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Abstract
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In this work we will discuss several previous results in the area of graph theory related to
planar rooted maps. Moreover we will give a new way to encode outerplanar maps, which
improves several results of [2], and perform an algorithm to generate random planar maps
of a given size, all of them with equal probability.

The first three sections are dedicated to introduce the basic concepts and properties of
planar maps: definitions, different representations and some results. These will be the
main tools that are going to be used in the next sections.

In the fourth section we will explain carefully a bijection between outerplanar maps of
size n and special kinds of Dyck paths. This bijection will allow us to encode outerplanar
maps with their correspondent Dyck path. Concretely it will allow us to encode simple
outerplanar maps with n nodes using 3n bits, which is shown also in [2] but in a much
more complicated way.

Finally in the last three sections we will discuss an algorithm to randomly generate maps
of a given size. We will also attach a code in C++ that performs such an algorithm to
fill all the details and we will carefully explain each of the functions of the code along
with their inputs and outputs. In the last section we will use the program to compute
accurately some parameters of planar maps.
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1. Introduction

A planar graph, is a graph that can be embedded in the plane, which means that
can be drawn in the plane in such a way that its edges intersect only at their
endpoints.

Since every graph that can be drawn in the plane can also be drawn in the sphere,
we can define a planar map as an equivalence class of the topologically equivalent
drawings on the sphere whenever the graphs are connected.

This means that in addition to the adjacency information of the graph, to represent
a map we also need its embedding.

Two planar graphs G and G′ are isomorphic if there exists a bijection f between
the vertices of G and G′ such that the adjacency is preserved by f , or in other
words, that if u and v are adjacent in G if and only if f(u) and f(v) are adjacent
in G′.

To define an isomorphism between two maps A and B we need more than just
adjacency since we have to take into account their embeddings. Hence what we
need is an homeomorphism ψ of the sphere such that ψ(A) = B.

For instance these two planar maps are isomorphic1, and so are their respective
graphs:

1We may recall that we are working in the sphere, and hence we can swap the exterior face with
the interior face
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But the following maps are not isomorphic, even though their graphs are, since the
first one has a 3-face and a 7-face while the second one has two 5-faces:

By the nature of these maps, counting them is extremely difficult. An idea to make
it easier was to orientate one of the edges, which is referred as the root, leaving
the exterior face at its right. By doing this we are fixing the exterior face along
with an edge, and therefore it is easy to see that every other face of the map can
be distinguished as well. From now on we will be working exclusively with rooted
maps.

These new kind of maps were introduced first by Tutte (1968). He was able to
count them successfully achieving the following result: if M(n) is the total number
of planar maps of size n (with n edges), then

M(n) =
2 · 3n

n+ 2
Cn

where Cn is the n-th Catalan number.

For example, with n = 2 these are all the nine possible maps:
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The aim of this work is first to perform a random map generator, in which all maps
of a given size have equal probability to appear, and then counting certain types of
planar maps by setting bijections with simpler combinatorical objects.
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2. Representation of Planar Maps

As we remarked in the last section, the nature of maps makes it difficult to encode
them in an easy way. For instance, to fully codify a graph we only need its adjacency
list, but in our case we have seen that this is not enough, since isomorphic graphs
can be embedded into non-isomorphic maps.

There are several ways to encode a map. For example, if we want to use the
adjacency list, we can just save for each node the order of its incident edges of each
node in counterclockwise order. Actually there are several ways to code a planar
map, but the one that we will detail next outstands for its simplicity and elegance.

2.1. The permutation encoding. Given a map M with n edges amb m nodes,
for each i ∈ [n] we will split the i-th edge (taken in any order) in half, and assign to
one of the halves the number 2i, and assign 2i+ 1 to the other one (it can be done
in any way). Now every node vi ∈ M with degree gi is incident to the semi-edges
ai1 , ai2 , . . . , aigi and we will suppose that these edges are sorted in counterclockwise
order.

Here is a picture of a possible configuration:
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Now we will define the transposition τi = (2i 2i+1), and the cycle σi = (ai1 ai2 . . . aigi ).

If τ =

n∏
i=1

τi and σ =

m∏
i=1

σi, our map will be coded as (τ, σ).

In our example we have

τ = (1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)
σ = (1 3 8 9)(2 6)(15 7 4 5)(10 11)(12 16 14 13)

This codification holds two important properties.

(1) If we orientate each of these semi-edges from its node to the middle of the edge
and then we apply the permutation στ , it can be easily checked that every
semi-edge maps exactly to the consecutive semi-edge that leaves the same face
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at its right. Hence, the cycles of στ are precisely the faces of M . This property
is essential to find the dual map of M . In our case we have

στ = (1 6 15 14 12 10)(2 3 5)(4 8)(7 9 11 16)(13)

(2) If we change the order of the incident semi-edges in each node, we will get
an embedding of M in a compact open surface. Moreover, we can compute
the genus of the surface, since we have the number of nodes, edges and faces2,
since this last parameter is the number of cycles in στ . For instance, let’s see
two possible embeddings of K4:
In the first picture we have the classical embedding of K4 in the sphere. We
have 6 edges, 4 vertices of degree 4 and 4 3-faces:

1
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τ = (1 2)(3 4)(5 6)(7 8)(9 10)(11 12)

σ = (1 3 5)(12 8 4)(6 7 9)(10 11 2)

στ = (1 10 6)(2 3 12)(4 5 7)(8 9 11)

But if we change the order of incidence of the edges in each node, for instance
with the following codification:

τ = (1 2)(3 4)(5 6)(7 8)(9 10)(11 12)

σ = (1 5 3)(6 7 9)(4 8 12)(2 10 11)

στ = (1 10 6 3 8 9 11 4)(5 7 12 2)

we can get the following embedding on a torus:

2Let’s recall the Euler formula F +V −E = 2−2g, where F is the number of faces, V the number
of vertices, E the number of edges and g the genus of the surface
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In this case we have 6 edges and 4 nodes of degree 3, but we have an 8-face
and a 4-face.

2.2. Quadrangulations. A quadrangulation is a map where all its faces have
degree 4. We will show that all maps of size n (i.e. with n edges) can be put in
bijective correspondence with quadrangulations with n faces.

The bijection goes as follows: given a map M of size n, first we draw a vertex over
each of its faces and connect them to the vertices of their face. Now we just have to
erase all the original edges, and since each of them was exactly in two faces (that
may happen to be the same), the new faces will be all of degree 4.

The last part of these mapping is to set a new root. Here we have several possibil-
ities, actually any canonical choosing is correct. For instance if the previous root
was uv (from u to v), we can set the new root as the first edge incident to u in
counterclockwise order starting from uv.

For instance, we will construct the quadrangulation of the following map:

First we draw a new vertex on each face and connect them to their adjacent vertices
in the original map. These new vertices will be marked as squares, while the edges
of the original map are dashed:
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Finally we erase the edges of the original map and we get the desired quadrangu-
lation.

This application is one to one since we can reconstruct the original map: if we do a
bicoloring of the quadrangulation, one color represents the vertices of the original
map, while the other color represents the vertices put into its faces. We can know
which color represents the original map, since the root is rooted in one of its vertices.
Finally, we move the root to its consecutive edge in clockwise order and erase all
the edges of the original quadrangulation. This gives the orignal map.

