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Abstract 

In this master thesis numerical simulation is applied to monitoring of temperature 

evolution in the conformation of thermoplastic laminated structures by the 

Automated Tape Placement industrial process in real-time, which nowadays 

constitutes a challenging issue. The objective of this work is to assess the behavior 

of enhanced models of the transient heat problem in study by analyzing the 

influence of thermal properties to the overall behavior of the solution. 

A recently introduced methodology is presented which allows performance of real-

time temperature monitoring in two stages. First, a generalized transfer function 

associated to the problem in study is solved and thus a virtual chart of multi-

parametric solutions can be generated thanks to the use of the Proper Generalized 

Decomposition technique. Second, the obtained solution is particularized and fast 

integration of temperature field can be carried out so that real-time control of the 

process is enabled. 

Two examples of practical application of the proposed methodology are conducted. 

On one hand, parametric analysis of the problem including anisotropic thermal 

conductivity as extra-coordinate of the solution is carried out. The impact of the 

ratio of principal thermal conductivities on the behavior and accuracy of the 

solution is observed. On the other hand, a problem including an interface subject to 

contact thermal conductance is considered. Also, the influence of variability of this 

parameter is studied. In both cases, verification of the obtained results is made 

against reference solutions based on the finite element method. 

In conclusion, results show that accuracy of the obtained solutions is strongly 

related to the order of magnitude of values included in the ranges of considered 

extra-coordinates when building up computational vademecums for application in 

real industrial problems. Therefore, the scale of studied problems needs to be 

validated with experimental data beforehand so that decision making operations 

can be based on reliable real-time monitoring numerical simulations. 
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Chapter 1 

Introduction 

The Automated Tape Placement (ATP) [1, 2] is a high speed manufacturing method 

intended for the production of advanced thermoplastic composites, laminated 

composite structures with thermoplastic polymeric matrix. The ATP is attractive to 

the industry as it is a fast, clean and automated process, despite being a challenging 

issue. 

In the ATP industrial process, as depicted in Figure 1.1, a tape is fed into a 

placement head and heated along with the substrate, consisting in the previously 

welded tapes, as it approaches a consolidation device. The tape and the substrate 

are pushed together as pressure is in turn applied to the interface being joined and 

thus forming a bond. ATP uses a diode laser as the heat source because of its ability 

to deliver more heating power, as well as having a near instantaneous response, 

rather than other systems based on hot gas torches. A cylindrical consolidation 

roller is used as the consolidation device, to ensure the required conditions for 

appropriate welding. 

The power and trajectory of the laser, which are important factors of the 

temperature field, strongly affect the quality of thermoplastic composites obtained 

by the ATP. Combinations of these two parameters must be carried out off-line so 

that the thermal distribution is verified in the part, considering that during the 

production process feedback control systems are not applicable unless the 

temperature field is known in real-time. Moreover, records of temperature 

information captured by thermocouples can be used for a posteriori quality 

control purposes. 

The modeling and optimization of ATP by numerical simulation turns out to be the 

preferable choice, compared to the use of experimental methods, in order to assess  
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INTRODUCTION 

Figure 1.1 Diagram showing the ATP process [2] 

the associated thermo-mechanical problem. Particularly, the real-time monitoring 

of the temperature field from in situ measurements might allow real-time decision 

making strategies, as well as feedback control systems command. The so-called 

Proper Generalized Decomposition (PGD) model order reduction methodology [3] 

–based on the use of a separated representation of the unknown thermal field– is

considered to be suitable for building a parameterized solution to address this 

issue, having recently been proven [4] that reciprocity holds in a space-frequency 

framework of the thermal problem and thus an approach based on generalized 

transfer functions is feasible. 

This master thesis aims to apply the aforementioned numerical method to a real 

industrial problem. The ATP thermal model is developed by introducing 

anisotropic conductivity and contact thermal resistance into it and simulated using 

the proposed technique. Verification of the resulting work is conducted against 

standard simulations and both the error and computational time are analyzed and 

compared as well. 
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Chapter 2 

The ATP thermal model 

The study of heat transfer involved in the Automated Tape Placement industrial 

process is crucial to improve this technology. Large thermal gradients are 

experienced during the successive heating and cooling of the structures built by 

the ATP, contributing to the development of residual stresses in their 

conformation. Moreover, the distinct thermal proprieties of the fiber and matrix of 

thermoplastic composites –the large differences in the respective thermal 

coefficients– cause important deformation at the matrix-fiber interface. 

Furthermore, stresses are also induced by consecutive plies not having the same 

reinforcement orientations. Consequently, notable effects on the mechanical 

properties and geometry of the resultant plate or shell, such as inter-ply 

delamination, matrix cracking and distortion, are due to springback to which 

residual stresses are relevant to and which accurate thermal monitoring can 

prevent. 

The simulation of the ATP manufacturing process is based on some assumptions 

with respect to the associated thermal model. First, unlike for the actual in situ 

process, a coordinate system attached to a two-dimensional plate-like domain is 

considered, since materials with in-plane unidirectional thermal properties are 

used in practice, without loss of generality. Consequently, boundary conditions 

become time dependent; hence the line speed of the placement head, which in 

principle moves with a constant velocity, is implicitly introduced into the heating 

source. The compatibility of this approach is studied in [1], where the relation 

between temperature in moving and fixed unidirectional frames –imposing fixed 

temperature values on both ends of a thin tape, as well as null heat flux– is 

evaluated, as shown in Figure 2.1. Furthermore, the incoming tow is assumed 

instantaneously laid down along the substrate, regarding geometry simplification  
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Figure 2.1 Scheme of the process modeling [5] 

purposes. Therefore, the heating device is assumed moving on the upper free 

surface. 

The bonding of two thermoplastic layers demands certain physical conditions: on 

one hand, intimate contact, a measure of the degree of physical contact between 

the two surfaces being pushed together, governed by the initial geometry of the 

tapes, temperature and pressure; on the other hand, autohesion, the diffusion of 

polymer molecules across the interface. The low conductivity of thermoplastics 

allows local heating to provide the interface with adequate temperature. 

Therefore, temperature has to be controlled so it is high enough to ensure the 

interdiffusion of macromolecules, for a time large enough in so far as significant 

material degradation is prevented. The coupling of the thermal model with the 

crystallization kinetics is regarded in [5], besides molecular diffusion and material 

degradation. Hereafter, the effects related to changes of phase, such as 

solidification or crystallization, are neglected as well as the involved inelastic 

behaviors. After the heat source is applied, the incoming layer adheres to the 

substrate considering thermal contact conductance at the inter-plies, with bonding 

depending on the heat exchange through the interface. 

The initial conditions of the ATP thermal model consist of both the substrate and 

the incoming tape having the ambient temperature. When it comes to boundary 

conditions, convection is enforced on the upper surface, except in the region where 

the heating source applies; conduction transmission conditions can be imposed on 

the contacts at the inter-plies, as already stated, and also at the roller-composite or  
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Figure 2.2 ATP thermal model [1] 
 

at the composite-work-plane interfaces, as shown in Figure 2.2, even though the 

last two cases are not considered, and null heat flux is there enforced instead. 

In view of the above, in the space-time domain, the solution to the general 

transient heat transfer model problem attached to ATP can be defined as the 

temperature response, 𝑢𝑢(𝐱𝐱, 𝑡𝑡), for a material domain 𝛺𝛺 ⊂ ℝ2 with boundary 𝜕𝜕𝜕𝜕, 

partitioned into a Robin frontier, 𝛤𝛤𝑅𝑅 , corresponding to the heat flux inflow surface, 

and two Neumann frontiers,  𝛤𝛤𝑁𝑁𝑖𝑖𝑖𝑖 which corresponds to the interior inter-ply 

contact interface and  𝛤𝛤𝑁𝑁𝑒𝑒𝑒𝑒 for the rest of the exterior contour, such that 𝜕𝜕𝜕𝜕���� = 𝛤𝛤𝑅𝑅� ∪

𝛤𝛤𝑁𝑁𝚤𝚤𝚤𝚤����� ∪  𝛤𝛤𝑁𝑁𝑒𝑒𝑒𝑒�����, 𝛤𝛤𝑅𝑅 ∩ 𝛤𝛤𝑁𝑁𝑖𝑖𝑖𝑖 ∩ 𝛤𝛤𝑁𝑁𝑒𝑒𝑒𝑒 = {∅} and for a time interval 𝐼𝐼𝑡𝑡 = (0,𝑇𝑇], under an 

external arbitrary transient excitation 𝑞𝑞(𝐱𝐱, 𝑡𝑡),∀(𝐱𝐱, 𝑡𝑡) ∈ 𝛤𝛤𝑅𝑅 × 𝐼𝐼𝑡𝑡: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑚𝑚

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝛁𝛁 ⋅ (𝑲𝑲 ⋅ 𝛁𝛁𝑢𝑢) = 0 𝑖𝑖𝑖𝑖 Ω × 𝐼𝐼𝑡𝑡
𝒏𝒏 ⋅ (𝑲𝑲 ⋅ 𝛁𝛁𝑢𝑢) = 𝑞𝑞 − 𝑙𝑙(𝑢𝑢 − 𝑢𝑢∞) 𝑜𝑜𝑜𝑜 Γ𝑅𝑅 × 𝐼𝐼𝑡𝑡
𝒏𝒏 ⋅ (𝑲𝑲 ⋅ 𝛁𝛁𝑢𝑢) = − 𝑐𝑐∆𝑢𝑢 𝑜𝑜𝑜𝑜 Γ𝑁𝑁𝑖𝑖𝑖𝑖 × 𝐼𝐼𝑡𝑡
𝒏𝒏 ⋅ (𝑲𝑲 ⋅ 𝛁𝛁𝑢𝑢) = 0 𝑜𝑜𝑜𝑜 Γ𝑁𝑁𝑒𝑒𝑒𝑒 × 𝐼𝐼𝑡𝑡

𝑢𝑢 = 𝑢𝑢∞ 𝑜𝑜𝑜𝑜 Ω × {0}

 ( 2.1 ) 

where 𝑚𝑚 � 𝐽𝐽
𝑚𝑚3⋅𝐾𝐾

� is the volumetric heat capacity, 𝑲𝑲� 𝑊𝑊
𝑚𝑚⋅𝐾𝐾

� is the thermal conductivity 

matrix, 𝒏𝒏 is the exterior unit normal to the boundaries, 𝑙𝑙 � 𝑊𝑊
𝑚𝑚2⋅𝐾𝐾

� is the heat transfer 

coefficient, 𝑢𝑢∞ is the external ambient temperature, 𝑐𝑐 � 𝑊𝑊
𝑚𝑚2⋅𝐾𝐾

� is the thermal contact 

conductance and ∆𝑢𝑢 is the temperature drop across the interface. 
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Chapter 3  

Real-time monitoring 

Real-time temperature monitoring of the ATP process is mandatory to define 

suitable feedback control systems. A thermopair typically placed on the composite-

placement head interface of the domain of interest can provide the temperature 

history, the post-processing of which allows for an appropriate assessment of the 

running process. Herein, the approach proposed by Aguado et al. [4] is presented. 

The objective is to apply this fast simulation methodology to find a computable 

representation of 𝑢𝑢(𝐱𝐱0, 𝑡𝑡0), the temperature at an arbitrary boundary point 𝐱𝐱0 ∈

Γ𝑁𝑁𝑒𝑒𝑒𝑒 at any instant 𝑡𝑡0 ∈ 𝐼𝐼𝑡𝑡 , that is a solution of the thermal model in equation (2.1). 

