
UPC CN-A testbed mesh network
deployment, monitoring

and validation

Barcelona, June 2014

Major: Computer Science
Minor: Information Technologies

Author:

Eloi Carbó Solé

Director:
Leandro Navarro Moldes

Department of Computer Architecture

Facultat d’Informàtica de Barcelona
Universitat Politècnica de Catalunya - BarcelonaTech

2014

Abstract

Testbeds are used in computer networking research to perform research ex-
periments. Virtualization is sometimes used to simplify the experiment setup
and reduce costs needed for large scale experimental testbeds. As a result,
the experimental results include artefacts from these simplifications due to
emulated components that can compromise its validity.

This project introduces WiBeb, a solution developed in order to de-
ploy testbeds as close as possible to a real environment and, at the same
time, share the features of virtualised experimental environments. Since
this project has been developed as a part of the CONFINE project, all the
software, hardware and documentation has been created with the goal of
standardising the platform and make it open and affordable for researchers
and to the community of interest in general.

Catalan abstract

En el món de la recerca de les xarxes de computadors, els testbeds són les
plataformes on s’executen els experiments. Aquestes plataformes exigeixen
unes infraestructures i software necessaris per regir-les molt costoses i es-
tàtiques, a la vegada que generalment privatius. Per altre banda, per tal
d’experimentar evitant aquests costos la tendència que s’està seguint és la
virtualització, la qual simplifica i redueix els costos, però alhora requereix la
concienciació de que al cap i a la fi els resultats seran fruit d’una simulació.

Aquest projecte presenta WiBed, una solució desenvolupada per obtenir
un testbed el més proper possible als entorns reals, a la vegada que aportant
les característiques comunes dels entorns virutalitzats. Donat que aquest
projecte ha estat desenvolupat com a part del projecte europeu CONFINE,
tot el software, hardware i documentació ha estat generat concienciadament
per tal d’estandaritzar la plataforma i fer-la lliure i assequible per als inves-
tigadors i la comunitat en general.

Acknowledgements

First of all, I want to thank Leandro Navarro for your supervision in this
bachelor’s degree thesis and for inspiring me to better myself personally and
professionally. Roger Baig as a mentor and promoter of WiBed and the com-
munity network philosophy. To Pau Escrich for your unconditional support,
mentorship and your inspiring strong convictions in community networks.
To Emmanouil Dimogerontakis, for your support and contribution during
all the project and being there always I needed help. To the rest of LabE104
colleagues Roger Pueyo, Agustí Moll, Jorge, Ferran and Dani, because a
healthy, and geek, work environment and companionship like what you have
ends into achieving greater and passionate projects. To Axel Neumann for
your support during the project, in our short stay in Berlin and for the hard
work performing the Battlemesh experiment and posterior data gathering.
To the Battlemesh community, for such amount of knowledge and wishes to
make a better world, and for showing that change begins in our own choices
and actions.

And finally to Sílvia, for being there always supporting me and encour-
aging me to grow.

Index

1 Introduction 1
1.1 Structure of the document . 1
1.2 Brief description of the problem 2
1.3 Scope of the project . 2

1.3.1 Methodology and communication 3
1.4 Background information . 3

1.4.1 OpenWRT . 3
1.4.2 Testbed . 4
1.4.3 The CONFINE Project 4
1.4.4 Commodity routers . 4
1.4.5 Wireless Battle of the Mesh 5
1.4.6 UCI configuration . 6
1.4.7 Dynamic Routing Protocols 6

1.5 State of the art . 7
1.5.1 Research testbeds . 7
1.5.2 Main differences between other research testbeds and

WiBed . 8
1.6 Temporal planning . 9

1.6.1 Tasks . 10
1.6.2 Deviations and modifications in the planning 11

1.7 Budget . 11

2 Architecture 13
2.1 Design . 13

2.1.1 Platform operation . 13
2.1.2 Software and hardware 13
2.1.3 Testbed mesh network collocation 14

2.2 The Overlay File System . 15
2.3 Experiment operation . 16

3 Implementation 17
3.1 The WiBed node . 17

3.1.1 Original testbed router requirements 17

i

3.1.2 WiBed supported router 18
3.1.3 Extensions and modifications in the WiBed router re-

quirements . 19
3.2 The WiBed controller . 20

3.2.1 Software requirements 20
3.2.2 Main functions of the controller 20

3.3 Communication between controller and the testbed 22
3.3.1 The management network 23
3.3.2 Controller acknowledgement system 24

3.4 Node management system . 25
3.4.1 Status operation . 26

3.5 The Overlay FS and experiments 27
3.5.1 The default overlay . 29
3.5.2 The experiment overlay 29

3.6 The WiBed firmware: main scripts and configurations 30
3.6.1 The WiBed firmware 30
3.6.2 wibed-node . 31
3.6.3 wibed-config . 32
3.6.4 wibed-location and libremap.net 32
3.6.5 wibed-upgrade . 33
3.6.6 Spread the word script 34

3.7 WiBed’s source repositories 35

4 Deployment 37
4.1 UPC CN-A testbed mesh network 37

4.1.1 Network previous state: first and dismissed deployment 37
4.1.2 Network current state: final deployment 40

4.2 Battlemesh network . 43

5 Validation of the platform and network 46
5.1 WBMv7 and experimentation environment 46

5.1.1 Relation between WiBed and the WBM 46
5.1.2 Minor Battlemesh experiments 48
5.1.3 Adapting the WiBed platform 49

5.2 The Battle of the mesh experiment 52
5.2.1 Battlemesh overlay contents 53
5.2.2 Environment considerations 53
5.2.3 Protocol related considerations 54
5.2.4 Configuring the experiment 55
5.2.5 Considered scenarios 56
5.2.6 Experiments’ results and conclusions 56

5.3 Validation of the platform . 65

ii

6 Conclusions 67
6.1 Future work . 67

Appendices

Appendix 70

A Off-the-shelf Wireless Networks Research Testbed 70
A.1 WiBed Software . 70

A.1.1 Testbed server . 70
A.1.2 Testbed nodes . 71

A.2 WiBed Hardware . 71
A.2.1 Testbed server . 71
A.2.2 Testbed nodes . 71

A.3 WiBed collocation . 71
A.3.1 Testbed server . 71
A.3.2 Testbed nodes . 71

B WiBed schedule 72

C WBMv7 documents 76
C.1 Battlemesh main experiment code 76
C.2 Battlemesh versions table . 79
C.3 Battlemesh deployment . 79

D WiBed operation examples 81
D.1 Example of command’s execution 81
D.2 Example of experiment’s execution 82

E WiBed scripts 88
E.1 wibed-node . 88
E.2 wibed-config . 99
E.3 wibed-location . 106
E.4 wibed-upgrade . 107

Bibliography 109

iii

List of Figures

1.1 Tasks planning schedule. 10

2.1 WiBed platform design . 14
2.2 Overlay File System default state. 15

3.1 WiBed node-side status system operation 27
3.2 The FS is using the internal overlay. 29
3.3 The FS is using the external overlay. 30
3.4 Representation of a large group of nodes close to each other. . 33

4.1 UPC CN-A current deployment state. 41
4.2 Final deployment of the UPC CN-A network. 45

5.1 Gantt of WBM without the WiBed Project 47
5.2 Gantt of WBM with the WiBed Project 47
5.3 Protocols memory consumption 57
5.4 Protocols CPU consumption 58
5.5 Protocol-related overhead in B/s 59
5.6 Protocol-related overhead in P/s 60
5.7 Number of hops and RTTs . 61
5.8 Path RTTs and occurances 62
5.9 Ping sucess rates . 63
5.10 Netperf throughput rounds 64

B.1 Project’s general planning. 73
B.2 Gantt of WBM without the WiBed Project 74
B.3 Gantt of WBMv7 with the WiBed Project (1st time) 75

C.1 Initial deployment of the Battlemesh 80

iv

List of Tables

1.1 WiBed hardware and human resources costs 12
1.2 Installation cost for the final UPC CN-A network 12
1.3 WiBed budget merging resources’ cost and installations’ cost 12

3.1 WiBed status table . 26
3.2 OpenWRT distribution of the File Systems using OFS 28

C.1 Summary of the WBM editions. 79

v

Glossary

• Testbed: Large-scale projects experimentation platforms.

• Internet Service Provider: Companies who bring Internet connec-
tivity and other services to the final users.

• Community Network: Networks cooperatively built, owned, man-
aged and used by its own users.

• Script: Programs written in particular languages widely used to per-
form tasks that will be interpreted instead of compiled.

• Dynamic Routing Protocols: Routing protocols that works equal
to static ones, but with a more robust and adaptable capabilities for
mobile or unstable environments and networks. These protocols are
widely used in Community Networks.

• Node: Synonym of router device.

• REST: Representational state transfer. The system used by the con-
troller to communicate and manage the testbed. It uses HTTP opera-
tions to handle requests and responses.

• JSON: JavaScript Object Notation. Is an object representational no-
tation allowing to transmit data in a human-readable manner.

• u-boot: Non-writable partition used for initializing the node. Is equiv-
alent to the BIOS system.

• LZMA: Lempel–Ziv–Markov chain algorithm. Loss-less data compres-
sion algorithm used to zip files.

• Trunk: Applied in branches of development, means a branch being
tested and under revision of the developers.

• HTML5, CSS and JavaScript: Web development languages.

• API: Application Programming Interface. Toolkit used to intercom-
municate two, or more, different software systems.

vi

• Firmware: Embedded systems OS installed in the ROM (flash) mem-
ory of these devices.

• To flash: The process of overwrite the firmware in the ROM memory
of embedded systems.

• Repository: Refereed to source code, a repository is a toolkit used to
manage and centralize code’s storage and historical revision informa-
tion.

• AP: Access Point. Refereed to a wireless connection point with the
purpose of bringing network access and services.

• Round Trip Time: The time needed to achieve a path between a
source and destination (send the packet and receive the acknowledge-
ment).

vii

Chapter 1

Introduction

Experimenting with testbeds is a common practice when researching and
working with networks. Testbeds are the stage that lays between simulation
and real production environments when performing experiments or tests, us-
ing both simulation and production scenario benefits. Benefits of simulation
are fault tolerance, ease of deployment, testing and data collection, reproduc-
tion, environment configuration, etc. And those of production environment
are real hardware, on the field deployments, physical and direct access and
manipulation of the hardware, etc.

The Wireless testBed (WiBed) project aims to improve testbed’s use by
giving the community a platform to perform quick and cost-efficient network
deployments, using commodity (standard 802.11) routers and also giving to
the researchers the possibility to access directly to low-level layers (trans-
port and physical) to perform, not only network and transport protocol
experiments, but also having complete access to the resources when p an
experiment. Furthermore, WiBed goals are to automate the configuration
and operation management process of the mesh testbed and to be able to
work with most of the unstable and dynamic topologies without human in-
teraction. This collides with the known perception of experimentation in
networking: to reproduce relevant characteristics or behaviours in existing
testbeds, being an static or hard to change topologies (unless in virtualiza-
tion), because WiBed topologies and testbeds can be low-cost, temporary,
even mobile, and heterogeneous.

1.1 Structure of the document

This dissertation is organized as follows. Chapter 1 introduces the WiBed
platform background and main points regarding this project’s development.
Chapter 2 the general idea of the platform, its components and operation
are described. Chapter 3 describes more specifically all the procedures and
particularities as well as the characteristics of all platform parts. Chapter 4

1

2

brings a exhaustive description of the all the UPC CN-A deployment process.
Chapter 5 presents all the procedures made to perform experiments that will
validate WiBed as a trustworthy platform. Finally, chapter 6 concludes with
a summarize of the platform goals achieved and future work.

1.2 Brief description of the problem

In a world ruled by a few Internet Service Providers (ISP) that own most
of the major worldwide networks, study, access or modify these networks
is a non-affordable work. This contrasts with the philosophy of having a
free, open and neutral network which is the network promoted mainly by
Community networks. These networks aim to be a real alternative to those
restrictive ones and provide one to be used and owned by its own users.
Furthermore, all these communities have their own rules to maintain and
judge a neutral use of the network owing not to allow bad minded activities
or abuse of service over the network. The commons of community networks
might also forbid experimentation in the network so as not to affect the net-
work normal behaviour and its users. However, community networks fits as
the perfect scenario for experimentation due to its capability to adapt from
strong to unstable or poorly connected networks (using dynamic routing pro-
tocols) but, again, experimentation must be done in isolated and controlled
networks or, otherwise, in a different way such as virtualization or research
testbeds.

This bachelor’s degree thesis main goals are to improve the WiBed plat-
form in order to allow research and experimentation of these community
networks avoiding virtualization tools but also keeping its main benefits,
such as fault tolerance, ease of deployment, testing and data collection, in
an as close as possible to production environments using real hardware in
real deployments. Moreover, to deploy a testbed mesh network in the UPC
university in Campus Nord (Barcelona) which will be used to bring resources
for experimentation to worldwide researchers.

1.3 Scope of the project

In order to satisfy the requirements and considerations described in "WiBed
Off-the-shelf Wireless Networks Research Testbed"[1] thesis and the minimal
goals to achieve agreed with the CONFINE project, this project ambition is
to develop the necessary tools and packages to platform needs. Furthermore,
due to the scale of this project, it counts with the previous hard work of some
members of the CONFINE project team123. Initial parts working thanks to

1Nico Echániz: server side.
2Alexandre Fonseca: API development and server side.
3Guido Iribarren: node side.

3

team members in the beginning of the project were:

• Experimentation server’s part in an advanced implementation state.

• 5 nodes and one gateway deployed in the lowest floors of the A5 build-
ing.

• OpenWRT firmware with packages to configure the platform and be-
haviour of the router.

• Wiki page of the project.

• A centralised software versions controller of the CONFINE project
(Redmine server).

Using this information as the starting point of this project, the goals
wanted to be scored are to deploy the theoretical network UPC CN-A, to
improve not only the behaviour of the tools but also developing new ones
to supply needs that may appear during the project’s development and, last
but not least, to bring support to researchers who use the platform as testers.

1.3.1 Methodology and communication

The WiBed project has followed the CONFINE work methodology and com-
munication. It consists on a weekly work schedule based on goals and with
a fast meeting on Wednesday. With that planning, the meetings are used to
expose how the project is going, which goals have been achieved, which not,
and also, to have a feedback and support of the rest of the team members.
Moreover, these meetings allow other project members to know colleagues’
work and merge ideas and tools willing to help to improve the overall CON-
FINE projects.

1.4 Background information

1.4.1 OpenWRT

Embedded systems lack of the high specifications found in desktops, laptops
or even mobile phones, as well as the work devised for them need not much
power. In the commodity routers topic, there are some operative systems
that excels due to its community and support for a great amount of router
architectures (at least 83 different manufacturers). Minimum requirements
of OpenWRT to work with are having at least 4MB of flash to install the
firmware and 16MB of RAM, bringing the possibility to install a powerful
OS to low specs. routers and to have support from its community.

4

1.4.2 Testbed

As the WiBed paper[2] attests:
"Testbeds are a stage between the simulation and the production stages. To
this end they must be as close as possible to production environments (i.e.
real hardware, on the field deployments) while also keeping the traits of ex-
perimentation facilities (i.e. fault tolerance, ease of deployment, testing and
data collection)".

1.4.3 The CONFINE Project

Community Networks Testbed for the Future Internet (CONFINE)4 is an
European Large-Scale Integrating Project (IP) scheduled from October 2011
to September 2015. It is included in the Future Internet Research and Ex-
perimentation Initiative (FIRE) of the European Community Framework
Programme (FP7) and with a budget of 4.942.000e. This project is mainly
executed in the UPC in Barcelona and coordinated by professor Leandro
Navarro Moldes.

The main goal of the CONFINE project is to research new Internet mod-
els and find out if they are sustainable, not only economically and technically,
but also socially. Its target research is focused on community networks.

1.4.4 Commodity routers

The WiBed platform aims to bring testbeds to general public as an standard-
ised platform with standardised hardware and, for that reason, off-the-shelf
routers are used. These routers must fit some characteristics owing to be
supported by the WiBed platform:

• They must be supported by the OpenWRT community, that means
that these routers will have the support of hackers (OpenWRT commu-
nity), which are maintaining the firmware (and future updates) com-
patible with them.

• They must have most of the basic features but with a non-expensive
cost (less than 100e).

• They must have sufficient hardware specifications to be able to work
fluently.

Most of the routers that fit this requirements are from manufacturers
that prioritise innovation and low prices against long-term support and pro-
duction. That means that these manufacturers have a lot of models with
similar or equal specifications that just have few improvements. In the end,

4CONFINE Project: http://wiki.confine-project.eu/

http://wiki.confine-project.eu/

5

those models which have hackers’ support, are the most common to have
long-term support from OpenWRT community due to its popularity. Actu-
ally, current main supported by WiBed team router is TP-Link WDR-4300,
a widely used by OpenWRT community router which current hardware re-
vision is V1.7 (released in January 2014). WiBed also counts with some
TP-Link WDR-4900 routers, which have better features but is still being
considered on account of lower community support.

1.4.5 Wireless Battle of the Mesh

The Wireless Battle of the Mesh (WBM) is an annual event focused on the
community networks, its routing protocols and also other related with the
community networking stuff. WBM is a social event that encourages from
enthusiasts to experts in the community network topic, to meet for a week
in one different spot of the community every year. The main goal of the
WBM is to develop and improve the routing protocols and tools that will
benefit the community networks. Furthermore, it is an event to present ideas
and projects owing not only to show it to the community, but also to obtain
feedback and improvements. In addition, there is a healthy competitive tour-
nament between the different routing protocols that are working and being
developed by the community for the community. These routing protocols
are: BABEL, BATMAN-ADV, BMX, OLSR and 802.11s. In section 5.1 this
event and its relation with WiBed will be further described.

This year 2014, the 7th version of the Battlemesh has been performed in
Leipzig (Germany)5. It has been chosen due to its high dense distribution
of social communities and its autonomous and collaborative working ecosys-
tem. One of these collaborators is Freifunk, who is sharing connectivity with
these communities. During the social events focussed to communities and its
interaction, there were two trips around the city, visiting the different com-
munities and how they are sharing resources in a non-profit but proactive
way.

Another important point of the WBMv7 is that it is the first Battlemesh
using WiBed as the platform to develop and perform the experiments. As
will be further explained in the next section 5.1.1, WiBed has been a suc-
cessful platform to perform the experiments of the event and the researchers
have agreed to use the platform in future editions. Finally, following the
work that Roger Baig, with the assistance of Pau Escrich, did in the theo-
retical dissertation of WiBed[1], I included in the Appendix C.2 a table with
updated information of Battlemesh main editions.

5TheWBMv7 was performed in Leipzig, Germany. More information about this edition
can be seen in Appendix C.2

6

1.4.6 UCI configuration

The Unified Configuration Interfaces is a centralized powerful configuration
tool-kit. Its main point is to make OpenWRT tools as user-friendly as pos-
sible. The UCI configuration uses the folder /etc/config to keep all configu-
rations from the different programs in just one site. As an instance, we can
see in the WiBed configuration script:

config wibed ’general’
option coordx ’41.38953’
option coordy ’2.11306’
option coordz ’2’
option api_url ’http://wibed.confine-project.eu/’
option node_id ’wibed-3e9dae’
option status ’1’

This code shows how UCI separates the configuration in sections, and
also, that each section is compound by some field-value options, which will be
checked and used to decide the behaviour of UCI scripts for the corresponding
tool.

1.4.7 Dynamic Routing Protocols

In this section, WiBed most relevant routing protocols will be described, as
the reader will find lots of references mainly in the validation chapter 5 and
in the Appendix C.

BMX6

BATMAN-EXPERIMENTAL 6[3] is a distance-vector routing protocol forked
from original BATMAN routing protocol and focused in IPv6 mesh networks.
Its main efforts are first, in improving IPv6 capabilities, and second, in au-
tomating and improving node-related configuration and announcement. Its
routing methodology consists on table-driven, so each node decides the best
next hope for the package transmission.

BATMAN-ADV

Better Approach To Mobile Adhoc Networking protocol[4] is a layer 2 rout-
ing protocol. It encapsulates not only the routing information, but also the
data traffic in ethernet frames with a virtual network switch and, as it op-
erates in 2nd layer, it uses the same collision domain. Its main point is the
decentralization of the network knowledge as willing to have a network of
collective intelligence.

7

OLSR

Optimized Link-State Routing Protocol[5] is a proactive link-state protocol
that, instead of flooding the network with control packages, it distributes
them through selected MultiPoint Relays (MPR) reducing the overhead of
the process. While OLSRv1 was not much efficient in mesh networks due to
the MPR procedure and the nature of the networks, OLSRv2 has shown an
impressive improvement during the tests in the WBMv75.2.

BABEL

Babel[6] is a distance-vector routing protocol specialized in loop-avoiding
techniques and designed to work well in a wide amount of scenarios: it works
regardless if the network uses IPv4 or v6 and also works correctly in wired and
mesh networks. It is based and is using ideas from different systems: DSDV6,
AODV7 and also EIGPR8. Its main point is to use advanced techniques to
avoid absence of routing pathologies.

1.5 State of the art

This section will present a brief description of current research testbeds and
will serve as contrast of what WiBed pretends to be. While an extended de-
scription of these testbeds can be found in the project Off-the-shelf Wireless
Networks Research Testbed, here we will only enumerate the most interesting
points of each research testbeds and, finally, present what WiBed does and
why.

