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ABSTRACT 

Historically, trapezoidal velocity profiles have been widely used to control 

engines. Nevertheless, the evolution of robots and their uses has led to the need 

of using smoother profiles, due to the demand of high precision and delicate 

movements. It has been shown that this can be achieved by minimizing the 

change of acceleration and using s-curve profiles. Moreover, to provide a good 

control of the movement of a robot, it is necessary to ensure that it will meet the 

desired velocity profile. Therefore, a way to prevent how the wheels will react 

on the soil becomes highly useful, in order to adapt the supplied torque.  

This thesis suggests a model to define an appropriate s-curve velocity profile 

given the desired starting and ending kinematic states for a mobile robot. The 

study is then focused on a one-wheel system to define the interaction between 

the soil and a wheel. This interaction is modelled and extended in order to 

calculate the required torque, drawbar pull and power needed to fulfil the 

desired s-curve velocity profile. Finally, an introduction to unicycle robots is 

given as an example of how the proposed models could be applied in the motion 

planning of a mobile robot. 
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LIST OF ABBREVIATIONS AND SYMBOLS 

𝐹𝑥̃ rolling resistance force 

𝐹𝜂
(𝑎) resulting lateral contact forces for area (a) 

𝐹𝜂
(𝑏) resulting lateral contact forces for area (b) 

𝐹𝜉
(𝑎) resulting longitudinal contact forces for area (a) 

𝐹𝜉
(𝑏) resulting longitudinal contact forces for area (b) 

𝑋𝑞
𝑚𝑎𝑥 maximum value of a kinematic feature 

𝜎𝑝 mean of the passive stresses from the grousers in contact with the terrain 

𝐴𝑔 amplitude of the oscillation 

𝐴𝑚𝑎𝑥 maximum acceleration value 

𝐴𝛾 amplitude of oscillation related to the change in the local soil density 

around the wheel and grouser caused by the soil deformation due to the 

wheel 

𝐴𝜎 amplitude of oscillation related to the active and passive stresses 

𝐶𝑑 constant 

𝐶𝑚 constant 

𝐹𝑥 horizontal load on the wheel 

𝐹𝑧 vertical force 

𝐹𝜂 lateral contact force 

𝐹𝜉  longitudinal contact force 

𝐽𝑘 jerk absolute value at the kth phase 

𝑁𝑖 total number of interpolation steps 

𝑁𝜙 flow value 

𝑅𝑐 compaction resistance 

𝑆𝑠 longitudinal slip rate 

𝑆𝑠𝑐 critical value of the longitudinal slip rate 

𝑆𝛼 lateral slip rate 

𝑆𝛼𝑐 critical value of the lateral slip rate 

𝑇𝑘 duration of the kth phase 

𝑇𝑠 control loop sampling period 

𝑉𝐿 deformation rate in the tangential direction 

𝑉𝑁𝑆 deformation rate in the normal direction 

𝑉𝑚𝑎𝑥 maximum velocity value 

𝑉𝑠 relative slippage velocity between wheel and soil 

𝑉𝑥 translational velocity of the wheel centre 

𝑋𝑘
𝑝𝑒𝑎𝑘

 peak values of kinematic features 

𝑎0𝑘 acceleration value at the beginning of the kth phase 

𝑑𝛾 local change in weight density of soil around the wheel 

𝑓0𝑘 federate value at the beginning of the kth phase 

𝑓𝑒 final feedrate 

𝑓𝑘 feedrate at the end of the kth phase 

𝑓𝑠 initial feedrate 

𝑗𝑁𝑚𝑎𝑥 maximum accumulated deformation in the normal direction 

𝑗0𝑘 jerk value at the beginning of the kth phase 

𝑗𝐿 accumulated soil deformation in the tangential direction 



 

 

 

 

𝑗𝑁 accumulated deformation in the normal direction 

𝑘̂ fitting constant 

𝑘1 constant from soil penetration plate tests 

𝑘2 constant from soil penetration plate tests 

𝑘𝑎′ empirical dimensionless coefficient 

𝑘𝑐 cohesive moduli of sinkage 

𝑘𝑐′ dimensionless soil parameter 

𝑘𝑒 relative model of elasticity for rebound stress in the soil 

𝑘𝑔
′  empirical dimensionless coefficient 

𝑘𝑧 vertical stiffness 

𝑘𝜙 frictional moduli of sinkage 

𝑘𝜙′ dimensionless soil parameter 

𝑙𝑐 contact length of the wheel on the soil 

𝑙𝑘 distance travelled during the kth phase 

𝑙𝑟 length of area (a) in the model proposed in [1] 

𝑙𝑠 length of area (b) in the model proposed in [1] 

𝑚̂ fitting constant 

𝑚𝑖𝑛𝑢0 minimum deformation rate for speed influence 

𝑛̂ fitting constant 

𝑛𝑔 number of grousers of the wheel 

𝑠0𝑘 displacement value at the beginning of the kth phase 

𝑠𝑘𝑛 total distance travelled from the beginning of the kth phase until the nth 

interpolation step in this phase 

𝑡0, … , 𝑡𝑘 time value at instant k 

𝑣𝑏 vehicle’s speed 

𝑧0 distance from the soil surface level to the point of the deepest sinkage, 

under the centroid of the wheel 

𝛿𝑟 vertical deformation for the wheel 

𝛿𝑠 vertical deformation for the soil 

𝛿𝑡𝑎𝑟𝑔𝑒𝑡 target distance 

𝜃1 entry angle 

𝜃2 exit angle 

𝜃𝑓 forward wheel-soil contact angle (entry angle of the interaction) 

𝜃𝑚 angle at which maximum normal stress occurs 

𝜃𝑟 rear wheel-soil contact angle(departure angle of the interaction) 

𝜃𝑠 static wheel-soil contact angle 

𝜇0 static friction coefficient 

𝜇𝐷 dynamic friction coefficient 

𝜇𝑐𝑥 friction coefficient 𝜇𝑐 with respect to longitudinal axel 

𝜇𝑐𝑦 friction coefficient 𝜇𝑐 with respect to lateral axel 

𝜏𝑘 relative time parameter that starts at the beginning of the kth phase 

𝜏𝑚 maximum shear stress 

𝜏𝑚𝑎𝑥 shear strength of the soil 

𝜔𝑔 frequency of the oscillations 

I inertia 

L angular momentum 

Τ torque or momentum 



 

 

 

 

𝐴 acceleration value at the constant acceleration phase 

𝐶 apparent soil cohesion. It measures the attractive force between soil 

particles 

𝐷 deceleration value at the constant deceleration phase 

𝐷 wheel diameter 

𝐷𝑃 drawbar pull 

𝐹 desired feedrate 

𝐻 thrust available to a vehicle on deformable terrain 

𝐽 desired jerk magnitude 

𝐾 soil shear deformation modulus 

𝐿 total distance of travel 

𝑄 torque 

𝑅 total soil resistance 

𝑇𝐸 tractive efficiency 

𝑉 velocity value at the constant velocity phase 

𝑊 wheel’s vertical load 

𝑍 height of the wheel axle from the surface 

𝑎 acceleration 

𝑏 wheel width 

𝑐 soil cohesion 

𝑓 feedrate 

𝑗 jerk 

𝑗 the shear displacement along the wheel-soil interface 

𝑘 sinkage constant, being b the width of the wheel or plate 

𝑙 wheel-soil contact patch length 

𝑚 constant from soil penetration plate tests 

𝑛 constant from soil penetration plate tests 

𝑛 sinkage exponent 

𝑟 wheel’s radius 

𝑠 slip 

𝑡 time 

𝑣 velocity 

𝑥 position, displacement 

𝑧 distance from the soil level to the point of maximum wheel pressure 

𝛼 constant 

𝛼 slip angle 

𝛽 slip velocity’s angle of direction from the longitudinal axle 

𝜂 experimental parameter that relates the measured sinkage to the depth of 

the track after the wheel has passed 

𝜃 arbitrary angle along the stress arc 

𝜅 shear deformation parameter 

𝜇 friction coefficient between soil and wheel 

𝜎 normal stress 

𝜎(𝜃) normal stress at angle θ 

𝜏 tangential stress 

𝜏(𝜃) shear stress at angle θ 

𝜔 wheel’s angular velocity in rad/s 

𝜙 soil’s internal friction angle 
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1. INTRODUCTION 

A mobile robot is an automatic machine capable of moving in a given environment. 

With respect to its trajectory, one of its main requirements is not to collide with any 

obstacle. Furthermore, it should satisfy certain constraints concerning time, velocity, 

acceleration or jerk, while moving from a starting point to a target point as smoothly 

as possible.  

The process of obtaining the needed sequence of actions to be executed by the 

robot is known as motion planning. The performance of the system is called adaptive 

because it has to be adjusted during the execution of these actions according to the 

environment. 

Assuming that the environment and soil characteristics are well known, the motion 

of the robot could be divided into two areas of study. The first one is the 

determination of the required trajectory, velocity, acceleration and jerk profiles by 

the robot at all times. The second issue would be the determination of the necessary 

torque and power for each wheel at every instant, in order to fulfil the calculated 

kinematic parameters. 

The main objective of this thesis is to define an appropriate s-curve velocity profile 

for a robot to follow, starting from the assumption that the desired kinematic 

parameters and the starting and target place and time are given. Afterwards, the 

power, drawbar pull and torque profiles required to accomplish this velocity profile 

are calculated, taking into consideration the dynamic restrictions of the robot and the 

interaction between the wheels and the soil. Finally, two-wheeled robots are studied 

as an example of how the proposed models could be applied in the motion planning 

of a mobile robot. 

First, a review of basic kinematics and a research on the state of the art in the field 

of velocity profiles is performed, in order to define a model that could be 

implemented in Python language to provide s-curve velocity profiles from given 

kinematic parameters. 

Then, the study is focused on terramechanics, which is the area of mobility 

research that studies the performance of vehicles relating to its interaction with the 

environment. A model for the interaction between a moving wheel and the soil in 

which it moves is proposed, and implemented as part of another Python program in 

order to calculate the required torque, drawbar pull and power. Besides, a study of 

the effects of the dimension of the wheels and the characteristics of the soil is 

performed. 

Finally, a suggestion on how the proposed one-wheel system model could be 

adapted into a robot is given, illustrating it in the form of a two-wheel Segway-based 

robot. 
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2. BASIC KINEMATICS 

Historically, trapezoidal velocity profiles have been used as a reference, mainly 

because they are easy to be modelled and implemented. Despite the fact that it is not 

possible to obtain a perfect real trapezoidal response, their performance in the field 

has been quite good.  

Nevertheless, given the evolution experienced by robots during the last years, 

these profiles are no longer suitable enough for engines involved in precision or 

delicate works. Modern machines need to operate at high feedrates and accelerations, 

which can result in undesirable high frequency harmonics in the reference trajectory 

and even a saturation of the actuators [2]. Due to these facts, it is necessary to 

develop a way to generate smooth profiles. S-curve models have shown to meet this 

requirement. 

2.1. Jerk 

Given the position of a particle, 𝑥, successively deriving, its speed, 𝑣, acceleration, 𝑎 

and jerk, 𝑗 can be obtained (Eq.  1). Thus, jerk is the time rate of change of 

acceleration. Minimizing acceleration changes results on a smoother velocity profile. 

Hence, the appropriate way to proceed when designing a velocity profile is to 

minimize jerk. 

𝑗 =
𝜕𝑎

𝜕𝑡
=
𝜕2𝑣

𝜕𝑡
=  
𝜕3𝑥

𝜕𝑡
 [
𝑚

𝑠3
] (Eq.  1) 

2.2. Velocity profiles 

If the jerk profile is known, acceleration (Eq.  2), velocity or feedrate (Eq.  3) and 

displacement (Eq.  4) profiles can be obtained by integrating the jerk profile 𝑗(𝑡): 

𝑎(𝑡) = 𝑎(𝑡𝑖) + ∫ 𝑗(𝜏𝑖)𝑑𝜏𝑖

𝑡

𝑡𝑖

 (Eq.  2) 

𝑣(𝑡) = 𝑣(𝑡𝑖) + ∫𝑎(𝜏𝑖)𝑑𝜏𝑖

𝑡

𝑡𝑖

 (Eq.  3) 

𝑥(𝑡) = 𝑠(𝑡𝑖) + ∫𝑣(𝜏𝑖)𝑑𝜏𝑖

𝑡

𝑡𝑖

 (Eq.  4) 

 

Given a velocity profile, the area under the curve corresponds to the position of the 

particle. When moving from one position to another in a given time, there are infinite 

possible velocity profiles. The only similitude they must hold is to include the same 

area under the curve. Nevertheless, most of them can be summarized in the following 

three cases: constant velocity window, trapezoidal velocity profile and S-curve 

models [3]. 

For a constant velocity window, acceleration has impulses at an infinite value at 

the beginning and at the end of the motion, which would require an infinite torque. In 
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contrast, for simple trapezoidal velocity models, acceleration makes abrupt changes, 

which cause jerk to get impulses at an infinite value. Moreover, due to mechanical 

limitations, it is difficult for a real machine to follow a trapezoidal profile. S-curve 

models aim to reduce these problems [4]. 

 

 
Figure 1. Constant, trapezoidal and s-curve velocity profiles. 

From Figure 1, it can be seen that, instead of jumping from zero to an acceleration 

(or deceleration) peak value, the acceleration curve related to a velocity S-curve 

changes gradually. Therefore, jerk does not exhibit infinite values, but a certain 

value. 

2.2.1. Trapezoidal profile description 

Among all of the possible trapezoidal profiles, the best option is to choose the one 

that minimizes the needed power to be supplied by the engine. According to [5], this 

would be the ⅓-⅓-⅓ law, which is schematized in Figure 2. 

 
Figure 2. Trapezoidal ⅓-⅓-⅓ velocity profile law. 

2.2.2. S-curve profile description 

The aim of s-curve profiles is to keep precision and speed while reducing the residual 

vibration. As pointed before, jerk achieves finite values for an s-curve, which makes 

the movement more fluent. Many different approaches have been suggested on the 

generation of s-curves. Some of them are briefly explained under these lines. More 

information on the subject can be found in Appendix A. 
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State of the art 

One of the reference models in the field of s-curve profile generation is the one 

proposed by Erkorkmaz and Altintas [2]. The suggested model imposes limits to both 

the first and second derivatives of the feedrate in order to obtain 3rd order smooth 

velocity profiles using an iterative algorithm. Yong Jeong et al. [6] propose a similar 

approach, but without the need of iterating, while in [4] general equations are used in 

order to allow the description of an asymmetric curve. An even more general     

algorithm is the one in [3], which can be used to define generic s-curves of any order. 

Proposed algorithm 

The proposed algorithm aims to be as generic as possible, so that it can be adapted to 

the desired characteristics. Therefore, the possibilities of having required values for 

initial and final acceleration, velocity, position and time are considered. This is, both 

zero and non-zero values are considered.  

 
Figure 3. Velocity, acceleration and jerk profiles of the proposed model. 

The suggested motion equations are similar to the ones introduced in [2]. They 

refer to a 3rd order s-curve model, which is simpler than a 4th order one and, 

consequently, has less computational load when being implemented. Besides, it 

fulfils the specifications related to the jerk values. In Figure 3 there is an example of 

the profiles that can be obtained. 

From the start, the integrating constants are kept during the generation of the 

equations. When defining the profiles as piecewise equations, it is necessary to 

indicate the continuity between consecutive parts. Then, the values of most of the 

integration constants become defined. If possible, they are assigned their resulting 

value. Otherwise, the correspondent equations are added as restrictions. In addition, 

local time variables are introduced in order to ease the reading and computation of 

the formulas. 
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𝜏𝑘 = t − 𝑡𝑘−1, 𝑘 = 1,… ,7 
(Eq.  5) 

In Table 1 the initial conditions of the model are summarized. Then, the motion 

equations are presented, followed by the restrictions that the constants should meet in 

order to ensure continuity between sections of the piecewise equations. 