The key point of the simulation strategy is the feasibility of the application of the 

reciprocity principle to the governing equation of the problem. For this reason, a 

space-time approach is initially precluded since the heat equation operator is not 

self-adjoint in this domain. Harmonic analysis is considered as the basis of an 

alternative procedure, where the forward and inverse Fourier transforms (3.1) of 

temperature are used: 

 

⎩
⎪
⎨

⎪
⎧𝑢𝑢�(𝐱𝐱,𝜔𝜔) =  ℱ[𝑢𝑢(𝐱𝐱, 𝑡𝑡)] = � 𝑢𝑢(𝐱𝐱, 𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖  𝑑𝑑𝑑𝑑

∞

−∞

𝑢𝑢(𝐱𝐱, 𝑡𝑡) =  ℱ−1[𝑢𝑢�(𝐱𝐱,𝜔𝜔)] =
1

2𝜋𝜋
� 𝑢𝑢�(𝐱𝐱,𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  𝑑𝑑𝑑𝑑
∞

−∞

 ( 3.1 ) 

where 𝜔𝜔 is the angular frequency and 𝑖𝑖 denotes the imaginary unit. Harmonic 

solutions are related to long-term responses and so they do not rely on the initial 

conditions of problems. However, for practical purposes, transient regime effects 

become negligible as the obtained long-term solution is rapidly met. Then, 

recalling the properties of Fourier transform [6], problem (2.1) can be rewritten 

as: 
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⎩
⎪
⎨

⎪
⎧𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢� − 𝛁𝛁 ⋅ (𝑲𝑲 ⋅ 𝛁𝛁𝑢𝑢�) = 0 𝑖𝑖𝑖𝑖 Ω

𝒏𝒏 ⋅ (𝑲𝑲 ⋅ 𝛁𝛁𝑢𝑢�) = 𝑞𝑞� − 𝑙𝑙𝑢𝑢� 𝑜𝑜𝑜𝑜 Γ𝑅𝑅
𝒏𝒏 ⋅ (𝑲𝑲 ⋅ 𝛁𝛁𝑢𝑢�) = − 𝑐𝑐∆𝑢𝑢� 𝑜𝑜𝑜𝑜 Γ𝑁𝑁𝑖𝑖𝑖𝑖

𝒏𝒏 ⋅ (𝑲𝑲 ⋅ 𝛁𝛁𝑢𝑢�) = 0 𝑜𝑜𝑜𝑜 Γ𝑁𝑁𝑒𝑒𝑒𝑒
 ( 3.2 ) 

where the external ambient temperature 𝑢𝑢∞ is omitted as it is regarded to be 

constant in time and thus it can be afterwards added to the obtained solution. The 

equivalent weak formulation of (3.2) reads: 

Find 𝑢𝑢� ∈ 𝐻𝐻1(𝛺𝛺) such that 
 (𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢� , 𝑣𝑣�)𝛺𝛺 + (𝑲𝑲 ⋅ 𝜵𝜵𝑢𝑢� ,𝜵𝜵𝑣𝑣�)𝛺𝛺 + 〈𝑙𝑙𝑢𝑢� , 𝑣𝑣�〉𝛤𝛤𝑅𝑅 + 〈𝑐𝑐𝑐𝑐𝑢𝑢� , 𝑣𝑣�〉𝛤𝛤𝑁𝑁𝑖𝑖𝑖𝑖 = 〈𝑞𝑞�,𝑣𝑣�〉𝛤𝛤𝑅𝑅  ( 3.3 ) 
for all test function 𝑣𝑣� ∈ 𝐻𝐻1(𝛺𝛺) 

where 

 (𝑓𝑓,𝑔𝑔)Ω = �𝑓𝑓 ⋅ 𝑔𝑔∗ 𝑑𝑑Ω
 

Ω

; 〈𝑓𝑓,𝑔𝑔〉Γ = �𝑓𝑓 ⋅ 𝑔𝑔∗ 𝑑𝑑Γ
 

Γ

 ( 3.4 ) 

indicate the scalar product of two complex functions, 𝑓𝑓 and 𝑔𝑔, in the general case, 

in the space domain of the problem, (𝑓𝑓,𝑔𝑔)Ω, and the trace over the different parts 

of its boundary, 〈𝑓𝑓,𝑔𝑔〉Γ. Also, 𝑓𝑓∗ denotes the complex conjugate of a generic 

complex-valued function, 𝑓𝑓. Hence, the differential operator associated to equation 

(3.3) turns out to be symmetrical, yet not hermitian –that is, the system matrix 

associated to a finite-dimensional basis of the space of solutions is equal to its 

transpose although it is not equal to its conjugate transpose– and so reciprocity 

principle is proven to hold for the case of real harmonic excitations, as follows. 

Suppose that a real arbitrary excitation 𝑞𝑞�1(𝐱𝐱,𝜔𝜔) ∈ ℝ produces a thermal field 

𝑢𝑢�1(𝐱𝐱,𝜔𝜔) ∈ ℂ that is solution of (3.2) for a given frequency. Suppose that another 

real arbitrary heat flux 𝑞𝑞�2(𝐱𝐱,𝜔𝜔) ∈ ℝ which analogously produces field 𝑢𝑢�2(𝐱𝐱,𝜔𝜔) ∈ ℂ 

at the same angular frequency. Then, reciprocity is satisfied since the following is 

true: 

 �𝑞𝑞�1𝑢𝑢�2∗  𝑑𝑑Γ
 

Γ𝑅𝑅

= �𝑞𝑞�2𝑢𝑢�1∗ 𝑑𝑑Γ
 

Γ𝑅𝑅

 ( 3.5 ) 

Moreover, taking into account elements of harmonic analysis, the decomposition of 

a real arbitrary external excitation into the sum of its corresponding even 

𝑞𝑞𝑒𝑒(𝐱𝐱, 𝑡𝑡) ∈ ℝ and odd 𝑞𝑞𝑜𝑜(𝐱𝐱, 𝑡𝑡) ∈ ℝ counterparts such that 𝑞𝑞(𝐱𝐱, 𝑡𝑡) =  𝑞𝑞𝑒𝑒(𝐱𝐱, 𝑡𝑡) +

𝑞𝑞𝑜𝑜(𝐱𝐱, 𝑡𝑡) ∈ ℝ, allows for the decomposition of the original space-time domain 

problem into two identical problems in the space-frequency domain based on the 
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corresponding real even 𝑞𝑞�𝑒𝑒(𝐱𝐱,𝜔𝜔) ∈ ℝ and odd 𝑞𝑞�𝑜𝑜(𝐱𝐱,𝜔𝜔) ∈ ℝ counterparts of the 

heat source such that 𝑞𝑞� =  𝑞𝑞�𝑒𝑒 + 𝑖𝑖𝑞𝑞�𝑜𝑜 ∈ ℂ. The solution of (3.2) for these two real 

excitations accords with the real and imaginary parts of the solution of 

temperature response at any point of the space domain for any given frequency 

value such that 𝑢𝑢�(𝐱𝐱0,𝜔𝜔) = 𝑢𝑢�𝑒𝑒(𝐱𝐱0,𝜔𝜔) + 𝑖𝑖𝑢𝑢�𝑜𝑜(𝐱𝐱0,𝜔𝜔) ∈ ℂ. 

Due to all of this, the generalized transfer function, ℎ�(𝐱𝐱,𝜔𝜔), is defined as the 

solution of the following expression: 

 

⎩
⎪
⎨

⎪
⎧𝑖𝑖𝑖𝑖𝑖𝑖ℎ

� − 𝛁𝛁 ⋅ �𝑲𝑲 ⋅ 𝛁𝛁ℎ�� = 0 𝑖𝑖𝑖𝑖 Ω
𝒏𝒏 ⋅ �𝑲𝑲 ⋅ 𝛁𝛁ℎ�� = 𝛿𝛿(𝐱𝐱 − 𝐱𝐱0) − 𝑙𝑙ℎ� 𝑜𝑜𝑜𝑜 Γ𝑅𝑅
𝒏𝒏 ⋅ �𝑲𝑲 ⋅ 𝛁𝛁ℎ�� = − 𝑐𝑐∆ℎ� 𝑜𝑜𝑜𝑜 Γ𝑁𝑁𝑖𝑖𝑖𝑖

𝒏𝒏 ⋅ �𝑲𝑲 ⋅ 𝛁𝛁ℎ�� = 0 𝑜𝑜𝑜𝑜 Γ𝑁𝑁𝑒𝑒𝑒𝑒

 ( 3.6 ) 

for each frequency 𝜔𝜔 ∈ 𝐼𝐼𝜔𝜔 ⊆ ℝ within the range of feasible values and where 

𝛿𝛿(𝐱𝐱 − 𝐱𝐱0) denotes a Dirac delta flux imposed at the monitoring point 𝐱𝐱0. Because of 

only real excitations being regarded, reciprocity can be applied resulting in: 

 𝑢𝑢�(𝐱𝐱0,𝜔𝜔) = 〈ℎ� , 𝑞𝑞�𝑒𝑒〉Γ𝑅𝑅 + 𝑖𝑖〈ℎ� ,𝑞𝑞�𝑜𝑜〉Γ𝑅𝑅 = � ℎ�(𝐱𝐱,𝜔𝜔)𝑞𝑞�(𝐱𝐱,𝜔𝜔) 𝑑𝑑Γ
 

Γ𝑅𝑅
= 〈ℎ� , 𝑞𝑞�∗〉Γ𝑅𝑅  ( 3.7 ) 

It is noted that temperature is not the straight forward scalar product of the 

generalized transfer function of the problem over a specific external excitation, but 

over its complex conjugate instead, which is because the related differential 

operator is not hermitian in the space-frequency domain. Applying the inverse 

Fourier transform and the convolution theorem to equation (3.7), the space-

frequency domain monitoring is turned into a space-time domain representation 

of temperature at the desired point boundary point 𝐱𝐱0 ∈ Γ𝑁𝑁𝑒𝑒𝑒𝑒 at any instant 𝑡𝑡0 ∈ 𝐼𝐼𝑡𝑡 

by equation (3.8): 

 𝑢𝑢(𝐱𝐱0, 𝑡𝑡0) = � 〈ℎ(𝐱𝐱, 𝜏𝜏), 𝑞𝑞(𝐱𝐱, 𝑡𝑡0 − 𝜏𝜏)〉Γ𝑅𝑅  𝑑𝑑𝑑𝑑
𝑡𝑡0

0
 ( 3.8 ) 

where the scalar product notation is consistent owing to the external excitation 

being described by a real function. 

Therefore, on one hand, the obtained solution of 𝑢𝑢(𝐱𝐱0, 𝑡𝑡0) only requires knowledge 

of the arbitrary external imposed excitation 𝑞𝑞 up to the monitored instant 𝑡𝑡0. On 

the other hand, the solution of the generalized transfer function ℎ� is needed to be 

9 
 



CHAPTER 3   REAL-TIME MONITORING 
 

determined for all angular frequencies belonging to the interval 𝐼𝐼𝜔𝜔 prescribed by 

the forced external excitation, which must be known a priori in order to calculate 

the inverse Fourier transform of ℎ�, what in principle complicates the practical use 

of this methodology. Nevertheless, the use of separated representation techniques 

allow finding the solution of equation (3.6) for the predefined range of frequencies 

which can be done once and off-line using the Proper Generalized Decomposition 

reduced order method, as described further on. In this way, the response at the 

monitoring point of interest can be recovered performing a computationally 

inexpensive on-line post-processing step, allowing for real-time control of the 

Automated Tape Placement process. 

Finally, it is important to notice that space-frequency domain representations are 

broadly used in engineering, for instance, in dynamics of structures. In this 

framework, numerical analysis of structures subjected to dynamic excitations 

generally integrates finite element approaches into discrete harmonic analysis 

based strategies, like the one presented above, in order to obtain the system 

response far enough from the initial transient regime. An exhaustive review of the 

space-frequency domain method of response analysis in addition to the discrete 

Fourier transform methods in the context of structural dynamics is presented in 

[7]. 
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Chapter 4  

The Proper Generalized Decomposition 

Real-time monitoring of ATP has been established in Chapter 3, for which reason 

the generalized transfer function of the problem has been defined. Numerical 

simulation based on the proposed approach can be carried out within procedures 

of on-line control of the system under study making use of parametric Proper 

Generalized Decomposition based vademecums [8], calculated once beforehand in 

off-line stages. The numerical model is enriched through the use of PGD-based 

solutions as parameters can be regarded as extra-coordinates. Then, the 

computation of the generalized transfer function associated to the problem of 

study by a PGD separated representation of the unknown field [9, 10], as 

illustrated in the following, becomes of interest for the application of the presented 

real-time monitoring scheme. 

