6 Processing pipeline 
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The pseudo-code of the data would be as follows: 

multiClustering_consensus( no_outliers, Jensen-Shannon,[row_normalization]: bool; 

                                           N_times, N_iterations: integer 

                                           ground_truth: partition) 

 

if no_outliers then 

data=RemoveOutliers(MAD>5, data) 

if Jensen-Shannon then 

if row_normalization then 

data=RowNormalize( data, sum=1) 

data=ColumnNormalize( data, sum=1) 

distanceMatrix=Jensen-Shannon( data ) 

else  // Pearson as distance 

distanceMatrix=Pearson(data) 

distanceMatrix =ApplyNormalization01(distanceMatrix) 

weightMatrix=Invert(distanceMatrix) 

 

// as CN based method is so heavy, we do the subsampling once 

weightSubMatrixArray=subsample(100, weightMatrix) 

modularityClusterArray=optimizeModularityClustering(weightSubMatrixArray) 

 

repeat N_times:  // for statistical significance 

         // hierarchical clustering 

         hcSubDistanceMatrixArray = subsample(N_iterations, distanceMatrix)  

         hcCluster = consensuate(hcSubDistanceMatrixArray) 

         // mstknn 

          mstknnSubDistanceMatrixArray = subsample(N_iterations, distanceMatrix)  

         mstknnCluster = consensuate(mstknnSubDistanceMatrixArray) 

         // cn 

         modularityCluster = consensuate(N_selections, modularityClusterArray) 

         cl1, cl2 = two_more_differents ( hcCluster, mstknnCluster, modularityCluster) 

         cluster = robust_clustering(cl1, cl2) 

         update_variability_internal (cluster) 

         update_variability_external(cluster, ground_truth) 

 

cm1=feature_extraction(cluster) 

domain_analysis(cluster, cm1, ground_truth) 

 

 

Table 2 Pseudo-code for processing pipeline 

A. Pre-processing: Outliers filtering 

Even after the pre-processing in the acquisition phase, microarray data has a very high 

variability due to the process required for its generation. It is then necessary to 

consider as a first step in the process to filter the features used in the analysis. 

Because the number of samples is reduced, and more if we consider the number of 

samples for each class, this process is very sensitive and its convenience needs to be 

carefully considered. The reasons are that different subclasses may have different 
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distributions particularly in those probes (genes) that explain the classification as quite 

often what causes a disease is an over-expression or under-expression of a set of genes 

and this miss-expression can be considered an outlier. Adding that the class 

distribution is unbalanced makes, intuitively, that what from one perspective can be 

seen as an outlier, from other perspective is an essential feature in our analysis. 

Despite this, we have wanted to see the influence of adding an outlier removal step in 

our processing pipeline and being able to compare the results obtained for both 

configurations. Nevertheless, being outlier detection a complex topic that could inspire 

a whole study, the strategy has been that of defining a single aggressive criteria and 

eliminating all those features that have a sample that classifies as an outlier under such 

criteria.  

By applying this, we will have two different datasets, one with the full set of features 

and a second one with a subset of the features after applying the outlier detection 

criteria. 

The criteria defined to consider a data point a feature is based on the Relative Mean 

Absolute Deviation (RMAD) that is calculated for each of the features independently. 

A data point will be considered an outlier if its RMAD is greater than 5.  

MAD is defined as:  

 
Equation 8 Mean Absolute Deviation 

where m(X) corresponds, for our case, to the mean of the distribution. RMAD will be 

obtained dividing MAD by m(X). 

MAD is related to standard deviation for normally distributed data: 

              √
 

 
      

Equation 9 MAD to Standard Deviation conversion for normal distributions 

Our factor RMAD=5 would translate, if the distribution was normal (what it’s not 

claimed) to σ=6.2666. A high σ is not synonym of outlier more when the distribution 

cannot be considered Gaussian but gives an idea of the criteria being applied. 

Calculating the number of features that would remain in the dataset if the MeanAD 

and MedianAD were used for different thresholds, we obtain the distribution in Figure 

7. 
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Figure 7 Number of features below the threshold for MAD 

Applying this criterion, a total of 56.455 data points are considered outliers. These data 

points belong to 28.957 features, keeping then 25.656 features free of outliers. On 

average each feature removed will have less than 2 outliers, and based on this, the 

whole feature will be removed from our dataset as a first scenario definition variable. 

This method, that is quite aggressive given the low number of outliers per feature we 

have and the high number of features filtered, should guarantee that any outlier is 

removed and possibly other features are removed too. Despite the high number of 

features removed we expect to be able to cluster with reasonable results the resulting 

dataset. 

B. Pre-processing: Sample distance matrix generation 

The different features (probes) have a very diverse value range with differences of 4 

orders of magnitudes from 6 to 60K when measured across genes, Figure 8. If the 

range is measured for the gene expression of an individual the difference is in one 

order of magnitude, Figure 9. 

 
Figure 8 Histogram for the range of values for the 54K genes 
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Figure 9 Histogram for the range of values for the sum of probes for the 180 samples 

Because of the high-dimensionality of our data, a common strategy in order to reduce 

the computing required for the processing of the dataset is to obtain a pairwise distance 

among the samples. As explained in the State of the Art section, the available options 

are endless.  

Two options have been chosen for this study. The first is the Jensen-Shannon 

Divergence (JSD), successfully used in microarray data studies [43, 44] and other 

domains [45], the second being Pearson Distance, that according to [46], happens to be 

used in 95% of the studies for them considered where cluster analysis is based on 

similarity.  

1) Jensen-Shannon Divergence Square Root 

Although Jensen-Shannon Divergence (JSD) was defined in [47], it is studied more in 

depth in [48] that has been the reference used in this study. Its formula is given by: 

                                            

Equation 10 Jensen-Shannon Divergence 

Where w belongs to [0,1], in our case w=1/2, and H is the Shannon’s entropy: 

      ∑       

 

   

 

Equation 11 Shannon Entropy 

The measure requires then X and Y to be probability distribution functions, that is, 

their components to be positive and sum 1.The formula can be generalized to consider 

any number of distributions X, Y with different weights for each element in the 

distribution. 

The JSD has important and useful characteristics for the type of data involved: (i) JSD 

is symmetric; (ii) it is non-negative; (iii) JSD is only 0 if the parameters are identical; 

(iv) JSD is well defined even if the distributions are not perfectly continuous, that is if 
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Xi vanishes without Yi also vanishing. In addition, its square root is a metric since it 

satisfies the triangular inequality: 

sqrtJSD(X,Y) ≤ sqrtJSD(X,Z) + sqrtJSD(Z,Y) 

Equation 12 Jensen-Shannon Divergence square root triangular inequality 

With these properties sqrtJSD becomes a very promising distance function for this 

study.  

a) Normalization (for sqrtJSD) 

As aforementioned, in order to apply sqrtJSD, it is required that the data meets certain 

requirements. The requirement is that the data columns (samples) must correspond to 

Probability Distribution Functions, that is, they must add to 1. 

In addition to this, in [1], it is stated that: “The data used [in their experiments] were 

row- and column-normalized (so that both rows and columns sum to 0 and have a 

standard deviation of 1). This is necessary when using consensus clustering with HC, 

because it yields well-balanced hierarchical trees, which can in turn be split into non-

trivial (i.e., non-singleton) clusters”. This normalization can be achieved following the 

method described in [49]. While it may be true that data so normalized, may generate 

non-trivial clusters, no evidence is provided in the mentioned paper that the results are 

more relevant. This type of normalization has then not been considered in our study. 

Also the requirements are different for the distance function chosen, sqrtJSD. 

The requirement of sqrtJSD being that columns add to 1, we could have just applied a 

column normalization dividing each data point by the sum of its column. While this 

would have allowed us to meet the criteria, the high different range of values that data 

has, causes that by normalizing to sum to unity we may be introducing variations in 

our data.  

A very simplistic test has been performed with synthetic data in order to confirm this 

hypothesis and measure the effect of it and an alternative normalization. The 

alternative normalization consists on row normalizing to sum to unity (same criteria) 

prior to applying the column normalization. By doing this additional step the high 

variability among features in the dataset is eliminated and the variability introduced by 

the column normalization is much less. The results measured with the synthetic dataset 

can be seen in Appendix XI.F Data Normalization tests. 

Despite this significant difference observed, because the row normalization is not 

usually considered in similar studies performed with Microarray data, it has been 

decided to apply both normalization cases (with and without row normalization prior 

to column normalization) in the study.  
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2) Pearson distance 

Pearson correlation coefficient is among the most common measurements used to 

compare data distributions. First mentioned in [50], its definition is given, as shown in   

[51], by: 

 
Equation 13 Pearson Correlation Coefficient 

Where cov(X, Y) is the covariance, σX is the standard deviation of X, μX is the mean of 

X, and E is the expectation. Pearson is bounded [-1, 1] where 1 indicates that both 

distributions are perfectly correlated and -1 indicates perfect anti-correlation, with 0 

meaning both distributions being completely independent. 

The existence of ρ just requires the distributions to be bounded, what is our case, 

despite the high range difference among different samples. ρ is sensitive to outliers so 

it could be expected to have quite different results for the experiment settings with and 

without outliers in the study. 

From the Pearson Correlation factor, a distance can be calculated as: 

 
Equation 14 Pearson distance 

The obtained variable will be [0, 2] bounded, with value 0 meaning the two 

distributions are perfectly correlated (not necessarily equal) and 2 meaning the 

distributions are perfectly uncorrelated. 
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C. Pre-processing: Normalization and inversion 

In all cases, the obtained distance matrix will be [0, 1] normalized. The reason for this 

normalization is driven by several aspects. The normalization is a linear transformation 

and will not affect relative magnitudes of the distances, the order is preserved. This 

makes that the change has no effect for the clustering algorithms chosen: MSTKNN 

and Hierarchical Clustering with Complete Linkage.  In the case of Complex 

Networks, the change does not affect the Modularity calculation, since the pairwise 

distance is 0 when a sample is compared to itself, matrix distance diagonal, this being 

the case the r factor will compensate for the normalization as no offset is applied in the 

normalization. 

In addition, as the complex networks method requires weights instead of distances, a 

weight will be calculated from each distance by just inverting the distance. In this case, 

by applying the subtraction: 

            

Equation 15 Weight definition from distance 

Note that in the case of the Pearson distance we are obtaining the initial Pearson 

Coefficient with a change in scale because of the [0, 1] normalization. 

This has been chosen respect to: 

     
 

    
 

Equation 16 Alternate weight definition 

because the former maintains the [0, 1] normalization and it doesn’t introduce 

singularities/outliers when dividing by values close to 0 and maintains a distribution 

that it’s symmetric. 

 
Figure 10 Histogram for inversions proposed (left w=1/d, right w=1-d) 

The left figure in Figure 10 shows the histogram obtained for the latter option. Note 

the two red circled outliers. On the right, the histogram corresponding to the former 

option, that shows a (more) symmetric distribution and a Gaussian-like shape.  
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The data distribution for the distance matrixes obtained for all the settings used in the 

study can be seen in Table 3. The bar at 0.0 corresponds to the diagonal of the matrix. 

The Pearson cases show a less symmetric distribution. 

 
 

  

  

Table 3 Histogram of distance matrixes 
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D. Pre-processing: Resampling 

Because we need our results to be relevant it is required to be able to perform multiple 

executions of our algorithms. Some papers, including [1, 25], perform subsampling 

based on selection of features but since our objective is the detection of the relevant 

features for disease diagnosis that would become a source of variability and potential 

loss of interpretability since we are aiming for a very reduced number of genes to 

explain the different classes in the dataset. In general, though, the decision of 

subsampling features is arguable since it modifies the description of the samples and 

hence the problem being solved. 

Typically, when the number of samples is small, Bootstrapping can be used in order to 

generate a larger dataset. As the methods used are based on distances, adding a copy of 

the same element does not increase the dataset as the added elements would be 

identical and the distances are equal to 0 respect to the cloned samples. Then, it is not 

an alternative in this case. 

We need then to subsample our dataset in the traditional way, taking a subset of the 

samples. The size of our subsampling instances has been decided to be set to 160, 

leaving out 20 samples on every iteration, roughly 10% of the total dataset.  

The subsampling is intuitively the more effective way of having different nodes 

networks since it removes samples from the complete original network. This 

modifies/moves the hubs present in the network and really permits the clustering to 

generate partitions that can be very different. In particular, for MSTKNN the 

resampling generates partitions with very different number of clusters. The effect is 

also significant in the case of Hierarchical Clustering, as the Complete Linkage is 

used. In both methods, as part of the calculation, the most distant elements become the 

seeds/hubs that generate the clusters, based on the minimum or maximum distance 

respectively. 

E. Clustering 

For the purpose of the study, three clustering methods have been chosen. The three 

methods are based on dimensionality reduction and from the feature space the pairwise 

distance among all samples is used instead. All the methods chosen are non-

parametric. Other than that they have different characteristics. Table 4 summarizes the 

characteristics of the different algorithms. “Stochastic” refers to the algorithm 

generating different results for the same data. “Edges” refers to the meaning of the 

connections between samples that could be distances or weights. “K” indicates if the 

algorithm generates one partition or a series of them.  

These algorithms have been chosen because having different characteristics they were 

candidates to generate discrepant partitions. Any algorithm could be included in the 

study if the proper adjustments are included in order to weight the different partitions 

obtained when the algorithm is executed several times for different subsets of the 

datasets. In this case, all the algorithms implemented are based on pairwise 
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comparisons but algorithms working directly in the feature space could also be 

included. 

Algorithm Multi-resolution 

Complex Networks 

Hierarchical 

Clustering 

Complete Linkage 

MST-KNN 

Stochastic Yes No No 

Edges Weight Distance Distance 

K Multiple, non-nested Multiple, nested  Unique, automatic 

Table 4 Comparison of the different clustering algorithms 

1) Hierarchical clustering 

Based on the linkage methods described, the preliminary exploration of linkage 

methods has been restricted to the first group, more computationally affordable. An 

execution of the methods for the complete GSE4290 dataset produces the outcome in 

Figure 11. 

 

 
Figure 11 Dendrograms of the GSE4290 dataset for different HC linkages 
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The differences among the different methods are significant. Single linkage produces 

very small clusters that are aggregated almost in a 1 by 1 basis.  Although the colors in 

the x-axis show that the method can identify some meaningful structures, see the green 

and red labels concentrations, it is difficult to find a threshold cut that generates a 

partition not dominated by clusters with 1 sample only. Complete linkage is the one 

with less clusters of small size and that even with a cut threshold lower than the other 

methods, implying the partition is more relevant as differences among clusters are 

larger. 

From the graphs and based on its definition, it is immediate the agreement with chapter 

15 in [26], where the author states that both Single and Complete linkage are invariant 

under monotonic transformations of the distance matrix. This is not the case for 

Average as the same author defines neither it is for Weighted Average. The Complete 

Linkage has another advantage, the height of the dendrogram is fixed and equal to the 

maximum distance in the dataset, that is 1 for the whole dataset. Making an analogy 

with supervised learning, the fact that Complete Linkage is based on the maximum 

function, makes more difficult the existence of false positives, that is, samples that are 

very different to be put together.  