Remark: A quadrangulation of a map of size n has n faces of degree 4, therefore it
has 2n edges, and by Euler’s formula it has n+ 2 vertices.
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3. Enumeration of Planar Maps

We will show two ways to get to Tutte’s result. Both of them count the total
number of maps of a given size by constructing an arbitrary map and computing
how many ways we had to perform such construction. This helps to understand
the true nature of maps, giving a relation between them and the Catalan numbers.

The first of these constructions was first made by G. Schaeffer (1998), in which he
established a bijection between quadrangulations and balanced blossomed binary
trees.

3.1. Balanced binary trees. Let us suppose that we have a binary tree with
exactly n interior nodes and with a root-leaf hanging out from the root of the tree
in order that every interior node has degree 3. Now we may add into each of these
nodes a single blossom, which we may think of it as an additional leaf hanging from
it, pointing at one of the three possible directions. The resulting tree must have
exactly n+ 2 leaves and n blossoms. This structure is called a blossomed binary
tree.

Next, go along the tree in counterclockwise order starting at an arbitrary leaf or
blossom and we will create an associate word to the tree by writing x whenever we
find a leaf, and x whenever we find a blossom. The resulting cyclic word will consist
of n + 2 “x” and n “x”. We will connect each x with the previous non-connected
x, and we shall draw an edge between the blossom and the leaf. After this process
only two leaves will remain free, which we will connect and mark this edge as the
root in an arbitrary direction.

After completing this, all the interior nodes of the tree will have degree 4, while the
blossoms and the leaves will have degree 2. We will proceed contracting these nodes
of degree 2 to their respective parents to obtain a 4-regular connected map. By
duality, changing nodes with faces, we would also obtain a map in which every face
has degree exactly 4. Hence we have found an application from these blossomed
binary trees to quadrangulations.

Here we will put an example of the construction of a quadrangulation from a binary
tree with n = 4:
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This application is not one to one, since more than one blossomed binary tree goes
to the same quadrangulation. In fact, fixing a blossomed binary tree, its associate
cyclic word is invariant by changing its root-leaf, and therefore the resulting quad-
rangulation is invariant too. Actually, it can be shown that these are the only
possibilities for two quadrangulations being the same. This implies that the equiv-
alence classes induced by our application are precisely the non-rooted binary trees,
and all of them have cardinality n + 2 since it is the number of ways of choosing
their root-leaf.
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If our application is surjective it follows that if Tn is the number of blossomed
binary trees with n interior nodes, the total number of planar maps with n edges is

2

n+ 2
Tn

since each quadrangulation is counted exactly n + 2 times and can be rooted in
two possible orientations. Now using that the total number of binary trees with
n interior nodes is the n-th Catalan number Cn, and that each blossom can be
inserted in three ways, we have that Tn = 3nCn and finally

M(n) =
2 · 3n

n+ 2
Cn.

To prove that our application is bijective we can construct its inverse in the following
way:

We start at the root edge, and we move along the exterior face. At each step we
do the following:

(1) If the edge in which we are placed is not a bridge we open it, which means
that we replace it by a leaf in its start point and a blossom in its endpoint.
An exceptional case happens when this edge is the root, in which we put two
leaves.

(2) We move to the next edge in counterclockwise order following the exterior face

It can be shown that this is the inverse application that we are looking for, but a
rigorous proof needs harder work and can be found in [1, Chapter 2]

3.2. Well-labeled Trees. Another way to count planar maps is due to R. Cori
and B. Vauquelin (1981), which was improved by Schaeffer (1998). They showed
that there exists a bijection between planar maps and a special kind of trees calles
well labeled trees. These trees have a label on each vertex such that:

(1) The root has label 1
(2) Each label is positive (strictly greater than 0)
(3) If u and v are adjacent vertices, then their labels differ at most in 1 in absolute

value.

For instance these are all the possible well labeled trees with 3 nodes:

The bijection goes as follows:

Given a well labeled tree, we first add a vertex labelled with 0 and then go over it in
clockwise direction and, for each node v, we draw an edge from v to the immediately
next node w that has a value strictly lower (we always can find such a node because
there is a vertex with label 0).

For instance let us consider the following well labeled tree:
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1

2

1 2 3

2

And this would be the result of applying the previous process to it:

1

2

1 2 3

2

0

If we erase all the edges of the original tree, after analyzing a few cases we get that
every resulting face has degree 4, and hence the result is a quadrangulation.

This would be the quadrangulation obtained from the previous tree:

1

2

1 2 3

2

0

This application is bijective since there is a way to construct its inverse: Given
a planar map let us consider its associated quadrangulation. Each node of the
quadrangulation will be labeled with its distance to the root. Now each of the faces
of the quadrangulation can have one or two maximal nodes (with the maximum
label in the face). If there is only one, we draw an edge from it to the next node in
clockwise order, else, we draw an edge between the two maximal nodes.

These are the two possible cases:
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i

i+1i+1

i+2

i

i+1 i+1

i

After erasing the original quadrangulation it is easy to see that the root node is
isolated. Also, the remaining component has n edges (since we draw an edge for
each face) and n+ 1 nodes, therefore if we prove that it has no cycles it has to be
a tree.

This last property comes by construction: if there is a cycle, then all the labels
must be the same, otherwise we would have picked an edge in counterclockwise
order. If all the labels are the same then the cycle splits the plane in its interior
and its exterior, therefore vertices with less distance to the root than the nodes in
the cycle which are at the other side of the cycle (in which the root is not) cannot
exist since every path to the root passes through one of the vertices of the cycle.
This contradicts that the vertices of the cycle are all pairs of maximals in their
faces.

We have that the resulting map is the union of the root vertex and a tree, which
is well labeled by construction. After erasing the root we would get a well labeled
tree rooted at the vertex that was incident to the root (other than the root of
course), which coincides with the inverse of the quadrangulation by the previous
application3.

Here is the construction of the inverse for a given quadrangulation:

3For a full proof see [1, Chapter 6]
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4. Outerplanar Maps

An outerplanar map is a map in which all the vertices are adjacent to the exterior
face.

The aim of this section is first to construct a bijection between outerplanar maps
and Dyck paths with marked D-steps, and then refine this bijection to characterize
special kinds of outerplanar maps. Finally we will show a way to encode simple
outerplanar maps of size n with 3n bits.

Let us start with the first bijection. We will always be supposing that the face at
the right of the rooted edge is the external one.

Proposition 4.1. There exists a bijection between outerplanar maps with n edges
and Dyck paths of length 2n with marked D-steps.

Proof. Given a map with n edges we will start in the rooted vertex and move
counterclockwise. Every time we meet a new edge we will draw a U-step, and every
time we meet a previously visited edge we will draw a D-step. When we finish
visiting all the edges incident to the first vertex we just have to move to the last of
the visited vertices x. We will repeat the process setting as initial edge the last one
incident to x, but in order to save the information that we are changing the vertex
we will mark the first step, that by construction it will always be a D-step.