4.1  Illustrative example 

Consider a generalized transfer function, ℎ�(𝐱𝐱,𝜔𝜔), in a predefined range of angular 

frequencies 𝐼𝐼𝜔𝜔, satisfying: 

 �
𝑖𝑖𝑖𝑖ℎ� − 𝛁𝛁2ℎ� = 0 𝑖𝑖𝑖𝑖 Ω × 𝐼𝐼𝜔𝜔

𝒏𝒏 ⋅ 𝛁𝛁ℎ� = 𝛿𝛿(𝐱𝐱 − 𝐱𝐱0) 𝑜𝑜𝑜𝑜 Γ𝑁𝑁 × 𝐼𝐼𝜔𝜔
𝒏𝒏 ⋅ 𝛁𝛁ℎ� = 0 𝑜𝑜𝑜𝑜 𝜕𝜕Ω Γ𝑁𝑁⁄ × 𝐼𝐼𝜔𝜔

 ( 4.1 ) 

All thermal parameters have been disregarded, without loss of generality, as well 

as convection and contact conductance heat exchange terms have not been 

considered, with respect to expression of the full generalized transfer function in 

(3.6). The weak formulation of (4.1) yields: 
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Find ℎ�(𝒙𝒙,𝜔𝜔) such that 

 ��𝑖𝑖𝑖𝑖ℎ� , 𝑣𝑣��Ω 𝑑𝑑𝑑𝑑
 

𝐼𝐼𝜔𝜔

+ ��𝛁𝛁ℎ� ,𝛁𝛁𝑣𝑣��Ω 𝑑𝑑𝑑𝑑
 

𝐼𝐼𝜔𝜔

= �𝑣𝑣�∗(𝐱𝐱0,𝜔𝜔) 𝑑𝑑𝑑𝑑
 

𝐼𝐼𝜔𝜔

 ( 4.2 ) 

for all test function 𝑣𝑣�(𝒙𝒙,𝜔𝜔) in an appropriate functional space. 

The aim of the separated representation method is to compute 𝑛𝑛 couples of 

functions ��𝑋𝑋𝑗𝑗(𝐱𝐱),𝑊𝑊𝑗𝑗(𝜔𝜔)��
𝑗𝑗=1

𝑗𝑗=𝑛𝑛
 such that �𝑋𝑋𝑗𝑗�𝑗𝑗=1

𝑗𝑗=𝑛𝑛 ∈ 𝐻𝐻1(Ω) and �𝑊𝑊𝑗𝑗�𝑗𝑗=1
𝑗𝑗=𝑛𝑛 ∈ 𝐿𝐿2(𝐼𝐼𝜔𝜔) 

leading to an approximated solution of ℎ� in the separable form: 

 ℎ�(𝐱𝐱,𝜔𝜔) ≈ ℎ�𝑛𝑛(𝐱𝐱,𝜔𝜔) = �𝑋𝑋𝑗𝑗(𝐱𝐱) ⋅ 𝑊𝑊𝑗𝑗(𝜔𝜔)
𝑛𝑛

𝑗𝑗=1

 ( 4.3 ) 

Hence, a nonlinear problem must be solved in order to determine each new term of 

the approximation. The construction of ℎ�𝑛𝑛 is performed by application of the so-

called alternating directions fixed point algorithm. In this progressive scheme, the 

first 0 ≤  𝑚𝑚 < 𝑛𝑛 functional couples involved in (4.3) are supposed known and each 

iteration step is intended for an enrichment couple �𝑅𝑅(𝐱𝐱), 𝑆𝑆(𝜔𝜔)� to constitute the 

next functional couple (𝑋𝑋𝑚𝑚+1,𝑊𝑊𝑚𝑚+1) after convergence of the fixed point 

algorithm: 

 ℎ�𝑚𝑚+1(𝐱𝐱,𝜔𝜔) = ℎ�𝑚𝑚(𝐱𝐱,𝜔𝜔) + 𝑅𝑅(𝐱𝐱) ⋅ 𝑆𝑆(𝜔𝜔) ( 4.4 ) 
To start building up the solution, the test function 𝑣𝑣� is assumed as: 

 𝑣𝑣�(𝐱𝐱,𝜔𝜔) = 𝑣𝑣�𝑅𝑅(𝐱𝐱) ⋅ 𝑆𝑆(𝜔𝜔) + 𝑅𝑅(𝐱𝐱) ⋅ 𝑣𝑣�𝑆𝑆(𝜔𝜔) ( 4.5 ) 

with variations 𝑣𝑣�𝑅𝑅(𝐱𝐱) ∈ 𝐻𝐻1(Ω) and 𝑣𝑣�𝑆𝑆(𝜔𝜔) ∈ 𝐿𝐿2(𝐼𝐼𝜔𝜔). Introducing (4.4) and (4.5) into 

(4.2) results in: 

 

� (𝑖𝑖𝑖𝑖 ⋅ 𝜔𝜔𝜔𝜔 − 𝛁𝛁2𝑅𝑅 ⋅ 𝑆𝑆) ⋅ (𝑣𝑣�𝑅𝑅 ⋅ 𝑆𝑆 + 𝑅𝑅 ⋅ 𝑣𝑣�𝑆𝑆)∗ 𝑑𝑑𝐱𝐱 𝑑𝑑𝑑𝑑
 

Ω×𝐼𝐼𝜔𝜔

= � �𝛿𝛿(𝐱𝐱 − 𝐱𝐱0) − ℎ�𝑚𝑚(𝐱𝐱,𝜔𝜔)� ⋅ (𝑣𝑣�𝑅𝑅 ⋅ 𝑆𝑆 + 𝑅𝑅 ⋅ 𝑣𝑣�𝑆𝑆)∗ 𝑑𝑑𝐱𝐱 𝑑𝑑𝑑𝑑
 

Ω×𝐼𝐼𝜔𝜔

 
( 4.6 ) 

The alternating directions fixed point algorithm is applied to compute the couple of 

functions (𝑅𝑅, 𝑆𝑆) in two stages in each iteration step: 
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• Update of 𝑅𝑅(𝐱𝐱) ∈ 𝐻𝐻1(𝛺𝛺) 
𝑆𝑆(𝜔𝜔) is assumed known, which implies that 𝑣𝑣�𝑆𝑆(𝜔𝜔) vanishes in (4.5). Thus, 

equation (4.6) can be rewritten as: 

 

 𝛼𝛼𝑆𝑆(𝑖𝑖𝑖𝑖, 𝑣𝑣�𝑅𝑅)Ω + 𝛽𝛽𝑆𝑆(𝛁𝛁𝑅𝑅,𝛁𝛁𝑣𝑣�𝑅𝑅)Ω

= 𝛾𝛾𝑆𝑆𝑣𝑣�𝑅𝑅∗(𝐱𝐱0) − � �𝛼𝛼𝑆𝑆
𝑗𝑗�𝑖𝑖𝑖𝑖𝑗𝑗 ,𝑣𝑣�𝑅𝑅�Ω + 𝛽𝛽𝑆𝑆

𝑗𝑗�𝛁𝛁𝑋𝑋𝑗𝑗 ,𝛁𝛁𝑣𝑣�𝑅𝑅�Ω�
𝑚𝑚−1

𝑗𝑗=1

 ( 4.7 ) 

for all 𝑣𝑣�𝑅𝑅(𝐱𝐱) ∈ 𝐻𝐻1(Ω), with coefficients: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝛼𝛼𝑆𝑆 = (𝜔𝜔𝜔𝜔, 𝑆𝑆)𝐼𝐼𝜔𝜔
𝛼𝛼𝑆𝑆
𝑗𝑗 = �𝜔𝜔𝑊𝑊𝑗𝑗 , 𝑆𝑆�

𝐼𝐼𝜔𝜔
𝛽𝛽𝑆𝑆 = (𝑆𝑆, 𝑆𝑆)𝐼𝐼𝜔𝜔
𝛽𝛽𝑆𝑆
𝑗𝑗 = �𝑊𝑊𝑗𝑗 , 𝑆𝑆�

𝐼𝐼𝜔𝜔
𝛾𝛾𝑆𝑆 = (1, 𝑆𝑆)𝐼𝐼𝜔𝜔

 ( 4.8 ) 

which have to be recomputed for every update of 𝑆𝑆 after each iteration. The 

recovered strong formulation as a system of linear equations can be solved 

by standard discretization techniques applied to the spatial domain in order 

to compute the space function 𝑅𝑅. 

• Update of 𝑆𝑆(𝜔𝜔) ∈ 𝐿𝐿2(𝐼𝐼𝜔𝜔) 
𝑅𝑅(𝐱𝐱) is already known from the previous stage. Consequently, 𝑣𝑣� writes 

𝑅𝑅(𝐱𝐱) ⋅ 𝑣𝑣�𝑆𝑆(𝜔𝜔) and equation (4.6) can be rewritten as: 

 

 𝛼𝛼𝑅𝑅(𝜔𝜔𝜔𝜔, 𝑣𝑣�𝑆𝑆)Iω + 𝛽𝛽𝑅𝑅(𝑆𝑆, 𝑣𝑣�𝑆𝑆)Iω

= 𝛾𝛾𝑅𝑅(1, 𝑣𝑣�𝑆𝑆)Iω − � �𝛼𝛼𝑅𝑅
𝑗𝑗�𝜔𝜔𝜔𝜔𝑗𝑗 , 𝑣𝑣�𝑆𝑆�Iω + 𝛽𝛽𝑅𝑅

𝑗𝑗�𝑊𝑊𝑗𝑗 ,𝑣𝑣�𝑆𝑆�Iω�
𝑚𝑚−1

𝑗𝑗=1

 ( 4.9 ) 

 

for all 𝑣𝑣�𝑆𝑆(𝐱𝐱) ∈ 𝐿𝐿2(𝐼𝐼𝜔𝜔), with coefficients: 

 

⎩
⎪
⎨

⎪
⎧
𝛼𝛼𝑅𝑅 = (𝑖𝑖𝑖𝑖,𝑅𝑅)Ω
𝛼𝛼𝑅𝑅
𝑗𝑗 = �𝑖𝑖𝑖𝑖𝑗𝑗 ,𝑅𝑅�

Ω
𝛽𝛽𝑅𝑅 = (𝛁𝛁𝑅𝑅,𝛁𝛁𝑅𝑅)Ω
𝛽𝛽𝑅𝑅
𝑗𝑗 = �𝛁𝛁𝑋𝑋𝑗𝑗 ,𝛁𝛁𝑅𝑅�

Ω
𝛾𝛾𝑅𝑅 = 𝑅𝑅(𝐱𝐱0)

 ( 4.10 ) 

which have to be computed in every iteration from known updates of 𝑅𝑅. The 

recovered strong formulation as a point-wise algebraic equation can be 

solved again using standard discretization techniques applied to the 
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angular frequency domain so that a continuous approximation of the 

frequency function 𝑆𝑆 is obtained. 

Equations (4.7) and (4.9) are solved iteratively until reaching convergence, in 

other words, until both enrichment functions reach a fixed point. Considering two 

consecutive solutions of the enrichment couple, �𝑅𝑅(𝑝𝑝)(𝐱𝐱), 𝑆𝑆(𝑝𝑝)(𝜔𝜔)� and 

�𝑅𝑅(𝑝𝑝−1)(𝐱𝐱), 𝑆𝑆(𝑝𝑝−1)(𝜔𝜔)�, convergence of the alternating directions algorithm is 

verified when the following stopping criterion is fulfilled: 

 𝑒𝑒 = �𝑅𝑅(𝑝𝑝)(𝐱𝐱) ⋅ 𝑆𝑆(𝑝𝑝)(𝜔𝜔) − 𝑅𝑅(𝑝𝑝−1)(𝐱𝐱) ⋅ 𝑆𝑆(𝑝𝑝−1)(𝜔𝜔)� < 𝜀𝜀𝑒𝑒 ( 4.11 ) 

where 𝜀𝜀𝑒𝑒 is a small enough tolerance parameter and the 𝑙𝑙2-norm applies. In the 

global iterative procedure, each functional couple is defined after reaching 

convergence of the enrichment couple: 

 𝑋𝑋𝑚𝑚+1(𝐱𝐱) = 𝑅𝑅(𝑝𝑝𝑚𝑚+1)(𝐱𝐱) ; 𝑊𝑊𝑚𝑚+1(ω) = 𝑆𝑆(𝑝𝑝𝑚𝑚+1)(ω) ( 4.12 ) 

where 𝑝𝑝𝑚𝑚+1 is the number of iterations required for solving the non-linear 

problem corresponding to next functional couple that is being calculated. 

The global iterative procedure of enrichment is continued up to the 𝑛𝑛-th iteration, 

the convergence of which is verified using the residual of the weak form in (4.2), 

since the exact solution is generally unknown: 

 𝐸𝐸 =
�𝑖𝑖𝑖𝑖ℎ� − 𝛁𝛁2ℎ� − 𝛿𝛿(𝐱𝐱 − 𝐱𝐱0)�

‖𝛿𝛿(𝐱𝐱 − 𝐱𝐱0)‖ < 𝜀𝜀𝐸𝐸  ( 4.13 ) 

where 𝜀𝜀𝐸𝐸  is a small enough tolerance parameter. Other error estimators based on 

the assessment of different quantities of interest may be defined. 