The Complete Linkage result used to decide shows three GB groups, what doesn’t 

confirm the hypothesis that the experts have about the dataset. If a higher threshold cut 

is specified, less clusters, then two of the GB groups are mixed with a group 

combining A and O samples. 

While this early design decision may, at a first glance, seem opposed to one of the 

methodological guidelines stated in [19]: “Don’t select the clustering method that 

gives the best result; class discovery should not be result driven.”, it is not our driver. 

To this respect, the result obtained by Weighted Average would be a better bias as it 

has the same four main groups that the final solution obtained shows. The Complete 

Linkage seems is a feasible option given that other options are not useful for the study 

based on characteristics not related to the results.  

Also the decision is based on observation of the dendrograms for one of the settings in 

the experiment while 6 different scenarios are considered in the study. 

2) Complex Networks based, modularity optimization 

The clustering method based on Complex Networks, requires significant computing 

resources even for small or medium size datasets like GSE4290. An exact result based 

on exhaustive search is only feasible for small and/or very sparse networks. Therefore, 

the algorithms used must be based on stochastic search. The resolution method chosen 

will be a sequence of algorithms all of them devoted to the optimization of the network 

modularity. 

The high cost is due to the fact that the algorithm is run once for each value of r in the 

interval selected. The interval is initially set to cover the whole scale of resolutions, 

meaning that the dataset will be split in partitions with a number of clusters from 1 to 

the total number of samples. The resolution of this scanning is a parameter of the 
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algorithm as can be the r minimum and maximum. If the r range is not specified the 

algorithm will find them. The rmin (the dataset clusters in 1 partition) is approximate 

while the rmax (the dataset clusters in partitions with 1 sample) is exact. The algorithm 

then finds the best clustering for each of the networks resulting from adding a self-loop 

of weight ri to the network where ri is given by: 

           
         

         
                   

Table 5 How r is obtained for each sample in the scanned range 

The result of each iteration will be a unique partition made up of a certain number of 

clusters. As previously mentioned, while in theory, the number of clusters should be 

increasing, the stochasticity of the algorithm may cause that there are points in which it 

decreases as r is increased. Figure 12 shows the evolution of the number of clusters for 

an execution of the algorithm. As an example, note that around r=45 the number of 

clusters decreases. 

Partitions for different values of r may be different even if they have the same number 

of clusters. Plateaus in the graph indicate the dataset stably partitions in that amount of 

clusters but not necessarily in the same way. 

As obtaining a high resolution on the whole range may be an expensive endeavor, it 

has been decided to limit the exploration to partitions with k<30. For the interval, 101 

equally spaced executions have been requested for each of the scenarios considered. 

As for the other methods, the initial dataset has been subsampled to create 100 

subsamples of 160 samples each. 

 
Figure 12 Evolution of number of clusters for GSE4290 dataset 

The problem then remains how to specify the rmax. to be used in each case without 

paying a tremendous computing effort. Since the r range is dependent on the sub-

dataset considered, ideally, it would be required to study the r-k relation for each case. 
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Since this is unaffordable, for each of the experiment scenarios, 5 sub-datasets have 

been randomly chosen and for each of them an execution of the algorithm has been run 

for the whole r range. From it, the minimum r such that k(r) ≥ 30 for the 5 cases has 

been chosen as rmax for all the executions.  

The choice of k=30 is driven by the analysis of Figure 12, note that around r=61 we 

have k=20 and this is the “tipping point” for a much faster increase of k. This indicates 

that any important partition will happen to the left of the graph. A safety margin has 

been added and then, instead of k=20, k=30 has been set for the executions performed. 

In addition, for k=20 or 30 the average size of the clusters in the partition will be 9 or 

correspondingly 6, what is also below the resolution limit of the problem and unlikely 

to provide any meaningful clusters. 

In summary, the sub-datasets generated for each experiment have been screened in the 

r interval expected to extract partitions with k in the range 1 to 30. 

The software package Radatools[52] has been used to perform the required executions 

for the study. The algorithm permits many different implementations that must be 

chosen based on the size and characteristics of the dataset. For this study, the number 

of nodes, 160, is too high for exact algorithms and the method used is a combination of 

3 different algorithms combined in a sequence of 4 steps: 

 Tabu search[53], consists on the move among existing clusters or segregation to 

a new one preventing, in order to constrain the number of options, the same 

nodes are moved repeatedly or reversed for a number of moves. The tabu 

constraint is not strict and tabu moves are allowed if they generate a solution 

better than the best generated so far.  

 Reposition[54], Kernighan-Lin algorithm, as described in [55], is based on the 

swapping of pairs of nodes to improve the modularity. As in the previous step, 

moves are locked for a period of time.  

 Newman fast algorithm[56], is in its conception an agglomerative Hierarchical 

algorithm but in the pipeline it takes the partition generated on the previous step 

and try to improve the modularity by merging pairs of the existing communities. 

 Reposition, same than step 2. 

3) MSTKNN 

This method generates a unique partition for each execution and hence is the simpler 

one to incorporate. For each execution on one subsample a partition with an 

unpredictable number of clusters will be generated. As an example, the distribution k 

for a round of 200 executions of the algorithm is shown in Figure 13. No assumption is 

made about the distribution of k or the similarity of the different partitions with the 

same k. 



44 

 

 
Figure 13 Distribution of k for 200 subsampled executions of MSTKNN 

F. Intra-method consensus 

1) General process 

The idea behind consensus clustering, as explained in IV.D, is obtaining an average 

partition for each possible number of classes, k. For this, the algorithm chosen is 

executed a number of times and the partitions obtained merged. In [1], all the 

partitions receive the same credit what is not realistic since some clusters appear in a 

more natural way. The authors used k-means and HC. For the former, k must be 

provided as input to the algorithm and this is done blindly so the authors executed the 

same number of executions for all k’s. For the latter, the dendrogram was cut in the 

different partitions without retaining information about the cophenetic distance 

differences among consecutive partitions or any other information. The whole process 

relies then in the repeatability of the partitions at a certain k. There is no influence of 

the representability of the partition. The method proposed enhances the original 

method by assigning to each partition a weight obtained from the own method and that 

considers then the importance of the partition in the set of solutions obtained. The 

following subsections will clarify how the weights are obtained and what they 

represent for each of the algorithms considered. 

2) MSTKNN 

In order to obtain a consensus cluster for the MSTKNN a number of executions have 

been performed over a subsample of the dataset. As explained, the MSTKNN will 

generate a unique partition with a given number of clusters, K. 

Based on the consensus method explained in the State of the Art section, all the 

partitions with the same K will be added in a consensus matrix. The consensus matrix 

will have for each position i, j in the matrix the ratio number of times in the same 

cluster-number of times in the subsample. 
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As the algorithm generates partitions with a range of K’s, each of the consensus 

matrixes is created from a different number of generated partitions. 

Each of the consensus matrixes obtained will then be weighted based on the ratio of 

number of partitions in the set divided by the maximum number of partitions for the 

same k. Taking as example the k distribution in Figure 13, k=4 will have w=1 and k=5 

will have w=47/74. 

Despite the unbalance of the weights, it is not the case that the k with more results is 

the one that generates the larger ∆AUC. The reason is that the partitions generated by 

the algorithm are very heterogeneous and having more of them does not guarantee a 

better consensus. 

3) Hierarchical clustering 

In the case of hierarchical clustering, the result obtained from an execution is a 

hierarchy of clusters. As in the case of MSTKNN a consensus matrix will be generated 

for each K. As in the case of the Complex Networks algorithm, there is no interest on 

partitions with K>30, so the range will be restricted to this range. 

In this case, all the consensus matrixes will have the same number of components as 

every execution will contribute one partition to each consensus matrix. While in the 

case of ties in distances that condition wouldn’t have been true[57], the case has not 

occurred in the experiments, but it wouldn’t have any impact if it occurred. 

As an enhancement to the original algorithm, each of the partitions when added is 

weighted in order to consider the stability of the cluster in the hierarchy. The weight 

assigned is the difference among the dendrogram height (known as cophenetic 

distance) for the current partition, k, and partition k-1. This modulates the partition 

space giving more significance to partitions that keep apart clusters whose points are 

more separated.  

As the linkage method used is Complete Linkage and the data is [0, 1] normalized, the 

total height of the dendrogram will be close to 1. It is not 1 because the subsampling of 

the dataset may not preserve the [0, 1] normalization.  

By weighting this way, each of the consensus matrixes will have a different total 

weight (the sum of weights of the partitions included on it).The maximum total weight 

of the consensus matrixes will be used to normalize the weight of each in an analogous 

way to how it has been done for MSTKNN but in this case each partition instead of 

contributing a fix weight of 1, contributes by its cophenetic distance. The idea is like 

considering the cophenetic distance as weight for a partition and normalizing by the 

sum of all the dendrograms and then making sure that the consensus matrix with 

maximum value is multiplied so that the maximum value is 1. Then apply the same 

factor to all the consensus matrixes. 

4) Complex Networks, modularity optimization 
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Every execution of the algorithm generates a series of partitions with different number 

of clusters and often more than one partition will have the same number of clusters. 

Each of the generated partitions is the one that has been found to have a better 

modularity for an r interval. As in the case of HC, the partition has a weight, but 

differently there is more than one partition on each solution. Also, in this case, there is 

no guarantee that the solution generates partitions for all the number of clusters as the 

resolution used may not be enough to extract them. In summary every solution will be 

then a sequence of partitions where no assumption can be made about the k of each of 

them and where each partition is the best partition for an r interval. The sum of all the r 

intervals is equal to the whole r range scanned. Each partition will be then assigned a 

percentage of the whole r. 

The process defined for HC is then valid also for this other algorithm by assimilating 

the cophenetic distance to the r interval of the partition. 

G. Selection of the two more different partitions 

As a result of the previous steps, and calculating independently for each, the delta of 

AUC for the different k’s, we will obtain for each clustering algorithm (and settings) a 

k that is the consensus partition. The result obtained when applying the consensus, is 

shown in XI.B.6) for a run of 10 executions and 200 iterations.  With this, a partition 

will be generated for each of the algorithms, as can be seen, for different number of 

iterations in Appendix XI.B.6).  

As an example in Table 6 the best partitions for an execution (central column) are 

shown together side by side with the consensus partitions for k-1 and k+1. Blue lines 

in the central column indicate the partitions. The order of the samples has been 

preserved in the other cases so that the difference in the cleanliness of the partitions 

can be observed in addition to the Membership coefficient. Note that a better 

membership coefficient does not imply the AUC criteria will select that k, also the 

limitation of k>2 plays a role. 

The current step will receive as input the partitions in the central column and the two 

more different will be chosen to be combined in the following step. Since the 

similarity of the partitions can be measured in many different ways and the way it is 

measured may be related to how the clustering algorithm works, biasing the result, it is 

appropriate to use a battery of indicators. The measurements chosen are in Table 7 and 

its description in Appendix XI.E. 

The system then votes how many times a certain pair of partitions is the most different 

one. The pair that receives more votes is selected. Despite having a number of 

indicators that is multiple of the number of elements being compared during the 

experiments no ties have been produced. This is a circumstance that should be paid 

attention if the method wants to be generalized. 

The voting results for each of the settings with N_Iterations=500 can be seen in Table 

8. Different settings produce a different “most distant” pair of partitions. 
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 Best K - 1 Best K Best K + 1 

C
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Mc=0.92 

 

Mc=0.98 

 

Mc=0.95 

H
C

 

 

Mc=0.90 

 

Mc=0.81 

 

Mc=0.77 

M
S

T
K

N
N

 

 

Mc=0.16 

 

Mc=0.48 

 

Mc=0.83!!! 

Table 6 Comparison of best K (central column) for each algorithm with K±1 
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Measure S/D Type 

Same Class Agreements Similarity Pairwise distance 

Disagreements Dissimilarity Pairwise distance 

Jaccard Index Similarity Pairwise distance 

Adjusted Rand Index Similarity Pairwise distance 

Fowlkes Mallows Index Similarity Pairwise distance 

Normalized Mutual Information Index (arithmetic) Similarity Entropy 

Normalized Mirkin Metric Dissimilarity Confusion matrix 

Normalized Van Dongen Metric Dissimilarity Confusion matrix 

Normalized Variation of Information Metric Dissimilarity Entropy 

 Table 7 Measures to choose the two more different partitions 

 

    HC-CN 
CN-

MSTKNN MSTKNN-HC 

Raw 

Column Norm + Jensen-Shannon 0 94 6 

Row + Column Norm + Jensen-Shannon 3 11 86 

Pearson 0 78 22 

WO 
outliers 

Column Norm + Jensen-Shannon 1 29 70 

Row + Column Norm + Jensen-Shannon 5 82 13 

Pearson 0 51 49 

Table 8 Voting of pair differences 

H. Inter-method consensus 

1) Discussion of existing methods 

In [25], the authors propose the combination of partitions generated by different 

algorithms in the consensus clustering [1]. They propose to do so without any 

consideration about the algorithms used or the difference among partitions. The 

method suggests that the combination of a number of partitions with the same number 

of clusters will produce also a partition in the same number of clusters. This, as the 

experiments have revealed, is not always possible, despite applying HC methods if the 

consensus matrixes have tied weights.  

Figure 14 shows an example in which two different algorithms generate perfect 

consensus matrixes for k=2 but the merge of the two matrixes cannot be clustered in a 

partition with k=2 without arbitrarily breaking ties. This situation cannot be avoided 
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since the partitions are initially grouped based on the number of clusters they contain. 

Paradoxically, the more robust the independent algorithm consensus matrixes are, the 

more likely is that the combination of them cannot be separated unambiguously. 

While is true that the case described is hiding that k is not the best option for the 

dataset, and in the example, k=4 is a much better option, the situation can also occur 

for the best k for the data when the two algorithms do not extract the same groups. 

Consider also that imposing a non-appropriate k to an algorithm does not mean the 

algorithm will generate more heterogeneous partitions; this will depend on the 

algorithm itself and the initialization parameters. While a properly designed algorithm 

should be able to behave inconsistently (generating different partitions) when k is not 

the natural for the dataset, and reducing AUC for k, this idea should be kept on mind 

when analyzing the results.  

Coming back to the main thread, when the original k is not suitable for partitioning, it 

would be required to find the proper k what brings the research to the original 

problem, deciding the “best k” for clustering the dataset. 

 

 
Figure 14 Separation not possible in the same K than original 

2) Proposed method for inter-method consensus: Robust clustering 

A more robust, and also conservative case, is robust clustering that permits to merge 

clustering results without any restrictions. Robust clustering obtains the intersection of 

the partitions provided 

The method could be used for any number of initial partitions (one for each algorithm 

involved) just by applying it iteratively over the result of the previous iteration. The 

a b c d e f g h a b c d e f g h

a 1 1 1 1 a 1 1 1 1

b 1 1 1 1 b 1 1 1 1

c 1 1 1 1 c 1 1 1 1

d 1 1 1 1 d 1 1 1 1

e 1 1 1 1 e 1 1 1 1

f 1 1 1 1 f 1 1 1 1

g 1 1 1 1 g 1 1 1 1

h 1 1 1 1 h 1 1 1 1

a b c d e f g h

a 2 2 1 1 0 0 1 1

b 2 2 1 1 0 0 1 1

c 1 1 2 2 1 1 0 0

d 1 1 2 2 1 1 0 0

e 0 0 1 1 2 2 1 1

f 0 0 1 1 2 2 1 1

g 1 1 0 0 1 1 2 2

h 1 1 0 0 1 1 2 2

Consensus Algorithm 1 Consensus Algorithm 2

Combined consensus
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more partitions used the more micro-clusters will be obtained as the method breaks the 

entry partitions according to intersection. 

