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The focus of this bachelor thesis are maximum distance separable codes. A code is used
to communicate over noise channel so any interferences that may occur can be detected
and corrected. Maximum distance separable codes have a capacity to correct many errors.
Maximum distances separable codes are usually constructed as linear codes over fields but
in this text we will also consider them over certain commutative rings. Recently it has
been proven that all linear maximum distance separable codes over prime fields are short
and we will prove that this carries over to certain linear maximum distance separable
codes over p-adic rings.
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Chapter 1
Basic concepts and definitions

A basic outline of a general communication process is illustrated in Figure 1.1.

Error Correcting Codes Theory deals with the second and forth step of that outline,
which are the coding and decoding processes and focuses on the problem of detecting
and correcting errors in the received message. Coding theory should not be confused
with Cryptography. While in the latter the aim is to send a message to a friendly
receiver in the safest way, in the former it is to send it in the most efficient way
while being able to correct errors caused by noise. In this way, the main aim of
Error Correcting Codes theory is to construct “good codes”. A code is considered
to be a good code when it enables us to codify many messages (big size), that
can be sent in a fast and efficient way (which means that they have a high code
rate as will be defined later), when it detects and corrects at the same time the
largest number of errors as possible (which means that have the biggest possible
minimum distance δ as will be defined later) and for which there exists easy and
effective decoding algorithms. Those aims are hardly ever possible to satisfy at the
same time since they are contradictory, so all in all the aim is to find a balance
between all the parameters involved or given some of the parameters, find the other
one that makes the code as good as possible.

Definition 1.1. A q-ary alphabet A = {a1, ..., aq} is a finite non empty set of
cardinality q. The elements of A are called letters or symbols. For each n ≥ 1, the
elements of An are written as (a1, a2, ..., an) or a1a2...an indistinctly and are called

Fig. 1.1. Schematic diagram of a general communication system.
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1. BASIC CONCEPTS AND DEFINITIONS 3

words of length n in the alphabet A. In this text A0 will have exactly one word,
that will be called λ, which is called empty word and which length is 0. It will be
represented as A∗ the set of all the words of an alphabet A, that is,

A∗ =
⋃
n≥0

An.

Definition 1.2. Let A = {a1, ..., aq} be an alphabet, a q-arycode over A is a subset
C of A∗. The elements of C are called codewords.

In this text we will try to use x, y and z for general words and u, v and w for
codewords. The number M = |C| is called the size of the code.

When q = 2, q = 3, q = 4 they are called binary, ternary and quaternary codes
respectively.

The words in a code can have variable length, but if they all have the same length
n it is called a block code of length n and C can be said to be a (n,M)− code.

Definition 1.3. The code rate of a q-ary (n,M)− code is

R = Rq(C) = logq(M)
n

.

The code rate gives an idea of the proportion of the data-stream that is useful
(non-redundant), in other words the percentage of digits that contain information
from the original message out of the ones that have been sent. If the code rate is
k
n , for every k bits of useful information, the code generates n bits of data in total,
of which n − k are redundant. Therefore, it is then common to try to construct
codes that have a high code rate (R > 2

3 or R > 3
4 ).

Definition 1.4. Given two words x and y of an alphabet An, the distance between
them d(x,y) is defined to be the number of positions in which x and y differ, that
is if x = x1...xn and y = y1...yn, then d(x,y) is the number of values i for which
xi 6= yi. This distance function is called the Hamming distance,

d(x,y) = #{i ∈ [n] : xi 6= yi}

and as a distance it satisfies the following properties:

• d(x,y) ≥ 0
• d(x,y) = 0⇔ x = y
• d(x,y) = d(y,x)
• The triangle inequality ( d(x,y) + d(y, z) ≥ d(x, z) )

Definition 1.5. A code C is said to be t-error-detecting if d(u,v) > t for any two
distinct codewords.

This means that whenever a codeword is changed in at most t of its symbols no
other codeword is reached. So if that word is received, it will be posible to tell that
it is not a codeword and that some interference has occured in transmission.

Definition 1.6. A code C is said to be t-error-correcting if there do not exist words
u,v ∈ C and x ∈ An such that d(u,x) ≤ t and d(v,x) ≤ t.
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This means that whenever a codeword is taken and changed in at most t of its
symbols no other codeword is reached, and moreover that the word that has been
sent could not have been obtained from a different starting codeword by changing
at most t of the symbols. In this way the receiver is able to tell which codeword
was originally sent.

Definition 1.7. The distance between an element x ∈ An and a code C ⊆ An,
d(x, C), is defined as the minimum distance between x and each element of the
code,

d(x, C) = min{d(x,u) | u ∈ C}.

Definition 1.8. The minimum distance of a code C, δ(C), is defined as the mini-
mum distance in the code which is the smallest distance between any pair of distinct
codewords,

δ(C) = min{d(u,v) | u,v ∈ C,u 6= v}.

Lemma 1.9. A code C is t-error-detecting if and only if δ(C) > t, and is t-error-
correcting if, and only if, δ(C) > 2t.

The following, are some of the most important parameters of a code:

• Its length (n).
• Its size (M).
• Its minimum distance (δ).
• The number of symbols of the alphabet (|A| = q).

Once all of them are known one can talk about a (n,M, δ)q-code.

Example 1.1. The repetition code Rq(n) of length n over a q-ary alphabet A is

Rq(n) = {(a, ..., a) of length n | a ∈ A}

Hence it is a (n, q, n)q-code. ut

Example 1.2. Let C be a (n,M, δ)2-binary-code. Then from it a new code C formed
by the words (u1, ..., un, un+1) such that (u1, ..., un) ∈ C and un+1 is equal to 0 or 1
depending on whether the number of ones is even or odd can be constructed. The
digit un+1 is called parity bit. Therefore the parameters of the new code C are:

• length: n+ 1.
• size: M
• minimum distance: δ or δ + 1
• number of symbols of the alphabet (|A| = 2).

Observe that two codewords u,v ∈ C are at an even distance if and only if their
corresponding codewords in C have the same parity bit. Thus,

• if two codewords u,v ∈ C are at an even distance δ then their corresponding
codewords u,v ∈ C are at the same distance δ.
• if two codewords u,v ∈ C are at an odd distance δ then their corresponding

codewords u,v ∈ C are at an even distance δ + 1.
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Therefore the distance between any given two words in C is always even and C is
either a (n+ 1,M, δ)2-code if δ is even or a (n+ 1,M, δ + 1)2-code if δ is odd. ut

Another important concept that will be very useful when talking about linear codes
is the weight of a word.

Definition 1.10. Given a code C and a codeword u, the weight of the word is
defined to be the number of non-zero symbols in u,

w(u) = #{i ∈ [n] | ui 6= 0},

or equivalently w(u) = d(u,0) . In particular, the weight of the word 0 is 0.

Therefore it is obvious that the distance between two codewords is equal to the
weight of one minus the other d(u,v) = w(u−v) since a coordinate in two different
codewords u and v are equal, if and only if, the corresponding coordinate of the
word u− v is 0.

Definition 1.11. The minimum weight of a code can be defined as

w(C) = min{w(u) | u ∈ C,u 6= 0}

Definition 1.12. Given x ∈ An, with |A| = q and an integer r ≥ 0, the sphere of
radius r centered at x is defined as

Sq(x, r) = {y ∈ An | d(x,y) = r}

and the ball of radius r centered at x as

Bq(x, r) = {y ∈ An | d(x,y) ≤ r} =
r⋃
i=0

Sq(x, i)

Given x ∈ An, there are no words in An whose distance to x is greater than n. For
a t such that 0 ≤ t ≤ n the number of words from An that are at distance t from
x, is the number of ways of choosing the t coordinates in which the word will differ
from x, this is

(
n
t

)
, multiplied t times by the number of possible diferent values each

coordinate can have.
(
n
t

)
(q − 1)t. Hence,

|Bq(x, r)| =
(
n

0

)
(q − 1)0 + · · ·+

(
n

r

)
(q − 1)r =

r∑
i=0

(
n

i

)
(q − 1)i

Definition 1.13. The packing radius of a code C, ρ(C), is the largest integer value
of r ≥ 0 such that the set of balls of radius r centered at each codeword of C are
pairwise disjoint

ρ(C) = max{r | B(u, r) ∩B(v, r) = ∅,∀u,v ∈ C,u 6= v}.

Definition 1.14. The covering radius of a code C, τ(C), is the smallest integer
value of r ≥ 0 such that the set of balls of radius r centered at each codeword of C
cover all An

τ(C) = min{r |
⋃

u∈C
B(u, r) = An}.
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Fig. 1.2. (2, 2, 2)2-code.

Example 1.3. Consider the R2(2) code which is an (2, 2, 2)2-code formed by C =
{(0, 0), (1, 1)} illustrated in Figure 1.2 as the coloured dots of the four that form
the alphabet A2. Then is easy to see that

B((0, 0), 1) = {(0, 0), (0, 1), (1, 0)}
B((1, 1), 1) = {(1, 1), (0, 1), (1, 0)}

their intersection is {(0, 1)(1, 0)} thus ρ(C) = 0 and τ(C) = 1. ut

As the balls of radius τ(C) with center the codewords of C cover all An, the ones of
radius τ(C) + 1 are not pairwise disjoint. Therefore, ρ(C) ≤ τ(C).

Definition 1.15. A block code C is said to be a perfect code if it is not trivial and
ρ(C) = τ(C).

When that happens it means that for every possible word x ∈ An, there is a unique
codeword u ∈ C in which at most r = ρ(C) = τ(C) digits of u differ from the
corresponding digits of x.

As has been said, the detecting and correcting capabilities of a code C are increased
relatively to its minimum distance δ(C). This is the reason why it is better to have
codes whose minimum distance is as large as possible. Another point of interest
is to work with codes whose length is small since it will increase the velocity of
the transmission. And last but not least, in order to be able to encode the widest
variety of messages as possible, it is of interest that the size of the code is large.
All this together means that it is of better interest to work with (n,M, δ)q-codes
whose n is as small as possible and its M and δ the greatest possible. But there
are some difficulties as

• Small length n⇒ small size since M ≤ |A|n.
• Large size M ⇒ small minimum distance δ.

The main coding theory problem is to optimize one of the parameters n, M , δ for
given values of the other two. The most common problem is to fix q (the number
of symbols in the alphabet), n and δ and find the greatest value of M such that an
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(n,M, δ)-code exists. This value will be called
Aq(n, δ) = {greatest M ∈ Z | (n,M, δ)q-code exists}

with q, n, δ ∈ Z such that q ≥ 1, 0 ≤ δ ≤ n.
Definition 1.16. An (n,M, δ)-code C is said to be optimal if M = Aq(n, δ).
Theorem 1.17. ( Singleton bound ) Let q, δ, n be integers such that n ≥ δ ≥ 1.
Then the Singleton bound states,

Aq(n, δ) ≤ qn−δ+1.

Proof. Let C be an optimal (n,M, δ)-code, then M = Aq(n, δ). The minimum
distance between any two different codewords u,v ∈ C is δ, therefore they differ
from each other in at least one of its coordinates after the δ− 1 first ones. So, if we
remove the first δ− 1 coordinates of each codeword of C, a new code C′ ⊆ An−(δ−1)

with the same size M ′ = M = Aq(n, δ) is obtained. And then,
Aq(n, δ) = M ′ ≤ |An−δ+1| = qn−δ+1.

ut

As it has been said previously the aim of a proper communication process is to be
able to reproduce the broadcast information from the received one. But unfortu-
nately some bits of information can get lost in the transmission due to the noise in
the communication channel.
Definition 1.18. Given a received word y ∈ An maximum likelihood decoding
picks a codeword v ∈ C to maximize:

P(y received | v sent)
that is, choose the codeword v that maximizes the probability that y was received,
given that v was sent.
Definition 1.19. Given a received word y ∈ An minimum distance decoding, also
known as nearest neighbour decoding, picks a codeword v ∈ C to minimize the
Hamming distance:

d(y,v) = #{i ∈ [n] | yi 6= vi}
that is, choose the codeword v which is as close as possible to y.
Theorem 1.20. Let the probability of error p be strictly less than one half and
d = d(y,v), then minimum distance decoding is equivalent to maximum likelihood
decoding.

