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Abstract

One of the most challenging problems in neuroscience is the to unveil brain’s connectivity.
This problem might be treated from several perspectives, here we focus on the local
phenomena occurring at a single neuron. The ultimate goal is thus to understand the
dynamics of neurons and how the interconnection with other neurons affects its state.

Measurements of membrane potential traces constitute the main observables to derive
a biophysical neuron model. In particular, the dynamics of auxiliary variables and the
model parameters are inferred from voltage traces, in a costly process that typically entails
a variety of channel blocks and clamping techniques, as well as some uncertainty in the
parameter values due to noise in the signal. Moreover, voltage traces are also useful to
obtain valuable information about synaptic input, an inverse problem with no satisfactory
solution yet.

In this Thesis, we are interested in methods that can provide on-line estimation and
avoid the need of repetitions that could be contaminated by neuronal variability. Partic-
ularly, we concentrate on methods to extract intrinsic activity of ionic channels, namely
the probabilities of opening and closing ionic channels, and the contribution of synaptic
conductances. We design a method based on Bayesian theory to sequentially infer these
quantities from single-trace, noisy membrane potentials. The proposed estimation method
highly relies on the fact that the neuron model is known. This is true to some extent, but
most of the parameters in the model are to be estimated beforehand (this holds for any
model). Therefore, the method is enhanced to the case of unknown model parameters,
thus augmenting the algorithm with a method to jointly estimate the parameters using
the same single-trace voltage measure.

We validate the proposed inference methods in realistic computer simulation exper-
iments. The error performance is compared to the theoretical lower bound of accuracy
that has been derived in the framework of this Thesis.
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Resum

Un dels reptes més dif́ıcils de la neurociència és el d’entendre la connectivitat del cervell.
Aquest problema es pot tractar des de diverses perspectives, aqúı ens centrem en els
fenòmens locals que ocorren en una sola neurona. L’objectiu final és, doncs, entendre la
dinàmica de les neurones i com la interconnexió amb altres neurones afecta al seu estat.

Les observacions de traces del potencial de membrana constitueixen la principal font
d’informació per a derivar models matemàtics d’una neurona, amb cert sentit biof́ısic. En
particular, la dinàmica de les variables auxiliars i els paràmetres del model són estimats
a partir d’aquestes traces de voltatge. El procés és en general costós i t́ıpicament implica
una gran varietat de blocatges qúımics de canals iònics, aix́ı com una certa incertesa en els
valors dels paràmetres a causa del soroll de mesura. D’altra banda, les traces de potencial
de membrana també són útils per obtenir informació valuosa sobre l’entrada sinàptica,
un problema invers sense solució satisfactòria a hores d’ara.

En aquesta Tesi, estem interessats en mètodes d’estimació seqüencial, que permetin
evitar la necessitat de repeticions que podrien ser contaminades per la variabilitat neu-
ronal. En particular, ens concentrem en mètodes per extreure l’activitat intŕınseca dels
canals iònics, és a dir, les probabilitats d’obertura i tancament de canals iònics, i la con-
tribució de les conductàncies sinàptiques. Hem dissenyat un mètode basat en la teoria
Bayesiana de filtrat per inferir seqüencialment aquestes quantitats a partir d’una única
traa de voltatge, potencialment sorollosa. El mètode d’estimació proposat està basat en
la suposició d’un model de neurona conegut. Això és cert fins a cert punt, però la ma-
joria dels paràmetres en el model han de ser estimats per endavant (això és valid per a
qualsevol model). Per tant, el mètode s’ha millorat pel cas de models amb paràmetres
desconeguts, incloent-hi un procediment per estimar conjuntament els paràmetres i les
variables dinàmiques.

Hem validat els mètodes d’inferència proposats mitjançant simulacions realistes. Les
prestacions en termes d’error d’estimació s’han comparat amb el ĺımit teòric, que s’ha
derivat també en el marc d’aquesta Tesi.
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Notation

Boldface upper-case letters denote matrices and boldface lower-case letters denote column
vectors.

R, C The set of real and complex numbers, respectively.

RN×M , CN×M The set of N ×M matrices with real- and complex-valued entries,
respectively.

x̂ Estimation and true value of parameter x.

f(x)|x=a Function f(x) evaluated at x = a.

|x| Absolute value (modulus) of scalar x.

‖x‖ `2-norm of vector x, defined as ‖x‖ =
(
xHx

) 1
2 .

dim{x} Dimension of vector x.

[x]r The r-th vector element.

[X]r,c The matrix element located in row r and column c.

[X]r,: The r-th row of matrix X.

[X]:,c The c-th column of matrix X.

Tr{X} Trace of matrix X. Tr{X} =
N∑
n=1

[X]nn.

det(X) Determinant of matrix X.

diag(x) A diagonal matrix whose diagonal entries are given by x.

‖X‖F Frobenius norm of matrix X. If X is N ×N ,

‖X‖F =

(
N∑
u=1

N∑
v=1

|xuv|2
) 1

2

=
(
Tr
{
XHX

}) 1
2

Chol (A) Cholesky factorization of an Hermitian positive-definite matrix A
such that A = SS> if S = Chol (A).
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I Identity matrix. A subscript can be used to indicate the dimension.

X∗ Complex conjugate of matrix X (also applied to scalars).

XT Transpose of matrix X.

XH Complex conjugate and transpose (Hermitian) of matrix X.

X† Moore-Penrose pseudoinverse of matrix X. If X is M ×N ,

X† = XH
(
XXH

)−1
if M ≤ N ,

X† = X−1 if M = N , and

X† =
(
XHX

)−1
XH if M ≥ N .

� Schur-Hadamard (elementwise) product of matrices.
If A and B are two N ×M matrices:

A�B =


a11b11 a12b12 · · · a1Mb1M

a21b21 a22b22
. . . a2Mb2M

...
... . . .

...
aN1bN1 aN2bN2 · · · aNMbNM


⊗ The Kronecker or tensor product. If A is m× n, then

A⊗B =

 [A]11B · · · [A]1mB
...

...
[A]n1B · · · [A]nmB


PX Orthogonal projector onto the subspace spanned by the columns of X.

PX = X
(
XHX

)−1
XH .

P⊥X I−PX, orthogonal projector onto the orthogonal complement
to the columns of X.

N (µ,Σ) Multivariate Gaussian distribution with mean µ and covariance matrix Σ.