The calculation of the intersection is the same that would be done to calculate the 

confusion matrix among the two partitions generating a cluster for each of the non-

empty crossings. The number of clusters this way obtained can be up to the product of 

the number of clusters in the original partitions. 

I. Feature extraction 

From our final partition, we need now to extract those genes that explain the difference 

between clusters. 

This can be done in a supervised or unsupervised way depending on whether the 

ground truth is considered or not. 

Considering the ground truth is equivalent to applying the Robust Clustering method 

to the obtained partition as if the ground truth was the obtained partitioned by another 

method (what actually it is: the physicians and pathologists method). 

It can also be the case that our dataset is only partially labelled and in this case the 

labelled samples can help to label the clusters based on their distribution. 

In order to select the differentiating features, the CM-1 indicator is used. CM-1 can be 

understood as an indicator, for each feature, of the relative difference among the 

averages for each class in the dataset. Those features that show a more extreme value, 

either lower (under-expressed genes) or higher (over-expressed genes), will be the 

ones that have a higher contribution to explain the partition. CM1 can be calculated in 

a 1-VS-1 way, that is comparing individual clusters or, in a 1-VS-all way, comparing 

each individual cluster against all other clusters in the partition. 

CM-1 is defined by the expression, as shown in [58]: 

 
Equation 17 CM-1 

J. Solution analysis 

In order to analyze the robustness of the solution, to measure the variability as the 

experiment is repeated a number of times, it is important to do it from different 

perspectives. In total three different measures have been done that are classified in two 

categories: external, where the ground truth is used, and internal, where the measure is 

done based on information in the own solutions. 

In addition, the solution has been compared to a supervised method, decision trees, in 

order to see if there is any degree of agreement in the features that are obtained by 

CM1 and the features used to generate the classification tree. 
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Last but not least, the resulting list of probes will be analyzed using Domain 

Knowledge in two ways. First, in a quantitative manner by comparing the results 

obtained with those in other studies using the same dataset and also using public 

databases on genetic relationship to diseases. Second, by an expert, to be able to 

benchmark the results with those found relevant in other published studies related with 

brain tumors. 

1) External robustness 

Based on the concepts of Purity, Homogeneity and Completeness a new indicator has 

been defined. This indicator is defined from the partition being evaluated and 

compared with the available ground truth.  

Since our ground truth is not only unreliable but also could become a limitation when 

trying to discover new diseases subtypes, supervised metrics for validating the 

goodness of the results are not fully appropriate and some modifications need to be 

introduced. 

The definition performs the intersection of the partition obtained with the ground truth 

obtaining, the confusion matrix of the two partitions.  

If the solution obtained for the first set of settings is taken, as shown in Figure 15 and 

Table 9, for each of the classes in the partition (1 to 6), whose size is above the 

resolution limit as defined in V Dataset (2, 3, 5 and 6), the majority class is identified. 

In [59], some desirable objectives for cluster assignment are defined: (1) homogeneity, 

each cluster only contains members of a single class; (2) completeness,  members of a 

given class are clustered in the same class. The formulas are explained in XI.E.10) 

 

 1 2 3 4 5 6 J 

C  23     0 

GB  10 3 2 33 29 15 

A 1 7 8 2 3 5 - 

O  9 32 1 4 4 18 

-  1   1 2 - 

Total - 50 43 - 41 40  

Table 9 Confusion Matrix for solution partition, including J factor used in EP 
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Based on this idea, two measures are calculated for each of the sub-clusters identified. 

The definition of the first one, reminiscent of Purity, and that we will call intra-Purity, 

is given by: 

       
 

    
          

                               

Equation 18 Intra-Purity 

that represents the average of elements that are in the same class that the majority class 

of each cluster in the solution partition intersected with the ground truth. 

The second measurement, called extra-Purity, is given, when classes in the ground 

truth are preserved, by: 

            
 

∑     
       

                               

Equation 19 Extra-Purity 

In the general case, of having a class split in two or more clusters being majoritarian 

the definition becomes a bit more cumbersome: 

    {               |     |    

that is, the subclusters of the ground truth class k that are not majoritarian in their 

respective clusters in C. Using as example the confusion matrix in Table 9. For class 

G, JG would be: 2, 3, 4 and from it the addition of corresponding cardinalities 

10+3+2=15. 

Then EP would be defined as: 

            
      

|   |  ∑          

 

Equation 20 extra-Purity per cluster 

where from the denominator we are excluding the samples belonging to the same 

cluster in the ground truth that belong to another majoritarian sub-cluster. 

 

                               

Equation 21 Extra-Purity general case 
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An example, based on Table 9, will help us to clarify the definition. For IP, we obtain: 
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Equation 22 Numerical example of the calculation of P, IP and EP 

With this definition we are introducing two biases in the calculation of EP when for 

the same class in the ground truth there are two clusters where the class is majoritarian, 

GB case, corresponding to the scenario of discovery of a new subclass not represented 

in the ground truth. The first bias is that we are not considering classification errors 

between the two classes, we are then favoring the measure as our ratio will be higher 

or equal than the real. The second bias is that any number of samples in clusters where 

its class is not majoritarian will punish all clusters where it is majoritarian. In this case, 

we are calculating a strictly lower measure than the real. On the other hand, the small 

clusters with size below resolution limit are not considered for IP measure and only the 

classes that become majoritarian in one cluster of the solution partition are considered. 

Also the Unknown samples, (-) in the table, will count as incorrect when calculating 

IP. As the measurements start from the majoritarian clusters, having an unbalanced 

dataset favors that the classes with a higher number of samples become majoritarian 

more easily. 

2) Internal robustness 

To measure the robustness of the solutions two different approaches can be taken. The 

first approach consists on measuring the similarity of the different solutions obtained 

among them pairwise. Note that typically this is an external method because the 

ground truth is used, to measure accuracy. In this case, robustness is being measured 

using the different solutions generated, this is why it is being considered an internal 

method. As in the case of choosing the two more different partitions obtained from the 

individual clustering methods, the same battery of indicators has been chosen. As in 

each experiment 100 executions are run, the pairwise comparison will generate 

100x99/2=4950 comparisons. The different indicators will be plotted separately in 

order to view the convergence of the results. Because the different indicators have 

different scales they have been separated in two groups when the results are shown.  

The second method measures the convergence of each of the algorithms. This is done 

based on the average of the membership coefficients for each cluster, Equation 7, of 

the consensus matrixes generated. Then, for each set of settings we will obtain three 

distributions, one for each of the clustering algorithms. This will help to know where 

the variability originates in the whole process and can be used to modify the selection 

of clustering methods.  
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3) Clustering vs Decision Tree 

In order to compare the two methods and given their different orientation the 

comparison has been made based on the features selected on the decision tree 

compared to the features extracted from the CM1 experiment. 

For the Decision Tree, two different implementations have been chosen for two 

different tests. 

The first implementation is bigML®, a commercial web service, that generates 

decision tree from datasets provided by the user. The bigML® implementation is 

based on CART decision trees but with modifications on the implementation in order 

to be able to deal with large volume data streaming based on algorithms by Tyree[60] 

and Ben-Haim[61], as explained by bigML® representatives, with whom I have been 

in contact in order to solve issues in their implementation that prevented the execution 

of the dataset. 

The test done has consisted on generating the decision trees for the six experiments in 

the study and see if the features used in the decision tree have any matching with the 

features extracted from the CM1 feature extraction. In this case, the ground truth 

provided consists on the classification of the patients on 4 types (C, A, O, GB). 

The second implementation is Python scikit-learn, that is based on an optimized 

version of the CART algorithm, no details are provided in the documentation. In this 

case, the samples provided where the clusters obtained as result from the study. The 

ground truth was the assignment to each cluster. 
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VII. EXPERIMENTS 

In order to study the dataset object of this work, a series of experiments have been 

executed. The design of the experiments corresponds to the different options described 

in the data pre-processing and normalization, namely: filter or not outliers, use sqrtJSD 

or Pearson distance and if sqrtJSD is used normalize by column or not. 

Parameters Set 1 2 3 4 5 6 

Distance Jensen-

Shannon 

Jensen-

Shannon 

Pearson Jensen-

Shannon 

Jensen-

Shannon 

Pearson 

Normalization Column Row and 

Column 

n/a Column Row and 

Column 

n/a 

Outliers 

removed 

No No No MAD>5 MAD>5 MAD>5 

Iterations 100 to 500 100 to 500 100 to 500 100 to 500 100 to 500 100 to 500 

Repetitions 100 100 100 100 100 100 

Label in figures Raw-JS Raw-Row 

JS 

Raw-

Pearson 

WO-

Outliers-JS 

WO-

Outliers-

ROW JS 

WO 

Outliers- 

Pearson 

Table 10 Parameter Set Scenarios 

The workflow formerly described in the former section has been executed 100 times 

and the results obtained have been aggregated in order to evaluate the robustness of the 

method proposed. 

These experiments, as explained in E.2), have been limited due to limitations in 

computational resources. The time required for executing the complex networks 

method is very high, above 1 hour for each execution (for our parameters, as explained 

above). A total of more than 10 full days of execution are required to execute 100 

subsamples with the 6 different sets of parameters used. Then the rest of the processing 

(execution of the other clustering methods and consensus) is required. 

This limitation has been translated in two main aspects; first, only one dataset has been 

used in the study what does not permit to grant to the method any range of utility 

outside the current dataset.  

Second, because of the limitations regarding the execution of the clustering based on 

complex networks modularity, 100 executions have been made and those same have 

been used for the different iterations by choosing 80 to be combined. Despite this way 

of calculating, given the nature of the method, the repetitiveness of the method is not 

compromised for two reasons. First, the subsamples of the other methods are 

calculated independently and the method to choose the partitions to be combined is 

based on distances so our process is, in the worst case, equivalent to fix one of the 

parameters of the algorithm (one of the partitions). Second, this method is based on the 
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measure of modularity, and despite being calculated using stochastic methods, the 

results obtained are highly robust and therefore generating the subsamples for each 

iteration, instead of choosing among a set of generated ones, will not change the result. 

The membership coefficients obtained for the method confirm this reasoning, see 

Table 34. 

The number of iterations performed in the experiments has been in the range 100 to 

500 with increments of 100 iterations. Each experiment has been executed 100 times 

in order to measure the variability of the solutions obtained. 

In addition, the CM1 features selected have been compared with the ones used in two 

decision trees.  

Finally, the results have been analyzed by an expert on bio-markers in order to assess 

the relevance of the clusters found in addition to a quantitative analysis of the 

probesets to genes association. 

  



57 

 

VIII. RESULTS 

Figure 14, shows the final solution obtained for the RAW-JS settings, the only 

configuration that shows convergence in the result generated. With 200 iterations in 

the consensus generation, this configuration can produce a solution that is very 

consistent across multiple repetitions of the execution, Table 32 and Figure 25. Note 

that the clusters may be shown in different order. 

In Table 22,Table 23,Table 25,Table 26,Table 28,Table 29 and Table 32, the results 

for each of the configurations and different number of iterations is shown. In all cases, 

the result shown corresponds to the one with higher Purity as calculated for the study.  

In the case or RAW-JS, the method is converging at the higher Purity so this method is 

not biasing the result as we are analyzing the RAW-JS in parts of the analysis where 

this could be relevant. A different situation would have been if the convergence is not 

at the maximum Purity level, then the Median should have been taken, note that the 

Mean value may not correspond to any of the solutions generated. 

The different result partitions generate though different qualitative aspects and not all 

of them divide the dataset in the same way. Taking the case where N_Iterations=500, 

Table 28 and Table 29, the result for each setting produces the following partitions: 

 RAW WO-Outliers 

JS 1 Control group  (high Completeness) 

2 GB groups (high Homogeneity) 

1 Oligoblastoma group 

2 minor groups 

1 Control group 

2 GB groups (high Homogeneity) 

1 Oligoblastoma group 

1 minor group  

ROW-JS 1 Control group (high Completeness) 

2 GB groups (unbalanced) 

1 Oligoblastoma group 

2 minor groups 

1 control group (high Completeness) 

2 GB groups (high Homogeneity) 

1 Oligoblastoma 

1 minor group 

Pearson 1 Control group 

1 GB group (small with high 

homogeneity) 

1 GB group (large but with low 

Homogeneity) 

1 Oligoblastoma  group (small) 

2 small groups 

1 control group 

2 GB groups ( 1  high Homogeneity) 

1 Oligo (small, low Completeness, 

high Homogeneity) 

3 minor groups 

Table 11 Qualitative analysis of the best result for each configuration 
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Many of the results agree on the existence of two GB groups although there is 

disagreement about the relative size of them. The best result, higher Purity, as can be 

expected from the qualitative description, occurs for the WO Outliers-ROW JS, but 

this value is an outlier in the opposite direction to how the convergence seems to be 

occurring. The convergent RAW-JS generates the fourth best result across 

configurations, very tied with RAW-ROW JS and WO Outliers-JS. 

The number of iterations used in the algorithm is a sensitive parameter in order to 

obtain a consensus partition from the algorithm. In the explored ranged, from 100 to 

500, only the first settings have achieved absolute convergence and it can be 

considered that the method generates a unique result (and a bunch of outliers), see 

Figure 23 and Figure 24.  

An increase on the number of iterations only produces a noticeable improvement in the 

convergence of the results for some of the settings used Raw-JS and WO Outliers-

ROW JS. In a lesser degree, also for Raw-Pearson there is an increase on the 

convergence of the solution partition but not enough to consider the method generates 

a unique solution. 

The convergence is not only at the level of the final result but also at the individual 

clustering algorithms considered in the study. The Complex Networks modularity 

based method is by far the most stable method of the three used, with convergence at 

membership coefficient and partition generated. MSTKNN, generates the wider 

membership coefficient range, see Table 34. But the partitions generated show the 

same degree of convergence than Complex Networks, Table 39, and create the 

conditions for the method to converge: the two methods that generate the more 

different solutions converge separately for a number of iterations around 500. 

The changes introduced in the existing algorithms, weighting the partitions, have a 

positive impact on the stability of the partitions generated without biasing the results to 

the number of partitions that appears more often (MSTKNN), has a larger r range(CN 

modularity) or larger cophenetic distance difference (HC), see Table 6 and Figure 13 

as an example. 

About the effect of normalization, column normalization or row and column 

normalization, only the first has generated a convergent solution and this only for the 

complete dataset (including outliers). This may indicate that this extra normalization 

by row is getting rid of part of the discriminating information required to consensuate 

a partition. Jensen-Shannon is then measuring not only the expression level of genes 

among samples but the difference across samples and genes, first term in JSD, 

Equation 10. 

