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Abstract

In medical imaging, sparsity has been used in the acquisition and reconstruction of
MRI images, image denoising and face recognition among others. The aim of this
thesis is to assess whether exploiting sparsity is a desirable property in the problem
of brain tumor image registration. To this end, we consider tumor mass effect and
tumor infiltration as two different tumor growing effects.

In intensity-based nonrigid image registration, an optimization problem is defined
by the minimization of a cost function with respect to the transformation parameters.
This cost function consists of a dissimilarity term between the images being registered
and a term that regularizes the transformation. Within this thesis, a modified `1
norm dissimilarity measure and a modified `1 regularization term are constructed.
We compare the performance of different algorithms that combine these contributions
with an `2 norm dissimilarity measure and diffusion regularizer for three different
transformation models. Methods are tested on simulated brain tumor MR images
and the validation of the registration is done by computing two dissimilarity distances
between the deformation field obtained and a simulated ground truth.

Results show that algorithms that use the modified `1 regularizer and a `2
dissimilarity measure recover the deformation of the tumor, while algorithms that
use the modified `1 norm dissimilarity measure in some situations do not.
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Chapter 1

Background

This thesis incorporates two main concepts. The first one is sparsity, a mathematical
property and a tool used in medical imaging. Both concepts will be introduced in
this first chapter.

1.1 Sparsity
The term sparsity refers to a measurable property of a vector or matrix. The sparsity
of a vector is defined by the number of non zero entries of that vector:

‖x‖0 = #{k : xk 6= 0, k = 1, ..., n} (1.1)

For example, the sparsity of a vector x1 = (0, 1, 0, 0)T is 1 and the sparsity of a
vector x2 = (0, 1, 0.04, 0.001)T is 3. In the previous example, x1 is a 1-sparse vector
while x2 is a 3-sparse vector; x1 is sparser than x2.

Sparsity is used in compressed sensing for the recovery of signals from highly
incomplete data[1, 2, 3]. Results from these papers declare that a sparse vector x ∈ Rn
can be recovered from a small number of linear measurements b = Ax ∈ Rk, k � n
by solving a convex program. This procedure is implemented in [4] for seven different
contexts. In medical imaging, sparsity has been incorporated in the acquisition and
reconstruction of MRI images [5], image denoising by wavelet thresholding [6, 7] and
face recognition [8] among other applications.

Furthermore, working with sparse vectors and matrices is in most cases beneficial
because it requires less storage memory and computations between them can be done
more efficiently since we only need the values and positions of the non zero entries of
the vectors/matrices.
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1.1. Sparsity

Sparse Representation and Approximations

Suppose we are given a vector b ∈ Cm and a matrix A ∈ Cm×n, we want to find a
vector x ∈ Cn such that:

Ax = b. (1.2)

In general, the matrix A is overcomplete, i.e., there are less rows than columns
(m� n)[9]. Therefore, the above problem does not have a unique solution. Since
there exists a choice of solution, a sparse vector might be desirable depending on the
problem at hand.

The above problem is relaxed by not requiring the vector x to reproduce b exactly.
Suppose again the vector b ∈ Cm, the matrix A ∈ Cm×n and a tolerance ε ∈ R+, we
want to find a vector x ∈ Cn such that:

‖Ax− b‖ < ε. (1.3)

If a sparse vector x is found, it is not called a sparse representation of b but a
sparse approximation. Therefore, a representation is sparse when a large number of
components have a very small contribution to the image (or even no contribution at
all).

Computing a Sparse Solution

In this work, we will be using the `p norms. The general definition of the `p norm of
a vector is:

‖x‖p :=
(

n∑
i=1
|xi|p

)1/p

, p ∈ N (1.4)

Suppose we are given the constraint Ax = b and we want to find the smallest
vector that satisfies this restriction. We can formulate this as:

min
x

‖x‖p s.t. Ax = b (1.5)

In general, we can approach this problem using different `p norms. But since we
are interested in finding a sparse vector x we will use the `0 norm, as explained in
the previous section. Then, the problem (1.5) can be written as the sparse problem:

min
x

‖x‖0 s.t. Ax = b (1.6)

This problem is a NP-hard problem and it can be relaxed by using the `1 norm
instead. This strategy is called Basis Pursuit [10]. The general problem (1.5) can be
rewritten as:

min
x

‖x‖1 s.t. Ax = b (1.7)

2D case: min
x

|x1|+ |x2| s.t. Ax = b

2



1.1. Sparsity

For the 2D case, this problem is visualized in Figure 1.1. It shows the solution to
this problem where one of the components of the vector x found is zero. Hence, the
solution found is sparse.

Figure 1.1: Solution to (1.7) in the 2D case.

Conversely, using the `2 norm for the general problem (1.5) does not generate a
sparse solution. For this case, Eq. (1.5) can be rewritten as:

min
x

‖x‖2 s.t. Ax = b (1.8)

2D case: min
x

√
x2

1 + x2.2 s.t. Ax = b

Figure 1.2 illustrates the solution to Eq. (1.8). Here, none of the components of
the solution is equal to zero. Hence, using the `1 norm in the problem (1.5) generates
a sparser solution than using the `2 norm.

Figure 1.2: Solution to (1.8) in the 2D case.

3



1.2. Image Registration

1.2 Image Registration
Over the last few decades, image registration has become a key component for a
large number of clinical applications such us intervention and treatment planning,
monitoring of diseases, computer-aided diagnosis or radiation therapy.

In image registration, one image (floating image) is spatially mapped onto an-
other image (reference image) such that anatomically equivalent structures in both
images are aligned. This spatial alignment is required to properly integrate useful
information from the separate images.

The first registration techniques performed registration by adjusting rotations and
translations manually. This was done by translating the contours of one image onto a
second one. Huge drawbacks of this manual procedure are the lack of reproducibility
and observer errors that result from external conditions, experience or possible
mistakes [11]. Therefore, through the years automatic registration algorithms are
becoming increasingly important. Here, rotations and translations are not adjusted
manually. An important group of image registration is variational registration where
a cost function is minimized with respect to the desired transformation parameters.
Thus, registration algorithms can be cataloged according to the space to which the
transformation belongs. Rigid or affine registration algorithms depend on a few
parameters, but in general are very limited and not descriptive enough to capture
subtle anatomical differences between subjects. For these situations, nonrigid regis-
tration allow anatomical structures to be spatially mapped between images in a non
rigid way[12, 13].

The cost function to minimize in variational image registration usually has two
terms. The first one is an energy term that penalizes the dissimilarity of the images
being registered. The second term in the cost function is called a regularization term.
In general, image registration is ill-posed. Adding a regularization term to the cost
function penalizes unwanted transformations. The choice of a certain dissimilarity
measure or regularization term is application dependent and usually the right choice
is not known beforehand.

Within the context of medical image registration, we consider the registration
of brain tumor MR images of a subject in order to provide additional information
for a more accurate diagnosis for the patient’s treatment. Tumor growing behaviors
can be explained by two main effects: a mass effect and an infiltration. A mass
effect or volume expansion of the tumor means that the tumor spreads beyond the
primary tissue into surrounding healthy tissues. On the other hand, in an infiltration
expansion, healthy tissue is replaced by the expanded tumor tissue but the healthy
tissue remains in its place.

4



1.3. Thesis Layout

1.3 Thesis Layout
The organization of this thesis is detailed as follows:

• Chapter 2 states the problem we are trying to solve in this thesis. We clarify
the motivation of this work and we give some insights into how we are going to
solve it.

• Chapter 3 discusses the methodology of the study. The dissimilarity measures,
regularization terms and transformation models are formulated. Furthermore,
the regularization strategy and the validation methods are described.

