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Introduction

There are more and more mathematicians and statisticians who collaborate

with biologists in order to solve the major problems of the phylogenetics.

Nowadays, different areas of mathematics are involved in phylogenetic stud-

ies, for example, statistics, probability, algebra, combinatorics and numerical

methods. Even more, recently developed techniques from algebraic geometry

that have already been used in the study of phylogenetics.

The aim of this work is to study the relationship between phylogenetics and

these algebraic techniques. But what does phylogenetics study? Phylogenetics

is the study of the evolutionary relationships of a group of species, and it is

usually inferred from the DNA sequences of a set of living species.

Thanks to the model developed by Darwin based on natural selection, we

can construct phylogenetics trees that relate a set of contemporary species.

Thus phylogenetics tries to reconstruct these trees. In order to do it is nec-

essary to model evolution adopting a parametric statistic model. Using these

models one is able to deduce polynomial relationships between the parameters

of our model, known as phylogenetic invariants. Mathematicians have recently

begun to be interested in the study of these polynomials and the study of the

geometry of the algebraic varieties that arise in this setting.

The main goal of this work is to understand the relationship between phy-

logenetics and these algebraic techniques and to prove that using the rank of

certain matrices we can find phylogenetic invariants that are useful for tree re-

construction. To this end we have adapted a proof from a result of Allman and
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Introduction 2

Rhodes and have extended it in order to prove that these rank conditions give

indeed phylogenetic invariants. We also relate the results to the framework of

multininear algebra by understanding joint distributions as tensors.

This work is divided into two parts. In the first part we explain concepts

that are already known. We will explain what are phylogenetic trees from the

mathematical standpoint and we will present several models for these trees.

Once we have studied the models we will explain what phylogenetic invariants

are and how these can be found, and see how they can be used to reconstruct

the structures of trees. All these concepts are explained in Chapter 1 and in

the first section of the second chapter.

In the second part of this work we develop our contribution in understand-

ing the results and proofs of Allman and Rhodes. In this part, presented in the

second section of Chapter 2 we will formulate and proof two important results

that provide phylogenetic invariants for trees generated by four species. In

order to complement these results we have added a computer program that

with specific cases corroborates our results (see Annex A).



Chapter 1

Evolutionary models

1.1 Phylogenetic trees

1.1.1 Biological preliminaries

Phylogenetics is the study of relationships between different species or biolog-

ical entities. It studies how species evolve and where contemporary species

come from. According to the theory of the biological evolution developed by

Darwin (s.XIX), all species of organisms evolve through the natural selection

of small variations that increase the individual’s ability to compete, survive,

and reproduce. We can model this theory with phylogenetic trees (see Fig.1.1).

The nodes of this tree represent different species and every branch is an evolu-

tionary process between two species. The leaves of the tree are contemporary

species and the root of the tree will the common ancestor of all species.

Genetic information of each individual is encoded in the DNA of the nucleus

of its cells. DNA molecules are composed of simpler units called nucleotides

and consist of two anti-parallel strands of nucleotides coiled around each other

to form a double helix. Each nucleotide is composed of a phosphate, a sugar

and a basis. According to the bases, nucleotides are called adenine (A), cytosine

(C), guanine (G) and thymine (T). A base-pair is one of the pairs A− T or

C− G. The nucleotides on a base-pair are complementary in the sense that

in the double helix adenine connects with the thymine and the guanine with

3



Phylogenetic trees 4

Figure 1.1: A phylogenetic tree

cytosine. According to this symmetry, we store a DNA molecule as an ordered

sequence of A, C, G and T (see Fig. 1.2).

The heredity information in a genome is thought to be contained in the

genes. But the DNA sequences of a same gene may not be the same for different

species. They contain similar parts but they can also contain some other parts

that we can not compare. For that reason the first problem is identifying

which part of the DNA sequences of different species we can compare. This

information is collected in an alignment. A sequence alignment is a way of

arranging the sequences of DNA to identify regions of similarity that may be

a consequence of functional, structural, or evolutionary relationships between

the sequences. We can represent the alignment with a table whose rows are

the species DNA sequences and whose columns correspond to nucleotides that

have evolved from the same nucleotide of the common ancestor of all the

species (see Table 1.1). Alignments are used in many contexts, in phylogenetics

among them, to see relationships between some species and to reconstruct the

phylogenetic tree that relates them. Changes in DNA sequences of different
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Figure 1.2: DNA molecule

species are given by substitutions, insertions or deletions. In the two latter

cases, a nucleotide is inserted or deleted from a given position as compared with

the other sequence. In most commonly used evolutionary models, insertions

and deletions are not considered and incorporating them would highly increase

the complexity of the model. So in this work we will assume that mutations in

different alignments are just substitutions. Therefore the alignments we will

deal with have the same length and contain no gaps.

Gorilla Gorilla AACTTCGAGGCTTACCGCTG

Homo Sapiens AACGTCTATGCTCACCGATG

Pan Troglodytes AAGGTCGATGCTCACCGATG

Table 1.1: A multiple sequence alignment of DNA sequences of Homo Sapiens
(Human), Pan Troglodytes (Chimpanzee) and Gorilla Gorilla (Gorilla).

1.1.2 Phylogenetic trees as graphs

In this section we introduce the concepts that allow us to deal with phylogenetic

trees. We follow the approach in [AR04], [AR05] and [Cas12].
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Definition 1.1.1. A tree T is a connected acyclic graph. The degree of a

vertex in a tree T is the number of edges incident to it. A leaf is a vertex of

degree 1 while an internal vertex is a vertex of degree at least 2. The set of

leaves is usually denoted by L(T ) and leaves are labelled from 1 to n. Int(T )

denote the set of interior nodes and E(T ) the set of edges of the tree. If all

nodes in Int(T ) have degree 3, then T is called a trivalent tree.

Definition 1.1.2. A tree is called a rooted tree if one vertex has been labelled

as “root”, and the edges are oriented away from the root.

Definition 1.1.3. Let X denote a finite set of labels. Then a phylogenetic

tree is a pair (T , φ) where T is a tree and φ : X → L(T ) is a one-to-one

correspondence.