The fact that when the outliers are removed, the same convergence level is not 

achieved also indicates that the information on the outliers is required for the 

consensus and that despite the data distribution being wide this information is 

necessary. When the outliers are removed, the pairwise distances become more 

homogeneous and while the partitions obtained are still meaningful, the consensus is 
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not achieved. The redundancy in the Microarray Data is not enough to compensate for 

the aggressive removal of features. 

The Pearson correlation is not able to converge for none of the two datasets. This 

circumstance indicates that in order to measure the distance among samples is not only 

important the correlation among samples, as Pearson measures, but also the variation 

among genes in the samples and while Pearson considers σx of the distributions, the 

wide range of values in the gene expression matrix may not be able to properly 

represent it. JSD based on entropy, and using logarithms, is a better option. 

The decision of using the two more different individual algorithm solutions, is not 

biasing the result as for different settings, the pair that receives the more votes is 

different, example Table 8. MSTKNN is always one of the algorithms involved. 

 
Figure 15 Consensus partition result for RAW-JS settings 

The main question to be answered is how the consensus can be reached when one of 

the two components (MSTKNN) has such important variability, in the membership 

coefficient.  

To verify that, analogously to how the final solution robustness has been assessed, the 

solutions generated for each of the methods have been compared pairwise,  Table 39, 

there it can be observed that for Complex Networks algorithm and MSTKNN, for 500 

iterations in the consensus, there is absolute convergence of the solution generated. 

This does not happen for Hierarchical Clustering that maintains high variability, as 
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could be expected from the comments in IV.C.1)c) Disadvantages of Hierarchical 

Clustering. For the WO Outliers-Row JS configuration, the second closer to 

convergence, only the CN algorithm converges, Table 40. 

The reason then for the high variability of the membership coefficient comes, because 

of the weighting system, not only from the variability of the consensus matrix that will 

become the individual solution, best K, also the other consensus matrixes have an 

influence as the weights change. To confirm this, we need to check how the best K is 

changing, what can be seen in Table 38; it can be observed that the best K, for Raw JS, 

is always the same, k=3. This happens even when the curves for different executions is 

very variable. It can also be observed that this is not the case for other configurations 

than RAW-JS for MSTKNN.  

About the comparison of the selected features with the CM1 indicators, for the 

experiment using bigML, there has not been any match for any of the 165 unique 

probes, 1-vs-all, with the features used by bigML. It has been observed that many of 

the features in the bigML decision trees are used several times in the same tree. The 

tree has 40 internal nodes and the same feature is used up to 8 times in the tree, only 3 

features are used only once. In this case, using the same feature many times can 

explain that there is no coincidence as the partitions are done in a more precise way. 

Also in DT, the selection of features is done at every level.  

In the case of scikit-learn only one out of seven features, 212187_x_at (PTGDS), has 

appeared in the CM1 features extracted from the study. In this case, none of the 

features is repeated in the Decision Tree.  What is interesting is that the gene appears 

in the G1X vs G2X group, down-regulated in second position, and G1X, down-

regulated in  second position, and in the Decision Tree it separates precisely the G1X 

and G2X groups (3
rd

 and 4
th
 group in Figure 17). 

218618_s_at  

236234_at  

212187_x_at  

FNDC3B 

PDE1A 

PTGDS 

220984_s_at 

225075_at  

 

SLCO5A1 

PDRG1 

 

243303_at 

220947_s_at 

 

ECHDC1 

TBC1D10B 

Figure 16 Probesets and genes used in Scikit Decision Tree for the cluster separation 

 
Figure 17 Scikit Decision Tree applied to the cluster solution  
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IX. DISCUSSION AND CONCLUSIONS 

Based on the primary solution, the one with greatest convergence, Raw-JS, two groups 

with 33 and 29 samples have been partitioned, with only 15 samples being assigned to 

other clusters and 8 and 11 samples respectively being included in the groups with a 

different diagnose. The control group (C), the only one that can be granted absolute 

reliability, has been clearly partitioned although the group includes 27 other samples 

that are not controls, what is a downside of the solution. The Oligoblastoma group(O) 

has also been identified, with 32 out of 50 samples in a majoritarian group where only 

11 samples do not share this diagnosis. The Astrocytoma group has not been clustered 

what is according to the low consensus ratio for the diagnose of this tumor subtype and 

its smaller representation in the dataset. 

Based on the results obtained it becomes tempting to try to classify the Unclassified 

samples in the dataset based on the cluster they belong in the solution partition, and the 

majoritarian class on it. If that could be accepted, three out of the four unclassified 

would correspond to GB subtype, what considering that GB is the most reliably 

classified subtype (see Appendix XI.G) seems unlikely, but possible. The fourth 

subtype would be a Control sample what is unlikely to appear as unclassified. As 

stated in [19], this classification process would be biased and what is required is to 

apply supervised learning techniques that based on the clusters obtained select, without 

the Unclassified samples, the discriminant features and then the classification could be 

performed. 

The statistical relevance of the results has been evaluated using two different methods. 

The first, internal, is based on the similarity of the results obtained when the 

experiments have been repeated several times and complemented by the measurement 

of the variation of the membership coefficients of the consensus matrixes of each of 

the clustering methods. The fact that robustness of the solution has been verified using 

internal methods is a solid indicator of the robustness of the result, as stated in [19]. 

The tables in section XI.B showing the Agreements and Indexes and Metrics witness 

this circumstance that is notably visible in Table 30, Table 31 and Figure 24 as well as 

Figure 25, Table 33 and Table 34. 

The second, external, measures the variability of the intra- and extra- Purity metrics 

designed to consider the discovery of new classes. Both of them show highly 

consistent behavior in all 6 cases and (almost) absolute convergence for the Raw-JS 

settings, see Figure 23 and Table 35.  

The value is around 1.43 (bounded 0-2), what is in the range of accuracy that 

physicians have in the best case, 70%, see Appendix XI.G, while the comparison is not 

strict as the measures used are different although strongly related. This level of 

accuracy is also in the same interval that other studies that have used the same dataset 

obtaining accuracies in the range of 40% to 72% depending on how the dataset is used 

(training or test), see XI.H Known results obtained from dataset GSE4290. 

For the RAW-JS solution, the relevance of the genes discriminating found via CM1, 

have been validated by an expert on biomarkers. The detailed results can be read on 



62 

 

Appendix XI.A. The link to carcinogenic process is manifest as it is the number of 

publications that relate these genes to brain tumors. The results confirm the existence 

of Glioblastoma subtypes that the literature claims, see XI.A.2) for an expert validation 

of the results.  

Verifying the statistical significance of the discovered genes, what is a common 

practice in the literature, as stated in [19],  cannot be made based on conventional 

statistical tests, as the tests assume independence of the class definition and 

expression-profile data, what is not the case for cluster defined classes. 

The lack of coincidence when trying to match the results to the features used in 

decision trees, gives support to [19], when claims that the classification of the 

unknown samples cannot be done based on the clustering results and a supervised 

method is required. 

Also based on the Qualitative Analysis we find that from the 194 unique genes 

considered relevant for the study 119 genes are directly associated with Cancer and 

nervous diseases, what represents 61.3%. The number of unique genes is also an 

important factor to consider, as detailed in Appendix XI.C.1).  

From a total theoretical of 453 after removing the probesets not in the SOURCE 

database, and counting only once the G1X-vs-G2X and its complementary, only 194 

genes have remained what make for a very compact set that also adds, because of the 

many-to-1 association, another indicator of robustness of the solution. 

The robustness happens also for each of the CM1 classes identified as can be seen in 

Table 49, where the number of unique genes consolidating by class (no coincidence of 

probeset since CM1 index is unique per each feature) is 417 out of 553. 

In addition, the 19 out  of 160 genes also found in other GSE4290 studies, are another 

proof of the interest of the method, as the low percentage cannot bring us to 

underestimate the result given the diversity of the studies considered, their techniques 

and their low mutual agreement (only 5 genes appear more than once), see Appendix 

XI.H. 

Overall, the current study has contributed a method in order to extract a consensus 

clustering even when different algorithms have very divergent views of the dataset. 

The existing algorithms in the literature ignore some of the problems unveiled as part 

of the research. The proposed methodology can be adapted by using different 

algorithms and metrics to consider convergence. 
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X. FUTURE WORK 

The results obtained are promising in order to continue working on the evolution of the 

methodology proposed. Obvious evolutions would be to include other clustering 

methods, and specifically methods that are based on the whole feature space, as the 

more different ones from the ones already considered. 

A comparison of the effect of the weights assigned to the different partitions would 

help to understand the main source of variability in the method and come out with new 

weighting parameters that can guarantee the convergence for different clustering 

algorithms or indicate that the lack of convergence shows the algorithm is not able to 

partition the dataset robustly. 

The main question open by the study is how the clustering would be affected if the 

CM1 genes selected, both 1-vs-all and 1-vs-1, would be used as feature selection and 

the process re-run for the subset of probesets. The hypothesis to confirm is that the 

clusters will become stronger, requiring less iterations to reach strong consensus, but 

also that the results will improve as measuring only the relevant genes will get rid of 

the noise introduced by the indiscriminant genes (that are 2 orders of magnitude more 

numerous) producing a more reliable result. This process could be repeated iteratively 

until a certain stability criterion is met. This process corresponds to the red arrow in 

Figure 6. 

The dataset used in the study is a quite large one, if compared to other Microarray Data 

studies, the effect of the size of the dataset should be considered and datasets with less 

samples be tested. 

The new defined intra-/extra-Purity measure should be further evaluated in order to 

compensate for the biases already detected and explained in its definition. 

Additionally, it could be modified in order to be able to manage better cases where the 

size of the different classes is unbalanced. A first approach in this direction would be 

to consider the relative number of elements of each class instead of its absolute 

number. 

This measure could also be improved if the membership coefficient in the solution 

partition for each of the samples is considered, instead of a 0/1, as it is the case now, 

that would connect our method with existing clustering methods based on fuzzy logic 

as well as Bayesian methods like Block Model [62] that when evaluated have 

produced quite interesting results in almost real time and where a better data 

modelling, to satisfy data distribution requirements for the method, could improve the 

overall results. 

 
Table 12 Block model clustering confusion matrix 

0 1 2 3 4

Control 1 1 0 0 19 3 23

Glio 2 2 4 62 4 5 77

Unknown 7 0 1 2 1 0 4

10 7 96 33 34

14 3 6

Oligo 4 4 2 18 6 20

CLASS
Astro 3 3

BLOCK

26

50

0
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XI. APPENDIX 

A. Bio-interpretation of the results 

1) Qualitative evidence of relevance 

For the lists of genes obtained, Table 47 and Table 48, its relationship to Cancer 

processes has been assessed. In order to do that, the genes have been queried against 

the database CTD (Comparative Toxicogenomics Database) and the Curated Disease 

Associations extracted: http://ctdbase.org/tools/batchQuery.go. All the associations 

obtained are made based on PubMed publications. 

Based on that, the following conclusions have been extracted. The 8 genes on Table 14 

correspond to genes that in CTD appear linked to varieties of Epilepsy (our control 

group is made up of Epilepsy patients). But only 2 of the genes (STXBP1 and 

SLC1A2) are found in the CX-vs-all CM1 selection. This happens because genes are 

usually involved in many biological processes. Also the information provided doesn’t 

consider the degree of participation on the diseases so the results in this part must be 

considered as weak evidence. 

Table 15 contains the 18 genes related directly to a variety of different tumor types 

(glioma, glioblastoma, gliosarcoma, astrocytoma, oligodendroglioma, lymphoma, 

neuroblastoma). Only 2 of the genes in the Epilepsy list (NTRK2, VEGFA) appear in 

this list. 

Table 16 contains the 89 genes related to any kind of Cancer disease. Only 4 of the 

genes in the Epilepsy list appear in this list (NTRK2, VEGFA, SLC1A2, GAP43). 

Since the tissue being studied is brain tissue and the technique used is based on mRNA 

and therefore active genes, the gene can be considered related to the brain tumor. 

Table 17 contains the 119 genes that the database associates with any kind of cancer 

plus nervous diseases, as advanced states of the disease cause other nervous problems 

to appear. 

In addition to this, the KEGG database can be used to analyze the relationships among 

genes from different perspectives. This analysis requires a deeper understanding of the 

medical implications in order to be properly evaluated and can only be properly made 

by an expert in the topic. 

Finally, comparing the genes identified in the study with others that have been 

considered relevant in studies that have also used the GSE4290 dataset, see Appendix 

H, we find that we have identified 19 out of 160 unique genes. This percentage 

although can be considered low, is not so low, as in the studies only 5 genes appear in 

more than one study. Also, some of the studies combine information from different 

datasets and the GSE4290 is used as test set and in other cases the studies are based 

also on biological experiments. 

  

http://ctdbase.org/tools/batchQuery.go
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MBP OLIG2 ID4 

PLP1 VCAN EGR1 

BASP1 SOX8 APOD 

EGFR IGFBP2 GSN 

PTN CHI3L1 ANXA1 

PTPRZ1 TIMP1 CD99 

ENPP2     

Table 13 Genes also found in other GSE4290 studies 

SPARCL1 Downregulated in G1X-vs-all NES Appears in G1X-vs-G2X 

STXBP1 Upregulated in CX-vs-All NTRK2 Downregulated in G1X 

Upregulated in OX 

Appears in G1X-vs-G2X 

SLC1A2 Upregulated in CX-vs-All GRIA2 Downregulated in G1X 

VEGFA Upregulated in G1X and G2X-vs-All.  