The following figure shows an example of such construction:
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Clearly, every edge appears exactly two times (one for each incident vertex, that
may be the same) and hence the path drawn contains exactly 2n edges. Moreover,
the path cannot be beyond the x axis, since it would mean that we have checked
for the second time more edges than for the first time. Thus, this is an injective
application between outerplanar maps and Dyck paths of length 2n with marked
D-steps.
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To see that it is actually a bijection we just have to see that we can construct an
inverse: given a Dyck path of this kind, we have to find a way to construct its
corresponding outerplanar map. We will begin with the root and start drawing
“open” edges (meaning that we still don’t know their endpoints besides the ones
that are closed by D-steps) in counterclockwise order. Whenever we find a marked
D-step we draw a new vertex in the last open edge and repeat the process in this
new vertex.

Every reconstruction step is quite clear except when we have to close an edge and
there is more than one possibility (more than one open edge). In this case there
is only one possibility between all these edges, that is the last one that has been
opened, and this holds because if we close another one, by construction we will form
a cycle with open edges in the middle, which would lead to a non-outerplanar map
since these edges have to end in some new vertices still undiscovered. Hence, we
can reconstruct the maps from its marked Dyck paths and the claim follows. ut

Here is an example of a possible reconstruction:
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Since the number of marked D-steps in the Dyck path is one less than the number
of vertices in the map, we get the following result:

Corollary 4.2. The number of outerplanar maps with k vertices and n edges is
equal to (

n

k − 1

)
Cn

We will continue by finding a bijection between loopless outerplanar maps of size n
and small Schröder paths, which are sequences of U-steps, D-steps and horizontal
steps of length two, in which there are no horizontal steps at level 0.

Proposition 4.3. There exists a bijection between loopless outerplanar maps of
size n and small Schröder paths of length n.

Proof. A loop is created when a vertex has first opens and then closes an edge.
Hence, if the D-step of an upper peak is not marked it forms a loop, and reciprocally
if all the peaks are marked, no loops can be formed since a vertex cannot first open
an edge and then closing it. Hence, an outerplanar map is loopless if and only if
all the peaks in its Dyck path are marked.

We will see that actually these types of Dyck paths can be put in correspondence
with the small Schröder paths. First of all let us modify a little our Dyck paths:
it is easy to see that if we apply a reversion of marks in each maximal descend-
ing intervals of our Dyck paths, the paths that have all the peaks marked are in
correspondence with the paths that have marked every last D-step in the maximal
descending intervals (these are the D-steps in the valleys and the last one).

Now we will work with these last types of Dyck paths. To construct our bijection
we will do the following: for every pair of U and D-step such that the D-step closes
the U-step, if the D-step is marked then we do nothing, but if the D-step is not
marked, then we replace the U-step by a horizontal step of length 2. For instance,
if the path is of the form αUβDγ, where β is also a Dyck path (maybe already
transformed), then if the D-step is not marked we would replace it by αHβγ. It
is clear that since every D-step at level 0 is marked, that no horizontal steps will
be at level 0, and hence the result after unmarking all the D-steps will be a small
Schröder path.

For example let us take the following Dyck path with marked D-steps:
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After applying the reversion we get

And after substituting the unmarked pairs for H-steps:

Finally we will construct its inverse, given a small Schröder path we will find a
way to find the original Dyck path. First we mark all the D-steps, then for every
horizontal step we find the first D-step that goes below the level of the horizontal
step, that since we know that this level is always positive, we will always find such a
step. We will put a U-step in the place where the horizontal step was, and a D-step
without mark just before the D-step that we found. In this case if the path is of
the form αHβD∗γ, where β is a small Schröder path and D∗ is a marked D-step,
then we would replace it by αUβDD∗γ. This completes our bijection. ut

This would be an example of the reconstruction of a Dyck path:



4. OUTERPLANAR MAPS 21



22 CONTENTS

Finally we will show our last bijection, which leads to the encoding of a simple
outerplanar map of size n with 3n bits.

Proposition 4.4. There exists a bijection between simple outerplanar maps with
k + 1 nodes and Dyck paths of length k with marked U-steps but no marks on level
0.

Proof. Firstly, if there are no loops, then all the peaks are marked. Secondly,
if a D-step x is not marked, since it is not a peak, it must follow that there is
at least another D-step y just before x. If we consider their corresponding U-
steps in the Dyck path, it must hold that they belong to two different maximal
ascending intervals, because otherwise it means that they are closing edges from
the same vertex and the map would not be simple. In other words, in the Dyck
path, whenever a new maximal ascending interval begins (i.e. a valley), which we
will suppose that is at level k, it allows the first D-step that goes below k to avoid
being marked. And these are the only vertices which we may not mark.

Now we will change a little the shape of these Dyck paths. We just saw that every
valley allows exactly one D-step to avoid being marked, and hence we will say then
that this valley and the D-step are in correspondence. Two or more valleys may
allow the same D-step if they are in the same level, if this happens we will consider
that the valley that appears first is the one correspondent to the D-step. Now we
will go over the path from the beginning, and every time we find a not-marked
D-step, we will swap it with the D-step of its correspondent valley. Then it follows
that all these Dyck paths are in correspondence with the Dyck paths such that the
only D-steps that we can leave unmarked are the ones in a certain type of valleys
(if two or more valleys are at the same level and there are not steps that go below
it in between, we can avoid marking just the first one).

Finally, in these new paths, we will go across from the beginning and whenever we
find a non-marked D-step (in a valley), we will erase it along with its correspondent
U-step, and we will mark the U-step in the valley. In other words, if the path was
of the form αUβDUγ, we will replace it by αβU∗γ. The marked U-step cannot
disappear, since it would mean that its correspondent D-step is in a non-marked
valley, but this cannot happen since the valley where the marked U-step is comes
first and is at the same level. The remaining path will be a Dyck path with all the
D-steps marked, and some U-steps marked too. Since none of the valleys at level 0
of the original path had a not-marked D-step, none of the U-steps at level 0 in the
new paths are marked neither. After unmarking all the D-steps the resulting Dyck
path will be of length k, where k is the number of marked D-steps, and hence the
number of nodes, and none of the U-steps at level 0 are marked.
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This is an example of such construction:

We will show that actually what we have done is a bijection between our new Dyck
paths with exactly k marks, and Dyck paths of length 2k with all the U-steps at
level 0 unmarked. To do so, we will construct an inverse for each element: First
of all we mark all the D-steps, then let us go across the path from left to right,
whenever we find a marked U-step it means that just before there was a non-marked
D-step x and let us suppose that it is at level k ≥ 1, it remains to know where was
its correspondent U-step. If we look at all the points at level k, then between two
consecutive of them there is a path with a ∪ form, which we will call A-paths, or
with a ∩ form, which we will call B-paths. The U-step will be, if we go through
the path starting at x and going backwards (from right to left), at the beginning
of a A-path, or at the last possible point of level k. In other words, if the path is
of the form αAB1B2 . . . BnU

∗β, then it will remain as αAUB1B2 . . . BnDUβ.