In a phylogenetic tree the set X represents a set of living species and the

tree T shows the ancestral relationships among them. If the phylogenetic tree

is rooted, then the root represents the common ancestor to the set of species

X.

Example 1.1.4. Figure 1.3 is an example of a phylogenetic tree, where

X = {Homo sapiens, Gorilla Gorilla, Pan Troglodytes, Macaca Mulatta} is

the set of labels.

The correspondence between the set of leaves and the set of labels is:

L(T )
φ←→ X

1
φ←→ Homo Sapiens

2
φ←→ Gorilla Gorilla

3
φ←→ Pan Troglodytes

4
φ←→ MacacaMulatta

For our purposes, usually the set X will coincide with the set {1, 2, . . . , n}.
A phylogenetic rooted tree has an induced orientation on its edges. The length

of the edges, called branch length represents the evolutionary distance. This

can be represented for example by the number of nucleotide changes that have
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occurred along the evolutionary process represented by that branch between

two species.

Figure 1.3: 4-leaf phylogenetic tree on the set of species Homo Sapiens (hu-

man), Pan Troglodytes (chimpanzee), Gorilla Gorilla (gorilla), and Macaca

Mulatta (macaque).

Definition 1.1.5. The tree topology of a phylogenetic tree is the topology as

a labelled graph.

Figure 1.4: The 3 possible topologies for T4

That is, two phylogenetic trees with the same set of labels X at the leaves,

T1 and T2, have the same topology if there is a one-to-one correspondence ϕ
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between their vertices that respects adjacency and their leaf labelling. If T1
and T2 are rooted trees and r1, r2 are their roots respectively then we need to

impose ϕ(r1) = (r2).

We will denote by Tn the set of all possible possible unrooted trivalent

tree topologies for n-leaf trees. For example Figure 1.4 shows the 3 possible

topologies for T4.

Example 1.1.6. Tree represented in Figure 1.5 has the same topology as the

tree represented in Figure 1.6 if it is considered as an unrooted tree.

Figure 1.5: 4-leaf rooted tree

Figure 1.6: 4-leaf unrooted tree

The first goal in phylogenetics is, given an alignment of n DNA sequences of

n different species, infer which of the Tn topologies explains best the evolution

of this set of species. Another goal in phylogenetics is to infer the branch

lengths on this tree (evolutionary distance), but we will not deal with this

problem in this work.
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1.2 Evolutionary models

One usually models evolution adopting a parametric statistical model. That

is, evolution is assumed to be a stochastic process, in which nucleotides mutate

randomly over time according to certain probabilities.

Let T be a rooted phylogenetic tree with n leaves. We assume that the

nucleotides in the DNA sequence are independent and identically distributed

(iid). That is, the states at each position in the sequence evolve independently

of the other nucleotides and according to the same evolutionary process. To

this end we associate a discrete random variable Xi to each node i of T with

κ possible states. Let K be the set of the κ states. Usually κ = 4 and the

states represent the four nucleotides in DNA, Adenine, Cytosine, Guanine

and Thymine and then K = {A, C, G, T}. Random variables at the leaves are

observed because the DNA sequences of the contemporary species are obser-

vations of the variables, while the random variables at the interior nodes are

hidden. If T has leaves 1, 2, . . . , n, then X = (X1, X2, . . . , Xn) is the vec-

tor of joint distribution at the leaves and each column of the alignment is an

observation of this vector of random variables.

Let π = (π1, . . . , πκ) be the distribution of Xr at the root r (all entries are

nonnegative and
∑

i πi = 1). If κ = 4 and K = {A, C, G, T} then we interpret

these entries as giving the probabilities that an arbitrary site in the DNA

sequence at the root is occupied by the corresponding base, or, equivalently,

as the frequencies with which we would expect to observe these bases in a

sequence at the root. Now for each edge e we associate a κ × κ matrix Me.

We will call this matrix substitution or transition matrix. Its entries are the

conditional probabilities P (x|y, e) of a state y at the parent node of e being

substituted by a state x at its child, during the evolutionary process along

branch e. Thus the rows of Me sum to 1 and Me is a Markov matrix (or a row

stochastic matrix ). If κ = 4 and K = {A, C, G, T} then the (i, j)-entry of Me

stands for the conditional probability that if nucleotide i occurs at one site in

the parent vertex on the edge e, then nucleotide j occurs at the descendent

vertex at the same site.
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Therefore a substitution matrix for κ = 4 and K = {A, C, G, T} is

A C G T

Me =

A

C

G

T


P (A|A, e) P (C|A, e) P (G|A, e) P (T|A, e)
P (A|C, e) P (C|C, e) P (G|C, e) P (T|C, e)
P (A|G, e) P (C|G, e) P (G|G, e) P (T|G, e)
P (A|T, e) P (C|T, e) P (G|T, e) P (T|T, e)

 .

The probabilistic model we have described is a Markov process in the fol-

lowing sense.

Definition 1.2.1. A Markov process is a random phenomenon, such that it

complies the Markov property that says that ”the process has no memory”,

which means that the probability distribution of the future value of a variable

depends on its present value, but is separated from the history of the variable.

In other words, in a Markov process the probability that a particular state

change occurs given the system is in state i is the same as the probability of

the same change, given any entire earlier history of states ending in state i.

The model we have explained above, of molecular evolution occurring

through random nucleotides substitutions satisfies the Markov assumption.

Since the probabilities of the various possible state changes on any given edge

depend only on the state at the ancestral node on that edge. Besides, we only

have observations of the random variables at the leaves and we do not have

observations for the variables at the interior nodes, so ours is a hidden Markov

process.

Example 1.2.2. In Figure 1.7 let X1 the random variable associated to Go-

rilla, X2 displays nucleotides in human and X3 in Chimpanzee. Therefore the

random vector X = (X1, X2, X3) represents the observed random variables

associated with the Gorilla, the Human and the Chimpanzee respectively. For

example the observation of the vector X associated to the first column of the

alignment in Table 1.1.1 is (A,A,C). We associate a transition matrix Me to

each edge of the rooted phylogenetic tree that connects the three species.



Evolutionary models 11

Figure 1.7: Left: Phylogenetic tree of Gorilla Gorilla, Pan troglodytes and
Homo Sapiens. Right: Statistical model on a rooted phylogenetic 3-leaved
tree.