Downregulated in OX-vs-All 

GAP43 Downregulated in OX 

Table 14 Genes related to Epilepsy 

FAM107A FTH1 SOD2 

NTRK2 HLA-C HLA-DRB1 

CHI3L1 HLA-B HEY1 

SPP1 HLA-A GNAS 

FN1 EGFR JAG1 

VEGFA B2M APOD 

Table 15 Genes related to Glioma, Glioblastoma, Gliosarcoma, Astrocytoma, Oligodendroglioma, Limphoma, 

Neuroblastoma 

FAM107A CST3 CD44 CHI3L1 B2M PEG3 

TF S100A6 CTSB SERPINA3 GNB2L1 GNAS 

BASP1 IGFBP5 HLA-DRB1 SPP1 EEF1A1 VOPP1 

NTRK2 LGALS3 CD74 VIM IGFBP7 HSPA8 

NDRG2 ANXA1 RPL3 FABP7 CD99 PPIA 

CRYAB MAOB PABPC1 IGFBP2 ACTG1 DBI 

SCD UCHL1 ZBTB20 LGALS1 MT2A EGR1 

OLFM1 HLA-C MARCKS FN1 POSTN COL6A1 

SLC1A2 MT3 VCAN VEGFA IGFBP3 MALAT1 

ATP1B1 HLA-B ID4 FTL PTN JAG1 

EEF1A2 HLA-A RPS3 FABP5 AQP1 TRIO 

TSC22D1 RPS19 RPS6 CD63 LTF APOD 

FXYD6 RPL13 APOE GAP43 A2M GSN 

TUBB2A SPARC HEY1 FTH1 CLU SEPP1 

PTPRO EGFR PRKACB PGK1 SOD2   

Table 16 Genes related to Cancer 



66 

 

 

 

MBP MT3 NPTN MARCKS OLFM1 POSTN FABP5 HSPA8 

PLP1 HLA-B TUBB2A VCAN ADD3 IGFBP3 CD63 NES 

FAM107A HLA-A PTPRO ID4 QDPR PTN GAP43 PPIA 

RTN1 RPS19 CHI3L1 RPS3 SPARCL1 AQP1 FTH1 DBI 

TF RPL13 LDHA RPS6 SLC1A2 LTF PGK1 EGR1 

SNAP25 SPARC SERPINA3 APOE TSPAN7 A2M COL1A1 COL6A1 

BASP1 EGFR SPP1 HEY1 SOX8 CLU CST3 MALAT1 

NTRK2 B2M VIM PRKACB CALM1 SOD2 S100A6 JAG1 

CHN1 GNB2L1 FABP7 PEG3 ATP1B1 CD44 IGFBP5 TRIO 

NDRG2 EEF1A1 TIMP1 IDS GABBR1 CTSB LGALS3 APOD 

CRYAB IGFBP7 IGFBP2 SLC17A7 NEFL HLA-DRB1 ANXA1 GSN 

KIF5C CD99 LGALS1 YWHAH SYN2 CD74 COL4A1 CD24 

SCD RPL27A FN1 SERPINI1 EEF1A2 RPL3 MAOB PSAP 

STXBP1 ACTG1 VEGFA GNAS TSC22D1 PABPC1 UCHL1 SEPP1 

GRIA2 MT2A FTL VOPP1 FXYD6 ZBTB20 HLA-C   

Table 17 Genes related to Cancer and Nervous System Disease 

 

2) Expert evaluation: a bio perspective (by Prof. Pablo Moscato) 

Based on the CM1 features for the 4 1-vs-all separations and the G1X-vs-G2X and 

G2X-vs-G1X, Prof. Pablo Moscato, Co-Director of the Centre for Bioinformatics, 

Biomarker Discovery and Information-based Medicine at the Hunter Medical Research 

Institute (Newcastle, NSW, Australia), has analyzed the results. What follows in this 

subsection XI.A.2), is his analysis of the results applying its knowledge in the field of 

bioinformatics and cancer research. His collaboration has been independent of the rest 

of the study. 

The bibliographical references in this section, numerous as they are, close to 200, 

are included in a separated References section: References for bio-informatics 

study. 

 

a) Preliminary analysis 

Figure 18 shows the Venn Diagram analysis of CM1 positive genes, upper-expressed, 

in the comparisons between G1-vs-all (G1X), G2-vs-all(G2X), O-vs-all(OX) and C-

vs-all(CX). We have only used the probesets that have a positive value of CM1. For 

each set, we listed gene names to which probes have been mapped and also the 

probe sets names. This naturally explains why we have 91 objects in CX, which 

correspond to the 50 associated probe sets with the highest values of CM1 scores as 

well as the 41 gene names that have been associated to them (totalling 91 markers to 

compare). 
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The first observation is that, in general, there is no intersection between the sets, with 

the single exception of 39 markers that are in the intersection of G1X and G2X. In this 

intersection subset we found several markers which are common in glioblastoma. The 

list contains the following genes:  

 SPP1 (Secreted Phosphoprotein 1, Osteopontin), 

 CHI3L1 (chitinase 3-like 1 (cartilage glycoprotein-39),  

 VIM (Vimentin),  

 FN1 (Fibronectin 1),  

 VEGFA(vascular endothelial growth factor A),  

 HLA-A (major histocompatibility complex, class I, A),  

 HLA-B (major histocompatibility complex, class I, B),  

 HLA-C (major histocompatibility complex, class I, C),  

 TIMP1 (TIMP metallopeptidase inhibitor 1),  

 MT2A (metallothionein 2A),  

 LGALS1 (lectin, galactoside-binding, soluble, 1),  

 TMSB10 (thymosin beta 10),  

 IGFBP7 (insulin-like growth factor binding protein 7),  

 B2M (beta-2-microglobulin) 

 CD63 (CD63 molecule) 

A probe corresponding to 234989_at could not be mapped to a known gene.  

There are also probesets that differentiate the group G1 from the rest. They total 39. 

They correspond to the following genes:  

 EGFR (epidermal growth factor receptor),  

 FABP7 (fatty acid binding protein 7, brain), 

 SEC61G (Sec61 gamma subunit), 

 PTN (pleiotrophin), 

 LDHA (lactate dehydrogenase A), 

 IGFBP2 (insulin-like growth factor binding protein 2, 36kDa) 

 IGFBP3 (insulin-like growth factor binding protein 3), 

 COL4A1 (collagen, type IV, alpha 1),  

 ACTG1 (actin, gamma 1), 

 POSTN (periostin, osteoblast specific factor),  

 LGALS3 (lectin, galactoside-binding, soluble, 3), 

 RPS19 (ribosomal protein S19) 

 RPS2 (ribosomal protein S2)  
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The following probe sets, which are also in this group, are not mapped to a gene 

(232541_at, 216438_s_at). 

 
Figure 18 Probesets and genes from 1-vs-all CM1 

The third group to discuss is the 47 probesets that correspond to G2X which are not in 

the other subsets. The genes associated to these probesets are: 

 SERPINA3 (serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, 

antitrypsin), member 3),  

 C3 (complement component 3),  

 FTL (ferritin, light polypeptide),  

 FTH1 (ferritin, heavy polypeptide 1),  

 LTF (lactotransferrin),  

 CD74 (CD74 molecule, major histocompatibility complex, class II invariant 

chain), HLA-DRB1 (major histocompatibility complex, class II, DR beta 1),  

 HLA-DPA1 (major histocompatibility complex, class II, DP alpha 1),  

 CD44 (CD44 molecule (Indian blood group),  

 SOD2 (superoxide dismutase 2, mitochondrial),  

 CLU (Clusterin),  

 A2M (alpha-2-macroglobulin),  

 COL1A1 (collagen, type I, alpha 1),  

 S100A6 (S100 calcium binding protein A6),  

 C1QC (complement component 1, q subcomponent, C chain),  

 CTSB (cathepsin B),  

 MAOB (monoamine oxidase B),  
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 LAPTM5 (lysosomal protein transmembrane 5),  

 AQP1 (Aquaporin 1),  

 ANXA1 (annexin A1), 

 IGFBP5 (insulin-like growth factor binding protein 5) 

Many of the 50 probesets in CX correspond to neuron markers like: 

 VSNL1 (visinin-like 1),  

 RGS4 (regulator of G-protein signaling 4),  

 SNAP25 (synaptosomal-associated protein, 25kDa),  

 NEFL (neurofilament, light polypeptide), etc.,  

or oligodendrocyte specific markers like:  

 MBP (myelin basic protein),  

 PLP1 (proteolipid protein 1), etc  

The increased value of CM1 in this group is clear as the comparison of the tumors 

against the controls indicate that there is a process of dedifferentiation from the brain 

architecture tissue and these neuron and oligodendrocyte specific markers are less 

abundant due to large majority of tumor cells in the samples. This said, we will 

concentrate our attention to the following three groups. 

 
Figure 19 Venn-diagram for G1X-vs-G2X, OX, CX 

We then proceed to calculate a signature of the top 100 probesets that best separate, 

according to the CM1 score, the group of samples labelled G1 from those labelled G2. 

As the CM1 score is not symmetric we calculated CM1 scores for all probes in two 

opportunities, i.e. having each of the two groups as the group of interest. However, in 

this case both results gave the same set of top positive and negative first 50 probesets. 

We call this group of probesets and the associated mapped genes as `G1X-vs-G2X’ 

(see Figure 19). We compare this set with those that have appeared in the list for OX 

(that differentiate this group from the rest of samples) and also those that are in the 
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group CX. We observe that there is a small intersection in the first case, five probesets 

(221796_at, 221795_at, 209283_at, 203381_s_at, 203382_s_at) mapping to the genes: 

 NTRK2 (neurotrophic tyrosine kinase, receptor, type 2),  

 CRYAB (crystallin, alpha B)  

 APOE (apolipoprotein E)  

In the second case we have matches, corresponding to the probesets: 209072_at, 

211748_x_at, 210198_s_at, 212187_x_at, 207323_s_at, 227556_at, 209123_at, 

201242_s_at, with matches to well-known oligodendrocyte markers: 

 MBP (Myelin Basic Protein) [1] 

 PLP1 (Proteolipid Protein 1/ Myelin proteolipid protein) [1] 

 PTGDS (prostaglandin D2 synthase 21kDa (brain))  

 NME7 (non-metastatic cells 7, protein expressed in (nucleoside-diphosphate 

kinase)), 

 QDPR (quinoid dihydropteridine reductase)  

 ATP1B1 (ATPase, Na+/K+ transporting, beta 1 polypeptide) 

This relatively small intersection indicates that the differences between the groups G1 

and G2 are, its top CM1 scoring, when computed independently of any other type of 

sample, very different to those of CX and OX as previously obtained. 

 
Figure 20 G1X and G2X Venn diagram analysis 

With this information, we proceeded to compute another diagram, Figure 20. We 

include again this group of 100 probesets and their mapped genes and we label them as 

`G1-vs-G2’. We compare this lists with those of the intersection of the groups G1X 

and G2X (now labelled G1X-int-G2X) and the group obtained from G1X but 
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eliminating the markers in G2X (labelled G1X/G2X) and those in G2X but eliminating 

the markers in G1X (analogously labelled [2, 3]).  

In this case we are interested in some intersections.  The intersection of G1-vs-G2 and 

G1X-int-G2X only brings as a marker probeset 201426_s_at, for VIM (Vimentin). 

This is an important finding that will be discussed later. The intersection of G1-vs-G2 

and G1X/G2X brings the probesets 216438_s_at, 210095_s_at, 200869_at, 

208949_s_at, 210809_s_at, 205029_s_at, 201984_s_at, 202718_at, 211737_x_at, [4, 

5], 205030_at, 224999_at, 201983_s_at, corresponding to the genes: RPS2, IGFBP3, 

LGALS3, EGFR, POSTN, FABP7, IGFBP2, PTN, SEC61G.  

The intersection between G1-vs-G2 and G2X/G1X is smaller with 200748_s_at, 

202376_at, 217767_at, 213187_x_at, 212788_x_at, 200839_s_at, 201721_s_at, 

225353_s_at corresponding to the genes: FTH1, SERPINA3, C3, FTL, CTSB, 

LAPTM5, C1QC. 

b) Annotation of the results 

In Figure 18 we pointed to the existence of several genes in both G1X and G2X that 

have the top CM1 scores. Since G1 and G2 are clusters that contain many samples 

labelled as glioblastoma, it is important to correlate the result with the literature. We 

start with the genes found in the intersection. The list includes: 

Gene Name and synonyms References 

SPP1 Secreted Phosphoprotein 1, Osteopontin 14: [6-19] 

CHI3L1 Chitinase 3-like 1 (cartilage glycoprotein-39) (Synonims 39 kDa 

synovial protein, ASRT7, Cartilage glycoprotein 39, CGP-39, 

Chitinase-3-like protein 1, DKFZp686N19119, FLJ38139, GP39, 

GP-39, hCGP-39, HC-gp39, HCGP-3P, YKL40, YKL-40, YYL-

40 ) 

36: [6, 11, 20-53] 

VIM Vimentin 11: [23, 50-59] 

FN1 Fibronectin 1 25: [11-13, 60-81] 

VEGFA Vascular endothelial growth factor A 6: [3, 5, 82-85],   

TIMP1 TIMP metallopeptidase inhibitor 1 11: [14, 88-97] 

MT2A metallothionein 2A 1:[98] 

HLA-A major histocompatibility complex, class I, A 2: [86, 87] 

CD63 CD63 molecule 1: [13] 

HLA-B major histocompatibility complex, class I, B Related to HLA-A 

HLA-C major histocompatibility complex, class I, C Related to HLA-A 

LGALS1 lectin, galactoside-binding, soluble, 1  Related to LGALS3 

TMSB10 thymosin beta 10  
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IGFBP7 insulin-like growth factor binding protein 7 Related to IGFBP2 

B2M beta-2-microglobulin  

Table 18 Genes common to G1X and G2X, literature references 

We now turn our attention to the probesets that differentiate the group G1 from the 

rest. They correspond to the genes in Table 19. 

Gene Name and synonyms References 

EGFR epidermal growth factor receptor 19: [86, 99-116] 

FABP7 fatty acid binding protein 7, brain 8: [117-124] 

SEC61G Sec61 gamma subunit 2:[86, 125] 

PTN pleiotrophin 12:[4, 5, 115, 126-134] 

IGFBP3 insulin-like growth factor binding protein 3 13:[5, 135-146] 

COL4A1 collagen, type IV, alpha 1 1:[116] 

ACTG1 actin, gamma 1 1:[147] 

POSTN periostin, osteoblast specific factor 3:[16, 148, 149] 

RPS2 ribosomal protein S2 2:[150, 151] 

LGALS3 lectin, galactoside-binding, soluble, 3 See below 

IGFBP2 insulin-like growth factor binding protein 2, 36kDa See below 

RPS19 ribosomal protein S19  

LDHA lactate dehydrogenase A  

Table 19 Genes only in G1X 

The following probe sets, which are also in this group, are not mapped to a gene 

(232541_at, 216438_s_at). 

The intersection of G1-vs-G2 and G1X/G2X brings the genes in Table 20. 

Gene Name and synonyms References 

EGFR epidermal growth factor receptor 13:[4, 5, 115, 126-134] 

POSTN periostin, osteoblast specific factor 3:[16, 148, 149] 

FABP7 fatty acid binding protein 7, brain 8:[117-124] 

IGFBP3 insulin-like growth factor binding protein 3 13:[5, 135-146], 

PTN  pleiotrophin 13:[4, 5, 115, 126-134], 

SEC61G  Sec61 gamma subunit 2: [86, 125] 



73 

 

LGALS3 lectin, galactoside-binding, soluble, 1 See below 

IGFBP2 insulin-like growth factor binding protein 2, 36kDa See below 

Table 20 Genes G1-vs-G2 and G1X/G2X 

The intersection between G1-vs-G2 and G2X/G1X contains the genes in Table 21. 

Gene Name and synonyms References 

SERPINA3 Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 2: [9, 152] 

FTL ferritin, light polypeptide 3: [153-155] 

CTSB Cathepsin B/APP secretase 20: [156-175] 

LAPTM5 lysosomal protein transmembrane 5 1:[176] 

FTH1 Ferritin, Heavy polypeptide 1/Cell proliferation-inducing gene 15 protein  

C3 Complement Component 3  

C1QC complement component 1, q subcomponent, C chain  

 Table 21 Genes G1-vs-G2 and G2X/G1X 

c) Conclusions 

Overall, the number of genes that are presented in Tables 18, 19 and 20 that are related 

to glioblastoma is really impressive. It does seem to be that there are differences 

related to the expression of EGFR, IGFBP3 and PTN (to mention three which have 

been widely studied) while the method also brings to the attention IGFBP2 (from the 

same family) and LGALS3 (also known as Galectin-3) it has been proposed as a 

marker that can distinguish pilocytic astrocytomas from diffuse astrocytomas, and 

glioblastomas from anaplastic oligodendrogliomas in [177]. These results indicate that 

perhaps it should be consider as a marker to be used in relationship with the others in 

these panels. In [78], the authors analyzed 409 cases of surgically resected primary 

brain tumors and found its expression to be “definitely positive but heterogeneous” in 

glioblastoma and other types of tumors. This is coherent with the observation here, 

which seems to indicate that LGALS3 may co-express with EGFR, IGFBP3 and 

PTN in one subtype of glioblastoma. We refer to other papers on this gene for further 

references on reports on this gene in relationship with glioblastoma 

[177,178,179,180,181,182,183,184,185,186,187,188,189]. Plasma IGFB2 levels seem 

to correlate with prognosis of glioma patients [190] and anaplastic astrocytomas [191]. 