1.5.1 Research testbeds

ORBIT Testbed

The Open-Access Research Testbed for Next-Generation Wireless Network [7]
is an academic, industrial and governmental partners research testbed com-
pound by 400 radio nodes (1GHz processor, 512MB RAM, 20GB HDD, two
Wireless Radios a/b/g and two 100BaseT Ethernet ports). One interesting
point of ORBIT is that counts with a sandbox system consisting in some
smaller node grids used to perform experimental or unstable tests before
moving them to the main grid. To sum up, this testbed is not only expen-
sive due to its components and infrastructure needs, but also is too complex
to maintain and replicate.

6Destination-Sequenced Distance Vector Routing: http://www.cs.virginia.edu/
~cl7v/cs851-papers/dsdv-sigcomm94.pdf

7Adhoc On-Demand Distance Vector Routing https://tools.ietf.org/html/
rfc3561

8Enhanced Interior Gateway Routing Protocol http://www.ietf.org/staging/
draft-savage-eigrp-00.txt

http://www.cs.virginia.edu/~cl7v/cs851-papers/dsdv-sigcomm94.pdf
http://www.cs.virginia.edu/~cl7v/cs851-papers/dsdv-sigcomm94.pdf
https://tools.ietf.org/html/rfc3561
https://tools.ietf.org/html/rfc3561
http://www.ietf.org/staging/draft-savage-eigrp-00.txt
http://www.ietf.org/staging/draft-savage-eigrp-00.txt

8

NITOS testbed

Network Implementation Testbed using Open Source code[8] is an experimen-
tal outdoor testbed owned by CERTH in association with NITLab in Greece.
This testbed main points are to use nodes based on open source software.
Actually, NITOS uses Alix nodes with commercial Wifi cards and Linux
open source drivers controlled using the OMF (cOntrol and Management
Framework) tool.

QuRiNet

Quail Ridge Wireless Mesh Network [9] is a wide-area outdoor testbed de-
ployed in the Quail Ridge national park in US. This testbed main point is
to be deployed in a spot completely free of interferences from other net-
works, being a noise free environment. Routers used in the testbed are
Soekris net4826 using a custom distribution with the 2.6.26 Kernel version
and modified Wireless drivers.

DES-testbed

Distributed Embedded System testbed [10] is a research testbed owned by Freie
Universität focused in "real world wireless multi-hop networks (WMHN), the
performance and applicability of abstract algorithms, as well as the common
assumptions of simulations and analytical methods by testbed-based research".
The mesh network is supported by Alix2/3 embedded PC boards with at
least three network a/b/g interfaces. The main point of this testbed is being
hybrid due to the use of sensors nodes as well as the Alix nodes, bringing some
interesting scenarios to experiment with. Finally, the testbed is available for
educational purposes being used in some subjects of the university.

BOWL

Berlin Open Wireless Lab[11] is a testbed of the INET group at Deutsche
Telekom Laboratories (TU-Berlin). The main point of this outdoors testbed
is to bring access, not only to research in community wireless networking but
also giving internet access to students of the Technishche Universität, this is
how BOWL’s research wants not only to contribute in researching, but also
to contribute with the testbed’s community as can be seen in their paper:
"Experiences with BOWL: Managing an Outdoor WiFi Network (or How to
Keep Both Internet Users and Researchers Happy?)"

1.5.2 Main differences between other research testbeds and
WiBed

Having a brief description of the most important testbeds in the world will
help to understand why WiBed is, possibly, the most important platform,

9

not only for networking research testbeds, but also for educational purposes
testbeds:

• Quick and possible to be temporary deployments in target experimen-
tation environments with the possibility to modify and improve the
topology with instantly response.

Main testbeds are static and pre-configured to the case of study and
modifications may be hard to adopt due to testbed’s nature and cost.
For instance, we could see the ORBIT testbed as a good example of
that complexity, with a hughe and powerfull infraestructure.

• Possibility of federation with other large-scale (global-scale) testbeds.

WiBed platform is under the scope of CONFINE project, which means
the possibility to federate with European large-scale testbeds. On
the contrary, most of the testbeds are not able to federate with other
testbeds as they are planned to be stand-alone systems.

• Framework and tools to enable external researchers to use the testbed
resources.

Again, being part of CONFINE project allows WiBed to put efforts in
develop collaborative tools to give user-friendly tools to bring resources
for interested researchers.

• Open and free software project, with low cost supported hardware and
standardised owing to be an easy to replicate and customise platform.

The project main efforts are to standardise all its procedures and to
use cheap hardware owing to open the project to the community for
educational or research purposes.

1.6 Temporal planning

Due to project’s complexity, it has been developed mainly by two persons9,
one in the controller’s side and, another, in the router’s side, collaborating
and contributing in each others work, but here only will have into ac-
count the tasks done in router/network’s side. In addition, this project
work started a year before with Roger Baig and CONFINE team’s work.
However, the temporal planning that will be used for this project lasts 6
months: planning starts on February 2014 and, although the team actually
will continue working in the platform for at least two years from july 2014,
planning finishes on June 2014. Look figure 1.1 and the description that
follows in next sections10.

9Part of the platform’s work was already done before the beginning of this project.
10In the Appendix B a bigger Gantt image is shown.

10

Figure 1.1: Tasks planning schedule.

1.6.1 Tasks

In this section the tasks done in this project’s development will be presented
as blocks, or goals, achieved during the implementation process.

Project’s background

WiBed platform is a complex and ambitious project conceived from an ideol-
ogy and methodology of work with a strong background and rich environment
that needs to be seen thoroughly before you start trying to understand its
main goals. Otherwise, is not possible to get the main points of using this
type of technology and environment and someone may miss how important
this platform is for the community networks and its users.

Deployment and network adjustments

As can be seen in The deployment section, the network UPC CN-A was
defined in WiBed theoretical project and one of the main goals of this project
has been to deploy it. Moreover, this project explains how the deployment
has been modified due to structural and connectivity related problems and
how has been studied and dealt to deploy the final network.

Platform management tools’ development

Developing tools to improve, maintain and control the platform is one of
the goals of this project. The initial state of the platform, apart from the
network deployment state, was not stable enough to be used as a trustworthy
platform for research purposes due to some issues and its early development
status and, for that reason, one of the most important goals for WiBed
was to receive improvements, not only in the robustness of its firmware and
behaviour, but also adding new powerful tools to make WiBed a trustworthy
platform for networking research.

Platform’s validation

Once the deployment is finished and the tools are mature enough to make
WiBed an stable platform to experiment with, the final goal of this project

11

is to validate WiBed as an reliable platform to research on community net-
works.

Document and support

Being under the scope of CONFINE project allowed WiBed to be developed
using the same methodology that its projects so there are some important
questions that this project achieved to work with:

• Being able to develop the project under a free and open source licence.

• Using source repositories open to worldwide developers and being able
to have their feedback and support.

• Improving the CONFINE’s wiki page with the information regarding
the WiBed’s development process.

• Giving at least two years of support for the UPC CN-A testbed mesh
network in UPC and the platform.

1.6.2 Deviations and modifications in the planning

The project’s original planning had into account some deviations and risks
that actually had become true:

First and most important risk, was to be able to deploy the network in
the given time (4 months) following Roger’s project instructions. This fast
deployment became impossible as the buildings’ structure hardened the con-
nectivity of the network and made to discuss and change the emplacement to
the upper floors of the buildings, which actually was another emplacement
already described. Besides the emplacement’s change, another risk that oc-
curred was that the maintenance department could not afford the cost of
that new installation, so a budget to supply this cost was needed. Finally,
as a consequence of being under the scope of CONFINE project, which is
an European FP7 project directed by the Professor Leandro Navarro Moldes
from the UPC, WiBed project’s human and budget resources were enough
to solve any unforeseen deviation or risk.

1.7 Budget

WiBed project’s budget is compound by two main parts: the first one is the
cost of hardware and human resources, described in the table X, and the
second part, described in the table Y, is the budget agreed with the main-
tenance department to supply the costs of the final deployment described in
The testbed section. Finally, the Z table shows the final cost of the WiBed
platform.

12

• UPC Assistant: cost of the scholarship to develop the platform.

• Fungible: cost calculated assuming an overcost of 15% of the Hardware
costs.

Description Unit Quantity Price Total
(e/unit) (e)

UPC Assistant 20h/month 6 600.00 3600.00
Routers (TL-WDR4300) unit 40 41.50 1660.00
Kingston USB 16GB unit 40 6.74 270.00
USB Radio (TL-WN722N) unit 30 7.82 235.00
Fungible 1 324.75 324.75
Total direct costs 5765.00
Total indirect costs 3805.00
Total 9570.00

Table 1.1: WiBed hardware and human resources costs

Description Unit Quantity Price Total
(e/unit) (e)

Power cable Meters 100 0.84 83.75
Aerial gum power base Units 20 8.69 173.75
Installation work Units 1 1031.20 1031.20
Total 1560.00

Table 1.2: Installation cost for the final UPC CN-A network

Subject Price
(e)

WiBed budget 9570.00
Installation budget 1560.00
Total project’s cost 11130.00

Table 1.3: WiBed budget merging resources’ cost and installations’ cost

Chapter 2

Architecture

2.1 Design

2.1.1 Platform operation

The WiBed platform is compound by a controller that manages a group
of nodes, which works as a testbed mesh network as can be seen in figure
2.1. These nodes have two wifi radios: one for the management (node-
controller communication) and the other to be used for experimentation
purposes. WiBed follows the client-server model, being each node the one
who will contact the server by a pull methodology. In the controller side,
there are two type of users: the first one manages the network and the second
one will use network’s resources. In addition, it is important to take into
account that external interactions are not allowed so all the communications
and requests must pass through the controller.

OnWiBed development beginning users were not meant to access directly
into the nodes so all the interactions must go through the controller. That
philosophy changed thanks to the WBM contribution to the project and the
result was that, owing to improve the feedback that researchers may need and
due to some experiment’s nature, in future improvements of the controller
the researchers will be allowed to log into the nodes via VPN services.

Back again into the client-server model topic, WiBed nodes are the ones
who will ask the controller for orders and commands, pulling periodically
(UPC CN-A routers pulls every 15 seconds). The controller will answer each
node request separately so this brings a more efficient method to manage the
testbed than wasting controller resources using a push model.

2.1.2 Software and hardware

The hardware and software needed to deploy the full WiBed platform will be
described in the next sections. Specific models and tools will be mentioned
but, thanks to WiBed initial goal of make an open platform, main procedures

13

CHAPTER 2. ARCHITECTURE 14

Figure 2.1: WiBed platform design

and hardware can be easily developed and switched, due to the efforts put
in the standardisation of the platform. Moreover, initial specifications were
described in the Off-the-shelf Wireless Networks Research Testbed, attached
in the Appendix A.

2.1.3 Testbed mesh network collocation

WiBed’s mesh network works very similar to a real community network.
Unlike most of the existing testbeds, WiBed capabilities encourages the re-

CHAPTER 2. ARCHITECTURE 15

searchers to deploy the network as a temporary solution and, even more, to
deploy it with mobile devices. Using the mesh topology and, thanks to be
using BATMAN-ADV as the management network’s dynamic routing proto-
col, all the connections may fluctuate and change but the network will still
work and adapt to each topology change. Is for that reason that WiBed is
an excellent solution for hard environment or with low budget deployments,
allowing to use different types of nodes and also being able to modify its
emplacement.

2.2 The Overlay File System

The Overlay File System (OFS) is a file system focused on embedded needs
(also able to be used in other solutions due to its inclusion in the Kernel of
Linux in the version 3.11). The basic distribution of this file system can be
seen in figure 2.2. OFS summarised operation is to protect the core OS files,
the base directory, but also allowing the modification of a mirrored copy of
them, the storage directory. In less abstract terms, this file system envelopes
two other file systems and is able to merge them as if they were one. More-
over, as its name mentions, there is an over and a below file system, so the
first one will be hidden by the second in those files or directories that match.
The main idea is, when using this enveloping file system, both enveloped
FS are merged willing that the files that users will see, are the ones in the
upper one and, once finished, all the changes will be still in the modifiable
directory, maintaining the base directory clean (in its default state). That
transparent to the user process makes the user think that is modifying the
FS directly but redirecting these changes to the modifiable directory. This
improves not only the security of the files in the base directory, but also
allows to have a clean state to go back when needed. Some examples of the
kind of projects where OFS could fit in:

Internal storage

External storage

ROM Filesystem ROM OverlayBoot

Experimentation Overlay

Figure 2.2: Overlay File System default state.

CHAPTER 2. ARCHITECTURE 16

1. Low flash and RAM systems that need an extra storage to work cor-
rectly.

2. Systems that do not need to store the changes made during its opera-
tion.

3. Critical systems that need to protect the OS from external modifica-
tions.

4. As a recovery system to bring a ’Back to default state’ method.

Looking these four examples of possible uses of OFS, we can see that
all them fits in WiBed platform needs, keeping in mind not only the use
of commodity routers (1st and 2nd), but also the experimentation’s process
needs (3rd and 4th).

2.3 Experiment operation

Performing experiments in the WiBed platform means to apply an overlay
to the default base system (the Overlay File System), owing to bring pack-
ages, configuration files, scripts and, in summary, any necessary changes to
perform the experiment. Moreover, each node can only be in one experiment
at the same time but in the testbed can coexist (in parallel) as experiments
as combinations of nodes.

Each experiment, and the resources involved, are isolated from other
experiments and the unique way to access them is through the controller
and the testbed’s management network. And is thanks to that management
network (not allowed to be manipulated by the researchers), that the com-
munication with the controller is never lost and this allows the researcher to
send commands and receive feedback from the nodes.

The experiment server-side works as a controller for the commands and
monitoring the outputs of them. In addition, the controller also works as a
centralised storage system, collecting the data that each node in the exper-
iment must save in a special folder (/save). With it, researchers can find
not only the outputs of each command sent to the experiment but also the
results of the procedures done.

Chapter 3

Implementation

In this chapter we will explain from the router-side WiBed platform main
functionalities as well as a brief description of the procedures used.

3.1 The WiBed node

3.1.1 Original testbed router requirements

WiBed minimal initial hardware and software requirements were widely de-
fined in the theoretical beginning of WiBed Off-the-shelf Wireless Networks
Research Testbed project[1], here there is just a summary of these require-
ments:

• Has to be reasonable cheap.

• Must have at least two independent NICs1.

• Must have an Ethernet port.

Also, using OpenWRT as the platform firmware supposed some extra
requirements:

• At least 4MB of flash (recommended 8MB).

• At least 16MB of RAM (recommended 32MB).

The software and package requirements to work properly are:

• Runs the open source operating system OpenWRT.

• Runs Dropbear as SSH client.
1Network Interface Controller

17

CHAPTER 3. IMPLEMENTATION 18

• Runs Busybox built in time client configured to use to server’s NTP
server.

• Runs cURL as HTTP client.

• The Ethernet interface and the management wireless interface are
bridged.

• Runs Tinc VPN client for tunnelling the management network.

• Has the BATMAN-ADV kernel module activated and runs on the man-
agement bridge.

• Uses the server as the Internet gateway.

• Uses the server as DNS server.

• Has the block-mount kernel module enabled (to allow USB sticks to
be mounted)

• Has the Ath9k kernel driver enabled (to allow Atheros Radio manage-
ment and use).

• Uses Busybox cron utility to periodically check for updates in the
server.

3.1.2 WiBed supported router

Following all these requirements, the WiBed team chose one node to fit them
and be the project’s main supported router, the TP-Link WDR43002. This
router specifications are:

• CPU: Atheros AR9344 560MHz (MIPS Instruction set)

• Flash: 8MB

• RAM: 128MB

• Network Ethernet ports: 4 1Gigabit Ethernet

• WAN ports: 1Gigabit Ethernet

• 2.4GHz Wireless radio: Integrated Atheros radio 802.11b/g/n

• 5GHz Wireless radio: Separated Atheros AR9580 chip 802.11a/n

• USB ports: 2 USB2.0

• Serial ports: Yes

• Power supply: 12V / 1.5A
2http://wiki.openwrt.org/toh/tp-link/tl-wdr4300

http://wiki.openwrt.org/toh/tp-link/tl-wdr4300

CHAPTER 3. IMPLEMENTATION 19

3.1.3 Extensions and modifications in the WiBed router re-
quirements

While developing the WiBed platform and more specifically in the WBM
event, we realised that some of the researchers asked us for an image of
WiBed and support for devices with lower specifications thanWiBed minimal
requirements. After studying to add support for these devices, we could agree
with a new set of requirements that could fit in WiBed testbeds as well as
researchers that use this devices should take into account that its uses could
differ from original router ones.

The modifications on the default requirements are:

• One Radio for experimentation

• One Ethernet port for network management (this restriction will only
apply to those routers without 2 wireless radios)

These modifications widened the variety of capable routers and gave to
WiBed the possibility of using devices from 30e to make the research testbed
platform even more accessible, cheaper and mobile-capable. Moreover, the
second main goal to use this kind of devices is to use both radio and Eth-
ernet cable as the management network, bringing to the administrator or
researcher an easier way to access to the mesh network management and
connect to nodes for administration or experimentation purposes.

The nodes that will be supported from the WiBed platform with these
new requirements are TP-Link MR30203, MR30404 and WR703N5, with few
hardware differences (like the 5 hours battery of the MR3040):

• CPU: Atheros AR7240@400MHz

• Flash: 4MB

• RAM: 32MB

• 2.4GHzWireless radio: Atheros AR9330 (MR3020) and Atheros AR9331
(MR3040 and WR703N)

• USB port: Yes, 1 USB2.0

• Ethernet port: Yes, 1x100Megabit port
3http://wiki.openwrt.org/toh/tp-link/tl-mr3020
4http://wiki.openwrt.org/toh/tp-link/tl-mr3040
5http://wiki.openwrt.org/toh/tp-link/tl-wr703n

http://wiki.openwrt.org/toh/tp-link/tl-mr3020
http://wiki.openwrt.org/toh/tp-link/tl-mr3040
http://wiki.openwrt.org/toh/tp-link/tl-wr703n

CHAPTER 3. IMPLEMENTATION 20

3.2 The WiBed controller

As important as the mesh network and its routers capabilities, the server
that will control the platform needs also to fit in some requirements to work
correctly. In contrast on the router requirements, the controller has just few
recommendations not to be a bottle neck to the mesh network (in those that
are large-scale). In the theoretical WiBed project, the WiBed controller
would be an Alix2d2 embedded system (as an usual node of CONFINE
projects) but, the current controller is working on a Virtual Machine, in
UPC-Pangea’s department, with these specifications:

• CPU: 1GHz

• RAM: 2GB

• HDD: 2GB

• OS: Debian 7.1

3.2.1 Software requirements

The WiBed server is designed as a web application. In order to run the
WiBed server platform in the controller, there is some software needed:

• Flask: lightweight modular framework for web development made in
python.

• SQLite: lightweight relational database.

• SQLAlchemy: toolkit for database management and a Object-Relational
mapper made in python.

• Tornado: web application server focused on serving asynchronously
and in a non-blocking manner the network requests in large-scale en-
vironments.

3.2.2 Main functions of the controller

Controller’s main functions consist on the management of the nodes and in-
formation gathering of its status and experiment’s process, but also the end-
point for users to reach the testbed. Here we are going to focus in the features
created for the users. Currently WiBed has into consideration two types of
users: administrators and researchers, both have most of the privileges to
control the testbed and check its status, although researchers have experi-
ment and result gathering functionalities and administrators have routers’
firmware management and debug functionalities.

CHAPTER 3. IMPLEMENTATION 21

Functionalities

• Admin tab:

This page allow users to send commands to the routers in the testbed
by selecting them manually. More specifically, the server will create
as many entries in the database as routers will receive this command.
These commands added to be executed will be showed in a list in the
bottom of the page showing, not only the information regarding the
command and how many routers have executed it already, but also
being a link to a command page with the execution information of
each router.

• Nodes tab:

This page has a list of all the available nodes in the different testbeds
working in the controller showing its identification name, its testbed
name, its status and the time since the last pull to the server6. Each
node in the list is also a link to a information page of the router.

• Node’s page:

Each node in the test has an information page with information re-
garding the node, such as the model, firmware version, last success
pull to the server, its status, if its performing an experiment, a list of
previous experiments where it was involved and a description78. Fur-
thermore, there is an OpenStreetMap section available showing node’s
current location and being able to be modified if necessary (by clicking
its position in the map or with its coordinates).

• Repo tab:

This page has a list of firmwares available to be downloaded. First,
they are split by the development branch [master (stable version) and
last_trunk (testing version)]. Once in the development branch, there
is another list of router architectures available (WiBed’s current sup-
ported architecture is ar71xx, but mpc85xx architecture will be sup-
ported soon). Finally, each architecture folder has its own different
models’ firmware and also packages already compiled for them.

• Errors tab:

This page has a list of router’s ID which has gone to the Error state
during its operation. The available options are to watch the log files
online (a list of log files) or to download them as an id.tar.gz file.

6Administrator users are able to show/hide nodes to the research users.
7Administrator users are able to hide/show the node to the researchers and also to

delete it from the server.
8Administrators are able to modify the description of the nodes

CHAPTER 3. IMPLEMENTATION 22

Researcher’s functionalities

• Experiments tab:

This page shows the information regarding the experiments being per-
formed in the testbed and the ones finished, as well as it brings to the
researcher the possibility to create new experiments.

• Add Experiment page:

This page allows the user to name the experiment, select or add an
overlay and the nodes involved in the experiment.

• Experiment information page:

This page allows the user to manage the experiment process. The
researcher can start or stop the experiment, check experiment’s general
information, check the nodes and its status and finally add commands
that will be sent to all the involved nodes.

• Results tab:

This page shows a list of finished experiments and its time stamp.
Each experiment contains an expanded list with the results of each
node involved in the experiment and, as in the error’s tab, the results
can be downloaded or checked online.