Proof.

P(y received | v sent) = (1− p)n−d · pd = (1− p)n ·
(

p

1− p

)d
which (since p is less than one half) is maximized by minimizing d. ut

We will consider a decoding algorithm for linear codes in Chapter 4 and prior to
that linear codes will be introduced in Chapter 3. Firstly, however, we need some
basic algebraic objects and this is the purpose of Chapter 2.



Chapter 2
Algebraic preliminaries

Although it is assumed that the reader knows the basic notions of both linear and
abstract algebra, as well as in working with algebraic structures, in this chapter,
with the intention to ease the reader’s understanding of the rest of the text, a brief
summary of some important algebraic concepts that would be used further on is
given.

Definition 2.1. A set R equipped with two internal operations + and ·, called
sum and product, is a ring R = (R,+, ·), if satisfies the following axioms:

• (R,+) is an abelian group under addition, meaning:
– (a+ b) + c = a+ (b+ c) ∀a, b, c ∈ R (+ is associative).
– There is an element 0 ∈ R such that a+ 0 = a and 0 + a = a ∀a ∈ R (0

is the additive identity).
– For each a ∈ R there exists −a ∈ R such that a + (−a) = (−a) + a = 0

(−a is the additive inverse of a).
– a+ b = b+ a for all a, b ∈ R (+ is commutative).

• (ab)c = a(bc) ∀a, b, c ∈ R (· is associative).
• a(b+ c) = (ab) + (ac) ∀a, b, c ∈ R (· distributive respect to the sum).

A ring R is a ring with identity if there is an element denoted by 1 in R such
that a1 = a and 1a = a (1 is the multiplicative identity). If the product is also
commutative, then it is a commutative ring.

As in this text we will always work with commutative rings with identity whenever
we talk about rings they should be understood as commutative rings with identity.

Definition 2.2. An element a ∈ R is a unit if it has an inverse, that is if there
exists u−1 ∈ R such that uu−1 = 1. The set of units will be denoted by U(R).

Definition 2.3. A ring is called a field F when every element a ∈ R, except for the
additive identity, has an inverse a−1 ∈ R with the multiplication. In other words,
if every nonzero element of R is a unit. One can also talk about commutative or
noncommutative fields, but in this text we will always work with commutative ones.

Remark 2.1. Our particular interest in this text is finite fields. That is, fields where
F is a finite set, that will be denoted by Fq where q is the number of elements.

8
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Remark 2.2. If Fq is a finite field then q = pl where p is a prime number and l an
integer l ≥ 1.

Example 2.1. Observe that in the set of integers with the familiar addition and
multiplication not every element has an inverse under multiplication. Therefore, Z
is a ring whereas Q, R and C are fields. ut

Example 2.2. Let F be a field. The set denoted by F[x] of all polynomials in the
indeterminate x, with form

f = a0 + a1x+ ...+ anx
n,

where n can be any nonnegative integer and where the coefficients a0, a1, ..., an
are all in F is a ring called the polynomial ring F[x] whose units are all not null
polynomials of degree 0, so U(F[x]) = U(F) = F \ {0}. ut

Definition 2.4. A ring I = (I,+, ·) where I ⊆ R is a subset of R is called an ideal
of the ring if it satisfies:

• (I,+) is a commutative group.
• For all a ∈ R, and for all x ∈ I, ax ∈ I.

As we assume R to be a commutative ring, ax = xa.

Definition 2.5. The ideal generated by the set S = {s1, ..., sn} of R, denoted 〈S〉
or (s1, ..sn), is the smallest ideal of R containing S. That is the intersection of all
the ideals I ∈ R that contain S.

〈S〉 =
⋂
I⊇S

= {a1s1 + · · ·+ ansn|ai ∈ R, si ∈ S, i = 1, ..., n}

which is, finite linear combinations of the elements of S.

Definition 2.6. We are now going to define R/I called the quotient ring R mod
I for a given a ring R and an ideal I ⊆ R. We may define the natural equivalence
relation ∼ on R as follows:

a ∼ b⇔ a− b ∈ I, ∀a, b ∈ R
That in effect is an equivalence relation because it is:

• Reflexive (a ∼ a, ∀a ∈ I). True since a ∼ a ⇔ a − a ∈ I and a − a = 0 that
belong to every ideal.
• Symmetric (a ∼ b ⇒ b ∼ a). True since a ∼ b ⇒ a − a ∈ I and for each

element in I exist an additive inverse −(a− b) = (b− a) is also in I so b ∼ a.
• Transitive (a ∼ b and b ∼ c ⇒ a ∼ c, ∀a, b, c ∈ I) True because a ∼ b ⇒
a − b ∈ I and b ∼ c ⇒ b − c ∈ I so a − c = a − b + b − c ∈ I and therefore
a ∼ c.

Hence, the residue class of a mod I for a ∈ R is:
a = [a] = {b ∈ R|a ∼ b} = {b ∈ R|a− b ∈ I} = a+ I

The quotient ring R mod I is defined as R/I = {a|a ∈ R}.

Proposition 2.7. Given a ring R and an ideal I ⊆ R, the equivalence relation
mod I is well-defined with the sum and product, and therefore, the quotient set R/I
is a ring.
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Proof. As the sum in R is an abelian group, as a subset, I is normal, and there-
fore the equivalence relation is compatible with the sum. For the product, let us
consider,

a1 ∼ b1 a2 ∼ b2

that means that there exist x1, x2 ∈ I such that

a1 = b1 + x1 a2 = b2 + x2

and we want to see if it is compatible with the product, so that a1a2 ∼ b1b2. Using
the what we know,

a1a2 = (b1 + x1)(b2 + x2) = b1b2 + b1x2 + b2x1 + x1x2

so a1a2−b1b2 ∈ I because x1x2 ∈ I and also b1x2, b2x1 ∈ I because I is an ideal. ut

Definition 2.8. A proper ideal J of R is an ideal of R such that J is a proper
subset of R. That is, such that J ⊆ R and J 6= R.

Definition 2.9. An ideal m = (m,+, ·) is said to be a maximal ideal if is a maximal
element in the set of proper ideals of R. That is, if m 6= R and for all I ideal of R
such that m ⊆ I it follows that m = I or I = R.

Proposition 2.10. If m is a maximal ideal of a ring R then R/m is a field.

Proof. As m is a maximal ideal, R/m 6= 0. If it was then we would have that
1 = 0⇒ 1− 0 ∈ m⇒ 1 ∈ m which implies that m = R and that is a contradiction
because we have supposed m to be maximal so m 6= R by definition.

By 2.7 proposition R/m is a ring thus in order to be a field we only need to show
that every not null element a ∈ Z/m has an inverse. As a 6= 0 we have that
a /∈ m ⇒ m  (m, a) as m is maximal (m, a) = R so 1 ∈ R = (m, a) ⇒ 1 = u + ab,
where u ∈ m and b ∈ R so 1 = u+ ab = 0 + ab = a b and that means a has inverse
as we wanted to prove. ut

Definition 2.11. The degree of a polynomial f , denoted deg(f) is the largest k
such that the coefficient of xk is not zero.

Definition 2.12. A polynomial p ∈ F[x] of degree greater or equal than 1 is said
to be irreducible over F , if it cannot be decomposed, in F[x], as a product of two
polynomials whose degree is less than the degree of f . That is, if p = fg, then
deg(f) = deg(p) or deg(g) = deg(p).

Note that the subgroups of Z of the form nZ are ideals and therefore by Proposition
2.7 the following definition can be given.

Definition 2.13. Z/nZ is a ring called the ring of integers modulo n or the ring
of integers mod nZ that has exactly n elements,

Z/nZ = {0, 1, ..., n− 1}.

normally when no confusion can happen the elements in Z/nZ will be denoted just
by a instead of a.
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Proposition 2.14. (Bezout’s identity). Let a and b be nonzero integers and let d
be their greatest common divisor. Then there exist integers x and y such that

ax+ by = d.

Proposition 2.15. Z/pZ is a field if p is prime.

Proof. As pZ is an ideal by 2.7 it is already know that Z/pZ is a ring. Thus in
order to be a field we only have to proof that every element a ∈ Z/pZ, such that
1 ≤ a ≤ p − 1, has inverse. The fact that p is prime implies that a and p are
relatively prime. From Bezout’s identity (Proposition 2.14) it follows that there are
integers x, y such that xa+ yp = 1. Let r be the remainder when you divide x by
p. That is, write x = np+ r where 0 ≤ r ≤ p. Then ra+ (na+ y)p = 1. It follows
that r a = 1 so a has inverse and hence, Z/pZ is a field if p is prime. ut

Proposition 2.16. Let F be a field and f a polynomial in F[x] \ {0}. If f is
irreducible then the ideal (f) is maximal so F[x]/(f) is a field.

Proof. Note the last implication follows from Proposition 2.10. Therefore let us
see that effectively if f is irreducible then the ideal (f) is maximal. Suppose (f)
is not maximal, then (f) ( (a) for some a ∈ F[x] and such that (a) 6= F[x]. Thus
f = ab with deg(b) > 0 which implies that f is not irreducible. ut

Definition 2.17. We will say that F is a finite field Fq or Galois field GF (q) if it
is a field with a finite number q of elements.

Theorem 2.18. (Fermat’s little theorem) Let Fq be a finite field of order q. For
every nonzero a ∈ Fq, aq−1 = 1.

Proof. Consider the product of all nonzero elements of Fq, thus:

u =
∏

0 6=x∈Fq

x ∈ Fq.(2.1)

Note that this product has q − 1 factors. Since the field elements commute, the
value of the product u does not depend on the order in which the elements of Fq
are multiplied. In particular, the map

m : Fq → Fq
x 7→ m(x) = ax

is bijective for any non-zero a ∈ Fq (its inverse is the map m−1 : x 7→ a−1x) so if in
(2.1) x is substituted by m(x) = ax, only the factors are permuted but the value
of u does not change. So

u =
∏

0 6=x∈Fq

x =
∏

0 6=x∈Fq

(ax) = aq−1
∏

0 6=x∈Fq

x = aq−1u ∈ Fq.

Moreover u 6= 0 since it is a product of non-zero field elements so (aq−1−1)u = 0⇒
aq−1 − 1 = 0 to obtain that aq−1 = 1 for any non-zero element of a finite field. ut
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Lemma 2.19. Let Fq be a finite field of order q > 2 and k ∈ {0, 1, 2, . . . , q − 1}.
Then ∑

a∈Fq

ak =
{

0 if k ∈ {0, 1, 2, . . . , q − 2};
−1 if k = q − 1.

Proof. Let us first suppose k ∈ {0, 1, 2, . . . , q − 2} and consider the sum of k-th
powers of the field elements:

Sk =
∑
x∈Fq

xk.

For every nonzero value a ∈ Fq, the map m : x 7→ ax is bijective (just as in the proof
of Theorem 2.18) so substituting x by m(x) = ax in the definition of Sk merely
permutes the terms in the sum. Thus

Sk =
∑
x∈Fq

xk =
∑
x∈Fq

(ax)k = ak
∑
x∈Fq

xk = akSk

for all nonzero values of a ∈ Fq. If Sk 6= 0 cancellations can be done to obtain
ak = 1 for all nonzero k ∈ Fq. This would imply that a polynomial xk − 1 ∈ Fq[x]
would have q − 1 distinct roots in Fq. This cannot happen since the polynomial
xk − 1 has degree k that is by assumption less or equal than q − 2. Therefore it
must be that Sk = 0 ∀k ∈ {0, 1, . . . , q − 2}.