U(a, b) Uniform distribution in the interval [a, b].

E {·} Statistical expectation. When used with a subindex, it specifies
the distribution over which the expectation is taken, e.g.,
Ex {·} over the distribution of a random variable x;
Ex,y {·} over the joint distribution of x and y, p(x, y);
Ex|y {·} over the distribution of x conditioned to y, p(x|y).

ln(·) Natural logarithm (base e).

δ(n−m) Kronecker’s delta function, defined as:

δ(n−m) = δn,m ,

{
1, if n = m
0, if n 6= m
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<{·}, ={·} Real and imaginary parts, respectively.

op(fN) A sequence of random variables XN is XN = op(fN), for fN > 0 ∀N ,
when XN

fN
converges to zero in probability, i.e.,

lim
N→∞

P

{∣∣∣∣XN

fN

∣∣∣∣ > δ

}
= 0 ∀δ > 0

f(t) ∗ g(t) Convolution between f(t) and g(t).

arg max
x

f(x) Value of x that maximizes f(x).

arg min
x
f(x) Value of x that minimizes f(x).

∂f(x)
∂xi

Partial derivative of function f(x) with respect to the variable xi.
∂f(x)
∂x

Gradient of function f(x) with respect to vector x.

∂2f(x)
∂x2 Hessian matrix of function f(x) with respect to vector x.

∇xf(x) Gradient of function f(x) with respect to vector x.

Hxf(x) Hessian matrix of function f(x) with respect to vector x.

4x2
x1
f(x) second-order partial derivatives operator of function f(x) with

respect to vectors x1 and x2. Notice that Hxf(x) , 4x
xf(x)

and 4x2
x1

= ∇x1

[
∇T

x2

]
.

ḟ(t), f̈(t) derivatives of t ime of function f(t), equivalent to ∂f(t)
∂t

and ∂2f(t)
∂t2

respectively.

a.s. almost surely convergence.

i.i.d. independent identically distributed.

q.e.d. quod erat demonstrandum.

r.v. random variable.

w.p.1. convergence with probability one.
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1
Introduction

THIS dissertation deals with the problem of inferring the signals and parameters that
cause neural activity to occur. The focus is on a microscopic vision of the problem,

where single-neuron models (potentially connected to a network of peers) are in the core
of the Thesis. The sole observation available are noisy, sampled voltage traces obtained
from intracellular recordings. We design algorithms and inference methods using the tools
provided by Bayesian filtering, that allow a probabilistic interpretation and treatment of
the problem.

In this chapter, we glance at the structure of the document, serving as a guide to the
reader. For the sake of clarity, the mathematical notation and the acronyms used along
the dissertation can be consulted at the beginning of the document.

1.1 Motivation and Objectives of the Thesis

One of the most challenging problems in neuroscience is to unveil brain’s connectivity. This
problem might be treated from several perspectives, here we focus on the local phenomena
occurring at a single neuron. The ultimate goal is thus to understand the dynamics of
neurons and how the interconnection with other neurons affects its state.

1



2 Chapter 1. Introduction

Measurements of membrane potential traces constitute the main observables to derive
a biophysical neuron model. In particular, the dynamics of auxiliary variables and the
model parameters are inferred from voltage traces, in a costly process that typically entails
a variety of channel blocks and clamping techniques [Bre12], as well as some uncertainty in
the parameter values due to noise in the signal. Moreover, voltage traces are also useful to
obtain valuable information about synaptic input, an inverse problem with no satisfactory
solution yet (see for instance [Piw04, Béd11]).

In this Thesis, we are interested in methods that can provide on-line estimation and
avoid the need of repetitions that could be contaminated by neuronal variability. Partic-
ularly, we concentrate on methods to extract intrinsic activity of ionic channels, namely
the probabilities of opening and closing ionic channels, and the contribution of synap-
tic conductances. We built a method based on Bayesian theory to sequentially infer these
quantities from single-trace, noisy membrane potentials. The proposed estimation method
highly relies on the fact that the neuron model is known. This is true to some extent, but
most of the parameters in the model are to be estimated beforehand (this holds for any
model). Therefore, the method is enhanced to the case of unknown model parameters,
thus augmenting the algorithm with a method to jointly estimate the parameters using
the same single-trace voltage measure.

In conclusion, we propose a method that is able to sequentially infer the time-course
of the membrane potential and its intrinsic/extrinsic activity from noisy observations of
a voltage trace. The main features of the envisaged algorithm are:

Single-trial: the method should be able to estimate the desired signals and parameters
from a single voltage trace, thus avoiding the experimental variability among trials.

Sequential: the algorithm should provide estimates each time a new observation is
recorded, thus avoiding re-processing of all data stream each time.

Spike regime: contrary to most solutions operating under the sub-threshold assumption,
the method should be able to operate in the presence of spikes as well. This has a
twofold reason: the estimation can account for ionic channel activity; and we avoid
the well-known sub-threshold misestimation problem in which removing spikes might
produce errors in the dynamics estimation.

Robust: the method is model-dependent, thus implying knowledge of the model param-
eters. This might be a strong assumption and thus the algorithm should be provided
with enhancements to adaptively estimate these parameters.

Efficient: the performance of the method should be close to the theoretical lower bounds,
meaning that the estimation error is close to the bounds.



1.2. Thesis Outline and Reading Directions 3

Notice that the focus in this Thesis is not on computational reduction techniques, as
we thought that other requirements (like performance) were prioritized in this application.
The results show the validity of the approach and its statistical efficiency. Although we
used the Morris-Lecar neuron model in the computer simulations, the proposed procedure
can be applied to any neuron model without loss of generality.

1.2 Thesis Outline and Reading Directions

The dissertation consists of 5 Chapters, where review material and novel contributions
are presented. The thesis might be of interest to two groups of people: those working in
the neuroscience field and to signal-processing oriented researchers with the objective of
learning new fancy applications. The document is organized according to this premise,
providing the basics of each topic. For the sake of clarity, the main ideas of the chapters
are summarized herein:

Chapter 1 This chapter summarizes the main problem addressed and our research objec-
tives for the rest of the Thesis. We provide as well the reader with reading directions.