Administrator’s functionalities

• Firmwares tab:

This page allows the administrator to add new firmwares to install
them in the nodes automatically. Also it shows information about
existing firmwares in the server and in which routers are installed.

• dbDebug tab:

This page shows the information contained in the database of the server
in a sorted manner. This information is informative only and it is not
available to be modified.

3.3 Communication between controller and the testbed

In order to communicate the controller with the network it was required
not to be the controller who asks to each node its commands, as in a push
request system, but to reverse it and use a pull request system, where the
nodes ask for commands to execute. Thanks to this pull procedure and the
scalable Flask RESTful features, the controller can serve the petition with
few resource requirements, as can be seen in The WiBed controller section.

CHAPTER 3. IMPLEMENTATION 23

3.3.1 The management network

The management network is an 802.11 ad-hoc wifi network used to access
remotely to the testbed and send them commands and monitoring the nodes.
In addition, this network is provided by one of the node’s radios using the
Batman-adv routing protocol (see section 1.4.7). The resulting meshed net-
work uses the same collision domain and is automatically configured using
IPv6 addresses. Is thanks to that auto-configuration that the management
and administration of the testbed is easily possible, even when performing
an experiment.

Although this management network does not require any wired link, the
network will have at least one wired node acting as the gateway of the
testbed. Gateways are the nodes in charge of bringing connectivity through
the Internet and, mainly, to connect the testbed with the controller.

One of the hardest problems to solve is the disconnection or lack of con-
nectivity in the testbed due to a bad configuration or the nature of the ex-
periment. Hence, security actuations are needed to avoid isolation or node’s
misconfiguration. There are three main scenarios where the recovery system
should act:

1. The node is performing an experiment and the configuration of the
management network has been changed.

In this case, the node will not be able to connect to the Internet or the
controller. Current solution is that, giving a predefined time interval,
the node will unmount the overlay, finish the experiment and going
back to the default state.

2. The node is performing an experiment and the controller is not re-
sponding the pull requests.

In this case, the node will not be able to receive any of the researcher’s
requests, even having Internet connection. Current solution is to wait
N pull requests not correctly processed and then unmount the overlay,
finish the experiment and go back to the default state.

3. The node is working in its default state and the controller is not re-
sponding its pull requests or it has no connection to the Internet.

In this case, the node is not performing an experiment but, for some
reason, its configuration has been modified or the node has lost Internet
connectivity. Current solution is to wait a predefined interval of time
and go back to the default state. Consequently, if the node is isolated
a long time, it will be going back to default state continuously.

It is important to keep in mind that in some experimental scenarios
that may have special disconnection needs, that recovery system must be

CHAPTER 3. IMPLEMENTATION 24

reconfigured willing to allow bigger time intervals or pull request or, in some
cases, to totally stop it.

3.3.2 Controller acknowledgement system

One of the most important troubles that the WiBed team has faced is that,
when working in a pull-based system, the controller could receive a repeated
request due to connectivity issues or because the latency between the node
and the server. Keeping that in mind, the solution proposed was to use an
acknowledgement system between node and controller in commands, exper-
iments and its results. The experiment part just adds information regarding
the experiment being performed by the node so, focusing in the command’s
part, which is the important one, the controller has a auto-increased list of
executed commands, and which nodes were involved, willing to save an order
of execution and also not to repeat commands already finished.

The information that is currently keeped in each node is:

• exp_id: This variable shows the last or current experiment in which
the node was involved.

• commandsAck: This variable shows the last successful command
received by the controller and executed in the node.

• resultsAck: This variable shows the last successful result sent to the
controller by the node.

The information kept for each node in the controller is:

• commandId: This variable shows the ID of the last sent command to
the node.

• executionId: This variable shows the ID of the last executed com-
mand in the node that its results have been correctly received.

To summarise, the point of the acknowledgement system relays in the
synchronitzation of the commandsAck-commandId and resultsAck-executionId.
The procedure of executing commands follows this sequence:

1. A researcher introduces a command in the controller.

2. The controller checks the last command’s ID (commandId) and sets
the new command as the number ID+1.

3. The node executes a pull request: It sends its status, the commandAck
of the last successfully executed command and a JSON formmatted list
with the results pending to be sent to the controller.

CHAPTER 3. IMPLEMENTATION 25

4. The controller receives all the information regarding node’s state and
responds with the new command to be executed and the executionId
of the last succesfully received result.

5. The node receives the new command ID and, if is greater than its
current commandAck, it executes the command, stores the results and
sets the commandAck to new command’s ID.

6. In the pull request after the command has been executed and the re-
sults have been saved, the node sends the information regarding the
status, commandAck (updated) and the command’s results (its ID and
the outputs).

7. The controller receives the request, synchronises its variables with the
commandAck and its results and sends back to the node the updated
executionId, which is the successfully completed new command’s ID.

3.4 Node management system

In order to improve testbed’s management system and to show the infor-
mation regarding nodes in an easy way, WiBed platform nodes always have
a status related to the system’s current state. This status methodology is
used as much in the node side as in the controller side9, not only to interact
and respond researchers orders, but also to make the testbed easier to be
monitored and also, with the tools available, self-fixable. Currently there are
8 valid statuses:

The status in WiBed is a variable found in /etc/config/wibed in the gen-
eral section. Most of the scripts that the testbed has use this value willing to
adapt its behaviour to the final action that will be applied. In addition, the
controller acts in the same manner using the status of the node as a control
of the functionalities available in the webpages.

Some status-behaviour examples:

• From status 2 to 6 means that the node is in an experiment, so it can
not be shown as an available resource in the testbed.

• ERROR status prevents the controller to take any other action with a
node except for sending commands.

• INIT status occurs when the node is recently upgraded or when it
is registered in the controller. Also it is the resulting status when
resetting the node due to any issue.

• Any different status from 0 to 8 will be treated as an invalid status
and the controller will not accept it.

9Controller’s API examples: https://wiki.confine-project.eu/wibed:unified-api

https://wiki.confine-project.eu/wibed:unified-api

CHAPTER 3. IMPLEMENTATION 26

Status Name Description
0 INIT Initial state of the node. In this state, the node is not

configured yet.
1 IDLE Main status. The node is working correctly and is waiting

for orders.
2 PREPARING The node has received an experiment command and it is

downloading the overlay.
3 READY The node has correctly received the overlay and it is

waiting to install it.
4 DEPLOYING The node has received the order to being the experiment.

The overlay is installed and mounted and the node reboots.
5 RUNNING The node is in an experiment and waiting for orders.
6 RESETTING The node unmounts the overlay and reboots to the default

state.
7 UPGRADING The node has received an upgrade order. It will download

and upgrade the firmware and finally reboot.
8 ERROR The node has detected an error and sends logs

to the controller. The node waits until the administrator
fixes the issue.

Table 3.1: WiBed status table

3.4.1 Status operation

As can be seen in figure 3.1, the WiBed status system operation has a log-
ical flow provided by the wibed-node script. As its description is already
explained in table 3.4, this is a summarization of statuses operation:

• INIT: This status can change only to idle state and this happens when
the node is registered to the controller.

• IDLE: As the default state, it can change to all the status except from
READY and RUNNING, which are subsequent status of PREPAR-
ING.

• PREPARING: It can change to error if the overlay is not correctly
downloaded or if the controller does not respond.

• READY: It can change to ERROR if the controller does not respond
or to DEPLOYING if all is correct.

• DEPLOYING: This is a hidden to the controller status that comes
from READY and goes to RUNNING. This is a bypass status that
occurs when the node installs and mounts the experiment’s overlay
internally. If the overlay’s installation is correct, it sets the status to
RUNNING and reboots.

• RUNNING: In an experiment, this status can go to ERROR if some-
thing wrong happens or to RESETTING state.

CHAPTER 3. IMPLEMENTATION 27

• RESETTING: This is a hidden to the controller status that comes from
RUNNING when the controller sends a Finish order. Then, after the
node has sent successfully the results to the controller, it dismounts
the experiment overlay and mounts the default one. Finally, it reboots
in order to recover into the IDLE state.

• ERROR: This status can come from every status and can go to each
status depending on the situation and action taken by the researcher
or administrator.

Figure 3.1: WiBed node-side status system operation

3.5 The Overlay FS and experiments

As the main idea of what OFS is has been further explained in the The
Overlay File System section 2.2, this section wills to explain more practically
how it is applied and managed in the WiBed supported node TL-WDR4300
seen in the section 3.1.2 and how the experiments take in advantage the OFS
features.

As described in the section 3.1, the WDR4300 router has 8MB of flash
memory. The OFS is distributed as can be seen in table 3.5 and described
in this manner:

CHAPTER 3. IMPLEMENTATION 28

• mtdblock0: The u-boot partition. It contains the analogous version of
computer’s BIOS. It is read only.

• mtdblock5: The rootfs partition. It is the partition which contains the
firmware separated in: the Kernel, and the other firmware parts.

– mtdblock1: The Kernel partition. It contains the Kernel of the
OpenWRT firmware. It is installed by OpenWRT but protected
as read only.

– mtdblock2: The base file system partition. Here will be mounted
the Overlay FS as the / folder.

∗ Unnamed partition: This partition is the one that will act
as the core system. It is mounted in the /rom folder, uses a
SquashFS and it is read only.

∗ mtdblock3: The data partition. This partition is the one that
will act as the internal overlay file system. It is a writable
JFFS2 partition where the merged overlay will save all the
changes.

• mtdblock4: The art partition. It contains the Atheros tools that cali-
brates and manages the radios. It is read only.

OpenWRT overlay FS in the WDR-4300
[8192KiB]

u-boot (0)
[128KB]

The firmware (5)
[8000KB]

art (4)
[64KiB]

Read Only Kernel (1)
[1280KiB]

OverlayFS: / (2)
[6720KiB] Read Only

Read Only SquashFS: /rom
[1536KiB]

JFFS2: /overlay (3)
[5184KiB]

Table 3.2: OpenWRT distribution of the File Systems using OFS
.

The SquashFS is a read only file system compressed in LZMA focused
in being as reduced as possible. Actually, as it is a read only system and
do not need to be modified, it is from 20 to 30% more compressed than the
writable JFFS2 file system.

The JFFS2 is a writable file system which counts with a journaling sys-
tem, is compressed in LZMA and also counts with a wear leveling technique.

CHAPTER 3. IMPLEMENTATION 29

The journaling file system is a technique consisting on keep the log of
file changes in a file system. Journaling techniques track all the changes
owing to prevent the information lost or corrupted if the system crashes.

The wear leveling is a technique used in most of Flash, SSD and USB
drives focused in the management of the data distribution when is saved in
the device, owing to homogenise the accesses to the memory blocks. This
technique is still being developed due to the SSD future expectations and
because the current management being performed in HDD shortens the utile
life of this type of devices.

3.5.1 The default overlay

Keeping in mind the default state of the FS seen in figure 2.2, when being
in the default state10 (the nodes are not performing any experiment), the
storage system that is installed as the overlay of the core FS is the internal,
as can be seen in figure 3.2. All the changes performed into the system, will
remain in the internal modifiable partition.

ROM Filesystem ROM OverlayBoot

Mount

Experimentation Overlay

 (Disabled)

Figure 3.2: The FS is using the internal overlay.

3.5.2 The experiment overlay

Keeping in mind the default state of the FS seen in figure 2.2, when per-
forming an experiment the controller will send the overlay to the node, and
then, the node will install it into the external storage overlay11. Then, the
internal modifiable FS is synchronized with the external12 and mounted as

10In the default state the nodes waits in IDLE.
11The external storage is an USB of 16GB using the ext4 File System.
12All the changes performed during the previous default state remains in the experiment.

CHAPTER 3. IMPLEMENTATION 30

the overlay FS to the core FS13 as can be seen in figure 3.3.

ROM Filesystem ROM Overlay (Disabled)Boot

Experimentation Overlay

(Provided by researcher)

Sync
Mount

Figure 3.3: The FS is using the external overlay.

3.6 The WiBed firmware: main scripts and config-
urations

This section aims to give a brief description of how WiBed firmware is made
and how its most important scripts work. Finally, in the Appendix section
E, there is a copy of these scripts.

3.6.1 The WiBed firmware

WiBed node’s firmware is compound basically by an OpenWRT as the base
system and repositories providing all the extra packages needed to work with
the platform. The OpenWRT used is a frozen commit version of the trunk
repository of the OS. This version is an already tested and approved by the
WiBed team. Versions scheduled to be maintained are ’master’ as the one
with a stable and contrasted correct behaviour and the ’last_trunk’, which
is using a newer commit, bringing updates to the platform as well as it is
also less tested. Moreover, OpenWRT supports 44 different architectures and
WiBed firmware and packages are currently compiled just for ar71xx as it
is current WiBed supported node architecture (the TL-WDR4300). In addi-
tion, the WiBed team has already tested mpc85xx (TL-WDR4900) and x86
(ALIX2d2) architectures and are currently under development. Finally, cur-
rent WiBed firmware fits on 8MB or more devices but future improvements
will reduce the firmware to be included in devices up to 4MB of flash.

13When the experiment finishes, the external overlay is disabled and the internal re-
stored.

CHAPTER 3. IMPLEMENTATION 31

3.6.2 wibed-node

The wibed-node script is the one in charge of making the pull requests to the
controller and also to manage node’s behaviour according to the status of
the node in each request and the response received. The script is scheduled
each 15 seconds and its output is redirected to a log file willing to keep any
issues during the operation of the nodes. To sum up, its main behaviour is:

Request information according to each state:

• If status is INIT, then send to the controller all the information needed
to register the node in the database.

• If status is IDLE or RUNNING or ERROR, then just send informa-
tion regarding the commandAck and pending results of commands not
acknowledged yet by the controller.

Once received the response of the server, the script should act conse-
quently not only with the response received, but also with the status which
receives that order.

• If the node was in INIT state, a successful response puts the node into
the IDLE status as the controller acknowledges it as a valid node.

• If the node is in INIT state and comes from a failed upgrade, it goes
to ERROR state.

• If the node is in IDLE state, the script checks the response and acts
consequently:

– If the response is a REINIT order, the node must execute the
wibed-reset script owing to restore default status.

– If the response is an UPGRADE order, the node must perform a
firmware upgrade and go to UPGRADING state.

– If the response is a PREPARE order, the node will start down-
loading the experiment’s overlay and from PREPARING to READY
state if the overlay is successfully downloaded.

• If the node is IDLE or RUNNING or ERROR state and receives a
command order, the node will execute it and send its results in the
next pull request.

• When performing an experiment (status from PREPARING to RUN-
NING), the node must check experiment related orders in the response
of the controller such as:

– If the response is a RUN order, the node will go from READY
to DEPLOYING state, then it will install the overlay and, if it
succeeds, the node will reboot and change to RUNNING status.

CHAPTER 3. IMPLEMENTATION 32

– If the response is a FINISH order, the node will change its status
to RESETTING, then will send to the controller the files in the
/save folder in a tar.gz file and, if all succeeds, it will unmount
the overlay, change its status to IDLE and reboot.

3.6.3 wibed-config

The wibed-config script is an all-in-one configuration tool that is able to set
all required settings but keeping in mind that it will not apply any of these
configurations as it is not its purpose. The area of actuation of wibed-config
script is:

1. Reset and clean the network and wifi previous configuration files.

2. Configure the network and wifi:

(a) Configure the management networks (LAN and wifi)

(b) Configure the wireless radio settings

(c) Configure the BATMAN-ADV settings

3. Configure basic node information such as its hostname, model or iden-
tification name.

4. Configure node’s location information.

3.6.4 wibed-location and libremap.net

The location of the nodes is a really interesting and hard to face problem that
has been discussed and studied since the beginning of the project. The main
problem that is manifested when trying to locate the nodes is the complexity
of developing a 3D-map of the emplacement and network. Most of the current
solutions use 2D maps, such as GoogleMaps or OpenStreetMaps, that fits
in a wide-extended network as could be Guifi.net, which has near to 25.000
operating nodes in an extension of 45.000Km wide. That solution is not
enough when working in testbeds deployed only in a single or few buildings
and locating the nodes in different floors. As can be seen in the figure 3.4, a
2D mapping tool is not clear enough to show node’s location. In the opposite
side there are solutions as the one used by Freifunk, using GoogleEarth view
to represent the network in 3D using KML representational language.

The WiBed final solution is still in development and the current one is
using two 2D maps to represent: in the first one an approximate location of
the nodes in each building and, in the second one, the exact location of the
nodes, in each floor of each building. It must be taken into account that,
while the first solution is to use an external open source worldwide map
visualisation tool, the second one is a web page built in HTML5, CSS and

CHAPTER 3. IMPLEMENTATION 33

Figure 3.4: Representation of a large group of nodes close to each other.

JavaScript with the hard-coded representation of each node in its location
showing node’s basic information.

In order to keep both maps updated and monitored, a script to manage
location’s information was conceived: the wibed-location script. This script
allows to change the coordinates and to send them to the libremap-agent
script, which will communicate with the Libremap.net API owing to print
our testbed nodes in the map.

Future improvements of WiBed location tools are to design a 3d map of
the Campus Nord using Three.js14, a JavaScript interactive framework, and
to document all the map design process willing to ease the process for coming
developers or researchers. Future wibed-location script improvements will
allow the administrators to configure not only the coordinates, but also the
description of the node spot and also to export these configurations and
descriptions to both map tools.

3.6.5 wibed-upgrade

The upgrading system is a powerful tool recently improved that allows the
testbed administrator to flash a specific firmware to a selected group of nodes
through the web administration page. Moreover, in order to flash a firmware,

14http://threejs.org/

http://threejs.org/

CHAPTER 3. IMPLEMENTATION 34

the administrator needs to download or compile a WiBed firmware, obtain
its MD5sum and upload it to the server. Server’s requirements to accept a
firmware are:

1. The firmware name must be the version of the WiBed firmware file.

WiBed firmware name example: WiBed.master.927d4d87-ar71xx-generic-
tl-wdr4300-v1-squashfs-sysupgrade.bin

• master: Branch of the development repository.

• 927d4d87: Current version of the firmware (based on the wibed-
packages repository version)

• ar71xx: Target architecture.

• generic-tl-wdr4300-v1: Target router model.

• squashfs: Target filesystem.

• sysupgrade: Type of firmware installation.

2. The MD5sum value must be correct. Otherwise, the firmware will be
rejected.

It is important to keep in mind that if a researcher compiles a firmware
version, so he/she is not using one of the tested images in the WiBed repos-
itory, the controller will not be able to check its correctness because it only
protects both controller and nodes from corrupted files due to the transmis-
sion process, but it will not be able to check if the firmware file has bugs or
compilation issues and, for that reason, the process of upgrading nodes may
brick the nodes.

3.6.6 Spread the word script

Due to the issues found in the upgrading system before the WBM, I envisaged
an "Spread the word" system to flood the mesh network from the gateway to
each node with the firmware owing to update each node automatically. This
system was interesting to develop but also unnecessary complex, so after a
discussion with the WiBed team, we decided to put efforts on remake the
existing upgrading system (see the Appendix E.4) instead of continuing this
script development15.

A brief summarize of the "Spread the word" script:

Gateway’s side

• Get the firmware and checks its MD5.
15Spread-the-Word code repository: https://github.com/eloicaso/

wibed-testing-scripts

https://github.com/eloicaso/wibed-testing-scripts
https://github.com/eloicaso/wibed-testing-scripts

CHAPTER 3. IMPLEMENTATION 35

• Spreads the firmware and the script, performs security checks and mark
neighbour nodes.

• Make neighbours execute the script and ends.

Node’s side (all files involved are supposed to be checked)

• Check if neighbours have been marked.

• Check if neighbours have the same version as the upgrade one.

• Send the firmware and the script, perform security checks to neighbours
and mark them.

• Make neighbours execute the script.

• Wait some random time and upgrade.

3.7 WiBed’s source repositories

The WiBed platform is an open source solution counting with a project
related documentation wiki page. The current system has changed due to
the Battlemesh and will be further explained in the section 5.1 but, regarding
this section, Redmine system will be explained.

Following the CONFINE project methodology, WiBed source is hosted
in the Redmine server 16. Redmine is an open source (GPL2) web solution
to manage projects. Its main functionalities are: Wiki management, source
repository and version handler, scheduler, issue and task manager, forum
service, etc. To sum up, it is a complete project manager helping to simplify
project’s control

WiBed project current source repositories are:

1. wibed-controller : This repository stores the development source of the
server-side code. This source consists on the web server and database
management.

2. wibed-openwrt : This repository stores the base necessary files to com-
pile the WiBed firmware. This base system consists on a frozen snap-
shot of the OpenWRT, stable and further tested, plus the extra repos-
itories needed for WiBed firmware linked to the compilation process.

3. wibed-openwrt-routing : This repository stores a frozen snapshot of the
OpenWRT routing repository. It is used as a tested and stable source
for the routing protocols used in WiBed.

16WiBed Redmine project page: http://redmine.confine-project.eu/projects/
wibed

http://redmine.confine-project.eu/projects/wibed
http://redmine.confine-project.eu/projects/wibed

CHAPTER 3. IMPLEMENTATION 36

4. wibed-owrt-packages: This repository stores a frozen snapshot of the
OpenWRT packages repository. It is used as a stable and tested source
for the packages used in WiBed.

5. wibed-packages: This is the base repository of the WiBed packages
which stores the two branches of packages development that com-
pounds the firmware.

Chapter 4

Deployment

In this chapter, the testbed mesh network in the Campus Nord of the UPC,
its components and the process of the deployment will be presented as well
as the problems found and decisions taken to avoid them.