Initial conditions 

Table 1. Initial conditions for the proposed model for s-curve generation 

acceleration velocity position 

𝑎(𝑡 = 0) = 𝑎0 

𝑎(𝑡 = 𝑡7) = 𝑎𝑓 

𝑎(𝜏2) = 𝐴 

𝑎(𝜏4) = 0 

𝑎(𝜏6) = −𝐷 

𝑣(𝑡 = 0) = 𝑣0 

𝑣(𝑡 = 𝑡7) = 𝑣𝑓 

𝑣(𝜏4) = 𝑉 

𝑥(𝑡 = 0) = 𝑥0 

𝑥(𝑡 = 𝑡7) = 𝑥𝑓 

 

Motion equations 

𝑗(𝜏) =

{
  
 

  
 
𝐽1, 0 ≤ 𝑡 < 𝑡1
0,  𝑡1 ≤ 𝑡 < 𝑡2
−𝐽3, 𝑡2 ≤ 𝑡 < 𝑡3
0, 𝑡3 ≤ 𝑡 < 𝑡4
−𝐽5, 𝑡4 ≤ 𝑡 < 𝑡5
0, 𝑡5 ≤ 𝑡 < 𝑡6
𝐽7, 𝑡6 ≤ 𝑡 ≤ 𝑡7

 
(Eq.  6) 

𝑎(𝜏) =

{
  
 

  
 
𝐽1𝜏1 + 𝑎0, 0 ≤ 𝑡 < 𝑡1
𝐴,  𝑡1 ≤ 𝑡 < 𝑡2

𝐴 − 𝐽3𝜏3, 𝑡2 ≤ 𝑡 < 𝑡3
0, 𝑡3 ≤ 𝑡 < 𝑡4

−𝐽5𝜏5, 𝑡4 ≤ 𝑡 < 𝑡5
−𝐷, 𝑡5 ≤ 𝑡 < 𝑡6

−𝐷 + 𝐽7𝜏7, 𝑡6 ≤ 𝑡 ≤ 𝑡7

 
(Eq.  7) 

(Eq.  8) and (Eq.  9) apply for the same intervals that those for jerk and acceleration, 

although this information has been suppressed in order to improve readability.  

𝑣(𝜏) =

{
 
 
 
 
 

 
 
 
 
 𝑣0 + 𝑎0𝜏1 +

1

2
𝐽1𝜏1

2

𝑣1 + 𝐴𝜏2

𝑣2 + 𝐴𝜏3 −
1

2
𝐽3𝜏3

2

𝑉

𝑉 −
1

2
𝐽5𝜏5

2 

𝑣5 − 𝐷𝜏6

𝑣6 − 𝐷𝜏7 +
1

2
𝐽7𝜏7

2

 
(Eq.  8) 

𝑥(𝜏) =

{
 
 
 
 
 
 

 
 
 
 
 
 𝑣0𝜏1 +

𝑎0𝜏1
2

2
+
𝐽1𝜏1

3

6
+ 𝑥0  

𝑣1𝜏2 +
𝐴𝜏2

2

2
 + 𝑥1

𝑣2𝜏3 +
𝐴𝜏3

2

2
−
𝐽3𝜏3

3

6
+ 𝑥2  

𝑉 𝜏4 +𝑥3

𝑉𝜏5 −
𝐽5𝜏5

3

6
 +𝑥4

𝑣5𝜏6 −
𝐷𝜏6

2

2
+𝑥5

𝑣6𝜏7 −
𝐷𝜏7

2

2
+
𝐽7𝜏7

3

6
+ 𝑥6

 
(Eq.  9) 

Where 𝑡𝑘 is the time value at instant k, 𝜏𝑘 is a relative time parameter that starts at 

the beginning of the kth phase, 𝑥, 𝑣, 𝑎 and 𝑗 stand for position, velocity, acceleration 

and jerk, 𝑥0, … , 𝑥𝑘 , 𝑣0, … , 𝑣𝑘, 𝑎0, … , 𝑎𝑘 are position, velocity and acceleration values 

at 𝑡𝑘, 𝐽1, 𝐽3, 𝐽5, 𝐽7, are the jerk values at 𝜏1, 𝜏3, 𝜏5, 𝜏7, respectively, and 𝐴,𝐷, 𝑉 are the 

values for acceleration, deceleration and velocity at their correspondent constant-

value phases. 
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Restrictions 

Since velocity and position have more complex expressions than acceleration, it is 

not that trivial to get the values from all of the integration constants. This is why 

most of them are not substituted by their expressions in the equations, but listed 

below (Eq.  10)(Eq.  26). 

𝑣1 = 𝐽1
(𝑡1−𝑡0)

2

2
+ 𝑎0(𝑡1 − 𝑡0) + 𝑣0  (Eq.  10) 

𝑣2 = 𝐴(𝑡2 − 𝑡1) + 𝑣1  (Eq.  11) 

𝑉 = −𝐽3
(𝑡3−𝑡2)

2

2
+ 𝐴(𝑡3 − 𝑡2) + 𝑣2  (Eq.  12) 

𝑣5 = −𝐽5
(𝑡5−𝑡4)

2

2
+ 𝑉  (Eq.  13) 

𝑣6 = −𝐷(𝑡6 − 𝑡5) + 𝑣5  (Eq.  14) 

𝑣6 = 𝐷(𝑡7 − 𝑡6) + 𝑣𝑓 − 𝐽7
(𝑡7−𝑡6)

2

2
  (Eq.  15) 

𝑣0(𝑡1 − 𝑡0) +
𝑎0(𝑡1−𝑡0)

2

2
+
𝐽1(𝑡1−𝑡0)

3

6
+ 𝑥0 = 𝑥1  (Eq.  16) 

𝑣1(𝑡2 − 𝑡1) +
𝐴(𝑡2−𝑡1)

2

2
 + 𝑥1 = 𝑥2  (Eq.  17) 

𝑣2(𝑡3 − 𝑡2) +
𝐴(𝑡3−𝑡2)

2

2
−
𝐽3(𝑡3−𝑡2)

3

6
+ 𝑥2 = 𝑥3  (Eq.  18) 

𝑉 (𝑡4 − 𝑡3) +𝑥3 = 𝑥4  (Eq.  19) 

𝑉(𝑡5 − 𝑡4) −
𝐽5(𝑡5−𝑡4)

3

6
 +𝑥4 = 𝑥5  (Eq.  20) 

𝑣5(𝑡6 − 𝑡5) −
𝐷(𝑡6−𝑡5)

2

2
+𝑥5 = 𝑥6  (Eq.  21) 

𝑣6(𝑡7 − 𝑡6) −
𝐷(𝑡7 − 𝑡6)

2

2
+
𝐽7(𝑡7 − 𝑡6)

3

6
+ 𝑥6 = 𝑥7 (Eq.  22) 

𝑎0 + 𝐽1(𝑡1 − 𝑡0) = 𝐴 (Eq.  23) 

𝐴 − 𝐽3(𝑡3 − 𝑡2) = 0 (Eq.  24) 

−𝐽5(𝑡5 − 𝑡4) = −𝐷 (Eq.  25) 

−𝐷 + 𝐽7(𝑡7 − 𝑡6) = 𝑎𝑓 (Eq.  26) 

The scope of this thesis is such that the values of 𝐷, 𝐴 and jerk are considered 

input data. On further studies, these values should be computed regarding mechanical 

limitations and external specifications, in order to minimize the power to be supplied 

by the engine that moves the wheel. 
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3. MOVEMENT OF A WHEEL: INVOLVED PARAMETERS 

One of the most critical issues of the movement of a robot is to neutralize how terrain 

properties affect the mobility of the wheels. The area of mobility research that 

studies the performance of vehicles in relation to its operating environment is called 

terramechanics. According to [7], the aim of terramechanics is to provide guiding 

principles for the rational design, evaluation, selection and operation of terrestrial 

and extra-terrestrial vehicles or machines. 

For autonomous robots moving on soft soils, for instance sand or snow, the effects 

on the wheel-soil interface become important. Slippage and sinkage can result in low 

mobility or even immobility. The comprehension of these characteristics is relevant 

to ensure a good movement control. As stated in [8], it is desirable to somehow sense 

excessive wheel slippage and sinkage in order to prevent the robot to become 

immobile. 

In order to anticipate the requirements of the robot in terms of power and torque 

when fulfilling a predetermined velocity profile, it is necessary to include these 

effects in the calculus, so that it does not meet with problems as excessive sinkage or 

lack of power when moving. 

3.1. Pressure-sinkage 

Sinkage is a measure of a soil’s vertical deformation. Depending on whether the 

vehicle is moving or not, the sinkage can be dynamic or static, respectively. In soft 

soils, wheels can sink sufficiently to be immobilized. 

The parameters with more influence on this value are the compactness of the soil, 

the load on the wheel and the velocity that the vehicle moves with. The load on the 

wheel interacts with the soil in the form of a pressure applied along the contact area 

between the wheel and the ground. 

3.1.1. Classic terramechanics 

Most of the studies related to terramechanics that are carried on nowadays, are based 

on the fundamentals of this field [9], which lead in the theory developed in the 1960's 

by M.G. Bekker [10], which was later improved by Wong and Reece [11]. Given 

that, it is convenient to review these before deepening in the state of the art on the 

subject. 

Bekker theory 

Bekker theory [10] is the base of classical terramechanics.  The proposed model is 

mostly based on a set of semi-empirical equations that describe the locomotion of a 

vehicle on a deformable soil. The assumption of the approximation of the contact 

patch between wheel and soil as a flat plate is taken. This hypothesis leads to 

accurate predictions for big, heavy vehicles, but leads to errors for small, light 

vehicles. 
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A plate sinkage can be defined using (Eq.  27), where 𝜎 is the applied pressure, 𝑧 is 

the resultant sinkage and 𝑘 and 𝑛 are soil parameters chosen to fit experimental data 

for a particular soil: 

𝜎 = 𝑘𝑧𝑛 (Eq.  27) 

𝑘 =
𝑘𝑐
𝑏
+ 𝑘𝜙 (Eq.  28) 

 

 
Figure 4. Rigid wheel sinkage according to Bekker’s model. 

From the geometric relations between parameters from Figure 4, (Eq.  29) and (Eq.  

30) can be obtained. Besides, under the supposition that the value of sinkage is small 

compared to the diameter of the wheel, (Eq.  30) can be simplified as (Eq.  31). 

𝑊 = 𝑏∫ 𝜎 𝑟 𝑐𝑜𝑠𝜃 𝑑𝜃 =  ∫ (
𝑘𝑐
𝑏
+ 𝑘𝜙)

𝑧0

0

𝜃

0

𝑧𝑛𝑑𝑥 (Eq.  29) 

𝑥2 = [𝑑 − (𝑧0 − 𝑧)] (𝑧0 − 𝑧) (Eq.  30) 

𝑥2 = 𝑑(𝑧0 − 𝑧) (Eq.  31) 

Where 𝑑 and 𝑟 are the diameter and radius of the wheel, 𝑊 is the load on it and 𝑧0 

is the maximum sinkage. Using (Eq.  29) and (Eq.  31) and integrating, the Bekker 

expression for large rigid wheel sinkage is obtained: 

𝑧0 =
3𝑊

𝑏(3 − 𝑛) (
𝑘𝑐
𝑏
+ 𝑘𝜙)√𝑑

2
2𝑛+1

 (Eq.  32) 

Then, the compaction resistance, 𝑅𝑐, can be calculated using: 

𝑅𝑐 = 𝑏∫ 𝜎𝑟 𝑠𝑖𝑛𝜃 𝑑𝜃 = 𝑏∫ (
𝑘𝑐
𝑏
+ 𝑘𝜙) 𝑧

𝑛𝑑𝑧
𝑧0

0

𝜃

0

 (Eq.  33) 

𝑅𝑐 =

(
3𝑊

√𝑑
)

2𝑛+2
2𝑛+1

(3 − 𝑛)
2𝑛+2
2𝑛+1(𝑛 + 1)𝑏

1
2𝑛+1

1

(
𝑘𝑐
𝑏
+ 𝑘𝜙)

1
2𝑛+1

 (Eq.  34) 

As stated before, this approach leads to errors when studying small vehicles. 

According to Bekker [10]: “Predictions for wheels smaller than 20 inches in diameter 

become less accurate as wheel diameter decreases, because sharp curvature of the 
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loading area was neither considered in its entirety nor is it reflected in bevameter 

tests”.  

In [12] an experiment is carried out with the aim to prove the accuracy of Bekker’s 

model for a 0.17m diameter wheel. For a 46N load, the results show errors in sinkage 

estimation of 33%, 50.8% in 𝑅𝑐 value and 40.5% for the drawbar pull. Moreover, the 

error values grow when increasing the applied load.  

In conclusion, Bekker’s equations are not accurate for small wheels. Nevertheless, 

several modifications on the equation have been proposed along these years in order 

to account for the sharp curvature of small wheels. 

Wong and Reece 

Wong and Reece [11] proposed another formulation of the relationship between 

pressure and sinkage, which later would be converted to a polar form to describe the 

normal stress acting on the wheel. 

 
Figure 5. Forces and stress acting on a rigid wheel according to Wong and Reece’s model. 

𝑝(𝑧) = (𝑐𝑘𝑐
′ + 𝛾𝑏𝑘𝜙

′ ) (
𝑧

𝑏
)
𝑛

 (Eq.  35) 

𝜎(𝜃) {

𝑟𝑛𝑘(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃𝑓)
𝑛, 𝜃𝑚 ≤ 𝜃 < 𝜃𝑓   

𝑟𝑛𝑘(𝑐𝑜𝑠𝜃𝑓 −
𝜃 − 𝜃𝑟
𝜃𝑚 − 𝜃𝑟

(𝜃𝑓 − 𝜃𝑚) − 𝑐𝑜𝑠𝜃𝑓)
𝑛, 𝜃𝑟 ≤ 𝜃 < 𝜃𝑚  

 (Eq.  36) 

Where 𝑘𝑐
′  and 𝑘𝜙′ are dimensionless soil parameters,𝜎(𝜃) is the normal stress at 

angle θ, 𝜃𝑟 is the rear wheel-soil contact angle, 𝜃𝑓 is the forward wheel-soil contact 

angle and 𝜃𝑚 is the angle at which maximum normal stress occurs. 

𝜃𝑓 = 𝑎𝑟𝑐𝑐𝑜𝑠 (1 −
𝑧

𝑟
) 

(Eq.  37) 

𝜃𝑟 = 𝑎𝑟𝑐𝑐𝑜𝑠 (1 −
𝜂𝑧

𝑟
) 

(Eq.  38) 

𝜃𝑚 = (𝑏0 + 𝑏1𝑠)𝜃𝑓 
(Eq.  39) 

With 𝑏0 ≈ 0.4 and  0.0 ≤ 𝑏1 ≤ 0.3. 
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In loose soil, the shear stress, which is the stress acting parallel to the wheel at the 

soil-wheel contact point, exhibits an exponential relationship with respect to the 

shear displacement along the wheel-soil interface (𝑗(𝜃)). 

𝜏(𝜃) = (𝑐 + 𝜎(𝜃)𝑡𝑎𝑛𝜙) [1 − 𝑒−
𝑗(𝜃)
𝐾 ] 

(Eq.  40) 

Being 𝑗(𝜃) the resulting expression from (Eq.  43).  

𝑗(𝜃) = 𝑟[𝜃𝑓 − 𝜃 − (1 − 𝑠)(𝑠𝑖𝑛𝜃𝑓 − 𝑠𝑖𝑛𝜃)] 
(Eq.  41) 

Where 𝑠 is the slippage, 𝜏(𝜃) is the shear stress at angle 𝜃 and 𝜂 is an experimental 

parameter that relates the measured sinkage to the depth of the track after the wheel 

has passed. 

Then, the vertical force, 𝐹𝑧, and the drawbar pull, 𝐷𝑃, can be calculated by 

integrating the stresses in the vertical and horizontal directions, respectively. 