• Chapter 4 describes the data used in the experiments and explains how we
generate the ground truth for later validation.

• Chapter 5 describes all the experiments and presents the validation results.

• Chapter 6 gives a discussion of the results. We also point out perspectives for
further research and improvements to be made.

5



Chapter 2

Problem Statement

By incorporating sparsity in the registration problem, we believe we can improve the
registration of brain MR images in case there is a tumor present.

Suppose we have a pair of images with a tumor present of the same patient
at two different time points. We want to register both images in order to provide
additional information for future treatment of the patient. Consider the intensity
difference image between them after being registered. Since a good registration
algorithm would recover the tumor deformation, this image would consist all zeros
except for misregistration errors. That makes us believe that this image is a sparse
representation, since most of its components have a small (or even null) contribution
to the image. Similarly, a sparse deformation field would only have a deformation in
the tumor location and not throughout the grid.

There may be different ways to enforce sparsity onto the registration problem
but we focused in two in particular. First, we enforce sparsity in the dissimilarity
measure term in the cost function of the registration problem by using a modified
version of the `1 norm of the images to be registered. We assume the intensity
difference images between them is small. A second option of enforcing sparsity in
the registration problem is in the regularization term of the registration problem. In
this case, we use what we call the modified `1 regularizer which imposes sparsity on
the gradient of a deformation field. In this case, we want large deformations in the
deformation field to be local and not global through the whole grid.

To assess whether sparsity is useful in our application, methods are tested on
simulated brain tumor MR images and then evaluated through the comparison of
two distances of the deformation field obtained with a simulated ground truth.

6



Chapter 3

Methods

The goal of image registration is to estimate a mapping between a pair of images.
One image is assumed to remain stationary (the reference or target image), where the
other (the floating or moving image) is spatially transformed to anatomically match
it. In order to transform the floating image to anatomically match the reference
image, a mapping is defined over the whole image. This mapping can be thought of
as a function of a set of estimated transformation parameters.

Consider R the reference image and F the floating image, both as functions in
Rn. In the deformation Φ : Rn → Rn:

Φ(x) = x− u(x), (3.1)

u is the displacement. Then, registration aims to find the displacement that minimizes
a dissimilarity term S which measures the dissimilarity between the reference image
R and the deformed floating image Fu := F (Φ).

min
u

S(R,Fu). (3.2)

To ensure that the minimization problem is well-posed and has a smooth solution, a
regularization term R must be added to the dissimilarity term. Combining both the
similarity and the regularization terms enables us to state the general form of the
registration problem:

min
u

E(R,Fu) = min
u

S(R,Fu) + λR(u), (3.3)

where λ is the trade-off between the dissimilarity measure and the regularizer. We
are interested in methods for finding the deformation field u that minimizes Eq. (3.3).

Figure 3.1 illustrates the different components that define the registration
problem[14]. An optimization of the transformation parameters is done through a
minimization of the cost function E(R,Fu). The transformation parameters are
first initialized. At each iteration, the floating image is resampled according to the
new parameter set. In the optimization process we consider a transformation model

7



3.1. Dissimilarity Measures

representing the prior knowledge on the transformation to be found and the energy
model to minimize. The energy model consists of a dissimilarity term between the
reference image and the transformed floating image and a regularization term for
the deformation field.

Figure 3.1: Image Registration Process

3.1 Dissimilarity Measures
Any dissimilarity measure relies on some assumption about the relationship between
the images being registered. In medical image registration, constancy assumptions
are useful when the floating and the reference images are of the same patient and
from the same modality [12]. The simplest assumption that can be made about this
relationship for the targeted application is that brightness is preserved between the
images being registered.

Fu(x) = R(x) ∀x ∈ Ω (3.4)

This is called the brightness constancy constraint (BC), and it is applicable when
images are captured from the same sensor under the same conditions.

8



3.1. Dissimilarity Measures

Assuming the brightness constancy constraint for the images being registered, any
misalignment between them should cause a deviation from this assumed constraint.
Then, image dissimilarity measures can be constructed in order to penalize this
deviation[12]. We begin by defining an image of residuals r that quantifies the
deviation of two images from the assumed constancy constraint. For the brightness
constancy constraint, this image is given by:

rBC(x;R,Fu) = Fu(x)−R(x). (3.5)

Global image dissimilarity measures can be constructed applying a non negative
function Ψ to the residual image r:

SΨ,r(R,Fu) =
∫

Ψ(r(x;R,Fu)) dx (3.6)

Several choices can be made for the penalty function Ψ(r(x;R,Fu)). Among
the most common penalty functions and for the purpose of this thesis, the penalty
function Ψ(r(x;R,Fu)) is chosen such that:

Ψp(r) = |r|p, p ∈ N (3.7)

The | · |p function turns (3.7) into a penalty function of `p norm of the scalar
valued residual image.

In this work, as explained in Chapter 1, we compare the performance during
registration with the `2 norm, more commonly known as sum of squared differences,
with the `1 norm or sum of absolute differences. For these cases, we can rewrite Eq.
(3.6) as:

S`2(R,Fu) =
∫

(Fu(x)−R(x))2 dx (3.8)

S`1(R,Fu) =
∫
|Fu(x)−R(x)| dx , (3.9)

where S`2 = SΨ2 and S`1 = SΨ1 .

The main issue with the `1 norm in Eq. (3.9) is that it is not differentiable at
zero. This problem is present when computing the derivative of this dissimilarity
measure to the parameter set in the search of the best transformation parameters
in the optimization problem. To tackle this problem inherent with `1 minimization,
a modified version of SΨ1 is proposed in [12], called the modified `1 norm. This
penalty function can be defined as:

Ψ1,ε(r) =
√
r2 + ε , ε ∈ R+ (3.10)

which for small ε behaves like Ψ1 but is differentiable everywhere. In this thesis,
we call ε the sparsity parameter. With this new penalty function, the dissimilarity
measure in Eq. (3.9) can be rewritten for the modified `1 norm case:

Smod−`1(R,Fu) =
∫ √

(Fu(x)−R(x))2 + ε dx , (3.11)

9



3.1. Dissimilarity Measures

where Smod−`1 = SΨ1,ε .

3.1.1 Modified `1 norm

In the previous section, we described the dissimilarity measures that will be used in
this thesis. In Chapter 1, we explained how the `0 norm and the `1 norm find sparse
solutions. However, we haven’t seen whether the modified `1 norm version also finds
sparse solutions or not. It is also useful to know how good this modified `1 norm can
approximate the real `1 norm, depending on the sparsity parameter ε.

We sum up the general problem we introduced in the first section in Chapter 1
for reference:

min
x
‖x‖p s.t. Ax = b. (3.12)

We explained how the use of the `0 norm finds a sparse solution but it turns
(3.12) into a NP-hard problem. Furthermore, we saw how the `1 norm also find a
sparse solution but the `2 did not. Figure 3.2 and Figure 3.3 illustrate this behavior.

Figure 3.2: Solution to (1.8) in the 2D case and plot of the unit `2 circle.

It is useful to check whether the introduced modified `1 norm finds sparse solutions
or not. Using the modified `1 norm, we can rewrite Eq. (3.12) as:

min
x

√
x2

1 + ε+
√
x2

2 + ε s.t. Ax = b, (3.13)

for ε ∈ R+. Here, different solutions can be found depending on the value of the
sparsity parameter ε. Figure 3.4 shows the behavior of the Eq. (3.13) for a given ε.
If ε is small enough, it behaves like the `1 norm.
In Figure 5.4, for smaller ε the solution x found using the modified `1 norm tends

10



3.1. Dissimilarity Measures

Figure 3.3: Solution to (1.7) in the 2D case and plot of the unit `1 circle.

