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Abstract 

Tittle:  Study on the application of the CSM to stainless steel cross-sections under 

compression and biaxial bending 

Autor:  Antonio Sastre Seguí 

Tutors:  Esther Real Saladrigas, Itsaso Arrayago Luquin 

Keywords: ferritic stainless steel, continuous strength method, combined loading, CSM  

Stainless steel is nowadays being investigated as a structural material for construction, which  

presents  a  combination  of  good  mechanical  properties  and  excellent  corrosion  

resistance.  The  price  of  ferritic stainless  steel  is  stable  due  to  its  low  nickel  content  

whilst  still  maintaining  good mechanical  properties. New design methods and expressions, 

as the Continuous Strength Method (CSM), have been developed in order to consider the 

increase of resistance due to strain hardening presented in all the stainless steels. These new 

methods have been calibrated for the most common type of stainless steel: the austenitic. This 

research project wants to find out if these new analytical expressions could be used for the 

ferritic stainless steel and which of these existent expressions fits better its behaviour.   

To tackle this problem, some stub-column experimental tests were performed and several 

numerical models developed in order to compare their results with the predicted ones from 

the existing standards and new proposals. This research project discusses the applicability of 

the existing European standards and new analytical proposals comparing the results obtained 

from some experimental tests conducted in ferritic stainless steel elements. It also compares 

analytical results with the ones obtained from numerical simulations. The loading cases that 

have been studied are: the resistant axial load, the resistant bending moment for both axis and 

the interaction between these three simple loading cases. 

In conclusion, the CSM is the method that provides better results comparing to the numerical 

ones when talking about simple resistances: axial force and bending moment. When it comes 

to the interaction, the EN 1993-1-4 interaction expression, with the fundamental capacities 

derived from the CSM instead of the plastic ones, is the one that covers better each one of the 

twelve different cross-sections interaction results. 
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Resumen 

El acero inoxidable está siendo actualmente investigado como material estructural para la 

construcción, el cual presenta una interesante combinación de buenas propiedades mecánicas 

y una excelente resistencia a la corrosión. El precio del acero inoxidable ferrítico es estable en 

el mercado debido a su bajo contenido en Níquel mientras que sus propiedades mecánicas 

siguen siendo más que aceptables. Nuevos métodos y expresiones de diseño, como el 

Continuous Strength Method (CSM), han sido desarrollados para poder considerar el 

incremento de resistencia debido al endurecimiento por deformación que se manifiesta en el 

acero inoxidable. Estos métodos han sido calibrados para el acero inoxidable más común: el 

austenítico. Este documento de investigación quiere averiguar si estos nuevos analíticos 

podrían ser usados para el acero inoxidable ferrítico y cuál de ellos se ajusta mejor a su 

comportamiento. 

Para abordar este problema, se han realizado varios ensayos experimentales en laboratorio de 

compresión simple centrada, además de desarrollar un elevado número de modelos 

numéricos con el fin de comparar sus resultados con los que se predicen a partir de los 

métodos analíticos existentes en las actuales Normas y nuevas propuestas. De esta manera se 

podrán sacar conclusiones y decidir cuál de los métodos analíticos existentes reproducen 

mejor el comportamiento del acero inoxidable ferrítico. Los diferentes casos de carga 

estudiados en los modelos numéricos y métodos analíticos son los siguientes: compresión 

simple centrada, flexo-compresión en un eje, flexo-compresión en dos ejes, flexión simple y 

flexión compuesta. 

En conclusión, el CSM es el método que proporciona los mejores resultados comparado con los 

resultados numéricos, cuando nos referimos a las resistencias básicas: compresión simple y 

flexión simple. Cuando nos referimos a la interacción de esfuerzos, la expresión de interacción 

que incluye EN 1993-1-4, evaluada a partir de las resistencias básicas calculadas por medio del 

CSM, es el método que cubre mejor la casuística de las diferentes secciones transversales que 

se estudian en este trabajo de investigación.  
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1. Introduction 

 

Current situation 

Stainless  steel  is  a  relatively  new metallic material which  presents  a  combination  of good 

mechanical  properties  and  excellent  corrosion  resistance.  It  has  been  used  for several  

different  purposes  but  not  for  structural  applications  due  to  its  complex nonlinear 

behaviour, very different  from carbon steel.   

Ferritic stainless steels represent one of the five stainless steel families, with very low nickel 

content. Nickel is an element whose price is reaching unprecedented levels and suffers 

continuous fluctuations in market. This makes ferritic stainless steel an attractive material due 

to its lower and stable price against the austenitic ones, while preserving the mechanical and 

corrosion resistances.   

The classical approach for the determination of the cross-section resistance due to local 

buckling of stocky cross-sections based on section classification underestimates real capacities 

when nonlinear metallic materials with high strain hardening are analysed. Alternatively, a 

more efficient design approach has been developed during last years, the Continuous Strength 

Method (CSM), based on the cross-section deformation capacity. The expressions for the 

determination of the axial and bending capacities of cross-sections according to the CSM have 

been widely analysed. 

The use of stainless steel for structural purposes in construction has been continuously 

increasing due to its corrosion resistance, appropriate mechanical properties and aesthetic 

appearance. Considering that stainless steel needs a higher initial investment than carbon steel 

and is characterized by high nonlinear stress-strain behaviour with important strain hardening, 

the CSM can be considered a suitable design approach to exploit the features of this material. 

The assessment of the CSM has already been studied for austenitic and duplex stainless steel 

stocky cross-sections subjected to either axial compression or bending moment, the 

corresponding expressions have been developed and recent research has also studied the 

assessment of these expressions to ferritic grades. In order to extend the applicability of the 

CSM to more general loading conditions, this work document presents a preliminary study on 

the determination of the ultimate resistance of ferritic stainless steel rectangular and square 

hollow sections (RHS and SHS) under combined axial compression and bending moment. 

Interaction equations proposed in EN 1993-1-4 [4] and the literature are analysed in order to 

determine the most appropriate approach. 

Objectives 

One part of the aforementioned work is focused on obtaining numerical results from ABAQUS 

finite element software. Four different numerical models are presented and analysed: stub-

column (N), combined loading (N+My+Mz), uniaxial bending moment (M) and biaxial bending 

moment (My+Mz). 
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Another part is based on obtaining the analytical results. The expressions codified in EN 1993-

1-4 and the CSM have been used to obtain the basic simple resistances: the ultimate axial load 

and the ultimate bending moment. Then, these basic resistances have been used to evaluate 

and verify the different interaction expressions presented and analysed in this research work: 

EN 1993-1-4[4], EN 1993-1-4 with Theofanous & Gardner[17] cross-section classification and 

the two expressions proposed by Theofanous [25] for austenitic stainless steel.   

Finally, an experimental programme has been carried out during the elaboration of this work. 

The real dimensions of almost 70 specimens have been measured, and initial local 

imperfections of those elements have also been measured. Some tensile tests have been 

carried out in flat and corner coupons extracted from the cross-sections in order to accurately 

determine the stress-strain behaviour of the analysed sections. A detailed experimental 

programme consisting on stub column tests in rectangular and square hollow sections (RHS 

and SHS respectively) was developed in the “Laboratori de Tecnologia d'Estructures del 

Departament d'Enginyeria de la Construcció” for the determination of the ultimate axial 

compression resistances of the different cross-sections. These experimental results permit us 

to realize a more complete and robust analysis of the results and compare them with the 

numerical simulations for a better calibration of the models. The experimental ultimate 

capacities have also been compared with the EN 1993-1-4 and CSM predictions with the aim of 

assessing their applicability and accuracy for the analysed cross-sections.  

Once all different types of results have been obtained, it is possible to proceed with the 

calculation of the comparison ratios. These dimensionless ratios are values that can be 

interpreted as how close the analytical expression is from the numerical one. In the case of 

stub-column test, the analytical expression can be compared to the experimental ones.  

Besides these ratios, all numerical results have been plotted in their respective two 

dimensional graphs which include the different interaction expressions in order to have a 

visual comparison from where global conclusions can be extract, unlike ratios conclusions that 

are more punctual.  

Content of the work 

Section  2  presents  a  brief  description of  the  literature  review  for  stainless  steel  in  

general  and  ferritic  stainless  steel  in  particular  and  RHS & SHS profiles.  It  also  provides  a  

summary  of  the  existing  design  standards  and  new interaction design expressions 

proposals as well as a complete description of the Continuous Strength  Method (CSM).  

Section 3 summarizes the numerical results obtained from ABAQUS numerical models. It also 

contains the explanation and presentation of the geometries and material chosen for the 

analysis. Furthermore, in this section the description of the main aspects that present 

numerical models for each loading case are included and have been calibrated against 

experimental results.   

The main objectives and working plan are gathered in section 4, presenting the analytical 

results and the comparison between them and the numerical ones obtained along section 3, 

using ratios and graphs from where conclusions have been extracted and then presented.   
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Section 5 contains the explanation of the experimental programme of the stub-column test. It 

presents the material testing, the process followed when measuring the geometry, the 

instrumentation of the elements, the stub-column experimental test process explanation and 

finally, the experimental results and the comparison ratios in order to extract conclusions are 

shown. 

All conclusions obtained along this research project are presented in section 6 in a more 

synthesized and compact way.
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2. State of Art 
In this section will be explained shortly what stainless steel is. As this research work is about 

ferritic stainless steel concretely, a more detailed explanation of it will be done in order to help 

to understand its behaviour and the reason of the analysis tools used herein.  

2.1 Stainless steel 

First of all will be described what stainless steel is, which elements are part of it and their 

contribution to the general behaviour of the material. This is necessary to understand where 

the ferritic category of stainless steel comes from and its properties. 

Stainless steel is used to describe an extremely versatile family of engineering materials, which 

are selected primarily because of their corrosion and heat resistant properties.  All stainless 

steels contain principally iron and a minimum of 10.5% chromium. Chromium reacts with 

oxygen and humidity in the environment to form a protective, adherent and coherent, oxide 

film that envelops the entire surface of the material. This oxide film (known as the passive or 

boundary layer) is very thin (2-3 nanometres).  

The passive layer on stainless steels exhibits a truly remarkable property: when damaged (e.g. 

abraded), it self-repairs as chromium in the steel reacts rapidly with oxygen and humidity in 

the environment to reform the oxide layer.  If the content of chromium is increased beyond 

the minimum (10.5%), a greater corrosion resistance will be achieved. Adding an 8% or more 

of nickel, this resistance may be further improved, and a wide range of properties provided. 

The addition of molybdenum further increases corrosion resistance (in particular, resistance to 

pitting corrosion), while nitrogen increases mechanical strength and enhances pitting 

resistance.  

The selection of a particular type of stainless steel will depend on what requirements a 

particular application poses. Environment, expected part life and extent of acceptable 

corrosion all help determine what type of stainless steel to use. In most cases, the primary 

factor is corrosion resistance, followed by tarnish and oxidation resistance. Other factors 

include the ability to withstand pitting, crevice corrosion and intergranular attack. The 

austenitic/higher chromium stainless steel, usually required in very high or very low 

temperatures, are generally more corrosion resistant than the lower chromium ferritic or 

martensitic stainless steels.   

2.1.1 Types of stainless steels   

The stainless steel family has several branches, which may be differentiated in a variety of 

ways: in terms of their areas of application, by the alloying elements used in their production, 

or, perhaps the most accurate way, by the metallurgical phases present in their microscopic 

structures: ferritic, martensitic, austenitic and duplex steels (these last ones consist of mixture 

of ferrite and austenite crystalline structures). 

Within each of these groups, there are several “grades” of stainless steel defined according to 

their compositional ranges. These compositional ranges are defined in European and USA 

standards (between others), and within the specified range, the stainless steel grade will 
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exhibit a wide range of properties (as can be corrosion resistance, heat resistance or 

machinability). More detail on standards and grades is given below.  

Ferritic stainless steels (e.g. grades 1.4512, 1.4016 and 1.4003 which will be used in this 

research work) consist of chromium (typically 12.5% or 17%) and iron. Ferritic stainless steels 

are essentially nickel-free (this is an important advantage front the rest of stainless steel 

grades for structural use). These materials contain very little carbon and are non-heat 

treatable, but exhibit superior corrosion resistance than martensitic stainless steels and 

possess good resistance to oxidation. They are ferromagnetic and, although subject to an 

impact transition (i.e. become brittle) at low temperatures, possess adequate formability. 

Their thermal expansion and other thermal properties are similar to conventional steels, but 

with higher fire resistance in general (in fact, all types of stainless steel are better than carbon 

steel when talking about fire). Ferritic stainless steels are readily welded in thin sections, but 

suffer grain growth with consequential loss of properties when welded in thicker sections.  

Martensitic stainless steels (e.g. grades 1.4006, 1.4028 and 1.4112) consist of carbon (0.2-

1.0%), chromium (10.5-18%) and iron. These materials may be heat treated, in a similar 

manner to conventional steels, to provide a range of mechanical properties, but offer higher 

hardenability and have different heat treatment temperatures. Their corrosion resistance may 

be described as moderate (i.e. their corrosion performance is poorer than other stainless 

steels of the same chromium and alloy content). They are ferromagnetic, subject to an impact 

transition at low temperatures and possess poor formability. Their thermal expansion and 

other thermal properties are similar to conventional steels. They may be welded with caution, 

but cracking can be a feature when matching filler metals are used.  

Austenitic stainless steels (e.g. grades 1.4301 and 1.4833) consist of chromium (16-26%), 

nickel (6-12%) and iron. Other alloying elements (e.g. molybdenum) may be added or modified 

according to the desired properties that are defined in the standards (e.g. 1.4404) to produce 

derivative grades. The austenitic group contains more grades that are used in greater 

quantities, than any other type of stainless steel. Austenitic stainless steels exhibit superior 

corrosion resistance to both ferritic and martensitic stainless steels. Corrosion performance 

may be varied to suit a wide range of service environments by careful alloy adjustment e.g. by 

varying the carbon or molybdenum content. These materials cannot be hardened by heat 

treatment and are strengthened by work-hardening. They offer excellent formability and their 

response to deformation can be controlled by chemical composition. They are not subject to 

an impact transition at low temperatures and possess high toughness to cryogenic 

temperatures. They exhibit greater thermal expansion and heat capacity, with lower thermal 

conductivity than other stainless or conventional steels. They are generally readily welded, but 

care is required in the selection of consumables and practices for more highly alloyed grades. 

Austenitic stainless steels are often described as non-magnetic, but may become slightly 

magnetic when machined or worked.  

Duplex stainless steels (e.g. grade 1.4462) consist of chromium (18-26%) nickel (4-7%), 

molybdenum (0-4%), copper and iron. These stainless steels have a microstructure consisting 

of austenite and ferrite, which provides a combination of the corrosion resistance of austenitic 

stainless steels with greater strength. Duplex stainless steels are weldable, but care must be 
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exercised to maintain the correct balance of austenite and ferrite. They are ferromagnetic and 

subject to an impact transition at low temperatures. Their thermal expansion lies between that 

of austenitic and ferritic stainless steels, while other thermal properties are similar to plain 

carbon steels. Formability is reasonable, but higher forces than those used for austenitic 

stainless steels are required.  

 

Figure 1. Stainless steel phase diagram[1] 

2.1.2 Effect of each alloying element on structure and properties  

In this section how each of the alloying elements contribute to the global behaviour of the 

stainless steel will be explained and what would happen if his content is varied. 

CHROMIUM  

Chromium is by far the most important alloying element in stainless steel production. A 

minimum of 10.5% chromium is required for the formation of a protective layer of chromium 

oxide on the steel surface. The strength of this protective (passive) layer increases with 

increasing chromium content. Chromium prompts the formation of ferrite within the alloy 

structure and is described as ferrite stabiliser.  

NICKEL  

Nickel improves general corrosion resistance and prompts the formation of austenite (i.e. it is 

an austenite stabiliser). Stainless steels with 8-9% nickel have a fully austenitic structure and 

exhibit superior welding and working characteristics to ferritic stainless steels. Increasing nickel 
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content beyond 8-9% further improves both corrosion resistance (especially in acid 

environments) and workability, as has been said before.  

MOLYBDENUM (AND TUNGSTEN)  

Molybdenum increases resistance to both local (pitting, crevice corrosion, etc.) and general 

corrosion. Molybdenum and tungsten are ferrite stabilisers which, when used in austenitic 

alloys, must be balanced with austenite stabilisers in order to maintain the austenitic 

structure. Molybdenum is added to martensitic stainless steels to improve high temperature 

strength. 

NITROGEN  

Nitrogen increases strength and enhances resistance to localised corrosion. It is austenite 

former.  

COOPER 

Cooper increases general corrosion resistance to acids and reduces the rate of work-hardening 

(e.g. it is used in cold-headed products such as nails and screws). It is an austenite stabiliser. 

CARBON  

Carbon enhances strength (especially, in hardenable martensitic stainless steels), but may have 

an adverse effect on corrosion resistance by the formation of chromium carbides. It is an 

austenite stabiliser.  

TITANIUM (AND NIOBIUM & ZIRCONIUM)  

Where it is not desirable or, indeed, not possible to control carbon at a low level, titanium or 

niobium may be used to stabilise stainless steel against intergranular corrosion. As titanium 

(niobium and zirconium) have greater affinity for carbon than chromium, titanium (niobium 

and zirconium) carbides are formed in preference to chromium carbide and thus localised 

depletion of chromium is prevented. These elements are ferrite stabilisers.  

SULPHUR  

Sulphur is added to improve the machinability of stainless steels. As a consequence, sulphur-

bearing stainless steels exhibit reduced corrosion resistance.  

CERIUM  

Cerium, a rare earth metal, improves the strength and adhesion of the oxide film at high 

temperatures.  

MANGANESE  

Manganese is an austenite former, which increases the solubility of nitrogen in the steel and 

may be used to replace nickel in nitrogen-bearing grades.  
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SILICON  

Silicon improves resistance to oxidation and is also used in special stainless steels exposed to 

highly concentred sulphuric and nitric acids. Silicon is a ferrite stabiliser.  

2.1.3 Stainless Steel’s used profiles 

The applications for stainless cold formed such as rectangular hollow sections (RHS) and 

square hollow sections (SHS) are plenty, particularly in industrial, commercial and residential 

construction. There are also commonly used in the mechanical and fabricating industries, the 

agricultural industry, mining industry and simply for signage. Stainless steel RHS have such 

universal uses because they are durable and easy to prepare for welding or joining. 

Stainless steel RHS are practical and aesthetic elements, what makes them highly sought after 

and a functional solution to modern building needs and requirements. 

 

Figure 2. Stainless steel RHS & SHS [2] 

2.1.4 Standards 

American standards SEI/AISI “Specification for design of cold worked stainless structural 

members”, [3] covers the three traditional ferritic steel grades, as well as South African 

standards and Australian standards. Eurocode corresponding to stainless steel, EN 1993-1-4 

[4], is applicable for these three grades of feritic stainless steels: 1.4003, 1.4016 and 1.4512. 

Even so, in some cases the specifications have been obtained and contrasted only for 

austenitic and duplex stainless steel grades, and therefore in some cases specific guideline is 

missing for ferritic stainless steel. Besides, in many aspects EN 1993-1-4 [4] refers to part of 

Eurocode EN 1993-1-1 which has not been validated for ferritic stainless steels. 

Even taking into account the past experience about ferritic steel in other areas, there is not 

enough information regarding to structural aspects, neither fire resistance, atmospherical 

corrosion resistance, welded and screwed unions resistance… for its use in construction. This 

work is presented as an attempt to cover part of the lack of information in order to develop 

appropriate design guidelines which can be incorporated to the corresponding EN 1993-1-4 

and the rest of Standards and guidelines. 
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2.1.5 Life cycle cost 

Although stainless steel is often considered as an expensive material, this is because only the 

initial cost is taken into account. Following the current trend considering lifecycle cost, 

operating costs should also be considered (e.i. maintenance) as well as the residual value of 

the material. In this case, stainless steel is presented as a competent material compared to 

others less resistant to corrosion as it can be in Fig. 3. 

 

Figure 3. Comparison of the total costs between carbon steel and stainless steel [5] 

2.1.6 Material models 

The nonlinear stress-strain behaviour of stainless steel alloys, which differs from carbon steel’s 

bilinear behaviour, required the development of several material models taking into account 

this characteristic in order to improve safety and economy of the design of structures. In fact, 

the increasing number of structural applications of stainless steel has shown the need of 

having more accurate models for the design process. 

In the last decades, starting from the general Ramberg-Osgood proposal, several material 

models have been developed. Some of them are in the European, Australian and American 

standards already. All this models, with different levels of complexity and restrictions, are 

based in some material parameters generally obtained from experimental tests. Some of the 

existing models have shown a good adjustment with experimental stress-strain curve results 

for high strains, while others have focused on the expected behaviour for lowers strains. 

The main material models developed for stainless steels are the following: Ramberg & Osgood 

model [6], Hill’s modification of Ramberg & Osgood model [7], Mirambel & Real model [8], 

Rasmussen’s modification of Mirambell & Real model [9] and Gardner’s modification of 

Mirambell & Real model [10]. 

Mirambell & Real Model [8] 

This model has been the chosen one for this research work. It combines good accuracy with 

simplicity and permits to adjust the tensile-deformational behaviour of stainless steel properly, 

even with high strains. When high strains occurred Ramberg-Osgood’s model diverged from 



Antonio Sastre Segui  State of Art 

12 
 

experimental curve which was the main reason why Mirambell-Real improved it. Finally, the 

model is defined with a reasonable number of material parameters.   