This happens because if we put an A-path in between, there will be steps at level
k between the U-step and the D-step, which contradicts the assumption that they
were correspondent, and if we don’t put in between all the possible B-paths, then
the place where we put the U-step would be another valley at level k, which would
contradict the assumption that if two valleys were at the same level we would chose
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the first one. After applying these transformations we just have to unmark all
the U-steps and we are done. Hence the inverse is uniquely determined and our
application is a bijection. ut

Here is an example of the inverse application:

This last bijection allows us to encode a simple outerplanar map in an easy way:

Corollary 4.5. There exists a way to encode every simple outerplanar map with
n+ 1 nodes using 3n bits.
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Proof. We can translate the sequence of D-steps and marked U-steps with the
following prefix-free alphabet:

0 ← D-step
10 ← non-marked U-step
11 ← marked U-step

Since every simple outerplanar map with n+ 1 nodes uses exactly n D-steps and n
U-steps of some kind, the resulting sequence of bits has fixed length 3n. ut

This encoding improves the results of [2], in which the encoding of simple out-
erplanar maps into sequences of asymptotically 3n bits is done in a much more
complicated way.
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5. Random generation of Planar Maps

The aim of this section is to perform an algorithm that generates planar maps of a
given size with equal probability to appear. This may seem hard at first sight, but
we have already shown two ways of constructing planar maps from binary trees or
well labeled trees, which are much simpler to generate.

We will actually do it both ways with linear time and memory cost. Here is a sketch
of each of them:

Algorithm using binary trees:

(1) Generation of a random Dyck path of length n = [Map Size].
(2) Construction of a binary tree with n interior nodes from the generated Dyck

path.
(3) Construction of the balanced blossomed binary tree.
(4) Application of Schaeffer’s first bijection to obtain a quadrangulation of size

2n.
(5) Obtaining the planar map associated to the quadrangulation.

Algorithm using well labeled trees:

(1) Generation of a random Dyck path of length n = [Map Size].
(2) Construction of an ordered tree with n+ 1 nodes from the generated Dyck

path.
(3) Construction of the well labeled tree from the tree obtained previously.
(4) Application of Schaeffer’s second bijection to obtain a quadrangulation of

size 2n.
(5) Obtaining the planar map associated to the quadrangulation.

We will focus on steps 1,2 and 3 of each algorithm since we already know steps 4
and 5. However, we will carefully explain how to perform these algorithms in C++
in the last section of our work.

5.1. Algorithm using binary trees. Generation of a random Dyck path

Let S be the set of all the Dyck paths of length n (with n U-steps and n D-steps).
Now let us add to each of the elements of S a D-step at the end. Now, since all the
paths of S end at level -1, they have n U-steps and n+ 1 D-steps and they remain
at non-negative levels until the last step.

We claim that for every sequence s of n U-steps and D-steps, there exists a unique
cyclic shift σs such that σs(s) ∈ S.

If this claim is true, then we just have to generate a random sequence of n U-
steps and n+ 1 D-steps, and find this cyclic shift. Since every element of S can be
generated by exactly 2n+1 sequences, they would appear with the same probability.
We would just need to erase the last step to obtain a random generated Dyck path.
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It remains to prove the claim: we will show that the only possible cyclic shift is the
one that takes the first vertex at the lowest level to the starting position (hence the
computation can be done in linear time!).

Let us notice that if we put a vertex vi (with i 6= 0)) at level hvi in the first place
it means that the nodes from vi to v2n+1 will increase −hv levels, while the nodes
from v0 to vi−1 will increase by −hvi − 1. This means that if vi is not at the lowest
level, or if vi is not the first of the vertices at the lowest level, vj , then vj will clearly
be under level 0 after applying the cyclic shift. Reciprocally, if we pick vj , since all
hvk

are strictly greater than hvj for k < j, and all the hvk are greater than hvj for
k ≥ j, all the heights will be non-negative after applying the cyclic shift, and the
claim follows.

Therefore, the steps would be the following:

(1) Generation of a random sequence of n U-steps and n+ 1 D-steps.
(2) Do a cyclic shift that puts the first node at the lowest level in the first place
(3) Erase the last step.

Construction of the binary tree from the Dyck path

For this step we will use a well known bijection between Dyck paths of length n
and binary trees with n internal nodes.

Given a Dyck path, first we create the root node and next we start going along the
path starting from the second step (since the first corresponds to the root, which
we already created). Now, every tine we find an U-step we create an interior node
in the first available place, which is defined as the first missing descendant on an
interior node by going in counterclockwise order4, while every time that we find a
D-step we create a leaf in the first available place. After going across every step,
we create a leaf at the last available place. We have created a tree with a total of
n nodes with two descendants and n+ 1 nodes of degree 1, which is a binary tree.

This application is bijective because we can construct its inverse. Given a binary
tree with n interior nodes, we start at the root and we draw an U-step. Next, we
go along the tree in counterclockwise order, and every time we find a new interior
node we create an U-step, while every time we find a leaf we create a D-step. We
just have to skip the last leaf and we will have a path with n U-steps and n D-steps.
This path is always above level 0 by an analogous reasoning to the remark.

Construction of the balanced blossomed binary tree

In this step we have to add randomly a blossom to each of the internal nodes of
our binary tree to get a randomly generated blossomed binary tree.

4Remark: This spot always exists because since a Dyck path is always above level 0, the sub-
tree created after k steps will always have more internal nodes than leaves for every k, while the

number of leaves in a binary tree is exactly one more than the number of internal nodes.
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After applying the first step in Schaeffer’s bijection we should be able locate the
two leaves that are not paired. Now we just have to choose as root one of the two
parents of the leaves to get a balanced blossomed binary tree5.

5.2. Algorithm using well-labeled trees. Since we know already how to gen-
erate a random Dyck path, we will give details for the construction of the ordered
tree and then the well labeled tree.

Construction of a random ordered tree

As in the case of the binary tree with n interior nodes, there is a well known bijection
between Dyck paths of length n and ordered trees of size n+ 1.

First of all we create the root of the tree and we set our initial position as the
root. Next, we go across the Dyck path (this time starting in the first step), and
whenever we find an U-step we create a descendant from our current position at
the last possible place in counterclockwise order and we update our position to the
newly created descendant. Else, if we find a D-step, we just have to change our
current position to its parent. The fact that we never go below level 0 implies that
we are never updating our position to a parent of the root.

This application is one-to-one because we can also construct its inverse: given a
tree, we start at the root and read it in counterclockwise order. Whenever we move
from a parent to a descendant we create a U-step and we move in the opposite
direction we create a D-step. The resulting path is a Dyck path of length n since
the tree has n edges that we go across in both directions. Moreover every edge
is crossed always first in the parent-child way, and therefore we are never going
below level 0. A straightforward computation show that these two applications are
inverses one of each other.

Construction of a well labeled tree

To construct a well labeled tree we will do the following: first we generate a random
ordered tree. We give the root label 1, and then we assign labels recursively in the
following way: if x is the parent’s label, then we will assign randomly one of the
three numbers x− 1, x, x+ 1.

The resulting tree has no need to be well labeled since we can get values of 0 or
lower. In this case we will pick randomly one of the vertices with the lowest label
and we will make it the new root. To make the tree well labeled we just have to
add to all the vertices the necessary value to make the root reach the value 1.

5Actually we don’t need the tree to be balanced, since we would get quadrangulations with the
same probability because all the equivalent classes have the same cardinality.
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6. Codes

Finally, we will give a sample of a code in C++ that generates random rooted maps
of a given size n in which all of them have equal probability to appear.

We will follow the first of the two algorithms explained in the last section: the one
that uses binary trees.