The introduction of model parameters as extra coordinates into the PGD-based 

solution entails the increase of dimensionality of the obtained representation. The 

solution of 𝑁𝑁 = ∑ 𝑝𝑝𝑗𝑗
𝑗𝑗=𝑛𝑛
𝑗𝑗=1 two-dimensional space problems and also 𝑁𝑁 algebraic 

frequency systems is involved in the solution of the entire procedure of the above 

example. Therefore, complexity of the PGD scales linearly with the spatial 

dimension as the cost related to algebraic problems is negligible in terms of 

efficiency loss towards an accurate solution, unlike for discretization-based 
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methods, whose complexity increases exponentially with the number of 

dimensions. 

In view of the above, if the number of extra-coordinates is increased, the 

superiority of PGD with respect to standard approaches is made clear in relation to 

computational cost and the use of PGD turns out to be an efficient tool. It is the aim 

of next Chapter 5 to present a generalization of the described procedure to higher-

dimensional models.  

4.2  General framework 

In this section, a general framework of the Proper Generalized Decomposition is 

presented [10, 11]. Based on tensor notation, it allows for the treatment of more 

general high-dimensional models by the PGD. In addition, the practical 

implementation of the PGD needs for the use of discretization techniques to obtain 

the representation of all involved functions. The finite element method is a robust 

standard technique broadly used for such interpolation purposes. Moreover, direct 

solutions of the ATP thermal model by finite elements yield reference 

approximations that are useful in order to verify the obtained PGD-based 

representations, and besides, making use of the same interpolation tools. 

Consider the weak formulation of a partial differential equation: 

 𝑎𝑎�𝑢𝑢(𝐱𝐱1, … 𝐱𝐱𝐷𝐷), 𝑣𝑣(𝐱𝐱1, … 𝐱𝐱𝐷𝐷)� = 𝑏𝑏�𝑣𝑣(𝐱𝐱1, … 𝐱𝐱𝐷𝐷)� ( 4.14 ) 

with 𝑎𝑎(𝑢𝑢, 𝑣𝑣) and 𝑏𝑏(𝑣𝑣) respectively bilinear and linear forms defined in a 

multidimensional domain involving not necessarily one-dimensional coordinates, 

{𝐱𝐱1, … 𝐱𝐱𝐷𝐷}. The solution of (4.14) can be approximated by: 

 𝑢𝑢(𝐱𝐱1, … 𝐱𝐱𝐷𝐷) ≈�𝑢𝑢(𝐱𝐱1)
𝑁𝑁

𝑗𝑗=1

⋅ ⋯ ⋅ 𝑢𝑢(𝐱𝐱𝐷𝐷) ( 4.15 ) 

with tensor form: 

 U = �  �𝐔𝐔𝑑𝑑
𝑗𝑗

𝐷𝐷

𝑑𝑑=1

𝑛𝑛𝑢𝑢

𝑗𝑗=1

 ( 4.16 ) 

The discrete form of (4.14) reads: 
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 V𝑇𝑇𝒜𝒜U = V𝑇𝑇ℬ ( 4.17 ) 
where 

 𝒜𝒜 = ��𝔸𝔸𝑑𝑑
𝑗𝑗

𝐷𝐷

𝑑𝑑=1

𝑛𝑛𝐴𝐴

𝑗𝑗=1

; ℬ = ��𝐁𝐁𝑑𝑑
𝑗𝑗

𝐷𝐷

𝑑𝑑=1

𝑛𝑛𝐵𝐵

𝑗𝑗=1

 ( 4.18 ) 

First approximation is arbitrarily set. Iteratively, the separated representation is 

updated within an enrichment stage that looks for a set of functions {𝐑𝐑1, …𝐑𝐑𝐷𝐷} to 

enrich the solution: 

 U = �  �𝐔𝐔𝑑𝑑
𝑗𝑗

𝐷𝐷

𝑑𝑑=1

𝑛𝑛𝑢𝑢

𝑗𝑗=1���������
U𝑢𝑢

+ �𝐑𝐑𝑑𝑑

𝐷𝐷

𝑑𝑑=1�����
U𝑅𝑅

 
( 4.19 ) 

Then, the alternating directions fixed point algorithm is applied to all functions in 

U𝑅𝑅. Every 𝐑𝐑𝑗𝑗 is updated in 𝐷𝐷 steps as the rest of enrichment functions, 

�𝐑𝐑1, …𝐑𝐑𝑗𝑗−1,𝐑𝐑𝑗𝑗+1, …𝐑𝐑𝐷𝐷�, are assumed known. Thus, the associated test function 

reads:  

 V = 𝐕𝐕𝑗𝑗�𝐑𝐑𝑑𝑑

𝐷𝐷

𝑑𝑑=1
𝑑𝑑≠𝑗𝑗

 
( 4.20 ) 

The discrete weak form involves: 

 V𝑇𝑇𝒜𝒜U𝑅𝑅 = �

⎝

⎜
⎛
𝐕𝐕𝑗𝑗𝑇𝑇𝔸𝔸𝑗𝑗𝑘𝑘𝐑𝐑𝑗𝑗�𝐑𝐑𝑝𝑝𝑇𝑇𝔸𝔸𝑝𝑝𝑘𝑘𝐑𝐑𝑝𝑝

𝐷𝐷

𝑝𝑝=1
𝑝𝑝≠𝑗𝑗 ⎠

⎟
⎞

𝑛𝑛𝐴𝐴

𝑘𝑘=1

= 𝐕𝐕𝑗𝑗𝑇𝑇𝕊𝕊𝐑𝐑𝑗𝑗 ( 4.21 ) 

 V𝑇𝑇𝒜𝒜U𝑢𝑢 = ��

⎝

⎜
⎛
𝐕𝐕𝑗𝑗𝑇𝑇𝔸𝔸𝑗𝑗𝑘𝑘𝐔𝐔𝑗𝑗𝑠𝑠�𝐑𝐑𝑝𝑝𝑇𝑇𝔸𝔸𝑝𝑝𝑘𝑘𝐔𝐔𝑝𝑝𝑠𝑠

𝐷𝐷

𝑝𝑝=1
𝑝𝑝≠𝑗𝑗 ⎠

⎟
⎞

𝑛𝑛𝑢𝑢

𝑠𝑠=1

𝑛𝑛𝐴𝐴

𝑘𝑘=1

= 𝐕𝐕𝑗𝑗𝑇𝑇𝐆𝐆 ( 4.22 ) 

 V𝑇𝑇ℬ = �

⎝

⎜
⎛
𝐕𝐕𝑗𝑗𝑇𝑇𝐁𝐁𝑗𝑗𝑘𝑘�𝐑𝐑𝑝𝑝𝑇𝑇𝐁𝐁𝑝𝑝𝑘𝑘

𝐷𝐷

𝑝𝑝=1
𝑝𝑝≠𝑗𝑗 ⎠

⎟
⎞

𝑛𝑛𝐵𝐵

𝑘𝑘=1

= 𝐕𝐕𝑗𝑗𝑇𝑇𝐅𝐅 ( 4.23 ) 

Each 𝑹𝑹𝑗𝑗  is finally determined by solving a linear system: 

 𝕊𝕊𝐑𝐑𝑗𝑗 = 𝐅𝐅 − 𝐆𝐆 ( 4.24 ) 
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Updating U𝑅𝑅 is accomplished through the fulfillment of the stopping criterion 

defined in (4.11) whose discrete form is: 

 𝑒𝑒 = �U𝑅𝑅
(𝑝𝑝) − U𝑅𝑅

(𝑝𝑝−1)� = �U𝑅𝑅
(𝑝𝑝)𝑇𝑇U𝑅𝑅

(𝑝𝑝) − 2 ⋅ U𝑅𝑅
(𝑝𝑝−1)𝑇𝑇U𝑅𝑅

(𝑝𝑝) + U𝑅𝑅
(𝑝𝑝−1)𝑇𝑇U𝑅𝑅

(𝑝𝑝−1) < 𝜀𝜀𝑒𝑒 ( 4.25 ) 

where  

 U𝑅𝑅
𝑇𝑇U𝑅𝑅 = �𝐑𝐑𝑗𝑗𝑇𝑇𝐑𝐑𝑗𝑗

𝐷𝐷

𝑗𝑗=1

 ( 4.26 ) 

Once each U𝑅𝑅 is updated, it is added into U𝑢𝑢 and the global enrichment strategy 

proceeds. The presented scheme converges when 𝑛𝑛𝑢𝑢 = 𝑁𝑁, that is, when the 

number of enrichment steps provides an accurate enough approximation of the 

unknown field. Quantification of the approximation can be made through equation 

(4.13) which in tensor form reads [11]: 

 𝐸𝐸 =
‖𝒜𝒜U − ℬ‖

‖ℬ‖
=
√U𝑇𝑇𝒜𝒜𝑇𝑇𝒜𝒜U − 2 ⋅ ℬ𝑇𝑇𝒜𝒜U + ℬ𝑇𝑇ℬ

√ℬ𝑇𝑇ℬ
< 𝜀𝜀𝐸𝐸  ( 4.27 ) 

where 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧U𝑇𝑇𝒜𝒜𝑇𝑇𝒜𝒜U = �����𝐔𝐔𝑑𝑑

𝑗𝑗𝑇𝑇𝔸𝔸𝑑𝑑𝑘𝑘
𝑇𝑇𝔸𝔸𝑑𝑑

𝑝𝑝𝐔𝐔𝑑𝑑𝑠𝑠
𝐷𝐷

𝑑𝑑=1

𝑛𝑛𝑢𝑢

𝑠𝑠=1

𝑛𝑛𝐴𝐴

𝑝𝑝=1

𝑛𝑛𝐴𝐴

𝑘𝑘=1

𝑛𝑛𝑢𝑢

𝑗𝑗=1

ℬ𝑇𝑇𝒜𝒜U = ����𝐁𝐁𝑑𝑑
𝑗𝑗𝑇𝑇𝔸𝔸𝑑𝑑𝑘𝑘𝐔𝐔𝑑𝑑

𝑝𝑝
𝐷𝐷

𝑑𝑑=1

𝑛𝑛𝑢𝑢

𝑝𝑝=1

𝑛𝑛𝐴𝐴

𝑘𝑘=1

𝑛𝑛𝐵𝐵

𝑗𝑗=1

ℬ𝑇𝑇ℬ = ���𝐁𝐁𝑑𝑑
𝑗𝑗𝑇𝑇𝐁𝐁𝑑𝑑𝑘𝑘

𝐷𝐷

𝑑𝑑=1

𝑛𝑛𝐵𝐵

𝑘𝑘=1

𝑛𝑛𝐵𝐵

𝑗𝑗=1

 ( 4.28 ) 

Calculation of the terms involved in the solution of equation (4.14) can be 

alternatively approximated using the so-called minimal residual PGD [12], whose 

associated discrete form reads: 

 V𝑇𝑇𝒜𝒜𝑇𝑇𝒜𝒜U = V𝑇𝑇𝒜𝒜𝑇𝑇ℬ ( 4.29 ) 

This alternative methodology is intended to solve problems which are not 

symmetric, for which convergence of the above described procedure cannot be 

ensured, although its applicability can be extended to general PGD-based solutions. 

On one hand, the symmetrized PGD scheme appears to be more robust. However, 
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on the other hand, convergence becomes slower when compared to the standard 

approach. 