𝐹𝑧 = 𝑟𝑏∫ (𝜏(𝜃)𝑠𝑖𝑛𝜃 + 𝜎(𝜃)cos𝜃)𝑑𝜃
𝜃𝑓

𝜃𝑟

 
(Eq.  42) 

𝐷𝑃 = 𝐹𝑥 = 𝑟𝑏∫ (𝜏(𝜃)𝑐𝑜𝑠𝜃 − 𝜎(𝜃)𝑠𝑖𝑛𝜃)𝑑𝜃
𝜃𝑓

𝜃𝑟

 
(Eq.  43) 

3.1.2. State of the art based on classic terramechanics 

The previously introduced models are the basics of terramechanics, which mainly 

focus on big terrestrial vehicles. According to [13], it is necessary to prove its 

appliance on planetary rovers, since they have certain different characteristics, such 

as the size of the wheels or the weight of the vehicle. This also applies to terrestrial 

robots. 

Historically, the main assumption has been that the soil reaction to the stresses at 

the wheel is similar to the soil reaction given under penetration and shear tests. The 

approach given by Wong and Reece is useful for isotropic materials. They proposed 

penetration plate measurements to characterize the soil compression stresses in the 

normal direction and shear tests for the tangential ones. Grahm [14] used the 

penetration plate test to describe soil behaviour in the vertical direction and shear in 

the horizontal one, which is appropriate for anisotropic materials. 

Meiron-Griffith and Spenko [12] modify Bekker’s equations to take into account 

the effect of the diameter of the wheels. However, these equations do not include the 

semi-elliptical distribution of normal stress that exists beneath a wheel. This is what 

they introduce to the model in [15], starting from Wong and Reece’s model.  

In [1], Djohor et al. propose the decomposition of the contact surface in two parts, 

one behaving as a rigid wheel-deformable soil system and another where the wheel 

gets both vertical and tangential reactions from the soil. The resistive forces are 

computed using Bekker’s formula. 

In [16], the approach used by Wong and Reece is slightly modified in order to be 

able to predict off-road wheel performances, while considering the soil deformation. 

The performed simulations show that the effect of velocity on wheel performances 

cannot be neglected. 

With the purpose of improving its tractive effort, some terrestrial robots and 

vehicles use wheels with grousers. The grousers cause oscillations in sinkage, 
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drawbar and normal force, and these effects are not represented in the traditional 

terramechanics models, as shown in [9].  

Up to the date, finite and discrete element methods have been suggested to solve 

this problem, but these algorithms need powerful computers to model the wheel-soil 

interaction. Irani et al. [9] include an oscillating term in the equations from Wong 

and Reece so that the final model behaves according to the effect of the grousers. 

Their approach slightly improves the traditional terramechanics equations, but 

further work would be necessary to understand all of the involved parameters, as 

well as to obtain a precise model. In [13], some experiments are conducted to analyse 

the effect of several factors on the wheel performance of planetary rovers. The main 

conclusion is that in order to improve the drawbar pull performance, an increase of 

the width, radius and lug height of the wheels would be useful. 

3.2. Slippage 

On loose soil, it is easy for the wheels to slip or spin and, consequently, loose 

traction. When a wheel slips, the soil beneath it is removed so that the wheel sinks. 

Slip is the difference between the theoretical circumference velocity and the actual 

travelling velocity of the centre of the wheel. Slip ratio is used to quantify slip in a 

relative form. 

As stated in [17], the slip ratio can be calculated using (Eq.  44) for a smooth 

wheel. 

𝑠 = {

𝑟𝜔 − 𝑣

𝑟𝜔
, 𝑟𝜔 ≥ 𝑣, 0 ≤ 𝑠 ≤ 1

𝑟𝜔 − 𝑣

𝑣
, 𝑟𝜔 < 𝑣, −1 ≤ 𝑠 < 0

 (Eq.  44) 

Depending on the value of s, there is slippage (𝑠 > 0), the wheel rolls without 

slipping or skidding (𝑠 = 0) or it skids (𝑠 < 0). The corresponding velocity profiles 

are shown in Figure 6. 

 
Figure 6. Instantaneous velocity for wheels according to their slip ratio. 

3.3. Required torque and power 

A torque or momentum is the ability of a force to rotate a mechanical system around 

a given point. The intensity of the torque depends on the orthogonal applied force 

(𝐹⊥), the length of the lever arm (𝑟) and the angle between them (𝜃), as shown in 

Figure 7. 
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In Figure 8, a sketch of the angular momentum is given. The angular momentum 

describes the state of rotation of a physical system. It depends on the body's 

rotational inertia (𝐼) and the rotational velocity around a particular axis (𝜔). 

 

  

Figure 7. Torque produced by a force. Figure 8. Angular momentum. 

  

Torque or momentum: Τ = 𝑟⋀𝐹 = 𝑟𝐹𝑠𝑖𝑛𝜃 = 𝐹⊥ (Eq.  45) 

Angular momentum: L = Iω (Eq.  46) 

 

Once the involved forces and parameters are computed, the calculation of the 

torque to be applied to the wheel is almost trivial. Then, the appropriate conversion 

has to be done in order to obtain the torque to be delivered by the motor. 

The nominal torque of a motor is the torque that it can supply continuously 

without failing suddenly. Every motor has its own characteristics curve. The 

manufacturer of a motor also provides design parameters, like nominal and 

maximum torque and velocity, nominal power or rotor moment of inertia. 

Consequently, the velocity and torque that can be provided by the motor are limited, 

which should be taken in consideration when planning the movement of the wheel. 

 
Figure 9. Torques and velocities on the transmission chain 

Besides torque, it is necessary to calculate the required power that should be 

delivered to the system. The calculation will be done by applying a power balance 

(Eq.  47), which is schematized in Figure 9. 

𝑃𝑚 = Τ𝑚𝜔𝑚;       𝑃𝑤 = Τ𝑤𝜔 (Eq.  47) 

𝜔 =
𝜔𝑚
𝑖

 (Eq.  48) 

𝑃𝑚 = 𝑃𝑤 + (1 − 𝜂)𝑃𝑚 +
𝑑𝐸𝑐
𝑑𝑡

 (Eq.  49) 
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Where 𝑃𝑚 and 𝑃𝑤 are the power delivered by the motor and the power used by the 

wheel, the term (1 − 𝜂)𝑃𝑚 refers to the power lost due to passive resistances and the 

remaining term represents the power accumulated by the motor. 

3.4. Proposed model 

As proved in [12], the addition of a diameter-dependant factor in Bekker’s sinkage 

equation (Eq.  32) improves the performance of the Bekker’s model for small wheels, 

which is the case of most of the terrestrial robots. Consequently, this is the 

formulation that will be used for the calculation of sinkage. Figure 10 shows the 

distribution of forces and stress on a moving wheel. 

 

  
Figure 10. Distribution of forces and stress on a moving wheel. 

Considering that 𝑘̂, 𝑛̂, and 𝑚̂ are fitting constants that depend on the soil type and 

have to be determined empirically, and being D and b the diameter and width of the 

wheel and W the vertical load on the wheel, static sinkage is obtained using (Eq.  50).  

𝑧0 =
3𝑊

𝑏(3 − 𝑛̂)𝑘̂𝐷𝑚̂+0.5

2
2𝑛̂+1

 (Eq.  50) 

If the wheel is moving, the possibility of slippage between the wheel and the soil 

has to be considered. In this situation, dynamic sinkage applies (Eq.  51).  Parameter 𝑠 
is the wheel slip; 𝑟, the radius; 𝜔, the angular speed and  𝑉𝑥, the speed of the vehicle. 

𝑧𝑑 =
1 + 𝑠

1 − 0.5𝑠
𝑧0 (Eq.  51) 

According to [1], the wheel slip has different values during breaking or during 

traction. 

𝑠 =

{
 

 
𝜔𝑟 − 𝑉𝑥
𝑉𝑥

, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔

𝜔𝑟 − 𝑉𝑥
𝜔𝑟

, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

 (Eq.  52) 

Then, according to the model proposed in [15], the normal stress can be computed 

using (Eq.  55). The angles 𝜃𝑚, 𝜃𝑟 and 𝜃𝑓 are the ones shown in Figure 10, 𝜃𝑠 is the 

static wheel-soil contact angle. Since the wheel is moving, a slightly different 
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approach will be used for the calculus of 𝜃𝑓, depending on 𝑧𝑑 instead of 𝑧0 as it was 

used in [16]. 

𝜎(𝜃) = {

𝑘̂𝑟𝑛̂(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃𝑠)
𝑛̂𝑑𝑚̂, 𝑓𝑜𝑟 𝜃𝑚 ≤ 𝜃 ≤ 𝜃𝑓

𝑘̂𝑑𝑚̂𝑟𝑛̂ [𝑐𝑜𝑠 (𝜃𝑓 −
(𝜃−𝜃𝑟) (𝜃𝑓−𝜃𝑚)

(𝜃𝑚−𝜃𝑟)
) − 𝑐𝑜𝑠𝜃𝑓]

𝑛̂

, 𝑓𝑜𝑟 𝜃𝑟 ≤ 𝜃 ≤ 𝜃𝑚
  (Eq.  53) 

𝜃𝑚 =
𝜃𝑟 + 𝜃𝑓

2
 (Eq.  54) 

𝜃𝑟 = 𝑎𝑟𝑐𝑐𝑜𝑠 (1 −
𝑧𝑒
𝑅
) (Eq.  55) 

𝜃𝑓 = 𝑎𝑟𝑐𝑐𝑜𝑠 (1 −
𝑧𝑑
𝑅
) (Eq.  56) 

Given 𝑐, the cohesion modulus of the soil; 𝜙, the friction angle; 𝑗(𝜃), the shear 

displacement along the wheel-soil interface [18], and 𝜅, a shear deformation 

parameter, the longitudinal shear stress is: 

𝜏(𝜃) = (𝑐 + 𝜎(𝜃)𝑡𝑎𝑛𝜙) (1 − 𝑒𝑥𝑝
−𝑗(𝜃)
𝜅 ) (Eq.  57) 

𝑗(𝜃) = 𝑟 ((𝜃𝑓 − 𝜃) − (1 − 𝑠)(𝑠𝑖𝑛 𝜃𝑓 − 𝑠𝑖𝑛 𝜃)) 
(Eq.  58) 

Finally, applying Newton’s second law, the drawbar pull (𝐷𝑃), the vertical force 

(𝐹𝑧) and the required torque (𝛵) can be obtained from (Eq.  59)(Eq.  61). 𝐼 and 𝑚 are 

the inertia and mass of the body, 𝑎𝑥and 𝑎𝑦 are the acceleration values related to the 

wheel in the horizontal and vertical axes and 𝛼 is the angular acceleration.  

𝐷𝑃 + 𝑅𝑏∫ {𝜏(𝜃)𝑐𝑜𝑠𝜃 − 𝜎(𝜃)𝑠𝑖𝑛𝜃}𝑑𝜃
𝜃𝑓

𝜃𝑟

= 𝑚 ∙ 𝑎𝑥 (Eq.  59) 

𝑏𝑅∫ [𝜏(𝜃) sin(𝜃) + 𝜎(𝜃)cos (𝜃)]𝑑𝜃 − 𝐹𝑧 = 𝑚 ∙ 𝑎𝑦

𝜃𝑓

𝜃𝑟

 (Eq.  60) 

−𝑏𝑅2∫ 𝜏(𝜃)𝑑𝜃 + 𝛵 = 𝐼 ∙ 𝛼
𝜃𝑓

𝜃𝑟

 (Eq.  61) 

For calculation purposes, 𝑎𝑦 will be considered negligible. For the calculus of the 

inertia of the wheel it will be assumed that the wheel is treatable as a cylinder. Then, 

(Eq.  62) holds. 

𝐼 =
1

2
𝑚𝑟2 (Eq.  62) 
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4. WHEELED TERRESTRIAL ROBOTS 

Unicycle robots are one of the simplest versions of terrestrial robots [19]. They 

consist of two independent driving wheels and, on occasion, some extra wheels to 

ensure stability. Their rotation centre is on the axis of the driving wheels. Due to that 

configuration, this kind of robots cannot move perpendicularly to their wheels. 

However, they can rotate over themselves. Some examples of unicycle robots are 

shown in Figure 11: PEA Bot [20], QB robot [21], Tibi and Dabo [22] 

 

 
Figure 11.Some examples of unicycle robots 

  
Figure 12. Unicycle robot. 

Figure 12 illustrates the main parameters involved in the movement of a unicycle 

robot. Assuming non-sliding conditions, the velocity of the robot can be computed as 

shown in (Eq. 63).  

𝑣𝑈𝑅 = 
𝑣𝑙 + 𝑣𝑟
2

=  
𝑟(𝜙𝑙̇ −  𝜙̇𝑟)

2
 (Eq.  63) 

where 𝜙𝑙̇ , 𝜙̇𝑟 are the angular rotation and 𝑣𝑙, 𝑣𝑟, the linear velocity of the left and 

right wheels. 𝐿 is the distance between driving wheels and 𝑟, the wheels’ radius. 

In order to calculate the rotation of the robot, it is necessary to  determine the 

instant centre or instantaneous centre of zero velocity (IC).  The IC on an imaginary 

axis of zero velocity, about which the body appears to rotate at a given instant. This 

axis is always perpendicular to the plane of motion. The graphical way to determine 

it is shown in Figure 13. 
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Figure 13. Example of the graphical obtention of the IC for a unicycle robot 

If the velocity of the two wheels is different, the robot will rotate around the IC. 

Otherwise, the IC will be placed at an infinite distance, thus, the angular velocity of 

the robot will be null. Applying the similar triangles theorem, the rotation around the 

IC can be calculated using (Eq.  64).  

 

𝜔𝑈𝑅 = 
𝑣𝑟 − 𝑣𝑙
𝐿

= −
𝑟(𝜙𝑙̇ +  𝜙̇𝑟)

𝐿
 

(Eq.  64) 

 

Assuming no sliding on the direction of the axis of the wheels, the position (𝑥,𝑦) 

can be obtained, and thus the position of the robot at every moment, as suggested in 

[19]. 

𝜃̇ = 𝜔 
(Eq.  65) 

𝑥̇ = 𝑣𝑈𝑅𝑐𝑜𝑠𝜃 
(Eq.  66) 

𝑦̇ = 𝑣𝑈𝑅𝑠𝑖𝑛𝜃 
(Eq.  67) 

𝜃(𝑡) = ∫ 𝜃̇(𝜏)𝑑𝜏 +
𝑡

0

𝜃0 = ∫ 𝜔(𝜏)𝑑𝜏 +
𝑡

0

𝜃0 
(Eq.  68) 

𝑥 = ∫ 𝑥̇(𝜏)𝑑𝜏 +
𝑡

0

𝑥0 = ∫ 𝑣(𝜏)𝑐𝑜𝑠𝜃𝑑𝜏 +
𝑡

0

𝑥0 
(Eq.  69) 

𝑦 = ∫ 𝑦̇(𝜏)𝑑𝜏 +
𝑡

0

𝑦0 = ∫ 𝑣(𝜏)𝑠𝑖𝑛𝜃𝑑𝜏 +
𝑡

0

𝑦0 (Eq.  70) 

Being 𝑣(𝜏) the desired velocity profile for the whole robot, 𝑥̇(𝜏), 𝑦̇(𝜏) the velocity 

on the x and y directions, respectively, 𝑥0, 𝑦0, 𝜃0 the initial values for x, y and 𝜃.  
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5. PROGRAMS 

The programs proposed on this chapter have been implemented using the Python 

programming language.  

Two libraries have been used in order to program some mathematical issues, such 

as trigonometric functions or solver programs: SymPy [23] and NumPy [24]. SymPy 

is a Python library for symbolic mathematics. It is written entirely in Python and 

does not require any external libraries. NumPy is an extension to the Python 

language that includes a large library of high-level mathematical functions. Besides, 

another library, Matplotlib [25] has been used for graph generation. 

Nevertheless, the algorithms are briefly explained in plain words, so that someone 

not familiar with Python can easily understand the code. Moreover, flow diagrams 

for each algorithm are provided in Appendix C. 

A general idea of the relationship between the programs of this chapter and what 

they do is given in Figure 14 and Figure 15. 

 

 
Figure 14. General relationship between the proposed programs. 
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Figure 15. Visual diagram of the programs. 