According to the shape of the transition matrices one has different models.

If we do not impose any restriction, then we have the model called general

Markov model GMM where the substitution matrices Me are of the form

Me =


ae be ce de

ee fe ge he

je ke le me

ne oe pe qe

 , where


ae + be + ce + de = 1

ee + fe + ge + he = 1

je + ke + le +me = 1

ne + oe + pe + qe = 1

Now we present some other models, which are more restrictive than the

GMM.

Definition 1.2.3. Jukes Cantor model.

This is the most restricted model since it adds several additional assumptions

to the general Markov model. At the same time is really simple. First of

all it assumes that all bases occurring with equal probability in the ancestral
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sequence. Therefore the root distribution vector is

π =

(
1

4
,
1

4
,
1

4
,
1

4

)
.

And now it assumes the substitution matrices are of the form

Me =


ae be be be

be ae be be

be be ae be

be be be ae

 ,

and since the rows sum to 1, be = (1− ae)/3.

Definition 1.2.4. Strand symmetric model.

Another model that has a particular interest is the Strand symmetric model

that reflects the double strand symmetry of DNA molecules. As we have

explained, in the DNA molecule nucleotides are linked in pairs A− T and C− G,

so this model contemplates this and assumes the following restrictions je = he,

ke = ge, le = fe, me = ee, ne = de, oe = ce, pe = be, qe = ae (see the GMM

matrix in the previous page), πA = πT and πC = πG. Therefore the matrices

are,

Me =


ae be ce de

ee fe ge he

he ge fe ee

de ce be ae

 ,

with sum of rows equal to 1.

Definition 1.2.5. Kimura models.

Kimura 3-parameter is a model introduced by Kimura in 1981. This model

assumes that the base frequencies at the root are equal. It is more flexible

than Jukes Cantor model since in this case it has three free parameters. The
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transition matrices are 
ae be ce de

be ae de ce

ce de ae be

de ce be ae

 ,

where ae = 1− be− ce−de and the root distribution is assumed to be uniform.

A more restricted model is the Kimura 2-parameter model, which assumes

moreover that be = de.

1.3 Evolutionary models and polynomial maps

We fix now an evolutionary modelM on a tree T of n leaves rooted at a node

r. We call K the set of states of the random variables at the nodes of the

tree and let κ be the cardinal of K. In what follows we can describe how to

compute the joint probability of observing states x1, x2, . . . , xn at the leaves

according to the Markov process we have described.

We will denote by px1,...,xn the joint distribution at the leaves of a rooted

phylogenetic tree T , that is, px1,...,xn is the probability that leaves 1, . . . , n take

the states x1, . . . , xn:

px1,...,xn = Prob(X1 = x1, X2 = x2, . . . , Xn = xn).

We define P as the vector whose entries are the joint probabilities px1...xn ,

P = (px1...xn)x1...xn∈K.

Then as the evolutionary processes are independent and just depend on a

common node we can express px1,...,xn in terms of the entries of the substitution

matrices. Then we can compute px1,...,xn in the following way.

px1,...,xn =
∑

xr,(xv)v∈Int(T )

∏
e∈E(T )

Me(xa(e), xd(e)), (1.1)
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where xr ∈ K is a state of the root, xa(e) ∈ K is a state of the node ancestor

of the edge e, and xd(e) ∈ K is the state of the descendent node of the edge e

and if e is a terminal edge to a leaf i then xd(e) = xi.

Example 1.3.1. Let T be the 5-leaf tree of Figure 1.8. Suppose every random

variable has K as the set of states. Considering the Figure 1.8 with Mi are the

substitution matrices for each ei.

Figure 1.8: Statistical model on a rooted phylogenetic 5-leaved tree.

Then the joint distribution px1,x2,x3,x4,x5 = Prob(X1 = x1, X2 = x2, X3 =

x3, X4 = x4, X5 = x5) for this tree in terms of the transition matrices is

px1,x2,x3,x4,x5 =
∑
xr∈K

∑
x6∈K

∑
x7∈K

∑
x8∈K

πxrM1(xr, x1)M2(x7, x2)M3(x7, x3)×

×M4(x8, x4)M5(x8, x5)M6(xr, x6)M7(x6, x7)M8(x6, x8).

Example 1.3.2. Consider the Example 1.2.2. Then pxyz = Prob(X1 =

x,X2 = y,X3 = z) is the probability of observing nucleotides x, y, z at the

leaves Gorilla Gorilla, Homo sapiens and Pan troglodytes respectively. In
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terms of the transition matrices of the model M, we have

pxyz =
∑

xr,x4∈{A,C,G,T}

πxrM1(xr, x)M4(xr, x4)M2(x4, y)M3(x4, x), (1.2)

where π = (πA, πC, πG, πT) is the distribution of nucleotides at the root. Con-

sider that the model M is the Jukes Cantor model, then

pAAA =
1

4
(a1a4a2a3 + 3b1b4a2a3 + 3b1a4a2a3 + 3a1b4a2a3 + 6b1b4b2b3),

ai + 3bi = 1 for i = 1, 2, 3, 4.

On the other hand the probability that the tree T of figure 1.7 has produced

the alignment in table 1.1 equals

(pAAA)
4 ∗ pCCG ∗ pTGG ∗ (pTTT)

3 ∗ (pCCC)
4 ∗ pGTG ∗ pGTT ∗ (pGGG)

3 ∗ pTCC ∗ pCAA.

We will study the relations among the joint distributions entries. To this

end, we view P = (px1,...,xn)x1,...,xn as a vector space in Cκn . Let T be a rooted

phylogenetic tree andM an evolutionary model. Let r be the root of T and Xi

the random variables associated to the n leaves that can take κ different states

from the set K = {s1, . . . , sκ}. Then we can define a map ϕMT : Rd → R4n that

sends the set of d parameters to the set of the κn possible joint distribution

at the leaves. It may seem strange that we define this map in R or C when

we were talking about probabilities (so real numbers in [0,1]), but we want to

define this application on C in order to use techniques from algebraic geometry.