4.1 UPC CN-A testbed mesh network

UPC CN-A testbed network deployment has changed from its first theoretical
steps. All the deployment process will be explained in this section, focusing
on all the issues that altered the network and the decisions taken owing
to solve these issues. From deploying a network with about 60 nodes in
the buildings from A1 to A6 and floors from -1 to 2nd, putting the idea to
practise has cost more than expected.

First problems came with the reinforced concrete in the walls on the
lower floors classrooms. Later, the deployment faced the difficulty to throw
connectivity to upper floors, needing to deploy some nodes outdoors in ven-
tilation holes -some of them were not usable because of the hot air extraction
when air conditioners are working- and the problematic with the insufficient
space inside the dropped ceilings. Finally, the deployment changed to be just
in upper floors -first and second- where the conditions improved connectivity
and accessibility and the inclusion of some nodes in the roof to obtain an
heterogeneous network -as similar as possible to a real testbed-.

4.1.1 Network previous state: first and dismissed deploy-
ment

The first nodes of the UPC CN-A testbed network were deployed before
this project began (and after theoretical project finished). This section aims
to explain how the deployment was planned -theoretically-, how this de-
ployment started in the beginning of this final degree project -A5 and A6
buildings in a vertical deployment-, why this deployment was modified -A1

37

CHAPTER 4. DEPLOYMENT 38

to A6, in upper floors and horizontal deployment- and how the deployment
issues have been solved.

Original deployment

The original idea of the UPC CN-A network was presented at Roger Baig’s
Final Degree Thesis in Computer Science on the UOC University and in
collaboration with the CONFINE Project of the UPC University. The the-
oretical deployment was planned to be in the buildings of the Campus Nord
(UPC) in Barcelona, using the buildings from A1 to A6 as a 260 meters long,
20 meters wide and 5 storeys tall buildings. This deployment (theoretical
map in figure X) started with a gateway in the -1 floor in the operators’
network rack and 4 nodes: 2 in the maintenance zone and 2 on the ground
floor (A5001 and A5002).

In order to understand how we dealt with the problems we will see in
this section, it is necessary to kno w how the network was thought to be
deployed. WiBed nodes have 2 wifi radios: one internal 2.4GHz and one
external 5Ghz. One of the two radios should be used as the management
network to control and interconnect all the nodes in the mesh. This means
that we will only be able to use the other radio to experiment with. For this
reason, an extra 2.4GHz USB Radio was added in order to free both node
radios and use the USB as the management network.

First steps

Main deployment was composed by one node as a gateway in the -1 floor of
the A5 building, two nodes in the -1 floor of the A6 building in maintenance
warehouse and once the deployed nodes were checked (checking the hardware
status and updating the update), new nodes were added to the testbed: two
nodes in the A6 ground floor and one more in the A6E floor (on an unused
disabled’s bathroom). With a prototype of the mesh (about 8 nodes) we
start facing the first connectivity issues. The main connectivity problem of
the A buildings was that all main walls are made of reinforced concrete and
that all the walls, lands and roofs on floors 0 and -1 are made of this material
too. Furthermore, the structure of the classrooms -amphitheatre- supposed
an extra inconvenient because the triangular form of the land -made with
reinforced concrete that isolated the nodes.

Classroom wardrobes

Focusing on the amphitheatre classrooms, this isolation problem supposed
one of the two main reasons to leave lower floors -and the reason why these
floors were rejected in the final network distribution- and deploy the network
in the 1st and 2nd floors. In figure X can be seen that all the ground
floor classrooms forms a series of pronounced concave and convex walls of

CHAPTER 4. DEPLOYMENT 39

nontransferable wifi waves -in addition of the between-buildings main walls-
. In order to surpass these handicaps, we added extra nodes in wardrobes
that were inside the classrooms and on the opposite side of the classrooms.
Adding more nodes allowed us to have a better connection between nodes
that were hidden from neighbour classroom nodes but it actually didn’t solve
the problem. In addition, these wardrobes were not secure and any student
could open it and steal the nodes so this solution was only temporary.

Adding a 2.4GHz USB Radio

In spite of improving the connectivity adding nodes in the wardrobes, connec-
tivity problems remain, so, the idea of adding a dedicated USB radio owing
to be the 2,4GHz management network and releasing the internal radio for
experimenting was put into practice -the radio selected was a TP-Link TL-
WN722N consequently of being supported by OpenWRT community-. At
this moment, the WiBed testbed was composed by 8 nodes and the USB
radio was set as the management radio increasing the connectivity -from a
power of 17dBm to 20dBm-. After that, the testbed expanded adding two
nodes in the -1 floor and two nodes in the E floor, increasing testbed nodes
to 12 nodes. Suddenly, some nodes started to be unreachable by the man-
agement network and needed to be checked manually so we had to find the
issue and solve it. After some days of study and some stress tests, we found
that the USB Radio capabilities in Ad-hoc mode were unstable and it could
not bear the network in that mode. As a result, the USB radio was set to
be only for experimenting and not for be used as an Ad-hoc management
network.

Growing to upper floors

With the previous experience and a testbed of 12 nodes (gateway not used
in experiments), an INESC researcher1 started to test the network doing
some experiments while, in parallel, he started also a new deployment in
his university campus. Thought the experiments done in the WiBed server
worked well, his feedback about UPC CN-A testbed was that the connectivity
was weak, so we started to study upper floors with some mobile nodes. That
gives us a really important information regarding the 1st and 2nd floors:
while lower floors are made in major part of reinforced concrete, upper floors
just have few mainstays and walls made of that material. Thus, we started
deploying 4 nodes in the 1st floor -in maintenance wardrobes in each side of
the buildings- owing to check its behaviour against experimenting situations.

Despite we found that the A6 1st floor right wardrobe node had really
bad connectivity, the other nodes had great connectivity between them, so
we deployed 4 nodes in 2nd floors of the A5 and A6 buildings. The problem

1INESC Porto: http://www.inescporto.pt/

http://www.inescporto.pt/

CHAPTER 4. DEPLOYMENT 40

with connectivity of the righter node was found also in the 2nd floor and,
studying the walls behind the wardrobes, we find out that were made of
reinforced concrete and that they were also mainstays. As a result of that
study, moving the testbed network deployment to upper floors, gave the
project the perfect situation for the main deployment.

Both 1st and 2nd floors have reinforced concrete external walls but most
of the internal separation walls are made of bricks and plaster. As a result,
with weaker internal barriers and nearer nodes in external reinforced concrete
barriers these floors are a good option to deploy the network. Furthermore,
the location of these nodes was the same as planned in the theoretical deploy-
ment so the collocation of the nodes was easy and secure (closed maintenance
wardrobes) and previously agreed with UPC.

With the prototype deployment done, we started to study the behaviour,
strong and weak points of upper floors. The conclusions of our study and
the feedback given by the researcher was:

• The connectivity between 1st floor and 2nd floor nodes is greater than
the connectivity in lower floors as a result of weaker indoor walls and
closer nodes in the between-buildings reinforced concrete walls.

• There are elevated metallic trays inside the building that can hold
nodes in both sides of the building and inside classrooms of the building
which gives a secure place to deploy the nodes.

• The resulting mesh network using this distribution will have 34 nodes
(and 2 gateways).

• Using the wardrobes to place nodes lacks the connectivity of the nodes.

In figure 4.1 the status of the current deployment can be seen. Nodes ID
colour represents the feasibility of the controller to connect with it using the
management network, white meaning connectivty and black no connectivity.
Moreover, the background colour of the nodes ID represents the quality of the
average connection with the controller from green (excellent) to red (poor).

4.1.2 Network current state: final deployment

From previous to final network

Once studied and having decided to deploy the network only on upper floors,
we needed to arrange a budget with the maintenance department owing
to supply the costs of installing new power lines to plug the nodes and
also arrange a budget with UPC-Net, who is in charge of adding 2 internet
connections (for 2 gateways) and to revoke the actual one in the A5 (-1)
floor.

Main points of this deployment arranged with the maintenance depart-
ment are:

CHAPTER 4. DEPLOYMENT 41

Figure 4.1: UPC CN-A current deployment state.

• Nodes will be placed from A1 to A6

• Nodes will be placed in 1st and 2nd floors

• Nodes will not use any separated electrical line

CHAPTER 4. DEPLOYMENT 42

• All nodes will be placed in elevated trays and secured with flanges

• There will be one node in each side of the floor and another one inside
the middle classroom

Final deployment

UPC CN-A final network was going to be deployed before may ends or at
early June but, at the end of writing this dissertation, we just received main-
tenance’s budget confirmation so power supplies’ installation is being done.
From now to the end of this section, the information of the deployment is
expected to be done during early July. Furthermore, the two gateways are
already installed in buildings A2 and A4 (2nd floor) that are actually work-
ing. Figure 4.2 presents this final state of the network when the deployment
will be finished.

Final network will fit on arranged requirements shown in previous section.
Using upper floors following the described deployment will make the mesh
testbed network a robust and reliable network to use the WiBed platform, as
well as it will improve and solve connectivity problems found in lower floor
reinforced concrete walls. Moreover, the network will gain in accessibility
while leaving just 12 nodes inside classrooms (making harder to access them)
and keeping in mind that 2 of these 12 are gateways which are assumed not
to be accessed or manipulated (only for network administration tasks).

The main point of this deployment is the improvement on the reliability
and strength of the connectivity between the nodes, being far enough not
to see all them but to be close enough not only to have a strong 2.4GHz
connectivity, but 5GHz also, to enable experimentation and management
with both of them indistinctly. Concretely, there are three nodes in each floor
and building (from A1 to A6 building and from 1st to 2nd floor), located
in elevated trays already used to transport the Ethernet/optical fiber cables
together with power ones by the floor. Each node is placed above the tray,
fixed with a strong flange to prevent movements or thefts. Furthermore, in
every floor there is one node near the right corridor door, one more near the
left corridor door and the last one inside the middle class of the bathrooms
side of the building. Comparing this new location against the previous one
(in maintenance wardrobes), the nodes may seem more exposed to students
but, actually, this new location improved the connectivity and also it is a
more correct place for research nodes than a cleaning and maintenance stuff
wardrobe.

WiBed future extensions

As the UPC CN-A mesh network is using the entire usable part from A1
to A6 in Campus Nord (understanding usable part as 1st and 2nd floors
and with good wireless connectivity signal), the network should not be able

CHAPTER 4. DEPLOYMENT 43

to grow in the future. Actually, that topic was already discussed, studied
and solved being the next step in WiBed project goal. Moreover, this next
step consists on adding support to ALIX2 routers and include them into the
deployment and change the minimal requirements of the nodes allowed in
the platform:

First, adding support to ALIX2 routers, WiBed platform improves its
testbed heterogeneity as well as the possibility to use this powerful routers
as roof bridges to interconnect not only the closest buildings but also the
far ones, bringing the possibility to interconnect testbeds that initially could
be isolated and increasing experimentation possibilities besides of having a
closer to production environment testbed.

Finally, as explained in the components section (not only the specifica-
tions but also the router type), changing the minimal requirements to fit in
simpler nodes will allow to low, even more, the cost of replicate the project
but keeping in mind that this will add some complexity to fit the firmware
in these simpler routers. Furthermore, it is important to take into account
that these nodes will have a special firmware version without unnecessary
packages, willing not to waste any MB of their little Flash capacity.

4.2 Battlemesh network

The Battlemesh network was deployed during the WBMv7 in Leipzig as
already seen in section 1.4.5. This deployment information is important
in order to understand, not only the results of the main experiment seen in
section 5.2, but also the conclusions and reasonings described in section 5.2.6
and chapter 6.

The situation:

• The Sublab2, this year’s Battlemesh emplacement, is an old factory
(walls, roof and floor are reinforced) converted into a hacking space
and maintained by its own community.

• The testbed network was deployed among the two upper floors of this
factory and in the upper floor of the building in front of the factory (3
floors below).

• Both factories upper floors were correctly connected by the testbed
network thanks to WiBed nodes in the entrance of each floor.

• The factory and building networks were correctly connected via wire-
less due to the nearby location of both buildings and nodes.

• During the week, due to experiments needs, some nodes were moved
from its emplacement, so an exact and final deployment map is not

2Sublab[Ger]: http://sublab.org/

http://sublab.org/

CHAPTER 4. DEPLOYMENT 44

available (Figure C.1 in Appendix C.3 shows nodes first emplacement
in the upper factory floor3).

Environment of the network during the Battlemesh:

• The default environment of the sublab is to have about 15 different
wireless APs in both 2.4Ghz and 5GHz bands.

• The first day, about 20 new different wireless APs were count.

• About 50 different laptops were transmitting into the wireless environ-
ment a time.

• There were different experiments being performed by the experimenters
and using the wireless environment.

The WiBed testbed:

• The WiBed testbed was compound by 20 WDR4300 nodes deployed
in the 2 factory floors and in the office building.

– 3 nodes in the front building.

– 17 nodes in the factory.

∗ 1 mobile node (battery Power Gorylla 21.000mAh4).
∗ 2 GW in the main hall.
∗ 3 nodes on the lower floor deployed throughout the hall.
∗ 11 nodes deployed on the upper factory floor. These nodes

changed its location as the experiment changed.

3Maps of the other floors and the position of the nodes are pending to be received
4https://www.powertraveller.com/en/shop/portable-chargers/professional/

powergorilla/

https://www.powertraveller.com/en/shop/portable-chargers/professional/powergorilla/
https://www.powertraveller.com/en/shop/portable-chargers/professional/powergorilla/

CHAPTER 4. DEPLOYMENT 45

G
a
te
w
a
y

G
a
te
w
a
y

Figure 4.2: Final deployment of the UPC CN-A network.

Chapter 5

Validation of the platform and
network

5.1 WBMv7 and experimentation environment

5.1.1 Relation between WiBed and the WBM

As we already mentioned, the WBM is an event strongly connected with
WiBed project since it was originally an idea to improve and speed up the
WBM procedure. After the Battlemesh, and with the results of the exper-
iments and researchers opinion, we could assure that the WiBed platform
was a step forward the Battlemesh experimenting procedure. While on one
hand, the WBMv61 process of performing an experiment was to setup the
firmware manually, flash the firmware in each node, deploy the nodes in
the choosen spot, perform the experiments and get the nodes back because
the next experiment must follow the same process; on the other hand, the
WBMv7 (done in Leipzig, Germany) used our platform, which took some
time to adapt the firmware from the UPC to the Battlemesh needs (from
Monday to Wednesday), but once that was done, the firmware was flashed
in each node (Wednesday), nodes were deployed in the chosen spots and,
finally, researchers could perform their experiments one after another by dis-
tributing the resources (researchers could experiment with the nodes from
Wednesday to Saturday). Again, we can assure that WiBed was an step over
because the Battlemesh was following a procedure of start and repeat the
loops described to perform experiments in Monday and finishing the Nth
experiment on Saturday, starting to process of the results of this experiment
on Sunday, so most of WBM events didn’t finished the experimentation nor
the results gathering due to this long process.

As can be seen in Figure 5.1) the procedure of perform several experi-
1The WBMv6 was performed in Aalborg, Denmark. More information about this

edition can be seen in Appendix C.2

46

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK47

Figure 5.1: Gantt of WBM without the WiBed Project

ments without the WiBed platform supposed to have a bottleneck that dis-
abled parallel work in different experiments unless these experiments were
using different resources and keeping in mind that changing the experiment
means to change the firmware2. That changed with the application of the
WiBed platform, where the experiments can be performed sequentially, or in
parallel if the resources are different, during all week using always the same
firmware and changing only the particular components that the experiment
may need.

Figure 5.2: Gantt of WBM with the WiBed Project

WiBed was presented during this year’s Battlemesh so experimenters
were there first introduced to the platform and they did not have the nec-
essary knowledge regarding its usage and operation. This also meant for
them to have training in the experiment’s operation so first experiments
were slower than they really could be. As can be seen in Figure 5.2, three
days were needed to prepare and adapt the firmware to fit in the event’s
needs3. This time was mainly needed to fix some bugs and to add improve-
ments that were previously scheduled as we knew that in the participants
list, main developers or experts in the topic were inscribed to the event.
Thus, allowed us to arrange meetings with them and discuss a solution to
improve the platform behaviour. To summarize, the most important points
that delayed the deployment were:

2A bigger image of the figure 5.1 can be seen in Appendix B.2.
3A bigger image of the figure 5.2 can be seen in Appendix B.3.

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK48

• WiBed firmware had some bugs related with the region domain and the
driver of the USB 2.4GHz Radio. These problems reduced network be-
haviour (not having the possibility of configuring some network aspects
like radio’s tx-power or the region).

• Automated firmware upgrading tool was outdated and insufficiently
tested due to the bad connectivity of initial UPC CN-A network. In
the UPC initial network nodes have not enough coverage so that made
impossible to download files of about 10MB, consequently, downloading
the firmware was not possible in such conditions. In the WBM (on
Tuesday) we solved and remake this functionality.

• The WiBed platform was configured to be developed and used in the
UPC by project team. When bringing it to the WBM, we needed
not only to adapt the configuration to the spot needs but also allow
WBM researchers to improve the platform (bringing WiBed to GitHub
repositories).

Keeping that information in mind and using public code repositories (seen
in section 5.1.3), the time and resources spent to prepare the Battlemesh will
be shorten to just one day fitting the firmware to the emplacement needs
and deploy the nodes and then spend the rest of the Battlemesh performing
experiments and just needing only to monitor and maintain the network’s
behaviour during these experiments.

5.1.2 Minor Battlemesh experiments

In this section the different minor experiments performed during the Bat-
tlemesh will be explained. They were proposed to be performed during
the Battlemesh and, even while some teams were working successfully with
them, at the moment of finish this dissertation there are no uploaded results
or conclusions yet.

The Hidden Node Problem

As one of the most well-known problems in wireless networks, the hidden
node problem consists on avoiding collissions when transmitting data on
shared environments.

The test was planned to be performed in 4 UBNT PicostationM24 us-
ing airMAX proprietary TDMA solution against the OpenWRT RTC/CTS
implementation in 4 TL-WDR4300 devices.

4http://www.ubnt.com/picostation

http://www.ubnt.com/picostation

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK49

The Mesh of Death Adversity

In a scenario where mesh nodes are really close to each other, as close as
all of them see each other in good conditions, dynamic routing protocol
algorithms that choose the path to transport the packages may suffer lots
of modifications due to the fluctuation of the controlled metrics and the
congestion of the network because of the flooding technique.

The test was planned to be performed in 7 TL-WDR4300 devices in a
closed room and with 5 meters of distance between each node. The second
requirement could not be achieved because the room was about 5x5 meters
wide so the nodes were closer than the requirements.

The Convergence Time Relay

The scenario found in that experiment is a device L1 connected to a mesh
network M1 that connects with a second device L2. Later, L1 connects to a
new mesh network M2 that also connects with the device L2. M2 has better
metrics to connect L1 to L2 so, while this mesh appears, the path from L1
to L2 must switch from M1 to M2. The goal of this experiment is to analyse
how long it takes the routing protocol to change its path.

The test was planned to be performed with 20 TL-WDR4300 and 2 lap-
tops. The protocols used are BMX6, OLSR, OLSRv2 and batman-adv.

5.1.3 Adapting the WiBed platform

As the general idea of how WiBed improved and helped the Battlemesh
has been already explained in previous section, this section will explain the
concrete changes and improvements that have been performed in order to
face the problems and accommodate experiments like the ones described
above.

Changes in the firmware

Main changes in the WiBed firmware were focused on improving the stabil-
ity and power of the platform as well as to involve the whole Battlemesh
community to adopt it as an useful platform to experiment with. Here it is
a list of the most important achieved points of this Battlemesh’s edition:

• Creation of a WiBed firmware version in the last_trunk OpenWRT
version and adapt it to the emplacement needs

Upgrading WiBed firmware to the last source version of the OpenWRT
was possible because WiBed had already a development branch, test-
ing, with generated WiBed firmware images with the last version of the
packages already tested, otherwise, there would not be any guarantee
that the resulting image worked correctly. The use of the last version

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK50

of OpenWRT was necessary because some of the experimenters were
also maintainers of OpenWRT and they needed the improvements and
fixes found in the last version.

• Packages installed in the firmware were changed as well as the config-
uration settings of the compilation system.

Due to the concrete needs of the Battlemesh, some concrete aspects
of the configuration of the WiBed firmware were changed to fit in the
requirements of the emplacement. As an example of these changes:

Changing the 2.4GHz radio channel from 11th to 6th due to the high
occupancy of the 11th channel.

- option channel2 ’11’
+ option channel2 ’6’

Once fixed the problem with the RegDomain, recover the maximum
power transmission of the antenna.

- option txpower2 ’22’
+ option txpower2 ’17’

- option txpower5 ’14’
- option txpower5 ’18’

Add high Adhoc Multicast Rates

+ option mrate ’12000’

Add an greater originator interval (less broadcast messages)

+ x:set("batman-adv","bat0","orig_interval","5000")

• Add oficial repositories for OpenWRT Routing protocols, OLSRv2 spe-
cific repository and the new repository created for the Battlemesh ex-
periments (see section 5.1.3).

As some experimenters were package developers or routing protocols
maintainers, they were asked for the version of their software to be
used in the experiments. For instance, OLSR main developer asked
for using its newest OLSRv2 instead of official version. Furthermore,
WiBed management network had a bug regarding that, under concrete
circumstances, the wifi interface was not restarted and was keeped
down. WiBed was using an older version of the routing protocol for
that reason and, once the bug was fixed during the Battlemesh, the
new version was used.

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK51

• Update and apply patch to fix Reghack5 package wrong behaviour.