5.1. S-curve calculation 

Input arguments: 𝑎0, 𝑎𝑓, 𝑣0, 𝑣𝑓, 𝑥0, 𝑥𝑓, 𝐴, 𝐷, 𝐽1, 𝐽3, 𝐽5, 𝐽7 

Output arguments: 𝑡 = [𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡𝑓] 

   𝑥 = [𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥𝑓] 

   𝑣 = [𝑣0, 𝑣1, 𝑣2, 𝑉, 𝑉, 𝑣5, 𝑣6, 𝑣𝑓] 

   𝑎 = [𝑎0, 𝑣1, 𝑣2, 𝑉, 𝑉, 𝑣5, 𝑣6, 𝑣𝑓] 

𝑗 = [𝐽1, 0, − 𝐽3, 0, −𝐽5, 0, 𝐽7, 0] 
Jerk, acceleration, velocity and position curves 

 



27 

 

 

 

This program calculates and shows the jerk, acceleration, velocity and position 

profiles given their starting and desired final values and the time in which those have 

to be reached. In order to do this calculation, the jerk, acceleration and deceleration 

peak values are given. 

With these inputs, the system of equations formed by the restrictions described in 

2.2.2, proposed algorithm, is solved, thanks to the solvers module included in Sympy 

library. The system consists of 24 restrictions and 24 unknown variables. The points 

to be plotted are calculated one by one, stored in lists, and, finally, plotted. Regarding 

the code, both symmetrical and asymmetrical s-curves can be computed. Some 

examples are shown in Appendix C.1.1. Execution examples 

Comments on the results 

This program is supposed to be the first calculus to be done when planning the 

motion of one wheel of a robot when the starting and ending kinematic values and 

time are set. The curves should be computed for each of the wheels and taken as a 

reference to proceed with the rest of the planning, this is, how to obtain these curves 

as a result when the soil properties vary and what power should be provided to the 

engines that move the wheels. 

Executing the program with different input values, some light can be shed on the 

effects of each parameter. The difference between the plots obtained from Example 1 

and Example 2 (C.1.1. Execution examples) is only the value of jerks 𝐽5 and 𝐽7. Thus, 

the effect of jerk in the curves can be observed: the lower the peak values for jerk, 

the smoother the correspondent velocity profile and so the movement of the robot.  

Moreover, a relation between the value of the jerk and the duration of the phases 

should be pointed. As shown in Figure 16, the lower the jerk value, the lower the 

duration of phases 2 (linear change of velocity) and 4 (constant velocity phase) and 

the higher the duration of phases 1 and 3. The value of the jerk value slightly affects 

to the velocity in the constant velocity phase: for a decrement of the jerk value from 

4 to 0,3 m/s3 (92,5%), the velocity at the constant velocity phase, which corresponds 

to the maximum achieved velocity in the studied profile, should be increased in a 

13,67%. 

 
Figure 16. Peak value for Jerk (J3, J5) vs. duration of correspondent phases 

0,0000

2,0000

4,0000

6,0000

8,0000

10,0000

12,0000

14,0000

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25

D
u

ra
ti

o
n

 o
f 

th
e 

p
h

as
e

jerk value

Jerk value vs. duration of the phase

T1, T3 T2 T4



28 

 

 

 

Given these effects and considering a case where there is a need for a smooth 

movement, and considering only the kinematic parameters, it would be 

recommendable to set a target profile with the minimum possible jerk values. 

5.2. Drawbar pull, torque and power calculation 

Input arguments: 𝑎0, 𝑎𝑓, 𝑣0, 𝑣𝑓, 𝑥0, 𝑥𝑓, 𝐴,𝐷, 𝐽1, 𝐽3, 𝐽5, , 𝐽7 

   𝑐𝑜𝑒𝑓𝑘, 𝑐𝑜𝑒𝑓𝑛, 𝑐𝑜𝑒𝑓𝑚, 𝑐, 𝑝𝑠𝑖, 𝐾, 𝑠, 𝑑, 𝑟,𝑚,𝑊, 𝑏, 𝑡ℎ𝑒𝑡𝑎𝑠, 𝑧𝑒 
Output arguments: Curves: velocity, drawbar pull, required torque and required 

power 

 

This program computes the equations from the model proposed in 3.4. Proposed 

modelThe aim is to obtain the drawbar pull, torque and power profiles required by 

the wheel to move following the desired velocity profile, which is calculated on the 

first stage of the program using the same code as in 5.1. A flow diagram of the 

program can be found in C.2.2. 

Some terrain and wheel-soil input variables have been introduced with a different 

name: coefk (𝑘̂), coefn (𝑛̂), coefm (𝑚̂), c, psi (𝜙), K (𝜅), thetas (𝜃𝑠), ze (𝑧𝑒). The 

values used in [15] are taken as reference for these parameters. In order to use the 

program in a real case, some experiments should be conducted to find the values for 

the terrain in which the robot has to move. The slip value (𝑠) is calculated using, 

from (Eq.  52), the line applicable during traction, since it is considered that the wheel 

is in motion in the case of study. 

With the aim of plotting the drawbar pull, torque and required power, these are 

calculated at each study point and stored in lists, using the same method as in the 

program in 5.1. 

One might notice that the calculus involved is quite complex for a Python 

program, since there are many variables and there is a need to use integrals. 

Although SymPy includes an integrating module, it does not work properly when a 

calculus using NumPy is involved in the function that has to be integrated. Therefore, 

a simple integrating function has been introduced in the program (see 5.2.1.). 

Besides, because the equations are long and involve many parameters and 

trigonometric functions, they have been programmed in independent functions in 

order to clarify the comprehension of the code. 

5.2.1. Function integra 

The function integra receives as inputs the function to be integrated, the variable, and 

the values A and B between which the function has to be integrated. The calculus is 

done using the mid-point method, which approximates the area under the curve in an 

interval using (Eq.  71). In order to obtain a precise result, the interval (A, B) is 

divided into smaller parts, being the result of the integration the sum of the areas of 

all of these. 

∫ 𝑓(𝑥)𝑑𝑥 = (𝑏 − 𝑎) · 𝑓 (
𝑎 − 𝑏

2
)

𝑏

𝑎

 (Eq.  71) 
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The higher the number of small intervals, the more precise the integration is, but 

also slower. To decide this parameter, an extra program (see C.2.3.) has been used. 

In it, a simple version of the calculus of the drawbar pull is implemented using the 

integra function. The integration interval is divided from 1 to 4,000 parts and 

afterwards, the results are plotted and printed. The execution of the program is slow, 

but speed is not its target.  

To obtain a more precise program, a study of the error made (Eq.  72) by using the 

mid-point approximation is conducted taking as a reference value the result (Real 

value) of the integration obtained dividing the interval in 10,000 parts.  

𝑒𝑟𝑟𝑜𝑟 = |
𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑅𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝑅𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
| 100 (Eq.  72) 

Figure 17 shows the output graph, from which the conclusion that the output starts 

to converge when the interval is split in 500 parts or more can be reached. 

A second execution of the program allows better specification of the number of 

divisions that should be used. In this case, the starting value is 400. The output graph 

(Figure 18) shows that the error diminishes around 900 parts of the interval and then 

oscillates. Nevertheless, given that the value of this error is of the order of 10-4%, the 

decision is to take 1000 divisions in the execution of the program. 

 

 
Figure 17. Output from program C.2.3. starting at 1 part division of the integration 

interval.  
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Figure 18. Output from program C.2.3. starting at 400 parts division of the 

integration interval. 

5.2.2. Effect of the soil-wheel interaction parameters 

With the aim of showing how each wheel and wheel-soil interaction parameter 

affects the DP and the required torque and power, some modifications on the 

program must be made. The programs calculate these values as in C.2.3 for a range 

of values of the parameter under study, store its input value and the output DP, 

torque and power in lists and, finally, plot the results.  

One program has been implemented for each of the parameters, although they are 

all almost the same. The output graphs can be consulted in C.2.4. 

5.2.3. Comments on the results 

As stated before, the target of this program is to obtain the torque, DP and power 

required by one wheel to move following a specific velocity profile. This profile is 

calculated based on the desired starting and ending kinematic characteristics on the 

first stage of the program.  

The effect of the soil and the dimensions of the wheels are under study in order to 

define how they affect these profiles, so this information can be taken into account 

when planning the motion of a robot -or even when designing the robot itself- with 

the aim of minimizing the power that it will require to move.  

The execution examples in C.2.1. show the curves obtained by the program with 

different input values, while the execution of the program to calculate the effect of 

each parameter by itself can be consulted in C.2.4. Hereafter, the referenced figures 

can be found in annex C.2. under these two points. 

Comparing Figure 33 with Figure 35, it becomes clear that higher slip values result 

in the need of supplying more DP and torque to the wheel, thus more power is 
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needed to follow the desired velocity profile. This relation is further clarified in 

Figure 40. 

Enlarging the wheels’ dimensions, seems to increase the required torque, while 

diminishing the needed drawbar pull and power (see Figure 36). Figure 41 refutes 

this apparent relationship. For small diameter values, the DP and required torque do 

decrease. Nevertheless, starting from a certain diameter value (in this case around 

0.5m), the required power increases, while the DP keeps reducing. 

Still regarding to the wheel, a rise of the load on it results in higher DP, torque and 

power. This effect is exemplified in Figure 37 by an increase of the mass with 

respect to the one in Figure 33. 

To study the influence of the type of soil on the performance of the wheel, the 

effect of the cohesion of the soil (parameter c) and parameter 𝑘̂ have been analysed. 

From Figure 42, the conclusion that can be taken is that the more compact is the soil 

(thus, the lower the value of c), the higher is the needed DP and the lower the 

required torque and power are.  Regarding 𝑘̂, there is a certain interval of values for 

which higher 𝑘̂ implies higher performance, but starting from a certain value, the 

required DP, torque and power decrease until they tend to a fixed value. 

5.3. Unicycle robot trajectory 

Input arguments: 𝑣𝑟[ ], 𝑣𝑙[ ], 𝑡[ ], 𝐿 

Output arguments: Curves: right wheel velocity, left wheel velocity, unicycle 

robot velocity, trajectory in x-y plane 

 

Starting from the velocity profiles for the right and left wheels of a unicycle robot, 

and given the distance between them (𝐿), this program calculates the consequent (x, 

y) values in order to represent the trajectory followed by the robot in the x-y plane, 

using the equations from Chapter 3. This program should be taken as a starting point 

to further implement programs to plan the motion of the robot. 

The input profiles are given as lists of values. Consequently, there is no need to 

integrate, since the expressions in (Eq.  68) - (Eq.  70) do not depend on 𝜏. Anyhow, 

the equations have been respected so that it is easy to adapt the program to another 

kind of input profiles.  

Some execution examples and the flow diagram of the program can be found in 

Appendix C.3. 

Comments on the results 

This program sheds some light on how the profile of each wheel of a unicycle robot 

affects the movement of the whole vehicle: when the right wheel is faster than the 

left one, the robot turns left (see execution examples in Appendix C.3.), when both 

wheels roll at the same velocity, it goes straight. 

Figure 44 and Figure 45 are the outputs of the program for the same input profiles, 

but with different L-values, which means that the distance between the two wheels is 

different. It becomes clear from the figures that this parameter has great effect on the 

motion of the robot. It is necessary to point out that L only affects the motion of the 

robot when the two wheels roll at different velocities. 
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6. DISCUSSION 

The main objective of this study was to obtain and program a way to plan the motion 

of a robot by defining an appropriate velocity profile and calculate the power, 

drawbar pull and torque profiles required to accomplish it, exemplifying the motion 

planning with the study of a two-wheeled robot. 

In the past, trapezoidal velocity profiles have been widely used to control engines. 

Nowadays, the evolution of robots and their uses has led to the need of using 

smoother profiles, due to the demand of high precision and delicate movements. It 

has been shown that this can be achieved by minimizing the change of acceleration 

(jerk), and using profiles with the shape of an S, known as s-curves. 

A model to obtain s-curve velocity profiles has been introduced and programmed, 

mostly based on the equations proposed in [2]. The main differences between the two 

algorithms is that the one proposed in this thesis aims to be more general, by 

considering the possibility that there is acceleration at the starting and ending states. 

Moreover, it allows the modelling of both symmetrical and asymmetrical profiles in 

a similar way that in [4], while there is no need to iterate in order to calculate the 

profiles, as it had to be done in [2].  

On the other side, the proposed model needs the values of acceleration at its 

constant-value phases and jerk as an input. Consequently, it could be taken as a 

starting point to create a program optimizing these values regarding dynamic 

restrictions. For example, maximum jerk, maximum achievable acceleration or 

minimum power to be supplied. It could also be used as a reference to obtain even 

smoother profiles, by creating a new model with an s-curve acceleration profile. 

To provide a good control of the movement of a robot, it is necessary to ensure 

that it will meet the desired velocity profile. For this reason, a way to prevent how 

the wheels will react on the soil becomes highly useful, in order to adapt the supplied 

torque and, therefore, control the speed of the vehicle.  

The study of the interaction between wheels and soil is called terramechanics and, 

even though it has been widely investigated, most of it is still based on the studies 

carried by Bekker on 1969 [10] and Wong and Reece [11]. Besides, the used wheel-

soil interaction models are obtained empirically. The wheel-soil interaction equations 

in this thesis are mostly based in [15], which slightly modifies these models to better 

represent the real behaviour of small vehicles.  

Starting from the wheel-soil interaction equations and the desired velocity and 

acceleration profiles calculated in the first proposed model of this thesis, a model to 

obtain the required drawbar pull, torque and power has been proposed.  

Many studies have been done about the effect of the parameters of the models of 

the soil on the behaviour of the wheels, such as [17] or [18], mainly focusing on the 

effect of the slip value. Nevertheless, up to the date, the author of this thesis has not 

been able to find any that included the calculation of the required drawbar pull, 

torque and power profiles so that a robot moves following a desired velocity profile. 

Moreover, most of the papers focused on this subject consider static and uniform 

velocity conditions, but not accelerated movements, which have been considered in 

the proposed model. 

On the implementation of the resulting algorithm in a program, some 

modifications have been made in order to obtain the effect of the different soil 

parameters on the outputs and compare them with the ones in different articles and 

papers on the subject. It turned out that each study outcomes different curves, so 
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none of them could be taken as a reference for the comparison. Therefore, some 

empirical experiments should be held in order to verify the model, as well as to 

define the values of the soil constants of the model in different soil types. 

Briefly, the proposed model includes the effect of the soil in the movement of a 

wheel. Even though, to decide what should the movement of the wheel be at each 

instant, there can always be unpredictable events that can lead to poor position 

estimation, excessive sinkage or loose of traction. Therefore, to reduce the effect of 

propagating the error during rover traverses, a means to measure wheel sinkage and 

slippage would be recommendable, so the calculated drawbar pull, torque and power 

profiles could be actualized at every instant. In conclusion, the model should be 

taken as a reference for the motion planning of a robot, but complemented with a 

control loop. 

Besides the validation and adaption of the wheel-soil interaction equations and 

parameters by means of empirical experiments, the model could be improved by 

adding the case where the wheel starts moving from static conditions. In that case, 

the relation between slip and velocity is different and should be studied separately. 

Finally, the thesis has been focused on unicycle or two-wheeled robots with the 

aim of showing how the models could be implemented to control a real robot. A 

program to obtain the trajectory of the robot by getting as inputs the velocity profile 

for each wheel has been implemented.  

In further studies, it would be useful to implement the opposite program: a 

program that calculates the velocity profile for each wheel starting from the velocity 

and trajectory that the robot should follow. Moreover, some experiments should be 

held with different two-wheeled robots in order to validate the model. 
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7. SUMMARY 

This project aimed to obtain and program a model to plan the movement of a robot in 

terms of velocity, torque, drawbar pull and power, regarding its starting and ending 

kinematic states and taking into consideration the reaction between the wheels and 

the soil.  

First, a model to define a general s-curve velocity profile has been proposed. 

Taking this model as a starting point, the interaction between wheel and soil is added 

in order to predict the drawbar pull, torque and power required by the wheel to move 

following the input velocity profile. Finally, a two-wheel system is studied in order 

to show how the models could be adapted into a mobile robot. The resulting models 

are programmed in Python language as an example of how they could be 

implemented. 