� =
��
� ��� + 0.002
 ���.��

� 			���	� ≤ ��.�� − ��.���.� + ���∗ 
 � − ��.��� − ��.��
� + ��.�						���	� ≥ ��.� 																																														Eq. 1 

As has been said, this model was developed from the Ramberg-Osgood [6] formula. It includes 

6 parameters. E is the Young’s modulus, σ0.2, conventionally considered as the yield stress, is 

the proof stress corresponding to a 0.2% plastic strain, n and m are the strain hardening 

exponents and σu and εu are the ultimate strength and its corresponding ultimate strain 

respectively. 

Where                                            ���∗ = �� − ��.� − � !�".#$".#                                              Eq. 2                     

0,2% strain is                                      ��.� = �".#$" + 0.002                                                     Eq. 3           

The tangent modulus               ��.� = $"%&�.����'$" �".#( )                                                           Eq. 4 

And strain hardening exponents are      * = +,-��.+,' /".#/"."0) 					1 = 1 + 3.5 �".#�                          Eq. 5  

The values of these parameters for 1.4003 ferritic stainless steel are the followings on table 1. 

Table 1. Material properties values 

E(MPa) 198000 

σ0.2(MPa) 330 

σu(MPa) 480 

εu 17% 

n 11.5 

m 2.8 

 

2.2 Ferritic stainless steel 

This section explains more accurately ferritic stainless steel by presenting its differents grades, 

economic advantages, and finally mechanical and physical properties. As has already been 

said, ferritic stainless steel presents a much higher resistance to corrosion than carbon steel 

does. Furthermore, it exhibits good ductility, formability and an excellent resistance to impact. 

The proportions range of its elements is: 0.02 to 0.06% of carbon and 10.5 to 29% of chrome. 

Certain ferritic grades contain additional alloying elements such as molybdenum (0 to 4%), to 

enhance properties. This material has a special resistance to certain types of corrosion. 
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Figure 4. Guangzhou Multi-sports Arena’s deck [11] 

This material has been very successfully used in several applications as chassis, railway 

coaches, tanks, washing machine drums, exhaust systems and industrial conduits although it 

also exist recent structural applications as the one shown in Fig. 4 above. In many cases ferritic 

grades are emerging as a better choice than more expensive materials. 

There are five groups of ferritic grades depending on the proportion range of its elements as 

shown in figure 5. 

 

Figure 5. Groups of Ferritic Grades [12] 

Some characteristics of these groups are mentioned as follows: 

Group 1: This group of ferritic has the lowest chromium content and is the least expensive. It is 

perfect for non-corrosive conditions. In this context, it has a longer life than carbon steel (type 

409/410L). 

Group 2: It is the most widely used group, having higher content of chromium. It is appropriate 

to have an intermittent contact with water but in non-corrosive conditions (type 430). 
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Group 3: The difference between this group and group 2 is that this one presents better 

weldability and formability thanks to the stabilizers (includes types 430Ti, 439, 441, etc.). The 

quantity of chromium is similar to group 2. 

Group 4: This group has added molybdenum for extra corrosion resistance. It is corrosion 

resistant and has a wide range of uses (includes types 434, 436, 444, etc.). 

Group 5: These are grades with very high chromium content besides molybdenum, which 

makes them as corrosion resistant in highly corrosive environments as titanium metal (includes 

types 446, 445, 447 etc.). 

Research on ferritic stainless steels became a priority when nickel prices increased to 

unprecedented levels, greatly affecting the cost of austenitic grades, and interest in more 

prices table grades increased. Because of the absence of nickel in ferritic grades, which is also 

subject to considerable price fluctuations, their cost is lower and more stable than austenitic 

stainless steels. Nickel price evolution in last few years is shown in Fig. 6. 

 

Figure 6. Nickel Price evolution in $ [13] 

 

Figure 7. Cr and Ni Price evolution in ’01-’07 period [14] 

This is the main reason why it is interesting to develop and study a stainless steel alloy that 

presents a more constant price, so the expected project budget does not suffer cost variations 
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as far as concerns material. We can also see in Fig. 7 the price variation of chromium and nickel 

(taking into account that 1 lb is 0,45kg). 

As we can appreciate, the range of prices of chromium is from 440 to 2000 $/T, and in nickel 

the variation occurs in a bigger wide range of prices from 4000 to 34000 $/T. 

2.2.1 Mechanical properties 

Mechanical properties of ferritic grades are presented in Fig. 8. Ferritics have generally lower 

elongation and strain hardening properties than austenitics. As for plain carbon steels, ferritic 

stainless steels in the annealed state present a kind of “yield point” (is not a real yield point 

because is a non-linear material) followed by a stress drop on the stress/strain curves. This 

behaviour is caused by the breakaway of pinned dislocations and enables a “true yield stress” 

to be defined. It is accompanied by the formation of localized deformation bands named 

“Piobert-Lüders” bands. As a result, after plastic deformation on annealed samples, surface 

defects may be observed. In the case of deep drawing, they are called “stretcher strains” or 

“worms”. It can be avoided partially by stabilisation or by a skin pass operation which 

introduce “fresh” dislocations in the structure. Beware with 304 (Fig. 8), which is not a ferritic 

stainless steel grade. 

 

Figure 9. Typical mechanical properties of some ferritic stainless grades[14] 

 

2.2.2 Physical properties 

The most obvious difference between ferritic stainless and austenitic properties is their 

ferromagnetic behaviour at room temperature and up to a critical temperature known as the 

Curie point, temperature typically in the range of 650-750°C at which the magnetic order 

disappears. Magnetism has nothing to do with corrosion resistance which is closely linked to 
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chemical composition (Cr, Mo ...). Moreover, corrosion resistance is almost independent from 

the microstructure (not considering the specific case of stress corrosion cracking where ferritic 

structure is an advantage or crevice corrosion propagation rate where nickel plays a beneficial 

role). The popular link between magnetism and poor corrosion resistance results from an 

inappropriate comparison i.e. comparing a ferritic grade with lower Cr content (13-16%) with 

the austenitic 304 grade (18%). 

In fact, the magnetism of ferritic grades is one of the material’s major assets in some 

applications. This includes advantages ranging from the ability to stick memos on the 

refrigerator door to storing knives and other metallic implements. Indeed, it is also an essential 

property for ferritic stainless uses in applications dealing with induction heating such as the 

familiar pans and other cookware for “induction” cooking. In those applications, magnetic 

materials are requested to generate heat from magnetic energy. 

 

Figure 8. Physical properties of some ferritic stainless steel grades[14] 

Ferritics’ lower thermal expansion coefficient combined with their improved thermal 

conductivity often provides a key advantage to ferritics over austenitics when considering 

applications involving heat transfer. Typical physical properties of ferritic stainless compared 

to austenitics are presented in Fig. 9. Beware with 441 and 444 (Fig. 9), which are not ferritic 

stainless steel grades. 

Ferritic stainless exhibits a non-uniform texture which leads to heterogeneous mechanical 

behaviour. Phenomena such as “earing” as well as “roping” (sometimes called “ridging”) are 

observed. Roping generally occurs during deep drawing and involves the formation of small 

undulations elongated in the tensile direction. Those defects must be eliminated during 

finishing. The stabilized ferritic steels are less sensitive to roping than basic AISI 430 grade. In 
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practice, optimization of process parameters makes it possible to significantly attenuate this 

phenomenon. Deep drawing performance is determined by the limit drawing ratio (LDR), 

which is well correlated with the mean strain ratio. Ferritics have higher LDR values than 

austenitics, which makes them particularly suitable for deep drawing applications. The main 

stress ratio may be optimized in ferritic stainless steels by process cycle parameters including 

slab microstructure control and cold rolling parameters preceding the final heat treatment. In 

industrial practice, for a single cycle cold rolling process, values of 1.8-1.9 LDR are obtained for 

a conventional 430 grade. 

 

Figure 10. LDR and dome height values of several ferritic and 304 austenitic grades [14] 

The LDR may reach values higher than 2.1 for optimized process including a two steps cold 

rolling process (Fig. 10, above). Stabilization (by Ti, Nb addition…) of ferritic stainless steel 

induces a significant modification in the crystalline texture leading to a sharp improvement of 

the strain ratio. Improved LDR values are observed. The performance regarding pure deep 

drawing aside, ferritic grades are inferior to austenitics in pure stretch forming. “Dome height” 

refers to the maximum degree of deformation – of a blank undergoing stretching – before 

“necking”. Dome height (K50, in mm) values of ferritic and 304 austenitic grades are presented 

(Fig. 10, down). 

In practice, industrial forming operations involve a combination of both drawing and stretch-

forming deformation, in a series of “passes”. Forming limit curves are a useful guide to assess 

maximum deformation before failure, in both deep drawing and stretching processes. These 

curves define local deformations during and after forming in terms of two principal “true 

strains”: longitudinal (“major strain”) and transverse (“minor strain”). The curves plot the 

effects of the various combinations of these two strains, up to the point of fracture. Typical 

results obtained for ferritics and 304 grades are presented (Fig. 11). Ferritics clearly have less 

combined forming properties than austenitics. For the most severe forming conditions, the 
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switch from austenitics to ferritics may need some design optimisation with shape 

modifications of the most critical areas. 

 

Figure 11. Forming limit curves of ferritic and 304 stainless grades [14] 

2.3 Cross-sectional resistance of stainless steel: analytical expressions  

This section will present and explain different analytical expressions that will be used to 

calculate ultimate resistances of the cross-sections (axial forces and/or bending moments, Nu 

and Mu, respectively). These values will be needed when analysing the behaviour of ferritic 

stainless steel cross-sections to combined loading conditions, in order to identify the 

expressions that fits better to the safety region defined by Nu and/or Mu (simple or combined 

loading). Furthermore, different analytical expressions for interaction from standards and 

investigation papers will be studied too. 

On the one hand, one of the ways to determine these ultimate resistances of the cross-

sections is by attending EN 1993-1-4 [4], which is the specific standard for stainless steel. This 

Standard refers to part of Eurocode (EN 1993-1-1 [15] and 1993-1-3 [16]) that in many aspects 

has not been validated for ferritic stainless steel (e.g. when interaction is being studied, EN 

1993-1-4 refers to EN 1993-1-1).This method requires a cross-section classification in order to 

evaluate properly the different expressions presented in this Standard. 

On the other hand, there is a new and more accurate way to determine these ultimate 

resistances of the cross-sections: Continuous Strength Method (CSM). This method is not 

included in any standard but is used for research. Because of this, CSM will be included in the 

analysis of this research project. The CSM will be evaluated for each cross-section and loading 

case to see whether the final result can be improved taking advantage of the stainless steel’s 

strain hardening.  

2.3.1 EN 1993-1-4 analytical expressions for combined loading 

This section will present firstly the cross-section classification method, and secondly the 

expressions for simple and combined loadings (interaction expressions) in order to be able to 

evaluate all of the ultimate loading cases being studied.  
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2.3.1.1 Classification of compression elements 

The equation to obtain the resisting moment for normal bending, combined loading, buckling 

or simple compression depends on the Class of the cross-section that is being studied. The 

classification given by EN 1993-1-4 for stainless-steel cross-sections follows the criteria 

presented on the table 2 below.  

Table 2. Maximum width-to-thickness ratios for compression parts [4] 

 

 

However, recent research conducted by Gardner and Theofanous in [17]recent researches 

have demonstrated that these slenderness limits are overly conservative. Because of it, new 

limits have been proposed and will maybe be included in the next revision of EN 1993-1-4, 

which is expected to be soon published. As the analysed section are all rectangular and square 

hollow section, they do not have any outstand flanges, so only need the information that is 

referred to internal elements under compression. As it can be appreciated on table 3, where 

appears the new T&G [17] cross-section classification criteria, limit values of slenderness for 
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each Class are different from those proposed for carbon steel and the ones presented in 

EN1993-1-4[4] or T&G [17] for stainless steels. 

Table 3. Carbon and stainless Steel slenderness limits for compression elements in EN 1993 and other proposals 

Element 

Class 2 limit Class 3 limit 

Carbon 
steel EN 

Stainless 
steel EN 

Stainless 
steel T&G 

Carbon 
steel EN 

Stainless 
steel EN 

Stainless 
steel T&G 

Internal element in 
compression 

38ε 26.7ε 35ε 42ε 30.7ε 37ε 

Internal element in 
bending 

83ε 58.2ε 76ε 124ε 74.8ε 90ε 

 

Note: ε has the same expression as in EN 1993-1-4 (table 2). 

As this work is focused on the behaviour of class 1, 2 and 3, is not necessary to include in this 

paper the way to procedure to obtain the value of the effective values of section properties 

(effective inertial moment and effective areas) that are needed to evaluate the expressions 

presented for Class 4 sections. 

2.3.1.2 Resistance of cross-sections, Ultimate Limit States [4 and 15] 

After classifying the cross-section depending on the slenderness of the elements that shape 

the cross-section being studied, we are able to proceed applying the correct expression for the 

calculation of the ultimate capacities of the cross-section subjected to each case of loading.  

-Traction 

The resistant value of the traction force Nt,Rd at each cross section is: 

45,78 = 9�:;<� 																																																																																																																																														�=. 6 

A cross sectional area 

�: yield stress, for stainless-steel is considered σ0.2 

;<� partial factor for resistance of cross-sections whatever the Class is 

In this case we will not have to check the class of the section, only when the member is under 

compression actions. 

-Compression 

The resistant value of the compression force Nc,Rd at each cross section is: 

4?,78 = 9�:;<� 																									for	Class	1,2	or	3	cross − sections																																																			�=. 7 

4?,78 = 9MNN�:;<� 																					for	Class	4	cross − sections																																																														�=. 8 
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A cross sectional area 

Aeff effective area, we can find how to calculate it in 4.3 (EN 1993-1-5) 

�: yield stress, for stainless-steel is considered σ0.2  

;<� partial factor for resistance of cross-sections whatever the Class is 

-Bending moment 

The resistant value of the bending moment MRd at each cross section is: 

Q78 = R�S�:;<� 																									for	Class	1or	2	cross − sections																																																			�=. 9 

Q78 = RMS,�U��:;<� 																					for	Class	3	cross − sections																																																								�=. 10 

Q78 = RMNN,�U��:;<� 																					for	Class	4	cross − sections																																																						�=. 11 

 

Wpl               cross-section plastic resistant modulus 

Wel,min cross-section elastic resistant modulus referred to the fibre with the maximum 

elastic stress 

Weff,min cross-section elastic resistant modulus referred to the fibre with the maximum 

elastic stress calculated with the effective properties of the cross-section , see 

4.3 (EN 1993-1-5) 

�:  yield stress, for stainless-steel is considered σ0.2 

;<�  partial factor for resistance of cross-sections whatever the Class is 

-Bending and axial force (interaction EN 1993-1-1) 

For Class 1 and 2 rectangular or square hollow sections of uniform thickness the following 

approximations may be followed: 

QV,:,78 = Q�S,:,78-1 − *.1 − 0.5WX 				YZ[	QV,:,78 ≤ Q�S,:,78 																																																																	�=. 12 

QV,\,78 = Q�S,\,78-1 − *.1 − 0.5WN 				YZ[	QV,\,78 ≤ Q�S,\,78 																																																																			�=. 13 

Where  aw=(A-2bt)/A      but     aw≤0.5 for hollow sections 

  af=(A-2ht)/A       but      af≤0.5 for hollow sections 

n=NEd/Npl,Rd where NEd is the design value of the axial force and Npl,Rd the                 

design plastic resistance to normal forces of the cross-section  



Antonio Sastre Segui  State of Art 

22 
 

  A, area; h, depth; b, width 

Q�S,U,78  design plastic value of the resistance to bending moments, i-i 

axis 

When a bi-axial verification is needed, the following criterion may be used: 

] Q:,$8QV,:,78^
_ + ] Q\,$8QV,\,78^

` ≤ 1																																																																																																													�=. 14 

Where   QV,:,78 and QV,\,78 are defined in Eq. 12 and 13 above. 

Q:,$8 	W*a Q\,$8 are the design bending moments, for y-y and z-z axis, 

respectively.  

 α and β are constants, which may be conservatively be taken as unity, 

otherwise as follows: 

b = c = 1,661 − 1,13*� 			but	b = c ≤ 6 

and	* = 4$8/Q$8 

For class 3 cross-sections, a linear criterion is applied as follows: 

4$89�:/;<� + Q:,$8RMS,:�:/;<� + Q\,$8RMS,\�:/;<� ≤ 1																																																																																	�=. 15 

Where  A cross sectional area 

  ;<� partial factor for resistance of cross-sections whatever the Class is 

  RMS,: and RMS,\ are the cross-section elastic resistant modulus referred to the 

fibre with the maximum elastic, each one referred to y-y and z-z axis, 

respectively 

  �: yield stress, for stainless-steel is considered σ0.2 

4$8, Q:,$8 and Q\,$8 are the design values for: the normal force, y-y bending  

moment and z-z bending moment, respectively. 

 For class 4 cross-sections, the criterion used is the following: 

4$89MNN�:/;<� +Q:,$8 +4$8hV:RMNN,:�:/;<� +Q\,$8 +4$8hV\RMNN,\�:/;<� ≤ 1																																																												�=. 16 

Where   eNy and eNz are the shifts of the relevant centroidal axis when the cross-section 

is subjected to compression only 

 4$8, Q:,$8 and Q\,$8 are the design values for: the normal force, y-y bending  

moment and z-z bending moment, respectively. 
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�: yield stress, for stainless-steel is considered σ0.2 

RMNN,: and RMNN,\ are the cross-section elastic resistant modulus referred to 

the fibre with the maximum elastic stress stress calculated with the effective 

properties of the cross-section , (see 4.3, EN 1993-1-5[18]), each one referred 

to y-y and z-z axis, respectively   

NOTE: this research work will not take into account the interaction with shear force.  

2.4 Continuous strength method - CSM 

The Continuous Strength Method (CSM) is a novel approach to the treatment of local buckling 

in metallic cross-sections, which does not utilize the effective width concept, does not assume 

the traditional bilinear material behaviour and allows for better exploitation of the material. It 

is based on the deformation capacity of the cross-section in question, as predicted by an 

experimentally derived design curve relating the strain at which local buckling occurs, denoted 

εLB, to the cross-section slenderness. This deformation capacity is utilized in conjunction with 

an accurate stress–strain law to obtain the maximum attainable stress σLB corresponding to the 

local buckling strain εLB. Additional features of the method include explicit allowance for the 

beneficial influence of strain hardening incurred during the forming process on the strength of 

the corner regions of cold-formed cross-sections and generalizations of the method to cover 

member instabilities and interaction of various loading conditions. The method has also been 

successfully applied to aluminium alloy, high strength steel and carbon steel design. It should 

be noted that the Continuous Strength Method deals primarily with the fundamental loading 

cases associated with normal stresses (i.e. pure compression, bending and interaction of 

compression and bending). The shear buckling resistance of stainless steel cross-sections has 

been examined elsewhere. 

2.4.1 Development of the continuous strength method 

The continuous strength method (CSM) is a strain based design approach featuring two key 

components: a base curve that defines the level of strain that a cross-section can carry in a 

normalised form and a material model, which allows for strain hardening and, in conjunction 

with the strain measure, can be used to determine the cross-section resistance. 

2.4.2 Design base curve 

A fundamental feature of the CSM is relating the cross-section resistance to the cross-section 

deformation capacity, which is controlled by the cross-section slenderness and its 

susceptibility to local buckling effects. The cross-section deformation capacity determines the 

ability of the section to advance into the strain hardening region and hence sustain increased 

loading. A design base curve, providing a continuous relationship between the normalised 

cross-section deformation capacity and the cross- section slenderness, has been established on 

the basis of both stub column test data and beam test data. 

2.4.2.1 Cross-section slenderness definition 

Within the CSM, the cross-section slenderness is defined in non-dimensional form as the 

square root of the ratio of the yield stress fy to the elastic buckling stress of the section. For 

structural sections consisting of a series of interconnected plates, the elastic buckling stress of 

the full cross-section σcr,cs, allowing for element interaction, may be determined by means of 
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existing numerical [19] or approximate analytical methods[20]. This cross-section slenderness 

definition is given by Eq. 27 and will initially relate to the centreline dimensions. To maintain 

consistency with the codified slenderness definitions [4 and 18], which is based on the flat 

element widths, the resulting slenderness values can be multiplied by the maximum flat to 

centreline width ratio (cflat/ccl) max of the section as given by Eq. 28.  

Alternatively, as recommended in EN1993-1-4 and EN 1993-1-5 [4 and 18], the section elastic 

buckling stress may be taken as the lowest of those of its individual plate elements σcr,cs,min, 

resulting in the section slenderness definition given in Eq. 29. In Eq. 29, b is element width, t is 

the thickness, ε is the material factor and kσ is the appropriate buckling coefficient, taking due 

account of the plate support conditions and the applied stress distribution, as outlined 

inEN1993-1-5, of the plate element with the lowest elastic buckling stress. 

i� = j �:σlm,ln 																based	on	centreline	dimensions																																																													�=. 27 

i� = j �:σlm,ln 
pNSq5p?S ��qr 																based	on	flat	widths																																																														�=. 28 

i?u = i� = j �:σlm,v,wx, =
Y [(28.4�yz� 																																																																																																�=. 29 

2.4.2.2 Cross-section deformation capacity definition 

Cross-section deformation capacity is defined in a normalised format and is taken for stocky 

sections as the strain at the ultimate load divided by the yield strain. This normalised 

deformation capacity, referred to as the strain ratio εcsm/εy, can be determined from both stub 

column and beam test results.  

First, the limiting slenderness defining the transition between slender cross-sections (i.e., 

those that fail due to local buckling below the yield load) and non-slender cross-section (i.e., 

those that benefit from strain hardening and fail by inelastic local buckling above the yield 

load) should be defined. This limit may be determined with reference to the material’s test 

data (stainless steel in our case).  