More formally this map is

ϕMT : Cd −→ Cκn

(π, {Me}e∈E(T )) 7→ p = (ps1s1...s1 , ps1s1...s2 , ps1s1...s3 , . . . , psκsκ...sκ),

where px1...xn is expressed in terms of the root distribution π and the transition

matrices Me according to the expression 1.1 and d stands for the number of

free parameters of the model. Although both parameters and image points

stand for probabilities we allow them to belong to C (and not only in the



Joint distribution as a tensor 16

simplex) because this is enough to deduce algebraic equations satisfied by the

image points.

It can be proved that if we root the tree T at a different node r′ (call this

tree T ′) then, for any set of parameters π, {Me}e∈E(T ), there exist parameters

π, {Me}e∈E(T ) such that

φMT (π, {Me}e) = φMT ′ (π′, {M ′
e}e).

This means that the root position cannot be inferred from the joint distribution

at the leaves. This phenomenon is usually known as the non-identifiability of

the root position.

This is why we usually deal with unrooted trees when addressing the problem

of topology reconstruction.

Let T be the phylogenetic tree topology of the Figure 1.7 and consider the

Jukes Cantor model. Suppose κ = 4 and K = {A,C,G, T}. Then the map

that corresponds to this topology is:

ϕJCT : C4 −→ C64

(a1, a2, a3, a4) 7→ p = (pAAA, pAAC, pAAG, . . . , pTTT),

and the joint probabilities at the leaves are written in terms of the parameters

using expression 1.1.

1.4 Joint distribution as a tensor

Although it is not essential for the remaining sections, we now introduce a more

algebraic way of viewing the joint distribution at the leaves of a phylogenetic

tree, which was one of our goals in this project.

Let T be a rooted phylogenetic tree and M an evolutionary model. Let r

be the root of T and Xi the random variables associated to the n leaves that

can take κ different states from the set K = {s1, . . . , sκ}.
Let W := Cκ be a vector space. We identify the canonical basis of W with

the set K. Then the natural basis of W ⊗ n). . .⊗W is {x1 ⊗ . . .⊗ xn}x1,...,xn∈K.
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For example if K = {A, C, G, T}, then the natural basis of W ⊗ W ⊗ W is

{A⊗ A⊗ A, A⊗ A⊗ C, . . . , T⊗ T⊗ T}
The joint distribution P = (px1...xn)x1...xn∈K can be thought as a κ× n). . .×κ

array and p can be viewed as a tensor in W ⊗ n). . . ⊗W whose coordinates in

the natural basis above are p = (px1...xn)x1...xn∈K.

p =
∑

x1...,xn∈K

px1,...,xnx1 ⊗ . . .⊗ xn.

This formulation of the joint distribution arises naturally as we will observe

in the following chapter.



Chapter 2

Phylogenetic invariants for tree

reconstruction

In this section we will explain that we can see the evolutionary models that we

described in the section 1.2 as algebraic varieties, and we will see how algebraic

geometry can help us to reconstruct phylogenetic trees. We follow the results

presented in [Cas12], [CFS10], [Eri05] and [AR07]. To be able to reconstruct

these trees it can be useful know algebraic relationships among coordinates of

the joint distribution at the leaves. We will be interested in know the algebraic

relations that are satisfied by the joint distribution of a tree topology but not

for the others topologies of the same tree. This is what biologists Cavender

and Falsestein called in 1987 phylogenetic invariants (see Def. 2.1.4) and they

indicated this as a potential tool of the reconstruction of the tree topology.

2.1 Phylogenetic invariants

Definition 2.1.1. An algebraic variety V in Cn is the set of solutions to a

system of polynomial equations: V = {p ∈ Cn|f1(p) = 0, . . . , fr(p) = 0} for

some polynomials f1, . . . , fr on n variables.

The set of algebraic varieties in Cn form the close sets of a topology, the Zariski

topology.

18
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Lemma 2.1.2. Given any subset S of in Cn the set of polynomials vanishing

on all the points in S forms an ideal I(S) called ideal of S.

Theorem 2.1.3. Hilbert’s Basis Theorem.

Every ideal I ⊆ C[x1, ..., xn] can be generated by a finite set of polynomials

f1, . . . , fm.

Let T be a phylogenetic tree with n leaves and let T be its topology.

Suppose that each node can take κ states from K. Let M be an evolutionary

model with d parameters on the tree topology, px1,...,xn the joint distribution

of nucleotides at the leaves defined as above and ϕMT : Cd → C4n the map that

sends the set of d parameters to the set of the κn possible observations at the

leaves.

The image ImMT of the map ϕMT contains the set of all the joint distributions

of the states at the leaves for a tree topology T generated by some parameters

in the evolutionary model M. We denote by VM(T ) the smallest algebraic

variety containing ImMT and we call it the phylogenetic variety associated to

T and M. The image set itself ImMT is not in general an algebraic variety.

But this set is a dense open subset in the smallest algebraic variety VM(T )

containing it (in the Zariski topology).

We are going to study the ideal I(ImMT ) (which coincides with the ideal of

VM(T )) and we will denote as IM(T ).

Definition 2.1.4. Given a tree topology T on n leaves and an evolutionary

model M, the polynomials in IM(T ) are called invariants of T . If f is a

polynomial in IM(T ) which does not belong to IM(T ′) for all the others tree

topologies T ′ on n leaves, then f is called a phylogenetic invariant of T .

If a polynomial f lies on IM(T ), then we can observe that f defines a

relationship among the probabilities px1,...,xn .

Example 2.1.5. This example will help us viewing a probabilistic model in

phylogenetics algebraically. Consider a rally simple tree formed by a root r

and two leaves to which we associate two random variables X1 and X2 (see

Fig. 2.1).
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Figure 2.1: Statistical model on a rooted phylogenetic 2-leaf tree.

Suppose each the set of states of each random variable Xr, X1, X2 is K =

{A, C, G, T}. For the root r we specify the probabilities π = (πA, πC, πG, πT).

For each edge of the tree we model the evolutionary process with two Markov

matrices M1 and M2, where as we known Mi describes the mutation process

on the edge ei. Then from the model parameters we compute the probability

of each possible observation at the leaves.

px1,x2 = Prob(X1 = x1, X2 = x2) =
∑

xr∈{A,C,G,T}

πxrMi(xr, x1)M2(xr, x2).