The proposed s-curve model allows the generation of both symmetrical and 

asymmetrical profiles without need of an iterating process. The second model 

considers the effect of the soil in a moving wheel and the previously calculated 

velocity and acceleration profiles in order to obtain the required drawbar pull, torque 

and power profiles so that a robot can move following the desired velocity profile. 

At this stage of the research, the models proposed in this thesis should be taken as 

a starting point to investigate more deeply the effect of different types of soil on the 

motion of a terrestrial robot. The aim should be to obtain a way to predict how the 

robot should behave at every instant of its trajectory while it calculates the 

characteristics of the soil as it moves and recalculates the curves. 
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9. APPENDICES 

Appendix A. S-curve profiles: state of the art 

A.1. Erkorkmaz and Altintas, 2001 [2] 

Erkorkmaz and Altintas have proposed an algorithm using a fifth order resampling 

technique with jerk limited speed control to generate time-optimal trajectory, which 

provides continuous position, speed and acceleration profiles. This algorithm is 

meant to be used for speed profile only. 

The procedure below imposes a smooth feed motion along the quantic spline 

toolpath by modulating the time duration between position reference points. As 

shown in Figure 19, the resulting acceleration profiles are trapezoidal, linear in 

regions 1, 3, 5 and 7 with prespecified slopes, this is, prespecified jerk values, and 

constant in regions 2 and 6; thus, jerk is zero in these regions. Displacement profiles 

are cubic for regions 1, 3, 5 and 7 and linear in 2, 4 and 6.  

The proposed algorithm starts from the assumption that the different time values 

(t0, …, t7) are known, and so are the jerk profile and the initial conditions for 

displacement, feedrate and acceleration. The resulting profile is shown in Figure 19. 

 

 
Figure 19. S-curve velocity / trapezoidal acceleration profile 
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A.1.1. Motion equations 

𝑗(𝜏) =

{
  
 

  
 
𝐽1, 0 ≤ 𝑡 < 𝑡1
0,  𝑡1 ≤ 𝑡 < 𝑡2
−𝐽3, 𝑡2 ≤ 𝑡 < 𝑡3
0, 𝑡3 ≤ 𝑡 < 𝑡4
−𝐽5, 𝑡4 ≤ 𝑡 < 𝑡5
0, 𝑡5 ≤ 𝑡 < 𝑡6
𝐽7, 𝑡6 ≤ 𝑡 < 𝑡7

 
(Eq.  73) 

𝑎(𝜏) =

{
  
 

  
 

𝐽1𝜏1, 0 ≤ 𝑡 < 𝑡1
𝐴,  𝑡1 ≤ 𝑡 < 𝑡2

𝐴 − 𝐽3𝜏3, 𝑡2 ≤ 𝑡 < 𝑡3
0, 𝑡3 ≤ 𝑡 < 𝑡4

−𝐽5𝜏5, 𝑡4 ≤ 𝑡 < 𝑡5
−𝐷, 𝑡5 ≤ 𝑡 < 𝑡6

−𝐷 + 𝐽7𝜏7, 𝑡6 ≤ 𝑡 < 𝑡7

 

(Eq.  74) 

 

 

Where 𝜏𝑘 is the relative parameter that starts at the beginning of the kth phase. 

𝑓(𝜏) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑓𝑠 +

1

2
𝐽1𝜏1

2, 0 ≤ 𝑡 < 𝑡1,   𝑓𝑠: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑒𝑒𝑑𝑟𝑎𝑡𝑒  

𝑓1 + 𝐴𝜏2,  𝑡1 ≤ 𝑡 < 𝑡2, 𝑓1 = 𝑓𝑠 +
1

2
𝐽1𝑇1

2

𝑓2 + 𝐴𝜏3 −
1

2
𝐽3𝜏3

2, 𝑡2 ≤ 𝑡 < 𝑡3, 𝑓2 = 𝑓1 + 𝐴𝑇2

𝑓3, 𝑡3 ≤ 𝑡 < 𝑡4, 𝑓3 = 𝑓2 + 𝐴𝑇3 −
1

2
𝐽3𝑇3

2 = 𝐹

𝑓4 −
1

2
𝐽5𝜏5

2, 𝑡4 ≤ 𝑡 < 𝑡5, 𝑓4 = 𝑓3

𝑓5 − 𝐷𝜏6, 𝑡5 ≤ 𝑡 < 𝑡6,   𝑓5 = 𝑓4 −
1

2
𝐽5𝑇5

2

𝑓6 − 𝐷𝜏7 +
1

2
𝐽7𝜏7

2, 𝑡6 ≤ 𝑡 < 𝑡7,   𝑓6 = 𝑓5 − 𝐷𝑇6

 (Eq.  75) 

Where 𝐹 is the feedrate to be achieved at the end of phase 3, 𝑓𝑘 is the feedrate at 

the end of each phase and Tk is the duration of each phase. 

𝑥(𝜏) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑓𝑠𝜏1 +

1

6
𝐽1𝜏1

3, 0 ≤ 𝑡 < 𝑡1   

𝑥1 + 𝑓1𝜏2 +
1

2
𝐴𝜏2

2,  𝑡1 ≤ 𝑡 < 𝑡2, 𝑥1 = 𝑓𝑠𝜏1 +
1

6
𝐽1𝑇1

3

𝑥2 + 𝑓2𝜏3 +
1

2
𝐴𝜏3

2 −
1

6
𝐽3𝜏3

3, 𝑡2 ≤ 𝑡 < 𝑡3, 𝑥2 = 𝑥1 + 𝑓1𝑇2 +
1

2
𝐴𝑇2

2

𝑥3 + 𝑓3𝜏4, 𝑡3 ≤ 𝑡 < 𝑡4, 𝑥3 = 𝑥2 + 𝑓2𝑇3 +
1

2
𝐴𝑇3

2 −
1

6
𝐽3𝑇3

3

𝑥4 + 𝑓4𝜏5 −
1

6
𝐽5𝜏5

3, 𝑡4 ≤ 𝑡 < 𝑡5, 𝑠4 = 𝑠3 + 𝑓3𝑇4

𝑥5 + 𝑓5𝜏6 −
1

2
𝐷𝜏6

2, 𝑡5 ≤ 𝑡 < 𝑡6,   𝑥5 = 𝑥4 + 𝑓4𝑇5 −
1

6
𝐽5𝑇5

3

𝑥6 + 𝑓6𝜏7 −
1

2
𝐷𝜏7

2 +
1

6
𝐽7𝜏7

3, 𝑡6 ≤ 𝑡 < 𝑡7, 𝑥6 = 𝑥5 + 𝑓5𝑇6 −
1

2
𝐷𝑇6

2

 (Eq.  76) 
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Hence, the distance travelled during each phase can be expressed as: 

𝑙𝑘 =

{
 
 
 
 
 
 

 
 
 
 
 
 𝑙1 = 𝑥1 + 𝑓𝑠𝑇1 +

1

6
𝐽1𝑇1

3   

𝑙2 = 𝑥2 − 𝑥1 = 𝑓1𝑇2 +
1

2
𝐴𝑇2

2

𝑙3 = 𝑥3 − 𝑥2 =  𝑓2𝑇3 +
1

2
𝐴𝑇3

2 −
1

6
𝐽3𝑇3

3

𝑙4 = 𝑥4 − 𝑥3 = 𝑓3𝑇4

𝑙5 = 𝑥5 − 𝑥 = 𝑓4𝑇5 −
1

6
𝐽5𝑇5

3

𝑙6 = 𝑥6 − 𝑥5 = 𝑓5𝑇6 −
1

2
𝐷𝑇6

2

𝑙7 = 𝑥7 − 𝑥6 =  𝑓6𝑇7 −
1

2
𝐷𝑇7

2 +
1

6
𝐽7𝑇7

3

 
(Eq.  77) 

 

Additionally, given the characteristics of the curves: 

𝐴 = 𝐽1𝑇1 = 𝐽3𝑇3 (Eq.  78) 

𝐷 = 𝐽5𝑇5 = 𝐽7𝑇7 (Eq.  79) 

𝑓3 = 𝐹 → 𝑇2 =
1

𝐴
[𝐹 − 𝑓𝑠 −

1

2
𝐽1𝑇1

2 − 𝐴𝑇3 +
1

2
𝐽3𝑇3

2] (Eq.  80) 

𝑓7 = 𝑓6 − 𝐷𝑇7 +
1

2
𝐽7𝑇7

2 = 𝑓𝑒 → 𝑇6

=
1

𝐷
[𝐹 − 𝑓𝑒 −

1

2
𝐽5𝑇5

2 − 𝐷𝑇7 +
1

2
𝐽7𝑇7

2] (Eq.  81) 

𝑥7 = 𝑥6 + 𝑓6𝑇7 −
1

2
𝐷𝑇7

2 +
1

6
𝐽7𝑇7

3 = 𝐿 (Eq.  82) 
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A.1.2. initialization 

Inputs 

Ts: control loop sampling period 

L: total distance of travel 

Ni: total number of interpolation steps 

fs, F, fe: initial, desired and final feedrates 

A, D: desired acceleration and deceleration magnitudes 

J: desired jerk magnitude 

Conditions 

To determine if there is acceleration or deceleration in the beginning of the motion 

(Eq.  83) is used. 

{
𝐴 = 𝑠𝑔𝑛(𝐹 − 𝑓𝑠) ∙ |𝐴| ,  𝐽1 = 𝐽3 = 𝑠𝑔𝑛(𝐴) ∙ |𝐽|

𝐷 = 𝑠𝑔𝑛(𝐹 − 𝑓𝑒) ∙ |𝐷| ,  𝐽5 = 𝐽7 = 𝑠𝑔𝑛(𝐷) ∙ |𝐽|
 (Eq.  83) 

The total number of interpolation steps is limited by the existence of acceleration 

and deceleration stages. If both of them hold, then, the number of interpolation steps 

has to be at least 4 (Ni≥4), in order to allow at least one step for phases 1, 3, 5 and 7. 

From the specified initial conditions and the motion equations, the following 

equations can be set: 

𝐽 ≤ 𝑚𝑖𝑛 (
|𝐴|

𝑇𝑠
,
|𝐷|

𝑇𝑠
) , |𝐴| > 0 𝑜𝑟 |𝐷| > 0 

(Eq.  84) 

𝐽 = 𝑚𝑖𝑛 (
|𝐴|

𝑇
,
|𝐷|

𝑇
) , 𝐴 = 0 𝑎𝑛𝑑 𝐷 = 0 

(Eq.  85) 

𝑇2 =
𝐹 − 𝑓𝑠
𝐴

−
𝐴

𝐽1
≥ 0, 𝐴 ≠ 0 

(Eq.  86) 

𝐴 = 𝑠𝑔𝑛(𝐴) ∙ √𝐽1(𝐹 − 𝑓𝑠);   𝑇2 = 0, 𝐴 = 0 
(Eq.  87) 

𝑇6 =
𝐹 − 𝑓𝑒
𝐷

−
𝐷

𝐽5
 ≥ 0, 𝐷 ≠ 0 

(Eq.  88) 

𝐷 = 𝑠𝑔𝑛(𝐷) ∙ √𝐽5(𝐹 − 𝑓𝑒);   𝑇6 = 0, 𝐷 = 0 
(Eq.  89) 

 

L characteristic curve: 

 

𝐿 = (
1

2𝐴
+
1

2𝐷
)𝐹2 + (

𝐴

2𝐽1
+
𝐷

2𝐽5
+ 𝑇4) 𝐹 + (

𝐴𝑓𝑠
2𝐽1

+
𝐷𝑓𝑒
2𝐽5

−
𝑓𝑠
2

2𝐴
−
𝑓𝑒
2

2𝐷
) ,

J1 = J3 and J5 = J7 

(Eq.  90) 

 

𝑇4 =
1

𝐹
[𝐿 − {(

1

2𝐴
+
1

2𝐷
)𝐹2 + (

𝐴

2𝐽1
+
𝐷

2𝐽5
) 𝐹

+ (
𝐴𝑓𝑠
2𝐽1

+
𝐷𝑓𝑒
2𝐽5

−
𝑓𝑠
2

2𝐴
−
𝑓𝑒
2

2𝐷
)}] ≥ 0, 𝑇4 ≥ 0 

(Eq.  91) 
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𝐹 =
−𝛽 + √𝛽2 − 4𝛼𝛾

2𝛼
, 𝑇4 = 0 

(Eq.  92) 

 

being 𝛼 =
1

2𝐴
+

1

2𝐷
, 𝛽 =

𝐴

2𝐽1
+

𝐷

2𝐽5
 and 𝛾 =

𝐴𝑓𝑠

2𝐽1
+
𝐷𝑓𝑒

2𝐽5
−

𝑓𝑠
2

2𝐴
−

𝑓𝑒
2

2𝐷
− 𝐿. If the equation 

possesses complex roots, then 𝑓𝑠 = 𝑓𝑒 = 0. 

Finally, path generation initialization is reinvoked to use the new maximum 

federate and J, A, D and F are readjusted to obtain a realizable case. 

Number of interpolation steps for each phase. 

𝑁1 = 𝑟𝑜𝑢𝑛𝑑 (
𝑙1
∆𝑠
) , 𝑁3 = 𝑟𝑜𝑢𝑛𝑑 (

𝑙3
∆𝑠
) , 𝑁5 = 𝑟𝑜𝑢𝑛𝑑 (

𝑙5
∆𝑠
) , 𝑁7

= 𝑟𝑜𝑢𝑛𝑑 (
𝑙7
∆𝑠
) 

(Eq.  93) 

If any of those turned out to be 0, they would be set to 1. 

The total numbers of steps for the acceleration and deceleration stages are: 

𝑁𝑎𝑐𝑐 = 𝑟𝑜𝑢𝑛𝑑 (
𝑙1 + 𝑙2 + 𝑙3

∆𝑠
) , 𝑁𝑑𝑒𝑐 = 𝑟𝑜𝑢𝑛𝑑 (

𝑙5 + 𝑙6 + 𝑙7
∆𝑠

) (Eq.  94) 

Number of steps for jerkless acceleration and deceleration stages: 

𝑁2 = 𝑁𝑎𝑐𝑐 − (𝑁1 + 𝑁3), 𝑁6 = 𝑁𝑑𝑒𝑐 − (𝑁5 + 𝑁7) (Eq.  95) 

Number of constant federate steps: 

𝑁4 = 𝑁 − (𝑁𝑎𝑐𝑐 + 𝑁𝑑𝑒𝑐) (Eq.  96) 

Finally, the travel lengths are quantified as: 

𝑙𝑘
′ = 𝑁𝑘 ∙ ∆𝑠, 𝑘 = 1,… ,7 (Eq.  97) 

Lastly, acceleration and jerk values are readjusted to maintain the specified 

feedrates for the new travel lengths. 

A.1.3. Continuously executed part 

Once the initialization is completed, at each step of interpolation the following 

equations are executed: 

𝑠(𝜏𝑘) =
1

6
𝑗0𝑘𝜏𝑘

3 +
1

2
𝑎0𝑘𝜏𝑘

2 + 𝑓0𝑘𝜏𝑘 + 𝑠0𝑘, 0 ≤ 𝜏𝑘 ≤ 𝑇𝑘 (Eq.  98) 

Where 𝑗0𝑘, 𝑎0𝑘, 𝑓0𝑘 , 𝑠0𝑘have been calculated in the initialization phase, 𝑗0𝑘 is the 

jerk value at the beginning of the kth phase, 𝑎0𝑘 is the acceleration value at the 

beginning of the kth phase,  𝑓0𝑘is the federate value at the beginning of the kth phase 

and 𝑠0𝑘 is the displacement value at the beginning of the kth phase. 
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The total distance travelled from the beginning of the kth phase until the nth 

interpolation step in this phase is: 

𝑠𝑘𝑛(𝜏𝑘𝑛) = 𝑛∆𝑠 =
1

6
𝑗0𝑘𝜏𝑘𝑛

3 +
1

2
𝑎0𝑘𝜏𝑘𝑛

2 + 𝑓0𝑘𝜏𝑘𝑛 + 𝑠0𝑘 ,

0 ≤ 𝜏𝑘 ≤ 𝑇𝑘 

(Eq.  99) 

𝑇𝑘𝑛
𝑖 = 𝜏𝑘𝑛 − 𝜏𝑘,𝑛−1 

(Eq.  100) 

A.2. Yong Jeong et al., 2005 [6] 

Yong Jeong et al. propose a readily implementable algorithm to be used in 

generating velocity profiles for point-to-point motion trajectories and speed profiles 

for path motion trajectories. It includes only the low-order polynomial equations that 

can be evaluated analytically. The main difference with the algorithm proposed by 

Erkokmaz and Altintas [2] is that the one proposed by Yong Jeong et al. does not 

need iterative steps in order to decide the coefficients of jerk limited speed profile. 