Figure 3.4: Solution to (3.13) in the 2D case and plot of the unit modified `1 circle
for ε = 1e−3

to the one found using the `1 norm (Eq. (1.7) in Chapter 1). However, if ε increases,
the solution tends to the one found using the `2 norm (Eq. (1.8) in Chapter 1).
Figure 3.5 shows these behaviors for different ε values in the 2D case. The red plots
are the `1 and `2 norms (Eq. (1.7) and (1.8) respectively), while the blue plots are
the modified `1 norms (Eq. (3.13)).

In addition to that, Table 3.1 lists components x1 and x2 for the Eq. (1.7), (1.8)
and (3.13) plotted in Figure 3.5. As said, depending on the sparsity parameter ε,
one can get a sparse approximation to the minimization problem in (3.12).

11



3.1. Dissimilarity Measures

Figure 3.5: Solutions to (1.7), (1.8) and (3.13) in the 2D case and plot of the unit `p
circles for p = 1, 2 and ε = {1e−3, 1e−2, 1.5e−1, 1}.

`p norm metric epsilon x1 x2 f(x)

`2 norm - 0.3996 0.8002 0.8944
`1 norm - 0 1 1

Modified `1 norm 1.0e−3 0.0183 0.9909 1.0279

Modified `1 norm 1.0e−2 0.0573 0.9714 1.0917

Modified `1 norm 1.5e−1 0.2000 0.9000 1.1416
Modified `1 norm 1.0 0.3374 0.8313 2.3558

Table 3.1: Solutions to Eq. (1.7), (1.8) and (3.12) for the 2D case.

Derivatives of the Dissimilarity Measures

By minimizing a cost function with respect to the transformation parameters, the
proper anatomical mapping between the reference image and the transformed floating
image can be found. Without considering the regularization term, the registration
problem can be written as:

min
u

E(R,Fu) = min
u

S(R,Fu). (3.14)
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3.2. Regularizers

In order to find the deformation field, it is necessary to determine the variational
derivative of the dissimilarity measure with respect to variations in the displacement
field. For a general dissimilarity measure S(R,Fu), the variational derivative is
defined in the direction w by:

dS(R,Fu; w) = lim
h→0

1
h

[
S
(
R,Fu+hw

)
− S(R,Fu)

]
(3.15)

For any constancy assumption, the derivation of the general dissimilarity measure
SΨ,r can be computed as:

dSΨ,r(R,Fu) = −
[
∂

∂F
Ψ(r(x;R,Fu))

]
∇Fu(x), (3.16)

and for the brightness constancy constraint in particular, this derivation can be
computed as:

dSΨ,r(R,Fu) = −[∇Fu] d

drBC
Ψ(rBC(x;R,F,u)) (3.17)

Finally, we can rewrite Eq. (3.17) for the derivatives of the modified `1 norm and
the `2 norm cases. These derivatives can be computed as:

dS`2(R,Fu) = −2(R(x)− Fu(x))∇Fu(x) (3.18)

dSmod−`1(R,Fu) = − R(x)− Fu(x)√
(R(x)− Fu(x))2 + ε

∇Fu(x) (3.19)

3.2 Regularizers
If any of the dissimilarity measures are optimized with respect to a non parametric
deformation field, there is no guarantee of a unique solution[12]. In fact, there are
many solutions to the optimization problem which may not present continuity or
smoothness. A regularization term must be added to the dissimilarity measure in
order to force the non parametric registration problem being well-posed and having a
smooth solution. In this thesis, we use two different regularizers for the cost function
E(R,Fu).

3.2.1 Diffusion Regularizer

The diffusion regularizer is defined as the gradient of the deformation field raised to
the second power and it is designed to minimize large variations of the gradient of
the deformation field:

Rdiff(u) =
n∑
j=1
‖∇uj‖2 , (3.20)
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3.3. Transformation Models

and its derivative with respect to the deformation field can be computed as the
divergence of the gradient of the deformation field:

∂Rdiff(u)
∂u = −∆u , (3.21)

with

∆u = ∇ · ∇u.

3.2.2 Modified `1 Norm Regularizer

First, we define what we call the `1 regularizer in order to impose sparsity on the
gradient of th deformation field u. The `1 regularizer can be constructed as the
absolute value of the gradient of the deformation field:

R`1(u) =
n∑
j=1
|∇uj | . (3.22)

However, the `1 regularizer from Eq. (3.22) has the same problem regarding the
`1 minimization as in Eq. (3.9) for the `1 norm dissimilarity measure; it is not
differentiable everywhere. Modifying the `1 regularizer R`1 as in Eq. (3.10), the
modified `1 regularizer, which is differentiable everywhere, can be constructed as:

Rmod−`1(u) =
n∑
j=1

√
(∇uj)2 + ε , (3.23)

for ε ∈ R+. The derivative of the modified `1 regularizer with respect to the
deformation field can be computed as:

∂Rmod−`1(u)
∂u = −∆u√

(∇u)2 + ε
, (3.24)

which is the divergence of the gradient of the deformation field ∆u = ∇·∇u, divided
by the square root of the second power of the gradient of the deformation field plus
the sparsity parameter ε.

3.3 Transformation Models
In this section, we describe three transformation models used in the experiments
in Chapter 5. An affine transformation model which has few degrees of freedom is
first described. For nonrigid registration, a dense deformation field transformation
model is described. The second transformation model used is a non parametric
dense deformation field transformation model and the last one is a parametric dense
deformation field transformation model.
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3.3. Transformation Models

3.3.1 Affine

A classical family of geometrical transformations is the affine transformation model.
The affine transformation consist of a combination of translations, rotations, scaling
and skew [15, 16]. It includes rigid transformations which are made up from compos-
ing translations and rotations transformations only. Using the affine transformation
model a point of coordinates x, y, z in the grid is mapped to another point x′, y′, z′ by:

 x′

y′

z′

 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ·
 x
y
z

+

 t0
t1
t2

 (3.25)

The transformation (3.26) can be broken down to:

 x′

y′

z′

 = S ·RX ·RY ·RZ · C ·

 x
y
z

+

 t0
t1
t2

 , (3.26)

where S stands for scaling matrix, RX , RY and RZ are rotation matrices around the
X, Y and Z axes and C is a skew matrix.

In the affine transformation model case we do not need to add a regularization
term R in the cost function E(R,Fu) since this transformation model acts like a
regularization itself. Hence, for the affine transformation model the registration
problem is simplified as:

min
u

E(R,Fu) = min
u
S(R,Fu). (3.27)

Two of the registration algorithms that are used in the experiments in Chapter
5 were affine transformation models. The first one uses the `2 norm and the other
one uses the modified `1 norm. In order to distinguish between different registration
algorithms, the following notation is proposed:

Aaffine
`2 → min

u
E(R,F ) = min

u
S`2(R,F ) (3.28)

Aaffine
mod−`1 → min

u
E(R,F ) = min

u
Smod−`1(R,F ), (3.29)

where A denotes the algorithm to be used, the superscript denotes the transformation
model used and the subscript indicates the dissimilarity measure between the images
being registered.

3.3.2 Non Parametric Dense Deformation Field

For dense deformation field transformation models, we do not take into account a
limited set of transformation parameters but a dense deformation field u instead. For
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3.3. Transformation Models

the nonrigid case, we do need a regularization term R in the cost function E(R,Fu)
since the transformation has many degrees of freedom and the problem is ill-posed.

The principle behind a variational analysis is to look for a deformation field u
making the cost functional stationary [17]:

∂E(u + hw)
∂h

∣∣∣∣
h=0

= 0, ∀w (3.30)

where w is an arbitrary function belonging to the same space of continuous and
differentiable functions as u. In Eq.(3.30), h is a scalar factor multiplying the per-
turbation function w.