Chapter 2 Basic material on neuroscience is provided for the non-specialist to get the
biophysical meaning of the problem addressed. From the vast amount of information
on the numerous disciplines related to neuroscience, we focus on a microscopic vision
where single-neuron models are the core concept. In the chapter we sketch the basic
modeling procedures to mimic neuron dynamics.

Note: if you have expertise in neuroscience you can skip this chapter, and please
forgive me for the rather vague introduction.

Chapter 3 Similarly to the neuroscience material in Chapter 2, we provide a textbook
review of Bayesian filtering methodology. The reason being its paramount impor-
tance in the derivation of the type of algorithms we are interested in this Thesis. At
a glance, we present the theoretical Bayesian solution to recursive filtering and detail
the most popular algorithms and go beyond what is strictly necessary for the com-
prehension of the methods derived in Chapter 4. We also comment on the derivation
of theoretical estimation bounds under this framework, which is not always tackled
in the literature where neuroscience and Bayesian filtering collide.

Note: if you know what a Kalman filter or a particle filter is you might be tempted
to skip this chapter, please do it.

Chapter 4 This constitutes the core chapter in the Thesis. The material therein includes
discussion of the discrete state-space representation of the problem and the model
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inaccuracies due to missmodeling effects. In this chapter we present 2 sequential
inference algorithms: i) a method based on particle filtering to estimate the time-
evolving states of a neuron under the assumption of perfect model knowledge; and
ii) an enhanced version where model parameters are jointly estimated, and thus
the rather strong assumption of perfect model knowledge is relaxed. We provide
exhaustive computer simulation results to validate the algorithms and observe that
they are consistent, in the sense of attaining the theoretical lower bounds derived
in the chapter as well.

Chapter 5 This concluding chapter summarizes the main results obtained in this Thesis
and points out some interesting open problems which constitute the future work
after the Thesis defence.

The work presented in this Thesis has been partially published in the form of scientific
publications and talks. We list them here.

[1] C. Vich, P. Closas, and A. Guillamon, “Data treatment in estimating synaptic con-
ductances: wrong procedures and new proposals,” Barcelona Computational and Systems
Neuroscience (BARCSYN), June 16 and 17, 2014.

[2] P. Closas, A. Guillamon, “Estimation of neural voltage traces and associated vari-
ables in uncertain models,” BMC Neuroscience, Vol. 14, No. 1, pp. 1151, July 2013.

[3] P. Closas, A. Guillamon, “Estimation of neural voltage traces and associated vari-
ables in uncertain models,” in Proceedings of the 22nd Annual Computational Neuro-
science Meeting (CNS 2013), 13-18 July 2013, Paris (France).
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2
Fundamentals of Neuroscience

NEUROSCIENCE is the science that delves into the understanding of the nervous sys-
tem. It is one of the most interdisciplinary sciences, gathering together experts from

a vast variety of fields of knowledge including biology, chemistry, medicine, psychology,
physics, mathematics, statistics, engineering, and computer science.

Neuroscience is a rather broad discipline and encompasses many aspects related to
the Central Nervous System (CNS). The different topics in neuroscience can be stud-
ied from various perspectives depending on the prism used to focus the problem. This
ranges from understanding the internal mechanisms that cause a single cell (a neuron) to
spike, to explaining the dynamics occurring in populations of neurons that are intercon-
nected. Going further, more macroscopic analysis are important like those treating pools
of neuron as an anatomically meaningful function. From microscopic to macroscopic, the
CNS research could be classified into molecular neuroscience, cellular neuroscience, neural
circuits, systems neuroscience, and cognitive neuroscience.

This Thesis deals with single neuron models, with the rest of the Chapter being devoted
to explaining the basic ideas behind a neuron physiology and related mathematical models.
Recommended textbooks are [Day05, Izh06, Kee09] and more recently [Erm10], from
which we extracted part of the material presented in this chapter.

5



6 Chapter 2. Fundamentals of Neuroscience

Figure 2.1: Diagram of a neuron (Source: http://en.wikipedia.org/wiki/Neuron).

2.1 Electrophysiology of neurons

Neurons are the basic information processing structures in the CNS. The main function
of a neuron is to receive input information from other neurons, to process that informa-
tion, and to send output information to other neurons. Synapses are connections between
neurons, through which they communicate this information. It is controversial how this
information is encoded, but it is quite accepted that information produces changes in the
electrical activity of the neurons, seen as voltage changes in the membrane potential (i.e.,
the difference in electrical potential between the interior and the exterior of a biological
cell).

To put some numbers, the human brain has only around 1011 neurons and 1015 con-
nections among them (a.k.a. synapses). The basic constituents of a neuron can be seen in
Fig. 2.1, where we can identify:

Soma: contains the nucleus of the cell, it is the body of the neuron where most of the
information processing is carried.

Dendrites: are extensions of the soma which connect the neuron to neighboring neurons.
Dendrites are capturing the stimuli from the rest of neurons.

Axon: is the largest part of a neuron where the information is transmitted in form of
an electrical current. A cell might have only one axon or more. The physiological
meaning for the propagation of the voltage through the axon can be understood



2.2. Ionic currents 7

in terms of voltage-gated ionic channels located in the axon membrane. This is
paramount in the topic treated in this Thesis, and thus we provide some further
details in this section.

Synapses: located at the axon terminal, are in charge of the electrochemical reactions
that cause neuron communications to happen. More precisely, the membrane poten-
tial (electrical phenomena) traveling through the axon, when reaching the synapse,
activates the emission of neurotransmitters (chemical phenomena) from the neuron
to the receptors of the target neurons. This chemical reaction is transformed again
into electrical impulses in the dendrites of the receiving neurons.

2.2 Ionic currents

We are specially interested in understanding the phenomena through which an electrical
voltage travels the axon from the soma to the synapse. We concentrate here on the bio-
physical meaning and its mathematical modeling. The basic idea is that the membrane
covering the axon is essentially impermeable to most charged molecules. This makes the
axon to act as a capacitor (in terms of electrical circuits) that separates the inner and
outer parts of the neuron’s axon. This is combined with the so-called ionic-channels, that
allow the exchange of intracellular/extracellular ions through electrochemical gradients.
This exchange of ions is responsible for the generation of an electrical pulse called action
potential, that travels along the neuron’s axon. Ionic-channels are found throughout the
axon and are typically voltage-dependent, which is primarily how the action potential
propagates.