A linear regression fit to the test data of Fig. 12 indicates that, the point on the line where 

Nu,test/Aσ0.2 equals unity occurs at i�= 0.68; a similar value is obtained from equivalent carbon 

steel and aluminium alloy test data. A range of slenderness limits appear in different design 

standards and research papers. The existing slenderness limits corresponding to the Class 3–4 

width-to-thickness ratio are: for internal compression elements, 0.739 (42ε) [15] for carbon 

steel, 0.540 (30.7ε) [4] for stainless steel; for outstand elements (not needed in our study), 

0.756 (14 ε) [15] for carbon steel, 0.642 (11.9ε) [4] and 0.594 (11ε) [17] for cold-formed and 

welded stainless steel, respectively (where ε is the coefficient defined in the end of table 2 of 

cross-section classification). Considering the available information, to make the transition 

between slender and non-slender sections a common limit for stainless steel, carbon steel and 

aluminium alloys, i�= 0.68 is adopted. This slenderness value also marks the limit of 
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applicability of the CSM (i.e., i� ≤0.68), since beyond this limit there is no significant benefit 

to be derived from strain hardening, and slender sections may be adequately treated by means 

of the existing effective width method[4 and 18] or the Direct  Strength Method (DSM)[21]. 

 

Figure 12. Base curve-relationship between strain ratio and slenderness [22] 

 

For stub columns where the ultimate test load Nu exceeds the section yield load Ny, the end 

shortening at the ultimate load δu divided by the stub column length L is used to define the 

failure strain of the cross-section εlb due to inelastic local buckling. 

In bending, assuming plane sections remain plane and normal to the neutral axis, there is a 

linear relationship between strain ε and curvature κ as given by ε= κ·y, where y is the distance 

from the neutral axis. Hence, analogous to the use of stub column tests data, similar 

definitions of normalised cross-section deformation capacity may be established based on 

beam test results.  

2.4.2.3 Experimental database and proposed base curve 

Test data on stainless steel stub columns and 4 point bending tests from a broad spectrum of 

existing testing programs were gathered and combined with equivalent carbon steel data [23] 

for the development of the design base curve. Using the criteria described above, the test data 

were plotted on a graph of normalised deformation capacity εcsm/εy versus cross- section 

slenderness i�, as shown in Fig. 12 from previous section. A continuous function of the general 

form given by Eq. 30 was then fitted to the test data. Two upper bounds have been placed on 

the predicted cross-section deformation capacity; the first limit of 15 corresponds to the 

material ductility requirement expressed in EN 1993-1-1 and the second limit of 0.1 εu/εy, 

where εu is the strain corresponding to the ultimate tensile stress, is related to the adopted 
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stress–strain material model, and ensures no significant over-predictions of the cross-section 

resistance can occur. 

�?u��: = 0.25i�{.| 				YZ[											
�?u��: � 1}* ~15, 0.1ε�ε: � 																																																																					�=. 30 

2.4.3 Material model in CSM 

The CSM employs an elastic, linear hardening material model (bilinear, see Fig. 13). The origin 

of the adopted material model starts at 0.2% off-set plastic strain, which combined with the 

strain ratio definitions, predicts the correct corresponding stress. The yield stress point is 

defined as (fy, εy), where fy is taken as the material 0.2% proof stress and εy is the 

corresponding elastic strain εy =fy/E, where E is the slope of the elastic region and is taken as 

the material’s Young’s modulus. The strain hardening slope (Esh) is determined as the slope of 

the line passing through the 0.2% proof stress point (fy, εy). Esh value will be chosen in order to 

fit properly to the stress-strain curve defined for the the material model chosen before 

(Mirambell-Real [8]).  

 

 

Figure 13. CSM elastic, linear hardening material model. [22] 

2.4.4 Cross-section compression and bending resistance 

Having established the normalised deformation capacity of the cross-section εcsm/εy from the 

design base curve (Eq. 30), the limiting strain εcsm may now be used in conjunction with the 

proposed elastic, linear hardening material model to determine the cross-section resistances 

in compression and bending. For sections with For i� �0.68, the cross-section compression 

resistance Nc,Rd is given by Eq. 31, where A is the gross cross-sectional area, fcsm is the limiting 

stress determined from the strain hardening material model, resulting in Eq. 32 and γM0 is the 

material partial safety factor as recommended in EN1993-1-4 [4] (for stainless steel) . 

4?,78 � 4?u�,78 � 9�?u�;<� 																																																																																																																			�=. 31 
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�?u� � �: + �u��: ~�?u��: − 1� 																																																																																																									�=. 32 

�u�  is determined as the slope of the line passing through the 0.2% proof stress point (fy, εy). 

Assuming that plane sections remain plane and normal to the neutral axis in bending, the 

corresponding linearly-varying strain distribution may be used in conjunction with the material 

model to determine the cross-section in-plane bending resistance Mcsm through Eq. 33, where f 

is the stress in the section with a maximum outer fibre value of fcsm, y is the distance from the 

neutral axis and dA is the incremental cross-sectional area. 

Q?u� = � ��a9																																																																																																																																	�=. 33�  

For sections with i� ≤0.68, the cross-section bending resistance Mc,Rd is given by Eqs. 33 and 

34 for major axis and minor axis bending, respectively, where Wpl is the plastic section 

modulus, Wel is the elastic section modulus and α is 2.0 for SHS/ RHS and 1.2 for I-sections. In 

this study we will use α = 2.0, as we have RHS & SHS. 

Q:,?u�,7� = R�S,: ∙ �?u� �1 + �u�� RMS,:R�S,: ~�?u��: − 1� − ~1 − RMS,:R�S,:� ~�?u��: �
�� � 			�=. 33 

Q\,?u�,7� = R�S,\ ∙ �?u� ]1 + �u�� RMS,\R�S,\ ~�?u��: − 1� − ~1 − RMS,\R�S,\� ~�?u��: �
_� ^ 				�=. 34 

Where 

Wpl cross-section plastic resistant modulus 

Wel,min cross-section elastic resistant modulus referred to the fibre with the maximum 

elastic stress 

�p�1 is the part of the total stress that belongs to the strain hardening part of the  

stress-strain curve of the material 

�p�1 is the part of the total strain that belongs to the strain hardening part of the  

stress-strain curve of the material 

��ℎ   strain hardening slope, which is determined as the slope of the line passing 

through the 0.2% proof stress point (fy, εy). The value adopted that fits better 

the reference material stress-strain curve is 2000 MPa. 

�  is the material young’s modulus, which in the case of stainless-steel is the 

slope of the line that conects the coordinate origin and the 0.2% proof stress 

point 
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2.5 Interaction proposals for stainless steel 

The CSM expressions above are only useful if we only want to obtain the basic resistant 

capacities: ultimate axial force and ultimate bending moment. Both ultimate axial force and 

ultimate bending moment can only be compared with design value of axial force and bending 

moment, respectively, when there is no interaction between these two types of actions. 

Habitual loading cases always have interaction between axial force and bending moments, so 

it is important to develop interaction expressions in order to cover a more wide casuistry of 

loading cases. 

Currently there are some research projects regarding interaction design expressions in order 

to improve the final results obtained from the interaction expression from EN 1993-1-4. As is 

already known, EN 1993-1-4 gives quite conservative results and what would be very 

interesting is to be as closer as possible to the real ones. It is more important it for materials 

with high initial costs as the one that is being studied: ferritic stainless-steel. This research 

project will include a study of two recent interaction proposals, which will be explained in 

sections below. 

2.5.1 Liew & Gardner: interacion expression proposal [24] 

The aim of this research project was to find an interaction expression to improve the actual EN 

1993-1-4 results that would be obtained for the ultimate cross-section resistance of I-sections 

and box sections under combined loading. A strain based numerical model was used to 

perform the final expression using an equation in which each member is pondered by its 

power and its value taking into account where the axil force is applied and the proportion of 

web area of the total. The obtained expression was compared with experimental results and 

the conclusions extracted were good. 

The design equations Eq. 36 and Eq. 37 trace bi-axial bending interaction curves that are 

anchored by reduced moments MR,y and MR,z, which are functions of the axial load n = N/Ncsm. 

Eq. 35 contains reduced moment normalised terms, raised to powers α and β, and are of a 

similar format to the design provisions in EN 1993-1-1 for combined axial load and bending 

moments. The equations provide smooth curves between MR,y and MR,z, and map surfaces that 

conform well to the numerical model surfaces. 

~ Q:Q7,:�
_ + ~ Q\Q7,\�

` ≤ 1																																																																																																																				�=. 35 

Q7,: = Q?u�,:-1 − *q�. %�� 				W*a				Q7,\ = Q?u�,\-1 − *q�. %�� 																																�=. 36	W*a	37 

The design equations collapse to all loading states, combined or otherwise, when the 

appropriate terms are taken as zero. For example, when there is no axial load (n = 0), the 

reduced moments in Eq. 26 and 37 collapse to the CSM moments and convert Eq. 35 into a bi-

axial bending design equation. When either My or Mz are zero, the equations collapse into the 

simple axial load and uni-axial bending forms of Mz≤ MR,z and My ≤MR,y respectively. Finally, 

when both the axial load and minor axis bending components are zero, Eq. 35 returns 

My=Mcsm,y. 



Antonio Sastre Segui  State of Art 

29 
 

The powers ay, az, by, bz, α and β are all defined in table 4. The tabulated powers were found 

via a non-linear least squares fitting regime, and are based on the ratio of the cross-section 

web area to gross area a = Aw/A, and the ratio of the major to minor axis plastic section 

moduli Wr = Wpl,y/Wpl,z. A strain ratio of 5 is required before the convergence of the powers for 

I- sections, compared to that of 3 needed for box sections. The powers ay, az, by, bz, α and β are 

all unity when εcsm/εy < 3. 

Table 4. CSM design ay, az, by, bz, α and β powers for combined loading[24] 

 3 ≤ �?u��: < 5 5 ≤ �?u��: ≤ 15 3 ≤ �?u��: < 5 

 I-sections Box sections 

ay a+1.2 

by 0.8 

az 2 8a+1.2 a+1.2 

bz 1 0.8-0.5a 0.8 

α 2 − 1.5* ≥ 1 2 + 0.15R� − 5*%.� ≥ 1.3 1.75 +R�-2*� − 0.15. ≤ 1.7 +R� 

β 0.8 + 5*�.� ≤ 4 0.8 + -15 −R�.*�.� ≤ 8 1.6 + -3.5 − 1.5R�.*�.� ≤ 3.7 −R�  

 

2.5.2 Theofanous: interaction expression proposal [25] 

This research project’s aim was to find novel interaction equations for stainless steel RHS and 

SHS under combined loading. To do this was used numerical models of two different hollow 

sections, (100x100 SHS and 200x100 RHS) with 5 different wall thicknesses (3, 4, 5, 6 and 8mm) 

for each one, undergoing combined loading. The analysis was non-linear and the numerical 

failure loads data obtained were normalized by the respective capacities and utilized to derive 

a suitable interaction curve that fit the data.  

Two new equations have been proposed in [25]: 


 4$84?u��
� +j~ Q:,$8Q?u�,:�

� + ~Q\,$84?u�,\�
� ≤ 1																																																																																				�=. 38 

4$84?u� +j~ Q:,$8Q?u�,:�
� + ~Q\,$84?u�,\�

� ≤ 1																																																																																											�=. 39 

This research project was done for austenitic stainless steel and results conducted to the 

following conclusions: Eq. 38 provides an excellent fit to the numerical predictions for SHS 

whereas Eq. 39 provides a more safe interaction surface for RHS. However, both interaction 

equations will try to be validated for both RHS and SHS. 

The CSM has been shown to offer significant advantages over alternative design methods in 

ultimate capacity predictions, both in terms of design efficiency as well as in terms of 

consistency of the predictions. To obtain these two interaction expressions a non-bilinear 
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material has been used and it makes more complex the development of the expressions (see 

the reference if is wanted more detailed information). 

2.6 Previous work 

This is the first research work regarding interaction ultimate loadings for ferritic stainless steel. 

It’s true, though, that this research work would not have been possible without other actual 

research papers referred to CSM calibration using another type of stainless steel (austenitic 

[22]) and interaction expressions proposals. 

The aim of this work is to validate which of the different existing analytical design methods fits 

better to ferritic stainless steel. New equations for ferritic stainless steel will not be performed. 
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3. Cross-Section Analysis: Numerical Simulation 
A numerical simulation consists on obtaining results of the behaviour of a virtual system 

designed in a computer’s software that is put down to external actions that modify the initial 

state. In this research project, the system is the beam or column and its boundary conditions; 

and the external actions are the different types of loading proposed. There are many different 

computer programs that are able to do this type of simulations. The advantage of these 

simulations is that it is possible to conduct a lot of them without any additional economic cost 

and it is easy to modify aspects from the model and recalculate again.   

To carry out the numerical simulation has been used the following computer software: 

ABAQUS. This software uses the Finite Element Method (FEM) to obtain the numerical results. 

To get these results is needed to: design properly a virtual model; define the shape, size and 

the grade of nodal interpolation that is desired of the finite elements (mesh creation and 

element characteristics); specify the type of analysis that is required (static risks, buckle…) and 

finally run it.  

In this research project 4 different test types are analysed numerically:  

- stub-column test (N): this test consists on compressing an element without eccentricities in 

order to analyse the maximum compressive axial force that resists the element 

- combined loading test (N+M): in this test is applied a compression with different 

eccentricities to know what combination of axial force and bending moment resists the 

element 

- simple bending test (M): this test analyses the resistant bending moment when it is acting 

only to one axis. 

-  biaxial bending test (My+Mz): this test analyses the combination of bending moments (one 

for each axis) that can resist the element.  

After explaining common specifications for each test, particular calibrations will be explained. 

3.1 Common Specifications 

Each test has its own model but there are several specifications that are common. These 

common specifications are presented in: defining the model, steps, external actions, meshing 

the model, running the model and finally obtaining data results.   

3.1.1 Model 

The virtual model includes the geometry of the element being studied, the material properties, 

the boundary conditions and the sequence of them.  

a) To define the geometry model a tool called sketcher that allows to draw easily the 

shape of the cross-section can be used. The geometry is designed as a closed shell. 

b) To assign the material to the geometric model is required to define a generic cross-

section that includes: the thickness, the Young’s Modulus, the Poisson’s ratio (which is 

assumed as 0.3) and the plastic part of the material model (plastic strain). 
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c) The boundary conditions are referred to both constrains and external actions (loads, 

displacements). When defining them, is required to put in which step of the global 

sequence will be placed and the type of analysis that is wanted. 

3.1.2 Steps 

ABAQUS uses steps to order the different boundary conditions and external actions that follow 

the global sequence of the numerical simulation. For example, when having “prestressed 

concrete” as material, firstly would be introduced boundary conditions, secondly the 

“prestressed” charge and afterwards the external action. The analysis type or time 

discretization, are examples of options that can be personalized for each step. 

In all models the global sequence followed during the analysis is separated in 3 steps (the 

words in italics are referred to the real name in ABAQUS of the analysis’s type): 

- Initial: in this step all constrains that act on the beam or column are definde(i.e. the 

element supports). 

- Buckle: this step permits to carry out an eigenvalue analysis. It contains the external 

actions. The type of analysis that will follow the external actions in this step is: Linear 

Perturbation; Buckle. As can be guessed from the name, is a linear analysis that gives 

us a simulation of the geometry with imperfections of the element. 

- Analysis: this step contains the same external actions that Buckle step has, but it will 

only be enabled when the eigenvalue results have already been calculated. This step 

will give us the simulation results. The type of analysis that will follow the external 

actions in this step is: General; Static, Riks. It uses the geometry imperfections 

obtained from the Buckle analysis. The analysis carried out is non-linear for the 

geometry and the material.  

3.1.3 External action 

As it is not known the ultimate response of the element, what has been done is to apply a big 

displacement. ABAQUS applies this external action with small increments until reaching the 

value imposed. From the post-process ABAQUS tools it will be possible to extract the values in 

which we are interested. The value of the displacement applied varies from 20 to 50 mm, 

depending on the size of the member, for larger element, larger displacement. 

3.1.4 Mesh 

Before running the analysis is required to define the mesh that will be applied to the model. 

This mesh is the way that the whole model is separated in smaller elements (is possible to 

define how to do this separation, not necessarily all elements will have the same size and 

shape). After this, is required to choose the type of element that is wanted. In all of the 

simulations the cross section has been modelled by using a four node (quadrilateral) shell 

element with reduced integration S4R, which has been widely utilised when modelling cold-

formed stainless steel cross-sections. After a mesh convergence study, and in order to 

guarantee computational efficiency, the analyses have been conducted with 5mm long shell 

elements for stub-column and combined loading simulations but for simple and biaxial 

bending simulations the elements have been defined with 10mm length due to the larger 

length of these last ones. 
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The S4R (Fig. 14) is an element that uses uniformly reduced integration to avoid shear and 

membrane locking. The element has several hourglass modes that may propagate over the 

mesh. S4R converges to shear flexible theory for thick shells and classical theory for thin shells. 

Is a robust, general-purpose element that is suitable when the 3D model can be simplified by 

plane elements where each one of them has an assigned thickness (this thickness tends to be 

small, when thickness is bigger will be necessary 3D discretization elements for the FEM: 

hexahedral and tetahedra). 

 

Figure 14. S4R mesh element [26] 

3.1.5 Running the model 

After being defined the mesh, it will be possible to run the model. The first linear analysis is 

due to obtain the initial imperfection shapes of the member. Once done this, a new file is 

created (.fil) which will be used to modify the input file of the non-linear analysis Static, Riks in 

order to introduce the initial imperfection’s information and get the final results properly. The 

initial deformation considered is related to the first buckling mode with a 1% of the thickness 

as amplitude value. 

3.1.6 Obtaining the results 

After running the non-linear analysis, the next step it to analyse the post-process. Results can 

be shown with different variables, for instance: comparing the evolution of the displacement 

versus the reaction force, or the moment that appears versus the rotation manifested. It is 

possible to get a graph to show the relationship between these two couples of parameters. 

With this graphs, ultimate efforts and displacements will be easily obtained. 

3.2 Model: Calibrations and Particular specifications 

Each model needs to be calibrated with an experimental test in order to guaranty that the 

reality is simulated properly. To do this, some papers of experimental tests were used [29 and 

30]. The aim was to emulate the effort-deformation/rotation real curve as good as possible. 

The next subsections explain particular specifications that each model has, apart from the 

calibration. 

3.2.1 Stub-column/Combined loading tests 

The following table 5 presents the length for each cross-section, which will be 3 times the 

value of the larger side of the cross-section.  
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Table 5. Element length for stub-column numerical simulations 

Section SC-Length(mm) Section SC-Length(mm) 

S1-120x80x4 360 S7-60x60x3 180 

S2-80x40x4 240 S8-70x50x2 210 

S3-80x80x4 240 S9-100x100x3 300 

S4-60x60x4 180 S10-100x100x3.5 300 

S5-100x100x4 300 S11-120x120x5.5 360 

S6-120x80x3 360 S12-80x80x2.5 240 

 

The boundary conditions are defined with two constraint-coupling points placed 35mm 

perpendicularly to both faces in each extreme of the element (Fig. 15). Each constraint is 

referred to each extreme face of the element. The position of this point referred to the face 

will depend on the bending moment that will be required, as the axial load will be introduced 

with an eccentricity that will cause an additional bending moment (N·e=M). When the position 

of the point is on the centre of the section, it will mean stub-column test. 

Figure 15. Stub-column boundary conditions  

These two points were fixed in all of their 3 displacements and torsional rotation (2 free 

rotations) but one of these two points has an imposed longitudinal displacement which is the 

external action applied. Rotation restrictions depend on the axis that is required to be studied: 

normally the rotation that is restricted is the one that belongs to the strong bending axis.  

3.2.1.1 Calibration 

Good agreement between the experimental results and FEM has been observed as it can be 

appreciated at Fig.16, where load-deflection curves are presented for the experimental test 

and numerical analysis. The experimental test was done for a SHS 60x60x5 and 400mm long. 
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Figure 16. Stub-column/combined load-deflection calibration curve 

The error between the maximum resisting load between the experimental case and the one 

simulated can be appreciated in table 6. 

Table 6. Error between experimental results and simulation for stub-column test 

 Experimental Results Simulated Results 

Ultimate Load(KN) 325 323.9 

Displacement(mm) 9 7.7 

Relative Error in Ultimate 
Load(%) 

- 0.4 

Relative Error in 
Displacement (%) 

- 14.4 

 

With these results, not only the simulated load-deflection curve fits well, but an important 

parameters as the maximum load is accurately predicted. However, the displacement has 

larger error but assumable. 

3.2.2 Bending tests 

The length of the element will be 1600mm for all of the different cross-sections. The boundary 

conditions are defined in 3 different constraint-coupling points. Each constraint is referred to a 

surface, which depend on the test being analysed: 

a) Uniaxial bending test: 

The surface measures 50xbmm2, if we want to obtain the ultimate My or 50xhmm2, if we want 

to obtain the ultimate Mz, where b and h are the width and depth of the cross-section 

respectively. An example is shown in Fig. 17. 
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Figure 17. Boundary conditions of uniaxial bending test 

The middle point is placed where the external action will be applied action in terms of a 

displacement. The direction of this displacement will be normal towards the exterior referring 

to the surface which is placed in the middle of the beam (no more degrees of freedom are 

modified). 

b) Biaxial bending test: 

The surface coincides with the cross-sections that are placed at 50, 800 and 1550mm 

(extremes and middle of the beam). An example is shown in Fig. 18. 

 

Figure 18. Boundary conditions of biaxial bending test 

The middle point is placed where the external action will be applied which is applied to the 

central cross-section and consists of a displacement in “y” and “z” directions (x displacement is 

free). The values for these combined displacements will be a combination of the values 

associated to each direction, depending on the combination of the ultimate My+Mz that is 

wanted to be obtained.  