First of all we will be using these C++ libraries, typedefs and structures:

1 #inc lude <iostream>

2 #inc lude <algor ithm>

3 #inc lude <vector>
4 #inc lude <ctime>
5 #inc lude <c s t d l i b >

6 #inc lude <stack>
7 #inc lude <queue>
8

9 us ing namespace std ;

10

11 typede f vector <int> VI ;
12 typede f vector <VI> VII ;

13 typede f stack <int> STI ;
14 typede f vector <bool> VB ;
15

16 s t r u c t BN{
17 i n t id ;
18 i n t asc ;

19 i n t dright ;
20 i n t dleft ;
21 i n t random ;

22 } ;
23

24 s t r u c t BNlabel{
25 i n t lasc ;
26 i n t lright ;
27 i n t lleft ;

28 i n t lrandom ;
29 } ;
30

31 s t r u c t RM{
32 VII Nodes ;

33 VII Edges ;
34 VII Faces ;
35 } ;

The struct BN refers to a node of a blossomed binary tree, where each of them has
an id, the id of its parent (asc), the id of its two childs (dright and dleft), and the
position of the random blossom (random).

BNlabel is the struct in which we store the labels of the semiedges of each of the
nodes of the blossomed binary tree, the notation is the same as in the previous
struct.
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Finally the struct RM refers to a rooted map, which is stored using the permutation
coding. Each permutation is stored in a vector of vector of integers, since we can
represent a permutation in its cycle decomposition, and store each cycle in a vector.

Now that we are done with the basics we will start with the functions:

First of all we have to generate a random Dyck path of length n. We have the
following function:

Name: Dyck
Purpose: Generates a random Dyck path of length n, given by input
Input: An integer n
Output: Random Dyck path of length n, stored as a vector of 1s and -1s, which
means U-steps and D-steps respectively
Cost: Θ(n)

1 // Returns a random Dyck path o f l ength n

2 VI dyck ( i n t n ) {
3 /* F i r s t we c r e a t e an a r b i t r a r y Dyck path
4 with n U−s t ep s and n+1 D−s t ep s */
5 i n t N = 2*n+1;

6 VI dyck (N , −1) ;
7 f o r ( i n t i = 0 ; i < n ; ++i ) dyck [ i ] = 1 ;
8 //We randomize i t with a random s h u f f l e

9 random_shuffle ( dyck . begin ( ) , dyck . end ( ) ) ;
10 i n t level = 0 , minlevel = 0 , posmin = 0 ;
11 /*We search f o r the f i r s t time we

12 get to the minimum l e v e l */
13 f o r ( i n t i = 0 ; i < N ; ++i ) {
14 i f ( dyck [ i ] > 0) ++level ;

15 e l s e −−level ;
16 i f ( level < minlevel ) {
17 posmin = i+1;

18 minlevel = level ;
19 }
20 }
21 //We apply the c y c l i c s h i f t and return the new vec to r
22 VI Dyckfinal (N−1) ;

23 f o r ( i n t i = 0 ; i < N−1; ++i ) Dyckfinal [ i ] = dyck [ ( posmin+i )%N ] ;
24 r e turn Dyckfinal ;
25 }

Next we have to create a binary tree from the Dyck path:

Name: BT
Purpose: Generates a binary tree of a given size n
Input: An integer n
Output: Random binary tree of size n, stored as a vector of BN
Cost: Θ(n)

1 // Returns a random binary t r e e with n+1 nodes
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2 vector <BN> BT ( i n t n ) {
3 //We generate a random Dyck path

4 VI Dyck = dyck ( n ) ;
5 // I n i t i a l i z i n g the binary t r e e with a given s i z e
6 BN Z ;

7 Z . asc = Z . dleft = Z . dright = −1; //−1 = ! Exi s t
8 vector <BN> bt (2* n+1, Z ) ;
9 f o r ( i n t i = 0 ; i < 2*n ; ++i ) bt [ i ] . id = i ;

10 //We s t a r t moving from the root ( p o s i t i o n 0)
11 i n t actpos = 0 ;
12 f o r ( i n t i = 1 ; i < 2*n ; ++i ) {
13 i f ( Dyck [ i ] > 0) {
14 bt [ i ] . asc = actpos ;
15 i f ( bt [ actpos ] . dleft < 0) bt [ actpos ] . dleft = i ;
16 e l s e bt [ actpos ] . dright = i ;

17 actpos = i ;
18 }
19 e l s e {
20 bt [ i ] . asc = actpos ;

21 i f ( bt [ actpos ] . dleft < 0) bt [ actpos ] . dleft = i ;
22 e l s e bt [ actpos ] . dright = i ;
23 whi le ( bt [ actpos ] . dright > 0) actpos = bt [ actpos ] . asc ;

24 }
25 }
26 //Adding the l a s t l e a f and re tu rn ing the t r e e
27 bt [ 2* n ] . asc = actpos ;
28 bt [ actpos ] . dright = 2*n ;

29 r e turn bt ;
30 }

Now we have to create the map from the binary tree. We will use the following
function:

Name: Random Map
Purpose: Creates a random map of a given size n
Input: An integer n
Output: A random map of size n, stored as a RM.
Cost: Θ(n)

1 // r e tu rn s a random map o f s i z e n

2 RM Random_Map ( i n t n ) {
3 //We c r e a t e a random binary t r e e o f s i z e n

4 vector <BN> bt = BT ( n ) ;

5 // Ass ign ing a blossom randomly to each i n t e r i o r node
6 f o r ( i n t i = 0 ; i < 2*n+1; ++i ) i f ( bt [ i ] . dleft != −1) bt [ i ] .←↩

random = random_mod (3 ) ;

7 VI Labels ; // Sto r e s the l a b e l s o f the semiedges comming from l e a f s←↩
or blossoms

8 VI Types ; // Sto r e s i f the l a b e l s come from l e a f s (1 ) o f blossoms (0 )
9 VI Edge (2 ) ;

10 VI Node (4 ) ;

11 VII Edges ; // Sto r e s the edges with the permutation coding
12 VII Nodes ; // Sto r e s the nodes with the permutation coding
13 i n t actpos = 0 ; //Keeps t rack o f our ac tua l p o s i t i o n
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14 i n t cont = 0 ; //Used to as i gn l a b e l s to the semiedges
15 BNlabel Empty ;

16 Empty . lasc = Empty . lleft = Empty . lright = −1;
17 vector <BNlabel> Visit (2* n+1, Empty ) ;
18 //We s t a r t in p o s i t i o n 0 and s t a r t moving counte r c l o ckw i s e

19 whi le ( actpos != −1){
20 i f ( bt [ actpos ] . dleft == −1){
21 // I f i t has no sons we go back

22 actpos = bt [ actpos ] . asc ;
23 }
24 e l s e {
25 //Now we are in the case in which actpos i s i n t e r i o r

26 i f ( Visit [ actpos ] . lleft == −1){
27 // I f we haven ' t l a b e l e d the l e f t c h i l d yet :
28 i f ( bt [ actpos ] . random == 0) {
29 //Case in which the blossom i s be f o r e the l e f t c h i l d
30 //We put him l a b e l ” cont ” o f type 0 and we update cont
31 Visit [ actpos ] . lrandom = cont ;
32 Labels . push_back ( cont ) ;