Three of the registration algorithms that are used in the experiments in Chapter 5
are non parametric dense deformation field transformation models. Here, we combine
the `2 norm and the modified `1 norm dissimilarity measures and the diffusion and
the modified `1 regularizers. In order to distinguish between different registration
algorithms, the following notation is used:

Anon param
`2, diff → min

u
E(R,Fu) = min

u
S`2(R,Fu) + λRdiff(u) (3.31)

Anon param
mod−`1, diff → min

u
E(R,Fu) = min

u
Smod−`1(R,Fu) + λRdiff(u) (3.32)

Anon param
`2, mod−`1 → min

u
E(R,Fu) = min

u
S`2(R,Fu) + λRmod−`1(u), (3.33)

where the superscript indicates that the transformation model used is the non para-
metric dense deformation field and the subscript indicates the dissimilarity measure
between the images to be registered and the regularization strategy of the deformation
field used.

3.3.3 Parametric Dense Deformation Field

In order to represent the space of allowed deformations during registration, a set
of basis functions can be defined. The decomposition of the deformation field as a
weighted sum of basis functions is a convenient way of modeling the deformation
field[14, 18]. In this case, the deformation field u can be defined as a sum of basis
functions weighted by some parameters:

uw(x) =
∑
j

wjBj(x), (3.34)

where Bj : Ωn −→ R are the basis functions and wj ∈ R are the parameters to be
found.
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3.3. Transformation Models

In this thesis, Gaussian function are used as basis functions for the modeling of
the deformation field. The Gaussian kernel is a subset of the more general radial
basis functions [14]. For this case, we can rewrite Eq. (3.34) as:

ui =
∑
j

wj exp

(
(xi − xj)2

2σ2

)
, (3.35)

where wj are the kernel weights we want to find in the optimization step of the
gradient descent method and σ is the standard deviation of the Gaussian distribution
function. A sparse solution of the registration indicates that most of the weight
parameters wj are zero. The deformation is described by summation of only a few
baseis functions.

The last three registration algorithms that are used in the experiments in Chapter
5 are dense deformation field transformation models with a Gaussian parameterization.
Again, we combine the `2 norm and the modified `1 norm dissimilarity measures and
the diffusion and modified `1 regularizers. In order to distinguish between different
registration algorithms, the following notation is provided:

Aparam
`2, diff → min

u
E(R,Fu) = min

u
S`2(R,Fu) + λRdiff(u) (3.36)

Aparam
mod−`1, diff → min

u
E(R,Fu) = min

u
Smod−`1(R,Fu) + λRdiff(u) (3.37)

Aparam
`2, mod−`1 → min

u
E(R,Fu) = min

u
S`2(R,Fu) + λRmod−`1(u), (3.38)

where the superscript indicates that the transformation model used is the non para-
metric dense deformation field and the subscript indicates the dissimilarity measure
between the images to be registered and the regularization strategy of the deformation
field used.

Derivative of the Energy Function to the Parameter Set

During the optimization step, we need to compute the derivative of the cost functional
with respect to the parameter set at each iteration. Consider the easy case of the `2
norm dissimilarity measure with no regularization term:

E(R,Fu) =
∑

(R(x)− Fu(x))2. (3.39)

Applying the chain rule, the derivative of the Eq. (3.39) with respect to the
deformation field (3.35) can be expanded as:

dE

dwj
=

∑
i

dE

dui

dui
dwj

= (3.40)

= −2
∑
i

(R(x)− Fu(x)) dF
u(x)
dui

exp

(
(xi − xj)2

2σ2

)
. (3.41)
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In order to reduce the computational time of this calculation, another sub sam-
pling factor is introduced in the algorithm, reducing the number of Gaussian functions
to be placed in the grid.

3.4 Optimization Strategy
For the simulations done in Chapter 5, a gradient descent minimization strategy
is chosen. First, the floating image is resampled on the new grid defined by the
parameter set. After that, the gradient of the energy cost function to the parameter
set is calculated. Then, a step proportional to the negative of the gradient is taken
and, finally, the parameter set is updated. We repeat this procedure at each iteration
until a fixed number of iterations is reached. Furthermore, the step size τ is a fixed
value.

uk+1 = uk − τ ·
∂E

∂u . (3.42)

The necessary derivatives for the minimization process are detailed in Eqs. (3.18)
and (3.19) for the dissimilarity measure term and in Eqs. (3.21) and (3.24) for the
regularization term.

3.5 Validation
In general, nonrigid registration is a highly ill-posed problem. Therefore, two different
registration methods may provide similar image matching with qualitatively different
transformations. In this work we evaluated the local and global dissimilarities existing
between the obtained deformation field after registration and the ground truth. These
two validation measures are proposed in [19]. The local differences between both
deformation fields are quantified from the distance between the associated Jacobian
matrices J . The Jacobian matrix of the deformation field is defined by:

J =

 ∂(x− ux)/∂x ∂(x− ux)/∂y ∂(x− ux)/∂z
∂(x− uy)/∂x ∂(x− uy)/∂y ∂(x− uy)/∂z
∂(x− uz)/∂x ∂(x− uz)/∂y ∂(x− uz)/∂z

 (3.43)

A distance defined on the group of symmetric positive definite matrices Sym+

applied to the strain matrix S = (JT · J)1/2 is used:

dJ(S1, S2) =
√
trace(log(S−1/2

1 S2S
−1/2
1 )2). (3.44)
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3.5. Validation

Complementing this local dissimilarity measure between deformation fields, we
also measure the global differences between corresponding grid points in both defor-
mation fields:

dSSD(ϕ1(x, y, z), ϕ2(x, y, z)) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, (3.45)

where ϕ1(x, y, z) = (x1, y1, z1) and ϕ2(x, y, z) = (x2, y2, z2).

19



Chapter 4

Materials

In this thesis, registration of brain tumor MR images are studied. For the evaluation
of the registration algorithms in the presence of a tumor, two different cases are
considered. The first one is the deformation of brain tissue due to tumor mass effect
or volume expansion and the second one is the infiltration of brain tissue by tumor
or edema. Edema appears around tumor mainly in the white matter regions and
may also contain infiltrative tumor cells.

4.1 Data
The methods are tested on simulated MR images of the brain that were generated by
the BrainWeb [20, 21, 22]. In total, five healthy subjects were studied (subjects 04, 06,
20, 38 and 52). The images used have an isotropic voxel size of 1mm× 1mm× 1mm.
In the discrete domain, these images are 256×256×181 pixels long. Due to time
constraints, an axial slice was selected from each image volume and the study of the
algorithms was conducted in the 2D case. The axial slice selected is slice 90.

A skull stripping operation was done as a preprocessing step with a brain
extraction tool from MIPAV software [23, 24]. The parameters used are the ones
that follow: 3 iterations and a Gaussian standard deviation of 0.5 voxels for filtering
the image to remove irregularities, a kernel size of 0.64 voxels to detect image edges,
1 iteration to isolate the brain through morphological erosion and 7.0 mm kernel
diameter in order to perform surface cleanup and image masking. Careful parameter
selection is necessary for the brain extraction algorithm to produce a good outcome.
Figure 4.1 shows the intermediate images of the skull stripping process. Small errors
in the brain extraction are not believed to have an impact on the final result.