For both tests, the position of each constrained point is in the centre of each surface. These 3 

surfaces are placed in: one in the middle of the beam (referred to the longitudinal dimension) 

and the last two in each extreme of the beam (at 50, 800 and 1550mm, extremes of the beam 

and the midspan section, see Fig. 17). 
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The rest two boundary conditions define the supports of the beam. These supports only 

restrict torsional rotation, and when talking about displacements, all will be restricted in one 

of the supports but the other one will permit the longitudinal displacement. 

As it can be appreciated, the span length between supports is 1500mm (distance between 

centres of both extreme boundary condition surfaces) and this will be the value to use when 

calculating analytical results. 

3.2.2.1 Calibration 

The experimental test was done for a RHS 60x60x3 and 1600mm length. As well as for the 

stub-column test, a parameters comparison has been done too (table 7). 

Table 7. Error between experimental results and simulation for Uniaxial Bending test 

 Experimental Results Simulated Results 

Ultimate Load(KN) 615 638.7 

Displacement(mm) 4 3.7 

Relative Error in Ultimate 
Load (%) 

- 3.8 

Relative Error in 
Displacement (%) 

- 7.5 

 

As it can be appreciated, both errors are near 5% and it can be concluded that the numerical 

model simulates properly the real test. The result of the calibration is shown in Fig. 19, in 

which good agreement between the experimental results and FEM simulation is presented. 

 

Figure 19. Uniaxial bending test calibration 
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3.3 Geometry and material 

This section will justify the different cross-section and material that have been chosen for this 

numerical analysis. 

3.3.1 Geometry 

It is very important to define the cross-section geometry properly in order to obtain results 

that will be easier to analyse and extract conclusions about. If the geometry would be chosen 

randomly, surely the obtained results would not represent the wide whole casuistry of cross-

sections commercially available.  

While choosing the cross-section geometry, the parameter that is being looked for is the cross-

sectional slenderness. This parameter is the one used, for Eurocode 1993-1-4, when classifying 

a stainless-steel cross-section with the aim of identifying the extent to which resistance and 

rotation capacity of the cross section is limited by its local buckling resistance. It is an 

important parameter for the CSM too. 

This base curve has to important slenderness values:  

-  εcsm/εy�15 � λp=0.32 (corresponds to the material ductility requirement ex 

- pressed in EN 1993-1-1) it does not depend on the cross-section. 

-  εcsm/εy�1 � λp=0.68 This limit is the transition from class 3 to class 4 cross-sections in 

EN 1993-1-3 and EN 1993-1-4 classification. 

When the slenderness is lower than 0.32, the base curve is a straight line and for slenderness 

higher than 0.68 cross-sections begin to undergo local buckling problems. As this research 

project is for stocky members, slenderness higher than 0.68 will have no interest herein. The 

straight line for slenderness lower than 0.32 is due to a material maximum ductility 

requirement (a material with too high ductility will fail with considerably high deformation and 

because of this, when the designing process takes place, its ultimate strain is limited virtually).  

Said this, the different geometries that will be analysed will present slenderness between 0 

(does not exists) and 0.68. After consulting some ferritic stainless steel cross-section 

catalogues [27 and 28], the ones chosen are presented on table 8.  This table includes the 

slenderness of each cross-section calculated by the EN 1993-1-1 method (Eq. 29). 

Table 8. Analysed cross-sections and their slenderness 

Dimensions 
λcs,min 

Dimensions 
λcs,min 

EN expression EN expression 

S1-120x80x4 0.54 S7-60x60x3 0.35 

S2-80x40x4 0.34 S8-70x50x2 0.64 

S3-80x80x4 0.34 S9-100x100x3 0.65 

S4-60x60x4 0.26 S10-100x100x3.5 0.55 

S5-100x100x4 0.45 S11-120x120x5.5 0.40 

S6-120x80x3 0.76 S12-80x80x2.5 0.60 
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As it can be seen on Fig. 20, there are cross-sections with the slenderness very close to each 

other, but the reason to choose them was because in this research project are analysed both 

RHS and SHS cross-sections. A total of 12 different RHS and SHS will be analysed, trying to 

cover all the casuistry of stocky cross-sections.  

 

 

Figure 20. Analysed cross-section slenderness  

 

The parameters that will define our RHS or SHS will be the following ones: 

-b: width, which refers to the width of the average perimeter  

-h: depth, which refers to the depth of the average perimeter 

-t: thickness 

-r: radius, which refers to the radius of the average perimeter 

 

0

2

4

6

8

10

12

14

16

0 0,2 0,4 0,6 0,8 1

εε εε C
S

M
/ 

εε εε y

λλλλcs

CSM

EN 1993



Antonio Sastre Segui  Cross-Section Analysis: Numerical Simulation 

40 
 

 

Figure 21. RHS & SHS geometry parameters 

In this research work has been assumed that when parameters are with small letter refers to 

average perimeter, and when are with capitals refers to the external perimeter (Fig. 21). 

The different cross-section values for all the geometry parameters are gathered in the 

following table 9. 

Table 9. Cross-section parameters values 

Cross-Section b(mm) h(mm) t(mm) r(mm) 

S1-120x80x4 116 76 4 8 
S2-80x40x4 76 36 4 6 
S3-80x80x4 76 76 4 6 
S4-60x60x4 56 56 4 3.5 

S5-100x100x4 96 96 4 6 
S6-120x80x3 117 77 3 5.5 
S7-60x60x3 57 57 3 4 
S8-70x50x2 68 48 2 4 

S9-100x100x3 97 97 3 3 
S10-100x100x3.5 96.5 96.5 3.5 3.25 
S11-120x120x5.5 114.5 114.5 5.5 6.25 

S12-80x80x2.5 77.5 77.5 2.5 3.75 

 

The radius hardly ever appears in catalogues and is the most difficult parameter to measure. 

To define the radius of each cross-section an experimental database which contained different 

cross-section’s geometries has been used. Areas and second moments of inertia have been 

deduced using a graphic design program. 

3.3.2 Material 

The material chosen for the preliminary study has been the ferritic stainless-steel grade 

1.4003. The typical values for the parameters that will be used to define the stress-strain curve 

of this steel are specified in the following table 10. 
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Table 10. Adopted material properties 

E(MPa) 198000 
σ0.2(MPa) 330 
σu(MPa) 480 

εu 17% 
n 11.5 
m 2.8 

 

Where E is the Young’s Modulus, σ0.2 is the proof stress corresponding to a 0.2% plastic strain, 

σu is the ultimate strength of the material and εu the % of deformation that corresponds to this 

ultimate strength. Parameters n and m are the strain hardening exponents for Mirambell&Real 

[8] material model, as defined in section 2.1.6. This model has been chosen because it has two 

tiers that arrive to εu and gives very good results for ferritic stainless-steels as it takes into 

account the strain hardening. 

With these values, applying the proposed material model in 2.1.6, the stress-strain curve has 

been obtained (Fig. 22).  

 

Figure 22. Basic 1.4003 ferritic stainless steel stress-strain curve 

We will assume that this is the real stress-strain curve for the material being studied. This 

material model is going to be used for the numerical models. As it has been seen in section 

2.4.3, CSM requires a bilinear model in order to simplify the calculations. Mirambell&Real [8] 
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material model is a two stage material model and is the one that will be used for analytical 

expressions.  

After applying the material parameter values from table 10 to the CSM material model 

presented in [22] the resulting curve did not fit with the reference one. The problem was that 

the Esh (strain hardening modulus) was too large. In fact, given that ferritic and austenitic 

stainless steels present such different material behaviour between them and that the CSM 

material [22] model was calibrated for austenitic stainless steels, it was not a surprise that this 

CSM material model did not fit well to the reference model. 

What has been done is to find out what value of Esh fits better the target material model. The 

value that fit better was 2000 MPa (see Fig. 23). 

 

Figure 23. Comparison of the different material models 

As can be appreciated, EN 1991-1-1 material model (carbon steel) is the elastic perfectly plastic 

material behaviour, noted as EN in Fig. 23, which differs from the CSM one in the plastic tier of 

the stress-strain curve: EN 1993-1-1 does not take into account the stain hardening (it is like 

considering Esh=0, slope of the plastic part of the curve). The CSM considers that the material is 

able to admit more strength while gaining strain, which does not happen with an elastic 

perfectly plastic material. Thereby, it has been adopted a bilinear model with a branch of 

hardening of Esh=E/100. 

3.4 Numerical Results 

In the following sections are presented the results of the numerical simulations obtained from 

each type of test: stub-column tests, combined loading tests, uniaxial and biaxial bending tests. 

For each type of test it will be shown a deformed shape as a prime example for both buckle 

and non-linear analysis. Moreover, tables with the numerical results of the ultimate loads 

and/or moments that have been reached will be included.  
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3.4.1 Stub-column  

As it has been said before, in order to obtain the numerical results, two different types of 

analysis have to be done: “Buckle” and “Static, Riks”. The model used is the one explained in 

section 3.2.1: stub-column/combined loading test. The displacement will be applied in the 

centre of the cross section, this way no bending moment is introduced into the member. 

Following EN 1993-1-1 recommendations, the length of the elements for this type of test will 

be 3 times the larger dimension of the cross-section, so the length will depend on the cross-

section being analysed. 

On table 11 is shown a comparison between the analytical (EN 1993-1-1) and the numerical 

(ABAQUS) results for the slenderness.  The analytical slenderness is calculated with Eq. 29. 

However, the numerical one is calculated using Eq. 27, where fy is known (material parameter) 

and it is only missed the critical stress. To calculate this critical stress is required the numerical 

eigenvalue of the deformed shape for the first mode of buckling (ABAQUS). Multiplying the 

eigenvalue for the imposed displacement, it gives us the critical displacement. Given the 

critical displacement is easy to calculate the critical axial load (for stub-column tests) or critical 

bending moment (for bending tests) that produces this displacement. Then only lasts the 

calculation of the critical stress and finally apply Eq. 27. 

Table 11. Comparison of analytical and numerical slenderness  

 

As it can be appreciated, obtained numerical slendernesses are very close to the analytical 

ones. The difference between both methods is that analytical slendernesses only take into 

account the most slender element of the cross-section (being more conservative) while the 

numerical one takes into account the interaction of this element (the more slender one) with 

the rest of the cross-section elements (giving higher slenderness). 

In order to give an idea of the deformed shapes for the first mode of “Buckle” and the “Static, 

Riks” analysis, an example of each one, for S1 cross-section, are shown on Fig. 24 and Fig. 25, 

respectively.  

Section λcs,min Section λcs,min 

EN expression ABAQUS EN expression ABAQUS 

S1-120x80x4 0.54 0.54 S7-60x60x3 0.35 0.4 

S2-80x40x4 0.34 0.35 S8-70x50x2 0.64 0.71 

S3-80x80x4 0.34 0.4 S9-100x100x3 0.65 0.67 

S4-60x60x4 0.26 0.3 S10-100x100x3.5 0.55 0.58 

S5-100x100x4 0.45 0.5 S11-120x120x5.5 0.40 0.44 

S6-120x80x3 0.76 0.71 S12-80x80x2.5 0.60 0.64 
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Figure 24. S1 stub-column test first mode shape of “Buckle” analysis 

 

Figure 25. S1 stub-column test deformed shape of “Static, Riks” analysis  

The following table 12 shows the numerical results of all of the ultimate loads for the different 

cross-sections for stub-column test simulations.  

Table 12. Numerical stub-column results 

Cross-section Nu,FEM (kN) 

S1-120x80x4 583.5 
S2-80x40x4 351.4 
S3-80x80x4 458.2 
S4-60x60x4 398.7 

S5-100x100x4 521.1 
S6-120x80x3 419.1 
S7-60x60x3 257.5 
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Table 12. Numerical stub-column results 

Cross-section Nu,FEM (kN) 

S8-70x50x2 165.2 
S9-100x100x3 439.3 

S10-100x100x3.5 520.1 
S11-120x120x5.5 995.4 

S12-80x80x2.5 250.3 

 

3.4.2 Combined loading 

The model used is the one explained in section 3.2.1: stub-column/combined loading test. The 

displacement will be applied to a reference point, which will be placed with different 

eccentricities in order to obtain different N, My,and Mz combinations (axial force, “y” bending 

moment and “z” bending moment, respectively) . The positions chosen to apply the 

displacement are shown on Fig. 26. 

 

Figure 26. Positions of different reference points for combined loading test 

Where B and H are the width and depth of the average perimeter, respectively. Given these 

different positions, results can be separated between: uniaxial combined loading (1, 2, 3, 4, 5 

and 6 positions) and biaxial combined loading (7, 8, 9, 10, 11, 12, 13, 14 and 15). A total of 15 

simulations have to be done for each RHS, but the diagonal symmetry that exists for SHS will 

mean a reduction in the number of simulations required to cover all the different cases: 3 for 

uniaxial combined loading (1=4, 2=5, 3=6) and 6 for biaxial combined loading (8=13, 9=14, 10, 

11=15 and 12). 

The first mode shape of “Buckle” and deformed shape of “Static, Riks” analysis for S1 cross-

section are shown on Fig. 27 and Fig. 28, respectively.  
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Figure 27. S1 combined loading test first mode shape of “Buckle” analysis (2
nd

 reference point) 

 

Figure 28. S1 combined loading test deformed shape of “Static, Riks” analysis (2
nd

 reference point) 

As the model used is the same as the one used for stub-column test, the “Buckle” analysis 
results are similar, the bigger imperfections are on the larger face of the member. The axis of 
buckling depends on the load case. In this 2nd reference point case, the axis of buckling has 
been the strong one but it could happen the buckling in the weak axis of bending. For example, 
if is shown the results for the 12th reference point (Fig. 29), the buckle occurs in the weak axis 
(in this case, the buckling has not taken place in the middle of the element). 



Antonio Sastre Segui  Cross-Section Analysis: Numerical Simulation 

47 
 

 

Figure 29. S1 combined loading test deformed shape of “Static, Riks” analysis (12
th

 reference point) 

Uniaxial combined loading results are shown in the following table 13. The position of each 
reference point has been defined in the beginning of this section. The following tables 13 and 
14 present the results for uniaxial and biaxial combined loading tests, respectively. 

Table 13. Uniaxial combined loading numerical results 

Cross-section Ref. Point ez(mm) ey(mm) Nu(kN) Mu,y(kNm) Mu,z(kNm) 

S1-120x80x4 

1 12.7 0 421.5 0 5.3 

2 25.3 0 334.1 0 8.5 

3 38.0 0 276.8 0 10.5 

4 0 19.33 438.1 8.5 0 

5 0 38.7 351.3 13.6 0 

6 0 58 289.7 16.8 0 

S2-80x40x4 

1 6.0 0 216.9 0 1.3 

2 12.0 0 176.7 0 2.1 

3 18.0 0 148.9 0 2.7 

4 0 12.7 247.6 3.1 0 

5 0 25.3 194.5 4.9 0 

6 0 38.0 157.5 6.0 0 

S3-80x80x4 

1=4 12.7 0 327.9 0 4.2 

2=5 25.3 0 264.0 0 6.7 

3=6 38.0 0 219.4 0 8.3 

S4-60x60x4 

1=4 9.3 0 248.7 0 2.3 

2=5 18.7 0 202.2 0 3.8 

3=6 28 0 168.1 0 4.7 

S5-100x100x4 

1=4 16.0 0 391.8 0 6.3 

2=5 32 0 313.5 0 10.0 

3=6 48 0 260.9 0 12.5 
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Table 13. Uniaxial combined loading numerical results 

Cross-section Ref. Point ez(mm) ey(mm) Nu(kN) Mu,y(kNm) Mu,z(kNm) 

S6-120x80x3 

1 12.7 0 347.6 0 4.5 

2 25.3 0 272.9 0 7.0 

3 38.0 0 224.0 0 8.6 

4 0 38.7 358.3 7.0 0 

5 0 38.7 281.6 11.0 0 

6 0 58 235.8 13.8 0 

S7-60x60x3 

1=4 9.5 0 177.3 0 1.7 

2=5 19 0 142.9 0 2.7 

3=6 28.5 0 118.8 0 3.4 

S8-70x50x2 

1 0 8.0 124.5 0 1.0 

2 0 16.0 100.2 0 1.6 

3 0 24.0 82.6 0 2.0 

4 11.3 0 126.9 1.4 0 

5 22.7 0 102.7 2.3 0 

6 34 0 86.1 2.9 0 

S9-100x100x3 

1=4 16.2 0 324.2 0 5.2 

2=5 32.3 0 253.0 0 8.2 

3=6 48.5 0 205.1 0 9.9 

S10-100x100x3.5 

1=4 16.1 0 384.2 0 6.2 

2=5 32.2 0 304.5 0 9.8 

3=6 48.3 0 250.7 0 12.1 

S11-120x120x5.5 

1=4 19.1 0 752.7 0 14.4 

2=5 38.2 0 602.8 0 23.0 

3=6 57.3 0 502.2 0 28.8 

S12-80x80x2.5 

1=4 12.9 0 215.0 0 2.8 

2=5 25.8 0 168.2 0 4.3 

3=6 38.75 0 136.3 0 5.3 

 

Table 14. Biaxial combined loading numerical results 

Cross-section Ref. Point ez(mm) ey(mm) Nu(kN) Mu,y(kNm) Mu,z(kNm) 

S1-120x80x4 

7 19.3 12.7 397.0 7.7 5.0 

8 19.3 25.3 323.8 6.3 8.2 

9 19.3 38.0 271.2 5.2 10.3 

10 38.7 25.3 292.7 11.3 7.4 

11 38.7 38.0 252.6 9.8 9.6 

12 58 38.0 227.7 13.2 5.8 

13 38.7 12.7 327.3 12.7 4.1 

14 58 12.7 276.4 16.0 3.5 

15 58 25.3 253.1 14.7 6.4 

 

 

 

 



Antonio Sastre Segui  Cross-Section Analysis: Numerical Simulation 

49 
 

Table 14. Biaxial combined loading numerical results 

Cross-section Ref. Point ez(mm) ey(mm) Nu(kN) Mu,y(kNm) Mu,z(kNm) 

S2-80x40x4 

7 12.7 6.0 209.7 2.7 1.3 

8 12.7 12.0 172.2 2.2 2.1 

9 12.7 18.0 145.5 1.8 2.6 

10 25.3 12.0 156.1 4.0 1.9 

11 25.3 18.0 135.1 3.4 2.4 

12 38.0 18.0 121.0 4.6 2.2 

13 25.3 6.0 181.1 4.6 1.1 

14 38.0 6.0 151.5 5.8 0.9 

15 38.0 12.0 135.6 5.2 1.6 

S3-80x80x4 

7 12.7 12.7 309.1 3.9 3.9 

8=13 12.7 25.3 256.3 3.2 6.5 

9=14 12.7 38.0 213.5 2.7 8.1 

10 25.3 25.3 229.1 5.8 5.8 

11=15 25.3 38.0 198.4 5.0 7.5 

12 38.0 38.0 177.7 6.8 6.8 

S4-60x60x4 

7 9.3 9.3 231.4 2.2 2.2 

8=13 9.3 18.7 192.6 1.8 3.6 

9=14 9.3 28.0 162.0 1.5 4.5 

10 18.7 18.7 170.2 3.2 3.2 

11=15 18.7 28.0 148.2 2.8 4.1 

12 28.0 28.0 132.8 3.7 3.7 

S5-100x100x4 

7 16.0 16.0 370.4 5.9 5.9 

8=13 16.0 32.0 306.6 4.9 9.8 

9=14 16.0 48.0 255.9 4.1 12.3 

10 32.0 32.0 277.2 8.9 8.9 

11=15 32.0 48.0 240.3 7.7 11.5 

12 48 48.0 216.3 10.4 10.4 

S6-120x80x3 

7 19.3 12.7 315.2 6.1 4.0 

8 19.3 25.3 259.9 5.1 6.7 

9 19.3 38.0 215.4 4.2 8.3 

10 38.7 25.3 233.6 9.1 6.0 

11 38.7 38.0 203.9 8.0 7.8 

12 58 38.0 178.6 10.5 6.9 

13 38.7 12.7 257.5 10.0 3.3 

14 58 12.7 226.2 13.2 2.9 

15 58 25.3 197.5 11.6 5.1 

S7-60x60x3 

7 9.3 9.3 166.9 1.6 1.6 

8=13 9.3 18.7 137.9 1.3 2.6 

9=14 9.3 28.0 115.3 1.1 3.3 

10 18.7 18.7 123.0 2.3 2.3 

11=15 18.7 28.0 106.5 2.0 3.0 

12 28.0 28.0 95.3 2.7 2.7 
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Table 14. Biaxial combined loading numerical results 

Cross-section Ref. Point ez(mm) ey(mm) Nu(kN) Mu,y(kNm) Mu,z(kNm) 

8-70x50x2 

7 11.3 8.0 115.2 1.3 0.9 

8 11.3 16.0 97.1 1.1 1.6 

9 11.3 24.0 81.2 0.9 1.9 

10 22.7 16.0 88.2 2.0 1.4 

11 22.7 24.0 77.0 1.7 1.8 

12 34 24.0 67.7 2.3 1.6 

13 22.7 8.0 97.3 2.2 0.8 

14 34 8.0 83.3 2.8 0.7 

15 34 16.0 74.2 2.5 1.2 

S9-100x100x3 

7 16.0 16.0 293.8 4.7 4.7 

8=13 16.0 32.0 243.1 3.9 7.9 

9=14 16.0 48.0 203.7 3.3 9.9 

10 32.0 32.0 214.3 6.9 6.9 

11=15 32.0 48.0 188.6 6.1 9.1 

12 48 48.0 169.4 8.2 8.2 

S10-
100x100x3.5 

7 16.0 16.0 355.4 5.7 5.7 

8=13 16.0 32.0 295.8 4.8 9.5 

9=14 16.0 48.0 246.4 4.0 11.9 

10 32.0 32.0 266.3 8.6 8.6 

11=15 32.0 48.0 231.0 7.4 11.1 

12 48 48.0 208.1 10.0 10.0 

S11-
120x120x5.5 

7 19.3 12.7 712.5 13.6 13.6 

8=13 19.3 25.3 589.9 11.3 22.5 

9=14 19.3 38.0 491.5 9.4 28.1 

10 38.7 25.3 529.7 20.2 20.2 

11=15 38.7 38.0 459.5 17.5 26.3 

12 58 38.0 411.4 23.6 23.6 

S12-80x80x2.5 

7 12.7 12.7 196.6 2.5 2.5 

8=13 12.7 25.3 162.2 2.1 4.2 

9=14 12.7 38.0 134.7 1.7 5.2 

10 25.3 25.3 142.5 3.7 3.7 

11=15 25.3 38.0 126.1 3.3 4.9 

12 38.0 38.0 112.8 4.4 4.4 

 

As it can be appreciated, more eccentricity means less axial effort endured by the member. 