Finally let us consider the case k = q − 1. In this case,

Sq−1 =
∑
x∈Fq

xq − 1 = q − 1

since 0q−1 = 0, whereas the remaining q − 1 terms in the sum all have value 1 by
Fermat’s little theorem (Theorem 2.18). Note that the right hand side q − 1 must
be interpreted as an element of Fq so it can be simply identified with −1. ut

Definition 2.20. A Galois ring GR(pm, r) is a ring of the form (Z/pmZ)[x]/(f),
where p is prime, m an integer, f ∈ (Z/pmZ)[x] is a monic polynomial of degree r
which is irreducible modulo p and (f) is the ideal of (Z/pmZ)[x] generated by f .

Generally, in coding theory, the alphabet set is supposed to be a finite set of integers
therefore in this text we will mainly focus on the following next two situations:

Definition 2.21. When r = 1, then GR(pm, 1) = Z/pmZ in this text when we
talk about a Galois ring or p-adic ring we will refer to them and we will denote
them GR(q) where q = pm.

Definition 2.22. When m = 1, then GR(p, r) = (Z/pZ)[x]/(f), as p is prime
by Proposition 2.15 Z/pZ is a finite ring of p elements and as f is irreducible by
Proposition 2.16 GR(p, r) = Fp[x]/(f) is a field, particularly a finite or Galois field
of pr elements (r = deg(f)). By definition deg(f) = r so we will normally refer to
them as Fq for q = pr or by GF (pr) when we want to draw attention to the value
of p as it is the cardinality of the field to which the coefficients belong.

Example 2.3. Even though GR(4) and F4 both have 4 elements, they are not
isomorphic.
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• By Definition 2.21, GR(4) = Z/4Z = {0, 1, 2, 3} thus its addition and multi-
plication tables are:

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

• By Definition 2.22, F4 = GF (22) = F2[x]/(f), so F2 = Z/2Z and f can be
any monic irreducible polynomial in F2. The polynomial f = 1 + x + x2 is
irreducible in F2 because f(0) = 1 and f(1) = 1 so it has no roots. Let us
assume F4 = {0, 1, x, 1 + x} thus it’s addition and multiplication tables are:

+ 0 1 x 1 + x
0 0 1 x 1 + x
1 1 0 1 + x x
x x 1 + x 0 1

1 + x 1 + x x 1 0

· 0 1 x 1 + x
0 0 0 0 0
1 0 1 x 1 + x
x 0 x 1 + x 1

1 + x 0 1 + x 1 x

As can be seen for both GR(4) and F4 there is symmetry in the table of both
operations this is because we are working with commutative structures. The 0
entries in the both sum tables indicate that all elements in both structures have an
opposite element for the sum, but as has been pointed out, in F4 we can see a one
entry in the multiplication table for each element of the field while in GR(4) not.
This is because GR(4) in a ring and not a field and therefore not every element has
an inverse. ut

Definition 2.23. Let R be a ring. A left module M over R or left R-module M
consists of a set M with two operations + : M ×M → M and · : R ×M → M
denoted addition and scalar multiplication satisfying:

• (M,+) is an abelian group.
• M with the scalar multiplication satisfies:

(1) (a+ b)x = ax + bx, ∀a, b ∈ R, x ∈M ;
(2) a(x + y) = ax + ay, ∀a ∈ R, x,y ∈M ;
(3) a(bx) = (ab)x, ∀a, b ∈ R, x ∈M ;
(4) 1x = x, ∀x ∈M .

A right R-module M is defined similarly, except that the ring acts on the right; i.e,
scalar multiplication takes the form · : M × R → M , and the above axioms are
written with scalars a and b on the right of x and y. But as we will work with rings
R which are commutative rings with identity, left R-modules are the same as right
R-modules and will be simply called R-modules.

Remark 2.3. In the special case that R is a field F in Definition 2.23 M is called
a vector space over F or F-vector space and will be denoted by V .

Definition 2.24. Let M an R-module. A submodule of M is a subset N ⊂ M
that, with the sum and scalar multiplication of M , is itself an R-module. That is,
it satisfies:

(1) If x,y ∈ N , then x + y ∈ N ,
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(2) If x ∈ N and a ∈ R, then ax ∈ N .

In other words, W is closed under addition of vectors and under scalar multiplica-
tion.

Remark 2.4. In the special case that R is a field F in Definition 2.24 M is a vector
space denoted V (Remark 2.3) and therefore N is called a vector subspace of V and
will be denoted by W .

Definition 2.25. A basis for an R-module M is a linearly independent generating
set. In other words, for an R-module M , a set E ⊆M is a basis for M if,

• E is a generating set for M which means for modules that, every element of
M is a finite sum of elements of E multiplied by coefficients in R;
• E is linearly independent over R, that is, if

∑n
i=1 a1ei = 0M for e1, e2, ..., en

distinct elements of E, then ai = 0R for all i ∈ {1, 2, ..., n} (here we have used
0M to denote the zero element of M and 0R the zero element of R).

Definition 2.26. An R-module M is said to be a free module if it has a basis.

Remark 2.5. The term free module extends to all modules which are isomorphic
to Rn.

Remark 2.6. Not all modules are free.

Example 2.4. The module Z/mZ for any integer m > 1 is mod

• free as a module over itself;
• not free as a Z-module. Having m elements cannot be isomorphic to any of

the modules Zn, which are all infinite sets.

Definition 2.27. A free submodule is a submodule of a module which is free as a
module.

Remark 2.7. By remark 2.5 a free submodule is a submodule isomorphic to Rk

for some k.

Any two basis have the same cardinality, then,

Definition 2.28. The rank of a free module is the cardinality of any (and therefore
every) basis.



Chapter 3
Linear codes over fields

In order to define useful structures on codes, a first step is to enrich the alphabet A
with more structure than being merely a set. If the aim, for example, is to be able
to sum two words, a group could be used instead of A so the letters will be elements
of the group and therefore the addition of two words will be defined as the sum of
their letter coordinate by coordinate with usual properties. Moreover if instead of a
group we use a ring, it will also be possible to multiply words by alphabet symbols
in order to obtain another word in in the ring. If the aim is to be able to divide
symbols, then a field F can be used so all elements are units. In this chapter we
will introduce linear codes over fields which are subspaces of a vector space over
a field while in Chapter 7 we will consider linear codes will over rings which are
submodules of a module over a ring R. Therefore in Chapter 7 not all symbols will
have an inverse so things will not work as smoothly and more attention will have
to be paid when working with them. For example, when working with the integers
quotient ring Z/qZ, division by nonzero elements is possible without exception if
and only if q is prime.

Definition 3.1. A [n, k]q-linear-code C which is called a linear code of length n
and rank k is a linear subspace C of dimension k of the vector space Fnq where Fq
is a finite field of order q, for some prime power q (q = pe). The vectors in C are
the codewords.

One can specify a linear code C ⊆ Fnq by giving a basis u1, ...,uk for C, so the
codewords u ∈ C are the linear combinations

λ1u1 + · · ·+ λkuk with λi ∈ Fq

of the basis vectors. The fact that u1, ...,uk is a basis means that there are as many
linear combinations as vectors (λ1, ..., λk) ∈ Fkq , which is, qk. Hence, a [n, k]q-linear-
code has size equal to qk.

One of the main advantages of using linear codes is that in order to specify the
code only k vectors need to be given (where k = dim(C)), rather than all M = qk

vectors in C. There are more consequences of a code being linear, one is that, since
it is a linear subspace, the sum or difference of two codewords is always another
codeword and the zero vector is always a codeword.

15
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In a linear code the minimum distance δ(C) can be determined by just looking at
the distance of each codeword to the word 0.

Proposition 3.2. In a linear code the minimum distance is equal to the minimum
weight among all non-zero codewords. In other words, if C is a [n, k]q-linear-code,
then

δ(C) = min{w(u) | 0 6= u ∈ C}

Proof. On one side, w(u) = d(u,0) ≥ δ(C) for every u ∈ C not null. So δ(C) ≤
min{w(u) | 0 6= u ∈ C}. On the other side, given v,w ∈ C so that δ(C) = d(v,w).
Since C is linear,

δ(C) = d(v,w) = w(v−w) ≥ min{w(u) | 0 6= u ∈ C}

Hence, the equality is true. ut

If the minimum distance of a [n, k]q-linear-code is δ, it will be said that it is a
[n, k, δ]-linear-code and as we have already said, for a linear code M = qk so it is a
(n, qk, δ)-code.

In general, finding the minimum distance of a code requires comparing every pair
of distinct elements of the code which means that if C is a code without structure
of size M , in order to determine δ(C) one is required to calculate(

M

2

)
= M(M − 1)

2

distances. While in a linear code a lower number of comparisons are needed. As
seen in the previous proposition it is enough to calculate just the M − 1 weights of
the non-zero codewords.

It is well known that two natural ways of describing a vector subspace are by
giving its basis, or the basis of its orthogonal subspace with respect to a given inner
product. Therefore, there are also two natural ways for describing a linear code.

Definition 3.3. Let C be a [n, k]q-linear-code. A generator matrix G of C is a
matrix G which has as its rows a set of basis vectors of the linear subspace C.
Therefore, G is a k × n matrix, G ∈ Fk×nq .

Conversely, given a matrix G ∈ Fk×nq the subspace 〈G〉 ⊆ Fnq generated by the rows
of G is a code of type [n, k], where k is the rank of G. It is then said that 〈G〉 is
the code generated by G.

The code C is the set of all linear combinations of the rows of G, or as it is usually
called, the row space of G.

Given the matrix G, the code C is obtained by multiplying G on the left by all
possible 1 × k row vectors (this gives all possible linear combinations, thus, the
code):

C = {uG|u ∈ Fkq}.
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Example 3.1. Let G =
(

1 1 0
0 1 1

)
∈ M2×3(Z2). As the rows are linearly inde-

pendent, it has rank 2 and generates a binary linear code C with parameters [3, 2].
Since

(x1, x2)
(

1 1 0
0 1 1

)
= (x1, x1 + x2, x2)

the words 00, 01, 10 and 11 are coded as follows

00→ 000, 01→ 011, 10→ 110, 11 −→ 101

Then C = {000, 011, 101, 110} and has minimum distance 2. ut

Given a generator matrix G for a linear code C, it can be quite tedious to determine
whether a received word x belongs to the code or not, and if not, which element
u ∈ C is closest to it. Because in order to find this out, using the generator matrix,
one would be required to calculate all the codewords and compare them with the
received vector. To make this easier, an alternative matrix description of C can be
given. It consist on giving a set of n−k simultaneous linear equations which define
the elements of C, so that a vector belongs to the code if and only if it satisfies
these equations.

Definition 3.4. The dual code C⊥ of a [n, k]q-linear-code C is the [n, n−k]q-linear-
code which is the orthogonal subspace C⊥ of C. It is well defined since an [n, k]q-
linear-code C is a vector subspace of Fnq of dimension k and hence its orthogonal
subspace C⊥ is a vector subspace of Fnq of dimension n − k, which is, the dual
[n, n− k]q-linear-code of the code.

C⊥ = {x ∈ Fnq | xu = 0,∀u ∈ C},

where xu is the standard inner product,

xu =< x,u >=
n∑
i=1

xiui.

A linear code C is uniquely determined by giving one of its bases (generator matrix)
or by giving a basis for the dual code.

Definition 3.5. A generator matrix H of C⊥ is called a check matrix of C.