Immunohistochemistry for this gene was positive in 88.8% of the cases in a study 

involving 28 glioblastomas [192]. Several other studies have also linked it to cell 

proliferation and migration [193] and it deserves also to be included in the studies of 

function as has been reported elsewhere as being of interest 

[190,191,192,193,194,195,196,197,198,199,200,201,202]. 
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B. Experiments results 

This section contains all the graphs corresponding to the different experiments run for 

the study. 

1) All methods, N Iterations=100 

 Raw, N Iterations= 100 
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Table 22 Partition results for N Iterations=100, Raw Dataset 

 

 WO Outliers, N Iterations=100 

C
o
lu

m
n
 N

o
rm

al
iz

at
io

n
 +

 J
en

se
n

-S
h
an

n
o
n

 

 



76 

 

R
o
w

+
C

o
lu

m
n
 N

o
rm

al
iz

at
io

n
 +

 J
en

se
n

-S
h
an

n
o
n

 

 

P
ea

rs
o
n

 

 

Table 23 Partition results for N Iterations=100, WO Outliers 
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Table 24 Indexes and Agreements for N Iterations=100 
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Figure 21 Accuracy for N Iterations=100 

2) All settings, N Iterations=200 
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Table 25 Partition results for N Iterations=200, Raw Dataset 
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Table 26 Partition results for N Iterations=200, WO Outliers 

 

 Raw WO Outliers 

Column 

Normalization  

+  

Jensen-

Shannon 

  

Row+Column 

Normalization  

+ 

 Jensen-

Shannon 

  



83 

 

Pearson 

  

 Raw WO Outliers 

Column 

Normalization  

+  

Jensen-

Shannon 

  

Row+Column 

Normalization  

+ 

 Jensen-

Shannon 

  

Pearson 

  

Table 27 Indexes and Agreements for N Iterations=200 
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Figure 22 Accuracy for N Iterations=200 

 

3) All settings, N Iterations=500 
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Table 28 Partition results for N Iterations=500, Raw Dataset 
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Table 29 Partition results for N Iterations=500, WO Outliers 
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Table 30 Indexes for N Iterations=500 
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Table 31 Agreements for N Iterations=500 
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Figure 23 Accuracy for best partition N Iterations=500 

 
Figure 24 Membership coefficients for the clustering methods (RAW-JS) 
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4) Raw, Column-Normalization, Jensen-Shannon, N Iterations=100 to 400 

Iterations Raw, Column-Normalization, Jensen-Shannon 

100 

 

200 
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300 
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Table 32 Partition results for N Iterations=100 to 400, Raw Dataset, column normalization, Jensen-Shannon 
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N Iterations Agreements Indexes 
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Table 33 Agreements and Indexes for Raw Jensen-Shannon data 
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Figure 25 Accuracy for different Nr of Iterations for Raw Jensen-Shannon settings 

Iterations Raw, Column-Normalization, Jensen-Shannon 

100 
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Table 34 Membership coefficients for the different clustering algorithms 
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5) Comparison of Accuracy for all methods 

Iterations All methods 

100 

 

200 

 

500 

 

Table 35 Evolution of accuracy convergence for different N Iterations 
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6) Selection of Best K 

In order to show the variability of the Best K for each algorithm 10 executions have 

been performed and the AUC and best K plotted for each of them. The thickness of the 

vertical lines is proportional to the number of times the K has been the one with best 

AUC improvement. In some occasions the area for K=2 is not represented as it 

corresponds to ∞ an increase of as it compares to 0. The evolution of the AUC for 

each execution is shown in a different color helping to have an idea of the stability of 

the process. 
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Table 36 Selection of best K for CN 
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Table 37 Selection of best K for HC 
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Table 38 Selection of best K for MSTKNN 

  



103 

 

7) Solution variability for each algorithm for RAW-JS configuration 

 CN HC MSTKNN 

100 

   

200 

   

500 

   

Table 39 Variability of the solutions for individual algorithms in RAW-JS configuration 

8) Solution variability for each algorithm for WO Outliers-JS 

 CN HC MSTKNN 

500 

   

Table 40 Variability of the solutions for individual algorithms in WO Outliers-Row-JS configuration 
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C. Feature selection using CM1 

1) Probeset to Gene matching from CM1 extracted features 

Table 44, Table 45 and Table 46 show the list of features obtained from the CM1 

indicator for the main scenarios in the study, 1-VS-all for all the classes and 1-vs-1 for 

the two Glioblastoma types detected, over-expressed (green), under-expressed(red). 

The initial list of 100 probesets for case (50 over-expressed, 50 under-expressed) has 

been mapped to their corresponding genes using the SOURCE public database in a 

many-to-1 process (more than one probeset correspond to the same gene):  

http://smd.princeton.edu/cgi-bin/source/sourceBatchSearch 

From the whole list of probesets shown in the aforementioned tables, only 26 unique 

probesets, appearing 47 times (repetitions), are not found on the SOURCE database, 

Table 41. 

 

213841_at 

200869_at 

221798_x_at 

234989_at 

216438_s_at 

232541_at 

224999_at 

201522_x_at 

229606_at 

211458_s_at 

218094_s_at 

1554007_at 

209312_x_at 

215193_x_at 

213158_at 

215963_x_at 

227984_at 

1569872_a_at 

211927_x_at 

211940_x_at 

213828_x_at 

200834_s_at 

204018_x_at 

209458_x_at 

211745_x_at 

Table 41 Probes IDs not found on SOURCE database 

If the found genes are consolidated to eliminate duplicate assignments, we obtain the 

lists of genes in Table 47 and Table 48, where the name in brackets shows the number 

of genes in the column, respectively for up-regulated and down-regulated.  

It is also relevant to mention that despite CM1 not being a symmetric indicator, the 

Genes obtained for G1X-vs-G2X up-regulated match completely the G2X-vs-G1X 

down-regulated and vice versa, columns 5 and 6, compared crossway, in Table 47 and 

Table 48. Table 49 summarizes the number of unique genes per class, no duplication 

of probesets since CM1 score is unique for each probeset and also the “Not found” 

probesets for each class. The low total indicates high coherence of the results. 

If all the genes for 1-vs-all are consolidated, a total of 165 genes are obtained, Table 

42, the G1X-vs-G2X contribute 29 additional unique genes, Table 43, up to 194 genes. 

The maximum theoretical is 453, so it represents a ratio of appearance of 2.33 times 

per gene, what indicates a very compact set of genes. 
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Table 42 Unique genes 1-vs-All 

 

 

 

 

 
Table 43 Unique Gene IDs in G1X-vs-G2X, G2X-vs-G1X not in 1-VS-all 

 

MBP NDRG2 MLLT11 SYN2 PTPRO VEGFA YWHAG GNB2L1 IGFBP3 RPL34 OLIG2

PTGDS CRYAB SPARCL1 GPM6A NGFRAP1 FTL MAOB RPL13A PTN RPS3A SCD5

PLP1 KIF5C FAM123A EEF1A2 AK5 FABP5 UCHL1 RPLP2 AQP1 RPL7 SMOC1

FAM107A NRGN SLC1A2 TSC22D1 CHI3L1 CD63 HLA-C RPL39 LAPTM5 RPL3 LRIG1

RTN1 SCD TSPAN7 GABBR2 TMSB10 GAP43 MT3 RPS16 LTF PABPC1 BCAN

FBXL16 STXBP1 SOX8 RGS4 LDHA FTH1 HLA-B EEF1A1 A2M ZBTB20 C1orf61

TF GRIA2 CAMK2N1 MAP2 SERPINA3 PGK1 HLA-A RPS15A CLU MARCKS OLIG1

SNAP25 OLFM1 RTN3 FXYD6 SPP1 COL1A1 RPLP0 IGFBP7 HLA-DPA1 VCAN NME7

BASP1 MAP1A CALM1 NAPB VIM CST3 RPS2 RPS11 SOD2 ID4 PRKACB

SYT1 ADD3 ATP1B1 DNM1 FABP7 S100A6 RPS19 RPLP1 CD44 RPS3 PEG3

NTRK2 C7orf41 PEA15 NPTN TIMP1 IGFBP5 RPL13 CD99 CTSB RPS6 IDS

ALDOC QDPR GABBR1 TUBB2A IGFBP2 LGALS3 SPARC RPL27A C1QC TCF12 SLC17A7

VSNL1 EDIL3 BEX1 NDRG4 LGALS1 ANXA1 PTPRZ1 ACTG1 HLA-DRB1 APOE MDH1

PLEKHB1 GPRC5B NEFL AGXT2L1 SEC61G ACTN1 EGFR MT2A CD74 HEY1 YWHAH

CHN1 STMN2 ENC1 CPE FN1 COL4A1 B2M POSTN C3 RPL30 SERPINI1

TRIB2 HSPA8 LANCL2 COL6A1 APOD PFN2 ENPP2 SEPP1

GNAS NES EGR1 MALAT1 GSN DNER RNASE1

VOPP1 PPIA S100A16 JAG1 SLC44A1 CD24 CLDN11

HOPX DBI TMEM158 TRIO CLDND1 CNP PSAP
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Table 44 CM1 Underexpressed genes, 1-VS-ALL 

PROBE ID GENE SYMBOL PROBE ID GENE SYMBOL PROBE ID GENE SYMBOL PROBE ID GENE SYMBOL

209072_at MBP 203485_at RTN1 209395_at CHI3L1 201426_s_at VIM

211748_x_at PTGDS 203999_at SYT1 217733_s_at TMSB10 211720_x_at RPLP0

210198_s_at PLP1 203797_at VSNL1 209396_s_at CHI3L1 208856_x_at RPLP0

212187_x_at PTGDS 202507_s_at SNAP25 200650_s_at LDHA 201033_x_at RPLP0

207323_s_at MBP 227641_at FBXL16 202376_at SERPINA3 212433_x_at RPS2

209074_s_at FAM107A 210222_s_at RTN1 209875_s_at SPP1 213414_s_at RPS19

203485_at RTN1 204081_at NRGN 201426_s_at VIM 203107_x_at RPS2

227641_at FBXL16 211985_s_at CALM1 205030_at FABP7 221798_x_at not found

203400_s_at TF 225491_at SLC1A2 201666_at TIMP1 214351_x_at RPL13

202508_s_at SNAP25 212624_s_at CHN1 234989_at not found 200665_s_at SPARC

202391_at BASP1 202508_s_at SNAP25 202718_at IGFBP2 211972_x_at RPLP0

203999_at SYT1 202022_at ALDOC 216438_s_at not found 202649_x_at RPS19

221796_at NTRK2 202391_at BASP1 201105_at LGALS1 215313_x_at HLA-A

202022_at ALDOC 203146_s_at GABBR1 203484_at SEC61G 209395_at CHI3L1

203797_at VSNL1 202260_s_at STXBP1 211719_x_at FN1 204469_at PTPRZ1

209504_s_at PLEKHB1 218332_at BEX1 216442_x_at FN1 209396_s_at CHI3L1

221795_at NTRK2 205591_at OLFM1 210512_s_at VEGFA 201983_s_at EGFR

212624_s_at CHN1 221805_at NEFL 204141_at TUBB2A 216231_s_at B2M

202507_s_at SNAP25 211984_at CALM1 210495_x_at FN1 202376_at SERPINA3

206453_s_at NDRG2 202242_at TSPAN7 218309_at CAMK2N1 200869_at not found

209283_at CRYAB 203000_at STMN2 213187_x_at FTL 200651_at GNB2L1

203130_s_at KIF5C 201341_at ENC1 202345_s_at FABP5 210646_x_at RPL13A

214063_s_at TF 229039_at SYN2 200663_at CD63 200909_s_at RPLP2

204081_at NRGN 219549_s_at RTN3 212464_s_at FN1 213932_x_at HLA-A

200832_s_at SCD 209469_at GPM6A 204471_at GAP43 208695_s_at RPL39

202260_s_at STXBP1 201522_x_at not found 201341_at ENC1 212790_x_at RPL13A

211663_x_at PTGDS 204540_at EEF1A2 203797_at VSNL1 226131_s_at RPS16

205358_at GRIA2 215111_s_at TSC22D1 203999_at SYT1 209140_x_at HLA-B

205591_at OLFM1 209990_s_at GABBR2 200748_s_at FTH1 216526_x_at HLA-C

203151_at MAP1A 229606_at not found 200738_s_at PGK1 200716_x_at RPL13A

201034_at ADD3 221916_at NEFL 1556499_s_at COL1A1 212734_x_at RPL13

226018_at C7orf41 204337_at RGS4 212788_x_at FTL 204892_x_at EEF1A1

209123_at QDPR 225540_at MAP2 201360_at CST3 200781_s_at RPS15A

225275_at EDIL3 209470_s_at GPM6A 217728_at S100A6 211719_x_at FN1

203632_s_at GPRC5B 217897_at FXYD6 211959_at IGFBP5 214459_x_at HLA-C

203000_at STMN2 225111_s_at NAPB 208949_s_at LGALS3 211927_x_at not found

213841_at not found 215116_s_at DNM1 212624_s_at CHN1 201162_at IGFBP7

211071_s_at MLLT11 218309_at CAMK2N1 201012_at ANXA1 211911_x_at HLA-B

210222_s_at RTN1 202228_s_at NPTN 208636_at ACTN1 208812_x_at HLA-C

200795_at SPARCL1 204141_at TUBB2A 211980_at COL4A1 200031_s_at RPS11

230496_at FAM123A 200832_s_at SCD 222985_at YWHAG 200763_s_at RPLP1

225491_at SLC1A2 211458_s_at not found 204041_at MAOB 216442_x_at FN1

207547_s_at FAM107A 213841_at not found 201387_s_at UCHL1 211940_x_at not found

202242_at TSPAN7 209159_s_at NDRG4 204081_at NRGN 201029_s_at CD99

226913_s_at SOX8 221008_s_at AGXT2L1 216526_x_at HLA-C 213614_x_at EEF1A1

218309_at CAMK2N1 201116_s_at CPE 205970_at MT3 203034_s_at RPL27A

219549_s_at RTN3 211600_at PTPRO 209140_x_at HLA-B 201891_s_at B2M

211984_at CALM1 217963_s_at NGFRAP1 205029_s_at FABP7 213828_x_at not found

201242_s_at ATP1B1 219308_s_at AK5 202507_s_at SNAP25 210495_x_at FN1

200788_s_at PEA15 1554007_at not found 215313_x_at HLA-A 212363_x_at ACTG1
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Table 45 CM1 Overexpressed genes, 1-VS-ALL 