The most common ionic species involves in the generation of the action potential
are sodium (Na+), potassium (K+), chloride (Cl−), and calcium (Ca2+). For each ionic
species, the corresponding ionic-channel aims at balancing the concentration and electrical
potential gradients, which are opposite forces regulating the exchange of ions through
the gate. The point at which both forces counterbalance is known as Nernst equilibrium
potential and given by

Eion ≈ 62 log10

[Ion]out

[Ion]in
(2.1)

in mV, where [Ion]out and [Ion]in are the concentrations of the ion inside and outside
the cell, respectively. Nernst equilibrium potential is value for which the cross-membrane
potential is zero for a given ionic channel. In the sequel, we denote by ENa, EK, ECl, and
ECa the Nernst equilibrium potential of the typical ionic species. The time-varying net
current of the i-th ionic species, i ∈ I = {Na,K,Cl,Ca, . . . }, is thus

Ii = gI(v − Ei) (2.2)
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where gI , gI(t) is the time-varying conductance of the ionic channel in mS/cm2, and
(v − Ei) is the driving force that zeroes when the voltage is equal to the equilibrium
potential as argued earlier. The time dependent conductances are responsible for spike
(or action potential) generation.

2.3 Conductance-based models

The voltage travels through the axon over time, which results in the so-called compartmen-
tal neuron models. For the sake of simplicity and without loss of generality, we consider
the evolution of the membrane potential at a specific site of the axon. Therefore, v , v(t)
denotes the continuous-time membrane potential at a point in the axon. Accounting that
the membrane potential is seen as a capacitor, the current-voltage relation allows us to
express the total current flowing in the membrane as proportional to the time derivative
of the voltage. Then, we have that the mathematical model for the evolution of membrane
potentials is of the basic form

Cmv̇ = −
∑
i∈I

Ii − ḡL(v − EL)− Isyn + Iapp (2.3)

where Cm is the membrane capacitance and Iapp represents the externally applied currents,
for instance injected via an electrode and used to perform a controlled experiment.

In (2.3) we have introduced two additional terms. The first one is referred to as the
leakage term. The leakage is mathematically used to gather all ionic channels that are not
explicitly modeled. The maximal conductance of the leakage, ḡL, is considered constant
and it is adjusted to match the membrane potential at resting state. Similarly, EL has to
be estimated at rest. The second new term in (2.3) gathers the contribution of neighboring
neurons and it is referred to as the synaptic current, Isyn. We will see later how to model
the synaptic current.

Strictly speaking, (2.3) is a dynamical system, although we have to provide more
details for the different components before using it as a reliable model for neural activity.
There are several models [Izh04, Izh06] that explain the membrane potential evolution
using dynamical systems theory. Roughly speaking, there are terms which model intrinsic
activity of the neuron (mostly, chemical reactions in the cell) and terms related to the
contribution of synaptic noise to the neuron’s activity (that is the voltages received from
neighboring neurons) [Hod52, Piw04, Béd11, Kob11, Bre12]. Section 2.4 comments on the
former mechanisms, mainly discussing the ionic conductances.

Ionic channels are the responsible for electrochemical gradient stabilization of ionic
species. The conductance of the i-th channel, gi, can be seen as a switch that opens or
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closes the pump. Recall that i ∈ I = {Na,K,Cl,Ca, . . . }. A refinement of (2.2) is then,

Ii = ḡi pi(v − Ei) (2.4)

where ḡi is a constant called the maximal conductance, which is fixed for each ionic species.
The variable pi , pi(v) is the average proportion of channels of the type i in the open
state. Notice that the proportion is in general voltage-dependent (i.e., sensitive to the
membrane potential) and thus they are said to be voltage-gated.

The proportion pi can be further classified into gates that activate (i.e., gates that
open the i-th ionic channel) and those that inactivate (i.e., gates that close the i-th ionic
channel). Mathematically, omitting the dependence on i,

p = mahb (2.5)

where a is the number of activation gates and 0 < m , mi(v) < 1 the probability of
activating gate being in the open state. Similarly, b is the number of inactivation gates
and 0 < h , hi(v) < 1 the probability of inactivating gate being in the open state.

We refer to m and h as the gating variables of the ionic channel. The dynamics of
these gating variables are responsible for the membrane potential generation and can be
expressed by a first-order differential equation:

ṁ =
m∞(v)−m

τm(v)
(2.6)

ḣ =
h∞(v)− h
τh(v)

(2.7)

where the activation/inactivation functions (m∞(v) and h∞(v), respectively) and time
constants (τm(v) and τm(v)) can be measured experimentally. The activation and inacti-
vation functions are typically a sigmoid. The parameters defining the sigmoids are then
related to the type of gate. As seen in Fig. 2.2, for large membrane potentials activating
gates are more likely to be open. Conversely for inactivating gates. The time constants
resemble a Gaussian, and smaller values of the time constant imply faster dynamics of
the corresponding gating variable.

As a result, we have seen that neural activity can be modeled as a system of differential
equations. Precisely, one for the voltage as in (2.3), and then as many first-order differential
equations as gating variables and ionic channels. In the literature one might find many
models following the basic formulae in (2.3) and (2.4), mostly varying on the number and
type of gating variables and the activation/inactivation functions defining the dynamics
of the gating variables. The pioneer work by [Hod52] has been followed by a plethora of
alternative models such as [Mor81, Fit61, Nag62, Izh04]. Without loss of generality, in
the sequel we consider one of the most popular single-neuron models: the Morris-Lecar
model, which is introduced in the following section.
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Figure 2.2: Sigmoid activation and inactivation functions (Source: [Izh06]).

2.3.1 Morris-Lecar model

From the myriad of existing single-neuron models, we consider the Morris-Lecar model
proposed in [Mor81]. The model can be related (see [Izh06]) to the INa,p + IK-model (pro-
nounced persistent sodium plus potassium model). The dynamics of the neuron is modeled
by a continuous-time dynamical system composed of the current-balance equation for the
membrane potential, v = v(t), and the K+ gating variable 0 ≤ n = n(t) ≤ 1, which repre-
sents the probability of the K+ ionic channel to be active. Then, the system of differential
equations is

Cmv̇ = −IL − ICa − IK + Iapp (2.8)

ṅ = φ
n∞(v)− n
τn(v)

, (2.9)

where Cm is the membrane capacitance and φ a non-dimensional constant. Iapp represents
the (externally) applied current. For the time being, we have neglected Isyn in (2.8). The
leakage, calcium, and potassium currents are of the form

IL = ḡL(v − EL) (2.10)

ICa = ḡCam∞(v)(v − ECa) (2.11)

IK = ḡKn(v − EK) , (2.12)
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respectively. ḡL, ḡCa, and ḡK are the maximal conductances of each current. EL, ECa, and
EK denote the Nernst equilibrium potentials, for which the corresponding current is zero,
a.k.a. reverse potentials.