Then H is the matrix of an homogeneous system of linear equations whose solutions
are exactly the vectors of C. Those are the equations that have been mentioned
before to define the elements of a code. These equations are very useful when
dealing with error detection and correction, which is why the check matrix is more
often used than the generator matrix.

Lemma 3.6. Let C be a linear code, a codeword u belongs to C if and only if the
vector-matrix product uHT is equal to 0.

Lemma 3.7. Let C be a [n, k]-code over Fq with a generator matrix G, and let H
be a matrix over Fq with n columns and n− k rows. Then H is a check matrix for
C if and only if H has rank n− k and satisfies GHT = 0.
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Proof. On the one hand, the rows of H are n− k vector in Fnq , and GHT = 0 if
and only if these rows are orthogonal to those of G, or equivalently lie in C⊥. On
the other hand, H has rank n−k if and only if its rows are linearly independent, or
equivalently form a basis for C⊥; thus H satisfies the given conditions if and only
if it is a generator matrix for C⊥ and that is exactly, a check matrix for C. ut

In general, a vector space does not have a unique basis. For this reason a generator
matrix G and a check matrix H of a linear code C are not generally unique.

Example 3.2. Given (1, 1, 0, 0), (0, 1, 1, 0) and (0, 0, 1, 1) three linear independent
vectors of F4

2, the subspace

C = 〈(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)〉

generated by them is a linear code of dimension 3, that is, a [4, 3]2-linear-code. The
size of the code is 23 = 8, those 8 vectors are all the posible linear combinations,
so the code is:

C = {(0, 0, 0, 0), (1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1),
(1, 0, 1, 0), (1, 1, 1, 1), (0, 1, 0, 1), (1, 0, 0, 1)}.

These three vector are a basis for the code C and a generator matrix can be given
as

G1 =

1 1 0 0
0 1 1 0
0 0 1 1

 .

However the vectors (1, 0, 0, 1), (0, 1, 0, 1) and (0, 0, 1, 1) are also linearly indepen-
dent and form another basis of C. Thus, C admits also

G2 =

1 0 0 1
0 1 0 1
0 0 1 1


as a generator matrix. The codifications using one or the other are the following
ones:

x ∈ F3
2 xG1 xG2

(0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
(0, 0, 1) (0, 0, 1, 1) (0, 0, 1, 1)
(0, 1, 0) (0, 1, 1, 0) (0, 1, 0, 1)
(1, 0, 0) (1, 1, 0, 0) (1, 0, 0, 1)
(0, 1, 1) (0, 1, 0, 1) (0, 1, 1, 0)
(1, 1, 0) (1, 0, 1, 0) (1, 1, 0, 0)
(1, 0, 1) (1, 1, 1, 1) (1, 0, 1, 0)
(1, 1, 1) (1, 0, 0, 1) (1, 1, 1, 1)

Notice that as the first three columns of G2 form the identity matrix, the first three
coordinates of xG2 are always the vector x itself, which does not happen when
using G1. In this case, given a word u ∈ C the decoding process, which is finding
the solution to the system xG = u, is immediate for G2. ut
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As shown in the example below, sometimes it is more useful to choose one basis
than another since calculations become easier. The rows r1, ..., rk of G, regarded
as elements of Fn, form a basis of C so elementary row operations:

• Row switching: ( ri ↔ rj )
A row within the matrix can be switched with another row.
• Row multiplication: ( kri → ri, k 6= 0 )

A row can be multiplied by a non-zero constant .
• Row addition: ( ri + krj → ri, i 6= j )

A row can be replaced by the sum of that row and a multiple of another row.

can be used. When applying them the basis for C may change but not the subspace
C spanned by the rows. Thus, elementary row operations can be applied to any
given generator matrix in order to find one with better properties without changing
the code generated by it.

Proposition 3.8. Let G1 and G2 be two matrices of Fk×nq with the k rows linearly
independent. Hence, G1 and G2 are generator matrices of the same code if and
only if G2 can be obtained from G1 by elementary row operations.

Proof. Suppose that G2 is obtained from G1 by elementary row operations. The
rows of G1 form a basis of a code C. Applying elementary row operations to a basis
of a subspace changes it into another basis of the same subspace. Hence the rows
of G2 also form a basis of the same code C and thus, G2 is a generator matrix of C.

Reciprocally, suppose that G1 and G2 are generator matrices of the same code C.
Calling u1, ...,uk the rows of G1 and v1, ...,vk the rows of G2. The rows of G1 form
a basis of C so v1 is a linear combination of u1, ...,uk:

v1 = λ1u1 + · · ·+ λkuk.

Since v1 6= 0, there exists for some i a coefficient λi different from zero. Thus,
replacing ui for v1 a new basis u1, ...,ui−1,v1,ui+1, ...,uk for C is obtained. Now
by permuting the rows in order to have a new order a new basis v1,w2, ...,wk is
obtained. The vector v2 admits an expression

v2 = µ1v1 + µ2w2 + · · ·+ µkwk.

If µ2 = · · · = µk = 0, the vectors v1 and v2 would be linearly dependent, which
can not happen since they both are part of a basis. Hence, for some i ≥ 2 exists
µi 6= 0. As before, a new basis v1,v2, z3..., zk can be obtained. Repeating this we
obtain the basis v1, ...,vk. Therefore, it is posible to pass from G1 to G2 with just
elementary row operations. ut

However, if instead of rows, columns of C are permuted, C may change. But the
new code will differ from it only in the order of symbols within code-words; the
two codes will have the same parameters such as n, k, d, M , etc., so they are not
essentially different. This motivates the following definition.

Definition 3.9. Two linear codes C1 and C2 are equivalent if they have genera-
tor matrices G1 and G2 which differ only by elementary row operations, column
permutations and/or multiplying a column by a non-zero scalar.
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Informally, one tends to think of C1 and C2 as “the same code”, even though they
generally consist of different code-words.

By systematically using elementary row operations and column permutations, any
generator matrix can be converted into the form

G = (Ik | P ) =


1 ∗ ∗ · · · ∗

1 ∗ ∗ · · · ∗
. . .

...
...

...
1 ∗ ∗ · · · ∗

 ,(3.1)

where Ik is the k × k identity matrix, and P is a matrix with k rows and n − k
columns, represented by the asterisks.

Definition 3.10. It is said that the generator matrix G of a code C is in systematic
form when it has form (3.1).

In this case, each word a = a1 . . . ak ∈ Fkq is encoded as

u = aG = a1 . . . akak+1 . . . an,

where a1, . . . , ak are information digits and ak+1 . . . an = aP is a block of n − k
check digits.

Proposition 3.11. Let C be a [n, k]q-linear-code and G ∈ Fk×nq and H ∈ F(n−k)×n
q

two matrices of form

G = (Ik | P ) and H = (−PT | In−k).

Hence, G is the systematic generator matrix of C if and only if H is a check matrix.

Proof. The k rows of G are linearly independents, as well as the n−k of H. Thus,

GHT = (Ik | P )(−PT | In−k)T = −P + P = 0.

Then, the n− k rows of H are perpendicular to the k rows of G. So, the rows of G
form a basis of C if and only if the rows of H form a basis of C⊥. ut

Definition 3.12. The uniqueness of the systematic generator matrix implies then
the uniqueness of H = (−PT | In−k), that is called systematic check matrix. The
codes whose generator and check matrices admit a systematic form are called sys-
tematics codes.

Example 3.3. Consider the [7, 4]2-linear-code of size 24 = 16 generated by

G =


1 1 1 1 1 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
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by applying the following elementary row transformations
1 1 1 1 1 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1

 −−−−−−→r2→r2+r1
r3→r3+r1


1 1 1 1 1 1 1
0 1 1 1 0 1 0
0 0 1 1 1 0 1
0 1 1 0 0 0 1



−−−−−−→
r1→r1+r2
r4→r4+r2


1 0 0 0 1 0 1
0 1 1 1 0 1 0
0 0 1 1 1 0 1
0 0 0 1 0 1 1



−−−−−−→
r2→r2+r3


1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 1 1 0 1
0 0 0 1 0 1 1



−−−−−−→
r3→r3+r4


1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1


its systematic generator matrix in form G = (I4 | P ) is obtained

G =


1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1


and therefore its systematic check matrix satisfying H = (−PT | I3) is:

H =

 1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1


ut

Finally, let us finish this chapter naming two special types of [n, k]q-linear codes.
Reed Solomon codes studied in Chapter 6 are a more complex example of one of
them.

Definition 3.13. A code C is called self-orthogonal if C ⊆ C⊥.

Example 3.4. Let us consider C to be the [3, 1]-linear code over F4 generated by

G = (1, x+ 1, x).

Therefore, as

(a)(1, x+ 1, x) = (a, ax+ a, ax)

the words 0, 1, x and 1 + x of F4 are coded as follows

x ∈ F4 xH x ∈ F4 xH
0 (0, 0, 0) x (x, 1, 1 + x)
1 (1, 1 + x, x) 1 + x (1 + x, x, 1)
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Then our code is exactly C = {(0, 0, 0), (1, 1 + x, x), (x, 1, 1 + x), (1 + x, x, 1)}. As
G is in systematic form, by Proposition 3.11, it is known that its systematic check
matrix can be given by

H =
(
x+ 1 1 0
x 0 1

)
.

Therefore as H generates C⊥ by

(a, b)
(
x+ 1 1 0
x 0 1

)
= ((a+ b)x+ a, a, b)

the words x ∈ F2
4 are coded as

x ∈ F2
4 xH x ∈ F2

4 xH
(0, 0) (0,0,0) (x, 0) (1, x, 0)
(0, 1) (x, 0, 1) (x, 1) (1 + x,x,1)
(0, x) (x+ 1, 0, x) (x, x) (x, x, x)

(0, 1 + x) (1, 0, 1 + x) (x, 1 + x) (0, x, 1 + x)
(1, 0) (x+ 1, 1, 0) (1 + x, 0) (x, 1 + x, 0)
(1, 1) (1, 1, 1) (1 + x, 1) (x, 1 + x, 1)
(1, x) (0, 1, x) (1 + x, x) (1,1 + x,x)

(1, 1 + x) (x,1,1 + x) (1 + x, 1 + x) (1 + x, 1 + x, 1 + x)

the code C⊥ = xH is composed by the 42 codewords in F3
4 listed in the previous

array. Note that all the codeword from C appear in C⊥, they have been highlighted.
Thus, C ⊆ C⊥ so C is a self-orthogonal code. ut

Definition 3.14. A code C is called self-dual if C = C⊥; equivalently, if every
generator matrix G is also a check matrix.

Example 3.5. Let us consider C to be the [4, 2]-linear code over F3 = Z/3Z gener-
ated by

G =
(

1 0 1 1
0 1 1 2

)
.

As G is in systematic form, by Proposition 3.11, its systematic check matrix H can
be given by

H =
(

2 2 1 0
2 1 0 1

)
.

Therefore, as using G any word (a, b) ∈ F2
3 is encoded as

(a, b)
(

1 0 1 1
0 1 1 2

)
= (a, b, a+ b, a+ 2b)

and using H

(a, b)
(

2 2 1 0
2 1 0 1

)
= (2(a+ b), 2a+ b, a, 2b).
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Then the 9 words of F2
3 are coded as follows
x ∈ F2

3 xG xH
00 (0, 0, 0, 0) (0, 0, 0, 0)
01 (0, 1, 1, 2) (2, 1, 0, 1)
02 (0, 2, 2, 1) (1, 2, 0, 2)
10 (1, 0, 1, 1) (2, 2, 1, 0)
11 (1, 1, 2, 0) (1, 0, 1, 1)
12 (1, 2, 0, 2) (0, 1, 1, 2)
20 (2, 0, 2, 2) (1, 1, 2, 0)
21 (2, 1, 0, 1) (0, 2, 2, 1)
22 (2, 2, 1, 0) (2, 0, 2, 2)

.