 

4.3  Computer implementation 

Following the example illustrated in section 4.1  Illustrative example, the discrete 

representation is obtained by a finite element interpolation of functions in the 

corresponding space and angular frequency domains. According to the definition 

of the generalized transfer function of study (4.1), space domain functions are 

complex-valued. Therefore, all spatial modes are decomposed into the 

corresponding real and imaginary parts. Application of the decomposition to 

spatial enrichment function 𝑅𝑅(𝐱𝐱) reads: 

 𝑅𝑅(𝐱𝐱) = 𝑌𝑌(𝐱𝐱) + 𝑖𝑖𝑖𝑖(𝐱𝐱) ∈ ℂ ( 4.30 ) 

where 𝑌𝑌(𝐱𝐱) ∈ ℝ and 𝑍𝑍(𝐱𝐱) ∈ ℝ are the real-valued respectively real and imaginary 

components of 𝑅𝑅(𝐱𝐱). Discretization of the enrichment functions results1: 

 

⎩
⎪
⎨

⎪
⎧𝑅𝑅(𝐱𝐱) ≈��𝑌𝑌𝑗𝑗 + 𝑖𝑖𝑍𝑍𝑗𝑗� ⋅ 𝑁𝑁𝑗𝑗(𝐱𝐱)

𝑛𝑛𝑅𝑅

𝑗𝑗=1

= 𝐍𝐍𝐱𝐱𝑇𝑇 ⋅ {𝐘𝐘 + 𝑖𝑖𝐙𝐙} = �𝐍𝐍𝐱𝐱
𝑇𝑇 𝟎𝟎
𝟎𝟎 𝐍𝐍𝐱𝐱𝑇𝑇

� �𝐘𝐘𝐙𝐙�

𝑆𝑆(𝜔𝜔) ≈�𝑆𝑆𝑗𝑗 ⋅ 𝑁𝑁𝑗𝑗(𝜔𝜔)
𝑛𝑛𝑆𝑆

𝑗𝑗=1

= 𝐍𝐍ω𝑇𝑇 𝐒𝐒

 ( 4.31 ) 

where the nodal descriptions of enrichment space –in terms of 𝐘𝐘 and 𝐙𝐙, the 

discrete counterparts of the decomposition– and frequency, 𝐒𝐒, functions as well as 

vectors 𝐍𝐍𝐱𝐱 and 𝐍𝐍𝜔𝜔 contain the shape functions for interpolation over the space 

domain, Ω, and angular frequency domain, 𝐼𝐼𝜔𝜔. 

From equations (4.7) and (4.9), the matrices related to the discrete forms are 

defined: 

1 The discrete form of a generic operator, 𝔽𝔽(𝜶𝜶), over a complex-valued vector, 𝜶𝜶 ∈ ℂ𝑛𝑛𝛼𝛼 , is in 
general: 

 
𝔽𝔽 ∶ ℂ𝑛𝑛𝛼𝛼 ⟶ ℝ𝑛𝑛𝛼𝛼

 𝜶𝜶 ⟶ �Re(𝜷𝜷)
Im(𝜷𝜷)� = �

𝔽𝔽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝔽𝔽𝐼𝐼𝐼𝐼𝑅𝑅𝑅𝑅

𝔽𝔽𝐼𝐼𝐼𝐼𝑅𝑅𝑅𝑅 𝔽𝔽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
� �Re(𝜶𝜶)

Im(𝜶𝜶)�
 

so that 𝜷𝜷 = Re(𝜷𝜷) + 𝑖𝑖 Im(𝜷𝜷) ∈ ℂ𝑛𝑛𝛼𝛼  
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�𝑖𝑖 �𝐍𝐍𝐱𝐱 𝟎𝟎
𝟎𝟎 𝐍𝐍𝐱𝐱

� , �𝐍𝐍𝐱𝐱 𝟎𝟎
𝟎𝟎 𝐍𝐍𝐱𝐱

��
Ω

= � 𝑖𝑖 �𝐍𝐍𝐱𝐱 𝟎𝟎
𝟎𝟎 𝐍𝐍𝐱𝐱

� ⋅ �𝐍𝐍𝐱𝐱
𝑇𝑇 𝟎𝟎
𝟎𝟎 𝐍𝐍𝐱𝐱𝑇𝑇

�
∗

𝑑𝑑𝐱𝐱
 

Ω

= ��𝐍𝐍𝐱𝐱 𝟎𝟎
𝟎𝟎 𝐍𝐍𝐱𝐱

� ⋅ � 𝟎𝟎 −𝐍𝐍𝐱𝐱
𝐍𝐍𝐱𝐱 𝟎𝟎 � 𝑑𝑑𝐱𝐱

 

Ω

= � 𝟎𝟎 −𝕄𝕄𝐱𝐱
𝕄𝕄𝐱𝐱 𝟎𝟎 � 

( 4.32 ) 

where  

 𝕄𝕄𝐱𝐱 = �𝐍𝐍𝐱𝐱𝐍𝐍𝐱𝐱𝑇𝑇
 

Ω

𝑑𝑑𝐱𝐱 ( 4.33 ) 

Moreover: 

 

�𝛁𝛁 �𝐍𝐍𝐱𝐱 𝟎𝟎
𝟎𝟎 𝐍𝐍𝐱𝐱

� ,𝛁𝛁 �𝐍𝐍𝐱𝐱 𝟎𝟎
𝟎𝟎 𝐍𝐍𝐱𝐱

��
Ω

= �𝛁𝛁 �𝐍𝐍𝐱𝐱 𝟎𝟎
𝟎𝟎 𝐍𝐍𝐱𝐱

� ⋅ 𝛁𝛁 �𝐍𝐍𝐱𝐱
𝑇𝑇 𝟎𝟎
𝟎𝟎 𝐍𝐍𝐱𝐱𝑇𝑇

�
∗

𝑑𝑑𝐱𝐱
 

Ω

= �𝛁𝛁 �𝐍𝐍𝐱𝐱 𝟎𝟎
𝟎𝟎 𝐍𝐍𝐱𝐱

� ⋅ 𝛁𝛁 �𝐍𝐍𝐱𝐱
𝑇𝑇 𝟎𝟎
𝟎𝟎 𝐍𝐍𝐱𝐱𝑇𝑇

� 𝑑𝑑𝐱𝐱
 

Ω

= �𝕂𝕂 𝟎𝟎
𝟎𝟎 𝕂𝕂� 

( 4.34 ) 

where 

 𝕂𝕂 = �𝛁𝛁𝐍𝐍𝐱𝐱𝛁𝛁𝐍𝐍𝐱𝐱𝑇𝑇
 

Ω

𝑑𝑑𝐱𝐱 ( 4.35 ) 

And also: 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝕄𝕄ωω = (𝜔𝜔𝐍𝐍𝜔𝜔,𝐍𝐍𝜔𝜔)Iω = �𝐍𝐍𝜔𝜔𝜔𝜔𝐍𝐍ω𝑇𝑇𝑑𝑑𝑑𝑑

 

Iω

𝕄𝕄ω = (𝐍𝐍𝜔𝜔,𝐍𝐍𝜔𝜔)Iω = �𝐍𝐍𝜔𝜔𝐍𝐍ω𝑇𝑇𝑑𝑑𝑑𝑑
 

Iω

𝐝𝐝 = 〈𝐍𝐍𝐱𝐱 ⋅ 𝛅𝛅,𝐍𝐍𝐱𝐱〉ΓN = � �𝐍𝐍𝐱𝐱𝐍𝐍𝐱𝐱𝑇𝑇𝑑𝑑𝐱𝐱
 

ΓN

� {𝛅𝛅}

 ( 4.36 ) 

where 𝛅𝛅 is the discrete form of function 𝛿𝛿(𝐱𝐱 − 𝐱𝐱0 ) over Γ𝑅𝑅 and 𝟏𝟏 is a unit vector of 

the length of the discretization of the parameterized extra-coordinate. Due to all of 

this, using the tensor PGD notation above introduced, the corresponding discrete 

system associated to the illustrated model in (4.1) can be rewritten as: 

 �
𝒜𝒜 = 𝔸𝔸11⨂𝔸𝔸21 + 𝔸𝔸12⨂𝔸𝔸22 = � 𝟎𝟎 −𝕄𝕄𝐱𝐱

𝕄𝕄𝐱𝐱 𝟎𝟎 �⨂𝕄𝕄ωω + �𝕂𝕂 𝟎𝟎
𝟎𝟎 𝕂𝕂�⨂𝕄𝕄ω

ℬ = 𝐁𝐁11⨂𝐁𝐁21 = 𝐝𝐝⨂𝟏𝟏
 ( 4.37 ) 

Once the discrete right-hand side and left-hand side terms are finally defined, the 

approximate representation of the generalized transfer function by a finite 
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element approach is rightly obtained applying the general framework of PGD 

above presented. For this reason, it is expected that models being solved using the 

compact tensor PGD strategy can easily be enhanced, with respect to the inclusion 

of other thermal properties to the model, just by introducing the corresponding 

modifications and extra discrete operators into (4.37) in a systematic way. 
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Chapter 5  

Examples of PDG-based real-time monitoring of ATP 
thermal models 

The construction of multi-parametric models for solving the generalized transfer 

function (3.6) is considered, as proposed in [4, 14]. These enhanced parametric 

models can incorporate, other than angular frequency, parameters characterizing 

constitutive behavior besides geometry definition or initial and boundary 

conditions. Then, by solving the multi-parametric model one time, the solution for 

any value of the included parameters is made right accessible and thus improved 

real-time simulation is made possible, as well as inverse analysis and optimization 

operations. 

In what follows, models including anisotropic thermal conductivity and thermal 

contact conductance as extra-coordinates are implemented into the PGD-based 

solution of the generalized transfer function which constitutes the off-line stage of 

the numerical simulation strategy. Then, the obtained models are verified against 

reference solutions of these models built using finite elements so that real-time 

monitoring in the on-line stage can be assessed. 

Calculations have been carried out using MATLAB® and adapting the existing code 

developed in the Institut de Recherche en Génie Civil et Mécanique at the École 

Centrale de Nantes, to the corresponding requirements. 

 

5.1 Model including anisotropic thermal conductivity 

The monitoring strategy proposed in Chapter 3 is applied for building a multi-

parametric solution of a model including anisotropic thermal conductivity as extra-

coordinate. Parametric analysis of the problem behavior subject to anisotropic 
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thermal conductivity is of interest since reinforced composite structures, thus not 

isotropic materials, are produced by the ATP process. First, in the so called off-line 

stage, problem (4.1) is rewritten with anisotropic thermal conductivity tensor as 

new parameter, as well as regarding other thermal constants. The space 

coordinate system is chosen so that it is related to the principal directions of 𝑲𝑲: 

 𝑲𝑲 = �
𝑘𝑘𝑥𝑥𝑥𝑥 𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦 𝑘𝑘𝑦𝑦𝑦𝑦

� ∈ ℝ2 ⟶ 𝑲𝑲 = 𝑘𝑘 ⋅ �1 0
0 𝛼𝛼� ( 5.1 ) 

where 𝛼𝛼 = 𝑘𝑘𝑥𝑥𝑥𝑥 𝑘𝑘𝑦𝑦𝑦𝑦⁄  ∈ 𝐼𝐼𝑘𝑘 is the ratio of the principal thermal conductivities 

belonging to a predefined range of values. Thus, the influence of relative values of 

thermal conductivities 𝑘𝑘𝑥𝑥𝑥𝑥 and 𝑘𝑘𝑦𝑦𝑦𝑦 with respect to the thermal behavior of the 

problem can be evaluated by monitoring temperature evolution at for several 

predefined values of the principal thermal conductivities’ ratio. The generalized 

transfer function is found as the solution to: 

 �
𝑖𝑖𝑖𝑖𝑖𝑖ℎ� − 𝛁𝛁 ⋅ �𝑲𝑲 ⋅ 𝛁𝛁ℎ�� = 0 𝑖𝑖𝑖𝑖 Ω × 𝐼𝐼𝜔𝜔 × 𝐼𝐼𝑘𝑘

𝒏𝒏 ⋅ �𝑲𝑲 ⋅ 𝛁𝛁ℎ�� = 𝛿𝛿(𝐱𝐱 − 𝐱𝐱0) − 𝑙𝑙ℎ� 𝑜𝑜𝑜𝑜 Γ𝑅𝑅 × 𝐼𝐼𝜔𝜔 × 𝐼𝐼𝑘𝑘
𝒏𝒏 ⋅ �𝑲𝑲 ⋅ 𝛁𝛁ℎ�� = 0 𝑜𝑜𝑜𝑜 Γ𝑁𝑁 × 𝐼𝐼𝜔𝜔 × 𝐼𝐼𝑘𝑘

 ( 5.2 ) 

which is in turn performed using the associated PDG approximation: 

 ℎ�(𝐱𝐱,𝜔𝜔,𝛼𝛼) ≈ ℎ�𝑛𝑛(𝐱𝐱,𝜔𝜔,𝛼𝛼) = �𝑋𝑋𝑗𝑗(𝐱𝐱) ⋅ 𝑊𝑊𝑗𝑗(𝜔𝜔)
𝑛𝑛

𝑗𝑗=1

⋅ 𝐾𝐾𝑗𝑗(𝛼𝛼) ( 5.3 ) 

where �𝐾𝐾𝑗𝑗(𝛼𝛼)�
𝑗𝑗=1
𝑗𝑗=𝑛𝑛 ∈ 𝐿𝐿2(𝐼𝐼𝑘𝑘) are extra separated functions to be determined. The 

algorithm presented in 4.1 Illustrative example and generalized in 4.2 General 

framework is applied to determine all functions by implementing the discrete 

system related to problem (5.2) from equations (4.37), which reads: 