A.2.1. Time-fixed profile motion equations 

The motion equations used in this paper are the ones proposed by Erkorkmaz and 

Altintas [2]. The paper points out the difference between AFP (acceleration-first-

profile) and DFP (deceleration-first-profile). To decide if the profile is AFP or DFP, 

one can use: 

1. AFP:  
𝑥𝑓 − 𝑥0

𝑇
≥
𝑣0 + 𝑣𝑓

2
 (Eq.  101) 

2. If Q(t) is a DFP whose constraint set is { −𝑥0, −𝑥𝑓, −𝑣0,−𝑣𝑓, 𝑉, 𝐴, 𝐷, 𝐽}: 

𝑄(𝑡) = −𝑋(𝑡), 𝑄(𝑡)̇ = −𝑋(𝑡),̇   𝑄(𝑡)̈ = −𝑋(𝑡)̈  

3. If 𝑥𝑓
′ − 𝑥0

′ ≥ 𝑥𝑓 − 𝑥0, there is an AFP solution whose constraint set is 

{ 𝑥0’, 𝑥𝑓’, 𝑣0, 𝑣𝑓, 𝑉, 𝐴, 𝐷, 𝐽}. 
4. If there is not an AFP solution for a given constraint set, there is a DFP 

solution under it. 

Using this, DFP problems can be converted into AFP. 

Formulation (algorithm) 

Boundary conditions: {x0, xf, v0, vf} 

Limit constraints: {V, A, D, J, T} 

 

Any profile satisfying the boundary conditions and the limit constraints can be a 

solution of the problem on condition that its travelling period is T. Therefore, it is 

necessary to implement some extra conditions in order to choose a solution. In this 
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paper, a jerk-minimization criterion is proposed because smaller jerks provide 

smoother acceleration profiles. 

The effective jerk-limit is defined as: 𝐽𝑒 = 𝛾𝐽 
1) Decide whether the profile is AFP or not by using (Eq.  101). 

2) If it is DFP, transform the problem into AFP. 

3) Evaluating the simultaneous equations of the displacement condition and the 

peak velocity condition, find 𝑦, 𝑦̅ 𝑎𝑛𝑑 𝛾. 

𝑦 = 𝑇1 + 𝑇2 + 𝑇3 
(Eq.  102) 

𝑦̂ = 𝑇4 
(Eq.  103) 

𝑦̅ = 𝑇5 + 𝑇6 + 𝑇7 
(Eq.  104) 

𝐿 = 0.5(𝑣0 + 𝑣𝑝)𝑥 + 0.5(𝑣𝑝 + 𝑣𝑓)𝑦̅ + 𝑣𝑝𝑦̂ 
(Eq.  105) 

0 ≤ 𝑦, 𝑦̅, 𝑇 − 𝑦 − 𝑦̅ ≤ 𝑇 
(Eq.  106) 

0 < 𝛾 ≤ 1 (Eq.  107) 

4) Readjust acceleration, deceleration and jerk limits if needed: 

a. 𝐴 ← 0.5𝐽𝑦, 𝑖𝑓 𝑦 <
2𝐴

𝛾𝐽
 (𝑛𝑜 𝑐𝑜𝑛𝑠𝑡. 𝑎𝑐𝑐. ) 

b. 𝐷 ← 0.5𝐽𝑦̅, 𝑖𝑓 𝑦̅ <
2𝐷

𝛾𝐽
 (𝑛𝑜 𝑐𝑜𝑛𝑠𝑡. 𝑑𝑒𝑐. ) 

c. 𝐽 = 𝐽𝑒 ← 𝛾𝐽 
5) Determinate each time interval with the adjusted A, D, J: 

𝑇1 =
𝐴

𝐽
, 𝑇2 = 𝑦 − 2𝑇1, 𝑇3 = 𝑇1, 𝑇4 = 𝑦̂, 𝑇5 =

𝐷

𝐽
, 𝑇6 = 𝑦̅ − 2𝑇5, 𝑇7 = 𝑇5 

Then, several different cases are introduced in the paper, by adapting the equations 

above depending on each instance.  

 

A.3. Kim, I-Ming and Teck-Chew, 2007 [3] 

Kim et al. [3] generalize the model of polynomial s-curve motion profiles in a 

recursive form, proposing a general algorithm to design s-curve trajectories with jerk 

bounded and time-optimal consideration. 

The approach suggested is to define the s-curve model as piecewise polynomials 

of 2n-1 segments, being n the order of the curve model. Thus, for a 3rd order s-curve 

model, the number of segments to be connected is 7, while for a 4th order it is 15.  

Unlike in the other algorithms proposed, in this case the order of each curve is not 

defined, but a general behaving algorithm is introduced. Therefore, the same 

formulae can be used for a 3rd order curve or for a 5th or 7th one. 
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Figure 20. nth order s-curve model 

A.3.1. Problem definition 

Inputs: peak values of kinematic features (X1
peak, X2

peak, … , Xn
peak). 

Aim: design a polynomial s-curve trajectory while optimizing the time of motion. 
 

A.3.2. Algorithm 

for p=n to 1 { 

𝑇𝑝 = 0 (Eq.  108) 

} 
for p=n to 1{ 

𝑋0 =
𝑋𝑛
2𝑛
∏[(∑2𝑗𝑇𝑛+1−𝑖+𝑗

𝑖−1

𝑗=0

) + 𝑇𝑛+1−𝑖]

𝑛

𝑖=1

 
(Eq.  109) 

for q=1 to (p-1){ 

𝑋𝑞
𝑚𝑎𝑥 =

𝑋𝑛
2𝑛−𝑞

∏[(∑2𝑗𝑇𝑛+1−𝑖+𝑗

𝑖−1

𝑗=0

) + 𝑇𝑛+1−𝑖]

𝑛−𝑞

𝑖=1

 
(Eq.  110) 

if 𝑋𝑞
𝑚𝑎𝑥 > 𝑋𝑞

𝑝𝑒𝑎𝑘, recalculate Tp from 

𝑋𝑞
𝑝𝑒𝑎𝑘 =

𝑋𝑛
2𝑛−𝑞

∏[(∑2𝑗𝑇𝑛+1−𝑖+𝑗

𝑖−1

𝑗=0

) + 𝑇𝑛+1−𝑖]

𝑛−𝑞

𝑖=1

 
(Eq.  111) 

} 
} 

 

All of the time periods are set to 0 initially. Then, Tp is calculated by the peak 

value of X, 𝑋0. This Tp is used to calculate the maximum value of the kinematic 

features, 𝑋𝑞
𝑚𝑎𝑥, and then it is compared with the input peak value. Tp is recalculated 

until no peak input is exceeded. 

A.4. Ha, Rew and Kim, 2008 [4] 

Ha, Rew and Kim propose an asymmetric S-curve motion profile to ease 

manipulation of jerks during the arrival time in order to reduce the residual vibration. 

A design parameter called jerk ratio is introduced to scale down the jerks during the 
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deceleration period. Because of this, motion parameters are remarkably simplified in 

analytic forms. As the jerk ratio increases, the residual vibration decreases, although 

the motion profile is lengthened. 

A.4.1. Formulation 

Given values: Vmax, Amax, δtarget 

Constraints: Velocity:  v(t=t0)= v(t=t7)=0,  

  - Vmax ≤ v ≤Vmax 

Position: x(t=t0)= 0 

x(t=t7)= δtarget 

Acceleration:  - Amax ≤ a ≤Amax 

A.4.2. Motion equations  

Table 2. Equations from the s-curve model proposed in [4]. 

Period 

Equations  

Acceleration Velocity Position  

[t0, t1] 
𝑎1 = 𝐽∆𝑡𝑗 𝑣1 =

1

2
𝐽∆𝑡𝑗

2 ∆𝑥1 =
1

6
𝐽∆𝑡𝑗

3 
(Eq.  112) 

[t1, t2] 
𝑎2 = 𝐽∆𝑡𝑗 𝑣2 = 𝐽∆𝑡𝑗 (

1

2
∆𝑡𝑗 + ∆𝑡𝑎) ∆𝑥2 =

1

2
𝐽∆𝑡𝑗∆𝑡𝑎(∆𝑡𝑗 + ∆𝑡𝑎) 

(Eq.  113) 

[t2, t3] 
𝑎3 = 0 𝑣3 = 𝐽∆𝑡𝑗(∆𝑡𝑗 + ∆𝑡𝑎) ∆𝑥3 = 𝐽∆𝑡𝑗

2 (
5

6
∆𝑡𝑗 + ∆𝑡𝑎) 

(Eq.  114) 

[t3, t4] 𝑎4 = 0 𝑣4 = 𝐽∆𝑡𝑗(∆𝑡𝑗 + ∆𝑡𝑎) ∆𝑥4 = 𝐽∆𝑡𝑗(∆𝑡𝑗 + ∆𝑡𝑎)∆𝑡𝑣 (Eq.  115) 

[t4, t5] 𝑎5 = −
𝐽∆𝑡𝑗

𝛾
 𝑣5 = 𝐽∆𝑡𝑗 (

1

2
∆𝑡𝑗 + ∆𝑡𝑎) ∆𝑥5 = 𝐽𝛾∆𝑡𝑗

2 (
5

6
∆𝑡𝑗 + ∆𝑡𝑎) 

(Eq.  116) 

[t5, t6] 𝑎6 = −
𝐽∆𝑡𝑗

𝛾
 𝑣6 =

1

2
𝐽∆𝑡𝑗

2 ∆𝑥6 =
1

2
𝐽𝛾∆𝑡𝑗∆𝑡𝑎(∆𝑡𝑗 + ∆𝑡𝑎) 

(Eq.  117) 

[t6, t7] 
𝑎7 = 0 𝑣7 = 0 

∆𝑥7 =
1

6
𝐽𝛾∆𝑡𝑗

3 
(Eq.  118) 
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Figure 21. Asymetrical s-curve velocity profile 

A.4.3. Algorithm 

1) Choose β to fix the jerk level and γ≥1 for the smooth arrival motion. 

Calculate 𝛿𝑠
∗and 𝛿𝑙

∗. 

𝛿𝑠
∗ = 𝛿𝑥|(∆𝑡𝑗=∆𝑡𝑗∗) = (1 + 𝛾)𝛽

2
𝑉𝑚𝑎𝑥
2

𝐴𝑚𝑎𝑥
 

(Eq.  119) 

𝛿𝑙
∗ = 𝛿𝑥|(∆𝑡𝑎=∆𝑡𝑎∗) = (1 + 𝛾)

(1 + 𝛽)

2

𝑉𝑚𝑎𝑥
2

𝐴𝑚𝑎𝑥
 

(Eq.  120) 

 

2) If 𝛿𝑡𝑎𝑟𝑔𝑒𝑡 < 𝛿𝑠
∗, apply parameters ∆𝑡𝑎 = ∆𝑡𝑣 = 0 and 

∆𝑡𝑗 = √
∆𝑡𝑗

∗

(1 + 𝛾)𝐴𝑚𝑎𝑥
𝛿𝑡𝑎𝑟𝑔𝑒𝑡

3

 
(Eq.  121) 

 

3) If 𝛿𝑠
∗ ≤ 𝛿𝑡𝑎𝑟𝑔𝑒𝑡 ≤ 𝛿𝑙

∗, apply the profiles with parameters ∆𝑡𝑗 = ∆𝑡𝑗
∗
, ∆𝑡𝑣 = 0 

and 

∆𝑡𝑎 = −
3𝛽𝑉𝑚𝑎𝑥
2𝐴𝑚𝑎𝑥

√(
𝛽𝑉𝑚𝑎𝑥
2𝐴𝑚𝑎𝑥

)
2

+
2𝛿𝑡𝑎𝑟𝑔𝑒𝑡

(1 + 𝛾)𝐴𝑚𝑎𝑥
 

(Eq.  122) 

4) If 𝛿𝑡𝑎𝑟𝑔𝑒𝑡 > 𝛿𝑙
∗, apply the profiles with parameters ∆𝑡𝑗 = ∆𝑡𝑗

∗
, ∆𝑡𝑎 = ∆𝑡𝑎

∗
 

and 

∆𝑡𝑣 =
𝛿𝑡𝑎𝑟𝑔𝑒𝑡 − 𝛿𝑙

∗

𝑉𝑚𝑎𝑥
 

(Eq.  123) 
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Appendix B. Pressure-sinkage: state of the art 

B.1. Meiron-Griffith and Spenko [12] 

Meiron-Griffith and Spenko [12] propose the following equations to take into 

account the effect of the diameter of the wheels. This model is valid for all wheel 

diameters. 

𝜎 = 𝑘̂𝑧𝑛̂𝐷𝑚̂ (Eq.  124) 

Where D is the wheel diameter and 𝑘̂, 𝑛̂, and 𝑚̂ are fitting constants empirically 

determined for each soil type. 

 Then, the sinkage equations results in: 

𝑧0 =
3𝑊

𝑏(3 − 𝑛̂)𝑘̂𝐷𝑚̂+0.5

2
2𝑛̂+1

 (Eq.  125) 

And finally, the compaction resistance is: 

𝑅𝑐 = 𝑏𝑘̂𝐷𝑚̂
𝑧0
𝑛̂+1

𝑛̂ + 1
 

(Eq.  126) 

 

The equations above are then used to compute the drawbar pull. However, this 

modification on Bekker equations does not include the semi-elliptical distribution of 

normal stress that exists under a wheel.  

B.2. Meiron-Griffith and Spenko, 2011 [15] 

In this paper, Meiron-Griffith and Spenko [15] modify the model proposed 

previously in order to add the semi-elliptical distribution beneath a wheel. the 

distribution of the stresses is shown in Figure 22. 

  

Figure 22. Semi-elliptical distribution of normal stress beneath a wheel 

  

Static sinkage:  

𝑧0 =
3𝑊

𝑏(3 − 𝑛̂)𝑘̂𝐷𝑚̂+0.5

2
2𝑛̂+1

 
(Eq.  127) 
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Dynamic sinkage, in the form proposed by [26] 

𝑧𝑑 = 𝐾𝑠𝑠𝑧0 
(Eq.  128) 

𝐾𝑠𝑠 =
1 + 𝑖

1 − 0.5𝑖
 (Eq.  129) 

𝑖 =
𝜔𝑟 − 𝑣𝑏
𝜔𝑟

 (Eq.  130) 

Being ω the wheel angular velocity; i, the wheel slip; r, the wheel radius, and 𝑣𝑏, 

the vehicle’s speed. 

The normal stress can be calculated as a function of 𝜃: 

𝜎(𝜃) = {

𝑘̂𝑟𝑛̂(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃𝑠)
𝑛̂𝐷𝑚̂, 𝑓𝑜𝑟 𝜃𝑚 ≤ 𝜃𝑠 ≤ 𝜃𝑓

𝑘̂𝐷𝑚̂𝑟𝑛̂ [𝑐𝑜𝑠 (𝜃𝑓 −
(𝜃−𝜃𝑟) (𝜃𝑓−𝜃𝑚)

(𝜃𝑚−𝜃𝑟)
) − 𝑐𝑜𝑠𝜃𝑓]

𝑛̂

, 𝑓𝑜𝑟 𝜃𝑟 ≤ 𝜃 ≤ 𝜃𝑚
  (Eq.  131) 

𝜃𝑚 =
𝜃𝑟 + 𝜃𝑓

2
 (Eq.  132) 

Where 𝜃 is the arbitrary angle along the stress arc; 𝜃𝑠 , the static wheel-soil contact 

angle; 𝜃𝑟, the rear wheel-soil contact angle; 𝜃𝑓 , the forward wheel-soil contact angle, 

and r, the wheel radius. 