33 Types . push_back (0 ) ;
34 ++cont ;
35 }
36 //We l a b e l the semiedge with cont
37 Visit [ actpos ] . lleft = cont ;
38 i f ( bt [ bt [ actpos ] . dleft ] . dleft != −1){
39 // I f the edge doesn ' t end in a l e a f we l a b e l the other
40 // semiedge with cont+1 and add the edge ( cont , cont+1)

41 Visit [ bt [ actpos ] . dleft ] . lasc = cont+1;
42 Edge [ 0 ] = cont ;
43 Edge [ 1 ] = cont+1;

44 Edges . push_back ( Edge ) ;
45 cont+=2;
46 }
47 e l s e {
48 // I f the edge end in a l e a f we add a l a b e l cont o f type 1
49 Labels . push_back ( cont ) ;
50 Types . push_back (1 ) ;

51 ++cont ;
52 }
53 actpos = bt [ actpos ] . dleft ;

54 }
55 e l s e i f ( Visit [ actpos ] . lright == −1){
56 //Case in which we have un labe l ed the r i g h t c h i l d

57 i f ( bt [ actpos ] . random == 1) {
58 //Case in which the blossom i s j u s t be f o r e
59 Visit [ actpos ] . lrandom = cont ;

60 Labels . push_back ( cont ) ;

61 Types . push_back (0 ) ;
62 ++cont ;

63 }
64 //Same procedure as be f o r e

65 Visit [ actpos ] . lright = cont ;

66 i f ( bt [ bt [ actpos ] . dright ] . dleft != −1){
67 Visit [ bt [ actpos ] . dright ] . lasc = cont+1;

68 Edge [ 0 ] = cont ;

69 Edge [ 1 ] = cont+1;
70 Edges . push_back ( Edge ) ;

71 cont+=2;
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72 }
73 e l s e {
74 Labels . push_back ( cont ) ;
75 Types . push_back (1 ) ;
76 ++cont ;

77 }
78 actpos = bt [ actpos ] . dright ;
79 }
80 e l s e {
81 //Case when a l l c h i l d s are l a b e l e d
82 i f ( bt [ actpos ] . random == 2) {
83 //Case when the blossom i s j u s t a f t e r the r i g h t c h i l d

84 Visit [ actpos ] . lrandom = cont ;
85 Labels . push_back ( cont ) ;
86 Types . push_back (0 ) ;

87 ++cont ;
88 }
89 //We return to the parent
90 actpos = bt [ actpos ] . asc ;

91 }
92 }
93 }
94 // Putting l a b e l and type to the l a s t l e a f
95 Visit [ 0 ] . lasc = cont ;
96 Labels . push_back ( cont ) ;
97 Types . push_back (1 ) ;
98 //Now we have to j o i n the l e a f s with the blossoms

99 i n t N = Labels . size ( ) ;
100 STI S ;
101 VB used (N , f a l s e ) ;

102 f o r ( i n t i = 0 ; i < 2*N ; ++i ) {// After at most two c y c l e s we w i l l ←↩
be done

103 i f ( used [ i%N ] ) cont inue ; // I f we have a l r eady j o in ed i t we ←↩
r e turn

104 i f ( Types [ i%N ] == 0) {
105 // I f we f i n d a blossom we put i t in a s tack
106 S . push ( Labels [ i%N ] ) ;

107 used [ i%N ] = true ;
108 }
109 e l s e {
110 //We j o i n the l e a f with the blossom on the top o f the s tack
111 i f ( not S . empty ( ) ) { // I f the re i s any . . . e l s e we cont inue
112 Edge [ 0 ] = S . top ( ) ;

113 S . pop ( ) ;

114 Edge [ 1 ] = Labels [ i%N ] ;
115 Edges . push_back ( Edge ) ;

116 used [ i%N ] = true ;

117 }
118 }
119 }
120 //We j o i n the remaining two l e a v e s

121 i n t pos = 0 ;

122 f o r ( i n t i = 0 ; i < N ; ++i ) {
123 i f ( not used [ i ] ) {
124 Edge [ pos ] = Labels [ i ] ;

125 ++pos ;
126 }
127 }
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128 Edges . push_back ( Edge ) ;
129 //Now i t i s time to encode the nodes

130 f o r ( i n t i = 0 ; i < 2*n+1; ++i ) {
131 i f ( bt [ i ] . dleft != −1){
132 //We have j u s t to con s id e r the three p o s s i b l e p o s i t i o n s o f the←↩

blossom
133 i f ( bt [ i ] . random == 0) {
134 Node [ 0 ] = Visit [ i ] . lasc ;

135 Node [ 1 ] = Visit [ i ] . lrandom ;
136 Node [ 2 ] = Visit [ i ] . lleft ;
137 Node [ 3 ] = Visit [ i ] . lright ;
138 }
139 e l s e i f ( bt [ i ] . random == 1) {
140 Node [ 0 ] = Visit [ i ] . lasc ;
141 Node [ 1 ] = Visit [ i ] . lleft ;

142 Node [ 2 ] = Visit [ i ] . lrandom ;
143 Node [ 3 ] = Visit [ i ] . lright ;
144 }
145 e l s e {
146 Node [ 0 ] = Visit [ i ] . lasc ;
147 Node [ 1 ] = Visit [ i ] . lleft ;
148 Node [ 2 ] = Visit [ i ] . lright ;

149 Node [ 3 ] = Visit [ i ] . lrandom ;
150 }
151 Nodes . push_back ( Node ) ;
152 }
153 }
154 // F i n a l l y we c r e a t e the quadrangulat ion
155 RM M ;
156 M . Faces = Nodes ;

157 M . Nodes = comp_perm ( Nodes , Edges ) ;
158 M . Edges = Edges ;
159 r e turn Quad_to_Map ( M ) ; //We return i t s conver s i on to map

160 }

This last function uses several sub-functions to help simplifying the code. For
instance we have the following functions that are needed to compose permutations:

Name: Cicperm
Purpose: Transforms a permutation in its cycle decomposition to its original form
Input: A permutation σ in its cycle decomposition, stored as a vector of vector of
integers
Output: σ in its original form, stored as a vector of integers where the i-th posi-
tion corresponds to σ(i)
Cost: Θ(n), where n is the size of the permutation

1 VI cicperm ( VII &a ) {
2 i n t n = a . size ( ) ;

3 i n t length = 0 ;
4 f o r ( i n t i = 0 ; i < n ; ++i ) length += a [ i ] . size ( ) ;

5 VI P ( length ) ;

6 f o r ( i n t i = 0 ; i < n ; ++i ) {
7 i n t m = a [ i ] . size ( ) ;
8 f o r ( i n t j = 0 ; j < m ; ++j ) P [ a [ i ] [ j ] ] = a [ i ] [ ( j+1)%m ] ;
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9 }
10 r e turn P ;

11 }

Name: Permcic
Purpose: Transforms a permutation in its original form into its cycle decomposi-
tion
Input: A permutation σ in its original form
Output: σ in its cycle decomposition. Stored in a vector of cycles, each of them
represented as a vector of integers
Cost: Θ(n), where n is the size of the permutations