Due to this eccentricity, the axial force produces a moment, which is translated as more 

stresses acting on the member. These bending stresses consume part of the capacity of the 

beam, which will not be able to resist the same axial force as without eccentricity.  

3.4.3 Uniaxial Bending 

The model used is the one explained in section 3.2.2: uniaxial bending test. Fig 30 and 31 

show: the first mode shape of “Buckle” and deformed shape of “Static, Riks” analysis for S1 

cross-section, respectively. 

 The biggest imperfections are in the middle of the beam. The final result is logical as the 

displacement is applied to central point of the 50xbmm2 central reference surface. 
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Figure 30. S1 uniaxial bending test first mode shape of “Buckle” analysis  

 

Figure 31. S1 uniaxial bending test deformed shape of “Static, Riks” analysis 

 

The numerical ultimate capacities are shown in tables 15 and 16 below. 

 

Table 15. Uniaxial Bending My numerical results 

Cross-section Mu,FEM,y (kNm) 

S1-120x80x4 29.4 
S2-80x40x4 11.4 
S3-80x80x4 14.8 
S4-60x60x4 8.8 

S5-100x100x4 22.2 
S6-120x80x3 20.5 
S7-60x60x3 6.1 
S8-70x50x2 5.7 

S9-100x100x3 17.7 
S10-100x100x3.5 20.9 
S11-120x120x5.5 50.6 

S12-80x80x2.5 9.4 
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Table 16. Uniaxial Bending Mz numerical results 

Cross-section Mu,FEM,z (kNm) 

S1-120x80x4 19.7 
S2-80x40x4 5.6 
S3-80x80x4 14.8 
S4-60x60x4 8.8 

S5-100x100x4 22.2 
S6-120x80x3 11.1 
S7-60x60x3 6.1 
S8-70x50x2 4.4 

S9-100x100x3 17.7 
S10-100x100x3.5 20.9 
S11-120x120x5.5 50.6 

S12-80x80x2.5 9.4 

 

The more cross-section area, the larger is the resisting bending moment. It can be appreciated 

that the weaker axis of bending is “z” and the resisting bending moments are smaller than the 

ones for the “y” axis, the strong axis. 

3.4.4 Biaxial Bending 

The model used is the one explained in section 3.2.2: bending test. Fig 32 and 33 show: the 

first mode shape of “Buckle” and deformed shape of “Static, Riks” analysis for S1 cross-section, 

respectively. 

 

Figure 32. S1 biaxial bending test first mode shape of “Buckle” analysis 
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Figure 33. S1 biaxial bending test deformed shape of “Static, Riks” analysis  

The following table 17 presents the numerical ultimate pare of bending moments that resists 

the element. The aim of this test was obtaining pair of My + Mz values that define the safety 

region of the space on the plane Nu=0. Three pairs of each cross-section have been obtained: 

one for uy=uz, another one for uy=2uz and a last one for 2uy=uz. Obviously, when is being 

simulated a SHS would only be needed to do two pairs (result from 2uy=uz is the same as 

uy=2uz because of the symmetry). Instead of only obtaining two simulations (2 pairs), another 

third pair was done.  

Table 17. Biaxial Bending numerical results 

Cross-section Mu,FEM,y (kN) Mu,FEM,z (kN) 

S1-120x80x4 

25.8 6.3 

7.7 18.3 

17.8 13.3 

S2-80x40x4 

7.4 3.2 

3.2 5.1 

7.7 2.9 

S3-80x80x4 

14.1 3.9 

2.9 14.5 

7.3 12.0 

S4-60x60x4 

5.9 5.8 

1.8 8.7 

8.5 2.6 

S5-100x100x4 

21.0 6.0 

4.3 21.5 

9.1 19.3 

S6-120x80x3 

17.6 4.7 

5.5 12.7 

15.0 7.6 

S7-60x60x3 

4.1 4.1 

1.2 6.0 

5.9 1.8 

S8-70x50x2 

4.1 2.5 

1.4 4.3 

5.4 1.3 

 



Antonio Sastre Segui  Cross-Section Analysis: Numerical Simulation 

54 
 

Table 17. Biaxial Bending numerical results 

Cross-section Mu,FEM,y (kN) Mu,FEM,z (kN) 

S9-100x100x3 

11.7 11.7 

5.2 16.6 

9.8 13.3 

S10-100x100x3.5 

13.4 13.4 

9.6 16.7 

4.9 19.7 

S11-120x120x5.5 

33.2 32.8 

22.7 41.1 

11.1 47.7 

S12-80x80x2.5 

6.1 6.2 

4.5 7.7 

2.3 9.0 

 

One observation that can be done is that if there is a bending moment actuating in one axel it 

will affect the capacity to bend in the other axis by reducing it. 
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4. Cross-Section Analysis: Analytical Results and its Comparison 

versus FEM Results 
This section summarises the analytical results that have been obtained from standards, EN 

1993-1-4 and the new design method CSM. It will also be compared these analytical results 

with the numerical ones presented along the section 3 below. 

4.1 Method for the comparison of the results  

In order to compare results, ratios danalytical/dnumerical (“d” represents a distance) have been 

calculated following different criterions depending on the test being studied. The aim of this 

method is to know how close each interaction equation is to the point that represents a 

numerical solution. 

When the element undergoes one unique type of external action: axial force or bending 

moment (stub-column or uniaxial bending moment tests); the method followed is to calculate 

directly the ratio between the analytical result and the numerical one by using as danalytical the 

analytical result of the external action obtained and as dnumerical the numerical result of the 

external action obtained. Note that in this case we are in a one dimension space and this is the 

reason why ratios are calculated directly. 

The two tests types whose results can be compared using a one dimension space are: stub-

column test and uniaxial bending test. Fig. 34 and 35 illustrate what has been explained in the 

paragraph above referring to stub-column test and uniaxial bending test, respectively. 

 

Figure 34. danalytical/dnumerical ratio for stub-column test 

 

Figure 35. danalytical/dnumerical ratio for uniaxial bending test 

When the element undergoes two types of external actions: axial force plus bending moment 

(y-y or z-z, uniaxial combined loading) or y-y bending moment plus z-z bending moment; the 
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method followed to calculate the ratio is not direct. In this case we are in a two dimensional 

space (M-N, or My-Mz). Our interaction equation is defined in this space, and what we are 

going to do to compare results is to measure the distances between the coordinate origin and 

the point that represents the combination of both external actions for each case: numerical 

(OA) and analytical (OB). Then, it is possible to calculate the ratio OA/OB (see Fig. 36, M-N 

example). Point B it’s a numerical result (Mnumercial, Nnumerical), and point A is the analytical result 

(Manalitycal, Nanalytical) obtained by intersecting the line that connects the numerical result with 

the coordinate origin and the interaction equation.  

 

Figure 36. danalytical/dnumerical ratio for uniaxial combined loading 

Note that if the ratio would have been calculated as CA/DB (one dimension ratio), the result 

would be more conservative as it only would have compared one of the two external action’s 

results. The My-Mz case is analogous to the M-N one. 

When the element undergoes three types of external actions: axial force, y-y bending moment 

and z-z bending moment (biaxial combined loading); the method followed can be extrapolated 

from the one used when two types of external actions were actuating on the element. 

4.2 Stub-column 

The following table 17 presents the values of the resistant axial force, for the different cross-

sections, calculated with Eq. 7 (NEN1993) and 31 (NCSM). NEN1993 is the resistant axial force 

calculated by using EN 1993-1-4 and NCSM is the resistant axial force calculated with the CSM. 

Both use the EN 1993-1-4 analytical slenderness (Eq 29).  

4$V%��{ � 9�:;<� 																																																							for	Class	1,2	or	3	cross − sections																�=. 7 

4��Q � 9�p�1;Q0 																																																																																																																																						�=. 31 

Where: 
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�p�1 � �� + ��ℎ�� ~�p�1�� − 1� 																																																																																																							�=. 32 

A cross sectional area 

Aeff effective area, we can find how to calculate it in 4.3 (EN 1993-1-5) 

�: yield stress, for stainless-steel is considered σ0.2  

;<� partial factor for resistance of cross-sections whatever the Class is 

��ℎ   strain hardening slope, which is determined as the slope of the line passing through 

the 0.2% proof stress point (fy, εy). The value adopted that fits better the reference 

material stress-strain curve is 2000 MPa. 

Table 17.  Predicted stub-column test analytical results 

Cross-section NEN1993 (kN)  NCSM (kN)  

S1-120x80x4 488.8 495.4 
S2-80x40x4 282.1 312.6 
S3-80x80x4 387.7 429.6 
S4-60x60x4 218.9 249.9 

S5-100x100x4 502.3 519.6 
S6-120x80x3 374.8 373.5 
S7-60x60x3 218.9 240.7 
S8-70x50x2 148.6 148.9 

S9-100x100x3 379.0 379.7 
S10-100x100x3.5 439.4 444.4 
S11-120x120x5.5 811.8 860.0 

S12-80x80x2.5 250.4 251.9 

 

The following table 18 presents a comparison between the analytical and the numerical 

results. In this case is easy to define the comparison ratio, as the unique external action 

actuating is an axial force. 

Table 18. Numercial vs analitycal ratios for stub-column test 

Element Cross-Section 
EN 1993 CSM (EN) 

dEN1993 /dFEM dCSM /dFEM 

S1-120x80x4 0.84 0.85 
S2-80x40x4 0.80 0.89 
S3-80x80x4 0.85 0.94 
S4-60x60x4 0.56 0.64 

S5-100x100x4 0.96 1.00 
S6-120x80x3 0.89 0.89 
S7-60x60x3 0.85 0.93 
S8-70x50x2 0.90 0.90 

S9-100x100x3 0.86 0.86 
S10-100x100x3.5 0.84 0.85 
S11-120x120x5.5 0.82 0.86 

S12-80x80x2.5 0.88 0.88 
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Table 18. Numercial vs analitycal ratios for stub-column test 

Element Cross-Section 
EN 1993 CSM (EN) 

dEN1993 /dFEM dCSM /dFEM 

Average 0.84 0.88 

COV 0.116 0.097 

 

As it can be appreciated, CSM approaches better the numerical solution (3% better). S4 is the 

cross-section that presents worse analytical results. This is due to being the only section that 

does not accomplish the restriction on the normalised deformation capacity: 

εCSM/εy<min(15,0.45εu/εy), and needs to be applied an εcsm modification. In other words, its 

slenderness is too low (i�=0.26, EN 1993-1-4 [4] slenderness).  

The COV (coefficient of variation) is defined as the standard deviation divided by the average 

value. It’s a kind of normalised value for the variation that shows a sample. The COV result is 

lower for CSM(EN) method. 

4.3 Uniaxial bending test 

The table 19 below shows ultimate resistant moments calculated with EN 1993-1-4 (Eq. 9 and 

10) and CSM [22] (Eq. 33 and 34). Both are obtained using EN 1993-1-4 slenderness. 

The resistant bending moment for uniaxial bending test defined in EN 1993-1-4 is: 

Q78 � R�S�:;<� 																									for	Class	1or	2	cross − sections																																																		�=. 9 

Q78 = RMS,�U��:;<� 																					for	Class	3	cross − sections																																																								�=. 10 

Where: 

Wpl               cross-section plastic resistant modulus 

Wel,min cross-section elastic resistant modulus referred to the fibre with the maximum 

elastic stress 

														�: yield stress, for stainless-steel is considered σ0.2 

														;<� partial factor for resistance of cross-sections whatever the Class is 

The CSM resistant bending moment for uniaxial bending test defined in [22] is: 

Q:,?u�,7� = R�S,: ∙ �?u� �1 + �u�� RMS,:R�S,: ~�?u��: − 1� − ~1 − RMS,:R�S,:� ~�?u��: �
�� � 			�=. 33 

Q�,p�1,�z = R��,� ∙ �p�1 ]1 + ��ℎ� Rh�,�R��,� ~�p�1�� − 1� − ~1 − Rh�,�R��,�� ~�p�1�� �
b� ^ 															�=. 34 

Where 
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Wpl cross-section plastic resistant modulus 

Wel,min cross-section elastic resistant modulus referred to the fibre with the maximum 

elastic stress 

�p�1 is the part of the total stress that belongs to the strain hardening part of the  

stress-strain curve of the material 

�p�1 is the part of the total strain that belongs to the strain hardening part of the  

stress-strain curve of the material 

��ℎ   strain hardening slope, which is determined as the slope of the line passing 

through the 0.2% proof stress point (fy, εy). The value adopted that fits better 

the reference material stress-strain curve is 2000 MPa. 

�  is the material young’s modulus, which in the case of stainless-steel is the 

slope of the line that conects the coordinate origin and the point of 0.2% strain 

Table 19. Uniaxial Bending Test My analitycal results 

Cross-section My,CSM (kNm) My,EN (kNm) Mz,CSM (kNm) Mz,EN (kNm) 

S1-120x80x4 24.6 19.4 14.4 14.7 
S2-80x40x4 8.7 6.9 5.1 4.2 
S3-80x80x4 13.1 10.9 13.1 10.9 
S4-60x60x4 5.9 4.6 5.9 4.6 

S5-100x100x4 19.1 18.0 19.1 18.0 
S6-120x80x3 15.7 15.1 4.8 8.5 
S7-60x60x3 5.5 4.6 5.5 4.6 
S8-70x50x2 3.8 3.5 2.3 2.8 

S9-100x100x3 12.3 13.7 12.3 13.7 
S10-100x100x3.5 15.6 15.8 15.6 15.8 
S11-120x120x5.5 38.3 34.6 38.3 34.6 

S12-80x80x2.5 6.8 7.2 6.8 7.2 

 

Once all analytical results have been presented, the following table 20 shows the ratios that 

compare these analytical results with the numerical ones. As it has been explained in section 

4.1, for uniaxial bending test is only required a one dimension distance (M) to define the 

comparative ratio. 

Table 20. Numercial vs analitycal ratios for uniaxial bending test 

Element Cross-Section 
EN 1993 CSM (EN) 

dEN1993 /dFEM dCSM /dFEM 

S1-120x80x4 0.66 0.84 
S2-80x40x4 0.60 0.76 
S3-80x80x4 0.74 0.89 
S4-60x60x4 0.52 0.67 

S5-100x100x4 0.81 0.86 
S6-120x80x3 0.74 0.77 
S7-60x60x3 0.76 0.90 
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Table 20. Numercial vs analitycal ratios for uniaxial bending test 

Element Cross-Section 
EN 1993 CSM (EN) 

dEN1993 /dFEM dCSM /dFEM 

S8-70x50x2 0.62 0.66 
S9-100x100x3 0.78 0.70 

S10-100x100x3.5 0.76 0.75 
S11-120x120x5.5 0.68 0.76 

S12-80x80x2.5 0.77 0.73 

Average 0.70 0.77 

COV 0.125 0.106 

 

As it can be appreciated, CSM approaches better the numerical solution (7% better). S4 is the 

cross-section that presents worse analytical results, it might be because this sections presents 

a slenderness very low (0.26). As it also happens for stub-column tests, it could be due to being 

the only section that does not accomplish the restriction on the normalised deformation 

capacity: εCSM/εy<min(15,0.45εu/εy), and needs to be applied an εcsm modification. The COV is 

lower for CSM(EN) method. 

4.4 Uniaxial combined loading 

The next table 21 shows the ultimate load calculated using Eq. x and x. To calculate this 

expression Npl,Rd and Mpl,Rd (simple axial resistant force and simple bending resistant moment, 

respectively) are required. These two values are obtained by applying Eurocode formulas 

under EN 1993-1-4 proposed classification criteria which has been presented in section 2.3.1.1. 

Each one of the reference points are defined in 3.4.2. 

For Class 1 and 2: 

QV,:,78 = Q�S,:,78-1 − *.1 − 0.5WX 				YZ[	QV,:,78 ≤ Q�S,:,78 																																																																	�=. 12 

QV,\,78 = Q�S,\,78-1 − *.1 − 0.5WN 				YZ[	QV,\,78 ≤ Q�S,\,78 																																																																			�=. 13 

Where  aw=(A-2bt)/A      but     aw≤0.5 for hollow sections 

  af=(A-2ht)/A       but      af≤0.5 for hollow sections 

n=NEd/Npl,Rd where NEd is the design value of the axial force and Npl,Rd the                 

design plastic resistance to normal forces of the cross-section  

  A, area; h, depth; b, width 

Q�S,U,78  design plastic value of the resistance to bending moments, i-i 

axis 
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Table 21. Predicted uniaxial combined loading test analytical results: EN 1993-1-4 classification proposal 

Cross-section Ref. Point ez(mm) ey(mm) 
NEN1993-1-4(kN) 
EN 1993-1-4 
Classification 

S1-120x80x4 

1 12.7 0 314.5 

2 25.3 0 231.9 

3 38.0 0 183.6 

4 0 19.33 302.8 

5 0 38.7 219.4 

6 0 58 172.0 

S2-80x40x4 

1 6.0 0 208.8 

2 12.0 0 165.7 

3 18.0 0 137.4 

4 0 12.7 130.3 

5 0 25.3 158.8 

6 0 38.0 130.3 

S3-80x80x4 

1=4 12.7 0 287.7 

2=5 25.3 0 228.7 

3=6 38.0 0 189.8 

S4-60x60x4 

1=4 9.3 0 158.6 

2=5 18.7 0 124.3 

3=6 28 0 102.2 

S5-100x100x4 

1=4 16.0 0 374.9 

2=5 32 0 299.0 

3=6 48 0 248.7 

S6-120x80x3 

1 12.7 0 239.0 

2 25.3 0 175.4 

3 38.0 0 138.5 

4 0 38.7 235.5 

5 0 38.7 171.6 

6 0 58 135.0 

S7-60x60x3 

1=4 9.5 0 162.6 

2=5 19 0 129.3 

3=6 28.5 0 107.3 

S8-70x50x2 

1 0 8.0 95.0 

2 0 16.0 69.8 

3 0 24.0 55.2 

4 11.3 0 93.5 

5 22.7 0 68.2 

6 34 0 53.7 

S9-100x100x3 

1=4 16.2 0 249.1 

2=5 32.3 0 185.5 

3=6 48.5 0 135.0 

S10-100x100x3.5 

1=4 16.1 0 288.1 

2=5 32.2 0 214.3 

3=6 48.3 0 147.7 

S11-120x120x5.5 

1=4 19.1 0 603.9 

2=5 38.2 0 480.8 

3=6 57.3 0 399.4 
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Table 21. Predicted uniaxial combined loading test analytical results: EN 1993-1-4 classification proposal 

Cross-section Ref. Point ez(mm) ey(mm) 
NEN1993-1-4(kN) 
EN 1993-1-4 
Classification 

S12-80x80x2.5 

1=4 12.9 0 163.8 

2=5 25.8 0 121.7 

3=6 38.8 0 96.8 

 

NEN1993-1-4 is the analytical predicted load result obtained using EN 1993-1-4 classification 

criteria. 

The table 22 below shows the ultimate loading force that can be applied calculated by the 

same interaction expression used before to obtain table 21 values (Eq. 12 and 13). To calculate 

this expression Npl,Rd and Mpl,Rd (simple axial resistant force and simple bending resistant 

moment, respectively) are required. These values are obtained by applying Eurocode formulas 

(the same that have been used for the results from EN 1993-1-4 classification criteria) under 

Theofanous and Gardner proposed classification criteria presented in section 2.3.1.1. Each one 

of the reference points are defined in 3.4.2. 