The dynamics of the activation variable m is considered at the steady state, and thus
we write m = m∞(v). On the other hand, the time constant τn(v) for the gating variable
n cannot be considered that fast and the corresponding differential equation needs to be
considered. The formulae for these functions is

m∞(v) = 1
2
· (1 + tanh[v−V1

V2
]) (2.13)

n∞(v) = 1
2
· (1 + tanh[v−V3

V4
]) (2.14)

τn(v) = 1/(cosh[v−V3
2V4

]) , (2.15)

which parameters V1, V2, V3, and V4 can be measured experimentally [Izh06].

The knowledgeable reader would have noticed that the Morris-Lecar model is a
Hodgin-Huxley type-model with the usual considerations, where the following two ex-
tra assumptions were made: the depolarizing current is generated by Ca2+ ionic channels
(or Na+ depending on the type of neuron modeled), whereas hyperpolarization is carried
by K+ ions; and that m = m∞(v). The Morris-Lecar model is very popular in computa-
tional neuroscience as it models a large variety of neural dynamics while its phase-plane
analysis is more manageable as it involves only two states [Rin98].

The Morris Lecar, although simple to formulate, results in a very interesting model
as it can produce a number of different dynamics. For instance, for given values of its
parameters, we encounter a subcritic Hopf bifurcation for Iapp = 93.86 µA/cm2. On the
other hand, for another set of parameter values, the system of equations has a Saddle-Node
on an Invariant Circle (SNIC) bifurcation at Iapp = 39.96 µA/cm2.

2.4 Synaptic inputs

The synaptic current, Isyn, gathers the contribution of neighboring neurons. Isyn is re-
sponsible for activating spike generation in neurons, without externally applying currents
(e.g., via Iapp). The most general model for Isyn considers decomposition in 2 independent
components:

Isyn = gE(t)(v(t)− EE) + gI(t)(v(t)− EI) (2.16)

corresponding to excitatory (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA)
neuroreceptors) and inhibitory (γ-aminobutyric acid (GABA) neuroreceptors) terms, re-
spectively. Roughly speaking, whereas the excitatory synaptic term makes the postsynap-
tic neuron more likely to generate a spike, the inhibitory term makes the postsynaptic
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neuron less likely to generate an action potential. EE and EI are the corresponding reverse
potentials. A longstanding problem is to characterize the time-varying global excitatory
and inhibitory conductances gE(t) and gI(t). We present here 3 mathematical models for
the synaptic current.

1. A classical model is to consider each of the 2 synapses as a whole, gathering the
contributions of all the synapses of that type. In this case, similarly as for the
voltage-dependent conductances, the synaptic conductance can be written as the
product of its maximal conductance (ḡu) and the channel open probability (pu),

gu(t) = ḡupu (2.17)

where u = {E, I}. In turn, pu = suru can be expressed in terms of the process
occurring on the pre- and post-synaptic sides: the probability that a postsynaptic
channel is open state (su) and the probability that a transmitter is released by
the pre-synaptic terminal (r). A simple model for su is similar to the model for
opening/closing gating variables:

ṡu = αu(1− su)− βusu (2.18)

where αu and βu are the opening and closing rates of the channel u, respectively.

2. A further refinement of the above is to account for multiple postsynaptic channels.
Particularly, if NE and NI denote the total number of excitatory and inhibitory
synapses, then a plausible model is

Isyn =

NE∑
nE=1

gAMPAm
(nE)
E (t)(v(t)− EE) +

NI∑
nI=1

gGABAm
(nI)
I (t)(v(t)− EI) (2.19)

where gAMPA and gGABA are maximal conductances, and m
(n)
u (t) is the fraction of

open post-synaptic receptors of the type u at each individual synapse n for a given
time t. The kinetic equations for these variable are very similar to those in (2.18)
with corresponding parameters. Notice that these individual dynamics differ in the
time constant, defined by 1/αu. This model is realistic, although might be intractable
for estimation and simulation purposes if the number of synapses increases.

3. A third alternative is fundamentally different, it is referred to as effective point-
conductance model in [Rud03, Piw04]. In this model, the excitatory/inhibitory
global conductances are treated as Ornstein-Uhlenbeck (OU) processes

ġu(t) = − 1

τu
(gu(t)− gu,0) +

√
2σ2

u

τu
χ(t) (2.20)
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where χ(t) is a zero-mean, white noise, Gaussian process with unit variance. Then,
the OU process has mean gu,0, standard deviation σu, and time constant τu. Recall
that we used the notation u = {E, I}. Although this is a much simpler model than
(2.19), it was shown in [Rud03] that the OU model yields to a valid description of
synaptic noise, capturing the properties of the more complex model.

Estimation of the synaptic conductances and its parameters is one of the main chal-
lenges in modern neuroscience. There is a lack for efficient algorithms able to estimate
these quantities on-line, from a single trial, and robustly adapting to model uncertainties.
These are goals addressed in this Thesis.

2.5 Intracellular recordings

The membrane potential, obtained from intracellular recordings, is one of the most valu-
able signals of neurons’ activity. Most of the neuron models have been derived from fine
measurements and allow the progress of “in silico” experiments. The recording of the
membrane potential is a physical process, which involves two main issues not taken into
account in the ideal model (2.3):

1. Voltage observations are noisy. This is due to the thermal noise at the sensing device,
non-ideal conditions in experimental setups, etc.

2. Recorded observations are discrete. All sensing devices record data by sampling at
regular time intervals the continuous-time natural phenomena. This is the task of an
Analog-to-Digital Converter (ADC). Moreover, these samples are typically digitized,
i.e. expressed by a finite number of bits. This latter issue is not tackled in the Thesis
as we assume that modern computer capabilities allow us to sample with relatively
large number of bits per sample.