1 VII permcic ( VI &a ) {
2 i n t n = a . size ( ) ;
3 VB used (n , f a l s e ) ;
4 VII P ;

5 i n t cont = −1;
6 f o r ( i n t i = 0 ; i < n ; ++i ) {
7 i f ( not used [ i ] ) {
8 P . push_back ( VI (0 ) ) ;
9 ++cont ;

10 i n t j = i ;
11 whi le ( not used [ j ] ) {
12 P [ cont ] . push_back ( j ) ;

13 used [ j ] = true ;
14 j = a [ j ] ;
15 }
16 }
17 }
18 r e turn P ;

19 }

Name: Comp perm
Purpose: Composes two permutations given by input
Input: Two permutations σ and τ in their cycle decomposition, both of the same
size
Output: σ ◦ τ in its cycle decomposition
Cost: Θ(n), where n is the size of the permutations

1 VII comp_perm ( VII &a , VII &b ) {
2 i n t n = a . size ( ) ;
3 VI p1 = cicperm ( a ) ;

4 VI p2 = cicperm ( b ) ;
5 n = p1 . size ( ) ;

6 VI P ( n ) ;

7 f o r ( i n t i = 0 ; i < n ; ++i ) P [ i ] = p1 [ p2 [ i ] ] ;
8 r e turn permcic ( P ) ;
9 }
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Finally we have the function that transforms a quadrangulation into its map form:

Name: Quad to Map
Purpose: Transforms a quadrangulation into its correspondant map
Input: A quadrangulation M , given as a RM struct
Output: Its correspondent map, given as a RM struct
Cost: Θ(n), where n is the size of the quadrangulation

1 // Returns the map a s s o c i a t e d to a quadrangulat ion
2 RM Quad_to_Map ( RM &M ) {
3 i n t n = M . Edges . size ( ) ;

4 n*= 2 ;
5 i n t m = M . Nodes . size ( ) ;
6 VII Adj = Adjacency ( M ) ; //We c r e a t e the adjacency matrix

7 VI Marks (m , −1) ;
8 //Now we a s s o c i a t e the endpoints o f the d i agona l s o f each f a c e
9 VI Matching ( n ) ;

10 f o r ( i n t i = 0 ; i < ( i n t ) M . Faces . size ( ) ; ++i ) {
11 f o r ( i n t j = 0 ; j < 4 ; ++j ) Matching [ M . Faces [ i ] [ j ] ] = M . Faces [ i←↩

] [ ( j+2)%4];
12 }
13 //We do a BFS s t a r t i n g from node 0 to b i c o l o r the quadrangulat ion
14 i n t InitialNode = 0 ;
15 Marks [ InitialNode ] = 0 ; //We a s s i g n c o l o r 0 to the f i r s t node

16 queue <int> Q ;
17 Q . push ( InitialNode ) ;
18 whi le ( not Q . empty ( ) ) {
19 i n t CurrentNode = Q . front ( ) ;
20 Q . pop ( ) ;
21 i n t Color = Marks [ CurrentNode ] ;

22 f o r ( i n t i = 0 ; i < ( i n t ) Adj [ CurrentNode ] . size ( ) ; ++i ) {
23 i f ( Marks [ Adj [ CurrentNode ] [ i ] ] == −1){
24 Marks [ Adj [ CurrentNode ] [ i ] ] = 1 − Color ;

25 Q . push ( Adj [ CurrentNode ] [ i ] ) ;
26 }
27 }
28 }
29 i n t cont = 0 ; //Keeps the l a b e l o f the new nodes
30 VI Edge (2 ) ;

31 VII FEdges ; //Edges o f the f i n a l map
32 VII FNodes ; //Nodes o f the f i n a l map

33 VI Seen (n , −1) ;
34 f o r ( i n t i = 0 ; i < m ; ++i ) {
35 i f ( Marks [ i ] == 0) { //We keep the nodes with c o l o r 0

36 i n t k = M . Nodes [ i ] . size ( ) ;
37 VI Node ( k ) ; //The degree o f each node i s pre se rved

38 f o r ( i n t j = 0 ; j < ( i n t ) M . Nodes [ i ] . size ( ) ; ++j ) {
39 Node [ j ] = cont ;
40 Seen [ M . Nodes [ i ] [ j ] ] = cont ;
41 ++cont ;

42 i f ( Seen [ Matching [ M . Nodes [ i ] [ j ] ] ] != −1){
43 //We j o i n i t only with the d iagona l s o f the face s , which ←↩

are s to r ed in the Matching vec to r

44 Edge [ 0 ] = Node [ j ] ;
45 Edge [ 1 ] = Seen [ Matching [ M . Nodes [ i ] [ j ] ] ] ;
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46 FEdges . push_back ( Edge ) ;
47 }
48 }
49 FNodes . push_back ( Node ) ;
50 }
51 }
52 //We j o i n the f i n a l nodes , edges and f a c e s in to the f i n a l map and ←↩

r e turn i t

53 VII FFaces = comp_perm ( FNodes , FEdges ) ;
54 RM FM ;
55 FM . Nodes = FNodes ;
56 FM . Edges = FEdges ;

57 FM . Faces = FFaces ;
58 r e turn FM ;
59 }

Finally, we had to use a function that returns the adjacency list of a given map in
order to do a BFS:

Name: Adjacency
Purpose: Returns the adjacency list of a given map
Input: A map M , stored as a RM struct
Output: The adjacency list of M stored as a vector of vectors of integers, where
the i-th position of the first vector contains a vector with the id of the nodes adja-
cent to the i-th node
Cost: Θ(n), where n is the size of the map

1 VII Adjacency ( RM &M ) {
2 // Returns the Adjacency matrix o f a map
3 i n t n = M . Edges . size ( ) ;

4 n*= 2 ;
5 VI EN ( n ) ;
6 i n t m = M . Nodes . size ( ) ;

7 f o r ( i n t i = 0 ; i < m ; ++i ) {
8 f o r ( i n t j = 0 ; j < ( i n t ) M . Nodes [ i ] . size ( ) ; ++j ) {
9 //We a s s o c i a t e the semiedges with t h e i r r e s p e c t i v e nodes in ←↩

the EN vecto r

10 EN [ M . Nodes [ i ] [ j ] ] = i ;
11 }
12 }
13 VII Adj (m , VI (0 ) ) ;

14 f o r ( i n t i = 0 ; i < n /2 ; ++i ) {
15 //Now we j u s t have to j o i n the nodes a s s o c i a t e d to the endpoints←↩

o f every edge

16 i n t nod1 = EN [ M . Edges [ i ] [ 0 ] ] ;

17 i n t nod2 = EN [ M . Edges [ i ] [ 1 ] ] ;
18 Adj [ nod1 ] . push_back ( nod2 ) ;

19 Adj [ nod2 ] . push_back ( nod1 ) ;

20 }
21 r e turn Adj ;

22 }
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7. Execution and Applications

7.1. Testing the Code. To test the code’s correctness we can compute known
parameters of planar maps, for instance let us take the mean of the number of
vertices generated with our code.