As it was an urgent scheduled issue that was lacking the WiBed net-
work performance, in the Battlemesh WiBed team could met one of
the maintainers of OpenWRT and also the developer of the Reghack
tool. After some patches, the problem found in the RegDomain using
Reghack utility was fixed. Furthermore, another RegDomain related
issue regarding the USB Radio used in the WiBed platform was dis-
cussed and, as explained in the section 4.1.1, it was decided not to put
more efforts in this problem and better put them in improving net-
work’s connectivity in 5GHz band owing to be able to use the 5GHz
band as the management network.

• Improve controller’s representation of the nodes.

WiBed controller is able to bring service to large-scale testbeds as
well as to allocate a big amount of them. That brings the controller
a problem regarding the distribution of that information and how is
presented to the user. This topic was widely discussed during the
Battlemesh and, as a provisional solution of that, the controller is
currently showing each node’s testbed.

Add descriptive information regarding the location and testbed of the
node and send it to the controller in the registration pull request (INIT
state).

Configuration:
+ config wibed ’location’
+ option testbed ’Wibed-UPC’# <string> Testbed description.
+ option building ’C6’# <string> Building short information
+ option floor ’E1’# <string> Floor short information
+ option room ’104’# <string> Room short information

Pull system script:

+ testbed = readVariable("location.testbed")
+ is_gw = readVariable("management.is_gw")
[...]
+ request["testbed"] = testbed
+ request["gateway"] = is_gw

• Rewrite the wibed-upgrade script.

As further described in section 3.6.6, the wibed-upgrade script was not
working correctly and it was rewriten.

5Reghack is a regulatory domain modifier for OpenWRT. http://luci.subsignal.
org/~jow/reghack/README.txt

http://luci.subsignal.org/~jow/reghack/README.txt
http://luci.subsignal.org/~jow/reghack/README.txt

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK52

Changes in the minimal requirements and new supported nodes

Battlemesh experimenters gave feedback not only in the firmware related
aspects, but also in the hardware topic. The most important point to im-
prove was to reduce the minimal requirements owing to be able to add less
powerfull devices. This, was widely discussed in the Battlemesh and the
resolution was to accept these changes and allow new devices already shown
in section 3.1.3. Another accepted point was to add official support for ar-
quitectures mpc85xx and x86, which actually were already being tested but
as a future work to be done. With these new arquitectures, the devices
currently being tested (Alix2d26 and OpenWRT49007) will receive support
and increase experimentation possibilities. As a summarization, the most
diversity the testbed has, the most close to real environment the testbed will
be (as described in section 4.1.2).

The Battlemesh repository system

The first day of the Battlemesh, WiBed was presented and experimenters
were asked to contribute with the project giving feedback and contributing
in the platform’s source. Willing to allow them to do that and as WiBed was
made for improving the Battlemesh, all the sources in the Redmine8 were
added to the Battlemesh Git repositories9. These repositories are: wibed10,
wibed-openwrt-packages11 and wibed-packages12.

Finally, one more repository was added owing to store all the code re-
garding the main experiment of the Battlemesh that will be explained in the
section 5.2:

• wibed-battlemesh-experiment13: All the protocols, configurations and
settings of the tools used in the experiments are in this repository.
Moreover, it has the necessary scripts to manage and execute the ex-
periment. Compiling this repository contents, the experimenters will
obtain a package that will join the protocols packages to be zipped in
a .tar.gz as the overlay content.

5.2 The Battle of the mesh experiment

One of the main goals of the Battlemesh is to face the different networking
protocols owing to see how they have improved during the past year and

6Alix2d2: http://www.pcengines.ch/alix2d2.htm
7OpenWRT4900: http://wiki.openwrt.org/toh/tp-link/tl-wdr4900
8http://redmine.confine-project.eu/projects/wibed
9https://github.com/battlemesh

10https://github.com/battlemesh/wibed
11https://github.com/battlemesh/wibed-openwrt-packages
12https://github.com/battlemesh/wibed-packages
13https://github.com/battlemesh/wibed-battlemesh-experiment

http://www.pcengines.ch/alix2d2.htm
http://wiki.openwrt.org/toh/tp-link/tl-wdr4900
http://redmine.confine-project.eu/projects/wibed
https://github.com/battlemesh
https://github.com/battlemesh/wibed
https://github.com/battlemesh/wibed-openwrt-packages
https://github.com/battlemesh/wibed-packages
https://github.com/battlemesh/wibed-battlemesh-experiment

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK53

raise the one with the better behaviour and performance as the Battlemesh
winner. Furthermore, this Battlemesh is the first one that gathered network
data as well as added resource’s consumption14. At the end, most of the
years there is no protocol winner but, at the same time, it allows to see
how much the protocols improved in a healthy competition. This section
explains all the background information, the experiment itself and, finally,
the results’ interpretation.

5.2.1 Battlemesh overlay contents

The experiment of the Battlemesh15 repository contains all the necessary
components to perform the experiment. The overlay contents are scripts and
configurations for all the involved protocols and the pre-compiled packages
of the protocols. The scripts used are:

1. wbm-manage: This script allows the experimenters to set up the pro-
tocols and initialize or finish them.

2. wbm-test: This script starts the experiment16.

3. wbm-config: This is the same wibed-config script with new settings
related with the protocols added.

5.2.2 Environment considerations

As it has been seen in the previous section 4.2, the testbed environment has
some particularities that distances this experiment of the ones that somewho
could perform in a laboratory or precast and fixed testbed. The high density
of wireless interferences, seen in the section 5.1.3, forced us to change, not
only wireless propagation aspects, but also other ones related to the routing
protocol like the interval of non-user traffic packages.

To sum up, the main aspects to take into consideration when checking
the results are:

• The environment was highly charged with interferences of
non-experiment related issuers. These interferences were in 2.4GHz as
well as in the 5GHz band.

• Most of this experiment repetitions (at least 20 repetitions of it), used
16 nodes.

• The experiment was performed in the 5GHz band (140th channel).
14CPU and memory consumption
15Battlemesh experiment source: https://github.com/battlemesh/

wibed-battlemesh-experiment
16In the Appendix C.1 its code is shown

https://github.com/battlemesh/wibed-battlemesh-experiment
https://github.com/battlemesh/wibed-battlemesh-experiment

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK54

• The environment could be equated to city conditions, although the
distance between the transmitters was lower.

5.2.3 Protocol related considerations

Keeping in mind all the issues regarding the environment, to ensure the reli-
ability and equality of all the protocols against this hard conditions, all the
protocols ran in parallel as well as they are monitored in parallel too (over-
heads and anomalous behaviour are monitored for all the protocols). With
such conditions, the protocols face the same environment behaviour and bat-
tles in a fairer way. Furthermore, the overhead caused by the monitoring
tools is dismissed because the traffic and resource consumption generated is
tiny.

Finally, more focused in the protocols’ configuration:

• All the protocols will work using IPv6 addresses.

• Each protocol will have its own ULA17 that will identify it when check-
ing the results and monitoring logs.

• The protocols’ are setted by default and no changes or improvements
are done in their configuration.

• To prevent any topology change or any update related with the start up
of the network, a previous to the experiment idle time of 200 seconds
is set.

• After an experiment is performed and, for the same reasons that pre-
vious point, another 200 seconds are waited until the next experiment
could be started.

• The experiments will consist on source to destination actions. This
will help to understand how the protocol works in this scenario.

Unforeseen issues:

• Babel configuration was not correctly configured (more settings that
the default ones were needed) so the results were not correctly gathered.
For that reason, Babel is not present in the results and conclusions of
the experiment.

• Batman-adv is a Kernel module working in Kernel space. For that
reason, it is harder for the default utilities to monitor its resource
consumption.

17ULA: Unique Local Address

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK55

Well-known Batman-Adv particularities:
As a L218 routing protocol, Batman-adv required special rules for its

traffic monitoring. Moreover, when gathering the information of the hops
required to reach the destination, the behaviour of this data link protocol is
to use just one hop, as they are interconnected to all other nodes through
the virtual switch created.

5.2.4 Configuring the experiment

Once the assumptions of the environment and state of the protocol are
known, the next step is to understand the tools and how they are used
in the experiment:

Network monitoring

• tcpdump: With this tool the overhead created by each protocol during
all the experiment is executed. That means that this tool will be
working all the time19.

Network tools

• mtr: This tool tracks the source-destiny path information in an intern-
val of 1 second. The results obtained with this tool were too complex
and hard to be represented, so the results are available in the Bat-
tlemesh repositories but not used.

• ping620: This tool sends 1.000 bytes of icmp packages (user data pack-
ages) from source to destination in a 1 second interval. Ping6 measures
are the RTT21, the packages lost and the hops to destination count.

• netperf: This tool is the most agressive among the used. Its operation
consists on checking the maximum network bandwidth between the
source and destination nodes. As this tool consumes as bandwith as
possible, its operation is not done parallely but in this manner:

– 4 rounds executing sequentially the netperf tool for each proto-
col.

– Each execution lasts 10 seconds.
– The duration of all the process is:

4procotols× 4rounds× 10seconds = 160seconds.

Resources monitoring
18L2: the data link OSI level layer. Its units are data frames.
19Experiment’s time: 200 seconds.
20Ping6 is the adapted for IPv6 version of the ping utility.
21Round-trip time: is the time needed for a package to go to its destination and return

the acknowledgement to the source.

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK56

• top: This tool is used for monitoring resources consumption (CPU and
memory) for each protocol. Its information gathering has an interval
of 1 second.

5.2.5 Considered scenarios

The experiments will have static and mobile scenarios focused on check-
ing protocols’ overhead and performance. These experiments were repeated
about 22 times and the first 5 of them were used to test and improve the
experiments, so its results are not used in the conclusions. Finally, the pro-
tocols used were BMX6, Batman-Adv, OLSR and OLSRv2 (experimental).

Static scenario

In this scenario the nodes were not moved. The nodes selected to be the
source and destination were wisely choosen owing not to use neighbours and
being representative. The experiments were sequentially executed by pairs
of nodes and successed until the delay time.

Mobile scenario

In this scenario the conditions are the same as in the static scenario exceot
from that there is one mobile node22 acting as destination node for different
source nodes. The mobile node is carried by one experimenter23 carring the
mobile node and walking slowly (about 1 meter/second) from the main hall,
going down to the lower floor, walk through the lower floor and then return
to the initial point (walking during the 200 seconds that the experiment
lasts).

5.2.6 Experiments’ results and conclusions

This section explain the results in different subsections. The results shown
in these sections comes from the experiments 16 and 19. They have been se-
lected because they suit as a representative results of the common behaviour
seen in the whole experiments and present the tendence used to take the
experiment’s conclusions.

Resource consumption and overhead

The figure 5.3 shows in continuous lines the protocols’ memory consumption
limit.

One of the most significative point of resources results is that the proto-
cols never changed its memory limit and, moreover, as can be seen in figure

22Node c24174 + 21.000mAh Power Gorilla battery
23The same experimenter done all the routes.

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK57

5.3. These limits are close to be a 2% of the total memory available in
the devices24. To sum up, we can see that the most consumer protocol is
OLSRv2 with about 1.7MB of RAM.

Figure 5.3: Protocols memory consumption

The figure 5.4 shows in continuous lines the CPU consumption of each
protocol calculated each 1 second interval. The dashed line shows the average
CPU consumption over all the experiment.

In the CPU resource consumption we can see that most of the protocols
uses from 0 to 5% of the CPU capacity. That fact guides us to the other
significative point that can be seen in the resources consumption, the OL-
SRv225 anomalous behaviour: its CPU consumption varies from 2% to 20%
and an average of 10%. That enormous consumption compared to the rest
of protocols has a reason:

24TL-WDR4300: 128MB of RAM.
25OLSRv2 is in an early experimental state.

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK58

• The WiBed platform is OLSRv2 first real and diverse testbed environ-
ment test.

• The protocol has debugging and logging options enabled that reduced
its performance as well as increased its overhead.

• It is a new branch of OLSR being under active development and it is
far from being a stable version.

0 50 100 150

0
5

10
15

20

CPU load

Time [s]

C
P

U
 [%

]

olsr1 bmx batadv olsr2

Figure 5.4: Protocols CPU consumption

Traffic protocol-related overhead

The figure 5.5 shows the network overhead in bytes per second (B/s) of
each protocol in bytes per second calculated over all the experiment in 1
second intervals. The dashed lines represents the average overhead during

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK59

all the experiment. The second figure 5.6, shows also the network overhead
but, this time, counting the overhead generated in Packets per second (P/s).
The continuous lines shows the number of packets/second calculed in 1 sec-
ond intervals and the dashed lines the average packets/second all over the
experiment.

0 50 100 150 200

50
00

10
00

0
15

00
0

20
00

0
25

00
0

Network overhead

Time [s]

O
ve

rh
ea

d
[B

/s
]

olsr1 bmx batadv olsr2

Figure 5.5: Protocol-related overhead in B/s

To understand the results of this section, it is important too keep in mind
that the traffic being calculated here is the protocol related and not the user
one. That means that data transferences between the nodes are not included
as they will be explained in the TCP throughput section.

As can be seen in figure 5.5, BMX6 is showing the most stable and with
less overhead in B/s behaviour among the other protocols. The rest of them
are quite more unstable in overhead but with a really close average overhead
of about 1 KB/s. In figure 5.6 we can see that Batman-adv is the most
unstable and with more overhead with an average of 120 P/s and the rest

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK60

is showing an stable behaviour with a low overhead of about 20 P/s so, in
general terms, the difference between the protocols is really small.

0 50 100 150 200

0
50

10
0

15
0

Network overhead

Time [s]

O
ve

rh
ea

d
[P

ac
ke

ts
/s

]

olsr1 bmx batadv olsr2

Figure 5.6: Protocol-related overhead in P/s

Once we join both figures we can see that, with a similar overhead of
3.000 B/s, OLSR/v2 have an overhead of 3 5 P/s against the 40 P/s of
Batman-adv. The conclusion extracted from this information is that, while
they obtain an equal B/s throughput, its difference remains in the size of
the traffic packages that they send. Batman-adv is sending smaller packages
continuously and OLSR/v2 is sending bigger packages but less often.

Network-related behaviour: RTTS, hops and delivery rate

In this section it is included all the network-related metrics of the experiment
regarding the user and not the protocol. Four figures showing the network
information in different manners will be explained in this section and then,

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK61

a final combined conclusion extracted of the experiment results.

Figure 5.7: Number of hops and RTTs

Figure 5.7 shows the number of hops from source to destination during
the experiment in a continuous line, as well as the RTT26 time in miliseconds
of each protocol as coloured crosses during all the experiment time.

Figure 5.8 shows the occurance and the RTT in miliseconds according the
hops of the source to destination path. The coloured bar shows the average
RTT time and the coloured crosses the latency of each occurance for each
protocol and hop number.

Figure 5.9 shows the ECDF27 of the success paths and its RTT. The
coloured crosses show the average distribution of the RTT and the countin-
uous line its tendency.

To understand the conclusions extracted, it is needed to know some par-
ticularities of the results obtained. First of all, the RTT is the time needed
to achieve a path and return to the source with the acknowledgement that it

26RTT: Round Trip Time.
27Empyrical Cummulative Distribution Function

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK62

Figure 5.8: Path RTTs and occurances

is a valid path. Second, the number of hops of the Batman-adv is correct
as is a L2 routing protocol connected by a virtual switch, so the tools used in
the experiment will see their paths as if they were directly connected (1 hop).
And third, that the fact BMX6 and OLSR fluctuates more than OLSRv2 is
a tendency shown in all the experiments so is also a correct behaviour.

The conclusions that we have seen are:

1. The RTT values grow according the number of hops needed to achieve
the destination, so no anomalous behaviour were observed.

2. The tendency of BMX6 and OLSR number of hops inestability seems to
have relation with the interferences generated by the netperf execution
(160 seconds of high data transmission) in paralel with the other tools’
execution. The two protocols seem to apply shorter and stronger links
instead of far and weaker ones. By the other way, OLSRv2 is more
stable increasing its hops’ number only under critic circumstances and
Batman-adv hops number is not ilustrative.

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK63

Figure 5.9: Ping sucess rates

3. According to the figure 5.9, in the interval from 10ms to 100ms, the ping
time that is interesting for our conclusions, the most successful protocol
is OLSRv2 followed by BMX6 and OLSR. In most of the experiments
performed the performance of the three protocols is similar and higher
than in Batman-adv.

TCP Throughput

This section shows the results of the netperf executions using a good example
and also describing the behaviour of other interesting experiments that are
not shown.

Figure 5.10 shows the throughput of the protocols in each round. Each
bar is the number of KiloBytes per second (KB/s) showing the maximum

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK64

Figure 5.10: Netperf throughput rounds

bandwith obtained and the slashed line the average in the 4 rounds.
The conclusions extracted of this figure are that the intelligence behind

the routing of the protocol is really important as can be seen in the maximum
value of each round: in the first round all the protocols obtain low KB/s
capacity, and this is related with the fact that the network was in an stable
state and not expecting a high traffic charge; in the next two rounds the
protocols adapts its routes to this new congested situation adopting stronger
and nearer links and increasing the value; finally, in the last round can be
seen that most of the protocols’ throughput decreases a bit but showing that
the tendence is a sign of stabilization of the situation and not a deterioration
of the network capacity.

These conclusions have been contrasted with the other throughput results
and show that the tendence is to shook the network in the first instance and
to be stabilized by itself thanks to protocols’ intelligence. It is important to
take into account that the OLSRv2 is under development and unstable yet
as it was found that in some experiments, its performance was about 60%

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK65

worse than the rest of the protocols.

Personal experiment conclusions

In the Battlemesh the results were presented as nobody won, we can only see
tendencies, but every protocol improved since last Battlemesh. As a closed
and isolated experiment for this dissertation, my conclusions are:

1. There are two clear winners, not only in resource consumption, but
also in network performance and adaptability to environment circum-
stances: BMX6 and OLSR.

2. Batman-adv competes with routing protocols working in a different
layer, so maybe it is not exactly fair to diminish its great potential (for
that reason we are using this protocol as our management network).

3. OLSRv2 is not yet as stable as it will be in the next Battlemesh so,
having seen its high potential in its early development state, the other
protocols will need to improve seriously owing not to be overcome by
it.

4. The resource consumption of the protocols shows that even 4MB of
flash and 16MB of RAM devices are able to work in medium-scale
mesh networks without real resource problems.

5.3 Validation of the platform

The validation of the platform is one of the pillars of this project viability
as it attests that all the work done together with the WiBed team has born
fruits or if the project needs some adjustments to fulfil the requirements.
During the early project’s development, our fixation was to validate the net-
work owing to have a strong and reliable network in the Campus Nord for
researchers. As our main goal, following the philosophy and methodology
of the CONFINE project, was to develop a standardised project, this fix-
ation changed to want to validate the platform, prepare it for as scenarios
and environments as possible and also bringing a stable network for the re-
searchers in the University. This motivated the changes applied to fit even
more devices and scenarios to the testbed, see section 3.1.3. Even more, the
hole behaviour was quite unstable at the beginning of the development and
it has became a trustful and capable platform to work with.

Initially, the validation process was thought to be a series of experiments
reproducible and comparable in other real environments to join these results
and finally see if the platform was trustworthy and stable or not. This began
to change as the Battlemesh approached and the use of the Battlemesh
main experiment took force. Finally, after being in the Battlemesh, with the

CHAPTER 5. VALIDATION OF THE PLATFORM AND NETWORK66

results already analysed and the acceptance of the Battlemesh experimenters
and community to continue using28 and improving the project29, WiBed has
became the platform we expected to. Moreover, during all the platform’s
development, INESC30 workgroup was performing experiments to test and
improve its networking tools.

Though, there are yet lot of work to be done, new features to add and
to bring support for new devices and architectures so, WiBed will not stop
its development now that this project finishes, but starts its real journey as
a standard, versatile, cheap and pedagogic platform for network’s studies.

28The WBMv8 will use WiBed as the main experimentation platform.
29WiBed Battlemesh repositories currently have 6 active contributors.
30INESC TEC: Laboratório Associado de Tecnologia e Ciência a la Universidade do

Porto.

Chapter 6

Conclusions

In this document the WiBed platform development and UPC CN-A testbed
mesh network deployment have been presented. Although it started as a
platform in early development state, WiBed has improved and has became
a stable, reliable and accepted to be used in experimentation platform. Fur-
thermore, the presentation of WiBed to the Wireless Battle of the Mesh
event, helped it to improve even more and fixed some known issues thanks
to the community efforts. The Battlemesh also got benefit from the platform
as experimenters could perform its experiments faster and easier. Moreover,
thanks to the Battlemesh experiments and results analysis, we state that the
platform is trustworthy and stable enough to state that it is a valid research
tool. Finally, even the UPC CN-A network’s deployment is not finished yet,
it is expected to complete the deployment in the next weeks and the pro-
totype network deployed in the buildings A5 and A6 has been successfully
performing experiments during the project’s development.

In a more personal approach, this project helped me to grow personally
and professionally. Being together with network communities, its contrib-
utors and its environment gave me a priceless knowledge and the personal
satisfaction of having been part of the project and the community, and hav-
ing contributed to it. In addition, I will continue supporting the WiBed
platform strongly during the 2 more years that the CONFINE project will
be supporting the UPC CN-A network. And finally, being able to develop
WiBed made me realise that I am exited about continuing working in open
source projects.

6.1 Future work

At the end of this project, the platform has been proved to be stable and
reliable enough to perform big experiments. However, improving even more
its stability, adding new features and, still more important, adding new de-
vices to experiment with is the future work that WiBed will need in order

67

CHAPTER 6. CONCLUSIONS 68

to achieve a step forward.