Thus it is clear that all codewords in C = {xG} are also in its dual code C⊥ = {xH}
and viceversa. Therefore, C is a self-dual code. ut

Proposition 3.15. There is no self-orthogonal code whose length is bigger than
twice its dimension.

Proof. By definition an [n, k]q-linear code C is self-orthogonal if C ⊆ C⊥. Then,
|C| ≤ |C⊥| so qn ≤ qn−k ⇒ k ≤ n− k so n ≤ 2k. ut

Corollary. Every self-dual code length is twice its dimension.



Chapter 4
Syndrome decoding

An obvious algorithm for decoding is to make a table consisting of the nearest
codeword for each of the qn possible received words in Fnq so that once a word y
is received it can be decoded by looking it up in the table. Despite the ease of
this method is obviously impractical if qn is very large. Notwithstanding, as well
as it happened when calculating the minimum distance, working with linear codes
has its advantages. So when decoding linear codes there is no need to calculate
all distances d(y,u) with u ∈ C in order to decode a received word y. As it will
be explained in this subsection when working with linear codes a similar but more
efficient decoding process can be used, it is called syndrome decoding.

Definition 4.1. Let C be an [n, k]q-linear code. For any word x ∈ Fnq , the set
x + C = {x + u | u ∈ C}

is called a coset of C.

Every word y is in some coset (in y + C for example) and two diferent words x and
y are in the same coset if and only if x− y ∈ C. Each coset contains qk words.

Proposition 4.2. Two cosets are either disjoint or coincide.

Proof. If (x + C) ∩ (y + C) 6= 0, there exists z ∈ (x + C) ∩ (y + C). Then
z = x + u = y + v, where u and v belong to C. Therefore y = x + u− v = x + w,
where u − v = w ∈ C, and so x + C ⊆ y + C. Similarly y + C ⊆ x + C, and so
x + C = y + C ut

Therefore Fnq can be partitioned into cosets of C:
Fnq = C ∪ (x1 + C) ∪ (x2 + C) ∪ · · · ∪ (xt + C)(4.1)

where t = qn−k − 1 since the number of cosets is |Fnq /C| =
|Fn

q |
|C| = qn

qk = qn−k.

Suppose that a word y ∈ Fnq is received instead of v ∈ C. The received word must
belong to some coset in (4.1), say y = xi+u for some codeword u and some i. As has
been already defined, the error vector is e = y−v therefore e = xi+u−v = xi+w
where w ∈ C so e ∈ xi+C (the same coset as y). Thus it has just been proved that
the possible error vectors are exactly the vectors in the coset containing y. This
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is the reason why the decoder’s strategy is, given y, to choose a minimum weight
vector in the coset containing y in order to use it as the error vector so that y
would be decoded as v = y− e.
Definition 4.3. The minimum weight vector in a coset is called the coset leader.
If there is more than one vector with the minimum weight, one can be chosen at
random and called the coset leader.

Note that the xi in (4.1) will be supposed to be precisely the coset leaders and that
the fact of choosing the error vector as the minimum weight vector responds to the
fact that it is generally assumed that during a transmission process it is more likely
that a lower number of error occur than a bigger one.

This decoding process can be easily illustrated by using the following table.
Definition 4.4. A standard array for an [n, k]q-linear code is a qn−k by qk array
where:

• The first row lists all codewords (with the 0 codeword on the extreme left).
• Each row is a coset with the coset leader in the first column.
• The entry in the i-th row and j-th column is the sum of the i-th coset leader

and the j-th codeword.

Because each possible word can appear only once in a standard array some care
must be taken during construction. A standard array can be created as follows:

(1) List the codewords of C, starting with the codeword 0, as the first row.
(2) Choose any word Fnq of minimum weight not already in the array. Write this

as the first entry of the next row, it will be the coset leader.
(3) Fill out the row by adding the coset leader to the codeword at the top of each

column. The sum of the i-th coset leader and the j-th codeword becomes the
entry in row i, column j.

(4) Repeat steps 2) and 3) until all rows (all cosets) are listed and each vector of
Fnq appears exactly once.

Example 4.1. The [4, 2]3-linear code with generator matrix

G =
(

1 0 1 2
0 1 1 1

)
is C = {0000, 1012, 0111, 2021, 0222, 1120, 1201, 2210, 2102}. Its standard array con-
structed following the previous procedure is:

message x 00 10 01 20 02 11 12 22 21
coset x0 + C 0000 1012 0111 2021 0222 1120 1201 2210 2102
coset x1 + C 1000 2012 1111 0021 1222 2120 2201 0210 0102
coset x2 + C 0100 1112 0211 2121 0022 1220 1001 2010 2202
coset x3 + C 0010 1022 0121 2001 0202 1100 1211 2220 2112
coset x4 + C 0001 1010 0112 2022 0220 1121 1202 2211 2100
coset x5 + C 2000 0012 2111 1021 2222 0120 0201 1210 1102
coset x6 + C 0200 1212 0011 2221 0122 1020 1101 2110 2002
coset x7 + C 0020 1002 0101 2011 0212 1110 1221 2200 2122
coset x8 + C 0002 1011 0110 2020 0221 1122 1200 2212 2101
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where coset x0 + C is the code itself as x0 = 0. Hence, the first row is generated by
xG = C.

Note that all 34 = 81 words in F4
3 appear, divided into the 34−2 = 9 cosets forming

the rows, and the coset leaders are on the first column. ut

Therefore the standard array is used for decoding linear codes in the following way.
Once a word y ∈ Fnq is received its position in the array has to be found. Then the
decoder decides that the error vector e is the coset leader xi such that y ∈ xi + C
(the extreme left component of the standard array row to which yi belongs). Thus,
y is decoded as the codeword v = y − e (the codeword found in the top of the
standard array column to which yi belongs).

Example 4.2. Using the same code and the standard array illustrated in 4.1 Ex-
ample.

• If y = 1211 is received finding it in the table e = 0010 and it is decoded as
v = 1211− 0010 = 1201 (which corresponds to message 12).
• If y = 2102 is received finding it in the table e = 0000 and it is decoded as

v = 2102− 0000 = 2102 (which corresponds to message 21). ut

As has been said before despite the simplicity of this method it is not efficient since
all qn words need to be listed in the qn−k × qk standard array. The syndrome
decoding process follows the same outline but with a reduced qn−k × 2 array.

Definition 4.5. Let C be a [n, k]q-linear-code with check matrix H. The syndrome
of a word x ∈ Fnq (with respect to H) is

s(x) = xHT ∈ Fn−kq .

Proposition 4.6. Let C be a [n, k]q-linear-code with check matrix H and x ∈ Fnq
then s(x) satisfies the following properties:

(1) s(x) is a word of lenght n− k.
(2) s(x) = 0 if and only if x is a codeword.
(3) given another word y ∈ Fnq , s(x) = s(y) if and only if they belong to the same

coset of C.

Proof. (1) By definition H is an (n− k)×n thus its transpose is an n× (n− k)
matrix and the vector matrix product result is a vector in Fn−kq .

(2) 3.6 Lemma.
(3) For any two diferents words x and y, s(x) = s(y) ⇔ xHt = yHt ⇔ (x −

y)Ht = 0⇔ x− y ∈ C ⇔ x + C = y + C

ut

Theorem 4.7. There is a 1-1 correspondence between syndromes and cosets.

Proof. By 3) in Proposition 4.6 we have that all words in a coset have the same
syndrome and that all words with the same syndrome belong to the same coset. ut
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Taking this into account, for any [n, k]q-linear code C over Fnq , a smaller table can
be constructed, so a more efficient decoding method is obtained. The syndrome
decoding method works as the standard array method but instead of listing all qn
words in Fnq the table used has only 2qn−k entries that are the qn−k coset leaders
for the code and its syndromes. So whenever a word is received its syndrome has
to be computed so if it is 0 it is assumed that no noise has occurred during the
transmission process and no correction is needed but if it is not null, its coset
leader is taken as the error vector and the word is corrected as v = y − e which
corresponds to the nearest codeword for the received word as it happened when
using the standard array.

Example 4.3. Using the same code as in Example 4.1 we want to decode the same
words as in Example 4.2. As the generator matrix G is systematic using Proposition
3.11, its systematic check matrix is,

H =
(

2 2 1 0
1 2 0 1

)
and the array containing each coset leader with the syndrome of all the words that
belong to the coset is,

coset leader syndrome
0000 00
1000 21
0100 22
0010 10
0001 01
2000 12
0200 11
0020 20
0002 02

so now in order to decode the received words the first step is to calculate its syn-
drome and use the table as follows:

• If y = 1211 is received, its syndrome is s(y) = yHT = 10 so finding it in the
table e = 0010 and it is decoded as v = 1211− 0010 = 1201.
• If y = 2102 is received, its syndrome is s(y) = yHT = 00 so finding it in the

table e = 0000 and it is decoded as v = 2102− 0000 = 2102.

Note that in that case just 9 syndromes have to be stored. Furthermore, if we take
into account that from the forth row on each codeword and syndrome is twice one
of the already listed ones, so only 4 syndromes would need to be stored. ut



Chapter 5
Maximum Distance Separable codes
over fields

As has been explained in Chapter 1 the central problem of coding theory is to
fix q, n and δ and find the greatest value of M (denoted by Aq(n, δ)) such that
an (n,M, δ)q-code exists. Now, recall that in an [n, k]q-linear-code the maximum
number of codewords is qk so the Singleton bound (Theorem 1.17) in now equivalent
to:

qk ≤ qn−δ+1

and therefore it implies the following theorem.

Theorem 5.1. (Singleton bound for linear codes) Let C an [n, k]q-linear-code. Then
the Singleton bound states,

k ≤ n− δ + 1.

This way in which the Singleton bound can be written is the reason why when
working with linear codes another problem may be set. The most common problem
now is to fix n and k and look for the largest minimum distance δ among all codes
of length n and dimension k.

Corollary. For an [n, k]q-linear code we have δ ≤ n− k + 1.

Definition 5.2. A linear code which meets the Singleton bound for linear codes
is called a Maximum Distance Separable code or MDS-code.

Proposition 5.3. An [n, k]q-linear code is an MDS-code if and only if the minimum
non-zero weight of any codeword is n− k + 1.

Proof. A linear code C is an MDS-code if and only if it satisfies the Singleton
bound for linear codes (Theorem 5.1) k = n − δ + 1 so if δ(C) = n − k + 1.
Therefore as seen in Proposition 3.2 if and only if the minimum non-zero weight of
any codeword is n− k + 1. ut

Theorem 5.4. Let C be an [n, k]q-linear code with a check matrix H. The minimum
distance of C, δ(C), is equal to the smallest positive number of columns of H which
are linearly dependent.

28
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Proof. Let the columns of H be designated as H1, ...,Hn. Then since uHT = 0
for any codeword u = (u1, ..., un) ∈ C, we have

u1H1 + · · ·+ unHn = uHT = 0.

Therefore, the nonzero coordinates of u give a non trivial linear combination of the
columns of H. Thus, there is a u = (u1, ..., un) ∈ C whose weight is r if and only if
r columns of H linearly dependent exist. The minimum distance of a linear code is
the minimum non-zero weight of any codeword. So, it is also the minimum number
of columns of H that are linearly dependent. ut

Theorem 5.5. Let C be an [n, k]q-linear code. Let G and H be a generator ma-
trix and a check matrix, respectively, for C. Then, the following statements are
equivalent,

(1) C is an MDS-code; .
(2) every set of n− k columns of H is linearly independent;
(3) every set of k columns of G is linearly independent;
(4) C⊥ is an MDS-code;

Proof. (1) ⇔ (2) A code C is an MDS-code if and only if δ(C) = n − k + 1. By
Theorem 5.5 we have that δ(C) is the smallest positive number of columns of H
which are linearly dependent. Therefore C is MDS if and only if every set of n− k
columns of H is linearly independent.