(2.1)

The joint distribution (px1,x2)x1,x2 can be thought of as a 4 × 4 matrix each

of whose entries is a polynomial of degree 3 and consisting of 4 terms in the

parameters of the model. These 16 polynomials parameterize the model reflect

all the modelling assumptions.

To produce a clear example and see some invariants we simplify the model

by restricting it to an ancestral-A model. An ancestral-A model is such that

the root sequence is composed of only the base A and then π = (1, 0, 0, 0).

Then the equation 2.1 is simpler and the joint distribution has a easier form

px1,x2 = M1(A, x1)M2(A, x2). (2.2)



Phylogenetic invariants 21

In these conditions from equation 2.2 we observe

px1,x2px3,x4 = M1(A, x1)M2(A, x2)M1(A, x3)M2(A, x4),

px1,x4px3,x2 = M1(A, x1)M2(A, x4)M1(A, x3)M2(A, x2).

And therefore

px1,x2px3,x4 − px1,x4px3,x2 = 0.

Thus for every choice of x1, x2 and x3, x4 we have found a polynomial fx1x2,x3x4(P )

that evaluate to 0 when P = (px1,x2)x1,x2 is any true distribution coming from

the ancestral-A model.

fx1x2,x3x4(P ) = px1,x2px3,x4 − px1,x4px3,x2 .

Then we have found invariants for the ancestral-A model on a 2-leaves tree.

The problem that we have now is how can we found the generator basis of

IM(T )? And if we know phylogenetic invariants of a tree, can we used to infer

to the right topology?

For a concrete number of leaves, there exists some computational algebra

programs that can calculate them using the kernel of ϕTM (for example singular

or Macaulay2 ). But in practice this is not even possible for 3-leaf trees, since

this require so much memory capacity. Now we will mention some results that

guarantee the possibility of calculate the invariants of n-leaf trees by the 3-leaf

trees and the minors of some matrices.

Theorem 2.1.6. ([AR08], [Kut09]) Let T be a phylogenetic tree of n species

M the model associated to this tree. There exists an algorithm to obtain a set

of generators of IM(T ) from the invariants of a 3-leaf tree and the minors of

certain matrices associated to the edges of T (we call them the edge invariants).

This result it cannot be carried through, since if we pick GMM or the

strand symmetric model, the invariants for 3-leaf trees are not known. The

edge invariants are easy to compute and we will devote the next section to

them. On the other hand it is not necessary to calculate a complete list of
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invariants, for some applications we just need some of them. For example we

just need to find the invariants that come from joint distributions and that

define VM(T ). On the other hand if we are interested in just recovering the

tree topology we just need the phylogenetic invariants. The following result

shows us that the phylogenetic invariants are the edge invariants that we have

mentioned above.

Theorem 2.1.7. ([CFS11]) Let T be a phylogenetic tree of n species evolving

under an evolutionary M. Then, for phylogenetic reconstruction purposes it

is enough to consider only edge-invariants of T .

2.2 Edge invariants for the general Markov

model

To construct a first class of invariants we are going to consider the much simpler

situation. Consider the next tree, two taxa a and b descendent from a common

ancestor r, so the same tree as in the example 2.1.5. The Figure 2.1 shows the

parameters associated to this tree. X1, X2, Xr are random variables associates

to the nodes and M1,M2 are general Markov substitution matrices as above.

Suppose κ = 4 and K = {A, C, G, T}. We have calculated the joint distribution

at the leaves at equation 2.1. Notice that there are 16 different probabilities

since as x1 as x2 can have 4 values. Then we can represent these 16 expressions

as a product of matrices:

P = (Px1x2)x1x2 = MT
1 diag(π)M2,

where diag(π) is a matrix that contains the vector π on the diagonal and 0 in

all off-diagonal entries.

Now we will see some simple examples of how to find invariants based on

the matrix P we have defined. We observe first the following easy lemma from

linear algebra.
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Figure 2.2: 2-leaved phylogenetic tree

Lemma 2.2.1. Let Am×n and Bn×k be m× n and n× k matrices. Then

rk(AB) ≤ min{rkA, rkB}.

Example 2.2.2. Ancestral-A model.

First of all consider the ancestral-A model that we have defined above, assuming

the GM model with π = (1, 0, 0, 0), so diag(π) has only one non-zero entry,

so has rank 1. This implies that the matrix P has rank 1 by Lemma 2.2.1.

So in that case the 2 × 2 minors of P are all zero. These new equations are

invariants for the ancestral-A model.

Example 2.2.3. Ancestral-AC model.

Now we define the ancestral-AC model on the 2 leaf tree as follows. Lets suppose

π = (πA, 1 − πA, 0, 0). Now diag(π) has rank 2, and then the rank of P is at

most 2. Thus all 3× 3 minors are invariants.

Example 2.2.4. Ancestral-ACG model For the ancestral-ACG model, defined

in the same way that the previous, i.e. π = (πA, πC , 1 − πA − πC , 0) we can

observe that P has at most rank 3, so det(P ) = 0 is the only invariant that

we can obtain with this method.

Example 2.2.5. For the General Markov model with no restrictions similar

reasoning shows that P has at most rank 4, but P is already a 4 × 4 matrix,
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so we do not obtain any invariant with this method.

To use this viewpoint to find invariants for the GMM we first need to

generalize the definition of GMM to include the possibility of different number

of states at the interior nodes and the leaves. In this case we allow the random

variable Xi at node i to take values on a set of κi states and the transition

matrix on edge e from node i to node j will be a κi × κj Markov matrix.

Lemma 2.2.6. Let X1, X2, Xr be three discrete random variables associated

to the nodes r, a and b of a 2-leaf tree in Figure 2.2. Suppose the variables

may take κ, λ or µ states respectively. Let P = (px1x2)x1x2 where px1x2 is the

probability of observing state x1 at a and x2 at b. Thus all (κ + 1) × (κ + 1)

minors of P vanish. If κ < min{λ, µ} these minors are invariants of the model.