Therefore, the problem investigated in this Thesis considers recordings of noisy voltage
traces to infer the hidden gating variables of the neuron model, as well as filtered voltage
estimates. Data is recorded at discrete time-instants k at a sampling frequency fs = 1/Ts.
The problem can thus be posed in the form of a discrete-time, state-space model. The
observations are

yk ∼ N (vk, σ
2
y,k) , (2.21)

with σ2
y,k modeling the noise variance due to the sensor or the instrumentation inaccuracies

when performing the experiment. To provide comparable results, we define the signal-to-
noise ratio (SNR) as SNR = Ps/Pn, with Ps being the average signal power and Pn = σ2

y,k

the noise power.
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Neuron

Excitatory pool Inhibitory pool

gI(t)gE(t)

v(t)

Sensing Device
noisy, sampled version of v(t)

yk

Hidden System

Inference methods recover:
- Time-evolving states (membrance potential and gating variables)

- Unknown model parameters

- Synaptic conductances.

Figure 2.3: The experimental setup of interest in this Thesis.

Fig. 2.3 shows the basic setup we are dealing with in this Thesis. The neuron under
observation has its own dynamics, producing electrical voltage patterns. It was discussed
that the generation of action potentials is regulated by internal drivers (e.g., the active
gating variables of the neuron) as well as exogenous factors like excitatory and inhibitory
synaptic conductances produced by pools of connected neurons. This system is unob-
servable, in the sense that we cannot measure it directly. The sole observation from this
system are the noisy membrane potentials yk. In this experimental scenario, we aim at
applying sequential inference methods to extract the following quantities:

1. The time-evolving states characterizing the neuron dynamics, including a filtered
membrane potential and the dynamics of the gating variables.

2. The parameters defining the neuron model. It was seen that conductance-based
models require the knowledge (or adjustment) of a number of static parameters. It
is desirable to have autonomous inference algorithms that estimate these parameters
as well, on the top of the time-evolving states.
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3. The dynamics of synaptic conductances and its parameters. The final goal being to
Discern the temporal contributions of global excitation from those of global inhibi-
tion, gE(t) and gI(t) respectively.

2.6 Summary

In this chapter, we gained some insight on the biological components of a neuron and the
problem we aim at addressing. We presented conductance-based models for single-neurons,
the biophysical meaning of its parameters, and explained in more detail a particular model
named after Morris and Lecar. Without loss of generality, the latter model is used along
the Thesis to validate the algorithms. In this discussion we left integrate-and-fire models
on purpose [Izh06], although the methodology followed in the Thesis could be applied as
well. Finally, we briefly sketched the practical implications of working with intracellular
records which, basically, imply that observations are noisy and sampled.
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Appendix 2.A Validation of the effective point-

conductance model for synaptic con-

ductances

This Appendix validates the OU model introduced in Section 2.4 with a set of realistic
conductance measures. To do so we apply the tools from Bayesian modeling.

Particularly, we are interested in analyzing the suitability of two statistical models to
explain synaptic conductances, gE(t) and gI(t). The first approach is based on the work
in [Rud03, Piw04], where these terms were assumed to follow an OU process. The second
approach considers this synaptic noise as a white noise process. Since most of the models
are analogous for excitatory and inhibitory cells, in the sequel we use the generic index
u = {E, I} to simplify the equations. The results of the fitting can be consulted in Fig.
2.5(a)-2.6(b), and the model comparison metrics were in favor of the OU-based model.
Basically, we looked at the model comparison metrics (i.e. Akaike’s Information Criteria,
AIC), and the posterior variances of the model parameters.

We have access to a set of conductances profiles from a computational network model
of V1 with 1282 integrate-and-fire neurons, which are representative to the cells of the
layer 4Cα of the primary visual cortex [Tao04, McL00, Wie01]. See Figure 2.4 for the
time-series of the data, where T = 2000 ms where recorded at a sampling period of
Ts = 0.05 seconds between consecutive samples.
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Figure 2.4: Time-series of the excitatory and inhibitory synaptic conductances.
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2.A.1 Synaptic conductances as an Ornstein-Uhlenbeck process

According to [Rud03, Piw04], a OU process is reasonable for the modeling of synaptic noise
and has similar properties to more detailed (and thus complex) models. This appendix
seeks validation of this statement. The OU process, in its discrete version using Euler’s
method, can be expressed

gu,k+1 = gu,k −
Ts

τu
(gu,k − gu,0) + Ts

√
2σ2

u

τu
χ (2.22)

where χ is a zero-mean, independent white noise, Gaussian process with unit variance.
Then, the OU process has mean gu,0, standard deviation σu, and time constant τu.

The model in (2.22) can be rearranged as the following linear/Gaussian model:

gu,k+1 = βu0 + βu1gu,k + σχ (2.23)

which is more convenient for the model fitting purposes we aim at. In (2.23) we defined:

βu0 = 1− Ts

τu
(2.24)

βu1 = Ts
gu0

τu
(2.25)

σ = Ts

√
2σ2

u

τu
. (2.26)

The observed data are the time-series of gE(t) and gI(t) that we plotted in Figure 2.4.
Therefore, we can define a vector of observations as

ge = (gE,1, . . . , gE,T )> (2.27)

gi = (gI,1, . . . , gI,T )> (2.28)

and the vectors of explanatory variables as

xe = (0, gE,1, . . . , gE,T−1)> (2.29)

xi = (0, gI,1, . . . , gI,T−1)> , (2.30)

then, the model in (2.23) can be expressed in vector form and we come up with an
statistical model such as:

M1 = {gu|βu0, βu1, τ ∼ N (βu0 + βu1xu, τI), (βu0, βu1, τ) ∈ R3
+} , (2.31)
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with I being the n×n identity matrix, and τ
.
= σ−2 the precision of the normal distribution

(we are using WinBUGS notation here).

For the Bayesian model to be completed, we need to set a priori distributions for each
of the unknown quantities in the statistical model M1, we select:

βu0 ∼ π(βu0) = N (0, 10−5) (2.32)

βu1 ∼ π(βu1) = N (0, 10−5) (2.33)

τ ∼ π(τ) = Γ(10−3, 10−3) . (2.34)

Finally, it is worth mentioning that we are able to recover the desired parameters of the
OU model by undoing the transformations. It is straightforward to see from (2.24)–(2.26)
that

τu =
Ts

1− βu1

(2.35)

gu0 =
βu0

1− βu1

(2.36)

σu =
1

2τTs

1

(1− βu1)
, (2.37)

and it is even easier to obtain the a posteriori distributions of each parameter with Win-
BUGS (see code below).