In order to simulate a tumor expansion between two different scans of the same
patient, we use data from tumorSim software [25, 26]. The software combines physical
and statistical modeling to generate synthetic multi-modal 3D brain MRI with tumor
and edema. The data consist of two discrete images of a simulated brain image with
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4.2. Ground Truth

Figure 4.1: Skull stripping: intermediate images. In the first row: the original image
(left), the filtered image (middle) and the edge image mask (right). In the second
row: the isolated brain mask (left), the brain mask after applying morphological
erosion (middle) and the extracted brain image (right).

a pathology. We use three different tumors that vary from one another in size and
shape. We will simulate tumor deformations and we will apply them to the five
healthy subjects in different locations. The registration process will try to recover
those deformations.

4.2 Ground Truth
In order to provide objective assessments of registration performance, there is a need
for an objective ground truth to systematically compare different methodologies.
Depending on whether we consider the tumor mass effect or the tumor infiltration
case, the ground truth generation process will be different. This process is detailed
in this section and it is repeated for each subject.

Tumor Deformation Generation

For the registration of the tumor, a deformation field that represents a local expansion
in the grid has to be generated. To that end, we derive a normal distribution in 2D:

u(x1, x2) = 1
σ
√

2π
exp

(
(x1 − µ1)2 + (x2 − µ2)2

2σ2

)
(4.1)

(4.2)
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∇u(x1, x2) = ( ∂u
∂x1

,
∂u
∂x2

), (4.3)

where

∂u
∂x1

= −x1

σ3
√

2π
exp

(
− (x1 − µ1)2 + (x2 − µ2)2

2σ2

)
(4.4)

∂u
∂x2

= −x2

σ3
√

2π
exp

(
− (x1 − µ1)2 + (x2 − µ2)2

2σ2

)
, (4.5)

where (x1, x2) are grid coordinates, (µ1, µ2) is the point in the grid where the
expansion is generated, u is the deformation field and σ is the bandwith of the
normal distribution.
Each of these derivatives generates two forces in opposites directions in their

domains. The local deformation is generated by adding the identity transform to
these derivatives to place the simulated expansion on a grid. Figure 4.2 shows
this grid expansion. Through the σ parameter and the magnitude of the normal
distribution, different expansions can be generated.

Figure 4.2: Generation of a local expansion in a deformation field.

4.2.1 Mass Effect

A simple tumor mass effect ground truth generation process is illustrated in Figure
4.3. The discrete ground truth image is loaded and the corresponding tumor is
picked. Then, the tumor is placed in the healthy brain within a realistic intensity
value taking into consideration the surrounding tissues. At the same time, an expan-
sion deformation field is simulated at the tumor location and, finally, the healthy
brain is resampled with the tumor in it with the generated deformation field. Some
assumptions were made in the mass effect simulation process. For instance, the
tumor intensity is homogeneous throughout the tissue and both floating and reference
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images taken at two different time points have the same tumor grey value.

Figure 4.3 illustrates the process just described, where the input images for each
registration algorithm described in Chapter 3 are generated.

Figure 4.3: Ground truth generation process for mass effect

In addition, the deformation field ground truth is known in order to validate the
performance of different registration algorithms. Figure 4.4 shows the floating image,
the ground truth deformation field generated and the reference image. The growing
tumor is shown in Figure 4.4 along with other nearby tissues being pushed by the
tumor expansion.

Figure 4.4: Intermediate images in the mass effect ground truth generation process
From left to right: the floating image with the pathology (left), the ground truth
deformation field generated (middle) and the reference image with the tumor mass
effect (right). The yellow square in the first image indicates the location in which
the second image is zoomed.

23



4.2. Ground Truth

4.2.2 Tumor Infiltration

Similarly, the tumor infiltration ground truth can be generated. In this case, in-
stead of resampling the healthy brain image with the tumor in it, only the tumor
itself is resampled with the corresponding generated deformation field. Then, both
the initial tumor and the expanded tumor are placed in the healthy brain image.
Figure 4.4 illustrates the process of ground truth generation for the infiltration
case. The floating image is the healthy brain with the tumor in it and the reference
image is the healthy brain with the expanded tumor in it, so that the healthy
tissue remains untouched. Notice that for the infiltration case, the ground truth is
not the generated expansion deformation field as in the mass effect case, but the
identity transform since we expect all of the brain tissues will remain in their location.

Figure 4.5: Ground truth generation process for tumor infiltration

Figure 4.6 shows an example of the intermediate images of the process illustrated
in Figure 4.5:
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4.2. Ground Truth

Figure 4.6: Intermediate images in the infiltration ground truth generation pro-
cess From left to right: the floating image with the pathology (left), the ground
truth deformation field generated (middle) and the reference image with the tumor
infiltration (right).
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Chapter 5

Experiments

The performance of the eight algorithms described in Chapter 3 is tested in MR
images where a pathology is present. For this purpose, we set up some experiments
that will allow us to assess whether or not incorporating sparsity in the registration
problem can be useful in practice.

5.1 Experiment 1: Parameter Tuning
Each algorithm is tested in all five subjects. For the tumor mass effect data set
and the tumor infiltration data set, the parameters of the algorithms are tuned
beforehand. This tuning reveals that the most relevant parameters are the regu-
larization parameter λ, for the dense deformation field transformation models, and
the standard deviation σ for the parametric dense deformation field transformation
model. Other parameters like the sparsity parameter ε, the value of the step size τ
in the gradient descent and the number of iterations have a limited influence on the
results. The sparsity parameter ε is set up to 1.0e−3 in all the algorithms in order
for the modified `1 norm to behave similarly to the `1 norm as seen in Chapter 3.
The step size and number of iterations are also fixed parameters. For the parametric
dense deformation field algorithms, step size is τ = 1 and the number of iterations
300. For the non parametric dense deformation field algorithms, step size is τ = 10
and the number of iterations 500.

The parameter selection for the parametric and non parametric dense defor-
mation field algorithms are shown in Table 5.1 for the tumor mass effect and in
Table 5.2 for the tumor infiltration. For the parametric dense deformation field
algorithms, simulations are done with different combinations of λ and σ parameters.
For the non parametric dense deformation field algorithms only different values of
the regularization parameter λ are studied. For the affine transformation model
algorithms, no parameter tuning is required. The selection criteria of the parameters
is a mix between a quantitative validation of the registration by computing the dSSD
and dJ distances between deformation fields and a qualitative validation by visual
assessment of the deformation field obtained. The complete study can be found in
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the Appendix.

5.1.1 Tumor Mass Effect

Table 5.1 shows the selected λ and σ parameters of the eight algorithms described in
the methods in Chapter 3, for the tumor mass effect subjects:

Subject 04 Subject 06 Subject 20 Subject 38 Subject 52

Aparam
`2, diff

λ = 1.0e2 λ = 1.0e2 λ = 1.0e2 λ = 1.0e2 λ = 1.0e2

σ = 6.0 σ = 4.0 σ = 4.0 σ = 4.0 σ = 4.0

Aparam
mod−`1, diff

λ = 1.0e2 λ = 1.0e2 λ = 1.0e2 λ = 1.0e2 λ = 1.0e2

σ = 4.0 σ = 4.0 σ = 4.0 σ = 4.0 σ = 4.0

Aparam
`2, mod−`1

λ = 1.0e2 λ = 1.0e2 λ = 1.0e2 λ = 1.0e2 λ = 1.0e2

σ = 8.0 σ = 6.0 σ = 6.0 σ = 6.0 σ = 6.0

Anon param
`2, diff λ = 1.0e3 λ = 1.0e3 λ = 1.0e3 λ = 1.0e3 λ = 1.0e3

Anon param
mod−`1, diff λ = 1.0e2 λ = 1.0e2 λ = 1.0e2 λ = 1.0e2 λ = 1.0e2

Anon param
`2, mod−`1 λ = 1.0e3 λ = 1.0e3 λ = 1.0e3 λ = 1.0e3 λ = 1.0e3

Table 5.1: Parameter selection for the algorithms tested in the tumor mass effect
subjects.