Proof. First of all, the vector π specifies the probabilities of the κ states at r

while M1
κ×λ and M2

κ×µ are the substitution matrices associates to the edges.

We have already seen that P = (M1
κ×λ)

Tdiag(π)M2
κ×µ. We can observe that

diag(π) is a κ×κ matrix, and then its rank is at most κ, i.e. rk (diag(π)) ≤ κ.

Thus, by Lemma 2.2.1 rk (P ) ≤ κ all (κ + 1) × (κ + 1) minors of P vanish.

Obviusly, if κ < min{λ, µ}, then P is big enough to alllow room for such

minors and therefore we have found some invariants for the model

The following definition is crucial for finding phylogenetic invariants for the

general Markov model.

Definition 2.2.7. Let T be a phylogenetic tree whith n leaves. Suppose

that each random variable associated to a leaf can take κ states from K =

{x1, . . . , xκ}. Let A|B be a partition of the leaves (that is L(T ) = A ∪ B and

A∩B = ∅) and X̃A and X̃B the random variables associated to A and B. Then

X̃A and X̃B can take κ|A| and κ|B| states respectively. We define the flattening

FlattA|B as a κ|A| × κ|B| matrix whose entries are the joint distribution at the

leaves arranged according to the sets A and B:
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States at leaves in B

FlattA|B =

States at

leaves

in A



px1x1...x1x1 px1x1...x1x2 px1x1...x1x3 . . . px1x1...xκxκ

px1x2...x1x1 px1x2...x1x2 px1x2...x1x3 . . . px1x2...xκxκ

px1x3...x1x1 px1x3...x1x2 px1x3...x1x3 . . . px1x3...xκxκ
...

...
...

. . .
...

pxκxκ...x1x1 pxκxκ...x1x2 pxκxκ...x1x3 . . . pxκxκ...xκxκ


.

Example 2.2.8. Let T be a 4-leaf phylogenetic tree and K = {A, C, G, T}.
Then Flatt12|34(P ) is the 16× 16 matrix:

States at leaves 3 and 4

FlattA|B =

States at

leaves

1 and 2



pAAAA pAAAC pAAAG . . . pAATT

pACAA pACAC pACAG . . . pACTT

pAGAA pAGAC pAGAG . . . pAGTT
...

...
...

. . .
...

pTTAA pTTAC pTTAG . . . pTTTT


.

As we mentioned in Section 1.4 we can view the vector of joint distribution

p as a tensor in W ⊗W ⊗W ⊗W . Each component of this tensor product

corresponds to one leaf, so in order to make leaves visible in this tensor product

we denote it as W1 ⊗ W2 ⊗ W3 ⊗ W4 (Wi = W). If we view the vector of

joint distribution p as a tensor in W1 ⊗W2 ⊗W3 ⊗W4, then the flattening

Flatt12|34(P ) is the image of P via the isomorphism

W1 ⊗W2 ⊗W3 ⊗W4
∼= Hom(W1 ⊗W2,W3 ⊗W4) ∼= M16×16

p 7→ Flatt12|34(P )

Here we prove the main theorem that gives invariants for the general

Markov model.
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Theorem 2.2.9. Let T be the trivalent 4-leaf phylogenetic tree that has leaves

1,2 joined in a cherry. Suppose each random variable associated to a leaf can

take states on a set K of cardinal κ. Then the (κ + 1) × (κ + 1) minors of

Flatt12|34(P ) vanish, equivalently Flatt(P ) has rank ≤ κ.

Figure 2.3: Left: 4-leaved tree, with taxa 1, 2, 3, 4, and rooted at r. Right:
Statistical model on this 4-leaf tree.

Proof. Let T be a 4 leaves phylogenetic tree as the tree represented in Figure

2.3, with the root at the left of the internal edge. Every random variable Xi

associated to the nodes can take κ states from a set K. Then the GM model

has as parameters a root distribution vector π = (πx1 , . . . , πxκ) and 5 κ × κ

Markov matrices M1, M2, M3, M4, Mf . We can view the joint distribution

P of this tree as a κ× κ× κ× κ array (X1, X2, X3, X4), where every entry is

a random variable associated to a leaf.

Figure 2.4: Split A={1,2}, B={3,4} in the 4-leaf tree in Figure 2.3
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In order to use the previous lemma, we ignore some of the structure in

the model by grouping the nodes as we can observe in Figure 2.4. Let A =

{1, 2}, B = {3, 4} be two pairs of nodes. The random variables associated to

a and b, X̃1 and X̃2 respectively, have now κ2 states.

For this model with the new structure we have the following Markov ma-

trices M̃1 and M̃2, transition matrices from r to a and b.

M̃1(xi, (xj, xk)) = M1(xi, xj)M2(xi, xk),

M̃2(xi, (xj, xk)) =
κ∑
l=1

Me(xi, xl)M3(xl, xj)M4(xl, xk).

The entries of M̃1 are the probabilities that leaves 1 and 2 are in states xj

and xk respectively if the root is in state xi, and similary for M̃2.

Use the GM model in this way corresponds tho changing the way we view

the joint distribution array P . If we had a κ× κ× κ× κ array before, now we

can consider one of the flattenings into a κ2×κ2 matrix. Notice that the entries

of the array and the following matrix are unchanged, we just heve changed the

way we view these entries.

FlattA|B(P )((i, j), (k, l)) = Pi,j,k,l = MT
1 diag(π)M2,

F latt(P )A|B =



px1x1x1x1 px1x1x1x2 px1x1x1x3 . . . px1x1xκxκ

px1x2x1x1 px1x2x1x2 px1x2x1x3 . . . px1x2xκxκ

px1x3x1x1 px1x3x1x2 px1x3x1x3 . . . px1x3xκxκ
...

...
...

. . .
...

pxκxκx1x1 pxκxκx1x2 pxκxκx1x3 . . . pxκxκ...xκxκ


Thus this is a model for which we have already found invariants. We

can therefore immediately see, using Lemma 2.2.6, that the (κ + 1)× (κ + 1)

minors of FlattA|B(P ) are invariants of the of the GM model on this tree, since

FlattA|B(P ) must have rank at most κ.
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It can be shown that for a dense subset of all parameters, the GM model

with one specified root location on a tree T produces the same joint distribution

as the GM model with a different root location on T , so these invariants do

not depend on the location of r at one of the internal edge of the tree. Thus

we can choose the root in the convenient location for our construction.