The chunk of WinBUGS code implementing the OU model is:

model {

# statistical model:

for ( i in 1:N) {

y[i] ~ dnorm(mu[i], tau.y)

E[i] <- y[i]- mu[i]

E2[i] <- pow(E[i], 2)

}

mu[1] <- b0

for ( j in 2:N) {

mu[j] <- b1*x[j] + b0

}

# a priori distributions:
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b0 ~ dnorm(0, 0.00001)

b1 ~ dnorm(0, 0.00001)

tau.y ~ dgamma(0.001, 0.001)

# obtaining the desired parameters:

tau <- Ts/(1-b1)

g0 <- b0/(1-b1)

sigma2 <- 1/(2*tau.y*Ts*(1-b1))

SQE <- sum(E2[])

}

2.A.2 Synaptic conductances as a white noise process

At the light of the time-series in Figure 2.4, one could be tempted to model the synaptic
conductances as a white noise process of the form:

gu,k = αu0 + σuχ (2.38)

where χ is a zero-mean, white noise, Gaussian process with unit variance. The model has
two unknown quantities αu0 and σ2

u. Therefore, the statistical model might be described
in this case as:

M2 = {gu|αu0, τ ∼
n∏
i=1

N (αu0, τ
.
= σ−2

u ), (αu0, τ) ∈ R2
+} (2.39)

where we assumed i.i.d. observations. We chose the a priori distributions

αu0 ∼ π(αu0) = N (0, 10−5) (2.40)

τ ∼ π(τ) = Γ(10−3, 10−3) . (2.41)

The chunk of WinBUGS code implementing the WN model is:

model {

# statistical model:

for ( i in 1:N) {

y[i] ~ dnorm(a0, tau.y)
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#E[i] <- y[i]- a0

#E2[i] <- pow(E[i], 2)

}

# a priori distributions:

a0 ~ dnorm(0, 0.00001)

tau.y ~ dgamma(0.001, 0.001)

# obtaining the desired parameters:

sigma2 <- 1/tau.y

#SQE <- sum(E2[])

}
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Figure 2.5: A posteriori distributions for the parameters of gE(t).
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3
Fundamentals of Bayesian Filtering

THE type of problems we are interested in involve the estimation of time-evolving pa-
rameters that can be expressed through a state-space (SS) formulation. Particularly,

estimation of the states in a single-neuron model from noisy voltage traces can be readily
seen as a filtering (even smoothing) problem. Bayesian theory provides the mathematical
tools to deal with such problems in a systematic manner following the axioms of probabil-
ity. The focus is on sequential methods that can incorporate new available measurements
as they are recorded data without the need for reprocessing all past measurements. This
is accomplished by the Bayesian filtering methodology and the related algorithms.

Ultimately, in Bayes theory we are interested in computing the marginal posterior
distribution of having the system in a state xk at discrete time k after observing data
from 1 to k, that is p(xk|y1, . . . ,yk). For instance, in the case of the Morris-Lecar model
the states are the values of voltage traces and the gating variable.

This chapter presents an introductory overview on the optimal filtering framework
and the algorithms that a practitioner has at hand. More precisely, we have organized the
Chapter as follows. First, the optimal Bayesian filtering framework is presented in Section
3.1. Then, Section 3.2 reviews fundamental estimation bounds of filtering methods and
Section 3.3 briefly sketches the algorithms one can use to implement Bayesian filters
depending on the type of system under study. We have included an appendix with more
details on the particle filtering methodology, which is of paramount importance in this

23
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Thesis since methods designed in Chapter 4 are based on this approach. The details on
the rest of algorithms are given here for the sake of completeness.

3.1 Bayesian nonlinear filtering over general state-

space models

In general, the natural way to account for prior information is to consider a SS model. The
SS representation provides a twofold modeling. On the one han, state equation illustrates
the evolution of states with time. In other words, state equation mathematically expresses
the prior information that the algorithm has regarding the state1. On the other hand,
measurement equation models the dependency of measurements with unknown states. In
this section, we introduce the general discrete state-space (DSS) model and the Bayesian
conceptual solution, which is only analytically tractable when some assumptions hold.
The section discusses both optimal and state-of-the-art suboptimal algorithms to obtain
the Bayesian solution. We restrict ourselves to the discrete version of the SS model since
it is the one required along this dissertation. Although similar, the continuous SS model
has its own particularities that an interested reader can explore in detail in [And79].

3.1.1 Considering Prior information: the Bayesian recursion

The DSS approach deals with the nonlinear filtering problem: recursively compute esti-
mates of states xk ∈ Rnx given measurements yk ∈ Cny at time index k based on all
available measurements, y1:k = {y1, . . . ,yk}. State equation models the evolution in time
of target states as a discrete-time stochastic model, in general

xk = fk−1(xk−1,νk) , (3.1)

where fk−1(·) is a known, possibly nonlinear, function of the state xk and νk is referred
to as process noise which gathers any mismodeling effect or disturbances in the state
characterization. In our case, for instance, fk−1(·) is defined by the ordinary differential
equations (ODEs) describing the Morris-Lecar model where xk includes the voltage traces
and the gating variable. The relation between measurements and states is modeled by

yk = hk(xk, ek) , (3.2)

where hk(·) is a known possibly nonlinear function and ek is referred to as measurement
noise. Both process and measurement noise are assumed with known statistics and mu-

1We understand by state the evolving (vector) r.v. that drives measurements and which is the esti-
mation objective.
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Figure 3.1: Graphical interpretation of the discrete state-space model as a Markov process
of order one.

tually independent. The initial a priori distribution of the state vector is assumed to be
known, p(x0).

The methodology described in the sequel assumes that the DSS model describes a
Markov process of order one, that is, the state at time instant k depends only on the pre-
vious state. This can be observed in (3.1) and (3.2). The Hidden Markov Model (HMM) is
a statistical model where one Markov process, representing the underlying system, is ob-
served through a stochastic process. Meaning that states are not directly observable, but
measurements. The idea behind the HMM model is graphically shown in Figure 3.1, where
it appears as evident that states are hidden and that the algorithm has access to measure-
ments. In addition, the algorithm must have perfect knowledge of state and measurement
equations, represented in Figure 3.1 by vertical and horizontal arrows respectively.