5.1.2 Tumor Infiltration

Table 5.2 shows the selected λ and σ parameters of the eight algorithms described in
the methods in Chapter 3, for the tumor infiltration subjects:

Subject 04 Subject 06 Subject 20 Subject 38 Subject 52

Aparam
`2, diff

λ = 1.0e2 λ = 1.0e2 λ = 1.0e2 λ = 1.0e2 λ = 1.0e2

σ = 4.0 σ = 4.0 σ = 4.0 σ = 4.0 σ = 2.0

Aparam
mod−`1, diff

λ = 1.0e2 λ = 1.0e2 λ = 1.0e2 λ = 1.0e2 λ = 1.0e2

σ = 4.0 σ = 4.0 σ = 6.0 σ = 4.0 σ = 4.0

Aparam
`2, mod−`1

λ = 1.0e2 λ = 1.0e2 λ = 1.0e2 λ = 1.0e2 λ = 1.0e2

σ = 4.0 σ = 6.0 σ = 4.0 σ = 6.0 σ = 4.0

Anon param
`2, diff λ = 1.0e3 λ = 1.0e3 λ = 1.0e3 λ = 1.0e3 λ = 1.0e3

Anon param
mod−`1, diff λ = 1.0e2 λ = 1.0e2 λ = 1.0e2 λ = 1.0e2 λ = 1.0e2

Anon param
`2, mod−`1 λ = 1.0e3 λ = 1.0e3 λ = 1.0e3 λ = 1.0e3 λ = 1.0e3

Table 5.2: Parameter selection for the algorithms tested in the tumor infiltration
subjects.
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5.2 Experiment 2: Tumor Mass Effect
We proceed by registering the five subjects with a tumor mass effect and the five
subjects with tumor infiltration and study the registration algorithms’ performance.
The registration parameters used in this section are shown in Tables 5.1 and 5.2 in
the previous section.

Table 5.3 shows the results for all the algorithms described in Chapter 3. In
this table, distances dSSD and dJ between the deformation fields before and after
registration are shown (mean ± standard deviation) for the tumor mass effect data
set. Table 5.3 indicates that the parametric dense deformation field algorithms
perform better than the non parametric dense deformation field algorithms in this
setting. The smallest distances come from the algorithms Aparam

`2, diff , A
param
`2, mod−`1 and

Anon param
`2, diff , while algorithms such us Aparam

mod−`1, diff and Anon param
mod−`1, diff that use the

modified `1 norm in the dissimilarity measure have larger distances, in overall. The
affine registration algorithms have the same mean and standard deviation for both
the `2 norm and the modified `1 norm.

Subject 04 Subject 06 Subject 20 Subject 38 Subject 52

Aparam
`2, diff

0.1049 ± 0.6891 0.1276 ± 0.8027 0.0882 ± 0.5823 0.1399 ± 0.7848 0.1504 ± 0.8698
0.0251 ± 0.1878 0.0350 ± 0.2297 0.0247 ± 0.1765 0.0351 ± 0.2412 0.0354 ± 0.2266

Aparam
mod−`1, diff

0.1501 ± 0.8867 0.1577 ± 0.9130 0.1094 ± 0.6465 0.1476 ± 0.7629 0.1737 ± 0.9081
0.3510 ± 0.2248 0.0386 ± 0.2408 0.0282 ± 0.1852 0.0365 ± 0.2459 0.0385 ± 0.2339

Aparam
`2, mod−`1

0.1322 ± 0.6741 0.1252 ± 0.5978 0.0848 ± 0.4454 0.1469 ± 0.7460 0.1528 ± 0.7840
0.0268 ± 0.2006 0.0293 ± 0.1768 0.0217 ± 0.1441 0.0335 ± 0.2174 0.0312 ± 0.1916

Anon param
`2, diff

0.1464 ± 0.9399 0.1409 ± 0.9222 0.0883 ± 0.6725 0.1292 ± 0.7905 0.1621 ± 0.9443
0.0332 ± 0.2312 0.0340 ± 0.2361 0.0237 ± 0.1857 0.0320 ± 0.2448 0.0349 ± 0.2358

Anon param
mod−`1, diff

0.2264 ± 1.2294 0.2176 ± 1.2031 0.1251 ± 0.8094 0.1735 ± 0.9138 0.2120 ± 1.1150
0.0482 ± 0.2530 0.0472 ± 0.2557 0.0341 ± 0.1990 0.0440 ± 0.2567 0.0472 ± 0.2504

Anon param
`2, mod−`1

0.1925 ± 1.1054 0.1794 ± 1.0745 0.1052 ± 0.7500 0.1498 ± 0.8597 0.1862 ± 1.0461
0.0420 ± 0.2668 0.0424 ± 0.2724 0.0258 ± 0.1963 0.0370 ± 0.2647 0.0394 ± 0.2566

Aaffine
`2

0.2630 ± 1.3566 0.2630 ± 1.3566 0.1395 ± 0.8864 0.1972 ± 1.0175 0.2367 ± 1.2209
0.0433 ± 0.2579 0.0433 ± 0.2579 0.0281 ± 0.1994 0.0374 ± 0.2591 0.0412 ± 0.2538

Aaffine
mod−`1

0.2630 ± 1.3566 0.2630 ± 1.3566 0.1395 ± 0.8864 0.1972 ± 1.0175 0.2367 ± 1.2209
0.0433 ± 0.2579 0.0433 ± 0.2579 0.0281 ± 0.1994 0.0374 ± 0.2591 0.0412 ± 0.2538

Table 5.3: Registration evaluations of the tumor mass effect data set. The first row
in each algorithm is for the global dSSD distance and the second row is for the local
dJ distance.

Figure 5.1 illustrates the tumor mass effect images for the study in Table 5.3:
the floating image, the reference image, the ground truth deformation field and the
final deformation field after registration for the Anon param

`2, diff , as an example. Subjects
04, 06, 20, 38 and 52 are displayed from top to bottom.
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5.2. Experiment 2: Tumor Mass Effect

Figure 5.1: Tumor mass effect data set input images. From left to right: floating
image, reference image, ground truth deformation field and deformation field after
registration. Subjects 04, 06, 20, 38 and 52 are displayed from top to bottom.
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5.2. Experiment 2: Tumor Mass Effect

Figure 5.2 shows the initial and final overlap between the two floating and ref-
erence image of subject 20 for the Aparam

`2, diff , A
param
`2, mod−`1 and Anon param

`2, diff registration
algorithms.

Figure 5.2: In columns, the initial overlap image and the final overlap image. In rows,
visual assessment of Aparam

`2, diff , A
param
`2, mod−`1 and Anon param

`2, diff registration algorithms.

Figure 5.3 shows the intensity difference image between the floating and the
reference image, before and after registration. It also shows the deformation fields,
before and after registration for the same subject 20 and same algorithms Aparam

`2, diff ,
Aparam
`2, mod−`1 and Anon param

`2, diff , as in Figure 5.2:
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5.2. Experiment 2: Tumor Mass Effect

Figure 5.3: Rows 1 and 2: intensity difference image. Rows 3 and 4: deformation
fields. First image in rows 1 and 3 shows the initial floating image case. Then,
algorithms Aparam

`2, diff , A
param
`2, mod−`1 and Anon param

`2, diff are displayed in order.
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5.2. Experiment 2: Tumor Mass Effect

In Figure 5.3, some differences between the three algorithms occur. Algorithm
Aparam
`2, mod−`1 recovers the deformation around the pathology slightly better than the

other two algorithms, but misregistration errors appear in areas where no deformation
was simulated in the first place. Precisely, it generates a secondary deformation near
the ventricles. This effect is not an expected result but the visual assessment of the
registration is really good, overall. Both algorithms Aparam

`2, diff and Anon param
`2, diff perform

quite similar for the tumor mass effect case.