(1) ⇒ (4) Recall that if H is a check matrix for C then it is a generator matrix for
C⊥, so the length of C⊥ is n and the dimension is n−k. To show that C⊥ is MDS, we
need to show that its minimum distance δ(C⊥) is equal to δ′ = n−(n−k)+1 = k+1.

Suppose δ′ ≤ k. Then there exist a codeword u ∈ C⊥ with at most k non-zero coor-
dinates and hence, at least n−k zero coordinates. As permuting the coordinates of
a word does not change its weight, it can be assumed that the last n−k coordinates
of u are 0. Considering H as H = (A|H ′), where A is some (n− k)× k matrix and
H ′ is a square (n− k)× (n− k) matrix. We know that the n− k columns of H ′ are
linearly independent because we have proved that (1) and (2) are equivalent so H ′
is invertible. Hence, the rows of H ′ are linearly independent. This means that the
only word that can be encoded using H in order to obtain 0 in all the last n − k
coordinates, such as for u, is the word 0. If not we would have a contradiction
since we would have a linear combination of the linearly independent rows of H ′
that is equal to 0. Therefore, the entry codeword for obtaining u is the all-zero
word 0. Consequently, δ′ ≥ k + 1. The Singleton Bound for linear codes tells us
that δ′ ≤ n− (n− k) + 1 = k + 1. Putting both together it follows that δ′ = k + 1
so C⊥ is also an MDS code.

Since (C⊥)⊥ = C, the above also shows (4) ⇒ (1) and since G is a check matrix
for (C⊥) analogously to the case (1) ⇔ (2) a code C⊥ is an MDS-code if and only
if δ(C⊥) = k + 1. By Theorem 5.5 it is known that δ(C⊥) is the smallest positive
number of columns of G which are linearly dependent. Therefore C⊥ is MDS if
and only if every set of k columns of G is linearly independent which proves (4) ⇔
(3). ut
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Corollary. Let H be a check matrix for an [n, k]q-linear code C. The code C is an
MDS code if and only if every h× h subdeterminant of H is non-zero in Fq where
h = 1, ...,min{n− k, k}.

The importance of MDS-codes lies in the fact that they are of great interest because
for a given value of n and k they are the codes with greater error detection and
correction capability. Therefore, for a given value of k and knowing the number
of elements q in the alphabet, it is natural to wonder which are the parameters of
the best MDS linear code that can be constructed. As consequence of Lemma 1.9
a code is better when its minimum distance is as large as possible. Hence, as we
are working with MDS linear codes, maximizing δ(C) is the same as maximizing n
because δ = n−k+1⇒ n = δ+k−1. And that leads us to the following theorems
that for a given k give some bounds for n so that an MDS linear code exists.

Let us first point out that the length of any MDS linear code C of dimension k is
greater or equal than k. As otherwise we would have δ(C) = n−k+1 < k−k+1 = 1
which cannot happen.

Theorem 5.6. There exists an MDS linear code of dimension k and length k + 1
over any Fq for any k ≥ 1.

Proof. For any given k the following matrix

G =


1

Ik
...
1


where Ik is the k × k identity matrix, generates an MDS code of length k + 1.

It is clear that it is a linear code of length k+ 1 ( its rows are linearly independent
and are basis of a subspace of Fk+1

q ) which encodes any word x = x1...xk ∈ Fkq
as u = u1...uk+1 ∈ Fk+1

q where ui = xi for 1 ≤ i ≤ k and uk+1 =
∑k
i=1 xi. In

order to see that it is an MDS we need to verify that δ(C) = n − k + 1 thus that
δ = (k + 1)− k + 1 = 2. By Proposition 3.11 its check matrix is

H = (−1 · · · − 1 | 1)

so a 1× (k + 1) with the first k positions equal to −1. Therefore, by Theorem 5.4,
δ(C) = 2 for any k ≥ 1. ut

Theorem 5.7. Let C be an MDS linear code of dimension k over Fq. If k ≥ q,

n ≤ k + 1.

Proof. As we have just proved in Theorem 5.6 there exist an [k + 1, k]q MDS
linear code for all k. Let us suppose G to be a generator matrix of an [m, k]q-linear
code C with m ≥ k + 2 and see that then C is not MDS.
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In Chapter 3 we have seen that any generator matrix of a linear code over a field
can be converted into the form

G =


1 · · · 0 | |
...

. . .
... Pk+1 · · · Pm

0 · · · 1 | |


where the first k columns from Ik and Pj with k + 1 ≤ j ≤ m are k × 1 vectors
which form a matrix P . Then all entries in each Pj must be non-zero. That is
because if there was a Pj with a zero entry in the i-th row, the subdeterminant of
G formed by all the columns of Ik, except the i-th column, and Pj would be equal
to zero so by Theorem 5.5 C would not be MDS. Then every element on the column
Pk+1 of G has an inverse and by multiplying each i-th row of G by the inverse of
the element in position i, k + 1 we obtain an equivalent generator matrix of form

G′ =


λ1 · · · 0 1 |
...

. . .
... P ′k+1 · · · P ′m

0 · · · λk 1 |

 .

By the Pigeonhole principle, as in Fq there are only q − 1 non-zero elements and
each P ′j column has k ≤ q entries, there must be at least two equal elements in each
column of P . Thus, assuming without lost of generality that in column Pk+2 these
two entries are the first and the second element of the vector,

G̃′ =


0 · · · 0 1 λ
0 · · · 0 1 λ

0 0

Ik−2
...

...
0 0


is a submatrix of G′ which determinant would be equal to 0 and again by Theorem
5.5 C would not be MDS. As this will happen for any Pj taking the appropriate
columns of Ik we conclude that there is no [m, k, 3]q MDS linear code for k ≤ q if
m ≥ k+ 2. Therefore, as we wanted to see, if C is an MDS linear code of dimension
k over Fq and k ≥ q then n must be less or equal to k + 1. ut

Theorem 5.8. Let C be an MDS linear code of dimension k over Fq. If k ≤ q,
n ≤ q + k − 1.

Proof. Let U = {u1, . . . , uk−2} ⊆ Fkq be a set of k−2 linearly independent vectors
in Fkq , hence dim (〈U〉) = k − 2. Now consider the set V ⊂ Fkq , defined as

V =
{
v ∈ Fkq | dim (〈U, v〉) = k − 1

}
.

The cardinality of V is |V| = qk − qk−2, because we are taking all vector in Fkq
and removing all the ones generated by U . As there are different vectors of V that
generate the same subspace, we define the following equivalence relation in V

v ∼ w ⇔ 〈U, v〉 = 〈U,w〉.

There are qk−1−qk−2 elements in each equivalence class because there qk−1 different
vectors in a hyperplane of the form 〈U, v〉 but qk−2 are already contained in 〈U〉.
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Therefore each of the remaining qk−1−qk−2 elements together with U generate the
same subspace of dimension k − 1.

Then we know that,

|V/ ∼| = qk − qk−2

qk−1 − qk−2 = qk−2(q2 − 1)
qk−2(q − 1) = q + 1.

In that way, we know that if we construct the following matrix,

G =

 | | | | | |
u1 u2 · · · uk−2 v1 v2 · · · vq+1
| | | | | |


where v1, . . . , vq+1 are representatives of each equivalence class, each k × k deter-
minant of the form det(u1, . . . , uk−2, vi, vj) with 1 ≤ i, j ≤ q + 1 and i 6= j will not
be null.

By Theorem 5.5 we know that an [n, k]q-linear code C is MDS if and only if every
set of k columns of G is linearly independent. Therefore any generator matrix of
an MDS linear code of dimension k has up to (k − 2) + (q + 1) columns. So, as we
wanted to see n ≤ q + k − 1. ut

In the case that q is a prime there exists a better bound. The following theorem
from [1].

Theorem 5.9. Let C be an MDS linear code of dimension k over Fq. If k ≤ q and
q is prime,

n ≤ q + 1.

The last three theorems can be rewritten as,

Theorem 5.10. Let C be an MDS linear code of dimension k over Fq.

(1) If k ≤ q and
(a) q is prime, then n ≤ q + 1.
(b) q is not prime, then n ≤ q + k − 1

(2) If k ≥ q, n ≤ k + 1.

The aim of the next Chapter is to study Reed Solomon codes which are linear MDS
codes which meet this bound. Moreover, they are almost the only codes meeting
this bound.

The following is also from [1].

Theorem 5.11. If q is prime and k ≤ q and k 6= q+1
2 , then a linear MDS code of

length q + 1 is linearly equivalent to a Reed-Solomon code.



Chapter 6
Reed-Solomon codes

In this chapter we construct linear k-dimensional MDS codes of length q+1 over Fq
for all k ≤ q− 1. So they are an example of codes achieving the bound in Theorem
5.10.

Let Fq = {a0, a2, .., aq−1} be a finite field and k an integer. Note that every word
b = (b0, b1, ..., bk−1) ∈ Fkq can be identified with a polynomial

f = b0 + b1x+ · · ·+ bk−1x
k−1 ∈ Fq[x](6.1)

so that bi is the coefficient of xi in that polynomial f which will be denoted by
coeff (xi).

Then, a Reed-Solomon code of length n for codifying words in Fkq with k ≤ q − 1 is
denoted RS(n, k) and can be constructed as follows:

Each word b = (b0, b1, ..., bk−1) ∈ Fkq , or equivalently its polynomial f is codified
as a vector in Fq+1

q that has as its first q coordinates the word’s corresponding
polynomial evaluated in each of the q elements of the field and in its last one the
the coefficient of xk−1 (the last letter of the word that is being encoded):

u = (f(a0), . . . , f(aq−1), coeff (xk−1)).

It is clear that n = q+1 so given a field Fq and an integer k ≤ q+1 the corresponding
Reed-Solomon code C = RS(n, k) is:

RS(n, k) = {(f(a0), . . . , f(aq−1), coeff (xk−1)) | f ∈ Fq[x], deg(f) ≤ k − 1}.

Proposition 6.1. Reed-Solomon codes, RS(n, k), are [n, k]q-linear codes and their
size is M = qk.

Proof. Let RS(n, k) be a Reed-Solomon code, in order to be an [n, k]q-linear
code it must be shown, by Definition 3.1, that it is a linear subspace of dimension
k of Fnq . Therefore it satisfies all conditions in Definition 2.4. By construction
all codewords belong to Fnq , hence it is clear that RS(n, k) ⊆ Fnq . Now, let u =
(f(a0), . . . , f(aq−1), coeff (xk−1)) and v = (g(a0), . . . , g(aq−1), coefg(xk−1)) two
different codewords for some polynomials f, g ∈ Fq[x] with degree less or equal than
k−1, and some λ ∈ Fq, then f+g and λf are also polynomials in Fq[x] with degree
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less or equal than k − 1 so:

u + v = (f(a0) + g(a0), . . . , f(aq−1) + g(aq−1), coeff (xk−1) + coefg(xk−1))

and

λu = (λf(a0), . . . , λf(aq−1), λcoeff (xk−1))

also belong to RS(n, k). Thus RS(n, k) is an [n, k]q-linear code and as the size of
a linear code is qk,

|RS(n, k)| = qk

which already clear by construction since there are qk such polynomials f ∈ Fq[x]
of deg(f) ≤ k − 1 (there are q choices for each coefficient ai).

ut

Theorem 6.2. Reed-Solomon, RS(n, k), codes are MDS-codes.