Longitudinal shear stress (Janosi-Hanamoto equation): 

𝜏 = 𝜏𝑚𝑎𝑥 (1 − 𝑒𝑥𝑝
−𝑗
𝜅 ) 

(Eq.  133) 

Being 𝜏𝑚𝑎𝑥the shear strength of the soil; j, the longitudinal soil deformation, and 

𝜅, the shear deformation parameter. 

As a function of θ, shear stress is: 

𝜏(𝜃) = (𝑐 + 𝜎(𝜃)𝑡𝑎𝑛𝜙) (1 − 𝑒𝑥𝑝
−𝑗(𝜃)
𝜅 ) 

(Eq.  134) 

Finally, shear and normal stresses are combined to estimate the total force acting 

on the wheel and consequently, the drawbar pull: 

𝐹 = 𝑟𝑏∫ {𝜏(𝜃)𝑐𝑜𝑠𝜃 − 𝜎(𝜃)𝑠𝑖𝑛𝜃}𝑑𝜃
𝜃𝑓

𝜃𝑟

 
(Eq.  135) 

B.3. Shmulevich, Mussel and Wolf, 1998 [16] 

Shmulevich et al. develop a soil-wheel interaction simulation model to study the 

effect of velocity on an off-road wheel performance.  

The soil-wheel mathematical model used is that for a moving wheel in steady-state 

condition, this is, constant speed and zero acceleration. For the mentioned model, the 

formulation is based on the equilibrium equations of the wheel. The effect of the soil 

bulldozing wave pushed before the wheel is neglected. 
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Figure 23. Rigid Wheel soil-wheel interaction 

B.3.1. Equilibrium equations 

 z direction: 

𝑏𝑅∫ [𝜏(𝜃) sin(𝜃) + 𝜎(𝜃)cos (𝜃)]𝑑𝜃 − 𝐹𝑧 = 0
𝜃1

𝜃2

 (Eq.  136) 

 x direction: 

𝑏𝑅∫ [𝜏(𝜃) cos(𝜃) + 𝜎(𝜃)sin (𝜃)]𝑑𝜃 − 𝐹𝑥 = 0
𝜃1

𝜃2

 (Eq.  137) 

 Moment equation: 

𝑏𝑅2∫ 𝜏(𝜃)𝑑𝜃 − 𝑄 = 0
𝜃1

𝜃2

 (Eq.  138) 

Where the entry and exit angles can be calculated as: 

𝜃1 = 𝑎𝑟𝑐 cos (1 −
𝑧0
𝑅
) 

(Eq.  139) 

𝜃2 = −𝑎𝑟𝑐 cos (1 −
𝑧𝑒
𝑅
) (Eq.  140) 

Velocity in the normal direction: 

𝑉𝑁 = 𝑉 𝑠𝑖𝑛𝜃 = 𝜔𝑅(1 − 𝑠)𝑠𝑖𝑛𝜃 (Eq.  141) 

Velocity in the tangential direction: 

𝑉𝐿 = 𝜔𝑅 − 𝑉 𝑐𝑜𝑠𝜃 = 𝜔𝑅[1 − (1 − 𝑠)𝑐𝑜𝑠𝜃] (Eq.  142) 

Deformation in the normal and tangential directions: 
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𝑗𝑁 = ∫ 𝑉𝑁𝑑𝑡 =
𝑡

0

 𝑅(1 − 𝑠)(−𝑐𝑜𝑠𝜃1 + 𝑐𝑜𝑠𝜃) 
(Eq.  143) 

𝑗𝐿 = ∫ 𝑉𝐿𝑑𝑡 =
𝑡

0

 𝑅[(𝜃1 − 𝜃) − (1 − 𝑠)(𝑠𝑖𝑛𝜃1 − 𝑠𝑖𝑛𝜃)] (Eq.  144) 

The presupposition of the equality of the speed of a wheel element at the contact 

area and the velocity of a soil element is correct in the normal direction whenever  

there is contact between the soil and the wheel. Regarding the tangential direction, it 

is right only if there is enough friction force to prevent slippage. 

For a loose soil, which is the case of off-road terrains, Shmulevich et al. [16] 

decide to take a similar approach to the one used by Wong and Reece, although 

replacing the speed or penetration with speed in the normal direction of the wheel. 

Soil stress in the normal direction is: 

𝜎 = (𝑘1 + 𝑘2𝑏) (
𝑗𝑁
𝑏
)
𝑛

(
𝑉𝑁𝑆
𝑢0
)
𝑚

 
(Eq.  145) 

𝑉𝑁𝑆 = max (
𝑑𝑗𝑁
𝑑𝑡

,𝑚𝑖𝑛𝑢0) = max(𝑉𝑁, 𝑚𝑖𝑛𝑢0) (Eq.  146) 

On non-elastic soils, the wheel-contact area, the soil stress at the rear sector and 

the rebound deformation are equal to zero. On the other hand, for elastic soils these 

values can be calculated using: 

𝜎 = (𝑘1 + 𝑘2𝑏) (
𝑗𝑁𝑚𝑎𝑥
𝑏

)
𝑛

(
𝑚𝑖𝑛𝑢0
𝑢0

)
𝑚

− (𝑗𝑁𝑚𝑎𝑥 − 𝑗𝑁)𝑘𝑒 (Eq.  147) 

𝑗𝑁𝑚𝑎𝑥 = 𝑧0(1 − 𝑠) 

 

(Eq.  148) 

Slip:  

𝑠 = 1 − 𝑉(𝜔𝑅) 
(Eq.  149) 

Rebound deformation: 

𝑧𝑒 =
1

𝑘𝑒
(𝑘1 + 𝑘2𝑏) (

𝑧0(1 − 𝑠)

𝑏
)
𝑛

(
𝑚𝑖𝑛𝑢0
𝑢0

)
𝑚

 (Eq.  150) 

Tangential stress can only be calculated where there is enough friction force to 

prevent slippage. 

𝜏 = 𝜏𝑚 [1 − exp (−
𝑗𝐿
𝑘
)] 

(Eq.  151) 

𝜏𝑚 = (𝑐 + 𝜎𝑡𝑎𝑛𝜙) + 𝐶𝑑 [1 − 𝑒𝑥𝑝 (
−𝛼𝑑𝑗𝐿
𝑑𝑡

)] 
(Eq.  152) 

𝜇 = 𝜇0𝑒𝑥𝑝(−𝐶𝑚𝑉𝑠 + 𝜇𝑑) (Eq.  153) 

Finally, the minimum value for shear stress will be chosen for each point: 

𝜏 = min (𝜏, 𝜇, 𝜎) 
(Eq.  154) 

Tractive efficiency: 
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𝑇𝐸 =
𝐹𝑥𝑉

𝑄𝜔
 (Eq.  155) 

It has been shown that the results of the simulation model correspond to the 

experimental data, improving the prediction given by Wong’s models, especially 

with slip values around zero. The values used in the experiment are shown in Table 

3. 

Table 3. Values used in the experiment 

Soil 
φ 

(deg) 

c 

(N/m2) 

k1 

(N/m2) 
k2 (N/m3) n m 

u0 

(m/s) 

minu0 

(m/s) 

Compact 

soil 
33.3 691 1.382e5 6.803e5 0.47 0.30 0.03 0.0015 

Loose sand 31.1 829 0 5.442e5 1.15 0.30 0.03 0.0100 

Sand loam 33.3 691 0 8.660e5×bn−1 0.36 0.12 1.00 0 

B.3.2. Effect of velocity on wheel performances 

The experiments show that as velocity increments, so do the maximum normal and 

tangential stresses, while the contact zone decreases, and so does the angular zone. 

Moreover, it is proved that an increase in relative velocity causes a lower relative 

wheel sinkage. Overall, the conclusion is that higher relative velocity results in better 

wheel performance in terms of sinkage, net tractive ratio and tractive efficiency. 

B.3.3. Effect of the type of soil on wheel performances 

The free rolling wheel force ratio and the sinkage are lower on compact soil than on 

loose sand, while these type of soils show bigger values for net tractive ratio and 

maximum tractive efficiency. 

 

B.4. Djohor, M’Sirdi and Naamane [1] 

Assuming a mechanical system in which both the wheel and the ground are 

deformable, one can consider that the wheel-soil contact surface has the shape of a 

plane tangent to the surface of the wheel, where the contact surface is rectangle 

shaped. 

B.4.1. Wheel-soil relative motion 

Assuming free-slip rolling, the slip values can be calculated as shown below: 

Longitudinal slip: 𝑠 =

{
 

 
𝑉𝑥 − 𝑉𝑟
𝑉𝑥

, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔

𝑉𝑥 − 𝑉𝑟
𝑉𝑟

, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

 
(Eq.  156) 
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Longitudinal slip rate: 𝑆𝑠 = |𝑠| 
(Eq.  157) 

Lateral slip rate: 𝑆𝛼 = {
|tan (𝛼)| 𝑑𝑢𝑟𝑖𝑛𝑔 𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔

(1 − 𝑆𝑠)|tan (𝛼)| 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
 

(Eq.  158) 

Slip angle: 𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑉𝑦

𝑉𝑥
) 

(Eq.  159) 

Slip velocity of the contact 

surface: 
𝑉𝑠 = √(𝑉𝑥 − 𝑉𝑟)2 + 𝑉𝑦

2 
(Eq.  160) 

Slip velocity’s angle of 

direction from the longitudinal 

axle: 
𝛽 = 𝑎𝑟𝑐𝑠𝑖𝑛 (

𝑉𝑦

𝑉𝑠
) 

(Eq.  161) 

 

B.4.2. Wheel-soil behaviour laws 

When modelling a soil-wheel system, there are three main model characterizations, 

depending on whether the soil and the wheel are considered rigid or deformable. 

When considering both of them deformable, the suggested approach is to decompose 

the contact surface in two parts:  

1) Rigid wheel. The soil is deformed both vertically due to the vehicle’s load 

and tangentially owing to tangential forces. 

2) Rigid soil. The wheel gets both vertical and tangential reactions from the soil. 

 
Figure 24. approximated shape of the contact surface 

The assumption of independence between soil’s deformation in areas (a) and (b) is 

taken. 

Vertical deformation of 

the soil  𝛿𝑠 ≡ 𝑧0 =
3𝐹𝑧

𝜔(3 − 𝑛) (
𝑘𝑐
𝜔 + 𝑘𝜙)√𝐷

2
2𝑛+1

 

(Eq.  162) 

Vertical deformation of 

the wheel 
𝛿𝑟 =

𝐹𝑧
𝑘𝑧

 
(Eq.  163) 
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Length of area (a) 𝑙𝑟 = √8𝑟𝛿𝑟 (Eq.  164) 

Length of area (b) 𝑙𝑠 = √2𝑟(𝛿𝑠 + 𝛿𝑟) − √2𝑟𝛿𝑟 (Eq.  165) 

B.4.3. Contact force expression 

Longitudinal forces 𝐹𝜉 = 𝐹𝜉
(𝑎) + 𝐹𝜉

(𝑏) (Eq.  166) 

Lateral forces 𝐹𝜂 = 𝐹𝜂
(𝑎) + 𝐹𝜂

(𝑏) (Eq.  167) 

The sign of the forces is determined by: 

𝐹𝑥 = −𝑠𝑖𝑔𝑛(𝑠) 𝐹𝜉  (Eq.  168) 

𝐹𝑦 = −𝑠𝑖𝑔𝑛(𝛼) 𝐹𝜂 (Eq.  169) 

Depending on the values of the slip rate, the forces introduced above can be 

calculated from the following equations: 

𝐼𝑓 √𝑆𝑠
2 + 𝑆𝛼

2 ≤
𝐾

𝑙𝑠
 {

𝐹𝜉
(𝑎) =

𝑙𝑠
2𝐾

(𝐴𝑐 + 𝐹𝑧tan (𝜙))𝑆𝑠

𝐹𝜂
(𝑎) =

𝑙𝑠
2𝐾

(𝐴𝑐 + 𝐹𝑧tan (𝜙))𝑆𝛼

 
(Eq.  170) 

𝐼𝑓 √𝑆𝑠
2 + 𝑆𝛼

2 >
𝐾

𝑙𝑠
 

{
 
 

 
 𝐹𝜉

(𝑎) = [𝐴𝑐 + 𝐹𝑧tan (𝜙)] [1 −
𝑙𝑝

𝑙𝑠
+
𝑆𝑠𝑙𝑝

2

2𝐾𝑙𝑠
]

𝐹𝜂
(𝑎) = [𝐴𝑐 + 𝐹𝑧tan (𝜙)] [1 −

𝑙𝑝

𝑙𝑠
+
𝑆𝛼𝑙𝑝

2

2𝐾𝑙𝑠
]

 
(Eq.  171) 

Where 
𝑙𝑝 =

𝐾

√𝑆𝑠
2 + 𝑆𝛼

2

 (Eq.  172) 

𝐼𝑓 𝑆𝑠 < 𝑆𝑠𝑐 𝑎𝑛𝑑 𝑆𝛼
< 𝑆𝛼𝑐 

{
𝐹𝜉
(𝑏) = 𝐶𝑠𝑆𝑠𝑙𝑛

2 + 𝜇𝑐𝑥𝐹𝑧(1 − 3𝑙𝑛
2 + 2𝑙𝑛

3)

𝐹𝜂
(𝑏) = 𝐶𝛼𝑆𝛼𝑙𝑛

2 + 𝜇𝑐𝑦𝐹𝑧(1 − 3𝑙𝑛
2 + 2𝑙𝑛

3)
 

 
(Eq.  173) 

Where 𝐶𝑠 =
𝑘𝑥𝜔𝑙𝑟

2

2
 

(Eq.  174) 

 𝐶𝛼 =
𝑘𝑦𝜔𝑙𝑟

2

2
 

(Eq.  175) 

 𝑙𝑛 = 1 −
1

3𝜇𝑐𝐹𝑧
√(𝐶𝑠𝑆𝑠)2 + (𝐶𝛼𝑆𝛼)2 (Eq.  176) 

If 𝑆𝑠 ≥ 𝑆𝑠𝑐 𝑎𝑛𝑑 𝑆𝛼 ≥ 𝑆𝛼𝑐 {
𝐹𝜉
(𝑏) = 𝜇𝑐𝑥𝐹𝑧

𝐹𝜂
(𝑏) = 𝜇𝑐𝑦𝐹𝑧

 
(Eq.  177) 

 

𝑆𝑠𝑐 and 𝑆𝛼𝑐 are the critical values of the longitudinal slip rate beyond which the 

elastic constraints and deformations do not hold. 

𝑆𝑠𝑐 =
3𝜇𝑐𝐹𝑧
𝐶𝑠

 
(Eq.  178) 
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𝑆𝛼𝑐 =
𝐶𝑠
𝐶𝛼
√𝑆𝑠𝑐

2 − 𝑆𝑠
2
 

(Eq.  179) 

 

B.4.4. Resistive forces expression 

The vehicle load causes a sinkage effect on the vehicle. Due to compaction, the 

wheel receives a rolling resistance force: 

𝐹𝑥̃ = 𝜔(
𝛿𝑠
𝑛+1

𝑛 + 1
) (
𝑘𝑐
𝜔
+ 𝑘𝜙) 

(Eq.  180) 

B.5. Irani, Bauer and Warkentin, 2011 [9] 

With the purpose of improving its tractive effort, radial paddles are used on wheels.  

The grousers cause oscillations in the dynamic profiles of certain dynamic 

parameters, such as sinkage or drawbar pull, which are not included in Bekker and 

Wong models. Moreover, the existence of grousers causes the shear stress to act at 

some distance of the wheel. 