Table 22. Predicted uniaxial combined loading test analytical results EN T&G classification proposal 

Cross-section Ref. Point ez(mm) ey(mm) 
NT&G(kN) 

T&G Classification 
Proposal 

S1-120x80x4 

1 12.7 0 363.1 

2 25.3 0 288.8 

3 38.0 0 239.8 

4 0 19.33 358.2 

5 0 38.7 219.4 

6 0 58 172.0 

S2-80x40x4 

1 6.0 0 208.8 

2 12.0 0 165.7 

3 18.0 0 137.4 

4 0 12.7 203.2 

5 0 25.3 158.8 

6 0 38.0 130.3 

S3-80x80x4 

1=4 12.7 0 287.7 

2=5 25.3 0 228.7 

3=6 38.0 0 189.8 

S4-60x60x4 

1=4 9.3 0 158.6 

2=5 18.7 0 124.3 

3=6 28 0 102.2 

S5-100x100x4 

1=4 16.0 0 374.9 

2=5 32 0 299.0 

3=6 48 0 248.7 
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Table 22. Predicted uniaxial combined loading test analytical results EN T&G classification proposal 

Cross-section Ref. Point ez(mm) ey(mm) 
NT&G(kN) 

T&G Classification 
Proposal 

S6-120x80x3 

1 12.7 0 239.0 

2 25.3 0 175.4 

3 38.0 0 138.5 

4 0 38.7 235.5 

5 0 38.7 171.6 

6 0 58 135.0 

S7-60x60x3 

1=4 9.5 0 162.6 

2=5 19 0 129.3 

3=6 28.5 0 107.3 

S8-70x50x2 

1 0 8.0 95.0 

2 0 16.0 69.8 

3 0 24.0 55.2 

4 11.3 0 93.5 

5 22.7 0 68.2 

6 34 0 53.7 

S9-100x100x3 

1=4 16.2 0 249.1 

2=5 32.3 0 185.5 

3=6 48.5 0 147.7 

S10-100x100x3.5 

1=4 16.1 0 288.1 

2=5 32.2 0 214.3 

3=6 48.3 0 170.6 

S11-120x120x5.5 

1=4 19.1 0 603.9 

2=5 38.2 0 480.8 

3=6 57.3 0 399.4 

S12-80x80x2.5 

1=4 12.9 0 163.8 

2=5 25.8 0 121.7 

3=6 38.8 0 96.8 

 

NT&G is the analytical predicted ultimate load result obtained by using the T&G classification 

criteria. 

Table 23 shows the predicted loads according to the interaction expressions codified in EN 

1993-1-4 (Eq. 40 and 41). To calculate this expression Ncsm and Mcsm (simple axial resistant 

force and simple bending resistant moment calculated with the CSM, respectively; as it has 

been defined in section 2.4.4) values are required, with EN 1993-1-4 slenderness (Eq. 29). Each 

one of the reference points are defined in 3.4.2. 

For class 1 and 2 cross-sectios: 

QV,:,?u� = Q:,?u�-1 − *.1 − 0.5WX 				YZ[	QV,:,?u� ≤ Q:,?u�																																																																�=. 40 

QV,\,?u� = Q\,?u�-1 − *.1 − 0.5WN 				YZ[	QV,\,?u� ≤ Q\,?u�																																																																	�=. 41 
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Where  aw=(A-2bt)/A      but     aw�0.5 for hollow sections 

  af=(A-2ht)/A       but      af�0.5 for hollow sections 

n=NEd/Ncsm where NEd is the design value of the axial force and Ncsm the                 

design resistant value obtained using the CSM 

  A, area; h, depth; b, width 

QU,?u�  design value of the resistance to bending moments, i-i axis 

Table 23. Predicted uniaxial combined loading test analytical results: EN 1993-1-4 interaction with CSM values 

Cross-section Ref. Point ez(mm) ey(mm) 
NCSM(kN) 

EN 1993-1-4 

S1-120x80x4 

1 12.7 0 364.8 

2 25.3 0 288.6 

3 38.0 0 238.8 

4 0 19.33 383.3 

5 0 38.7 312.6 

6 0 58 263.9 

S2-80x40x4 

1 6.0 0 236.8 

2 12.0 0 190.6 

3 18.0 0 159.5 

4 0 12.7 232.9 

5 0 25.3 185.7 

6 0 38.0 154.3 

S3-80x80x4 

1=4 12.7 0 325.5 

2=5 25.3 0 262.0 

3=6 38.0 0 219.2 

S4-60x60x4 

1=4 9.3 0 186.4 

2=5 18.7 0 148.6 

3=6 28 0 123.5 

S5-100x100x4 

1=4 16.0 0 389.8 

2=5 32 0 311.9 

3=6 48 0 260.0 

S6-120x80x3 

1 12.7 0 205.4 

2 25.3 0 141.7 

3 38.0 0 108.1 

4 0 38.7 277.1 

5 0 38.7 220.2 

6 0 58 182.7 

S7-60x60x3 

1=4 9.5 0 182.3 

2=5 19 0 146.6 

3=6 28.5 0 122.7 

S8-70x50x2 

1 0 8.0 105.4 

2 0 16.0 81.6 

3 0 24.0 66.5 

4 11.3 0 111.5 

5 22.7 0 89.2 

6 34 0 74.3 
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Table 23. Predicted uniaxial combined loading test analytical results: EN 1993-1-4 interaction with CSM values 

Cross-section Ref. Point ez(mm) ey(mm) 
NCSM(kN) 

EN 1993-1-4 

S9-100x100x3 

1=4 16.2 0 275.2 

2=5 32.3 0 215.8 

3=6 48.5 0 177.5 

S10-100x100x3.5 

1=4 16.1 0 329.4 

2=5 32.2 0 261.7 

3=6 48.3 0 217.1 

S11-120x120x5.5 

1=4 19.1 0 647.0 

2=5 38.2 0 518.6 

3=6 57.3 0 432.7 

S12-80x80x2.5 

1=4 12.9 0 184.8 

2=5 25.8 0 145.9 

3=6 38.8 0 120.6 

 

NCSM is the analytical predicted ultimate load result obtained with Eq. 40 and 41. 

Table 24 shows the ultimate predicted load calculated by one of the interaction equation 

proposed in [25] (the one that is linear at NEd/Ncsm term: Eq. 39). To calculate this expression is 

needed to have Ncsm and Mcsm and (simple axial resistant force and simple bending resistant 

moment calculated with the CSM, respectively; as it has been defined in section 2.4.4) values, 

with EN 1993-1-4 slenderness (Eq. 29). Each one of the reference points are defined in 3.4.2. 

4�a4p�1 +j~
Q�,�aQp�1,��

2 + ~Q�,�a4p�1,��
2 ≤ 1																																																																																											�=. 39 

Where 

4$8, Q:,$8 and Q\,$8 are the design values for: the normal force, y-y bending  

moment and z-z bending moment, respectively 

4?u�, Q?u�,: and Q?u�,\ are the simple resistant: axial force, y-y bending 

moment and z-z bending moment, respectively, calculated with the CSM 

Table 24. Predicted uniaxial combined loading test analytical results: CSM lineal NEd/Ncsm interaction 

Cross-section Ref. Point ez(mm) ey(mm) 
Nu,RHS1(kN) 

Linear NEd/Ncsm term 

S1-120x80x4 

1 12.7 0 345.32 

2 25.3 0 265.0 

3 38.0 0 215.0 

4 0 19.33 356.4 

5 0 38.7 278.4 

6 0 58 228.3 
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Table 24. Predicted uniaxial combined loading test analytical results: CSM lineal NEd/Ncsm interaction 

Cross-section Ref. Point ez(mm) ey(mm) 
Nu,RHS1(kN) 

Linear NEd/Ncsm term 

S2-80x40x4 

1 6.0 0 228.9 

2 12.0 0 180.5 

3 18.0 0 149.0 

4 0 12.7 214.7 

5 0 25.3 163.5 

6 0 38.0 132.0 

S3-80x80x4 

1=4 12.7 0 303.8 

2=5 25.3 0 235.0 

3=6 38.0 0 191.6 

S4-60x60x4 

1=4 9.3 0 179.1 

2=5 18.7 0 139.5 

3=6 28 0 114.3 

S5-100x100x4 

1=4 16.0 0 361.7 

2=5 32 0 277.5 

3=6 48 0 225.0 

S6-120x80x3 

1 12.7 0 186.6 

2 25.3 0 124.4 

3 38.0 0 93.3 

4 0 38.7 255.1 

5 0 38.7 193.7 

6 0 58 156.2 

S7-60x60x3 

1=4 9.5 0 170.0 

2=5 19 0 131.4 

3=6 28.5 0 107.1 

S8-70x50x2 

1 0 8.0 98.7 

2 0 16.0 73.8 

3 0 24.0 58.9 

4 11.3 0 102.9 

5 22.7 0 78.6 

6 34 0 63.6 

S9-100x100x3 

1=4 16.2 0 253.4 

2=5 32.3 0 190.1 

3=6 48.5 0 152.1 

S10-100x100x3.5 

1=4 16.1 0 304.9 

2=5 32.2 0 232.0 

3=6 48.3 0 187.3 

S11-120x120x5.5 

1=4 19.1 0 602.0 

2=5 38.2 0 463.1 

3=6 57.3 0 376.3 

S12-80x80x2.5 

1=4 12.9 0 170.7 

2=5 25.8 0 129.1 

3=6 38.8 0 103.8 

 

Nu,RHS1 defines the predicted ultimate load analytical result obtained from Eq. 39. 
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Table 25 shows the predicted ultimate load calculated by the other equation of the interaction 

equations that are proposed in [25] (the one that is square at NEd/Ncsm term: Eq. 38). To 

calculate this expression Ncsm and Mcsm (simple axial resistant force and simple bending 

resistant moment calculated with the CSM, respectively; as it has been defined in section 

2.4.4) values are required, with EN 1993-1-4 slenderness. Each one of the reference points are 

defined in 3.4.2. 


4�a4p�1�
2 +j~Q�,�aQp�1,��

2 + ~Q�,�a4p�1,��
2 ≤ 1																																																																																			�=. 38 

Where 

4$8, Q:,$8 and Q\,$8 are the design values for: the normal force, y-y bending  

moment and z-z bending moment, respectively 

4?u�, Q?u�,: and Q?u�,\ are the simple resistant: axial force, y-y bending 

moment and z-z bending moment, respectively, calculated with the CSM 

Table 25. Predicted uniaxial combined loading test analytical results: CSM square NEd/Ncsm interaction 

Cross-section Ref. Point ez(mm) ey(mm) 
Nu,RHS2(kN) 

Square NEd/Ncsm term 

S1-120x80x4 

1 12.7 0 399.30 

2 25.3 0 324.9 

3 38.0 0 268.4 

4 0 19.33 408.2 

5 0 38.7 338.6 

6 0 58 284.2 

S2-80x40x4 

1 6.0 0 260.6 

2 12.0 0 218.5 

3 18.0 0 185.0 

4 0 12.7 249.4 

5 0 25.3 201.0 

6 0 38.0 164.9 

S3-80x80x4 

1=4 12.7 0 349.7 

2=5 25.3 0 287.1 

3=6 38.0 0 238.9 

S4-60x60x4 

1=4 9.3 0 205.3 

2=5 18.7 0 169.9 

3=6 28 0 142.3 

S5-100x100x4 

1=4 16.0 0 418.4 

2=5 32 0 340.2 

3=6 48 0 280.9 

S6-120x80x3 

1 12.7 0 230.7 

2 25.3 0 154.6 

3 38.0 0 113.0 

4 0 38.7 296.8 

5 0 38.7 238.5 

6 0 58 195.1 
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Table 25. Predicted uniaxial combined loading test analytical results: CSM square NEd/Ncsm interaction 

Cross-section Ref. Point ez(mm) ey(mm) 
Nu,RHS2(kN) 

Square NEd/Ncsm term 

S7-60x60x3 

1=4 9.5 0 195.8 

2=5 19 0 160.6 

3=6 28.5 0 133.5 

S8-70x50x2 

1 0 8.0 115.8 

2 0 16.0 91.3 

3 0 24.0 73.7 

4 11.3 0 119.3 

5 22.7 0 96.6 

6 34 0 79.5 

S9-100x100x3 

1=4 16.2 0 296.6 

2=5 32.3 0 235.0 

3=6 48.5 0 190.2 

S10-100x100x3.5 

1=4 16.1 0 354.2 

2=5 32.2 0 285.4 

3=6 48.3 0 234.0 

S11-120x120x5.5 

1=4 19.1 0 695.3 

2=5 38.2 0 567.1 

3=6 57.3 0 469.6 

S12-80x80x2.5 

1=4 12.9 0 199.0 

2=5 25.8 0 159.1 

3=6 38.8 0 129.7 

 

Nu,RHS2 defines the predicted ultimate load analytical result obtained from Eq. 38. 

Once all analytical results have been presented, the following table 26 shows the ratios that 

compare these analytical results with the numerical ones. As it has been explained in section 

4.1, a two dimensional distance has been defined for these ratios in order to do the 

comparisons as reliable as possible. 

As we are calculating the relative distance that exists between the numerical result point and 

its projection to the interaction expression, this results only depend on the type of interaction 

equation and on the values of the simple resistances: axial force and bending moment. Hence, 

for uniaxial combined loading test there are three different interaction equations: one for 

RHS1 (Eq. 39), one for RHS2 (Eq. 38) and the one contained in EN 1993-1-4 (Eq. 12 and 13, or 

40 and 41); and there are two different ways to obtain these simple resistances values: EN 

1993-1-4 (section 2.3.1.2) and CSM (section 2.4.4). In conclusion, joining all these information, 

for uniaxial combined loading, there are 4 different possible comparisons: 

- CSM(RHS1): uses RHS1 interaction equation and CSM values for the simple resistances 

- CSM(RHS2): uses RHS2 interaction equation and CSM values for the simple resistances 

- CSM(EN): uses EN1993-1-4 interaction equation and CSM values for the simple resistances 
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-EN1993-1-4 and T&G: both use EN 1993-1-4 interaction equation and EN 1993-1-4 values for 

the resistances, which means that the ratios for each case do not depend on the classification 

criteria and is the reason why both share the same column in table 26 

Table 26. Numerical vs Analytical results: uniaxial combined loading test ratios 

Cross-section Ref. Point 
danalytical /dnumerical 

CSM(RHS1) CSM(RHS2) CSM(EN) EN 1993-1-4 and T&G 

S1 

1 0.82 0.95 0.86 0.86 

2 0.79 0.97 0.86 0.86 

3 0.78 0.97 0.86 0.87 

4 0.81 0.93 0.87 0.82 

5 0.79 0.96 0.89 0.80 

6 0.79 0.98 0.91 0.81 

S2 

1 1.13 1.20 1.06 0.96 

2 1.09 1.24 1.04 0.94 

3 1.06 1.24 1.02 0.92 

4 0.87 1.01 0.94 0.84 

5 0.84 1.03 0.95 0.82 

6 0.84 1.05 0.98 0.82 

S3 

1=4 0.93 1.07 0.97 0.88 

2=5 0.89 1.09 0.95 0.87 

3=6 0.87 1.09 0.95 0.87 

S4 

1=4 0.72 0.83 0.72 0.64 

2=5 0.69 0.84 0.69 0.61 

3=6 0.68 0.85 0.69 0.61 

S5 

1=4 0.92 1.07 0.99 0.96 

2=5 0.89 1.09 0.98 0.95 

3=6 0.86 1.08 0.98 0.95 

S6 

1 0.54 0.66 0.59 0.80 

2 0.46 0.57 0.52 0.82 

3 0.42 0.50 0.48 0.83 

4 0.71 0.83 0.77 0.77 

5 0.69 0.85 0.78 0.77 

6 0.66 0.83 0.78 0.76 

S7 

1=4 0.96 1.10 1.00 0.92 

2=5 0.92 1.12 0.99 0.91 

3=6 0.90 1.12 0.98 0.90 

S8 

1 0.79 0.93 0.85 0.89 

2 0.74 0.91 0.81 0.88 

3 0.71 0.89 0.80 0.89 

4 0.81 0.94 0.88 0.86 

5 0.77 0.94 0.87 0.84 

6 0.74 0.92 0.86 0.83 

S9 

1=4 0.78 0.92 0.85 0.87 

2=5 0.75 0.93 0.85 0.89 

3=6 0.74 0.93 0.87 0.92 

S10 

1=4 0.79 0.92 0.85 0.85 

2=5 0.76 0.94 0.86 0.86 

3=6 0.75 0.93 0.86 0.87 
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Table 26. Numerical vs Analytical results: uniaxial combined loading test ratios 

Cross-section Ref. Point 
danalytical /dnumerical 

CSM(RHS1) CSM(RHS2) CSM(EN) EN 1993-1-4 and T&G 

S11 

1=4 0.80 0.92 0.85 0.80 

2=5 0.77 0.94 0.84 0.80 

3=6 0.75 0.94 0.84 0.80 

S12 

1=4 0.79 0.93 0.86 0.87 

2=5 0.77 0.95 0.87 0.88 

3=6 0.76 0.95 0.88 0.91 

Average 0.79 0.96 0.86 0.85 

COV 0.165 0.149 0.141 0.092 

 

As it can be appreciated, the method that provides better results is RHS2 (Eq. 38) interaction 

equation with CSM simple resistances (Eq. 33 and 34). However it presents some issues with 

some cross-sections: S2, S3, S5 and S7 present ratios bigger than one, which means that results 

are unsafe as the analytical result is higher than the numerical one. For S6, as its slenderness is 

higher than 0.68 (class 4 limit) CSM can’t be applied properly and when there is actuating an 

Mz, results are too conservative, even though the COV is not too high. 

The case that evaluates the EN 1993-1-4 interaction equation (Eq. 11 and 12) with CSM values 

for the simple resistances (Eq. 33 and 34) provides results with an average that is 10% lower, 

but results are all more reliable and there is no cross-section with issues to remark. The COV is 

lower than the RHS2 case. 

4.5 Biaxial bending test 

For this loading case, the analytical predicted load result is not possible to be obtained since 

there are two independent unknown variables in the interaction equation: My,u and Mz,u, and 

no axial force applied (in other cases both moments depend on the axial force, which is the 

only unknown variable,). Hence, what it has been done is to calculate the result of each 

interaction equation by using numerical results from 3.4.4 section and normalising them with 

the ultimate capacities that requires each method being studied. This result will be compared, 

in the next section, to the unit to see how close each interaction equation is from the 

numerical one. 

The following table 27 presents the results for the different interaction equations that are 

being studied. For Theofanous & Gardner [25] equations (Eq. 38 and 39, which are represented 

in table 27 for RHS1&2). As the NEd/Ncsm term is 0, both (lineal and square) interaction equations 

provide the same result. EN 1993-1-4 (Eq. 12 and 13) interaction expression will be calculated 

with two different Mu,y and Mu,z pairs (bending moments resistant values): one calculated with 

EN 1993-1-4 (represented on table 27 for EN 1993-1-4) and the other one with CSM 

(represented on table 27 for CSM), both starting from EN 1993-1-4 slenderness. 

The equations that have been used are the following ones but with the particularity that NEd is 

0 for all cases. 

For class 1 cross-sections: 
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] Q:,$8QV,:,78^
_ + ] Q\,$8QV,\,78^

` ≤ 1																												�=. 14 

Where  QV,:,78 and QV,\,78 are defined in Eq. (12/40 and 13/41 above, 

 EN 1993-1-4/CSM) 

Q:,$8 	W*a Q\,$8 are the design bending moments, for y-y and z-z axis, 

respectively.  

 α and β are constants, which may be conservatively be taken as unity, 

otherwise as follows: 

b = c = 1,661 − 1,13*� 			but	b = c ≤ 6 

and	* = 4$8/Q$8 

For class 3 cross-sections, a linear criterion is applied as follows: 

4$89�:/;<� + Q:,$8RMS,:�:/;<� + Q\,$8RMS,\�:/;<� ≤ 1														�=. 15 

Where  A cross sectional area 

  ;<� partial factor for resistance of cross-sections whatever the Class is 

  RMS,: and RMS,\ are the cross-section elastic resistant modulus referred to the 

fibre with the maximum elastic, each one referred to y-y and z-z axis, 

respectively 

  �: yield stress, for stainless-steel is considered σ0.2 

4$8, Q:,$8 and Q\,$8 are the design values for: the normal force, y-y bending  

moment and z-z bending moment, respectively. 


 4$84?u��
� +j~ Q:,$8Q?u�,:�

� + ~Q\,$84?u�,\�
� ≤ 1																																																																																				�=. 38 

4$84?u� +j~ Q:,$8Q?u�,:�
� + ~Q\,$84?u�,\�

� ≤ 1																																																																																										�=. 39 

Where 

4$8, Q:,$8 and Q\,$8 are the design values for: the normal force, y-y bending  

moment and z-z bending moment, respectively 

4?u�, Q?u�,: and Q?u�,\ are the simple resistant: axial force, y-y bending 

moment and z-z bending moment, respectively, calculated with the CSM 
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Table 27. Biaxial Bending analytical results 

Cross-section My,FEM (kNm) Mz,FEM (kNm) EN 1993-1-4 CSM  RHS1&2  

S1-120x80x4 

25.8 6.3 2.25 1.49 1.30 

7.7 18.3 2.14 1.66 1.71 

17.8 13.3 2.35 1.55 1.38 

S2-80x40x4 

7.4 3.2 1.74 1.17 1.11 

3.2 5.1 1.66 1.10 1.14 

7.7 2.9 1.75 1.18 1.12 

S3-80x80x4 

14.1 3.9 1.72 1.30 1.24 

2.9 14.5 1.71 1.30 1.26 

7.3 12.0 1.69 1.28 1.15 

S4-60x60x4 

5.9 5.8 2.93 1.97 1.96 

1.8 8.7 3.08 2.06 2.29 

8.5 2.6 3.14 2.10 2.28 

S5-100x100x4 

21.0 6.0 1.45 1.31 1.32 

4.3 21.5 1.43 1.29 1.33 

9.1 19.3 1.44 1.30 1.26 

S6-120x80x3 

17.6 4.7 1.98 1.49 2.22 

5.5 12.7 1.94 1.88 7.11 

15.0 7.6 2.11 1.62 3.41 

S7-60x60x3 

4.1 4.1 1.63 1.18 1.11 

1.2 6.0 1.65 1.20 1.25 

5.9 1.8 1.69 1.22 1.25 

S8-70x50x2 

4.1 2.5 2.65 260.66 2.37 

1.4 4.3 2.51 611.65 3.44 

5.4 1.3 2.53 91.79 2.39 

S9-100x100x3 

11.7 11.7 1.99 1.67 1.80 

5.2 16.6 1.86 1.71 1.99 

9.8 13.3 1.96 1.65 1.79 

S10-100x100x3.5 

13.4 13.4 1.99 1.46 1.47 

9.6 16.7 1.96 1.47 1.52 

4.9 19.7 1.83 1.52 1.69 

S11-120x120x5.5 

33.2 32.8 1.85 1.48 1.49 

22.7 41.1 1.83 1.46 1.50 

11.1 47.7 1.86 1.49 1.64 

S12-80x80x2.5 

6.1 6.2 2.01 1.57 1.61 

4.5 7.7 1.99 1.60 1.69 

2.3 9.0 1.84 1.63 1.84 

 

In this case, the method followed to calculate the comparative ratios is the same one used for 

uniaxial combined loading: a distance two dimensional in the two dimensional space (My-Mz). 