 

⎩
⎪
⎨

⎪
⎧𝒜𝒜 = 𝑚𝑚 � 𝟎𝟎 −𝕄𝕄𝐱𝐱

𝕄𝕄𝐱𝐱 𝟎𝟎 �⨂𝕄𝕄ωω⨂𝕄𝕄k + 𝑘𝑘 �𝕂𝕂𝑥𝑥𝑥𝑥 𝟎𝟎
𝟎𝟎 𝕂𝕂𝑥𝑥𝑥𝑥

�⨂𝕄𝕄ω⨂𝕄𝕄k

  +𝑘𝑘 �
𝕂𝕂𝑦𝑦𝑦𝑦 𝟎𝟎
𝟎𝟎 𝕂𝕂𝑦𝑦𝑦𝑦

�⨂𝕄𝕄ω⨂𝕄𝕄kk + 𝑙𝑙𝑙𝑙⨂𝕄𝕄ω⨂𝕄𝕄k

ℬ = 𝐝𝐝⨂𝟏𝟏⨂𝟏𝟏

 ( 5.4 ) 

where: 
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⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧𝕂𝕂𝑥𝑥𝑥𝑥 = �𝛁𝛁𝑥𝑥(𝐍𝐍𝐱𝐱)𝛁𝛁𝑥𝑥𝑇𝑇(𝐍𝐍𝐱𝐱)

 

Ω

𝑑𝑑𝐱𝐱

𝕂𝕂𝑦𝑦𝑦𝑦 = �𝛁𝛁𝑦𝑦(𝐍𝐍𝐱𝐱)𝛁𝛁𝑦𝑦𝑇𝑇(𝐍𝐍𝐱𝐱)
 

Ω

𝑑𝑑𝐱𝐱

𝕄𝕄kk = �𝐍𝐍k𝛼𝛼𝐍𝐍k𝑇𝑇𝑑𝑑𝑑𝑑
 

Ik

𝕄𝕄k = �𝐍𝐍k𝐍𝐍k𝑇𝑇𝑑𝑑𝑑𝑑
 

Ik

𝕃𝕃 = �𝐍𝐍𝐱𝐱𝐍𝐍𝐱𝐱𝑇𝑇𝑑𝑑𝐱𝐱
 

ΓR

 ( 5.5 ) 

The tolerance parameter for the alternating directions fixed-point algorithm is set 

to be the square root of the machine precision, 𝜀𝜀𝑒𝑒 = 10−8, whilst a maximum 

number of 50 iterations of the global enrichment procedure are considered. Once 

the separated representation of ℎ� is obtained, transient evolution of temperature, 

𝑢𝑢(𝐱𝐱0, 𝑡𝑡0,𝛼𝛼0), from equation (3.8), can be recovered at the monitoring point, 𝐱𝐱0 ∈

Γ𝑁𝑁, up to any time instant, 𝑡𝑡0 ∈ 𝐼𝐼𝑡𝑡 , and for any predefined value of the ratio of 

principal thermal conductivities, 𝛼𝛼0 ∈ 𝐼𝐼𝑘𝑘, in what constitutes the on-line stage of 

the numerical simulation: 

 𝑢𝑢(𝐱𝐱0, 𝑡𝑡0,𝛼𝛼0) = 𝑢𝑢∞ + � 〈ℎ(𝐱𝐱, 𝜏𝜏,𝛼𝛼0), 𝑞𝑞(𝐱𝐱, 𝑡𝑡0 − 𝜏𝜏)〉Γ𝑅𝑅  𝑑𝑑𝑑𝑑
𝑡𝑡0

0
 ( 5.6 ) 

The external ambient temperature is rightly added to the obtained solution in the 

post-process since it is considered to be constant in time. Computer 

implementation of the problem, besides requiring the use of discrete Fourier 

transform methods, can take advantage of the separated representation 

description of the solution of the generalized transfer function when it comes to 

on-line stage. Taking into account that the external excitation is assumed known 

beforehand as well as it only depends on space and time coordinates, the singular 

value decomposition (SVD) technique [15] is applied to approximate a discrete 

representation of the inflow heat flux: 

 𝑞𝑞(𝐱𝐱, 𝑡𝑡) ≈�𝑞𝑞𝐱𝐱𝑠𝑠 ⋅ 𝑞𝑞𝑡𝑡𝑠𝑠
𝑛𝑛𝑞𝑞

𝑠𝑠=1

 ( 5.7 ) 
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where 𝑞𝑞𝐱𝐱 and 𝑞𝑞𝑡𝑡 are respectively the space and time eigenfunctions of 𝑞𝑞(𝐱𝐱, 𝑡𝑡). 

Consequently, calculation of the transient temperature response turns out to be 

more compact: 

 𝑢𝑢(𝐱𝐱0, 𝑡𝑡0,𝛼𝛼0) ≈����𝑋𝑋𝑗𝑗𝑞𝑞𝐱𝐱𝑠𝑠 𝑑𝑑𝐱𝐱
 

Γ𝑅𝑅

 ⋅ � 𝑇𝑇𝑗𝑗𝑞𝑞𝑡𝑡𝑠𝑠 𝑑𝑑𝑑𝑑

𝑡𝑡0

0

 ⋅ 𝐾𝐾𝑗𝑗�

𝑛𝑛𝑞𝑞

𝑠𝑠=1

𝑁𝑁

𝑗𝑗=1

 ( 5.8 ) 

where �𝑇𝑇𝑗𝑗(𝑡𝑡)�
𝑗𝑗=1
𝑗𝑗=𝑛𝑛 ∈ 𝐿𝐿2(𝐼𝐼𝑡𝑡) are the time modes computed as the inverse Fourier 

transforms of angular frequency modes resulting from the approximation of the 

generalized transfer function. 

5.1.1 Problem statement 

 

 

Figure 5.1 Problem statement 

A two-dimensional problem involving a heat flux moving over the upper boundary 

of a plate domain is considered, whose solution satisfies: 

 

⎩
⎪
⎨

⎪
⎧𝑚𝑚

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝛁𝛁 ⋅ (𝑲𝑲 ⋅ 𝛁𝛁𝑢𝑢) = 0 𝑖𝑖𝑖𝑖 Ω × 𝐼𝐼𝑡𝑡
𝒏𝒏 ⋅ (𝑲𝑲 ⋅ 𝛁𝛁𝑢𝑢) = 𝑞𝑞 − 𝑙𝑙(𝑢𝑢 − 𝑢𝑢∞) 𝑜𝑜𝑜𝑜 Γ𝑅𝑅 × 𝐼𝐼𝑡𝑡
𝒏𝒏 ⋅ (𝑲𝑲 ⋅ 𝛁𝛁𝑢𝑢) = 0 𝑜𝑜𝑜𝑜 Γ𝑁𝑁 × 𝐼𝐼𝑡𝑡

𝑢𝑢 = 𝑢𝑢∞ 𝑜𝑜𝑜𝑜 Ω × {0}

 ( 5.9 ) 

Figure 5.1 depicts the problem statement. Boundary Γ𝑅𝑅 is subjected to heat 

convection while heat transfer is not allowed through Γ𝑁𝑁. The monitoring point is 
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the midpoint of the bottom boundary. The following constant parameters are 

considered: 

Parameter Value Units 

𝚫𝚫𝒙𝒙 1 𝑚𝑚 

𝚫𝚫𝒚𝒚 0.2 𝑚𝑚 

𝒎𝒎 1 𝐽𝐽 ⋅ 𝑚𝑚−3 ⋅  𝐾𝐾−1 

𝒌𝒌 1 𝑊𝑊 ⋅ 𝑚𝑚−1 ⋅ 𝐾𝐾−1 

𝒍𝒍 1 𝑊𝑊 ⋅ 𝑚𝑚−2 ⋅ 𝐾𝐾−1 

𝒖𝒖∞ 298 𝐾𝐾 

An external thermal source moving from the origin to the right at unit constant 

velocity along the top surface is modeled from a Gaussian distribution: 

 𝑞𝑞(𝐱𝐱, 𝑡𝑡)|𝐱𝐱∈Γ𝑅𝑅 = 500 ⋅ exp(−200 ⋅ (𝐱𝐱 − 𝑡𝑡)2) ( 5.10 ) 
expressed in [𝑊𝑊 ⋅𝑚𝑚−2]. 

A time interval 𝐼𝐼𝑡𝑡 ∶= (0,1] 𝑠𝑠 is considered. Regarding the ranges of definition for 

extra-coordinates, the predefined interval of angular frequencies is 𝐼𝐼𝜔𝜔 ∶= 2π ×

[−60; 60] 𝐻𝐻𝐻𝐻, which is wide enough given that there angular frequencies become 

negligible as their absolute value grows2. The range of ratios of the principal 

thermal conductivities is 𝐼𝐼𝑘𝑘 ∶= [10−2, 102] 𝑊𝑊 ⋅ 𝑚𝑚−1 ⋅ 𝐾𝐾−1 and thus the influence of 

the order of magnitude of the ratio of conductivities in the overall behavior of the 

solution can be evaluated. 

5.1.2 Results 

First of all, the generalized transfer function is approximated using PGD. Figure 5.2 

shows evolution of the relative residual norm (4.27) with the increase of the 

number of iterations. The use of the minimal residual PGD scheme is required in 

order to compute the solution. Thus, 50 terms are necessary to obtain a relative 

residual of 2 ⋅ 10−7. 

2 The analytical expression of the Fourier transform of 𝑞𝑞(𝐱𝐱, 𝑡𝑡) is known: 

𝑞𝑞�(𝐱𝐱,𝜔𝜔)|𝐱𝐱∈Γ𝑅𝑅 = 25√2𝜋𝜋 ⋅ exp�−
𝜔𝜔2

800
� ⋅ exp(−𝑖𝑖𝑖𝑖𝐱𝐱) 

It is noted that the norm of 𝑞𝑞�(𝐱𝐱,𝜔𝜔) is dominated by the term exp(−𝜔𝜔2 800⁄ ), that ranges from 1 for 
𝜔𝜔 = 0, to 0 as 𝜔𝜔 approaches infinity. For instance, 𝜔𝜔 = ±2𝜋𝜋 × 60 the maximum norm of 𝑞𝑞� is 
reduced by a factor of 10−78. Therefore, larger intervals –such as the one above defined– ensure 
capturing all the significant angular frequency values involved in the calculation of the transform. 
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Figure 5.2 Convergence of the generalized transfer function 

The first four spatial modes are depicted in Figure 5.3. Discretization of space 

domain consists of a regular mesh of square elements of side size of 0.02m. 

Moreover, first four angular frequency modes are shown in Figure 5.4. The 

computed implementation considers a non-uniform discretization of 𝐼𝐼𝜔𝜔 into 501 

equally spaced points, refined near zero, where variability of the solution 

increases. 

In addition, modes associated to the ratios of principal thermal conductivities are 

depicted in Figure 5.5. Since a wide range 𝐼𝐼𝑘𝑘 is considered, the interval is 

discretized into 5 logarithmically spaced points between 10−2 and 102. 

Verification of the PGD-based approximation of ℎ� is carried out for some 

combinations of angular frequencies and ratios of thermal conductivities 

compared with the corresponding direct solutions obtained by applying the finite 

element method to (5.2), taking angular frequency and the conductivity tensor as 

constant parameters. The following pairs of angular frequency and ratio of 

conductivities, {𝜔𝜔;  𝛼𝛼}, are evaluated: {−2𝜋𝜋 × 60;  1}, {0;  100} and {2𝜋𝜋 × 60;  0.01}. 

The resulting absolute error plots are represented in Figure 5.6. 
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Figure 5.3 First four spatial real (Re) and imaginary (Im) modes 𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 and 𝑋𝑋4 
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Figure 5.4 First four angular frequency modes 𝑊𝑊1, 𝑊𝑊2, 𝑊𝑊3 and 𝑊𝑊4 

 

28 
 



CHAPTER 5  EXAMPLES 
 

 

Figure 5.5First four modes of ratio of principal thermal conductivities 𝐾𝐾1, 𝐾𝐾2, 𝐾𝐾3 and 𝐾𝐾4 
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Figure 5.6     Absolute error maps for three {𝜔𝜔;  𝛼𝛼} combinations comparing solutions 
obtained using PGD and finite elements 

 

Once the generalized transfer function of the problem is obtained in the off-line 

stage, its inverse Fourier transform can be evaluated and thus computing the 

convolution integral in equation (5.6) allows for the assessment of on-line 

temperature monitoring for the given external excitation. This post-process stage 

is carried out at point 𝐱𝐱0 for the time window of interest defined by 𝐼𝐼𝑡𝑡 and for all 

points in 𝐼𝐼𝑘𝑘. Verification of the PGD-based solution is conducted against a direct 
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transient finite element reference solution, using the time-marching scheme 

presented in the Appendix. Evolution of multi-parametric solutions obtained by 

the PGD and compared to the reference finite element solution is shown in Figure 

5.7. 