 
Figure 25. Experimental data of a rigid wheel with 16, 10 mm long grousers, operating at 

0.25 slip and a 66 N normal load overlayed with a typical terramechanic model for a rigid 

wheel. [9] 

To include this effect, two main solutions have been used: finite element methods 

and discrete element methods (DEM). The main problem this solutions present is that 

they demand high computational loads. Moreover, the use of DEM is still in 

development. In this paper, another solution is proposed, based on the expansion of 

the traditional terramechanics models. 
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Figure 26. Proposed normal stress distribution for a wheel with grousers 

The authors of this paper propose the following equation for the pressure-sinkage: 

𝑝(𝑧) = (𝑐𝑘𝑐
′ + 𝛾𝑏𝑘𝜙′) (

𝑧

𝑏
)
𝑛

+ 𝐴𝑔𝑠𝑖𝑛(𝜔𝑔𝑡 + Φ) 
(Eq.  181) 

𝜔𝑔 =
𝜔

𝑛𝑔
 (Eq.  182) 

The suggested formulation for the stress is: 

𝜎𝑝 = 𝛾𝑧𝑁𝜙 + 𝑞𝑁𝜙 + 2𝑐√𝑁𝜙 (Eq.  183) 

Where 𝑁𝜙 is the flow value: 

 

𝑁𝜙 = 𝑡𝑎𝑛2 (45º +
𝜙

2
) 

(Eq.  184) 

 
Figure 27. Active and passive stress zones in a wheel with grousers 

It is considered that the amplitude term is affected mainly by two factors, 𝐴𝜎, 

related to the active and passive stresses, and 𝐴𝛾, related to the change in the local 

soil density around the wheel and grouser caused by the soil deformation due to the 

wheel. 



57 

 

 

 

𝐴 = 𝐴𝜎 + 𝐴𝛾 
(Eq.  185) 

𝐴𝜎 = 𝑘𝑔
′ 𝜎𝑝 

(Eq.  186) 

𝐴𝛾 = 𝑘𝑎′𝑙𝑐𝑑𝛾 (Eq.  187) 

Comparing the simulated results and the experimental ones, in regard of normal 

force, drawbar pull and sinkage, it appears that the proposed model improves the 

traditional terramechanics one when there are important dynamic effects due to 

grousers on the wheels. 
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Appendix C. Programs 

This Appendix is a supplement for Chapter 5, providing examples of the execution of 

the proposed programs and flow diagrams. The values of the variables should not be 

taken as a reference, since they have no relationship to any real robot. 

C.1. S-Curve calculation 

 

C.1.1. Execution examples 

Example 1 

Table 4 shows the values of the input and output of this execution, while in Figure 28 

the output graphs can be seen.  

 

 
Figure 28. Output plot for Example 1 

Table 4. Input and output values for program C.1 in Example 1 

Input 𝑎0=0 𝑎𝑓 = 0 𝑣0=0 𝑣𝑓 = 0 𝑥0=0 𝑥𝑓=50 

𝐴 = 1 𝐷 = 1 𝐽1=1 𝐽3=1 𝐽5 = 1 𝐽7=1 

Output time=  [0, 1.0000, 3.1557, 4.1557, 15.844, 16.844, 19.000, 20] 

position= [0, 0.16667, 3.5681, 6.5571, 43.443, 46.432, 49.833, 50] 

velocity= [0, 0.50000, 2.6557, 3.1557, 3.1557, 2.6557, 0.50000, 0] 

acceleration= [0, 1, 1, 0, 0, -1, -1, 0] 

jerk= [1, 0, -1, 0, -1, 0, 1, 0] 
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Example 2 

In this case, the only change with respect to Example 1 is that jerk values for phase 1 

and 3 are set higher than the ones for phases 5 and 7. Thus, the curve is no longer 

symmetric. The input and output values are shown in Table 5, while output plots of 

the program are shown in Figure 29. 

Table 5. Input and output values for program C.1 in Example 2 

Input  𝑎0=0 𝑎𝑓 = 0 𝑣0=0 𝑣𝑓 = 0 𝑥0=0 𝑥𝑓=50 

𝐴 = 1 𝐷 = 1 𝐽1=2 𝐽3=2 𝐽5 = 1 𝐽7=1 

Output  time= [0, 0.50000, 3.0950, 3.5950, 15.905, 16.905, 19.000, 20] 

position= [0, 0.041667, 4.0575, 5.5633, 43.663, 46.591, 49.833, 50] 

velocity= [0, 0.25000, 2.8450, 3.0950, 3.0950, 2.5950, 0.50000, 0] 

acceleration= [0, 1, 1, 0, 0, -1, -1, 0] 

jerk= [2, 0, -2, 0, -1, 0, 1, 0] 

 

 
Figure 29. Output plot for Example 2. 
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Example 3 

This example modifies the jerk values for phases 5 and 7, setting them in a lower 

value, while 1 and 3 are kept as in Example 2. In Table 6 the values of input and 

output variables are given. Figure 30 shows the output plots. 

 

Table 6. Input and output values for program C.1 in Example 3 

Input  𝑎0=0 𝑎𝑓 = 0 𝑣0=0 𝑣𝑓 = 0 𝑥0=0 𝑥𝑓=50 

𝐴 = 1 𝐷 = 1 𝐽1=2 𝐽3=2 𝐽5 = 0.5 𝐽7=0.5 

Output  time= [0, 0.50000, 3.2195, 3.7195, 14.781, 16.781, 18.000, 20] 

position= [0, 0.041667, 4.4193, 5.9873, 41.598, 47.370, 49.333, 50] 

velocity= [0, 0.25000, 2.9695, 3.2195, 3.2195, 2.2195, 1.0000, 0] 

acceleration= [0, 1, 1, 0, 0, -1, -1, 0] 

jerk= [2, 0, -2, 0, -0.5, 0, 0.5, 0] 

 

 
Figure 30. Output plot for Example 3. 
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Example 4 

This execution example shows how the program works when the initial value for 

velocity and the desired ending acceleration are not zero. Besides, jerk values are set 

different for phases 1,3 and 5,7. The output graphs are the ones in Figure 31, while 

the input and output values can be fount in Table 7. 

Table 7.  Input and output values for program C.1 in Example 4 

Input  𝑎0=0 𝑎𝑓 = −0.5 𝑣0=1 𝑣𝑓 = 0 𝑥0=0 𝑥𝑓=50 

𝐴 = 1 𝐷 = 1 𝐽1=1 𝐽3=1 𝐽5 = 0.5 𝐽7=0.5 

Output  time= [0, 1.0000, 1.8861, 2.8861, 15.864, 17.864, 19.000, 20] 

position= [0, 1.1667, 2.8885, 5.6080, 43.064, 48.169, 49.667, 50] 

velocity= [1, 1.5000, 2.3861, 2.8861, 2.8861, 1.8861, 0.75000, 0] 

acceleration= [0, 1, 1, 0, 0, -1, -1, -0.5] 

jerk= [1, 0, -1, 0, -0.5, 0, 0.5, 0] 

 

 
Figure 31. Output plot for Example 4. 
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C.1.2. Flow diagram

 

Figure 32. Flow diagram for program 5.1. S-curve calculation. p.a, v.a, a.a and j.a hold for position.append, velocity.append, 

acceleration.append and jerk.append, respectively.
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C.2. Drawbar-pull, torque and power calculation 

C.2.1. Execution Examples 

Example 1 

 

In this execution example, the values related to s-curve calculation are the same used 

in Example 1 of C.1.1. The parameters related to soil-wheel interaction are taken 

from [15], although the units are changed in order to fit the rest of the program. The 

input and output of the program is given in Table 8. 

Table 8.  Input and output values for program C.2 in Example 1 

Input 

𝑎0=0 𝑎𝑓 = 0 𝑣0=0 𝑣𝑓 = 0 𝑥0=0 𝑥𝑓=50 

𝐴 = 1 𝐷 = 1 𝐽1=1 𝐽3=1 𝐽5 = 1 𝐽7=1 

div=1000 coefk=212.58*103 coefn=0.82 

coefm=-0.364 K=0.025 c=3000 s=0.1 psi=27° 

d=0.2 b=0.1 m=40   

Output See Figure 33. 

 

 
Figure 33. Output plot for Example 1. 
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Example 2 

 

In this case, with reference to Example 1, a different s-curve profile is given, in the 

form of non-zero final acceleration value and different jerk values for phases 1,3 and 

phases 5,7. The input and output values of this execution are given in Table 9. 

Table 9. Input and output values for program C.2 in Example 2 

Input  𝑎0=0 𝑎𝑓 = −0.5 𝑣0=1 𝑣𝑓 = 0 𝑥0=0 𝑥𝑓=50 

𝐴 = 1 𝐷 = 1 𝐽1=1 𝐽3=1 𝐽5 = 0.5 𝐽7=0.5 

div=1000 coefk=212.58*103 coefn=0.82 

coefm=-0.364 K=0.025 c=3000 s=0.1 psi=27° 

d=0.2 b=0.1 m=40   

Output  See Figure 34. 

 

 
Figure 34. Output plot for Example 2. 
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Example 3 

 

The difference between this execution and the one in Example 1is the value for the 

slip, which is set to 0.4 in this case. The whole set of inputs and outputs is shown in 

Table 10. 

Table 10. Input and output values for program C.2 in Example 3 

Input 𝑎0=0 𝑎𝑓 = 0 𝑣0=0 𝑣𝑓 = 0 𝑥0=0 𝑥𝑓=50 

𝐴 = 1 𝐷 = 1 𝐽1=1 𝐽3=1 𝐽5 = 1 𝐽7=1 

div=1000 coefk=212.58*103 coefn=0.82 

coefm=-0.364 K=0.025 c=3000 s=0.4 psi=27° 

d=0.2 b=0.1 m=40   

Output  See Figure 35. Output plot for Example 3.. 

 

 
 

Figure 35. Output plot for Example 3. 
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Example 4 

 

This execution has different wheel-dimension parameters than the one in Example 1. 

The wheel diameter has been changed from 0.2m to 0.4m and the wheel width has 

been modified from 0.1m to 0.2m. Table 11 shows the input and output values for 

this example. 

Table 11. Input and output values for program C.2 in Example 4 

Input  𝑎0=0 𝑎𝑓 = 0 𝑣0=0 𝑣𝑓 = 0 𝑥0=0 𝑥𝑓=50 

𝐴 = 1 𝐷 = 1 𝐽1=1 𝐽3=1 𝐽5 = 1 𝐽7=1 

div=1000 coefk=212.58*103 coefn=0.82 

coefm=-0.364 K=0.025 c=3000 s=0.1 psi=27° 

d=0.4 b=0.2 m=40   

Output See Figure 36. 

 

 

 
Figure 36. Output plot for Example 4. 
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Example 5 

 

In this example, the parameter that has been changed from Example 1 is the mass of 

the load on the wheel, which on the previous execution examples was 40kg and in 

this one is 80kg. Table 12 includes the values of all of the inputs and outputs of this 

execution. 

Table 12. Input and output values for program C.2 in Example 5 

Input  𝑎0=0 𝑎𝑓 = 0 𝑣0=0 𝑣𝑓 = 0 𝑥0=0 𝑥𝑓=50 

𝐴 = 1 𝐷 = 1 𝐽1=1 𝐽3=1 𝐽5 = 1 𝐽7=1 

div=1000 coefk=212.58*103 coefn=0.82 

coefm=-0.364 K=0.025 c=3000 s=0.1 psi=27° 

d=0.2 b=0.1 m=80   

Output  See Figure 37. 

 

 
Figure 37. Output plot for Example 5
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C.2.2. Flow diagram 

 

Figure 38. Flow diagram for program 5.2. Drawbar pull, torque and power calculation. 
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C.2.3. Integra function: flow diagram 

 

 
Figure 39. Flow diagram for function integra 

C.2.4.Effect of wheel and wheel-soil interaction parameters 

In order to plot the effect of the different parameters involved in the wheel-soil 

interaction system, slight modifications on the program in 5.2. Drawbar pull, torque 

and power calculation have been necessary, mainly changing the variable under 

study into a Python list and adding a loop so the calculation of DP, torque and power 

is done for each of the values. 
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Execution examples 

Effect of slip value 

In order to study the effect of the slip value in the output values for required drawbar 

pull, torque and power, these have been calculated for s between 0 and 0.74. the 

output graph is shown in Figure 40. 

 

 
Figure 40. Effect of the value of the slip parameter on the drawbar pull, required 

torque and required power. 
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Effect of wheel diameter 

With the aim of computing the effect of the diameter of the wheel on the drawbar 

pull, torque and power, these have been calculated for d between 0.1 and 1.6. Figure 

41 shows the output plots of the program. 

 

 

 
Figure 41. Effect of the value of the diameter of the wheel on the drawbar pull, 

required torque and required power. 
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Effect of parameter c 

Parameter c stands for the cohesion of the soil. Figure 42 helps analyse its effect on 

the performance of the wheel. 

 

 
Figure 42. Effect of parameter c on the required drawbar pull, torque and power. 
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Effect of parameter 𝑘̂ 

Parameter 𝑘̂ is one of the constants of the proposed model that affect the most on the 

required drawbar pull, torque and power. Its effects on the calculation are shown in 

Figure 43. 

 

 
Figure 43. Effect of 𝑘̂ on the required drawbar pull, torque and power. 

C.3. Unicycle robot trajectory 

C.3.1. Execution Examples 

Example 1 

Inputs vr=[0,1,2,3,4,4.5,4.7,5,5,5,5,5,5,5,5,5,5,4,3,2,1,1,1,1,0.5,0.25,0] 

vl=[0,1,2,3,4,4,4,3.5,3.5,3.5,3.5,4,5,5,5,5,5,5,5,4,2,1,2,2,1,0,0] 

t=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23, 

24,25,26] 

L=1 

Outputs See Figure 44 
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Figure 44. Output graphs for Example 1. 

 

Example 2 

The only difference between Example 1 and Example 2 is the value of L, which is 

the distance between the wheels of the robot. The input velocity profiles for the 

wheels are the same. 
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Inputs vr=[0,1,2,3,4,4.5,4.7,5,5,5,5,5,5,5,5,5,5,4,3,2,1,1,1,1,0.5,0.25,0] 

vl=[0,1,2,3,4,4,4,3.5,3.5,3.5,3.5,4,5,5,5,5,5,5,5,4,2,1,2,2,1,0,0] 

t=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23, 

24,25,26] 

L=0.5 

Outputs See Figure 45 

 

 

 
 

Figure 45. Output graphs for Example 2.
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C.3.2. Flow diagram 

 
Figure 46. Flow diagram for program 5.3. Unicycle robot trajectory.

Start 

L, t[], 

vr[], vl[] 

𝑣𝑈𝑅 = 
𝑣𝑙 + 𝑣𝑟
2

 

𝜔𝑈𝑅 = 
𝑣𝑟 − 𝑣𝑙
𝐿

 

𝜃. 𝑎𝑝𝑝𝑒𝑛𝑑 (∫ 𝜔[𝑖]𝑑𝜏 +
𝑡

0

𝜃[𝑖 − 1]) 

𝑥. 𝑎𝑝𝑝𝑒𝑛𝑑 (∫ 𝑣[𝑖]𝑐𝑜𝑠𝜃𝑑𝜏 +
𝑡

0

𝑥[𝑖 − 1]) 

𝑦. 𝑎𝑝𝑝𝑒𝑛𝑑 (∫ 𝑣[𝑖]𝑠𝑖𝑛𝜃𝑑𝜏 +
𝑡

0

𝑦[𝑖 − 1]) 

 

𝑣𝑈𝑅 . 𝑎𝑝𝑝𝑒𝑛𝑑 (
𝑣𝑙 +  𝑣𝑟
2

) 

𝜔𝑈𝑅 . 𝑎𝑝𝑝𝑒𝑛𝑑 (
𝑣𝑟 −  𝑣𝑙
𝐿

) 

𝜃. 𝑎𝑝𝑝𝑒𝑛𝑑 (∫ 𝜔[𝑖]𝑑𝜏
𝑡

0

) 

𝑥. 𝑎𝑝𝑝𝑒𝑛𝑑 (∫ 𝑣[𝑖]𝑐𝑜𝑠𝜃𝑑𝜏
𝑡

0

) 

𝑦. 𝑎𝑝𝑝𝑒𝑛𝑑 (∫ 𝑣[𝑖]𝑠𝑖𝑛𝜃𝑑𝜏
𝑡

0

) 

  

i<len(t)? 

Yes 

i+=1 

No 

plot(t,vr) 

plot(t,vl) 

plot(t,vUR) 

plot(x,y) 

 

End 
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