The reason why the numerical results are shown in table 28 is to see which bending moment 

combination refers to each ratio calculated. 
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Table 28. Numerical vs Analytical results: biaxial bending test ratios 

Cross-section My,FEM (kNm) Mz,FEM (kNm) 
danalytical /dnumerical 

EN 1993-1-4 CSM RHS1&2 

S1-120x80x4 

25.8 6.3 0.69 0.84 0.88 

7.7 18.3 0.74 0.74 0.76 

17.8 13.3 0.72 0.80 0.85 

S2-80x40x4 

7.4 3.2 0.72 0.89 0.95 

3.2 5.1 0.74 0.90 0.94 

7.7 2.9 0.71 0.89 0.95 

S3-80x80x4 

14.1 3.9 0.72 0.87 0.90 

2.9 14.5 0.72 0.87 0.89 

7.3 12.0 0.73 0.88 0.93 

S4-60x60x4 

5.9 5.8 0.52 0.67 0.71 

1.8 8.7 0.51 0.65 0.66 

8.5 2.6 0.50 0.64 0.66 

S5-100x100x4 

21.0 6.0 0.80 0.84 0.87 

4.3 21.5 0.80 0.85 0.87 

9.1 19.3 0.80 0.85 0.89 

S6-120x80x3 

17.6 4.7 0.78 0.63 0.67 

5.5 12.7 0.83 0.37 0.38 

15.0 7.6 0.79 0.51 0.54 

S7-60x60x3 

4.1 4.1 0.75 0.89 0.95 

1.2 6.0 0.74 0.88 0.89 

5.9 1.8 0.73 0.87 0.90 

S8-70x50x2 

4.1 2.5 0.63 0.61 0.65 

1.4 4.3 0.62 0.53 0.54 

5.4 1.3 0.60 0.62 0.65 

S9-100x100x3 

11.7 11.7 0.77 0.69 0.75 

5.2 16.6 0.76 0.68 0.71 

9.8 13.3 0.78 0.70 0.75 

S10-100x100x3.5 

13.4 13.4 0.78 0.77 0.82 

9.6 16.7 0.77 0.76 0.81 

4.9 19.7 0.76 0.75 0.77 

S11-120x120x5.5 

33.2 32.8 0.69 0.76 0.82 

22.7 41.1 0.70 0.77 0.82 

11.1 47.7 0.69 0.76 0.78 

S12-80x80x2.5 

6.1 6.2 0.77 0.73 0.79 

4.5 7.7 0.77 0.72 0.77 

2.3 9.0 0.76 0.72 0.74 

Average 0.72 0.75 0.78 

COV 0.113 0.166 0.168 

 

Once again, the better results are show by Theofanous [25] equations. For this case there are 

no problems with any ratio: all are lower than one. All COV are low. S6 presents results too 

conservative again for RHS1&2 interaction equation, S4 has the same problem for EN1993-1-4 

interaction equation and S8 undergoes this problem for all interaction equations. 
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4.6 Biaxial Combined Loading 

The tables below present the results for biaxial combined loading after applying the existent 

interaction equations. Moreover, it has been done a comparison between these analytical 

interaction equations and the numerical results obtained from the simulations. The 

expressions used are from different interaction equations presented in 3.4.2.  

Table 29 shows the predicted ultimate loading force that can be applied to a certain reference 

point (with its respective eccentricity) calculated by four different methods.  

Each one of the reference points is defined in 3.4.2. 

Table 29. Biaxial Combined Loading Test Analytical Results 

Cross-section 
Ref. 

Point 
ez(mm) ey(mm) 

Nu(kN) 
EN1993 

Nu(kN) 
CMS(EN) 

Nu(kN) 
CSM(RHS1) 

Nu(kN) 
CSM(RHS2) 

S1-120x80x4 

7 19.3 12.7 342.2 355.63 303.6 371.5 

8 19.3 25.3 281.4 284.57 248.5 312.8 

9 19.3 38.0 234.9 235.85 206.3 262.1 

10 38.7 25.3 250.2 265.02 219.6 284.4 

11 38.7 38.0 218.0 225.30 190.7 245.8 

12 58 38.0 195.4 209.06 172.0 224.7 

13 38.7 12.7 276.5 303.84 248.2 321.4 

14 58 12.7 229.3 258.21 205.9 274.8 

15 58 25.3 215.2 236.70 190.5 252.0 

S2-80x40x4 

7 12.7 6.0 194.6 224.12 182.3 234.3 

8 12.7 12.0 160.7 186.27 154.6 205.7 

9 12.7 18.0 134.2 156.58 131.2 177.9 

10 25.3 12.0 141.1 166.30 131.8 179.4 

11 25.3 18.0 123.4 145.76 117.7 161.0 

12 38.0 18.0 109.8 130.90 103.2 141.7 

13 25.3 6.0 155.3 182.25 144.2 194.7 

14 38.0 6.0 128.0 151.94 117.5 161.7 

15 38.0 12.0 120.4 143.38 111.3 153.2 

S3-80x80x4 

7 12.7 12.7 273.6 311.54 251.9 321.8 

8=13 12.7 25.3 223.5 257.00 206.3 274.5 

9=14 12.7 38.0 186.3 215.74 171.4 232.2 

10 25.3 25.3 200.9 232.75 182.5 246.2 

11=15 25.3 38.0 174.1 202.70 158.5 215.4 

12 38.0 38.0 157.3 183.87 143.1 194.4 

S4-60x60x4 

7 9.3 9.3 149.6 177.50 146.0 189.6 

8=13 9.3 18.7 120.9 145.34 120.0 162.7 

9=14 9.3 28.0 100.0 121.33 100.0 138.4 

10 18.7 18.7 107.8 130.86 106.4 146.5 

11=15 18.7 28.0 93.0 113.54 92.6 128.7 

12 28.0 28.0 83.7 102.67 83.6 116.5 
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Table 29. Biaxial Combined Loading Test Analytical Results 

Cross-section 
Ref. 

Point 
ez(mm) ey(mm) 

Nu(kN) 
EN1993 

Nu(kN) 
CMS(EN) 

Nu(kN) 
CSM(RHS1) 

Nu(kN) 
CSM(RHS2) 

S5-100x100x4 

7 16.0 16.0 357.1 371.99 313.5 383.4 

8=13 16.0 32.0 292.5 305.45 256.1 324.6 

9=14 16.0 48.0 244.3 255.54 212.3 272.8 

10 32.0 32.0 263.5 275.65 226.3 289.9 

11=15 32.0 48.0 228.6 239.50 196.3 252.4 

12 48 48.0 206.8 216.82 177.0 227.1 

S6-120x80x3 

7 19.3 12.7 173.5 201.15 177.6 220.5 

8 19.3 25.3 137.4 139.62 122.6 151.7 

9 19.3 38.0 113.7 106.96 92.8 111.8 

10 38.7 25.3 112.9 133.89 116.5 144.0 

11 38.7 38.0 96.4 104.11 90.3 108.7 

12 58 38.0 83.7 100.08 86.6 104.0 

13 38.7 12.7 136.2 184.07 157.1 197.3 

14 58 12.7 112.1 162.13 136.2 171.8 

15 58 25.3 95.8 125.72 108.2 133.6 

S7-60x60x3 

7 9.3 9.3 154.6 174.41 141.6 180.1 

8=13 9.3 18.7 126.4 143.83 116.0 153.5 

9=14 9.3 28.0 105.4 120.71 96.3 129.8 

10 18.7 18.7 113.6 130.23 102.6 137.7 

11=15 18.7 28.0 98.5 113.39 89.1 120.4 

12 28.0 28.0 89.0 102.84 80.4 108.6 

S8-70x50x2 

7 11.3 8.0 69.0 161.22 88.0 106.8 

8 11.3 16.0 54.7 80.05 70.2 87.6 

9 11.3 24.0 45.3 65.50 57.3 71.8 

10 22.7 16.0 44.9 73.79 62.5 79.0 

11 22.7 24.0 38.4 62.17 53.3 67.1 

12 34 24.0 33.3 57.36 48.5 61.0 

13 22.7 8.0 54.2 85.86 72.2 90.9 

14 34 8.0 44.6 72.19 59.8 76.5 

15 34 16.0 38.1 65.45 54.5 69.3 

S9-100x100x3 

7 16.0 16.0 185.5 259.68 222.4 268.7 

8=13 16.0 32.0 147.7 209.99 179.3 223.0 

9=14 16.0 48.0 122.8 173.73 147.1 184.2 

10 32.0 32.0 122.8 187.27 157.3 196.9 

11=15 32.0 48.0 105.0 161.50 135.5 169.2 

12 48 48.0 91.8 145.30 121.7 151.1 

S10-
100x100x3.5 

7 16.0 16.0 312.1 313.09 267.5 323.3 

8=13 16.0 32.0 255.6 255.67 217.7 271.8 

9=14 16.0 48.0 213.4 213.03 179.9 227.0 

10 32.0 32.0 230.2 229.73 191.9 241.7 

11=15 32.0 48.0 199.7 199.05 166.1 209.5 

12 48 48.0 180.6 179.79 149.6 188.0 
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Table 29. Biaxial Combined Loading Test Analytical Results 

Cross-section 
Ref. 

Point 
ez(mm) ey(mm) 

Nu(kN) 
EN1993 

Nu(kN) 
CMS(EN) 

Nu(kN) 
CSM(RHS1) 

Nu(kN) 
CSM(RHS2) 

S11-
120x120x5.5 

7 19.3 12.7 574.7 617.93 513.6 638.0 

8=13 19.3 25.3 470.0 508.05 420.0 541.6 

9=14 19.3 38.0 392.1 425.44 348.4 456.2 

10 38.7 25.3 422.9 458.94 371.2 484.5 

11=15 38.7 38.0 366.7 399.01 322.2 422.4 

12 58 38.0 331.4 361.42 290.7 380.5 

S12-
80x80x2.5 

7 12.7 12.7 121.7 175.04 150.0 181.0 

8=13 12.7 25.3 96.8 142.28 121.5 151.3 

9=14 12.7 38.0 80.4 118.15 100.1 125.8 

10 25.3 25.3 80.4 127.40 106.9 134.1 

11=15 25.3 38.0 68.7 110.13 92.3 115.8 

12 38.0 38.0 60.0 99.29 83.1 103.7 

 

Both values under Nu(kN) EN1993 and Nu(kN)CMS(EN) are obtained from EN 1993-1-4 

interaction equation (Eq. 14 and 15) but Nu and Mu values (simple axial resistant force and 

simple bending resistant moment) are obtained from EN 1993-1-4 for Nu(kN) EN1993-1-4 (Eq. 

12 and 13) and CSM for Nu(kN)CMS(EN) (Eq. 40 and 41), both with EN 1993-1-4 slenderness 

(Eq. 29).  

Values under Nu(kN)CSM(RHS1) (lineal) and  Nu(kN)CSM(RHS2) (square) are calculated by using 

Theofanous & Gardner [25] interaction equations: one with the linear term NEd/Ncsm (Eq. 39)  

and the other one with the square term NEd/Ncsm (Eq. 39), respectively. Nu and Mu (simple axial 

resistant force and simple bending resistant moment) are obtained from CSM (Eq. 40 and 41) 

with EN 1993-1-4 slenderness. 

Equations are defined in section 4.5 above. 

After presenting all analytical results, the following table 30 shows the ratios that compare 

these analytical results with the numerical ones. As it has been explained in section 4.1, a 

three dimensional distance has been defined to define these ratios. 

In this case, each type of result presents its different comparison ratio (section 4.4 uniaxial 

combined loading before, from five types of results, there were only 4 different comparison 

ratios).  

-CSM(RHS1): uses RHS1 interaction equation and CSM values for the simple resistances 

-CSM(RHS2): uses RHS2 interaction equation and CSM values for the simple resistances 

-CSM(EN): uses EN 1993-1-4 interaction equation and CSM values for the simple resistances 

-EN1993-1-4: uses EN 1993-1-4 interaction equation and EN 1993-1-4 values for the simple 

resistances 
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Table 30. Numerical vs Analytical results: biaxial combined loading test ratios 

Cross-section 
Ref. 

Point 
danalytical /dnumerical 

CSM(RHS1) CSM(RHS2) CSM(EN) EN1993-1-4 

S1-120x80x4 

7 0.79 0.94 0.90 0.86 

8 0.78 0.97 0.88 0.87 

9 0.77 0.97 0.87 0.87 

10 0.78 0.97 0.91 0.85 

11 0.78 0.97 0.89 0.86 

12 0.89 1.11 1.04 0.95 

13 0.80 0.98 0.93 0.84 

14 0.80 0.99 0.93 0.83 

15 0.80 1.00 0.94 0.85 

S2-80x40x4 

7 0.94 1.12 1.07 0.93 

8 0.97 1.19 1.08 0.93 

9 0.98 1.22 1.08 0.92 

10 0.92 1.15 1.07 0.90 

11 0.95 1.19 1.08 0.91 

12 0.94 1.17 1.08 0.91 

13 0.87 1.08 1.01 0.86 

14 0.85 1.07 1.00 0.84 

15 0.90 1.13 1.06 0.89 

S3-80x80x4 

7 0.88 1.04 1.01 0.89 

8=13 0.87 1.07 1.00 0.87 

9=14 0.87 1.09 1.01 0.87 

10 0.86 1.07 1.02 0.88 

11=15 0.87 1.09 1.02 0.88 

12 0.88 1.09 1.03 0.89 

S4-60x60x4 

7 0.69 0.82 0.77 0.65 

8=13 0.69 0.84 0.75 0.63 

9=14 0.69 0.85 0.75 0.62 

10 0.69 0.86 0.77 0.63 

11=15 0.69 0.87 0.77 0.63 

12 0.70 0.88 0.77 0.63 

S5-100x100x4 

7 0.87 1.04 1.00 0.96 

8=13 0.86 1.06 1.00 0.95 

9=14 0.85 1.07 1.00 0.95 

10 0.84 1.05 0.99 0.95 

11=15 0.84 1.05 1.00 0.95 

12 0.84 1.05 1.00 0.96 

S6-120x80x3 

7 0.56 0.70 0.64 0.83 

8 0.47 0.58 0.54 0.83 

9 0.43 0.52 0.50 0.84 

10 0.50 0.62 0.57 0.83 

11 0.44 0.53 0.51 0.82 

12 0.48 0.58 0.56 0.84 

13 0.61 0.77 0.71 0.83 

14 0.61 0.76 0.72 0.78 

15 0.55 0.68 0.64 0.84 
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Table 30. Numerical vs Analytical results: biaxial combined loading test ratios 

Cross-section 
Ref. 

Point 
danalytical /dnumerical 

CSM(RHS1) CSM(RHS2) CSM(EN) EN1993-1-4 

S7-60x60x3 

7 0.91 1.08 1.04 0.93 

8=13 0.90 1.11 1.04 0.92 

9=14 0.90 1.13 1.05 0.91 

10 0.90 1.12 1.06 0.92 

11=15 0.90 1.13 1.06 0.92 

12 0.91 1.14 1.08 0.93 

S8-70x50x2 

7 0.77 0.93 0.88 0.91 

8 0.73 0.90 0.82 0.88 

9 0.71 0.89 0.81 0.88 

10 0.72 0.90 0.84 0.87 

11 0.70 0.87 0.81 0.87 

12 0.73 0.90 0.85 0.88 

13 0.75 0.93 0.88 0.87 

14 0.73 0.92 0.87 0.84 

15 0.75 0.93 0.88 0.89 

S9-100x100x3 

7 0.76 0.91 0.88 0.92 

8=13 0.74 0.92 0.86 0.91 

9=14 0.72 0.90 0.85 0.91 

10 0.74 0.92 0.87 0.93 

11=15 0.72 0.90 0.86 0.91 

12 0.72 0.89 0.86 0.92 

S10-100x100x3.5 

7 0.76 0.91 0.88 0.88 

8=13 0.74 0.92 0.86 0.86 

9=14 0.74 0.92 0.86 0.87 

10 0.73 0.91 0.86 0.86 

11=15 0.73 0.91 0.86 0.86 

12 0.73 0.90 0.86 0.87 

S11-120x120x5.5 

7 0.75 0.90 0.87 0.81 

8=13 0.74 0.92 0.86 0.80 

9=14 0.74 0.93 0.87 0.80 

10 0.73 0.91 0.87 0.80 

11=15 0.74 0.92 0.87 0.80 

12 0.74 0.92 0.88 0.81 

S12-80x80x2.5 

7 0.77 0.92 0.89 0.90 

8=13 0.75 0.93 0.88 0.90 

9=14 0.75 0.93 0.88 0.90 

10 0.75 0.94 0.89 0.92 

11=15 0.74 0.92 0.87 0.90 

12 0.74 0.92 0.88 0.91 

Average 0.77 0.95 0.89 0.86 

COV 0.192 0.194 0.195 0.111 

 

Again CSM(RHS2) (Eq. 38) provides us the better average (which is closer to the one referred to 

uniaxial bending test) results, but again there are presented ratios higher than one for 

sections: S2, S3, S5 and S7. S6 presents results more conservative as more eccentricity has the 
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axial force, this is because of this section has the slenderness higher than 0.68 (class 4 limit) 

and CSM can’t be applied properly. The COV is low even being the higher of the methods 

studied. 

For biaxial combined loading test, both CSM (EN) and EN 1993-1-4 methods have better 

averages than they have for uniaxial bending test. For EN 1993-1-4 there are no ratios higher 

than one, and the COV is very low. However, for CSM (EN) there is the same problem as for 

CSM (RHS2) with the same sections and it presents the same COV values. Even though ratios 

are very closer to one and only exceed this limit narrowly. 

4.7 Global Valorations 

The ultimate numerical resistance of ferritic stainless steel RHS under combined loading has 

been studied by analysing the interaction equations proposed in EN 1993-1-4 [4] and 

expressions found in the literature [22 and 25], in order to determine the most appropriate 

approach. The ratios by which each design interaction curve exceeds or falls short of the 

corresponding FEM data, denoted as danalytical /dnumerical, have been calculated and the mean and 

coefficient of variation (COV) of the danalytical /dnumerical values are presented in Table 31. From 

this preliminary analysis it can be concluded that Eurocode proposals are considerably 

conservative for the studied cross-sections because they do not consider material strain 

hardening. 

On the one hand, the numerical ultimate loads have been normalized by the CSM predictions 

and plotted in Fig. 37, 38 and 39 together with the aforementioned interaction expressions in 

order to assess their applicability. These figures demonstrate that the consideration of the 

CSM fundamental capacities in the expressions proposed in EN 1993-1-4, Eq. 15 (CSM in EN in 

Fig. 37, 38 and 39), is the best approach for the prediction of the combined loading capacity of 

the studied cross-sections, providing safe and accurate results. 

 

Figure 37. Axial compression-major axis bending interaction, normalised with CSM values 
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Figure 38. Axial compression-minor axis bending interaction, normalised with CSM values 

Figure 39. Major and minor axis bending interaction, normalised with CSM values 

On the other hand, the numerical ultimate loads have been normalized by the EN 1993-1-4 

basic resisting predictions and plotted in Fig. 40, 41 and 42 together with the aforementioned 

interaction expression in order to assess its applicability. These figures demonstrate that using 

0,0

0,3

0,5

0,8

1,0

1,3

1,5

1,8

2,0

0,0 0,3 0,5 0,8 1,0 1,3 1,5

Mz,u/Mz,CSM

Nu/NCSM

S1

S2

S3

S4

S5

S7

S9

S10

S11

S12

CSM in EN (af=0.5)

RHS1

CSM in EN (af=0.25)

RHS2

0,0

0,3

0,5

0,8

1,0

1,3

1,5

1,8

2,0

0,0 0,3 0,5 0,8 1,0 1,3 1,5 1,8 2,0

Mu,y/My,CSM

Mz,y/Mz,CSM

S1

S2

S3

S4

S5

S7

S9

S10

S11

S12

CSM in EN

RHS1&2



Antonio Sastre Segui   Cross-Section Analysis: Analytical Results 

81 
 

this method results are too conservative (far away from the interaction equation) in 

comparison with Fig. 37, 38 and 39 above.  

Figure 40. Axial compression-major axis bending interaction, normalised with EN 1993-1-4 values 

 

Figure 42. Axial compression-minor axis bending interaction, normalised with EN 1993-1-4 values 
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Figure 42. Major and minor axis bending interaction, normalised with EN 1993-1-4 values 

Although Table 31 suggests that Eq. 38 provides the most accurate results on average, it is not 

a suitable solution because it overestimates the ultimate capacities for a large number of 

cases, as shown in Figs. 37 and 38. On the other hand, Eq. 39 provides safe results for all the 

studied cases, though with more conservative predictions than Eq. 14 and 15 (CSM in En). 

Table 31. Comparison of different proposals with FEM data 

EN 1993-1-4 (Eq. 14 
and 15) 

CSM in EN (Eq. 14 
and 15) 

RHS1 (Eq. 39) RHS2 (Eq. 38) 

Mean COV. Mean COV. Mean COV. Mean COV. 