PROBE ID GENE SYMBOL PROBE ID GENE SYMBOL PROBE ID GENE SYMBOL PROBE ID GENE SYMBOL

209875_s_at SPP1 211959_at IGFBP5 200665_s_at SPARC 227556_at NME7

224585_x_at ACTG1 201163_s_at IGFBP7 201033_x_at RPLP0 203798_s_at VSNL1

213214_x_at ACTG1 201012_at ANXA1 200026_at RPL34 202741_at PRKACB

200869_at not found 216231_s_at B2M 200099_s_at RPS3A 209242_at PEG3

212185_x_at MT2A 201162_at IGFBP7 214680_at NTRK2 212221_x_at IDS

210809_s_at POSTN 217733_s_at TMSB10 208856_x_at RPLP0 204229_at SLC17A7

208729_x_at HLA-B 200663_at CD63 211720_x_at RPLP0 210222_s_at RTN1

212363_x_at ACTG1 211911_x_at HLA-B 200717_x_at RPL7 209123_at QDPR

221798_x_at not found 209047_at AQP1 211666_x_at RPL3 200978_at MDH1

210512_s_at VEGFA 201721_s_at LAPTM5 215157_x_at PABPC1 204141_at TUBB2A

234989_at not found 204041_at MAOB 235308_at ZBTB20 229606_at not found

203107_x_at RPS2 1556499_s_at COL1A1 201670_s_at MARCKS 204337_at RGS4

210095_s_at IGFBP3 202018_s_at LTF 221731_x_at VCAN 202228_s_at NPTN

211980_at COL4A1 201105_at LGALS1 209292_at ID4 219308_s_at AK5

201984_s_at EGFR 217757_at A2M 212391_x_at RPS3A 201020_at YWHAH

210495_x_at FN1 208792_s_at CLU 214351_x_at RPL13 211458_s_at not found

212464_s_at FN1 211990_at HLA-DPA1 217897_at FXYD6 222985_at YWHAG

202649_x_at RPS19 212185_x_at MT2A 208692_at RPS3 205352_at SERPINI1

212433_x_at RPS2 209312_x_at not found 201254_x_at RPS6 225491_at SLC1A2

201105_at LGALS1 214459_x_at HLA-C 213158_at not found 203151_at MAP1A

200650_s_at LDHA 210512_s_at VEGFA 208986_at TCF12 215116_s_at DNM1

208949_s_at LGALS3 208812_x_at HLA-C 225897_at MARCKS 201242_s_at ATP1B1

216442_x_at FN1 221477_s_at SOD2 203382_s_at APOE 225111_s_at NAPB

216231_s_at B2M 215193_x_at not found 44783_s_at HEY1 211984_at CALM1

217733_s_at TMSB10 212063_at CD44 200062_s_at RPL30 204540_at EEF1A2

208812_x_at HLA-C 200838_at CTSB 212039_x_at RPL3 210198_s_at PLP1

211719_x_at FN1 216526_x_at HLA-C 213825_at OLIG2 207323_s_at MBP

205029_s_at FABP7 225353_s_at C1QC 215963_x_at not found 221916_at NEFL

201162_at IGFBP7 201666_at TIMP1 211073_x_at RPL3 201387_s_at UCHL1

213932_x_at HLA-A 213932_x_at HLA-A 227984_at not found 203000_at STMN2

213414_s_at RPS19 209140_x_at HLA-B 205383_s_at ZBTB20 229039_at SYN2

214459_x_at HLA-C 200839_s_at CTSB 224901_at SCD5 203130_s_at KIF5C

209140_x_at HLA-B 217728_at S100A6 222784_at SMOC1 202391_at BASP1

200663_at CD63 212464_s_at FN1 200787_s_at PEA15 211985_s_at CALM1

211911_x_at HLA-B 208306_x_at HLA-DRB1 202022_at ALDOC 201341_at ENC1

216438_s_at not found 209619_at CD74 221795_at NTRK2 221805_at NEFL

216526_x_at HLA-C 215313_x_at HLA-A 1569872_a_at not found 203485_at RTN1

215313_x_at HLA-A 210495_x_at FN1 201217_x_at RPL3 202260_s_at STXBP1

232541_at not found 213187_x_at FTL 211596_s_at LRIG1 212187_x_at PTGDS

201666_at TIMP1 212788_x_at FTL 203381_s_at APOE 205591_at OLFM1

211737_x_at PTN 234989_at not found 221796_at NTRK2 218309_at CAMK2N1

209466_x_at PTN 216442_x_at FN1 200788_s_at PEA15 202508_s_at SNAP25

224999_at not found 200748_s_at FTH1 209291_at ID4 211748_x_at PTGDS

202718_at IGFBP2 211719_x_at FN1 212667_at SPARC 209072_at MBP

209396_s_at CHI3L1 217767_at C3 219107_at BCAN 204081_at NRGN

203484_at SEC61G 201426_s_at VIM 213841_at not found 212624_s_at CHN1

205030_at FABP7 209396_s_at CHI3L1 205103_at C1orf61 202507_s_at SNAP25

209395_at CHI3L1 209395_at CHI3L1 228170_at OLIG1 227641_at FBXL16

201983_s_at EGFR 209875_s_at SPP1 209283_at CRYAB 203797_at VSNL1

201426_s_at VIM 202376_at SERPINA3 226913_s_at SOX8 203999_at SYT1
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Table 46 CM1 indicators for 1-vs-1, G1X-vs-G2X 
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Table 47 Unique Gene IDs, down-regulated 

G1X G2X OX CX G2X-G1X G2X-G1X

GENE SYMBOL (41) GENE SYMBOL(40) GENE SYMBOL(42) GENE SYMBOL(28) GENESYMBOL (29) GENESYMBOL (36)

MBP RTN1 CHI3L1 VIM EGFR MBP

PTGDS SYT1 TMSB10 RPLP0 FABP7 PTGDS

PLP1 VSNL1 LDHA RPS2 SEC61G PLP1

FAM107A SNAP25 SERPINA3 RPS19 PTN FAM107A

RTN1 FBXL16 SPP1 RPL13 IGFBP2 TF

FBXL16 NRGN VIM SPARC POSTN FTH1

TF CALM1 FABP7 HLA-A CST3 SERPINA3

SNAP25 SLC1A2 TIMP1 CHI3L1 TRIB2 C3

BASP1 CHN1 IGFBP2 PTPRZ1 GNAS NTRK2

SYT1 ALDOC LGALS1 EGFR LGALS3 CRYAB

NTRK2 BASP1 SEC61G B2M VOPP1 PLEKHB1

ALDOC GABBR1 FN1 SERPINA3 PTPRZ1 FTL

VSNL1 STXBP1 VEGFA GNB2L1 HOPX SEPP1

PLEKHB1 BEX1 TUBB2A RPL13A HSPA8 PSAP

CHN1 OLFM1 CAMK2N1 RPLP2 NES CLDN11

NDRG2 NEFL FTL RPL39 IGFBP3 CLDND1

CRYAB TSPAN7 FABP5 RPS16 VIM NDRG2

KIF5C STMN2 CD63 HLA-B GNB2L1 RNASE1

NRGN ENC1 GAP43 HLA-C PPIA EDIL3

SCD SYN2 ENC1 EEF1A1 DBI ENPP2

STXBP1 RTN3 VSNL1 RPS15A LANCL2 CNP

GRIA2 GPM6A SYT1 FN1 EGR1 NME7

OLFM1 EEF1A2 FTH1 IGFBP7 S100A16 CD24

MAP1A TSC22D1 PGK1 RPS11 TMEM158 QDPR

ADD3 GABBR2 COL1A1 RPLP1 COL6A1 ADD3

C7orf41 RGS4 CST3 CD99 MALAT1 C7orf41

QDPR MAP2 S100A6 RPL27A JAG1 DNER

EDIL3 FXYD6 IGFBP5 ACTG1 RPS2 ATP1B1

GPRC5B NAPB LGALS3 TRIO APOE

STMN2 DNM1 CHN1 PFN2

MLLT11 CAMK2N1 ANXA1 CTSB

SPARCL1 NPTN ACTN1 SLC44A1

FAM123A TUBB2A COL4A1 GSN

SLC1A2 SCD YWHAG LAPTM5

TSPAN7 NDRG4 MAOB APOD

SOX8 AGXT2L1 UCHL1 C1QC

CAMK2N1 CPE NRGN

RTN3 PTPRO HLA-C

CALM1 NGFRAP1 MT3

ATP1B1 AK5 HLA-B

PEA15 SNAP25
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Table 48 Unique Gene IDs, upregulated 

Genes  G1X G2X OX CX G1X-G2X G2X-G1X Total 

Downregulated Unique genes 41 40 42 28 29 36 216 

Not found 1 5 2 5 4 5 22 

Upregulated Unique genes 28 36 31 41 36 29 201 

Not found 6 3 5 2 5 4 25 

Table 49 Number of unique genes per class 

G1X G2X OX CX G2X-G1X G2X-G1X

GENE SYMBOL(28) GENE SYMBOL(36) GENE SYMBOL(31) GENE SYMBOL(41) UP (36) UP (29)

SPP1 IGFBP5 SPARC NME7 C1QC TRIO

ACTG1 IGFBP7 RPLP0 VSNL1 APOD RPS2

MT2A ANXA1 RPL34 PRKACB LAPTM5 JAG1

POSTN B2M RPS3A PEG3 APOE PPIA

HLA-B TMSB10 NTRK2 IDS GSN MALAT1

VEGFA CD63 RPL7 SLC17A7 SLC44A1 HSPA8

RPS2 HLA-B RPL3 RTN1 CTSB DBI

IGFBP3 AQP1 PABPC1 QDPR CLDND1 COL6A1

COL4A1 LAPTM5 ZBTB20 MDH1 PFN2 TMEM158

EGFR MAOB MARCKS TUBB2A ATP1B1 S100A16

FN1 COL1A1 VCAN RGS4 DNER EGR1

RPS19 LTF ID4 NPTN C7orf41 LANCL2

LGALS1 LGALS1 RPL13 AK5 ADD3 GNAS

LDHA A2M FXYD6 YWHAH CD24 GNB2L1

LGALS3 CLU RPS3 YWHAG QDPR VIM

B2M HLA-DPA1 RPS6 SERPINI1 NME7 IGFBP3

TMSB10 MT2A TCF12 SLC1A2 CNP NES

HLA-C HLA-C APOE MAP1A ENPP2 HOPX

FABP7 VEGFA HEY1 DNM1 EDIL3 PTPRZ1

IGFBP7 SOD2 RPL30 ATP1B1 FAM107A VOPP1

HLA-A CD44 OLIG2 NAPB FTL LGALS3

CD63 CTSB SCD5 CALM1 RNASE1 TRIB2

TIMP1 C1QC SMOC1 EEF1A2 NDRG2 CST3

PTN TIMP1 PEA15 PLP1 CLDN11 EGFR

IGFBP2 HLA-A ALDOC MBP PSAP POSTN

CHI3L1 S100A6 LRIG1 NEFL SEPP1 FABP7

SEC61G FN1 BCAN UCHL1 PTGDS IGFBP2

VIM HLA-DRB1 C1orf61 STMN2 PLEKHB1 PTN

CD74 OLIG1 SYN2 CRYAB SEC61G

FTL CRYAB KIF5C TF

FTH1 SOX8 BASP1 NTRK2

C3 ENC1 C3

VIM STXBP1 SERPINA3

CHI3L1 PTGDS FTH1

SPP1 OLFM1 MBP

SERPINA3 CAMK2N1 PLP1

SNAP25

NRGN

CHN1

FBXL16

SYT1
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2) CM1 feature extraction diagrams 

The CM1 scoring for the 1-vs-all classes are in the following table. 
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Table 50 CM1 weights for top/bottom 50 1-vs-All 
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Although all the CM1 1-vs-1 sets have been extracted, only the G1X-vs-G2X has been 

considered relevant for the study by the bioinformatics expert doing the analysis. 

Hence, only that subset has been considered in the study also for the quantitative gene 

analysis. 
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Table 51 CM1 weights for CX-vs-1 
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Table 52  CM1 weights for OX-vs-1 
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Table 53 CM1 weights for G1X-vs-1 
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Table 54 CM1 weights for G2X-vs-1 
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D. Hierarchical clustering linkage functions 

The linkage functions most commonly used in Hierarchical Clustering follows: 

 Single linkage: The new distance is the minimum distance among the two 

elements creating the cluster. 

 

Equation 23 Single linkage 

 Complete linkage: The new distance is the maximum distance among the two 

elements creating the cluster. 

 

Equation 24 Complete linkage 

 Average linkage: The new distance is the average pairwise distance among all 

the samples included in the two originating clusters. 

 

Equation 25 Average linkage 

This method inspired the below-mentioned Centroid linkage method and has been used 

successfully in [63] in analysis of gene expression data. 

 Weighted linkage: The new distance is the average distance from the two 

clusters (s, t) creating the new cluster (u) to the cluster (v) the distance is being 

calculated to. 

 

Equation 26 Weighted linkage 

A second group of linkage methods would include (among others) as defined in [64]: 

 Centroids linkage: The new distance is calculated as the distance among the 

centroids where the centroid is calculated from all the samples in the cluster. 

          

Equation 27 Centroid linkage 

 Median linkage: The new distance is calculated based on the distance of 

centroids but the new centroid is calculated based on the average of the two 

clusters (p, q) that were joined to create the cluster. 
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Equation 28 Median linkage 

 Ward linkage: The new distance, according to [26] “minimizes the information 

loss associated with clustering. Ward used an error sum-of-squares criterion to 

define information loss. At each step, union of every possible pair of clusters is 

considered and the two clusters whose fusion results in the smallest increase in 

‘information loss’ are combined. “.The formula as defined in [64]: 

 

Equation 29 Ward linkage 

 

E. Similarity and dissimilarity measures 

A common way of comparing the results of a classifier compared to the known true 

classification is the confusion matrix. It gives the number of samples that have been 

classified in each of the classes and this is intersected with its known class. Based on 

this, the values that are correctly classified will appear on the diagonal of the matrix 

while incorrect classified will be off-diagonal. Each Y, Z intersection will indicate 

how many class Y elements have been classified as class Z. While this concept is very 

intuitive and clear for classification problems it requires a further sophistication in 

order to be useful for clustering. The reason is that since clustering is some kind of 

unlabeled classifier, when there are disagreements it may not be possible to identify 

what is the part of the cluster that is correctly clustered. As an example, consider how 

to measure the correctness when for example one cluster has been split in two different 

clusters otherwise perfectly identified. 

To solve this problem, many of the similarity measures used for clustering are based 

on counting pair matches that is the number of pairs of samples that are in the same or 

different partition in the two partitions being compared. Four cases are considered, 

being P1 and P2 the compared partitions: 

 

 Same class in P2 Diff class in P2 

Same class in P1 a b 

Diff class in P2 c d 

 

where a is the number of pairs of samples in the same class in the two compared 

partitions, d is the number of pairs of samples  in different classes and  b, c correspond 
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respectively to the pairs in the same class in one partition that are not in the same class 

in the other.  

Indexes defined will have value 1 for matching partitions, meaning indexes measure 

the similarity of the two partitions. 

Metrics are the opposite concept, and measure the dissimilarity; therefore, they will 

have value 0 for matching partitions. 