1. Current firmware is compiled with a concrete Kernel version and, to
change it, the researcher has to reflash the node. This forces the de-
velopers to adapt their tools and packages to that version in order to
make it compatible. As this issue is not meant to be solved soon, the
documentation and support given to experimenters must emphasize it.

2. The management configuration can be modified so this could interrupt
the communication with the controller and provoke the node to go back
to its original state. It is needed to protect the management network
default configuration and, furthermore, to protect as well the rest of
the critical settings of the nodes and the platform.

3. Start giving support to the architectures mpc85xx and x86 as a previ-
ous step for enlarging UPC CN-A network to other campus buildings.
Concretely, using the WDR4300 as the main experimentation nodes,
the WDR4900 as the gateway and the Alix2d2 as the bridge that will
connect between building roofs.

4. Continue working together with the Battlemesh community to improve
even more the platform and be prepared for the new challenges of the
next Battlemesh.

5. Some experimenters need more direct access to the nodes. Currently
they can only work using the controller, so adding a VPN connection
to grant them access to the nodes’ terminal is already being developed.

Appendices

69

Appendix A

Off-the-shelf Wireless Networks
Research Testbed

This chapter aims to show the reader the main characteristics presented
in WiBed theoretical dissertation[1]. The content of this chapter is taken
directly from the original dissertation of Roger Baig with no modifications.

A.1 WiBed Software

A.1.1 Testbed server

The server’s software solution must:
• accept node identifiers announcements

• make specific announcement for each node

• implement the following announcements:

– overlay upgrade (a complete filesystem is available to be installed)

– base system upgrade (a complete filesystem is available to be in-
stalled)

– command line execution (a command line is available to be exe-
cuted)

– timeframes for wireless experiments

• specify the execution delay time for each announcement

• have a time server

• have shell access from the Internet

70

APPENDIX A. OFF-THE-SHELF WIRELESS NETWORKS RESEARCH TESTBED71

A.1.2 Testbed nodes

The nodes’ software solution must:
• have a unique invariable identifier

• have a time client synchronised with the testbed server time server

• announce their identifier to the server during the boot process

• understand the following announcements:

– overlay upgrade (check if a new overlay is available; if so, down-
load it and install it in the overlay area)

– base system upgrade (check if a new base system is available; if
so, download it and install it in the base system area)

– command line execution (a command line is available to be exe-
cuted)

– timeframes for wireless experiments

A.2 WiBed Hardware

A.2.1 Testbed server

The server’s hardware solution must:
• have a reasonable amount of storage capacity to store nodes’ firmware

images

A.2.2 Testbed nodes

The nodes hardware solution must:
• be a reasonable cheap

• must have at least two Atheros independent NICs

• have an Ethernet port

A.3 WiBed collocation

A.3.1 Testbed server

The server’s collocation place must:
• have internet access

A.3.2 Testbed nodes

The nodes’ collocation places must:
• guarantee the server can be reached. Thus, there must be at least one

node connected to the server and the rest must be reachable over the
management network.

Appendix B

WiBed schedule

In this section, a bigger version of the schedule figures is provided.

72

APPENDIX B. WIBED SCHEDULE 73

Figure B.1: Project’s general planning.

APPENDIX B. WIBED SCHEDULE 74

Figure B.2: Gantt of WBM without the WiBed Project

APPENDIX B. WIBED SCHEDULE 75

Figure B.3: Gantt of WBMv7 with the WiBed Project (1st time)

Appendix C

WBMv7 documents

This section provides the contents of the overlay of the Battlemesh main
experiment, the table with the information regarding Battlemesh editions
and the map of the initial deployment.

C.1 Battlemesh main experiment code

Listing C.1: Battlemesh experiment code
#!/ bin / sh

SRCNAMEID=${1:−$ (cat /proc / sys / ke rne l /hostname | grep −o " $"
) }

HOSTNAMEID=$ (cat /proc / sys / ke rne l /hostname | grep −o " $")
["$SRCNAMEID" == "$HOSTNAMEID"] | | exit
set −x

sh i f t
DSTNAMEID=${1:−4174}

sh i f t
NETPERF=${1:−YES}

sh i f t
PROTOS=${1:−olsr1_bmx_bat_babel_olsr2}
OLSR1=$ (echo $PROTOS | grep o l s r 1)
BMX=$ (echo $PROTOS | grep bmx)
BAT=$ (echo $PROTOS | grep bat)
BABEL=$ (echo $PROTOS | grep babel)
OLSR2=$ (echo $PROTOS | grep o l s r 2)
PROTOCOLS_NUM=$ ((($ (["$OLSR1"] && echo 1 | | echo 0) + $ (["

$BMX"] && echo 1 | | echo 0) + $ (["$BAT"] && echo 1 | | echo
0) + $ (["$BABEL"] && echo 1 | | echo 0) + $ (["$OLSR2"] &&
echo 1 | | echo 0))))

sh i f t
OUTDIR=${1:−/ save /wbm−axn}

76

APPENDIX C. WBMV7 DOCUMENTS 77

sh i f t
DURATION=${1:−200}
TCPDUMP_CAPTURE_SIZE=${5:−100}
TCPDUMP_CAPTURE_DEV=${5:−wbm1}

PING6_INTERVAL="1"
PING6_SIZE="400"

NETPERF_DURATION="10"

DSTADDRID=$DSTNAMEID #$(bmx6 −c o r i g i n a t o r s | grep "wibed − . .
$DSTNAMEID" | awk '{ p r i n t $3 } ' | awk −F: '{ p r i n t $3 } ')

OLSR1_V6=" fdba : 1 1 :$DSTADDRID: : 1 "
BMX_V6=" fdba : 1 2 :$DSTADDRID: : 1 "
BAT_V6="fdbb : : $DSTADDRID"
BABEL_V6=" fdba : 1 4 :$DSTADDRID: : 1 "
OLSR2_V6=" fdba : 1 5 :$DSTADDRID: : 1 "

mkdir −p $OUTDIR
rm −f $OUTDIR/∗

ps | t e e $OUTDIR/ps−begin . l og
bmx6 −c s t a tu s i n t e r f a c e s l i n k s o r i g i n a t o r s tunne l s | t e e

$OUTDIR/bmx−cd8−begin . l og
ip −4 route | t e e $OUTDIR/ ip4route s−begin . l og
ip −6 route | t e e $OUTDIR/ ip6route s−begin . l og
ip −6 route l s t 60 | t e e $OUTDIR/ ip6routes60−begin . l og
ip addr | t e e $OUTDIR/ ipaddr−begin . l og

echo Sta r t i ng top . . .
t imeout $DURATION top −b −d1 >> $OUTDIR/top . l og &

echo Sta r t i ng tcpdump . . .
t imeout $DURATION tcpdump −nve − i $TCPDUMP_CAPTURE_DEV −s

$TCPDUMP_CAPTURE_SIZE −w $OUTDIR/tcpdump . raw port 6240 or
port 698 or port 269 or port 6696 or \(e the r proto 0x4305 and
\(e the r [14]==0x00 or e ther [14]==0x44 \) \) 2>/dev/ nu l l &

echo Sta r t i ng p ings . . .
[$OLSR1] && timeout −−s i g n a l=INT $DURATION sh −c "whi l e t rue ;

do ping6 − i $PING6_INTERVAL −s $PING6_SIZE −n $OLSR1_V6 >>
$OUTDIR/ping6−o l s r 1 . l og 2>&1 && break | | s l e e p 1 ; done" &

[$BMX] && timeout −−s i g n a l=INT $DURATION sh −c "whi l e t rue ;
do ping6 − i $PING6_INTERVAL −s $PING6_SIZE −n $BMX_V6 >>
$OUTDIR/ping6−bmx. l og 2>&1 && break | | s l e e p 1 ; done" &

[$BAT] && timeout −−s i g n a l=INT $DURATION sh −c "whi l e t rue ;
do ping6 − i $PING6_INTERVAL −s $PING6_SIZE −n $BAT_V6 >>
$OUTDIR/ping6−batadv . l og 2>&1 && break | | s l e e p 1 ; done" &

[$BABEL] && timeout −−s i g n a l=INT $DURATION sh −c "whi l e t rue ;
do ping6 − i $PING6_INTERVAL −s $PING6_SIZE −n $BABEL_V6 >>
$OUTDIR/ping6−babel . l og 2>&1 && break | | s l e e p 1 ; done" &

[$OLSR2] && timeout −−s i g n a l=INT $DURATION sh −c "whi l e t rue ;
do ping6 − i $PING6_INTERVAL −s $PING6_SIZE −n $OLSR2_V6 >>

APPENDIX C. WBMV7 DOCUMENTS 78

$OUTDIR/ping6−o l s r 2 . l og 2>&1 && break | | s l e e p 1 ; done" &

echo Sta r t i ng mtr . . .
[$OLSR1] && timeout −−s i g n a l=INT $DURATION sh −c "whi l e t rue ;

do date +%s .%N; mtr −nt −6 −r −c 1 $OLSR1_V6; s l e e p 1 ; done"
>> $OUTDIR/mtr−o l s r 1 . l og &

[$BMX] && timeout −−s i g n a l=INT $DURATION sh −c "whi l e t rue ;
do date +%s .%N; mtr −nt −6 −r −c 1 $BMX_V6; s l e e p 1 ; done"
>> $OUTDIR/mtr−bmx. l og &

[$BAT] && timeout −−s i g n a l=INT $DURATION sh −c "whi l e t rue ;
do date +%s .%N; mtr −nt −6 −r −c 1 $BAT_V6; s l e e p 1 ; done"
>> $OUTDIR/mtr−batadv . l og &

[$BABEL] && timeout −−s i g n a l=INT $DURATION sh −c "whi l e t rue ;
do date +%s .%N; mtr −nt −6 −r −c 1 $BABEL_V6; s l e e p 1 ; done"
>> $OUTDIR/mtr−babel . l og &

[$OLSR2] && timeout −−s i g n a l=INT $DURATION sh −c "whi l e t rue ;
do date +%s .%N; mtr −nt −6 −r −c 1 $OLSR2_V6; s l e e p 1 ; done"
>> $OUTDIR/mtr−o l s r 2 . l og &

i f ["$NETPERF" == "YES"] ; then
echo Sta r t i ng n e tp e r f s . . .
NETPERF_ROUNDS=$ ((($DURATION / $PROTOCOLS_NUM /

$NETPERF_DURATION)))
NETPERF_COUNT=1
while [$NETPERF_COUNT − l e $NETPERF_ROUNDS] ; do

[$OLSR1] && timeout −−s i g n a l=INT $NETPERF_DURATION
ne tpe r f −f k −c −C −D 1 −j −H $OLSR1_V6 > $OUTDIR/
netper f−o l s r 1−$NETPERF_COUNT. log

[$BMX] && timeout −−s i g n a l=INT $NETPERF_DURATION
ne tpe r f −f k −c −C −D 1 −j −H $BMX_V6 > $OUTDIR/
netper f−bmx−$NETPERF_COUNT. log

[$BAT] && timeout −−s i g n a l=INT $NETPERF_DURATION
ne tpe r f −f k −c −C −D 1 −j −H $BAT_V6 > $OUTDIR/
netper f−batadv−$NETPERF_COUNT. log

[$BABEL] && timeout −−s i g n a l=INT $NETPERF_DURATION
ne tpe r f −f k −c −C −D 1 −j −H $BABEL_V6 > $OUTDIR/
netper f−babel−$NETPERF_COUNT. log

[$OLSR2] && timeout −−s i g n a l=INT $NETPERF_DURATION
ne tpe r f −f k −c −C −D 1 −j −H $OLSR2_V6 > $OUTDIR/
netper f−o l s r 2−$NETPERF_COUNT. log

NETPERF_COUNT=$ ((($NETPERF_COUNT + 1))) ;
done

f i

set +x

wait

ps | t e e $OUTDIR/ps−end . l og
bmx6 −c s t a tu s i n t e r f a c e s l i n k s o r i g i n a t o r s tunne l s | t e e

$OUTDIR/bmx−cd8−end . l og
ip −4 route | t e e $OUTDIR/ ip4route s−end . l og

APPENDIX C. WBMV7 DOCUMENTS 79

ip −6 route | t e e $OUTDIR/ ip6route s−end . l og
ip −6 route l s t 60 | t e e $OUTDIR/ ip6routes60−end . l og
ip addr | t e e $OUTDIR/ ipaddr−end . l og

echo Fin i shed !

C.2 Battlemesh versions table

Edition Dates Location Participants1 Host Remarks
v1 Apr,11-12, Paris, 12 /tmp/lab 1st edition; few devs

2009 France gather together
to see what happens

v2 Oct, 17-18, Brussels, 20 HackerSpace Due to the success of 1st

2009 Belgium Brussels ed. they repeat 6 month later
v3 Jun, 2-6, Bracciano, 25 Ninux.org Mass upgrade system.

2010 Italy Spontaneous talks.
10th nodes deployed.

v4 Mar, 16-20, Sant Bartomeu 56 guifi.net First one week long.
2011 del Grau, Agenda pre-arranged.

Catalonia Results made available.
v5 Mar 23-Apr 1, Athens, 60 AWMN OpenWRT devs join the WBM.

2012 Greece Warm up event.
v6 Apr, 12-21, Aalborg, 47 Aalborg Hosted by a university.

2013 Denmark University WBM frim as OpenWRT feed.
v7 May 12-18 Leipzig 75 FreiFunk Hosted by the SubLab.

2014 Germany Leipzig First WiBed Battlemesh.
v8 ??? Maribor ?? Wlan Emplacement

2015 Slovenia Slovenija to be confirmed.
1 Registered at the wiki. The real number of participants ends up being around 10% and 30% higher.

Table C.1: Summary of the WBM editions.

C.3 Battlemesh deployment

APPENDIX C. WBMV7 DOCUMENTS 80

Figure C.1: Initial deployment of the Battlemesh

Appendix D

WiBed operation examples

D.1 Example of command’s execution

Sending the command ls -la /root :
Previous s t a t e :
Node : wibed−e62b54
Current s t a t e : 1 (IDLE)
Command Ack : 72
Result Ack : 72

Pul l r eque s t 1 :
{

" s t a tu s " : 1 ,
"commandAck" : 72 ,
" r e s u l t s " : []

}

Con t r o l l e r re sponse 1 :
{

" resu l tAck " : 72
}

Researcher sends the command:
Pul l r eque s t 2 :
{

" s t a tu s " : 1 ,
"commandAck" : 72 ,
" r e s u l t s " : []

}

Con t r o l l e r re sponse 2 :
{

"commands" :
{

81

APPENDIX D. WIBED OPERATION EXAMPLES 82

"73" : " l s −l a / root "
} ,
" resu l tAck " : 72

}

Result :
Command Ack : 73
Result Ack : 72

The node executes the command and stores the outputs:
73
l s −l a / root
Executing command 73 " l s −l a / root "
0
ni l

The node executes the next pull request:
Pul l r eque s t 3 :
{

" s t a tu s " : 1 ,
"commandAck" : 73 ,
" r e s u l t s " :
{

"73" : ["0" , "EXECUTED COMMAND RESULTS" , ""]
}

}

Con t r o l l e r reponse 3 :
{

" resu l tAck " : 73
}

Result :
Command Ack : 73
Result Ack : 73

D.2 Example of experiment’s execution

Performing and experiment with a dummy overlay:
This experiment will execute 2 scripts: the first one just prints a text in

the terminal output and the second one puts a text in the /save/result.txt
file owing to be uploaded to the controller as a result.
Previous s t a t e :
Node : wibed−e62b54
Current s t a t e : 1 (IDLE)
Experiment Id : 42
Command Ack : 72

APPENDIX D. WIBED OPERATION EXAMPLES 83

Result Ack : 72
Flash i s the over l ay (d e f au l t s t a t e)

The researcher adds the experiment in the controller:
Pul l r eque s t 1 :
{

" s t a tu s " : 1 ,
"commandAck" : 73 ,
" r e s u l t s " : []

}

Con t r o l l e r re sponse 1 :
{

" experiment " :
{

" ac t i on " : "PREPARE" ,
" id " : 43 ,
" ove r l ay " : "dummy. ta r . gz"

} ,
" resu l tAck " : 73

}

Result :
Experiment id : 43
Status : 2

The node is successful downloading the overlay:
Pul l r eque s t 2 :
{

" s t a tu s " : 3
}

Con t r o l l e r re sponse 2 :
{}

The researcher starts the experiment
Pul l r eque s t 3 :
{

" s t a tu s " : 3
}

Con t r o l l e r re sponse 3 :
{

" experiment " :
{

" ac t i on " : "RUN"
}

}

APPENDIX D. WIBED OPERATION EXAMPLES 84

Result:
Status: 4
Previous files allocated in the overlay are deleted and the new overlay is
installed.
The overlay will be mounted in the next boot. The node reboots after 60
seconds.

The experiment is correctly deployed in the node:
Node ' s s t a t e :
Status : 5
Experiment Id : 43
Command Ack : 73
Result Ack : 73
USB i s the over l ay (The experiment over l ay i s mounted)

Pul l r eque s t 4 :
{

" s t a tu s " : 5 ,
"commandAck" :73 ,
" r e s u l t s " : []

}

Con t r o l l e r re sponse 4 :
{

" resu l tAck " : 73
}

The researcher executes a command in the experiment without
saving its results:
Pul l r eque s t 5 :
{

" s t a tu s " : 5 ,
"commandAck" : 73 ,
" r e s u l t s " : []

}

Con t r o l l e r re sponse 5 :
{

"commands" :
{

"74" : " . / s c r i p t . sh"
} ,
" resu l tAck " : 73

}

The node executes the command:
74
. / s c r i p t . sh

APPENDIX D. WIBED OPERATION EXAMPLES 85

Executing command 74 " . / s c r i p t . sh"
Command ID : 74
Command Str : . / s c r i p t . sh
0
ni l

The node executes the next pull request:
Pul l r e sponse 6 :
{

" s t a tu s " : 5 ,
"commandAck" : 74 ,
" r e s u l t s " :
{

"74" : ["0" , "This s c r i p t does not save any r e su l t , so i t
w i l l only upload the outputs . " , ""]

}
}

Con t r o l l e r re sponse 6 :
{

" resu l tAck " : 74
}

Result :
Command Ack : 74
Result Ack : 74

The research executes a command in the experiment saving its
results:
Pul l r eque s t 7 :
{

" s t a tu s " : 5 ,
"commandAck" : 74 ,
" r e s u l t s " : []

}

Con t r o l l e r re sponse 7 :
{

"commands" :
{

"75" : " . / s c r i p t 2 . sh"
} ,
" resu l tAck " : 74

}

The node executes the command:
75
. / s c r i p t 2 . sh
Executing command 75 " . / s c r i p t 2 . sh"
0

APPENDIX D. WIBED OPERATION EXAMPLES 86

ni l
Command ID : 75
Command Str : . / s c r i p t 2 . sh

The node executes the next pull request:
Pul l r eque s t 8 :
{

" s t a tu s " : 5 ,
"commandAck" : 75 ,
" r e s u l t s " :
{

"75" : ["0" , "" , ""]
}

}

Con t r o l l e r re sponse 8 :
{

" resu l tAck " : 75
}

Result :
Command Ack : 75
Result Ack : 75

The researcher finishes the experiment
Pul l r eque s t 9 :
{

" s t a tu s " : 5 ,
"commandAck" : 75 ,
" r e s u l t s " : []

}

Con t r o l l e r re sponse 9 :
{

" experiment " :
{

" ac t i on " : "FINISH"
} ,

" resu l tAck " : 75
}
Command ID : −1
Command Str : e x i t
Found ex i t s i g n a l
Command execute r e x i t i n g
. /
. / r e s u l t . txt
The r e s u l t s u r l i s :
http :// wibed . con f ine−p ro j e c t . eu/ api / r e s u l t s /wibed−e62b54
Sending to s e r v e r f i l e : / root /43 . ta r . gz

APPENDIX D. WIBED OPERATION EXAMPLES 87

{
" e x i t " : " su c c e s s "

}

Result:
The experiment is finished and the /save folder is scanned. Once all the
files in the folder are gathered, a ’exp/id.tar.gz’ zipped file is sent to the
controller. If the uploading process is successful, the node starts going to
the default state. Otherwise, it tries to upload it again.
Status:6

The node executes the next pull request:
Pul l r eque s t 10 :
{

" s t a tu s " : 6
}

Con t r o l l e r re sponse 10 :
{}

Result :
The node reboots , unmounts the over l ay and r e tu rn s to i t s
d e f au l t s t a t e .
Status : 1
Experiment Id : 43
Command Ack : 75
Result Ack : 75
Flash i s the over l ay

Appendix E

WiBed scripts

In this section, the code of the main WiBed platform scripts is shown. As
most of them have hundreds of lines, only the most important functions and
its main procedure will be shown and if the reader wants to check the entire
code, in the WiBed repositories section 3.7 the information regarding how
to access them can be found.