Figure 5.4 shows the performance of the modified `1 norm as dissimilarity mea-
sure. In particular, it shows the overlap images of the algorithms Aparam

mod−`1, diff and
Anon param

mod−`1, diff before and after registering subject 38:

Figure 5.4: Visual assessment of Aparam
mod−`1, diff and Anon param

mod−`1, diff algorithms. In
columns, the overlap image before registration, the final overlap image using
Aparam

mod−`1, diff algorithm, and the final overlap image using Anon param
mod−`1, diff algorithm.

Figure 5.5 shows the intensity difference image and the deformation fields be-
fore (ground truth) and after registration of subject 38, for the Aparam

mod−`1, diff and
Anon param

mod−`1, diff . In Figure 5.4, we appreciate a good registration of the tumor for the
parametric dense deformation field, but the deformation field itself seems slightly
regularized in Figure 5.5. Whereas the non parametric dense deformation field
algorithm do not recover the tumor at all. Associated with Table 5.3, the results
provided by algorithm Anon param

mod−`1, diff are the worst results for the dense deformation
field transformation model algorithms together with the affine transformation model
algorithms.
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5.2. Experiment 2: Tumor Mass Effect

Figure 5.5: Visual assessment ofAparam
mod−`1, diff andAnon param

mod−`1, diff registration algorithms.
First row shows the intensity difference image before (column 1) and after registration
(columns 2 and 3). Second row shows the ground truth deformation field (column 1)
and the deformation field after registration (columns 2 and 3.
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5.3. Experiment 3: Tumor Infiltration

5.3 Experiment 3: Tumor Infiltration
Table 5.4. shows the results for all the algorithms described in Chapter 3. In this
table, distances dSSD and dJ between the deformation fields before and after regis-
tration are shown (mean ± standard deviation) for the tumor infiltration data set.
Overall, the results are smaller than the results obtained in the tumor mass effect
case, since the comparison of the deformation is done with the identity transform
deformation field. Anon param

`2, diff and Anon param
`2, mod−`1 algorithms perform better than the

rest. Aparam
`2, diff and Aparam

mod−`1, diff algorithms recover the transformation good enough
but their performance is slightly worst then the previous two algorithms. The affine
transformation model registration algorithms have distances dSSD and dJ equal to
zero. However, for the affine case, the performance of the registration is not good
since we can not recover the deformation.

Subject 04 Subject 06 Subject 20 Subject 38 Subject 52

Aparam
`2, diff

0.1262 ± 0.7216 0.0908 ± 0.5398 0.1162 ± 0.8687 0.0803 ± 0.5729 0.0246 ± 0.2768
0.0308 ± 0.1717 0.0210 ± 0.1130 0.0295 ± 0.2183 0.0193 ± 0.1352 0.0097 ± 0.0998

Aparam
mod−`1, diff

0.1073 ± 0.4977 0.0803 ± 0.3765 0.1866 ± 0.8715 0.0775 ± 0.4242 0.0589 ± 0.2805
0.0202 ± 0.0805 0.0160 ± 0.0628 0.0311 ± 0.1713 0.0152 ± 0.0714 0.0120 ± 0.0491

Aparam
`2, mod−`1

0.1406 ± 0.7855 0.1547 ± 0.7074 0.1705 ± 0.9855 0.1357 ± 0.7544 0.1234 ± 0.4980
0.0364 ± 0.1991 0.0321 ± 0.1723 0.0488 ± 1.0680 0.0253 ± 0.1218 0.0410 ± 0.1389

Anon param
`2, diff

0.0752 ± 0.4111 0.0474 ± 0.3088 0.0783 ± 0.5669 0.0518 ± 0.3845 0.0263 ± 0.2157
0.0127 ± 0.0632 0.0084 ± 0.0492 0.0135 ± 0.0862 0.0085 ± 0.0548 0.0049 ± 0.0361

Anon param
mod−`1, diff

0.0340 ± 0.1838 0.0270 ± 0.1527 0.0222 ± 0.1367 0.0208 ± 0.1172 0.0177 ± 0.0897
0.0149 ± 0.0485 0.0124 ± 0.0395 0.0120 ± 0.0381 0.0120 ± 0.0357 0.0110 ± 0.0298

Anon param
`2, mod−`1

0.0579 ± 0.3234 0.0398 ± 0.2535 0.0463 ± 0.4007 0.0351 ± 0.2806 0.0029 ± 0.1780
0.0128 ± 0.0827 0.0083 ± 0.0560 0.0128 ± 0.1213 0.0080 ± 0.0754 0.0045 ± 0.0416

Aaffine
`2

0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

Aaffine
mod−`1

0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

Table 5.4: Registration evaluations of the tumor infiltration data set. The first row
in each algorithm is for the global dSSD distance and the second row is for the local
dJ distance.

Figure 5.6 illustrates the tumor infiltration images for the study in Table 5.4:
the floating image, the reference image, the ground truth deformation field and the
final deformation field after registration for the Anon param

`2, diff algorithm, as an example.
Subjects 04, 06, 20, 38 and 52 are displayed from top to bottom. Notice that for the
infiltration case, the ground truth deformation field is the identity transform since
we expect the healthy tissue to remain in the same voxels.
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5.3. Experiment 3: Tumor Infiltration

Figure 5.6: Tumor infiltration data set input images. In columns, floating image, ref-
erence image, ground truth deformation field and deformation field after registration.
Subjects 04, 06, 20, 38 and 52 are displayed from top to bottom.
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5.3. Experiment 3: Tumor Infiltration

Figure 5.7 shows the initial and final overlap between the two floating and ref-
erence image of subject 20 for the Anon param

`2, diff , Anon param
`2, mod−`1 and Aparam

`2, diff registration
algorithms.

Figure 5.7: In columns, the initial overlap image, and the final overlap images. In
rows, visual assessment of Anon param

`2, diff , Anon param
`2, mod−`1 and Aparam

`2, diff .

Figure 5.8 shows the intensity difference images between the floating and the
reference image, before and after registration. It also shows the deformation fields,
before and after registration for the same subject 20 but for algorithms Aparam

`2, diff ,
Aparam
`2, mod−`1 and Anon param

`2, diff . Notice that for the parametric dense deformation field
algorithms, a secondary deformation appears in a location not near the pathology
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5.3. Experiment 3: Tumor Infiltration

location. This effect is not as expected.

Figure 5.8: Visual assessment of Aparam
`2, diff , A

param
`2, mod−`1 and Anon param

`2, diff registration
algorithms. First row shows the intensity difference image before (column 1) and after
registration (columns 2, 3 and 4). Second row shows the ground truth deformation
field (column 1) and the deformation field after registration (columns 2, 3 and 4).

Figure 5.9 shows the performance of the modified `1 norm as dissimilarity measure
for the tumor infiltration data set. In particular, it shows the overlap images of the
algorithms Aparam

mod−`1, diff and Anon param
mod−`1, diff before and after registering subject 38:

Figure 5.9: Visual assessment of Aparam
mod−`1, diff and Anon param

mod−`1, diff algorithms. In
columns, the overlap image before registration, the final overlap image using
Aparam

mod−`1, diff algorithm, and the final overlap image using Anon param
mod−`1, diff algorithm.