 

Figure 5.7  Multi-parametric time evolution of temperature at the monitoring point 
 

5.1.3 Discussion 

The generalized transfer function being defined as complex-valued, all modes have 

a real part and imaginary part, as it is shown. When it comes to angular frequency 

modes, it can also be noted that the real parts are associated to even or symmetric 

functions whereas imaginary parts correspond to odd or anti-symmetric functions, 

according to the presented development of the generalized transfer function in 

Chapter 3. 

It is noted that accuracy of the PGD solution is strongly related to the order of 

magnitude of the ratio of principal thermal conductivities. In the verification of the 

PGD approximation of the generalized transfer functions for several pairs {𝜔𝜔;  𝛼𝛼}, 
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the solution is observed to get closer to the reference finite element solution as 𝛼𝛼 

values increase, which is related to the high variability observed in 𝛼𝛼 modes for 

small values. Absolute errors of the real and imaginary parts of the depicted maps 

are of the order of 10−3 and 10−19 respectively for 𝛼𝛼 = 102, while absolute error 

measures for both 𝛼𝛼 = 100 and 𝛼𝛼 = 10−2 are kept around the orders of 10−1 and 

10−2. 

Considering the monitoring results, also a great impact of the order of magnitude 

of the parameter 𝛼𝛼 is outlined with respect to the behavior of the PGD-based 

solutions, compared to the reference solutions coming from finite element 

simulations. Evaluation of the maximum relative error for all parameterized values 

of the ratio of principal thermal conductivities increases with the decrease of 𝛼𝛼: for 

𝛼𝛼 = 102, the maximum relative error is 0.09 whereas for 𝛼𝛼 = 10−2 the observed 

measure is 2.69. 

Moreover, the influence of the angular frequency interval used in post-processing, 

in terms of the elapsed time required for the monitoring of the considered time 

window of 1 second, is noted. Therefore, using the original 𝐼𝐼𝜔𝜔 from the previous 

off-line stage, the elapsed time spent for real-time monitoring simulation in a 

laptop is between 0.03 and 0.10 seconds for all parameter values. If the original 

angular frequency range is ten times enlarged, as depicted in Figure 5.7, simulation 

times increase up to 0.13 to 0.15 seconds. However, only slight improvements in 

the convergence of the proposed solution to the reference one are observed. 

5.2 Model including contact thermal conductance 

Real-time monitoring of the whole ATP thermal model presented in Chapter 2 is 

considered herein. Parametric analysis of the impact of introducing an interface 

subject to a wide range of contact thermal conductance values into the domain in 

study is relevant to the overall behavior of the solution, since perfect material 

adhesion of incoming tapes with the welded substrate is not achieved 

instantaneously during the ATP industrial process. An analogous procedure to the 

one described for the first model is also applied in this case. A multi-parametric 
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solution of problem (3.6) is built with contact thermal conductance as an extra 

parameter besides space and angular frequency domains. General anisotropic 

thermal conductivity tensor is not included into the separated representation of 

the generalized transfer function, whose associated PGD approximation reads: 

 ℎ�(𝐱𝐱,𝜔𝜔, 𝑐𝑐) ≈ ℎ�𝑛𝑛(𝐱𝐱,𝜔𝜔, 𝑐𝑐) = �𝑋𝑋𝑗𝑗(𝐱𝐱) ⋅ 𝑊𝑊𝑗𝑗(𝜔𝜔)
𝑛𝑛

𝑗𝑗=1

⋅ 𝐶𝐶𝑗𝑗(𝑐𝑐) ( 5.11 ) 

where �𝐶𝐶𝑗𝑗(𝑐𝑐)�
𝑗𝑗=1
𝑗𝑗=𝑛𝑛 ∈ 𝐿𝐿2(𝐼𝐼𝑐𝑐) are separated functions to be determined within the off-

line stage with conductance values within a predefined interval. The discrete 

system related to problem (3.6) reads: 

 �
𝒜𝒜 = 𝑚𝑚 � 𝟎𝟎 −𝕄𝕄𝐱𝐱

𝕄𝕄𝐱𝐱 𝟎𝟎 �⨂𝕄𝕄ωω⨂𝕄𝕄c + �𝕂𝕂 𝟎𝟎
𝟎𝟎 𝕂𝕂�⨂𝕄𝕄ω⨂𝕄𝕄c

  +𝑙𝑙𝑙𝑙⨂𝕄𝕄ω⨂𝕄𝕄c + 𝕀𝕀⨂𝕄𝕄ω⨂𝕄𝕄cc
ℬ = 𝐝𝐝⨂𝟏𝟏⨂𝟏𝟏

 ( 5.12 ) 

where: 

 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝕂𝕂 = � � �𝛁𝛁𝑠𝑠1(𝐍𝐍𝐱𝐱)𝑘𝑘𝑠𝑠1𝑠𝑠2𝛁𝛁𝑠𝑠2

𝑇𝑇 (𝐍𝐍𝐱𝐱)
 

Ω

𝑑𝑑𝐱𝐱
2

𝑠𝑠2=1

2

𝑠𝑠1=1

 𝕄𝕄cc = �𝐍𝐍c𝑐𝑐𝐍𝐍c𝑇𝑇𝑑𝑑𝑑𝑑
 

Ic

𝕄𝕄c = �𝐍𝐍c𝐍𝐍c𝑇𝑇𝑑𝑑𝑑𝑑
 

Ic

𝕀𝕀 = �𝐍𝐍𝐱𝐱Δ(𝐍𝐍𝐱𝐱𝑇𝑇)𝑑𝑑𝐱𝐱
 

ΓN
in

 ( 5.13 ) 

Computer implementation of the model with contact thermal conductance 

duplicates space nodes belonging to Γ𝑁𝑁𝑖𝑖𝑖𝑖 so that the temperature drop on the 

interface can be evaluated. The interior Neumann boundary is split into two 

contours, Γ𝑁𝑁𝑖𝑖𝑖𝑖
+ and Γ𝑁𝑁𝑖𝑖𝑖𝑖

−, with the same geometrical location. Therefore, the 

discrete operator associated to the spatial modeling of the interface is computed 

as: 

 𝕀𝕀 = ��𝐍𝐍𝐱𝐱+𝐍𝐍𝐱𝐱+
𝑇𝑇 − 𝐍𝐍𝐱𝐱+𝐍𝐍𝐱𝐱−𝑇𝑇�𝑑𝑑𝐱𝐱

 

ΓN
in+

+ ��𝐍𝐍𝐱𝐱−𝐍𝐍𝐱𝐱−𝑇𝑇 − 𝐍𝐍𝐱𝐱−𝐍𝐍𝐱𝐱+
𝑇𝑇�𝑑𝑑𝐱𝐱

 

ΓN
in−

  
( 5.14 ) 
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The on-line post-processing of ℎ� resulting from the previous stage provides the 

time evolution of temperature by computing the following convolution integral, 

given any time instant 𝑡𝑡0 ∈ 𝐼𝐼𝑡𝑡 and any conductance value 𝑐𝑐0 ∈ 𝐼𝐼𝑐𝑐: 

 𝑢𝑢(𝐱𝐱0, 𝑡𝑡0, 𝑐𝑐0) = 𝑢𝑢∞ + � 〈ℎ(𝐱𝐱, 𝜏𝜏, 𝑐𝑐0),𝑞𝑞(𝐱𝐱, 𝑡𝑡0 − 𝜏𝜏)〉Γ𝑅𝑅  𝑑𝑑𝑑𝑑
𝑡𝑡0

0
 ( 5.15 ) 

 

5.2.1 Problem statement 

 

 

Figure 5.8 Problem statement 

 

Like in the previous case, a two-dimensional problem involving a heat flux moving 

over the upper boundary of a plate domain is considered, whose solution satisfies 

problem (3.6). Figure 5.8 depicts the problem statement. Boundary Γ𝑅𝑅 is subjected 

to heat convection and two Neumann-type boundaries are defined: Γ𝑁𝑁𝑒𝑒𝑒𝑒 the 

adiabatic exterior boundary and Γ𝑁𝑁𝑖𝑖𝑖𝑖, which is located in the middle height of the 

rectangular domain, is affected by contact thermal conductance. The monitoring 

point is the midpoint of the bottom boundary. The following constant parameters 

are considered: 
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Parameter Value Units 

𝚫𝚫𝒙𝒙 1 𝑚𝑚 

𝚫𝚫𝒚𝒚 0.2 𝑚𝑚 

𝒎𝒎 1 𝐽𝐽 ⋅ 𝑚𝑚−3 ⋅  𝐾𝐾−1 

𝑲𝑲 �1 0
0 1� 𝑊𝑊 ⋅ 𝑚𝑚−1 ⋅ 𝐾𝐾−1 

𝒍𝒍 1 𝑊𝑊 ⋅ 𝑚𝑚−2 ⋅ 𝐾𝐾−1 

𝒖𝒖∞ 298 𝐾𝐾 

External thermal source is considered to be the one already defined for the 

previous problem. Moreover, the intervals of definition for time and angular 

frequency are maintained. The range of contact thermal conductances is 𝐼𝐼𝑐𝑐
∶= [10−2, 102] 𝑊𝑊 ⋅ 𝑚𝑚−2 ⋅ 𝐾𝐾−1 so that the influence of the order of magnitude of 𝑐𝑐 in 

the overall behavior of the solution can be analyzed. 

5.2.2 Results 

Figure 5.9 shows evolution of the relative residual norm (4.27) with the increase of 

the number of iterations. The use of the minimal residual PGD scheme is required 

again in order to compute the solution. 50 global enrichment steps are necessary 

to reach a relative residual of 4.0 ⋅ 10−7. 

Figure 5.9 Convergence of the generalized transfer function 
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Figure 5.10First four spatial real (Re) and imaginary (Im) modes 𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3 and 𝑋𝑋4 
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Figure 5.11 First four angular frequency modes 𝑊𝑊1, 𝑊𝑊2, 𝑊𝑊3 and 𝑊𝑊4 
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Figure 5.12 First four modes of ratio of principal thermal conductivities 𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3 

and 𝐶𝐶4 
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Figure 5.13     Absolute error maps for three {𝜔𝜔;  𝑐𝑐} combinations comparing solutions 
obtained using PGD and finite elements 

The first four spatial modes are depicted in Figure 5.10. Discretization of space 

domain consists of a regular mesh of square elements of side size of 0.02m. 

Also, first four angular frequency modes are shown in Figure 5.11. 𝐼𝐼𝜔𝜔 is again 

discretized into 501 equally spaced points, refined near zero, where variability of 

the solution increases. 
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Moreover, modes associated to contact thermal conductances are depicted in 

Figure 5.12. Since a wide range 𝐼𝐼𝑐𝑐 is considered, the interval is discretized into 5 

logarithmically spaced points between 10−2 and 102. 

Verification of the PGD-based approximation of ℎ� is performed for the following 

pairs of {𝜔𝜔;  𝑐𝑐}: {−2𝜋𝜋 × 60;  1}, {0;  100} and {2𝜋𝜋 × 60;  0.01}. Reference solutions 

are obtained by applying the finite element method to (3.6), taking constant 

angular frequency and the contact thermal conductance. The resulting absolute 

error plots are represented in Figure 5.13. 

The on-line temperature monitoring from equation (5.15) is carried out at point 𝐱𝐱0 

for the time window of interest defined by 𝐼𝐼𝑡𝑡 and for all points in 𝐼𝐼𝑐𝑐. Verification of 

the PGD-based solution is conducted against a direct transient finite element 

reference solution, using again the time-marching scheme presented in the 

Appendix. Evolution of multi-parametric solutions resulting from application of the 

PGD, compared to the reference finite element solution is shown in Figure 5.14. 

Figure 5.14 Multi-parametric time evolution of temperature at the monitoring 

point 
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5.2.3 Discussion 

The same kind of analysis of results can be conducted for the current problem. Real 

and imaginary parts arise from calculation by definition of the problem in study. 

Accuracy of the PGD solution is again strongly related to the order of magnitude of 

the contact thermal resistance parameter, since the obtained solutions are 

observed to get closer to the reference finite element solution for moderate 𝑐𝑐 

values, which is related to the high variability of 𝑐𝑐 modes for extreme range values. 