Proof. In order to be an MDS-code we want to prove that δ = n− k + 1. Let u
be a codeword generated using f and note that by construction the degree of the
polynomial f cannot be greater than k − 1 so:

• if deg(f) = k−1, we know that the last coordinate of u is different from 0. As
a polynomial of degree k−1 has at most k−1 roots, w(u) ≥ n− (k−1). This
is true for any codeword hence δ = w(C) ≥ n− k+ 1. By the Singleton bound
for linear codes δ ≤ n− k + 1 so δ = n− k + 1 and RS(n, k) is MDS-codes.
• if deg(f) ≤ k − 2, we know that the last coordinate of u is equal to 0 and as

polynomial of degree k−2 has at most k−2 roots w(u) ≥ n−(k−2)−1. This
is true for any codeword hence δ = w(C) ≥ n− k+ 1. By Singleton bound for
linear codes δ ≤ n− k + 1 so δ = n− k + 1 and RS(n, k) is MDS-codes.

ut

Corollary. RS(n, k) codes are [n, k, δ]q-linear codes with δ = n− k + 1.

As linear codes, RS(n, k) codes can also be defined as

C = {uG|u ∈ Fkq}

where G is the generator matrix of the code.

Lemma 6.3. Let RS(n, k) then a generator matrix G ∈ Fn×kq is given by

G =



1 1 1 · · · 1 0
a0 a1 a2 · · · aq−1 0
a2

0 a2
1 a2

2 · · · a2
q−1 0

...
...

...
...

...
ak−2

0 ak−2
1 ak−2

2 · · · ak−2
q−1 0

ak−1
0 ak−1

1 ak−1
2 · · · ak−1

q−1 1


.

where a0, ..., aq−1 denote the q elements of Fq.
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Proposition 6.4. Let H be the following matrix

H =



1 1 1 · · · 1 0
a0 a1 a2 · · · aq−1 0
a2

0 a2
1 a2

2 · · · a2
q−1 0

...
...

...
...

...
an−k−2

0 an−k−2
1 an−k−2

2 · · · an−k−2
q−1 0

an−k−1
0 an−k−1

1 ak−1
2 · · · an.k−1

q−1 1


(6.2)

in Fn×n−kq where a0, ..., aq−1 denote the q elements of Fq. H is a check matrix for
RS(n, k).

Proof. By Lemma 3.7 we need to see that the rank of H is n − k and that
GHT = 0.

The rank of H is n− k as the determinant of the n− k first columns is nonsingular
as it is a Vandermonde matrix where all ai are distinct.

GHT =



q
q−1∑
i=0

ai
q−1∑
i=0

a2
i · · ·

q−1∑
i=0

an−k−1
i

q−1∑
i=0

ai
q−1∑
i=0

a2
i

q−1∑
i=0

a3
i · · ·

q−1∑
i=0

an−ki

q−1∑
i=0

a2
i

q−1∑
i=0

a3
i

q−1∑
i=0

a4
i · · ·

q−1∑
i=0

an−k+1
i

...
...

...
...

q−1∑
i=0

ak−2
i

q−1∑
i=0

ak−1
i

q−1∑
i=0

aki · · ·
q−1∑
i=0

an−3
i

q−1∑
i=0

ak−1
i

q−1∑
i=0

aki

q−1∑
i=0

ak+1
i · · ·

q−1∑
i=0

an−2
i + 1


all the summations are equal to 0 by Lemma 2.19 but the one in the lower right
corner that as n = q + 1 is equal to −1 so when added 1 is also 0. ut

Theorem 6.5. The dual code of a Reed Solomon code RS(n, k)

C = {(f(a0), . . . , f(aq−1), coeff (xk−1)) | f ∈ Fq[x], deg(f) ≤ k − 1}

is a also a Reed Solomon code, RS(n, n− k)

C⊥ = {(g(a0), . . . , g(aq−1), coefg(xk−1)) | g ∈ Fq[x], deg(g) ≤ n− k − 1}.

Proof. By construction 6.2 is the generator matrix of and RS(n, n − k). It has
been proved previously that check matrix of a code is the generator matrix of it’s
dual. Therefore RS(n, k)⊥ = RS(n, n− k). ut

Corollary. If k ≤ q+1
2 a RS(n, k) code is self-orthogonal and moreover, if k =

q+1
2 then it is self-dual.

Example 6.1. We want to construct an RS(4, 2) code.

As n = q + 1 q = 3 and we are working in F3 = {0, 1, 2}. The size of the code is
32 = 9.
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Let us construct in both ways by definition and by construction it’s generator matrix

G =
(

1 1 1 0
0 1 2 1

)
.

in the following table x ∈ F2
3 denotes the word that has to be encoded, f in form

6.1 that x determines and u ∈ F4
3 the codeword.

x f u = ( f(0), f(1), f(2), coeff (x)) u = xG
00 0 0 0 0 0 0000
01 x 0 1 2 1 0121
10 1 1 1 1 0 1110
11 1 + x 1 2 0 1 1201
02 2x 0 2 1 2 0212
20 2 2 2 2 0 2220
12 1 + 2x 1 0 2 2 1022
21 2 + x 2 0 1 1 2011
22 2 + 2x 2 1 0 2 2102

It’s check matrix is

H =
(

1 1 1 0
0 1 2 1

)
so GHT = 0 and RST (4, 2) = RS(4, 2), it is a self-dual code. ut



Chapter 7
Linear codes over commutative rings

In this chapter, let R be a commutative ring with identity.

Definition 7.1. Let A be an n×n matrix over R and let Aij denote the (n− 1)×
(n− 1) matrix obtained from A by deleting the i− th row and the j − th column.
Set bij = (−1)i+jdet(Aij) so B = [bij ]. Then the adjoint of A is Adj(A) = BT .

The following is from [6].

Theorem 7.2. Let A be an square matrix then

• A ·Adj(A) = det(A) · I = Adj(A) ·A.
• if A is invertible then det(A) is a unit and A−1 = (det(A))−1 ·Adj(A).

Definition 7.3. An element x in a commutative ring R is called annihilator of an
element y 6= 0 in R-module N if xy = 0. If N = R, then an annihilator is called
zero divisor of R.

Definition 7.4. A linear code of length n over R is an R-submodule of Rn.

Definition 7.5. A free linear code of length n over R is a free R-submodule of Rn.

Proposition 7.6. In a linear code of length n over R the minimum distance is
equal to the minimum weight among all non-zero codewords. In other words,

δ(C) = min{w(u) | 0 6= u ∈ C}

Proof. The proof given in Proposition 3.2 holds over rings. ut

Definition 7.7. A matrix G is called a generator matrix for a linear code C over
R if its rows span C and none of them can be written as a linear combination of
the other rows. That is, if G is a k × n matrix such that

C = {(u1, u2, ..., uk)G|ui ∈ Rk}.

Note that unlike what happened in Chapter 3, now the rows r1, ..., rk of G should
be regarded as elements of Rn not Fn,so not all the elementary row operations
listed there can be used. In order to not change the submodule C spanned by the
rows of G the following row operations can be used.

37
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Lemma 7.8. (Elementary row operations over rings)

• Row switching: ( ri ↔ rj )
A row within the matrix can be switched with another row.
• Row multiplication: ( kri → ri, k ∈ U(R) )

A row can only be multiplied by a unit .
• Row addition: ( ri + krj → ri, i 6= j )

A row can be replaced by the sum of that row and a multiple of another row.

From now on we will restrict ourselves to the case where R is a p-adic ring, hence
R = Z/plZ.

Definition 7.9. A generator matrix G of a linear code over a p-adic ring R is a
standard generator matrix if it is has the form

G =


Ik0 A0,1 A0,2 A0,3 · · · A0,l−1 A0,l
0 pIk1 pA1,2 pA1,3 · · · pA1,l−1 pA1,l
0 0 p2Ik2 p2A2,3 · · · p2A2,l−1 p2A2,l
...

...
...

...
...

...
0 0 0 0 · · · pl−1Ikl−1 pl−1Al−1,l

(7.1)

where the columns are grouped into blocks of sizes k0, k1, ..., kl−1, kl where kl =
n −

∑l−1
i=0 ki with ki ≥ 0 for 0 ≤ i ≤ l − 1 thus, Iki

denotes the ki × ki identity
matrix for any i.

Theorem 7.10. Every generator matrix G of a linear code over a ring R can be
expressed after some column permutations or rows elementary operations (described
in Lemma 7.8), as a standard generator matrix.

Proof. Every element a ∈ Z/plZ can be written uniquely as a finite sum

a = a0 + a1p
1 + a2p

2 + · · ·+ al−1p
l−1(7.2)

where 0 ≤ ai ≤ p− 1. Note that the units in Z/plZ are then

U(Z/plZ) = {u ∈ Z/plZ | u0 6= 0 when expressed in form (7.2)}.
Therefore, given any k × n generator matrix

G =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

...
ak,1 ak,2 · · · ak,n

 .

rearranging its rows and columns by rows and columns permutations it is possible
to have a k0×k0 square submatrix A′k0

in the upper left corner so that all elements
ai,i in it have a0 6= 0 when expressed in form (7.2). Therefore, as they are units
they all have an inverse so it is possible to make all matrix elements below A′k0
vanish and A′k0

to be the k0 × k0 identity Ik0 . It is clear that there is no element
ai,j below the k0-row with a0 6= 0. Then, analogously, the same procedure can be
done but instead of the moving all elements whose expression in (7.2) form have
ao 6= 0 we pick the ones with a1 6= 0. A k1 × k1 submatrix A′k1

with all elements
ai,i multiples of p can be constructed just below and after the first k0 rows and
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columns. Again, it is possible to make all matrix elements below A′k1
vanish and

A′k0
to be the p times the k1 × k1 identity Ik1 . It is clear that there is no element

ai,j below the k1-row with a0 and a1 different from 0. By repeating this procedure
until al−1 6= 0 a generator matrix in form (7.1) is obtained. Note that some ki
might be equal to 0. ut

Definition 7.11. It is said that a linear code C over R has type,

(k0, k1, .., kl−1)

where ki are the corresponding sizes of its generator matrix in standard form. The
zero code (containing only the zero codeword) has type 0.

Remark 7.1. Recall that a linear code C is a free code, if it is a free R-submodule
of Rn. This implies that if C is a free code, the rows of any of his generator matrices
G form a basis of the free submodule. Therefore, a generator matrix of a free code
G is a standard generator matrix if it has form,

G = (Ik | P ) =


1 ∗ ∗ · · · ∗

1 ∗ ∗ · · · ∗
. . .

...
...

...
1 ∗ ∗ · · · ∗

 .

Which means that free codes always admit a systematic generator matrix as in
Chapter 3 when working over fields. Free codes over Z/plZ are all of type (k, 0, .., 0).

In Chapter 3 we saw that the size of an [n, k]q-linear code is qk. But, as can be
seen in the following example, that does not hold when working over rings.

Example 7.1. Consider the linear code of type (1, 1) over Z/4Z generated by

G =
(

1 0 3
0 2 2

)
.

Therefore, as

(a, b)
(

1 0 3
0 2 2

)
= (a, 2b, 3a+ 2b)

the words x ∈ Z/4Z are coded as

x ∈ Z/4Z xG x ∈ Z/4Z xG
00 000 20 202
01 022 21 220
02 000 22 200
03 022 23 220
10 103 30 301
11 121 31 323
12 103 32 301
13 121 33 323

Then our code is exactly

C = {(0, 0, 0), (0, 2, 2), (1, 0, 3), (1, 2, 1), (2, 2, 0), (2, 0, 0), (3, 0, 1), (3, 2, 3)}

and as can be seen M =| C |= 8 6= 42.
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Note that C = {u ∈ Z/4Z3 | u = xG ∀x ∈ Z/4Z2} is not a free code as the rows of
G are not a basis. ut

Lemma 7.12. The size of a p-adic code is pk′ , where

k′ =
l−1∑
i=0

(l − i)ki.