Figure 5.10 shows the intensity difference image and the deformation fields be-
fore (ground truth) and after registration of subject 38, for the Aparam

mod−`1, diff and
Anon param

mod−`1, diff :
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5.3. Experiment 3: Tumor Infiltration

Figure 5.10: Visual assessment of Aparam
mod−`1, diff and Anon param

mod−`1, diff registration algo-
rithms. First row shows the intensity difference image before (column 1) and after
registration (columns 2 and 3). Second row shows the ground truth deformation field
(column 1) and the deformation field after registration (columns 2 and 3).
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Chapter 6

Discussion and Future Work

In this thesis, we presented a theoretical and experimental comparison of eight
registration algorithms. Each algorithm uses different transformation models as well
as dissimilarity measures and regularization strategies. We analyzed differences in
these elements within the registration for brain MR images where a pathology is
present. In particular, we focused on two different cases: pathologies due to tumor
mass effect and due to tumor infiltration. We also studied the influence of the
regularization parameter in each algorithm and compared the performance of the
registration algorithms. For all the algorithms, we considered a gradient descent
optimization scheme.

In the first experiment, a tuning of the registration parameters was done for each
of the algorithms described in the methods. The tuned regularization parameter
was the same for all the parametric dense deformation field transformation model
algorithms, given a fixed step size for the gradient descent optimization scheme and
for a given number of iterations. The standard deviation of the parameterization
depended on the magnitude of the simulated expansion. Hence, for larger deforma-
tions, one should increase the standard deviation of the Gaussian distribution. For
the non parametric dense deformation field, one should lower the regularization pa-
rameter just for the algorithm that uses the modified `1 norm as dissimilarity measure.

For the tumor mass effect and tumor infiltration experiments we can state that,
for the algorithms that do recover the deformation, the ones that use a parametric
dense deformation field transformation model perform better when recovering large
deformations. On the other hand, algorithms that use a non parametric dense
deformation field transformation model perform better when recovering smaller
deformations, overall. In general, algorithms that use the `2 norm and a diffusion
regularizer perform quite nice in both situations. Also, algorithms that use the
modified `1 regularizer (parametric dense deformation field transformation model for
the tumor mass effect case and non parametric dense deformation field transforma-
tion model for the tumor infiltration case) recover the deformation where the tumor
expansion was generated but they also introduce additional large deformations in
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6.1. Future Work

other locations of the brain. Specifically, these additional deformations are generated
near the edge of the brain surface or around the ventricles, in the middle. They are
not random locations for the deformation to appear. These locations have similar
intensity value than the tumor intensity value: black in the background and similar
intensity value to the generated tumor intensity value, at the ventricles. That is due
regularization techniques impose smoothness in the MR image by penalizing large
changes in intensity between neighboring voxels.

There is a large difference in the performance of the modified `1 norm as dissimi-
larity measure between the parametric dense deformation field transformation model
algorithm and the non parametric one. I have not come up with a reasonable expla-
nation for this effect, but it is present in both the tumor mass effect experiment and
the tumor infiltration experiment. It may be due the contribution of the additional
terms that the modified `1 norm introduces in the cost function when computing the
derivatives of the dissimilarity measure to the transformation parameters.

Both affine algorithms have the same distances between the deformation obtained
and the ground truth. They both recover a deformation which is the identity
transform deformation field. This is due most of the brain tissue is mapped onto
each other and only small voxels differ from each other in the neighborhood of the
tumor. Any affine transformation will generate more voxels not corresponded in
the first iteration of the optimization problem and will not recover the deformation.
Furthermore, results show affine transformation model algorithms have the largest
distances when comparing this deformation with the ground truth for the tumor mass
effect. On the other hand, for the tumor infiltration experiment, we notice that affine
transformation model algorithms have distances equal to zero, instead. However, by
no means this indicates a perfect registration. Again, affine transformation model
algorithms do not recover the deformation, as in the mass effect experiment, and
the optimal deformation that these algorithms will find is the identity transform
deformation. But since we are comparing this deformation field obtained with the
identity transform deformation field as ground truth, the distances are zero. Similarly,
dense deformation field transformation model algorithms that do not recover the
deformation have small dSSD and dJ distances. On the same lines, algorithms that
do recover most of the tumor expansion have larger dSSD and dJ distances since the
validation of the deformation field obtained is with the identity transform deformation
field.

6.1 Future Work
Due time constraints, several improvements and suggestions can be made for the
near future.
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Simulation improvements

Within this thesis, several assumptions were made in the simulation of the data
and the ground truth. We first removed the skull from the equation in order to
make the problem easier to tackle. By leaving the skull in its place in a real
setting, we could use some additional constraints that model a local rigidity of the
deformation as in [29]. This penalty term would also be useful for the registration of
pre-operative and intra-operative images in case an artifacts are introduced by the
opening of the skull [17]. It could also be used for the registration of lung MR images.
Other strategies for constructing penalty terms are described in [12, 30]. Another
assumption relating the tumor tissue intensity value was made during the tumor
simulation. We opted to model the tumor as an homogeneous tissue but in reality
there may be different intensities for the tumor cells, pushing nearby tissue in various
directions. Furthermore, tumor in both scans usually do not have the same intensity
value, as we considered. Moreover, we also explored tumor mass effect and tumor
infiltration separately but in reality both effects are present at the same time and
they are not regarded separately. Other methods have been used for the generation
of a realistic ground truth such us using biomechanical linear elastic finite model to
simulate tumor mass effect [25] and a reaction-diffusion model [32] to simulate the
infiltration by pathological cells or fluid.

3D Testing

Methods were tested on a 2D axial slice for each subject and results may not be
representetive enough. For a complete validation, one should study the 3D real case
in order to see whether the tumor is well recovered in other planes. By adding the
third plane in the registration problem, not only it would turn the problem onto
a harder computational problem since more voxels have to be taken into account
when computing the intensity difference between the images being registered, but
also for the calculations of the gradient in the differential partial equations. In the
same way, for the parametric dense deformation field transformation model, more
kernel functions have to be placed on the 3D grid. We already had to incorporate
a subsampling factor in this algorithm in order to reduce the computational time
of the calculation of the energy function derivative to the parameter set. In the
3D case might take too much effort to do these calculations. In order to tackle
this issue, calculations could be done on a GPU (Graphics Processing Unit) to
reduce the computational time of GPU and CPU communications [27]. In [28], a
multiresolution optimization strategy is used and that it results to be efficient with
respect to computational time and robustness.

Evaluation on larger data sets

In the setting studied, only five different subjects were considered. The results may
not be representative enough. Besides that, the differences between each subject
were small. We don’t even considered other effects such us motion of the head of the
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patient nor noise; only the deformation of a pathology. Making these changes may
reveal additional results.

Test other settings

For a complete study of the methodologies presented, one should test the algorithms
presented in other settings. We have already mentioned additional settings that
could be tested in this Chapter. Apart from those, registration of breast MR images
can be done by using free-form deformations based on B-splines to recover the motion
and deformation of the breast itself [?]. Free-form deformations are also used in [33]
to recover motion of the brain relative to the skull. These are just a few examples
among others.
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Chapter 7

Conclusions

It was the objective of this thesis to incorporate sparsity into the registration
problem. In this work, this goal has been accomplished by using a modified `1
norm as dissimilarity measure, and by constructing a modified `1 regularizer for
the minimization of a cost function in an optimization problem in order to recover
a deformation field that anatomically maps two images of the same patient. We
described eight different algorithms that combine these contributions with an `2 norm
dissimilarity measure and diffusion regularizer. Three different transformation models
are considered. The methods presented have been tested on simulated brain tumor
MR images and validated by computing a dissimilarity metric between deformation
fields.

Results show that algorithms that use the modified `1 regularizer and an `2
dissimilarity measure recover the deformation of the tumor, while the algorithm
that uses the modified `1 norm dissimilarity measure along with a parametric dense
deformation field transformation model recovers the deformation for large tumor
expansions.
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