E.1 wibed-node

#!/usr /bin / lua

io = requ i r e (" i o ")
f s = r equ i r e (" n i x i o . f s ")
http = r equ i r e (" socket . http ")
l tn12 = r equ i r e (" l tn12 ")
j son = r equ i r e (" dkjson ")
l i b u c i = r equ i r e (" uc i ")
cURL = requ i r e ("cURL")

RESULTS_DIR = "/ root / r e s u l t s "
COMMANDS_PIPE = "/var /run/command−execute r . sock "
OVERLAY_DIR = "/ over lay "
MNT_USB_OVERLAY = "/tmp/usb−over lay "
MNT_FLASH_OVERLAY = "/tmp/ f l a sh−over l ay "
REBOOT_DELAY = 60
SAVE_DIR = "/ save "

−− Sta tus
INIT = 0
IDLE = 1
PREPARING = 2
READY = 3
DEPLOYING = 4
RUNNING = 5
RESETTING = 6
UPGRADING = 7

88

APPENDIX E. WIBED SCRIPTS 89

ERROR = 8

−− Overlay
NO = 0
FLASH = 1
USB = 2

−− Function : uc iSe t InOver l ay s
−− Write v a r i a b l e to the UCI database in f l a s h and in the usb

s t i c k .
−−
−− Params :
−− ∗ con f i g − Which con f i g f i l e to use .
−− ∗ s e c t i on − Which uc i s e c t i on .
−− ∗ opt ion − Which uc i op t ion .
−− ∗ va lue − Value to wr i t e .
−− ∗ ove r l ay − Which ove r l ay to wri te , op t i ons can be " both " , "

USB" , "FLASH"
function uc iSe t InOver lays (con f i g , s e c t i on , option , value ,

ove r l ay)

local ove r l ay s = {}
i f over l ay == "both" then

ove r l ay s = {"/" , MNT_USB_OVERLAY, MNT_FLASH_OVERLAY}
e l s e i f over l ay == "USB" then

i f mountedOverlay == USB then
ove r l ay s = {"/"}

else
ove r l ay s = {MNT_USB_OVERLAY}

end
e l s e i f over l ay == "FLASH" then

i f mountedOverlay == FLASH then
ove r l ay s = {"/"}

else
ove r l ay s = {MNT_FLASH_OVERLAY}

end
else

pr in t ("Something went t e r r i b l y wrong")
os . e x i t (1)

end

for _, d i r in i p a i r s (ove r l ay s) do
local c on f d i r = d i r . . "/ e t c / c on f i g "
local s aved i r = "/tmp/ . uc i /" . . d i r
i f f o l d e rEx i s t s (c on f d i r) then

i f not f o l d e rEx i s t s (s aved i r) then f s . mkdirr (s aved i r)
end

local uc i = l i b u c i : cu r so r ()
uc i : s e t_con fd i r (c on f d i r)
uc i : s e t_saved i r (s aved i r)
uc i : s e t (con f i g , s e c t i on , option , va lue)
uc i : save (c on f i g)
uc i : commit (c on f i g)

end

APPENDIX E. WIBED SCRIPTS 90

end
end

−− Function : ge tOver lay
−− −− Write v a r i a b l e to the UCI database in f l a s h and in the usb

s t i c k .
−−
−− −− Returns : i f and which ove r l ay e x i s t s
function getOver lay ()

_, over l ay = executeCommand (s t r i n g . format ("mount | grep \"
/ over l ay \" | cut −d\" \" −f 5 "))

i f over l ay == "" then
pr in t (s t r i n g . format ("No over lay "))
return NO

e l s e i f over l ay == " j f f s 2 " then
pr in t (s t r i n g . format ("Flash i s the over l ay "))
return FLASH

e l s e i f over l ay == " ext4 " then
pr in t (s t r i n g . format ("USB i s the over l ay "))
return USB

else
pr in t (s t r i n g . format ("Error execut ing mount ! "))
os . e x i t (1)

end
end

−− Function : b u i l dRe s u l t s
−− Bui lds a t r a b l e con ta in ing in format ion about a l l non−

acknowledged
−− r e s u l t s .
−−
−− Returns :
−− ∗ Table wi th in format ion about non−acked r e s u l t s .
function bu i l dRe su l t s ()

local r e s u l t s = {}
local re su l tAck = resu l tAck or 0

i f not f o l d e rEx i s t s (RESULTS_DIR) then
return r e s u l t s

end

local _, commandIdsStr = executeCommand (s t r i n g . format (" l s −1
\"%s \"" ,RESULTS_DIR))

local commandIds = commandIdsStr : s p l i t ("\n")

i f not commandIds then
return

end

for _, commandId in i p a i r s (commandIds) do
commandId = tonumber (commandId)

APPENDIX E. WIBED SCRIPTS 91

cmdResultFolder=s t r i n g . format ("%s/%s" ,RESULTS_DIR,
commandId)

i f commandId > resu l tAck then
i f not f i l e E x i s t s (s t r i n g . format ("%s/ exitCode " ,

cmdResultFolder)) then
break

end

exitCode = readF i l e (s t r i n g . format ("%s/ exitCode " ,
cmdResultFolder))

stdout = readF i l e (s t r i n g . format ("%s/ stdout " ,
cmdResultFolder))

s t d e r r = readF i l e (s t r i n g . format ("%s/ s t d e r r " ,
cmdResultFolder))

r e s u l t s [t o s t r i n g (commandId)] = {exitCode , stdout ,
s t d e r r }

end
end

return r e s u l t s
end

−− Function : sendError
−− Send error i n f o to the s e r v e r
−−
function sendError ()

−− Create ta r . gz f i l e from the r e s u l t f i l e s
_, exp = executeCommand (s t r i n g . format ("wibed−g e t l o g s "))
−− Transfer t a r . gz f i l e to the s e r v e r and then d e l e t e i t
local c = cURL. easy_in i t ()
local api = readVar iab le (" gene ra l . api_url ")
local nodeId = readVar iab le (" gene ra l . node_id")
local u r l = s t r i n g . format ("%sap i / e r r o r/%s" , api , nodeId)
p r i n t ("The e r r o r u r l i s : " . . u r l)
c : se topt_ur l (u r l)
local f i l ePa t h=s t r i n g . format ("/ root / e r r o r . ta r . gz")
p r i n t ("Sending to s e r v e r f i l e : " . . f i l ePa t h)
local postdata = {

f i l e = { f i l e=f i l ePa th ,
type=" text / p l a i n "}}

c : post (postdata)
c : perform ()
f s . remove (f i l ePa t h)

end

−− Function : doPrepareFirmwareUpgrade
−− Prepare the firmware upgrade proces s .
−−
−− Params :

APPENDIX E. WIBED SCRIPTS 92

−− ∗ ve r s i on − New firmware ve r s i on .
−− ∗ hash − The hash o f the new firmware .
−− ∗ upgradeTime − The time at which to make the upgrade .
function doPrepareFirmwareUpgrade (ver s ion , hash , upgradeTime)

p r i n t (s t r i n g . format ("Fetching f irmware upgrade at %s " ,
upgradeTime))

succes s , statusCode , _, _ = http . r eque s t {
u r l = s t r i n g . format ("%s/ s t a t i c / f i rmwares/%s" , apiUrl ,

v e r s i on) ,
s ink = l tn12 . s ink . f i l e (io . open ("/tmp/wibed . bin " , 'w '))

}

i f su c c e s s and statusCode == 200 then
s t a tu s = UPGRADING
wr i t eF i l e ("/ root /wibed . upgrade . l a s tha sh " , hash)
w r i t eF i l e ("/ root /wibed . upgrade . v e r s i on " , v e r s i on)
p r i n t (s t r i n g . format (" Star t UPGRADING proce s s in the

next wibed−node c a l l "))
else

pr in t (s t r i n g . format ("Downloading o f f irmware f a i l e d : %s "
, statusCode))

s t a tu s = ERROR
sendError ()

end
end

−− Function : doFirmwareUpgrade
−− S ta r t the firmware upgrade proces s .
−−
function doFirmwareUpgrade ()

p r i n t (s t r i n g . format ("Attempting f irmware upgrade"))
local o ldVers ion = readVar iab le ("upgrade . v e r s i on ") or

ni l
local upVersion = readF i l e ("/ root /wibed . upgrade . v e r s i on "

) or ni l
local hash = readF i l e ("/ root /wibed . upgrade . l a s tha sh ") or

ni l

i f hash == ni l or #hash < 8 then
s t a tu s = ERROR
pr in t (s t r i n g . format (" Fa i l ed to upgrade to

ve r s i on %s , hash f i l e does not e x i s t " ,
upVersion))

sendError ()
return 1

end

−− Execute the upgrade s c r i p t
pr in t (s t r i n g . format ("Executing the upgrade s c r i p t "))
local exitCode , _ = executeCommand (s t r i n g . format ("/ usr /

sb in /wibed−upgrade %s %s" , upVersion , hash))

i f exitCode ~= "0" then

APPENDIX E. WIBED SCRIPTS 93

s t a tu s = IDLE
wr i t eVar i ab l e (" gene ra l . s t a tu s " , s t a tu s)
p r i n t (s t r i n g . format (" Fa i l ed to upgrade to

ve r s i on %s , going back to IDLE s t a t e " ,
upVersion))

return 1
end

end

−− Function : doPrepareExperiment
−− Prepares an experiment by downloading the r e s p e c t i v e ove r l a y

and
−− i n s t a l l i n g i t .
−−
−− Params :
−− ∗ exper imentId − The id o f the experiment .
−− ∗ ove r l a y I d − The id o f the ove r l a y used in the experiment .
−− ∗ over layHash − The hash o f the ove r l a y .
function doPrepareExperiment (experimentId , over layId ,

overlayHash)
s t a tu s = PREPARING
wr i t eVar i ab l e (" gene ra l . s t a tu s " , s t a tu s)

executeCommand (s t r i n g . format ("rm −r f %s /∗" , MNT_USB_OVERLAY)
)

succes s , statusCode , _, _ = http . r eque s t {
u r l = s t r i n g . format ("%s/ s t a t i c / ove r l ay s/%s" , apiUrl ,

ove r l ay Id) ,
s ink = l tn12 . s ink . f i l e (io . open (s t r i n g . format ("%s/ over lay

. ta r . gz" , MNT_USB_OVERLAY) , "w"))
}
i f su c c e s s and statusCode == 200 then

executeCommand (s t r i n g . format ("mkdir %s / sb in 2>/dev/ nu l l "
,OVERLAY_DIR))

executeCommand (s t r i n g . format ("cp −f /rom/ sb in / block %s/
sb in / block " ,OVERLAY_DIR))

executeCommand (s t r i n g . format (" touch / e tc / c on f i g / f s t ab "))
executeCommand (s t r i n g . format ("cp −a %s /∗ %s/" ,

OVERLAY_DIR, MNT_USB_OVERLAY))
executeCommand (s t r i n g . format ("rm −f %s / e tc / . extroot−uuid

2>/dev/ nu l l " ,MNT_USB_OVERLAY))
−−executeCommand (s t r i n g . format ("rm −r f %s/ e t c /uci−

d e f a u l t s 2>/dev/ nu l l " ,MNT_USB_OVERLAY))
executeCommand (s t r i n g . format (" ta r −xhzf %s / over l ay . ta r .

gz −C %s" ,MNT_USB_OVERLAY, MNT_USB_OVERLAY))

s t a tu s = READY
wr i t eVar i ab l e (" gene ra l . s t a tu s " , s t a tu s)
wr i t eVar i ab l e (" experiment . exp_id" , exper imentId)

else
−− TODO: Report e r ror
pr in t ("Downloading o f ove r l ay f a i l e d : " . . statusCode)

APPENDIX E. WIBED SCRIPTS 94

s t a tu s = ERROR
sendError ()

end
end

−− Function : doStartExperiment
−− S t a r t s the experiment .
function doStartExperiment ()

s t a tu s = DEPLOYING
uc iSet InOver lays (" f s t ab " , "usb_overlay" , " t a r g e t " ,

OVERLAY_DIR, "both")
−− Change s t a t u s to f l a s h ove r l a y as DEPLOYING
uc iSe t InOver lays ("wibed" , " gene ra l " , " s t a tu s " , s tatus , "

FLASH")
−− Change f u t u r e s t a t u s to usb ove r l ay as RUNNING
uc iSe t InOver lays ("wibed" , " gene ra l " , " s t a tu s " , RUNNING, "USB

")
executeCommand (s t r i n g . format (" s l e e p %d && reboot −f &" ,

REBOOT_DELAY))
end

−− Function : saveResu l t s
−− Send the r e s u l t s in / save f o l d e r to the s e r v e r
−−
function saveResu l t s ()

−− Create ta r . gz f i l e s from the r e s u l t f i l e s
_, exp = executeCommand (s t r i n g . format ("ID=`uc i get wibed .

experiment . exp_id ` && tar −cvz f / root /${ID } . ta r . gz −C /
save / . && rm −r f / save /∗ && echo $ID"))

−− Transfer t a r . gz f i l e to the s e r v e r and then d e l e t e i t
local c = cURL. easy_in i t ()
local saveUrl = readVar iab le (" experiment . save_url ")
local nodeId = readVar iab le (" gene ra l . node_id")
local u r l = s t r i n g . format ("%s/%s" , saveUrl , nodeId)
p r i n t ("The r e s u l t s u r l i s : " . . u r l)
c : se topt_ur l (u r l)
local f i l ePa t h=s t r i n g . format ("%s/%s .%s " , "/ root " , exp , " ta r . gz

")
p r i n t ("Sending to s e r v e r f i l e : " . . f i l ePa t h)
local postdata = {

f i l e = { f i l e=f i l ePa th ,
type=" text / p l a i n "}}

c : post (postdata)
c : perform ()
f s . remove (f i l ePa t h)

end

−− Function : doFinishExperiment
−− Fin i she s an a c t i v e experiment .
−−
function doFinishExperiment ()

APPENDIX E. WIBED SCRIPTS 95

i f mountedOverlay == USB then
uc iSe t InOver lays (" f s t ab " , "usb_overlay" , " t a r g e t " ,

MNT_USB_OVERLAY, "both")
executeCommand (s t r i n g . format (" echo \"−1 e x i t \" > \"%s \""

,COMMANDS_PIPE) , fa l se)

s t a tu s = RESETTING
−− Change s t a t u s to usb ove r l ay as RESETTING
uc iSe t InOver lays ("wibed" , " gene ra l " , " s t a tu s " , s tatus , "

USB")
−− Change f u t u r e s t a t u s to f l a s h ove r l ay as IDLE
uc iSe t InOver lays ("wibed" , " gene ra l " , " s t a tu s " , IDLE , "

FLASH")

saveResu l t s ()

executeCommand (s t r i n g . format (" s l e e p %d && reboot −f &" ,
REBOOT_DELAY))

else
−− Assuming t ha t no error happened and the experiment
−− was f i n i s h e d b e f o r e even running
s t a tu s = IDLE

end

end

−− Function : executeCommands
−− Se t s up the commands prov ided as argument f o r execu t i on .
−−
−− Args :
−− ∗ commands − Table o f commands {<id1>=<cmd1>, <id2>=<cmd2>}
function executeCommands (commands)

i f not commands then
return

end

local lastCommandId=commandAck
local sanitizedCommands = {}

for commandId , commandStr in pa i r s (commands) do
t ab l e . i n s e r t (sanitizedCommands , {tonumber (commandId) ,

commandStr })
end
t ab l e . s o r t (sanitizedCommands , function (a , b) return b [1] < a

[1] end)

for _ , pa i r in i p a i r s (sanitizedCommands) do
commandId , commandStr = unpack (pa i r)
p r i n t (commandId)
p r i n t (commandStr)
commandId = tonumber (commandId)

APPENDIX E. WIBED SCRIPTS 96

i f not p ipeEx i s t s (COMMANDS_PIPE) then
executeCommand ("command−execute r &")
−− Give some time f o r named pipe to be crea t ed by

execu t e r
executeCommand (" s l e e p 1")

end

pr in t (s t r i n g . format ("Executing command %d \"%s \"" ,
commandId , commandStr))

−−This doesn ' t work so we have to hack a l i l b i t
−−wr i t eF i l e (COMMANDS_PIPE, "%d %s" % {commandId ,

commandStr})
exitCode , stdout = executeCommand (s t r i n g . format (" echo \"%

d %s \" > \"%s \"" , commandId , commandStr ,
COMMANDS_PIPE) , fa l se)

p r i n t (exitCode)
p r i n t (stdout)
lastCommandId = commandId

end

wr i t eVar i ab l e (" gene ra l . commandAck" , lastCommandId)
end

−− END OF FUNCTIONS.
−− START PULL PROCESS

ap iUr l = a s s e r t (readVar iab le (" gene ra l . api_url ") , "API URL not
de f ined ")

p r i n t (s t r i n g . format ("API URL: %s" , ap iUr l))
id = a s s e r t (readVar iab le (" gene ra l . node_id") , "Node ID not

de f ined ")
p r i n t (s t r i n g . format (" Id : %s " , id))
s t a tu s = tonumber (readVar iab le (" gene ra l . s t a tu s ")) or INIT
pr in t (s t r i n g . format (" Status : %d" , s t a tu s))
model = readVar iab le ("upgrade . model")
p r i n t (s t r i n g . format ("Model : %s " , model))
v e r s i on = readVar iab le ("upgrade . v e r s i on ")
p r i n t (s t r i n g . format ("Vers ion : %s " , v e r s i on))
exper imentId = readVar iab le (" experiment . exp_id")
p r i n t (s t r i n g . format (s t r i n g . format ("Experiment Id : %s " , (

exper imentId or "None"))))
commandAck = tonumber (readVar iab le (" gene ra l . commandAck"))
p r i n t (s t r i n g . format ("Command Ack : %s " , (commandAck or "None")))
re su l tAck = tonumber (readVar iab le (" gene ra l . r e su l tAck "))
p r i n t (s t r i n g . format ("Result Ack : %s " , (re su l tAck or "None")))
mountedOverlay = tonumber (getOver lay ())
−−p r i n t (s t r i n g . format ("The ove r l ay used i s : %s " , mountedOverlay)

)
coordx = readVar iab le (" gene ra l . coordx")
coordy = readVar iab le (" gene ra l . coordy")
coordz = readVar iab le (" gene ra l . coordz ")
te s tbed = readVar iab le (" l o c a t i o n . t e s tbed ")
is_gw = readVar iab le ("management . is_gw")

APPENDIX E. WIBED SCRIPTS 97

r eque s t = {}
reques t [" s t a tu s "] = s ta tu s

i f s t a tu s == INIT then

−− Check the ve r s i on (prevent to send a wrong ve r s i on when
f a i l e d to upgrade the firmware)

local _, t a i l f i rmv = executeCommand (" t a i l −n 1 / e tc /wibed .
v e r s i on " , true)

local f i rmv = s t r i n g . sub (t a i l f i rmv , 1 , 8)

i f ve r s i on ~= firmv then
wr i t eVar i ab l e ("upgrade . v e r s i on " , f i rmv)
ve r s i on = firmv

end

r eque s t ["model"] = model
r eque s t [" v e r s i on "] = ve r s i on
reques t [" coordx"] = coordx
reques t [" coordy"] = coordy
reques t [" coordz "] = coordz
reques t [" t e s tbed "] = tes tbed
reques t ["gateway"] = is_gw

e l s e i f s t a tu s == IDLE or s t a tu s == RUNNING or s t a tu s == ERROR
then
i f commandAck then

r eque s t [" r e s u l t s "] = bu i l dRe su l t s ()
r eque s t ["commandAck"] = commandAck

end
end

jsonEncodedRequest = j son . encode (request , { indent = true })

p r i n t (" ")
p r i n t ("Request : ")
p r i n t (jsonEncodedRequest)
p r i n t (" ")

responseBody , statusCode , _, _ = http . r eque s t (
s t r i n g . format ("%s/ api /wibednode/%s" , apiUrl , id) ,
jsonEncodedRequest)

i f responseBody and statusCode == 200 then
pr in t ("Communication with s e r v e r s u c c e s s f u l ")
p r i n t (" ")
p r i n t (responseBody)

response , pos , e r r = j son . decode (responseBody)

i f e r r then
pr in t (s t r i n g . format ("Error par s ing j son : %s " , e r r))
os . e x i t (1)

e l s e i f re sponse [" e r r o r s "] then

APPENDIX E. WIBED SCRIPTS 98

pr in t ("Error sent by s e r v e r : ")
for key , va lue in pa i r s (re sponse [" e r r o r s "]) do pr in t (key

, va lue) end
os . e x i t (1)

end

−− Migrat ion from i n i t to i d l e i s automatic upon r e c e i v a l o f
−− response by s e r v e r
i f s t a tu s == INIT then

−− Except the case t ha t an upgrade was performed
i n c o r r e c t l y

local upgrade = response ["upgrade"]
i f upgrade then

pr in t (s t r i n g . format ("There was an e r r o r upgrading . ")
)

p r i n t (s t r i n g . format ("Upgrade ve r s i on and node
ve r s i on do not match"))

s t a tu s = ERROR
sendError ()

end
s t a tu s = IDLE

end

−− i f s t a t u s == RESETTING then
−− l o c a l error , s t dou t = executeCommand (s t r i n g . format (" ps |

grep reboo t −c ") , t rue)
−− l o c a l s t = tonumber (s t dou t)
−− i f s t <= 2 then
−− s t a t u s = IDLE
−− wr i t eVar i a b l e (" genera l . s t a t u s " , s t a t u s)
−− executeCommand (s t r i n g . format (" s l e e p %d && reboo t −f