Remark 2.2.10. This construction easily generalizes to larger trees. We just

have to pick an internal edge e joint two nodes r and f and we obtain a split

A|B by removing this edge of the tree. Then we have to construct the two

matrices M1 and M2 in the same way that the latests ones. M̃1 and M̃2 will

be κ × κ|A| and κ × κ|B| matrices, and their entries will be the conditional

probabilities from r to the leaves of every subset of the partition. Then with

the same argument we can see that the (κ+1)× (κ+1) minors of FlattA|B(P )

are invariants for this model.

Remark 2.2.11. Consequently, for any tree, considering the GMM with K =

{A, C, G, T} the 5× 5 minors of FlattA|B(P ) are invariants.

Notice that the entries in FlattA|B(P ), and thus the invariants we have

found, depend only on the split of taxa {1, 2}, {3, 4} induced by the internal

edge of the tree. For larger trees we can pick any internal edge of T and we

will obtain its particular Flatt(P ).

Example 2.2.12. Consider the 2-state GM model and a 5 leaves tree. Denot-

ing states by 0 and 1. We have two possible splits, and we obtain two different

flattenings (see Fig.2.5).

The {a1, a2, a3}, {a4, a5} split gives a 8× 4 Flatta1a2a3|a4a5(P )

Flatta1a2a3|a4a5(P ) =


p00000 p00001 p00010 p00011

p00100 p00101 p00110 p00111
...

...
...

...

p11100 p11101 p11110 p11111

 ,

and the {a1, a2}, {a3, a4, a5} split gives a 4× 8 Flatta1a2|a3a4a5(P )
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Figure 2.5: 5-leaf tree and two possible splits.

Flatta1a2|a3a4a5(P ) =


p00000 p00001 p00010 . . . p00111

p01000 p01001 p01010 . . . p01111

p10000 p10001 p10010 . . . p10111

p11000 p11001 p11010 . . . p11111

 .

And therefore we will obtain different invariants from these two matrices.

We will prove now that the invariants we have already found are indeed

phylogenetic invariants for 4-leaves tree. So the invariants we have found are

not invariants in the other topologies. This means that the (κ + 1) × (κ + 1)

minors of Flatt12|34(P ) do not vanish if P is a distribution on the tree 13|24

or 14|23.

Theorem 2.2.13. For general parameters on the tree 12|34, Flatt13|24(P ) and

Flatt14|23(P ) have rank κ2.

Proof. Consider the four leaves tree as in Figure 2.3, a κ-state GM model

and K the states of each random variable Xi associated to the node i. Con-

sider now the partition A = {1, 3} and B = {2, 4} (see Figure 2.6). The
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joint distrubutions have not changed, but now MA (transition matrix from

r to A), MB (transition matrix from r to B) and Flatt(P) have new struc-

tures. We have seen that rank(Flatt12|34(P )) ≤ 4 we will prove now that

rank(Flatt13|24(P )) = 16 if P is general enough.

Figure 2.6: Left: 4-leaved tree Right: Split A={1,3}, B={2,4}

Let R be the set of the nodes that are shared by the induced subtrees for

a and b. In this case R = {r, f}. Then we can write

FlattA|B(P ) = MT
Adiag(π(R))MB

where π(R) is the distribution of R and MA and MB are the κ|R| × κ|A| and

κ|R|× κ|B| transition matrices. In our case, |R| = |A| = |B| = 2. So π(R), MA

and MB are κ2 × κ2 matrices.

π(R) is a diagonal matrix, and the entries are the probabilities of the κ2

possible states for {r, f}. Furthermore rank(π(R)) = κ2 if π(R) has no zero

entries (in this step we make use of the fact that parameters are general).

Let us see how is MA structured.

MA = (P (A = xixj|R = xuxv)) xixj ∈ K2

xuxv ∈ K2

= (P (1 = xi, 3 = xj|r = xu, f = xv))xi,xj ,xu,xv∈K

Therefore

P (a = xixj|R = xuxv) = P (1 = xi|r = xu)P (3 = xj|f = xv) = M1(xu, xi)M3(xv, xj)
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So we can deduce that

MA = (M1 ⊗M3)
T

Thus we have proved that MA is a Kronecker product1, and

rk(M1 ⊗M3) = rk(M1) rk(M3).

The matrix MB is constructed similarly. If M1 and M3 are general stocasthic

matrices, rk(Mi) = κ so rk(M1 ⊗M3) = κ2. Consequently

FlattA|B(P ) = MT
Adiag(π(R))MB = (M1 ⊗M3)

Tdiag(π(R))(M2 ⊗M4).

And rank(FlattA|B(P )) is at most κ2 since rank(MA) = rank(diag(π(R))) =

rank(MB) = κ2.

Example 2.2.14. Suppose that now κ = 4 and K = {A, C, G, T} Then we will

see the structure of Ma in this case.

Ma =


pAAAA pACAA . . . pTTAA

pAAAC pACAC . . . pTTAC
...

...
. . .

...

pAATT pACTT . . . pTTTT


And we observe that these probabilities can be written as pACGT = Prob(a1 =

A, a3 = C|r = G, f = T) = Prob(a1 = A|r = G)Prob(A3 = C|f = T) =

M1(G, A)M3(T, C). Therefore

1If A is an m× n matrix and B is a p× q matrix, then the Kronecker product A⊗B is
the mp× nq matrix

A⊗B =

 a11B . . . a1nB
...

. . .
...

an1B . . . annB

 .



Edge invariants for the general Markov model 32

MA =


M1(A, A)M3(A, A) M1(A, A)M3(A, C) . . . M1(A, T)M3(A, T)

M1(A, A)M3(C, A) M1(A, A)M3(C, C) . . . M1(A, T)M3(C, T)
...

...
. . .

...