Remark 7.2. In a free code over R, |C| = plk as it happened when working with
linear codes over fields.

Definition 7.13. Let C be a p-adic code with generator matrix in form (7.1). Then
C has a dual code C⊥ with generator matrix of the form

H =


B0,l B0,l−1 · · · B0,3 B0,2 B0,1 Ikl

pB1,l pB1,l−1 · · · pB1,3 pB1,2 pIkl−1 0
p2B2,l p2B2,l−1 · · · p2B2,3 p2Ikl−2 0 0

...
...

...
...

...
...

pl−1Bl−1,l pl−1Ik1 · · · 0 0 0 0

(7.3)

where the columns are grouped into blocks of the same sizes k0, k1, ..., kl−1, kl as
in Definition 7.9. Therefore, H is said to be a check matrix for C in standard form.

Definition 7.14. It is said that the dual code C⊥ over R has type,

(kl, k1−1, .., k1).

Lemma 7.15. The size of the dual code C⊥ is pk′⊥ , where

k′⊥ =
l∑
i=1

iki.

Example 7.2. Consider the code C, over the 2-adic ring Z/16Z, generated by

G =


2 5 6 1 0 8 6 0
4 2 11 10 8 0 6 0
2 10 10 13 8 8 14 0
0 2 3 4 0 8 2 0
6 14 0 7 0 0 0 8
2 4 15 0 0 0 4 8

 .

By applying the following elementary row operations and column permutations
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2 5 6 1 0 8 6 0
4 2 11 10 8 0 6 0
2 10 10 13 8 8 14 0
0 2 3 4 0 8 2 0
6 14 0 7 0 0 0 8
2 4 15 0 0 0 4 8

 −−−−−−−−→c1↔c4
c2↔c3
c5↔c7


1 6 5 2 6 8 0 0
10 11 2 4 6 0 8 0
13 10 10 2 14 8 8 0
4 3 2 0 2 8 0 0
7 0 14 6 0 0 0 8
0 15 4 2 4 0 0 8



−−−−−−−→
r2→r2+6r1
r3→r3+3r1
r4→r4+12r1
r5→r5+9r1


1 6 5 2 6 8 0 0
0 15 10 0 10 0 8 0
0 12 6 8 0 0 8 0
0 11 2 8 10 8 0 0
0 6 2 8 6 8 0 8
0 15 4 2 4 0 0 8



−−−−−−−→
r1→r1+6r2
r2↔15r2

r3→r3+12r2
r4→r4+11r2


1 0 1 2 2 8 0 0
0 1 6 0 6 0 8 0
0 0 14 8 8 0 8 0
0 0 4 8 8 8 8 0
0 6 2 8 6 8 0 8
0 15 4 2 4 0 0 8



−−−−−−→
r3→r3+r4
r5→r5+10r2
r6→r6+r2


1 0 1 2 2 8 0 0
0 1 6 0 6 0 8 0
0 0 2 0 0 8 0 0
0 0 4 8 8 8 8 0
0 0 14 8 2 8 0 8
0 0 10 2 10 0 8 8



−−−−−−−→
r2→r2+5r3
r4→r4+6r3
r5→r5+r3
r6→r6+3r3


1 0 1 2 2 8 0 0
0 1 0 0 6 8 8 0
0 0 2 0 0 8 0 0
0 0 0 8 8 8 8 0
0 0 0 8 2 0 0 8
0 0 0 2 10 8 8 8



−−−−−−−→
r4→r4+5r6
r5→r5+r4


1 0 1 2 2 8 0 0
0 1 0 0 6 8 8 0
0 0 2 0 0 8 0 0
0 0 0 2 10 0 0 0
0 0 0 0 10 8 8 8
0 0 0 2 10 8 8 8



−−−−−−−−→
r4→r4+15r5
r5→r5+r3
r5↔5r5


1 0 1 2 2 8 0 0
0 1 0 0 6 8 8 0
0 0 2 0 0 8 0 0
0 0 0 2 0 8 8 0
0 0 0 0 2 8 8 8
0 0 0 0 0 8 8 0


a standard generator matrix has been obtained.

Then, C has type (2, 3, 0, 1) and 162 · 83 · 2 elements. ut



Chapter 8
Maximum Distance Separable codes
over p-adic rings

In this chapter, we will now work on the characterization of MDS linear codes over
p-adic rings.

Theorem 8.1. A free k dimensional linear code C with a check matrix of the form
H = (−M | In−k) is MDS if and only if every h×h subdeterminant of M is not an
annihilator in R where h = 1, ...,min{n− k, k}:

Proof. We first want to prove that if every h × h subdeterminant of M is not
an annihilator in R then C is MDS. Thus what we want to prove that C meets
the Singleton Bound for linear codes (δ(C) = n − k + 1), by Proposition 7.6 it is
equivalent to show that w(C) = r + 1, where r = n− k.

Assume w(C) ≤ r. Let then u be a codeword such that w(u) = r, as u ∈ C we know
that uHT = 0. Therefore, we know that there exist λ1, λ2, ..., λr ∈ R, which are
exactly the r nonzero coordinates of u, that give a non trivial linear combination
of columns of H so that

λ1Hλ1 + · · ·+ λrHλr
= 0⇒

 | | |
Hλ1 Hλ2 · · · Hλr

| | |


λ1

...
λr

 = 0T

where Hλ1 , ...,Hλr
are the r columns of H which are multiplied by each λi respec-

tively. Since H = (−M |Ir) we can suppose that h of the columns Hλi
are columns

of −M and r − h are from Ir. The entries of columns coming from Ir are all zeros
but one 1, so let M̃ be the matrix obtained by adding the columns Hλi

that are
from −M and then deleting the rows which correspond to the position of the 1 of
each of the Hλi

that come from Ir. By construction M̃ is an h×h square submatrix
of −M . Let us rename the λi that multiply each of the h columns Hλi

that come
from −M µ1, µ2, ..., µh respectively. So now we know that

M̃

µ1
...
µh

 =

0
...
0

 .

42
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Then using Theorem 7.2,

M̃µT = 0T ⇒ Adj(M̃)M̃µT = 0T ⇔ det(M̃)IhµT = 0T .

By hypothesis det(M̃) is a not an annihilator in R so we know det(M̃)µi = 0 ⇔
µi = 0 ∀i⇔ µ = 0. And now recalling that

Hut = 0⇔ (−M |Ir)ut = 0

we have found out that all the n − k first entries of u are equal to 0. As we have
supposed at the beginning that w(u) = r we must have then u = (0, ...0, λ1, ..., λr)
with λ1, ..., λr 6= 0. But this can not happen, because then we would have

(−M |Ir)



0
...
0
λ1
...
λr


= 0T ⇔

λ1
...
λr

 =

0
...
0



and that implies λi = 0 ∀i. Therefore, u would be the word 0, whose weight is
0, that is a contradiction, thus w(C) > r. As for linear codes w(C) = δ(C) and
Singleton Bound says δ(C) ≤ n− k + 1 = r + 1 we can conclude that w(C) = r.

On the other hand, we want to prove that if C is MDS then every h× h subdeter-
minant of M is not an annihilator:

Let M̃ be an h × h submatrix of M . Let e be a maximal integer such that, pe
divides det(M̃).

Assuming that e ≥ 1, by Theorem 7.2 we know, M̃Adj(M̃) = det(M̃)Ih. So,
multiplying both sides of the equality by pl−e we obtain,

M̃
(
pl−eAdj(M̃)

)
= 0h

where 0h is an all zero entries h× h matrix.

If pl−eAdj(M̃) 6= 0 then there is a column of pl−eAdj(M̃) which is non-zero. The
elements of this column λ1, ..., λh gives us a linear combination of the columns of
M̃ which is zero. Let u be a word in Rn which has zero entries in all its coordinates
that, in the product Hut, multiply the columns of M which are not in M̃ , and
λ1, ..., λh in the corresponding coordinates so that in the product Hut each column
of M̃ is multiplied by its corresponding λi of the mentioned linear combination.
Then, the rest of the coordinates of u are zero but for r − h of them that multiply
certain columns of Ir (r = n−k). Assuming without lost of generality that M̃ is in
the upper left corner of M we would have, that they are the last r−h coordinates.
They have values µj = −

∑h
i=1 λiaj,i for each j ∈ {h+ 1, h+ 2, ..., r − 1, r}. Then
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the product Hut



a1,h+1 · · · a1,k

M̃
...

...
ah,h+1 · · · ah,k

ah+1,1 · · · ah+1,h ah+1,h+1 · · · ah+1,k
...

...
...

...
ar,1 · · · ar,h ar,h+1 · · · ar,k

Ir





λ1
...
λh
0
...
0
0
...
0

µh+1
µh+2

...
µr



,

is equal to 0. This means u ∈ C as it satisfies the equations of the check matrix.
Then the weight of u is w(u) ≤ h + (r − h) = r = n − k. So we have found
a codeword whose weight equal or smaller than n − k, which is a contradiction
because by hypothesis C is MDS so the weight of any codeword should be greater
or equal to n− k + 1.

Therefore, pl−eAdj(M̃) must be equal to 0. That means that pe divides every
element of Adj(M̃), so pe divides det(Adj(M̃)). Using again Theorem 7.2,

M̃Adj(M̃) = det(M̃)Ih ⇒ det(M̃)det(Adj(M̃)) = det(M̃).

This is a contradiction, because the left hand side of the last equality has a p2e

factor while the right hand side has at most pe by hypothesis.

Thus e = 0, p - det(M̃) so every h× h subdeterminant of M is not an annihilator,
as we wanted to prove. ut



Conclusion

We have proven that the bounds for MDS linear codes over Z/pZ carry over to
MDS codes over p-adic rings with check matrices of the form H = (−M |In−k).

It is possible that these bounds carry over to all p-adic MDS codes. It would be
also interesting to study MDS codes over Z/nZ, where n is not a prime power.
Primarily, we have proven that MDS codes over p-adic rings with check matrices
of the form H = (−M |In−k) are always short; their length is at most p + 1. This
could possibly be true for all p-adic MDS codes, and could be the basis of further
investigation.
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Notes

The basic results on the algebraic objects considered here, rings, fields, vector spaces
and modules, can be found in [4]. The book by McWilliams and Sloane [3] is a
basic text on Error-correcting codes, including chapters on MDS codes, on Reed
Solomon codes and syndrome decoding. The book by Roman [5] has been used for
the section on the main coding theory problem in Chapter 1 as well as for Chapter
5.

The article by Calderbank and Sloane [2] has been used as a reference for Chapter
7.

The book by Brunat and Ventura [7] has been useful for several parts of this text,
for instance, for defining basic concepts about codes in Chapter 1, defining the dual
of a Reed Solomon code in Chapter 6, for properties of linear codes over fields in
Chapter 3 and to provide some properties about Galois rings in Chapter 2.

Finally, both [9] and [10] have been used for some definitions and results concerning
modules, submodules and quotient rings.

46



References

[1] Simeon Ball, On sets of vectors of a finite vector space in which every subset of basis size is
a basis, J. Eur. Math. Soc. (JEMS), 14, 733–748 (2012).

[2] A.R. Calderbank, N. J. A. Sloane, Modular and p-adic cyclic codes, Des. Codes Cryptogr.,
6, 21–35 (1995).

[3] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland,
1977.

[4] Josep Burillo, Class notes on lessons of algebraic structures, course 2012/13.
[5] Steven Roman, Coding and Information Theory, Springer-Verlag, 1992.
[6] Bernard R.McDonald, Linear Algebra Over Commutative Rings, Marcel Dekker, 1984.
[7] Josep M. Brunat Blay, Enric Ventura Capell, Informació i codis, Edicions UPC, 2001.
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