0.81 0.152 0.86 0.163 0.91 0.163 0.79 0.144 
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5. Cross-section analysis: Experimental Programme 
An experimental programme is more than just obtaining the ultimate loading data after testing 

all elements. This is only the last step. Before, it is necessary to think the correct procedure 

that will be followed to test each element (it will depend on the kind of test that is wanted to 

be done: stub-column, bending, etc.) and prepare this element properly in order to get the 

more reliable results as possible. In addition to this, it is important to measure the geometrical 

properties of each element: imperfections, width, depth, thickness, etc. It is important to 

verify material properties too. The experimental programme has been done only for stub-

column test (ultimate axial load). 

This experimental programme took place in the “Structure Technology Laboratory Luis Agulló” 

(LTE Luis Agulló) which is mainly a research laboratory appointed to the Construction 

Engineering Department where experimental works of the research and technology transfer 

projects are developed. Most of the work done consist of applied research, heavily focusing on 

technology transfer to the construction industry.  

5.1 Material testing 

In order to verify the material properties of the material supplied, a material testing was 

carried out. The basic stress-strain properties of the investigated stocky cross-sections were 

obtained through tensile coupon tests (TCT). These tests were conducted in accordance with 

EN 10002-1 (1990) and EN ISO 6892-1 [31]. These tests consist of two different specimen 

types: flat coupon tensile tests and corner coupon tensile tests. 

5.1.1 Preparation of coupons 

There were a total of twenty specimens: ten were used for flat tensile coupon tests and ten for 

corner tensile coupon tests. For flat tensile coupon tests five different cross-sections were 

analysed (two elements of each cross-section) and for corner tensile coupon test five different 

ones (two elements of each cross-section too). Table 32 presents the number of elements 

analysed of each cross-section. 

Table 32. Number of tensile tests conducted 

Cross-Section Corner TCT Flat TCT 

80x80x4 2 2 

60x60x3 2 2 

80x40x4 2 2 

120x80x3 2 2 

70x50x2 2 2 
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Flat coupons were machined from the face opposite to the weld. Corner coupons were also 

extracted and tested for each of the five cross-sections. Fig. 43. shows the location of the flat 

and corner coupons extracted from the element for this study, together with the adopted 

dimensioning and labelling system. The nominal length was 280mm for all cross-sections. 

 

Figure 43. Section labelling convention and locations of flat ant corner tensile coupons 

The tested coupons where cut in the rolling direction and mechanized with the geometries 

presented in Figure 44. The total length of all the specimens is 280mm, and the tested gauge 

length of 80mm for the flat coupons and the one corresponding the specifications gathered in 

ISO 6892-1 [31] for the corner specimens. The corner coupons consisted of the corner region 

plus an adjacent flat part of 2t, where t is the cross-section thickness. Figure 45 shows the 

different specimens prior to testing. 

 

 
Figure 44. Definition of flat and corner coupons for tensile testing. 
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.  
Figure 45. Tensile coupon specimens: necked flat coupons and straight corner coupons 

5.1.2 Instrumentation and testing 

All tensile tests were performed using an Amsler 350 kN hydraulic testing machine. The 

adopted testing rates are according to the specifications gathered both in ISO 6892-1 [31] and 

ASTM: 0.00025s-1 for the initial part of the test and increased to 0.008s-1 after the yield point is 

reached to fracture. Figure 46 shows the testing of both a flat and a corner coupon, and the 

typical failure modes of both types of coupons are shown in Figure 47.  

       
Figure 46. Tensile test configuration in flat and corner coupons. 

   
Figure 47. Typical failure modes for flat and corner coupons after testing. 
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Load, strain, displacement and input voltage were all recorded using the data acquisition 

equipment and logged using the computer packages.  

5.1.3 Results 

In this section the results obtained after testing all twenty flat and corner tensile coupons are 

shown. Fig. 48 and 49 presents the results of corner and flat tensile coupon tests, respectively, 

as measured stress-strain curves. 

 

 

Figure 48. Corner tensile coupon tests results 

 

Figure 49. Flat tensile coupon tests results 

0

100

200

300

400

500

600

700

0 0,005 0,01 0,015 0,02

S
tr

e
ss

 [
M

P
a

]

Strain [mm/mm]

S1-C1

S1-C2

S2-C1

S2-C2

S3-C1

S3-C2

S4-C1

S4-C2

S5-C1

S5-C2

S6-C1

S6-C2

S7-C1

S7-C2

S8-C1

S8-C2

0

100

200

300

400

500

600

0 0,05 0,1 0,15 0,2 0,25 0,3

S
tr

e
ss

 [
M

P
a

]

Strain [mm/mm]

S1-C1

S1-C2

S2-C1

S2-C2

S3-C1

S3-C2

S4-C1

S4-C2

S5-C1

S5-C2

S6-C1

S6-C2

S7-C1

S7-C2

S8-C1

S8-C2



Antonio Sastre Segui  Cross-Section Analysis: Experimental Programme 

87 
 

The following table 33 presents some values that can be of interest for later analysis: σ0.2 

(proof stress corresponding to a 0.2% plastic strain), σu (ultimate strength) and εu (ultimate 

strain). 

Table 33. Measured tensile material properties of test specimens 

Cross-Section 
Corner tensile coupon test Flat tensile coupon test 

σ0.2 
(Mpa) 

σu (Mpa) εu (mm/mm) σ0.2 (Mpa) σu (Mpa) εu (mm/mm) 

S1-80x80x4-C1 310 646 0.0100 291 558 0.0803 
S1-80x80x4-C2 240 643 0.0107 271 559 0.0846 
S2-60x60x3-C1 310 583 0.0100 337 504 0.0682 
S2-60x60x3-C2 328 590 0.0095 250 506 0.0691 
S3-80x40x4-C1 225 603 0.0096 340 519 0.0482 
S3-80x40x4-C2 279 598 0.0086 350 520 0.0242 

S4-120x80x3-C1 357 578 0.0076 325 487 0.1261 
S4-120x80x3-C2 305 587 0.0120 333 492 0.1252 
S5-60x60x2-C1 330 571 0.0075 327 484 0.1076 
S5-60x60x2-C2 327 564 0.0086 297 473 0.1170 
S6-70x50x2-C1 260 576 0.0113 322 479 0.1372 
S6-70x50x2-C2 276 573 0.0113 314 480 0.1379 
S7-80x40x3-C1 372 580 0.0105 324 484 0.1385 
S7-80x40x3-C2 486 611 0.0055 320 486 0.1473 

S8-100x40x2-C1 228 578 0.0117 340 481 0.1344 
S8-100x40x2-C2 480 580 0.0081 334 484 0.1316 

 

It is important to highlight that as expected, values for σ0.2 are higher for the corner coupons 

than for the flat ones due to the higher level of cold-work present in these areas. However, the 

ultimate strain εu of these corner coupons is also lower than for the flat specimens, showing 

the typical loss in terms of ductility for these types of cross-sections. For the flat coupons, it is 

also shown that the ones that showed higher stress-strain curves (80x80x4, 60x60x3 and 

80x40x4) are the ones which present a higher level of cold-worked, being the ones with higher 

thicknesses. 

5.2 Measuring the geometry 

This section will explain how the different geometric parameters were measured from the 

elements prior to testing. These geometric parameters include: dimensions of cross-sections, 

dimensions of elements and initial local imperfections. Table 34 shows the different cross-

sections that are going to be tested (8 overall). Elements for each type of test have different 

lengths, but their geometrical measurements were done in the same way.  

Table 34. Nominal dimensions of the cross-section 

Name Width (mm) Depth (mm) Thickness (mm) 

S1 80 80 4 
S2 60 60 3 
S3 80 40 4 
S4 120 80 3 
S5 60 60 2 
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Table 34. Nominal dimensions of the cross-section 

Name Width (mm) Depth (mm) Thickness (mm) 

S6 70 50 2 
S7 80 40 3 
S8 100 40 2 

 

When elements arrived to the laboratory had not been cut yet, they only had the cross-section 

dimensions that had been looked for. Although elements were made to be cut by professional 

technicians, and cross-sections seemed to have the required dimensions, there are always 

little imperfections and it is a common practice, before carrying out the test, to verify the 

dimensions and to measure these possible little imperfections.   

To measure the lengths of each element was used a measuring tape with an accuracy of +/- 

1mm. The elements that were going to be used for stub-column test were supposed to have a 

length of three times its larger cross-section dimension (see table 35). Two lengths were 

measured, one on the width face and the other one on the depth face. 

Table 35. Nominal stub-column experimental test lengths 

Dimensions SC-Length(mm) Dimensions SC-Length(mm) 

S1-80x80x4 250 S5-60x60x2 180 

S2-60x60x3 180 S6-70x50x2 210 

S3-80x40x4 250 S7-80x40x3 240 

S4-120x80x3 360 S8-100x40x2 300 

 

To verify the cross-section’s dimensions (width, depth, thickness and radius) was used a 

Vernier caliper with +/- 0.1 mm accuracy. Two measurements were done in order to check 

each width and depth values (one on each extreme of the element), but for the radius and 

thickness four measurements were done, one for each face and corner (respectively) of the 

element. Stub-column elements prior to testing can be appreciated in Fig. 50. 

 

Figure 50. Experimental campaign elements 
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Once all the dimensions were measured and verified, the next step was to measure the 

longitudinal imperfections. The result of it can be used to introduce the imperfection’s 

amplitude in the computer simulation model. It can also be used to prove equations or models 

that try to predict imperfection’s amplitude.  To measure these longitudinal imperfection was 

used a machine that had a linear variable differential transformer (LVDT). The element was 

fixed on the machine adjusting the LVDT (which needed to be calibrated for each beam) on 

one of the faces of the element. Then, the machine, by moving the element front and rear, 

stored the longitudinal profile into a digital file that contained all element imperfection data. 

Fig. 51 shows the machine for stub-column imperfections measurements. As can be 

appreciated on the right side of Fig 51, the data obtained from the LVDT was shown through a 

computer screen in order to verify if the measurements obtained were logical and was no 

need to calibrate again the LVDT. This process was a bit slow because of the accuracy needed: 

vibrations or an excess of velocity could make that LVDT did wrong readings.  

 

Figure 51. Stub-column’s imperfection measurement 

The measured dimensions of all the specimens are gathered in Table 36, where: L is the total 

length of the specimens defined as at least three times the width of the widest plate element 

of the cross-section, as established in EN 1993-1-3 (2006)., H is the total depth, B is the total 

width, t is the thickness, R is the exterior radius and ri is the interior radius.  
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Table 36. Measured dimensions for the stub columns specimens 

Cross-Section L H B t R ri 

[mm] [mm] [mm] [mm] [mm] [mm] 

S1-80x80x4-C1 249.8 79.9 79.9 3.8 8.6 4.8 
S1-80x80x4-C2 250.0 79.9 79.9 3.8 8.9 5.1 
S2-60x60x3-C1 179.8 60.3 60.2 2.9 6.6 3.8 
S2-60x60x3-C2 180.0 60.1 60.1 2.9 6.3 3.4 
S3-80x40x4-C1 249.5 39.9 80.0 3.9 7.6 3.7 
S3-80x40x4-C2 249.0 40.0 80.0 3.9 7.6 3.8 

S4-120x80x3-C1 359.5 79.7 119.7 2.9 7.0 4.1 
S4-120x80x3-C2 359.5 79.7 119.9 2.9 6.6 3.7 
S5-60x60x2-C1 180.1 60.0 60.1 1.9 5.5 3.6 

S5-60x60x2-C2 179.8 59.9 59.9 1.9 5.3 3.3 
S6-70x50x2-C1 210.0 49.9 70.1 2.0 4.3 2.3 
S6-70x50x2-C2 210.0 49.8 70.0 2.0 4.2 2.2 
S7-80x40x3-C1 249.9 39.9 79.9 3.0 7.5 4.6 
S7-80x40x3-C2 250.1 40.0 79.9 2.9 7.4 4.4 

S8-100x40x2-C1 300.5 40.1 99.9 1.9 6.1 4.1 
S8-100x40x2-C2 300.2 40.1 100.1 2.0 6.2 4.1 

5.3 Elements instrumentation: strain gauges 

Before testing the elements, it is necessary to prepare them by adding some strain gauges 

where it is thought the local buckling is more likely to occur (it can’t be assured where it will 

happen).  The paragraphs below explain what a strain gauge is and how it works. 

A strain gauge is a device used to measure strain on an object. The gauge is attached to the 

object by a suitable adhesive. As the object is deformed, the foil is deformed, causing its 

electrical resistance to change. This resistance change is related to the strain by the quantity 

known as the gauge factor (the ratio of relative change in electrical resistance, to the 

mechanical strain). 

The strain gauge takes advantage of the physical property of electrical conductance and its 

dependence on the conductor’s geometry. On the one hand, when an electrical conductor is 

stretched within the limits of its elasticity such that it does not break or permanently deform, 

it will become narrower and longer, changes that increase its electrical resistance end-to-end. 

On the other hand, when a conductor is compressed such that it does not buckle, it will 

broaden and shorten, changes that decrease its electrical resistance end-to-end. 
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Figure 52. Strain gauges 

The positions where gauges are going to be placed are in the middle of each element (see Fig. 

53 location of strain gauges). A total of 8 gauges were fixed to square hollow section (Fig. 54) 

and 4 gauges to the rectangular ones (Fig. 55). For SHS, as is not known a priori in which face 

the local buckling will occur, every face was covered with two gauges at its middle zone.  For 

RHS, as the buckle is likely to occur in the largest and more slender face of the cross-section, 

only 4 gauges were necessary, 2 on each face. 

 

Figure 8. Location of strain gauges for RHS specimens 

Before positioning the gauges on the element, it was needed to sand the surface of the 

element where the gauge was going to be placed on. If the surface where the gauge is fixed is 

irregular, the lectures will not be realistic. 

After the sanding step, it is time to stick the gauges on the element surface. The process 

followed was first of all to clean the surface with alcohol, spread a little film of adhesive on the 

rear side of the gauge, and then slowly place it on the surface. To accurately place the gauge in 

its position, little linear marks were done to the surface of the object. Looking at the lineal 

references that have all gauges drawn (see Fig. 54 and 55), the aim is to make both lineal 

marks and references concur.  

Once the gauge is placed properly, it is needed to fix the cables that are loose (the stretch of 

the cables that emerge from the gauge) and protect the cupper part of them from the surface 

of the element with insulating tape in order to not have problems with the gauges readings.  

L/2 

4t 

Weld 
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Figure 54. SHS gauges position (8 gauges) 

 

Figure 55. RHS gauges position (4 gauges) 
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Once all gauges are placed, elements are prepared to be tested. 

5.4 Stub-Column: experimental test 

The machine used to carry out this test is a dynamic axial test machine with 4 columns frame 
and +/- 1000 KN actuator, which bran and model are: INSTRON 8805 (Fig. 56). The control 
system includes two channels for input and control. This device shares with the INSTRON 8803 
machine a data acquisition system of 8 channels for dynamic tests. 

 

Figure 56. INSTRON 8805 testing machine 

The process to test an element was the following one: 

1-The element was put centred on the base of the machine (Fig. 57). 

 

Figure 57. Centring the element on the base of the machine. 

2-The upper part of the machine that compresses the element was put closer to the upper 

face cross-section of the element but without any contact (see Fig. 58). 
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3-Then, were adjusted the three LVDT in order define the plane (three points) which the 

machine will work with. It is important to adjust them well because is the reference that the 

machine uses to push and compress the element. If they were badly adjusted, an accident 

could happen with the element flying off the original position. Fig. 58 shows two of three LVDT 

adjusted. The LVDT also permits the measurement of the end shortening of the element. 

 

Figure 58. Machine positioning and LVDT adjustment 

4-Then, using the computer, the machine was finally adjusted to the upper face of the 

element. After closing security doors and plugging in cable gauges to the input device, the test 

was ready to begin. 

Before testing any element, it was necessary to prove that the test would work properly. If any 

element had been tested without making sure it and the test had gone wrong, it would have 

been lost an element to test. These verifications were done with elements without interest for 

the programme, which had no strain gauges on them (see Fig. 59). 

 

 Figure 59. Check of the functionality of the test  

After finishing the test, the element was observed visually in order to contrast with data 

results. It could happen that there was an error during the process, if we store the test data 

without contrasting “a priori” them, we could have wrong results. It was observed the part of 

the element where the buckling took place and was decided if gauges data was or not 

outstanding. For example, in Fig. 60 the buckle did not happen where the gauges were placed. 
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Figure 60. Buckled part of the element 

It is important to mention that the tests were done under displacement control: the machine 

did little increments of deformation per unit of time. The value of this test rate was: 

0.5mm/min. 

5.5 Experimental Results 

After treating obtained data, the following Fig. 61 shows the results obtained: 

 

Figure 61. Experimental data results 

For each cross-section two tests were conducted. The results are shown above with the same 

load-end shortening curve colour. Table 37 present the ultimate axial compression load 

measured in the tests. 

Table 37. Stub-column ultimate compression load 
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Element Dimensions Ultimate Load (KN) 

S1-80x80x4-C1 654.6 
S1-80x80x4-C2 655.3 
S2-60x60x3-C1 342.6 
S2-60x60x3-C2 342.8 
S3-80x40x4-C1 465.2 
S3-80x40x4-C2 465.1 

S4-120x80x3-C1 443.1 
S4-120x80x3-C2 450.4 
S5-60x60x2-C1 211.3 
S5-60x60x2-C2 212.2 
S6-70x50x2-C1 190.1 
S6-70x50x2-C2 190.1 
S7-80x40x3-C1 178.1 
S7-80x40x3-C2 179.4 

S8-100x40x2-C1 184.4 
S8-100x40x2-C2 184.1 

 

The results of the ratios obtained after comparing these experimental results with the 

numerical and analytical ones are shown in table 38. Only S1, S2, S3, S4 and S6 can be 

compared since these are the cross-sections that each one has its analogous cross-section 

studied with the numerical model (S3, S7, S2, S6 and S8, respectively). 

Table 38. Stub-column ultimate compression load comparison 

Element Dimensions 

N/Nexperimental 

Analytical Numerical 

EN 1993-1-4 CSM FEM 

S1-80x80x4-C1 0.59 0.63 0.70 
S1-80x80x4-C2 0.59 0.63 0.70 
S2-60x60x3-C1 0.64 0.68 0.75 
S2-60x60x3-C2 0.64 0.68 0.75 
S3-80x40x4-C1 0.61 0.67 0.76 
S3-80x40x4-C2 0.61 0.67 0.76 

S4-120x80x3-C1 0.85 0.84 0.95 
S4-120x80x3-C2 0.83 0.83 0.93 
S6-70x50x2-C1 0.78 0.78 0.87 
S6-70x50x2-C2 0.78 0.78 0.87 

Average 0.69 0.72 0.80 

Covariance 0.152 0.112 0.116 

 

As it can be appreciated, FEM results are closer to the experimental ones. It is logical because 

ratios that were calculated in section 4.2 (comparing analytical results with numerical ones) 

were lower than one. It can be concluded that FEM is conservative referred to experimental 

ones, and analytical results are conservative referred to numerical ones and so to FEM ones. 
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6. Conclusions 

In this section are gathered all relevant conclusions that have been extracted along this 

research project. 

When it comes to global valorations, in the case that the numerical ultimate loads have been 

normalized by the Continuous Strength Method (CSM) predictions and plotted together with 

the aforementioned interaction expressions in order to assess their applicability, it is 

demonstrated that the consideration of the CSM fundamental capacities in the expressions 

proposed in EN 1993-1-4, Eq. 15 is the best approach for the prediction of the combined 

loading capacity of the studied cross-sections, providing safe and accurate results. On the 

other hand, when the numerical ultimate loads have been normalized by the EN 1993-1-4 

basic resisting predictions and plotted together with the aforementioned interaction 

expression in order to assess its applicability, it is demonstrated that using this method, results 

are too conservative (far away from the interaction equation) in comparison with the graphs 

normalized by the CSM predictions. 

From the comparative ratios, it can be concluded that the best solution and the more reliable 

one is to use the CSM for basic resistances and as interaction expression the one included in 

EN 1993-1-4. Even though the two interaction expressions proposed by Theofanous [25] 

present better results on average, there are many cases that the ratio exceeds the unit, which 

means that results are overestimated. More specific conclusions for every of the analysed 

loading types are presented as follows: 

a) For stub-column and uniaxial bending tests, the CSM approaches better the 

numerical solution than EN 1993-1-4. S4 is the cross-section that presents worse 

analytical results in both tests. This can be explained by the following reason: as S4 

is the only section that does not accomplish the restriction on the normalised 

deformation capacity and needs to be applied an εcsm modification.  

b) For uniaxial combined loading, the case that evaluates the EN 1993-1-4 interaction 

equation (Eq. 11 and 12) with CSM values for the simple resistances (Eq. 33 and 

34) provides the best results. There is no cross-section with issues to remark. 

c) For Biaxial bending test, the best results are show by Theofanous [25] equations. 

S6 presents results too conservative for Theofanous [25] interaction equation, S4 

has the same problem for EN1993-1-4 interaction equation (with CSM basic 

resitances) and S8 undergoes this problem for all interaction equations. 

d) For biaxial combined loading tests, the best results are show by EN 1993-1-4 

interaction expression (with CSM basic resistances). Even though on average EN 

1993-1-4 results are worse than the ones presented by the two Theofanous [25] 

interaction equations, this last method overestimates the results for some of the 

cross-sections studied. 

With the results obtained during the experimental programme, it can be concluded that FEM 

stub-column results are conservative referred to experimental ones, which means that 

numerical models seem to be calibrated properly. Finally, analytical results are conservative 

referred to numerical ones and so to FEM ones.  
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