M1(T, A)M3(T, A) M1(T, A)M3(T, C) . . . M1(T, T)M3(T, T)

 =

=


M1(A, A)M3 M1(A, C)M3 M1(A, G)M3 M1(A, T)M3

M1(C, A)M3 M1(C, C)M3 M1(C, G)M3 M1(C, T)M3

M1(G, A)M3 M1(G, C)M3 M1(G, G)M3 M1(G, T)M3

M1(T, A)M3 M1(T, C)M3 M1(T, G)M3 M1(T, T)M3

 =

= M1 ⊗M3.

Example 2.2.15. We have tried to verify Theorem 2.2.13 with a concrete

example. We have picked 5 random matrices M1, M2, M3, M4, Mf (see Fig.

2.3) and a random vector π.

π = (0.22, 0.26, 0.24, 0.28)

M1 =


0.7 0.15 0.10 0.05

0.07 0.75 0.16 0.02

0.12 0.08 0.68 0.12

0.05 0.08 0.07 0.8



M2 =


0.82 0.05 0.12 0.01

0.11 0.6 0.07 0.22

0.07 0.14 0.75 0.04

0.12 0.14 0.10 0.64



M3 =


0.67 0.11 0.09 0.13

0.06 0.75 0.14 0.05

0.07 0.15 0.63 0.15

0.04 0.08 0.16 0.72



M4 =


0.71 0.13 0.1 0.06

0.13 0.63 0.14 0.10

0.12 0.06 0.80 0.02

0.09 0.09 0.11 0.77



Mf =


0.59 0.16 0.12 0.13

0.12 0.66 0.08 0.14

0.07 0.16 0.73 0.04

0.18 0.10 0.08 0.64
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We have calculated the joint distributions P = (pAAAA, pAAAC, . . . , pTTTT) for

4-leaves tree 12|34 represented at Fig. 2.3. Then we have evaluated this

probabilities in the matrices Flatt12|34(P ), F latt13|24(P ), F latt14|32(P ) and we

have calculatet their ranks. The results have been

rkFlatt12|34(P ) = 4

rkFlatt13|24(P ) = 16

rkFlatt14|32(P ) = 16

See Annex A to inspect the c++ code that calculates the joint distributions,

flattening matrices and their ranks.



Appendix A

Computation of rank of

flattening matrices

#include <iostream>

#include <fstream>

#include <vector>

#include <algorithm>

#include <cmath>

using namespace std;

typedef vector <double> VE;

typedef vector < VE > ME;

const double eps = 1e-6;

VE pi;

ME M1;

ME M2;

ME M3;

ME M4;

ME Mf;

void read_matrix(M &M){

34
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for (int i = 0; i < 4; ++i){

for (int j = 0; j < 4; ++j) {

cin >> M[i][j];

}

}

}

void write_matrix(ME &M){

for (int i = 0; i < (int)M.size(); ++i){

for (int j = 0; j < (int) M[i].size(); ++j) cout << M[i][j] << " ";

cout << endl;

}

cout << endl;

}

double joint_distribution(int a, int b, int c, int d){

double Paaaa = 0;

for(int i = 0; i < 4; ++i){

double sum = 0;

for (int j = 0; j < 4; ++j)

sum = sum + Mf[i][j]*M3[j][c]*M4[j][d];

Paaaa = Paaaa + pi[0]*M1[i][a]*M2[i][b]*sum;

}

return Paaaa;

}

void clean (ME &M){

for (int i = 0; i < (int) M.size(); ++i){

for (int j = 0; j < (int) M[i].size(); ++j) {

if (abs(M[i][j]) < eps) M[i][j] = 0;

}
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}

}

void Gauss(ME &M){

int files = 0;

int i = 0;

while (files < (int)M.size() and i < (int)M[0].size()){

if (abs(M[files][i]) < eps){

bool trobat = false;

for (int j = files+1; j < (int)M.size() and not trobat; ++j){

if (abs(M[j][i]) > eps){

trobat = true;

swap(M[j], M[files]);

}

}

}

if (abs(M[files][i]) > eps){

for (int j = i+1; j < (int)M.size(); ++j){

if (abs(M[j][i]) > eps){

double pivot = M[j][i];

for (int k = i; k < (int)M[0].size(); ++k)

M[j][k] -= (M[files][k]*pivot)/M[files][i];

}

}

++files;

}

++i;

}

clean(M);

}

int rank (ME &M){
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int cont = 0;

for (int i = 0; i < (int) M.size(); ++i)

if (abs(M[i][i]) > eps) ++cont;

return cont;

}

int main(){

pi = VE(4); M1 = ME(4, VE(4)); M2 = ME(4, VE(4));

M3 = ME(4, VE(4));

M4 = ME(4, VE(4));

Mf = ME(4, VE(4));

for (int i = 0; i < 4; ++i) cin >> pi[i];

read_matrix(M1);

read_matrix(M2);

read_matrix(M3);

read_matrix(M4);

read_matrix(Mf);

ME Flatt12_34 (16, VE(16));

ME Flatt13_24 (16, VE(16));

ME Flatt14_23 (16, VE(16));

int a; int b; int c; int d;

for (int i = 0; i < 16; ++i){

for (int j = 0; j < 16; ++j){

a = i/4;

b = i%4;

c = j/4;

d = j%4;
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Flatt12_34 [i][j] = joint_distribution (a, b, c, d);

}

}

for (int i = 0; i < 16; ++i){

for (int j = 0; j < 16; ++j){

a = i/4;

b = j/4;

c = i%4;

d = j%4;

Flatt13_24[i][j] = joint_distribution (a, b, c, d);

}

}

for (int i = 0; i < 16; ++i){

for (int j = 0; j < 16; ++j){

a = i/4;

b = j/4;

c = j%4;

d = i%4;

Flatt14\_23[i][j] = joint_distribution (a, b, c, d);

}

}

Gauss(Flatt12_34); write\_matrix(Flatt12_34);

Gauss(Flatt13_24); write\_matrix(Flatt13_24);

Gauss(Flatt14_23); write\_matrix(Flatt14_23);

cout << "The matrix Flatt(12|34) has rank " << rank(Flatt12_34) << endl;

cout << "The matrix Flatt(13|24) has rank " << rank(Flatt13_24) << endl;

cout << "The matrix Flatt(14|23) has rank " << rank(Flatt14_23) << endl;

}
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