1) Agreements and Disagreements  

Based on the “a, b, c, d” concepts defined previously the following indicators have 

been used: 

Same Class Agreements: corresponds to a, the number of pairs that are in the same 

class in the two partitions. 

Agreements: Corresponds to a + d, that is, pairs that are either in the same class in 

both partitions or elements that are not in the same partition in neither of the compared 

partitions. 

Disagreements: Corresponds to b + c, that is, the sum of the number of pairs that are 

in the same class in one partition but not in the other. 

The three indicators considered together are redundant since: 

        (
 

 
) 

N is the number of samples in the dataset. 

2) Jaccard Index 

The Jaccard Index was defined in [65]. Based on our introductory definition, the 

Jaccard Index can be defined as: 

    
 

     
 

Equation 30 Jaccard Index 

3) Fowlkes Mallows Index 

First defined in [66], based on our baseline definition, the formula is given by: 

    √
 

   
 

 

   
 

Equation 31 Fowlkes-Mallows Index 

4) Normalized Mutual Information Index 

It was defined in [67] and has two different normalizations possible, arithmetic and 

geometric. The arithmetic version is given by: 
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Equation 32 Normalized Mutual Information arithmetic 

 

The geometric version is defined in information theory terms as: 

         
      

√         
 

Equation 33 Normalized Mutual Information geometric 

where I(X,Y) is the mutual information: 

                   

Equation 34 Mutual Information 

and H(X) corresponds to entropy as defined in Equation 11. 

Alternativately, in clustering terms: 

         ∑∑        
      

    

 

   

 

   

 

Equation 35 Mutual Information for Clustering 

And xi is the number of samples in class i divided by the total number of samples, and 

xi,j is the number of samples in class i in the first partition and class j in the second 

partition. 

5) Normalized Mirkin Metric 

The Mirkin Metric was defined in [68], being his formula, as shown in [69]: 

 

Equation 36 Mirkin Metric 

where nx corresponds to the cluster x of the partition and nxy corresponds to the 

intersections of the two partitions.  

Its invariant (normalized) version is: 

 
Equation 37 Normalized Mirkin Metric 

being n the number of samples in the dataset. 
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6) Normalized Van Dongen Metric 

In [69], it is reported to be defined in . The formula is: 

 
Equation 38 Van Dongen Metric 

where the definition of nxy is analogous to the previous section. 

Again, the normalized version is given by: 

 
Equation 39 Normalized Van Dongen Metric 

7) Normalized Variation of Information Metric 

Variation of Information is defined in [70]: 

                 

Equation 40 Variation of Information 

It can be normalized, to make it bounded and not dependent on dataset size, in 

different ways, being 2 log N (VI upper bound ) the more advantageous as it is proved 

to be a metric (symmetric and satisfying the triangular inequality). 

         
             

     
 

Equation 41 Normalized Variation of Information 

8) Adjusted Rand Index 

The Rand Index(RI) [71], whose name is due to William Rand not to random numbers 

or anything alike,  is defined as:  

   
   

       
 

Equation 42 Rand Index 

It is bounded between 0 and 1, being 1 the value for two matching partitions.  

The Adjusted Rand Index (ARI) was defined in [72] as referred in [73]. Its formula is 

given by: 

 
Equation 43 Adjusted Rand Index 
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ni,j corresponds to the number of  samples in class i on the first partition and in class j 

in the second partition, ni. and n.j correspond to all the samples in class i of the first 

partition or class j of the second partition regardless the class on the other partition. If 

the confusion matrix of the two partitions was used, they would correspond to a whole 

row or column of the matrix. 

The concept is motivated in order to solve one limitation the Rand Index has. The 

limitation is that it would be expected Rand Index for two random partitions is 0 what 

is not the case.  

9) Purity 

While the concept is an old one and has appeared in many publications, it is best 

explained in [74]. It is defined formally as: 

            ∑
   

 
       

   

   
 

  ∑
 

 
        

 

 

Equation 44 Purity 

In plain words, purity is the addition of the ratios of the dominant classes in each 

partition compared to a reference partition, typically the ground truth partition. 

Purity is [0, 1] bounded with 1 meaning perfect matching, and 0 complete 

dissimilarity. Purity is not a symmetric measure.  

Based on Purity and in order to obtain a symmetric measure, the F-measure is defined:  

               
                         

                        
 

Equation 45 F-Measure 

10) Homogeneity and Completeness 

Other information theory based measures are Homogeneity(h) and Completeness(c) 

defined in [59] as: 

       {

                                

  
      

    
          

 

Equation 46 Homogeneity 

 

       {

                               

  
      

    
          

 

Equation 47 Completeness 

where H(x) corresponds to the entropy as previously defined.  



122 

 

Homogeneity provides a measure of the content of each cluster, and is roughly 

proportional to the number of elements of the majority class in each cluster, 

conceptually similar to Purity. 

Completeness is the complementary concept, indicating the number of elements of one 

class that are not in other clusters. 

Still one more measure can be defined from h and c, the V-measure, defined as the 

harmonic mean of h and c: 

  
     

   
 

Equation 48 V-measure 

As explained in [70], the V measure has important drawbacks and favors partitions 

with a large number of clusters in particular the singleton partition (each element is a 

cluster). 

F. Data Normalization tests 

The normalization to sum to unity modifies it is not a linear one when considered 

among samples as it executed independently for each of the samples. Each data point 

is divided by the sum of the expressions of the probes in the sample, guaranteeing that 

the sum of the sample is the unity. 

To have an estimation of how this transformation affects the data a simple dataset has 

been generated. The dataset has 4 samples and 4 genes: 

  p1 p2 p3 p4 

g1 10 20 30 40 

g2 4 4 4 4 

g3 1000 2000 3000 4000 

g4 500 500 500 500 

Table 55 Synthetic dataset 

As can be observed the range for each of the genes are very different from each other. 

Note that g2 and g4 have the same value for all the samples. It would be desirable that 

any transformation applied maintain this. 

If the sum to unity normalization to each sample (p1-p4) is applied we obtain the 

following transformed dataset: 

  p1 p2 p3 p4 

g1 0.006605 0.007924 0.008489 0.008803 

g2 0.002642 0.001585 0.001132 0.00088 

g3 0.660502 0.792393 0.848896 0.880282 

g4 0.330251 0.198098 0.141483 0.110035 

Table 56 Column normalized dataset 
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Note that for g2, the values for p1 and p4, maximum and minimum respectively, have 

now a ratio of 3. Despite having a much higher initial value the ratio is the same for 

g4. The ratio for g1 compared with its original value ratio is also 3. 

If prior to applying the column normalization row normalization is applied, we obtain 

after the first transformation: 

  p1 p2 p3 p4 

g1 0.1 0.2 0.3 0.4 

g2 0.25 0.25 0.25 0.25 

g3 0.1 0.2 0.3 0.4 

g4 0.25 0.25 0.25 0.25 

Table 57 Dataset after row normalization 

And finally: 

  p1 p2 p3 p4 

g1 0.142857 0.222222 0.272727 0.307692 

g2 0.357143 0.277778 0.227273 0.192308 

g3 0.142857 0.222222 0.272727 0.307692 

g4 0.357143 0.277778 0.227273 0.192308 

Table 58 Dataset after subsequent row and column normalization 

In this case, the ratio between p1 and p4 for g2 and g4 is 1.85, much lower than when 

the data was only column normalized. Also for g1, compared to the original ratio 1:4 

as the initial values were different, is 1.85. 

Despite this evidence, without any formal validation to support further conclusions, it 

cannot be denied that the normalization is not an inconsequent transformation and may 

influence the final results, particularly, depending on the distance function used.  

When the distance function only considers the features in a 1-by-1 basis, such as 

Euclidean distance, the distance calculated will be affected. In the example, for the 

first case the distance is 0.311 and for the second case the distance is 0.329. The more 

important drawback is that distances that should be zero will not. 

In each case, all the pairwise comparisons among samples generate the same ratio for 

all the genes, indicating that the transformation applied while not affecting all the data 

points in the same way makes it consistently when pairwise considered. 

 

px to py p1 p2 p3 p4 

p1 1 0.599842 0.42841 0.333187 

p2 1.667107 1 0.714205 0.555458 

p3 2.334214 1.400158 1 0.777729 

p4 3.001321 1.800317 1.285795 1 

Table 59 Sample to sample factor for any gene with column normalization 
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px to py p1 p2 p3 p4 

p1 1 0.777778 0.636364 0.538462 

p2 1.285714 1 0.818182 0.692308 

p3 1.571429 1.222222 1 0.846154 

p4 1.857143 1.444444 1.181818 1 

Table 60 Sample to sample norm factor for any gene with row-column normalization 

In cases like Pearson distance, what is being measured is not the distance among 

individual features but more the distance among features when these features are 

considered as part of the whole sample. A trivial example, the Pearson distance of any 

distribution respect to the same distribution linearly transformed is equal to 0.  

In the case of Jensen-Shannon divergence, what are being compared are the probability 

distributions, what keeps more similarities with the Pearson scenario that with the 

Euclidean distance scenario. In addition, one of the properties said that the JSD was 

zero only if the two distributions were identical, therefore, we may expect different 

results for the two normalizations described. 

Finally, computing the distance matrix for the two cases it can be observed that the 

matrixes have different values and also slightly different distributions, Table 3. Hence, 

generating different results for the two normalizations may depend not only on the data 

but also on the clustering algorithm in place. 

G. Brain tumour diagnosis reliability 

The reliability of tumor diagnosis has been subject of study. Two recent studies are 

[75] and [76]. On the studies, the consensus of diagnosis of glioma patients is 

evaluated based on observed significant inter-observer variation of glioma. The 

diagnosis is variant in both typing and grading of the gliomas.  

The first study mentions that from 500 brain tumors reviewed, 42.8% show some 

diagnosis disagreement that can be considered serious in 8.8%. The study refers to 

other studies mentioning that this misdiagnose is higher when the patient proceeds 

from local community hospitals as opposed to academic hospitals. 16% of the 

discordant diagnoses were clinically significant as were affecting treatment and/or 

prognosis. A study of 244 cases with intervention of four pathologists showed 52% 

initial agreement that grew to 62% after the fourth round of reviews. 

Oligodendrogliomas became a 25% of the diagnosis while initially they were only 5%. 

The list of studies reviewed goes mentioning that among the different know glioma 

types there are mixed types such as oligoastrocytomas making the diagnosis criteria 

blurrier with only 13% agreement for those cases. One preliminary conclusion of the 

study is that among 20 to 30% of gliomas are reclassified based on independent 

reviews. 

The second study, focused on different diagnosis criteria and its changing definition 

along the years, explains the difficulty of diagnosis in the small series of 

oligodendroglioma tumors available. The same study mentions that some criteria are 

universally accepted as indicator of a glioma. About diagnosis variability, the study 
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mentions that only 36% cases of Astrocytoma (AA) are confirmed. For Glioblastoma 

this ratio raised to 73% indicating more robust clinic diagnostic criteria. Only 32% 

majority and 8% consensus was achieved for Oligoastrocytoma (OA). 

H. Known results obtained from dataset GSE4290 

In [42], the original study that made available the dataset, the main conclusions are 

related to only one gene, SCF(Stem Cell Factor). The study combines the analysis of 

the genetic information in Micro Array data with other tests so the information is of 

limited use for comparing with the current results. 

In [77], the same dataset has been used obtaining a list of modules (MEA) and the 

corresponding up-regulated or down-regulated groups. 

 
Table 61 Results in [77] showing MEA 

In [78], CLIC, the algorithm developed as part of the study is not capable of dealing 

with all genetic information(>40K genes), while for others algorithms compared the 

threshold was even lower. 

In [41], the method permits to obtain a classification of the samples with 56% accuracy 

on average using a set of 44 genes selected with a different dataset (training set) and 

capable of dealing with higher accuracy if the training is performed with two or more 

datasets from independent studies. Only GBM (77 samples) and OLG (50 samples)  

are considered. The study lists 11 GBM serum markers present in the marker-panel, 

Table 62. 

 

APOD 

CALU 

CD163 

CHI3L1 

CSF1 

EGFR 

IGFBP2 

NID1 

PDGFC 

PSG9 

PTN 

Table 62 11 GB serum markers 
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When the dataset was used to train a model and the obtained model tested with other 

datasets, the accuracy was an average 40.66%. When other datasets were used for 

training and the dataset used to test the accuracy was 72.08%. 

To differentiate GBM from OLG the cut of the genes 1p and 19q becomes a marker as 

it is the Olig2 over-expression. GBM and A3 are differentiated based on the 

expression of FLNA, ANXA1, and bHLH. IDH is another biomarker for GBM. EPN 

gliomas are differentiated from other types based on TLE4, OLIG2. 

In [79], the GSE4290 dataset is used in a classification of the patients in 1-vs-1 groups 

(GBM-vs-OLG and GBM-vs-AC), Figure 26. The experiment is done as part of a 

study to improve the prognosis profiles for gliomas, Figure 27. The study, that is based 

on several datasets, concludes that 42 probes are relevant based on a multivariate Cox 

statistical. In the case of our dataset the 42 probes are specific for lower grade gliomas 

and group 3 GBM. 

 
Figure 26 Clustering of GBM-vs-AC and GBM-vs-OL, from [77] 
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Figure 27 GSE4290 Prognosis classification 

  

Table 63 42 Probesets relevant for glioma prognosis 

In [80], 78 genes, shown in Table 64, where selected to differentiate glioma-relevant 

gliogenesis genes. The genes where selected based on differential expression after 

excluding genes with standard deviation below 1.5% of the maximal standard 

deviation.  
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AGT,  

ANXA1,  

ASCL1,  

ATF5,  

BCL2,  

BMP2,  

C1S,  

CCL2,  

CD86,  

CD9,  

CDK1,  

CDK6, 

CDKN1A, 

DAG1,  

DLL3,  

EGR1, 

CDKN2C,  

CSPG4,  

CTNNB1,  

CXCR4,  

EGR2,  

EIF2B1 

EIF2B4,  

ERBB2,  

ID2,  

ID4,  

EXOC4,  

FGF2,  

FOXD1,  

GFAP,  

GLI3,  

GPC1, 

GSN,  

HDAC2,  

HES1,  

HES5,  

HEXB,  

HMBS,  

HOXA2, 

HMGA2,  

ITGAM,  

KLF15,  

LAMB2,  

LIF,  

LYN,  

MET,  

MMP14, 

MPP5,  

MYT1,  

PAX6,  

PDGFRA, 

POU3F2, 

NAB2, 

 NF1,  

NFIB,  

NOG,  

NOTCH1,  

NR2E1,  

OLIG2, 

PAX2,  

PRKCH,  

PTEN,  

PTPRC,  

RELA, 

SMARCA4, 

SOX11,  

SOX2,  

SOX4,  

SOX5,  

SOX6,  

SOX8,  

SOX9, 

STAT3,  

TCF7L2,  

TGFB2,  

TSPO,  

VCAN,  

ZNF226. 

Table 64 List of gliogenesis related genes as in [80] 

In [81], while a different dataset has been used, a 90 genes profile has been defined in 

order to differentiate among different types of glioblastomas. 

 
 

Table 65 Genes overexpressed in GBM for EGFR and 12q13-15 
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