After executing 10 times the function Random Map for n = 10000 we get the
following values for the number of vertices:

v1 = 5018
v2 = 5054
v3 = 5053
v4 = 4990
v5 = 5101
v6 = 4978
v7 = 4961
v8 = 5042
v9 = 5006
v10 = 4913

Since this value has mean n/2 = 5000 and has typical deviation of Θ(
√
n), the

results obtained seem to be in the right way. To give a more precise evaluation let
us make the experiment 1000 times and compute the mean and standard deviation.
We get

vM = 5000, 22

σv = 36, 8697

Now let us take n = 1000000 and do the experiment 100 times. We obtain

vM = 500526

σb = 455, 29

The values obtained seem plausible, hence we can continue to find other parameters.

7.2. k-Core of a map. The k-core of a map is defined as the maximal connected
submap such that every node has degree at least k. It can be constructed by
repeatedly erasing the nodes with degree less than k.

It is easy to see that the 2-core of a map is connected, but it may not happen
for larger values of k. The expected size of the 2-core of a graph has been proved

to be of the order of

√
6

3
n with variance n/6, but we have still no results about

the behaviour of the maximal connected component of the 3-core. However it is
believed that its size depends linearly on n.

We will use the following programs to compute experimentally these parameters
for k = 3, 4 and 5.

Name: Maxcomp
Purpose: Computes the size of the maximal connected component of a graph
Input: The adjacency list of a graph, given as a vector of vector of integers
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Output: An integer denoting the size of the maximal connected component
Cost: Θ(n), where n is the number of edges in the graph

1 i n t Maxcomp ( VII &Adj ) {
2 // Returns the maximal connected component o f the graph with ←↩

adjacency l i s t Adj

3 i n t n = Adj . size ( ) ;
4 i f ( n == 0) return 0 ;

5 VI visit (n , f a l s e ) ;

6 i n t res = 0 ;
7 f o r ( i n t i = 0 ; i < n ; ++i ) {
8 i f ( not visit [ i ] ) {
9 //We do a BFS from each non−v i s i t e d ver tex and we keep the ←↩

maximum of the components v i s i t e d

10 queue <int> Q ;

11 Q . push ( i ) ;
12 visit [ i ] = true ;

13 i n t cont = 0 ;

14 whi le ( not Q . empty ( ) ) {
15 i n t t = Q . front ( ) ;

16 Q . pop ( ) ;
17 i n t m = Adj [ t ] . size ( ) ;
18 cont+= m ;

19 f o r ( i n t j = 0 ; j < m ; ++j ) {
20 i f ( not visit [ Adj [ t ] [ j ] ] ) {
21 visit [ Adj [ t ] [ j ] ] = true ;

22 Q . push ( Adj [ t ] [ j ] ) ;
23 }
24 }
25 }
26 res = max ( res , cont ) ;
27 }
28 }
29 r e turn res /2 ;
30 }

Name: Computecore
Purpose: Computes the size of the maximal connected component of the k-Core
of a random map of size n given n and k
Input: Two integers k and n
Output: An integer m, representing the size of the maximal connected component
of the k-core of a randomly generated map of size n
Cost: Θ(n)

1 i n t Computecore ( i n t n , i n t k ) {
2 RM M = Random_Map ( n ) ;

3 i n t m = M . Nodes . size ( ) ;
4 VII Adj = Adjacency ( M ) ;

5 VI Sizes ( m ) ;

6 f o r ( i n t i = 0 ; i < m ; ++i ) {
7 Sizes [ i ] = Adj [ i ] . size ( ) ;
8 }
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9 //We put a l l the nodes with s i z e l e s s than k in a queue and we ←↩
mark them as v i s i t e d

10 VB visited (m , f a l s e ) ;
11 queue <int> Q ;
12 f o r ( i n t i = 0 ; i < m ; ++i ) {
13 i f ( Sizes [ i ] < k ) {
14 visited [ i ] = true ;
15 Q . push ( i ) ;

16 }
17 }
18 whi le ( not Q . empty ( ) ) {
19 i n t a = Q . front ( ) ;

20 Q . pop ( ) ;
21 f o r ( i n t i = 0 ; i < ( i n t ) Adj [ a ] . size ( ) ; ++i ) {
22 //We dec r ea s e the s i z e o f the ne ighbours o f the erased nodes ←↩

and add them to the queue i f t h e i r s i z e goes below k
23 i n t x = Adj [ a ] [ i ] ;
24 −−Sizes [ x ] ;
25 i f ( not visited [ x ] and Sizes [ x ] < k ) {
26 Q . push ( x ) ;
27 visited [ x ] = true ;
28 }
29 }
30 }
31 //We r e l a b e l every non−erased noce
32 i n t cont = 0 ;
33 VI Newlabel (m , −1) ;

34 f o r ( i n t i = 0 ; i < m ; ++i ) {
35 i f ( not visited [ i ] ) {
36 Newlabel [ i ] = cont ;

37 ++cont ;
38 }
39 }
40 // Create new Adjacency matrix without the erased nodes
41 VII NewAdj ( cont , VI (0 ) ) ;
42 f o r ( i n t i = 0 ; i < m ; ++i ) {
43 i f ( not visited [ i ] ) {
44 f o r ( i n t j = 0 ; j < ( i n t ) Adj [ i ] . size ( ) ; ++j ) {
45 i f ( not visited [ Adj [ i ] [ j ] ] ) NewAdj [ Newlabel [ i ] ] . push_back (←↩

Newlabel [ Adj [ i ] [ j ] ] ) ;

46 }
47 }
48 }
49 //We return the maximal connected component o f the remaining graph

50 r e turn Maxcomp ( NewAdj ) ;
51 }

Executing them for several values we obtain the following table, where n is the
size of the original map, c is the number of cases, m is the mean of the size of the
maximal connected component of the k-core and V is its variance:
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Values for the 2-core

n c m m/n V V/n

1000 10000 816, 083 0, 816083 166, 047 0, 166047
5000 2000 4082, 14 0, 816428 860, 133 0, 172027
20000 1000 16327, 6 0, 816379 3408, 91 0, 170445
100000 500 81654, 8 0, 816548 17950, 8 0, 179508
1000000 100 816507 0, 816507 157311 0, 157311

Values for the 3-core

n c m m/n V V/n
1000 10000 598, 062 0, 598062 1883, 3 1, 8833
5000 2000 2992, 5 0, 59850 22116, 6 4, 42333
20000 1000 11996, 2 0, 599812 164054 8, 20272
100000 500 59900, 8 0, 599008 3034240 30, 3424
1000000 100 600468 0, 600468 4873840 4, 87384

Values for the 4-core

n c m m/n V V/n
1000 10000 347, 064 0, 347064 5036, 05 5, 03605
5000 2000 1718, 22 0, 343644 66445, 4 13, 2891
20000 1000 6881, 33 0, 344066 561657 28, 0828
100000 500 34703, 5 0, 347035 5395443 53, 9544
1000000 100 347128 0, 347128 18334530 183, 345

Values for the 5-core

n c m m/n V V/n
1000 10000 152, 124 0, 152124 3940, 36 3, 94036
5000 2000 588, 686 0, 117737 51737, 4 10, 3475
20000 1000 1857, 95 0, 0928975 495159 24, 758
100000 500 6873, 2 0, 068732 7078913 70, 78913
1000000 100 42230, 2 0, 04223 290893243 290, 893

Given these results we can formulate the following conjecture:

Conjecture 7.1. The expected value of the size of the k-core of random a map of
size n is linear in n for k = 3 and 4, but sublinear for k ≥ 5.
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