Absolute errors of the real and imaginary parts of the depicted maps are of the 

order of 10−3 for 𝑐𝑐 = 100, while absolute error measures for 𝑐𝑐 = 10−2 and 𝑐𝑐 = 102 

are increased up to the orders of 101 and 100 respectively. 

Also a great impact of the order of magnitude of the parameter 𝑐𝑐 is outlined with 

respect to the behavior of monitoring based on the PGD-based solutions, compared 

to the reference direct solutions coming from finite element simulations. Maximum 

relative error turns out to be inversely proportional to the value of parameterized 

contact conductances: for 𝑐𝑐 = 102, the maximum relative error is of the order of 

0.01 whereas for 𝛼𝛼 = 10−2 the observed measure is of the order of 5.57. 

Finally, the influence of angular frequencies interval used in post-processing is 

noted. Using the original 𝐼𝐼𝜔𝜔 from the previous off-line stage, the elapsed time spent 

for real-time monitoring simulation of 1 second in a laptop remains between 0.03 

and 0.10 seconds for all parameter values. If the original angular frequency range 

is ten times enlarged, as depicted in Figure 5.14, simulation times increase up to 

0.14 to 0.17 seconds, entailing negligible improvements in the convergence of the 

proposed solution to the reference finite element solution. 

 

In view of the above results, the proposed numerical simulation strategy for real-

time temperature monitoring based on multi-parametric PGD-based solutions, 

including the ratio of principal conductivities of the problem as well as contact 

thermal conductance as extra-coordinates, is confirmed to be a fast methodology 

with performance levels strongly dependent on the problem scaling. Convergence 

of the proposed solution to reference solutions obtained using robust techniques is 

satisfied for the higher order parameter values of the predefined ranges. 
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Therefore, the adjustment of all thermal properties of problems to be solved using 

PGD can provide useful virtual charts for practical applications. 
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Chapter 6 

Conclusions 

ATP real-time thermal monitoring using numerical simulations has been assessed 

in this work. The off-line stage of the proposed methodology has been studied by 

computing PGD-based multi-parametrical solutions of the generalized transfer 

functions associated to two problems, one model including anisotropic thermal 

conductivity as extra-coordinate and also a model including an interface subject to 

contact thermal conductance. Then, fast on-line calculations of transient 

temperature field have been carried out. 

Computer implementation of the aforementioned problems has evidenced that the 

accuracy of solutions obtained by the PGD separated representation approach are 

strongly dependent on the order of magnitude of the ranges of considered extra-

coordinates. Although good results have been observed for certain values of the 

extra parameters, compared to reference solutions by finite element schemes, it is 

noted that problem scaling needs to be adjusted beforehand when building up 

virtual charts of solutions for multi-parametric models regarding wide ranges of 

definition. Therefore, validation of the proposed monitoring strategy against 

experimental data is required in order to construct numerical useful solutions with 

practical applicability. 

Further research lines in the study of real-time monitoring of the ATP process may 

take into account: 

• Construction of multi-parametric PGD solutions including more thermal

parameters, such as heat transfer coefficient on the substrate-placement

head interface.

• Optimization of codes so that off-line PGD high-dimensional separated

representation of solutions can be achieved with reasonable computational
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costs, and convergence of the fixed point algorithm do not require using 

expensive methodologies such as the symmetrized PGD for the thermal 

model in study. 

• Addition of more complex phenomena to the ATP thermal model, and thus

enriched numerical simulations, considering the effect of bonding kinetics

or void growth to the overall behavior of the problem.

• Application of enhanced off-line multi-parametric solutions of the

generalized transfer function to inverse identification problems, in order to

conduct on-line calibration of the imposed external excitation with respect

to the amplitude or speed of the inflow heat flux.
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Appendix 

Full finite element reference solutions 

The finite element (FE) method is used in this work as the verification tool to 

establish reference solutions to compare the proposed PGD-based computations 

to. As discussed in 4.3 Computer implementation, the application of finite element 

discretizations when computing the separated representation of unknown fields 

can take advantage of using the same technique for the assessment operations, as 

the whole numerical strategy is optimized since the discrete form of involved 

operators can be evaluated just one time. Moreover, parametric analyses are 

precluded when using FE and thus direct, yet robust, solutions have to be 

recomputed for all desired combinations of parameters. The finite element 

approach for solving the generalized transfer function assuming all parameters 

known, as well as the transient temperature response or the full thermal problem 

associated to the ATP process are presented in this Appendix. 

First, the solution of the generalized transfer function (3.6) is considered. The 

associated weak formulation reads: 

Find ℎ�(𝒙𝒙) ∈ 𝐻𝐻1(𝛺𝛺) such that 

�𝑖𝑖𝑖𝑖𝑖𝑖ℎ� , 𝑣𝑣��Ω + �𝑲𝑲 ⋅ 𝛁𝛁ℎ� ,𝛁𝛁𝑣𝑣��Ω + 〈𝑙𝑙ℎ� , 𝑣𝑣�〉Γ𝑅𝑅 + 〈𝑐𝑐Δℎ� , 𝑣𝑣�〉Γ𝑁𝑁𝑖𝑖𝑖𝑖 = 𝑣𝑣�∗(𝐱𝐱0) ( A.1 ) 
for all test function 𝑣𝑣� ∈ 𝐻𝐻1(𝛺𝛺) 

Since ℎ�(𝐱𝐱) is a complex-valued field, its solution is decomposed into the 

corresponding real and imaginary parts, namely: 

ℎ�(𝐱𝐱) = Re�ℎ�� + 𝑖𝑖 Im�ℎ�� ∈ ℂ ( A.2 ) 

Vector 𝐍𝐍𝐱𝐱 containing the discrete shape functions for interpolation over the space 

domain is recalled. The following matrices of the discrete form of involved 

operators are defined recalling the notation used in 4.3 Computer implementation 

and 5.1 Model including anisotropic thermal conductivity and 5.2 Model including 

contact thermal conductance: 
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⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝕄𝕄 = (𝑚𝑚𝑚𝑚𝐍𝐍𝐱𝐱,𝐍𝐍𝐱𝐱)Ω = 𝑚𝑚𝑚𝑚 �𝐍𝐍𝐱𝐱𝐍𝐍𝐱𝐱𝑇𝑇𝑑𝑑𝐱𝐱

Ω

𝕂𝕂 = (𝑲𝑲 ⋅ 𝛁𝛁𝐍𝐍𝐱𝐱,𝛁𝛁𝐍𝐍𝐱𝐱)Ω = �𝛁𝛁𝐍𝐍𝐱𝐱 ⋅ 𝑲𝑲 ⋅ 𝛁𝛁𝐍𝐍𝐱𝐱𝑇𝑇𝑑𝑑𝐱𝐱
Ω

𝕃𝕃 = (𝑙𝑙𝐍𝐍𝐱𝐱,𝐍𝐍𝐱𝐱)Γ𝑅𝑅 = 𝑙𝑙 �𝐍𝐍𝐱𝐱𝐍𝐍𝐱𝐱𝑇𝑇𝑑𝑑𝐱𝐱
ΓR

𝕀𝕀 = (𝑐𝑐Δ(𝐍𝐍𝐱𝐱),𝐍𝐍𝐱𝐱)Γ𝑁𝑁𝑖𝑖𝑖𝑖 = 𝑐𝑐 �𝐍𝐍𝐱𝐱Δ(𝐍𝐍𝐱𝐱𝑇𝑇)𝑑𝑑𝐱𝐱
 

ΓN
in

( A.3 ) 

Computation of the matrix modeling the interface is performed following equation 

(5.14), which considers the duplication of nodes belonging to the interior 

Neumann boundary of the domain. Therefore, for each combination of thermal 

parameters, the solution of the generalized transfer function is found by solving 

the following system: 

�𝕂𝕂 + 𝕃𝕃 + 𝕀𝕀 −𝕄𝕄
𝕄𝕄 𝕂𝕂 + 𝕃𝕃 + 𝕀𝕀� �

𝐡̂𝐡𝑅𝑅𝑅𝑅
𝐡̂𝐡𝐼𝐼𝐼𝐼

� = �𝐝𝐝𝟎𝟎� ( A.4 ) 

where 𝐡̂𝐡𝑅𝑅𝑅𝑅 and 𝐡̂𝐡𝐼𝐼𝐼𝐼 are the discrete counterparts of the complex decomposition of 

ℎ� and vector 𝐝𝐝 is the known discrete form of function 𝛿𝛿(𝐱𝐱 − 𝐱𝐱0 ) over Γ𝑅𝑅 . 

Second, the solution of the temperature field associated to transient problem (2.1) 

is considered. The associated weak formulation reads: 

Find 𝑢𝑢 ∈ 𝐻𝐻1(𝛺𝛺) such that 𝑢𝑢(𝒙𝒙, 0) = 𝑢𝑢∞ and 

(𝑚𝑚𝑚𝑚, 𝑣𝑣)Ω + (𝑲𝑲 ⋅ 𝛁𝛁𝑢𝑢,𝛁𝛁𝑣𝑣)Ω + 〈𝑙𝑙𝑙𝑙, 𝑣𝑣〉Γ𝑅𝑅 + 〈𝑐𝑐Δ𝑢𝑢, 𝑣𝑣〉Γ𝑁𝑁𝑖𝑖𝑖𝑖 = 〈𝑞𝑞, 𝑣𝑣〉Γ𝑅𝑅 ( A.5 ) 
for all test function 𝑣𝑣� ∈ 𝐻𝐻1(𝛺𝛺) 

Time evolution of temperature on the space domain is computed applying a so-

called 𝜃𝜃-family method [16] for discrete time integration of initial value problems. 

First of all, the time window is subdivided into discrete steps, �Δ𝑡𝑡𝑗𝑗�𝑗𝑗=1
𝑗𝑗=𝑁𝑁. Then,

starting from the imposed initial solution, the time-marching scheme updates each 

new space domain solution from already calculated solutions. The solution update 

for two successive time steps 𝑡𝑡𝑛𝑛 and 𝑡𝑡𝑛𝑛+1 considering a weighting parameter 𝜃𝜃 ∈

[0; 1] reads: 
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[𝕄𝕄 + 𝜃𝜃Δ𝑡𝑡𝑛𝑛(𝕂𝕂 + 𝕃𝕃 + 𝕀𝕀)]𝐮𝐮𝑛𝑛+1 − 𝜃𝜃Δ𝑡𝑡𝑛𝑛𝐪𝐪𝑛𝑛+1  

= (1 − 𝜃𝜃)Δ𝑡𝑡𝑛𝑛𝐪𝐪𝑛𝑛 + [𝕄𝕄− (1 − 𝜃𝜃)Δ𝑡𝑡𝑛𝑛(𝕂𝕂 + 𝕃𝕃 + 𝕀𝕀)]𝐮𝐮𝑛𝑛 ( A.6 ) 

where 𝐮𝐮𝑛𝑛 and 𝐮𝐮𝑛𝑛+1 are the successive updates of the temperature field and vectors 

𝐪𝐪𝑛𝑛 and 𝐪𝐪𝑛𝑛+1 are the known discrete forms of the external excitation 𝑞𝑞(𝐱𝐱, 𝑡𝑡) acting 

on Γ𝑅𝑅 at two consecutive time instants. In this work, the Crank-Nicholson method 

of time integration is used, that is the 𝜃𝜃-family method with 𝜃𝜃 = 1
2
, because of this 

implicit method being unconditionally stable and having a quadratic convergence 

with respect to the time step size. Equation (A.6) is simplified in this case, reading: 

�𝕄𝕄 +
Δ𝑡𝑡𝑛𝑛

2
(𝕂𝕂 + 𝕃𝕃 + 𝕀𝕀)� 𝐮𝐮𝑛𝑛+1  = �𝕄𝕄 −

Δ𝑡𝑡𝑛𝑛

2
(𝕂𝕂 + 𝕃𝕃 + 𝕀𝕀)� 𝐮𝐮𝑛𝑛 +

Δ𝑡𝑡𝑛𝑛

2
(𝐪𝐪𝑛𝑛 + 𝐪𝐪𝑛𝑛+1) ( A.7 ) 

As a final remark, problem cases not including contact thermal conductance in 

interface boundaries, such as 5.1 Model including anisotropic thermal conductivity, 

can be solved using the same FE-based approaches above described without 

adding the discrete operator associated to this boundary condition to the 

corresponding systems and neither duplicating nodes of the spatial domain mesh. 
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