&", REBOOT_DELAY))
−− end
−−end

−− I f IDLE
i f s t a tu s == IDLE then

local r e i n i t = response [" r e i n i t "]
i f r e i n i t then

pr in t ("Doing REINIT")
executeCommand (s t r i n g . format ("/ usr / sb in /wibed−

r e s e t "))
os . e x i t (0)

end
local upgrade = response ["upgrade"]
local experiment = response [" experiment "]
i f upgrade then

doPrepareFirmwareUpgrade (upgrade [" ve r s i on "] ,
upgrade ["hash"] ,
upgrade ["utime"])

e l s e i f experiment and experiment [" ac t i on "] == "PREPARE"
then
doPrepareExperiment (experiment [" id "] ,

experiment [" over l ay "] ,

APPENDIX E. WIBED SCRIPTS 99

experiment ["hash"])
end

e l s e i f re sponse [" experiment "] and s t a tu s >= PREPARING
and s t a tu s <= RUNNING then

i f re sponse [" experiment "] [" ac t i on "] == "FINISH" then
doFinishExperiment ()

e l s e i f re sponse [" experiment "] [" ac t i on "] == "RUN" and
s t a tu s == READY then

doStartExperiment ()
end

e l s e i f s t a tu s == UPGRADING then
pr in t (s t r i n g . format ("Have to upgrade"))
doFirmwareUpgrade ()

end

i f s t a tu s == IDLE or s t a tu s == RUNNING or s t a tu s == ERROR
then
executeCommands (re sponse ["commands"])

end
local re su l tAck = response [" resu l tAck "]
i f re su l tAck then

wr i t eVar i ab l e (" gene ra l . r e su l tAck " , re su l tAck)
end

−− Write any changes t ha t maybe took p l ace upon the response
on ly in the current ove r l a y

−− wr i t eVar i a b l e (" genera l . s t a t u s " , s t a t u s)
i f mountedOverlay == FLASH then

uc iSe t InOver lays ("wibed" , " gene ra l " , " s t a tu s " , s tatus , "
FLASH")

else
uc iSe t InOver lays ("wibed" , " gene ra l " , " s t a tu s " , s tatus , "

USB")
end

else
pr in t (s t r i n g . format ("Communication with s e r v e r un su c c e s s f u l :

%s " , statusCode))
end

E.2 wibed-config

#!/usr /bin / lua

local c r c = r equ i r e " crc16 "
local f s = r equ i r e " n i x i o . f s "
local uc i = r equ i r e " uc i "
local iw = r equ i r e " iw in f o "
local u t i l = r equ i r e " u t i l "
local uc i c = "wibed"
local u c i l = " l ibremap"
local x = uc i : cu r so r ()

APPENDIX E. WIBED SCRIPTS 100

local function node_id ()
local dev = " eth0 "
local mac = a s s e r t (f s . r e a d f i l e ("/ sys / c l a s s / net /" . . dev . . "

/ address "))
local hash = crc . hash (mac)
return math . f l o o r (hash / 256) , hash % 256

end

local function mac_id ()
local dev = " eth0 "
local mac = a s s e r t (f s . r e a d f i l e ("/ sys / c l a s s / net /" . . dev . . "

/ address "))
local id = s t r i n g . format ("%s%s%s" , s t r i n g . sub (mac , 10 , 11) ,

s t r i n g . sub (mac , 13 , 14) , s t r i n g . sub (mac , 16 , 17))
return id

end

local function get_hostname ()
local hostname = s t r i n g . format ("wibed−%s" ,mac_id ())
return hostname

end

local function get_model ()
local model = r e a d f i l e ("/tmp/ s y s i n f o /board_name")
i f model == ni l then

model = s h e l l ("uname −m" , true) . . "−" . . s h e l l ("
uname −p" , true)

end
return model

end

local function generate_address ()
local r1 , r2 = node_id ()
local ipv4_template = a s s e r t (x : get (uc ic , "management" , "

ipv4_net"))
local ipv6_template = a s s e r t (x : get (uc ic , "management" , "

ipv6_net"))

return ipv4_template : gsub ("R1" , r1) : gsub ("R2" , r2) ,
ipv6_template : gsub ("R1" , hex (r1)) : gsub ("R2" , hex (

r2))
−− XXX: id shou ld be hex coded but f o r backwards compat keep i t

decimal
end

local function generate_mgmt_lan_address ()
local r1 , r2 = node_id ()
local ipv4_template = a s s e r t (x : get (uc ic , "management" , "

ipv4_lan_net"))
return ipv4_template : gsub ("R1" , r1) : gsub ("R2" , r2)

end

local function generate_ss id ()
local s s i d = a s s e r t (x : get (uc ic , "management" , " s s i d "))

APPENDIX E. WIBED SCRIPTS 101

local id = mac_id ()
return s t r i n g . format ("%s−%s" , s s id , id)

end

local function get_bss id ()
return x : get (uc ic , "management" , " b s s i d ") or " 02 :CA:FF:EE

:BA:BE"
end
\end{verbbox}
\ r e s i z ebox {\ textwidth }{ !}{\ theverbbox}

\ begin {verbbox}
local function i s_net (d)

−− ge t the p h y s i c a l e t h e rne t dev i c e i f dev i s a v lan
local dev = d : s p l i t_ s t r ("%.")
local fdev
i f dev [1] == ni l then

fdev = d
else

fdev = dev [1]
end
local r = os . execute (s t r i n g . format (" l s / sys / c l a s s / net/%s

>/dev/ nu l l 2>&1" , fdev))
return r==0

end

local function i s_w i f i (dev)
local r1 = os . execute (s t r i n g . format (" l s / sys / c l a s s / net/%

s/phy80211/ >/dev/ nu l l 2>&1" , dev))
local r2 = os . execute (s t r i n g . format (" cat /tmp/ w i r e l e s s .

backup | egrep ' i fname | w i f i−dev i ce ' | grep %s >/dev/
nu l l 2>&1" , dev))

return (r1==0 or r2==0)
end

local function set_batadv (dev)
p r i n t f ("−> Conf igur ing batman−adv f o r %s " , dev)
local i f n = "bat" . . dev
x : s e t ("batman−adv" , "bat0" , "mesh")
x : s e t ("batman−adv" , "bat0" , "bridge_loop_avoidance " , "1")
x : s e t ("batman−adv" , "bat0" , " o r i g_ in t e r va l " , "5000")
x : s e t ("network" , i f n , " i n t e r f a c e ")

−− x : s e t (" network " , i fn ," ifname " , dev)
x : s e t ("network" , i f n , " proto " , "batadv")
x : s e t ("network" , i f n , "mesh" , "bat0")
i f i s_w i f i (dev) then

x : s e t ("network" , i f n , "mtu" , "1532")
end

end

local function set_mgmt_net ()
p r i n t ("Conf igur ing management e the rne t dev i c e s ")
local i f a c e s ,_ = s p l i t_ i f a c e s (x : get (uc ic , "management" ,

" i f a c e s "))

APPENDIX E. WIBED SCRIPTS 102

local _, i
for _, i in i p a i r s (i f a c e s) do pr in t ("−> In t e r f a c e " . . i)

end

t ab l e . i n s e r t (i f a c e s , "bat0")
local ipv4 , ipv6 = generate_address ()

x : s e t ("network" , "mgmt" , " i n t e r f a c e ")
x : s e t ("network" , "mgmt" , " type" , " br idge ")
x : s e t ("network" , "mgmt" , " proto " , " s t a t i c ")
x : s e t ("network" , "mgmt" , " ipaddr " , ipv4)
x : s e t ("network" , "mgmt" , "netmask" , " 2 55 . 2 5 5 . 0 . 0 ")
x : s e t ("network" , "mgmt" , " ip6addr " , ipv6)
x : s e t ("network" , "mgmt" , " ifname" , i f a c e s)

end
\end{verbatim}
%\end{verbbox}
%\r e s i z ebox {\ textwidth }{ !}{\ theverbbox}
%\begin {verbbox}
\ begin {verbatim}
local function set_mgmt_lan ()

i f x : get ("wibed" , "management" , "is_gw") == "1" then
pr in t ("Conf igur ing node as In t e rn e t gateway . . . ")
local ipv4 = generate_mgmt_lan_address ()
−− BATMANT−ADV GW CONFIGURATION:
x : s e t ("batman−adv" , "bat0" , "gw_mode" , " s e r v e r ")

x : s e t ("network" , "mgmt_lan" , " i n t e r f a c e ")
x : s e t ("network" , "mgmt_lan" , " proto " , " s t a t i c ")
x : s e t ("network" , "mgmt_lan" , " ipaddr " , ipv4)
x : s e t ("network" , "mgmt_lan" , "netmask" , "

255 . 255 . 255 . 0 ")
x : s e t ("network" , "mgmt_lan" , " ifname" , "br−mgmt"

)

x : s e t ("dhcp" , "mgmt_lan" , "dhcp")
x : s e t ("dhcp" , "mgmt_lan" , " i n t e r f a c e " , "mgmt_lan")
x : s e t ("dhcp" , "mgmt_lan" , " s t a r t " , "2")
x : s e t ("dhcp" , "mgmt_lan" , " l im i t " , "250")
x : s e t ("dhcp" , "mgmt_lan" , " l e a s e t ime " , "1h")

x : f o r each (" f i r e w a l l " , " zone" , function (s)
i f x : get (" f i r e w a l l " , s [" . name"] , "name")

== " lan " then
x : s e t (" f i r e w a l l " , s [" . name"] , "

network" ,{ "mgmt_lan" })
end

end)
else

−− BATMANT−ADV CLIENT CONFIGURATION:
x : s e t ("batman−adv" , "bat0" , "gw_mode" , " c l i e n t ")

x : s e t ("network" , "mgmt_lan" , " i n t e r f a c e ")
x : s e t ("network" , "mgmt_lan" , " proto " , "dhcp")

APPENDIX E. WIBED SCRIPTS 103

x : s e t ("network" , "mgmt_lan" , " ifname" , "br−mgmt"
)

end

x : f o r each (" f i r e w a l l " , " zone" , function (s) x : s e t ("
f i r e w a l l " , s [" . name"] , " input " , "ACCEPT") end)

x : f o r each (" f i r e w a l l " , " zone" , function (s) x : s e t ("
f i r e w a l l " , s [" . name"] , " output" , "ACCEPT") end)

x : f o r each (" f i r e w a l l " , " zone" , function (s) x : s e t ("
f i r e w a l l " , s [" . name"] , " forward " , "ACCEPT") end)

end

local function set_system ()
p r i n t ("Conf igur ing system . . . ")
−− Se t t i n g hostname
local hostname = get_hostname ()

x : f o r each (" system" , " system" , function (s)
x : s e t (" system" , s [" . name"] , "hostname" , hostname

)
end)

f s . w r i t e f i l e ("/proc / sys / ke rne l /hostname" , hostname)

−− Se t t i n g model name
x : s e t (uc ic , "upgrade" , "model" , get_model ())
x : s e t (uc ic , " g ene ra l " , "node_id" , hostname)

end

local function set_mgmt_wifi ()
p r i n t ("Conf igur ing management w i f i d ev i c e s ")
local channel5 = a s s e r t (x : get (uc ic , "management" , "

channel5 "))
local txpower2 = x : get (uc ic , "management" , " txpower2")

or "30"
local txpower5 = x : get (uc ic , "management" , " txpower5")

or "20"
local mrate = x : get (uc ic , "management" , "mrate") or ni l
local countrycode = x : get (uc ic , "management" , " country ")

or ni l
local channel2 = a s s e r t (x : get (uc ic , "management" , "

channel2 "))
local i ,_
local _, i f a c e s = s p l i t_ i f a c e s (x : get (uc ic , "management" ,

" i f a c e s "))
local wifi_num = 0

for _, i in i p a i r s (i f a c e s) do
pr in t ("−> In t e r f a c e " . . i)
local id = s t r i n g . format ("mgmt%d" , wifi_num)
local net = "bat" . . id

local t = iw . type (i)
i f t then

APPENDIX E. WIBED SCRIPTS 104

local is_5ghz = iw [t] . hwmodelist (i) . a

i f is_5ghz then ch=channel5
else ch=channel2 end

i f not ch then
p r i n t f ("−> No channel de f in ed

f o r %dGHz %s" , is_5ghz and 5
or 2 , i)

return
end

local ht = ch : match ("[−+]?$")

p r i n t f ("−> Using channel %s f o r %dGHz %s
" , ch , is_5ghz and 5 or 2 , i)

x : s e t (" w i r e l e s s " , i , " channel " , (ch : gsub
("[−+]$" , "")))

i f x : get (" w i r e l e s s " , i , "ht_capab") then
i f ht == "+" or ht == "−" then

x : s e t (" w i r e l e s s " , i , "
htmode" , "HT40" . . ht)

else
x : s e t (" w i r e l e s s " , i , "

htmode" , "HT20")
end

end

x : s e t (" w i r e l e s s " , i , " d i s ab l ed " , 0)
i f is_5ghz then

x : s e t (" w i r e l e s s " , i , " txpower" ,
txpower5)

p r i n t f ("−> Using txpower %s f o r
5GHz" , txpower5)

else
x : s e t (" w i r e l e s s " , i , " txpower" ,

txpower2)
p r i n t f ("−> Using txpower %s f o r

2GHz" , txpower2)
end
i f countrycode ~= ni l then

x : s e t (" w i r e l e s s " , i , " country " ,
countrycode)

p r i n t f ("−> Using countrycode %s"
, countrycode)

end
i f mrate ~= ni l then

x : s e t (" w i r e l e s s " , i , "mcast_rate
" , mrate)

p r i n t f ("−> Using mu l t i ca s t r a t e
%s " , mrate)

end

APPENDIX E. WIBED SCRIPTS 105

x : s e t (" w i r e l e s s " , id , " w i f i−i f a c e ")
x : s e t (" w i r e l e s s " , id , "hidden" , 1)
x : s e t (" w i r e l e s s " , id , " s s i d " ,

generate_ss id ())
x : s e t (" w i r e l e s s " , id , " b s s i d " , get_bss id

())
x : s e t (" w i r e l e s s " , id , " dev i ce " , i)
x : s e t (" w i r e l e s s " , id , "network" , net)
x : s e t (" w i r e l e s s " , id , "mode" , "adhoc")
x : s e t (" w i r e l e s s " , id , " ifname" , id)

set_batadv (id)

wifi_num = wifi_num + 1
else

p r i n t f ("−> Error , dev i c e %s not found as
WiFi i n t e r f a c e " , i)

end
end

end

function s e t_ loca t i on ()
local coordx = x : get (uc ic , " gene ra l " , " coordx")
local coordy = x : get (uc ic , " gene ra l " , " coordy")
local coordz = x : get (uc ic , " g ene ra l " , " coordz ")

x : s e t (u c i l , " l o c a t i o n " , " l a t i t u d e " , coordx)
x : s e t (u c i l , " l o c a t i o n " , " l ong i tude " , coordy)
x : s e t (u c i l , " l o c a t i o n " , " e l e v " , coordz)

end

function main ()
r e s e t_w i f i ()
c l ean ()
set_mgmt_wifi ()
set_mgmt_net ()
set_mgmt_lan ()
set_system ()
s e t_ loca t i on ()

p r i n t ("Committing c on f i g f i l e s . . . ")
x : save ("network")
x : save ("batman−adv")
x : save (uc i c)
x : save (" system")
x : save (" w i r e l e s s ")
x : commit ("network")
x : commit ("batman−adv")
x : commit (" w i r e l e s s ")
x : commit (" f i r e w a l l ")
x : commit ("dhcp")
x : commit (uc i c)
x : commit (u c i l)

APPENDIX E. WIBED SCRIPTS 106

x : commit (" system")
end

main ()

E.3 wibed-location

! / usr / bin / lua

local uc i = r equ i r e " uc i "
local uc i c = "wibed"
local x = uc i : cu r so r ()

function l o c a t e (la t , lon , e l e v)
os . execute (s t r i n g . format (" uc i s e t wibed . g ene ra l . coordx=%

s" , l a t))
os . execute (s t r i n g . format (" uc i s e t wibed . g ene ra l . coordy=%

s" , lon))
os . execute (s t r i n g . format (" uc i s e t wibed . g ene ra l . coordz=%

s" , e l e v))

os . execute (s t r i n g . format (" uc i s e t l ibremap . l o c a t i o n .
l ong i tude=%s" , lon))

os . execute (s t r i n g . format (" uc i s e t l ibremap . l o c a t i o n .
l a t i t u d e=%s" , l a t))

os . execute (s t r i n g . format (" uc i s e t l ibremap . l o c a t i o n . e l e v
=%s" , e l e v))

os . execute (" uc i commit")
os . execute (" libremap−agent >/dev/ nu l l &")

end

−− EXECUTION OF THE SCRIPT
function main ()

i f #arg == 1 and arg [1] == "−d" then
de f au l t_ lo ca t i on ()

e l s e i f #arg ~= 3 then
i f arg [1] == "−s " then

i f #arg ~= 4 then
usage ()

else
os . execute (" s l e e p 300")
l o c a t e (arg [2] , arg [3] , arg [4])

end
else

usage ()
end

else
l o c a t e (arg [1] , arg [2] , arg [3])

end
end

APPENDIX E. WIBED SCRIPTS 107

main ()

E.4 wibed-upgrade

#!/bin / sh

VERSION="$1"
HASH="$2"
MYHASH="$ (md5sum /tmp/wibed . bin | awk '{ p r in t $1 } ') "
i f ["$HASH" == "$MYHASH"] ; then

echo "UPGRADING"
sysupgrade −n /tmp/wibed . bin &
s l e ep 1
return 0

f i

echo "FAILED TO UPGRADE"
rm −f /tmp/wibed . bin
return 1

Bibliography

[1] R. B. Viñas, “Wibed off-the-shelf wireless networks research testbed,”
bachelor thesis, Universitat Oberta de Catalunya, June 2013.

[2] P. Escrich, R. Baig, A. Neumann, A. Fonseca, F. Freitag, and
L. Navarro, “Wibed, a platform for commodity wireless testbeds.,” in
Wireless Days, pp. 1–3, IEEE, 2013.

[3] “BMX6 – a loop-free routing protocol for IP-based mesh networks,”
June 2011. http://www.bmx6.net.

[4] A. Neumann and C. Aichele and M. Lindner and S. Wunderlich, “Bet-
ter Approach To Mobile Ad-hoc Networking (B.A.T.M.A.N.).” Internet
draft, work in progress, Mar. 2008.

[5] T. Clausen, P. Jacquet, “Optimized Link State Routing Protocol
(OLSR).” RFC3626 (Experimental), 2003.

[6] Juliusz Chroboczek, “The Babel Routing Protocol.” RFC 6126 (Exper-
imental), 2011.

[7] D. Raychaudhuri, M. Ott, and I. Secker, “Orbit radio grid tested for
evaluation of next-generation wireless network protocols,” in Proceed-
ings of the First International Conference on Testbeds and Research
Infrastructures for the DEvelopment of NeTworks and COMmunities,
TRIDENTCOM ’05, (Washington, DC, USA), pp. 308–309, IEEE Com-
puter Society, 2005.

[8] “NITOS Wireless Testbed - Network Implementation Testbed Labora-
tory.” http://nitlab.inf.uth.gr/NITlab/index.php/testbed.

[9] D. Wu, D. Gupta, and P. Mohapatra, “Qurinet: A wide-area wireless
mesh testbed for research and experimental evaluations,” Ad Hoc Netw.,
vol. 9, pp. 1221–1237, Sept. 2011.

[10] M. Günes, B. Blywis, and F. Juraschek, “Concept and design of the
hybrid distributed embedded systems testbed,” no. TR-B-08-10, 2008.

108

http://www.bmx6.net
http://nitlab.inf.uth.gr/NITlab/index.php/testbed

BIBLIOGRAPHY 109

[11] T. Fischer, T. Hühn, R. Kuck, R. Merz, J. Schulz-Zander, and C. Sengul,
“Experiences with bowl: Managing an outdoor wifi network (or how to
keep both internet users and researchers happy?),” in Proceedings of the
25th Large Installation System Administration Conference (LISA’11),
2011.

	Introduction
	Structure of the document
	Brief description of the problem
	Scope of the project
	Methodology and communication

	Background information
	OpenWRT
	Testbed
	The CONFINE Project
	Commodity routers
	Wireless Battle of the Mesh
	UCI configuration
	Dynamic Routing Protocols

	State of the art
	Research testbeds
	Main differences between other research testbeds and WiBed

	Temporal planning
	Tasks
	Deviations and modifications in the planning

	Budget

	Architecture
	Design
	Platform operation
	Software and hardware
	Testbed mesh network collocation

	The Overlay File System
	Experiment operation

	Implementation
	The WiBed node
	Original testbed router requirements
	WiBed supported router
	Extensions and modifications in the WiBed router requirements

	The WiBed controller
	Software requirements
	Main functions of the controller

	Communication between controller and the testbed
	The management network
	Controller acknowledgement system

	Node management system
	Status operation

	The Overlay FS and experiments
	The default overlay
	The experiment overlay

	The WiBed firmware: main scripts and configurations
	The WiBed firmware
	wibed-node
	wibed-config
	wibed-location and libremap.net
	wibed-upgrade
	Spread the word script

	WiBed's source repositories

	Deployment
	UPC CN-A testbed mesh network
	Network previous state: first and dismissed deployment
	Network current state: final deployment

	Battlemesh network

	Validation of the platform and network
	WBMv7 and experimentation environment
	Relation between WiBed and the WBM
	Minor Battlemesh experiments
	Adapting the WiBed platform

	The Battle of the mesh experiment
	Battlemesh overlay contents
	Environment considerations
	Protocol related considerations
	Configuring the experiment
	Considered scenarios
	Experiments' results and conclusions

	Validation of the platform

	Conclusions
	Future work

	Appendix
	Off-the-shelf Wireless Networks Research Testbed
	WiBed Software
	Testbed server
	Testbed nodes

	WiBed Hardware
	Testbed server
	Testbed nodes

	WiBed collocation
	Testbed server
	Testbed nodes

	WiBed schedule
	WBMv7 documents
	Battlemesh main experiment code
	Battlemesh versions table
	Battlemesh deployment

	WiBed operation examples
	Example of command's execution
	Example of experiment's execution

	WiBed scripts
	wibed-node
	wibed-config
	wibed-location
	wibed-upgrade

	Bibliography