Alternatively, it might be convenient to express the DSS in terms of states and mea-
surement distributions, i.e., prior and likelihood distributions respectively. We refer to
this equivalent representation as the probabilistic DSS. This interpretation is equivalent
to that in (3.1) and (3.2), but is useful in some problems. In this case, state equation is
written as

xk ∼ p(xk|xk−1) for k ≥ 1 , (3.3)

where p(xk|xk−1) is referred to as the transitional prior. The relationship between mea-
surements and states is generically modeled by the probability distribution

yk ∼ p(yk|xk) for k ≥ 1 , (3.4)

referred to as the likelihood function. Similarly as in the functional interpretation of the
DSS , p(x0) is assumed known.

From a Bayesian standpoint, the posterior distribution p(x0:k|y1:k) provides all neces-
sary information about the state of the system x0:k, given all measurements y1:k and the
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prior p(x0:k). The Bayes’ theorem allows to express the posterior in terms of the likelihood
and prior distributions:

p(x0:k|y1:k) =
p(y1:k|x0:k)p(x0:k)

p(y1:k)
, (3.5)

which can be written as

p(x0:k|y1:k) =
p(x0)

∏k
t=1 p(yt|xt)p(xt|xt−1)

p(y1:k)
(3.6)

where we take into account that measurements are independent given x0:k and consider
the Markov state evolution depicted in Figure 3.1.

We are interested in the marginal distribution p(xk|y1:k) since, as will be seen later
in this section, it allows the estimation of the realization of the target state vector xk.
p(xk|y1:k) can be obtained by marginalization of (3.6), being the dimension of the integral
growing with k. Alternatively the desired density2 can be computed sequentially in two
stages: prediction and update. The basic idea is to, assuming the filtering distribution
known at k− 1, first predict the new state and then incorporate the new measurement to
obtain the distribution at k:

· · · −→ p(xk−1|y1:k−1) −→ p(xk|y1:k−1)︸ ︷︷ ︸
prediction

−→ p(xk|y1:k)︸ ︷︷ ︸
update

−→ · · ·

First we notice from (3.6) that the posterior distribution can be recursively expressed
as:

p(x0:k|y1:k) =
p(yk|xk)p(xk|xk−1)

p(yk|y1:k−1)
p(x0:k−1|y1:k−1) , (3.7)

where the marginal p(xk|y1:k) also satisfies the recursion [Sor88]. Given that p(x0) ,
p(x0|y0) is known, where y0 is the set of no measurements, we can assume that the
required density at time k − 1 is available, p(xk−1|y1:k−1). In the prediction stage the
predicted distribution is obtained by considering that p(xk|xk−1,y1:k−1) = p(xk|xk−1),
due to the first-order Markovian SS model considered. Using the Chapman-Kolmogorov
equation (see Appendix 3.A) to remove xk−1 we obtain,

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 . (3.8)

2In the sequel, p(xk|y1:k) is referred to as the filtering distribution. In contrast to p(x0:k|y1:k), which
is the posterior distribution.
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Whenever a new measurement becomes available at instant k, the predicted distribu-
tion in (3.8) is updated via the Bayes’ rule (see Appendix 3.A)

p(xk|y1:k) = p(xk|yk,y1:k−1)

=
p(yk|xk,y1:k−1)p(xk|y1:k−1)

p(yk|y1:k−1)

=
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
, (3.9)

being the normalizing factor

p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1)dxk . (3.10)

Now the recursion is enclosed by equations (3.8) and (3.9), assuming some knowledge
about the state evolution and the relation between measurements and states, described
by p(xk|xk−1) and p(yk|xk) respectively. This recursion form the basis of the optimal
Bayesian solution.

To sum up, the interest on characterizing the filtering distribution is that it enables one
to compute optimal state estimates with respect to any criterion [Kay93], conditional upon
measurements up to time k′. For example, the Minimum Mean Square Error (MMSE)
estimator is extensively used in engineering applications, which is the conditional mean
of the state with respect to available measurements,

x̂MMSE
k = E {xk|y1:k′} =

∫
xkp(xk|y1:k′)dxk . (3.11)

Another approach is to compute the Maximum a posteriori (MAP) estimate, which re-
duces to find the state value which maximizes the filtering distribution,

x̂MAP
k = arg max

xk
{p(xk|y1:k′)} , (3.12)

among many other criterions which can be used3. In general, we would like to compute
any function g(·) of the state:

ĝ(xk)
MMSE

= E {g(xk)|y1:k′} =

∫
g(xk)p(xk|y1:k′)dxk , (3.13)

conditional upon measurements up to time k′.

Depending on the value of k′ we identify three different problems:

3Intuitively, the non-Bayesian counterparts to the MMSE and MAP estimators are the Least Squares
(LS) and Maximum Likelihood (ML) estimators, respectively. In the latter, prior information is omitted
or, equivalently, a noninformative prior is used.
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Smoothing. It is the case of k′ > k, were the state x0:k is estimated using future mea-
surements.

Filtering. Corresponds to the case k′ = k. It is the problem considered in the sequel and
the approach that is followed along the dissertation.

Prediction. In this case, one predicts values of states with measurements of previous
instants: k′ < k.

What the reader has read so far, corresponds to the conceptual solution of Bayesian
filtering (smoothing and prediction) that is endowed with the sequential equations (3.8)
and (3.9). In some particular cases, the recursion can be solved analytically and thus
optimally. However, in general it cannot be solved and thus we need to resort to suboptimal
algorithms. The most popular alternatives are discussed in Section 3.3. Before delving into
the details of Bayesian filters, we devote Section 3.2 to understand the computation of
theoretical lower bounds on estimation accuracy. The latter is of paramount importance
to establish benchmarks and comparison among different estimation algorithms.

3.2 Posterior Cramér-Rao Bound

The Posterior Cramér-Rao Bound (PCRB) provides a lower bound on the MSE matrix
for random parameters4. The Bayesian paradigm considers that the parameter of interest
ξ is random with a given a priori distribution, denoted by p(ξ). Then, the estimation
error

C(ξ̂) , Ey,ξ
{(
ξ̂ − ξ

)(
ξ̂ − ξ

)>}
(3.14)

is bounded as
C(ξ̂) ≥ J−1

B (ξ) , (3.15)

where JB(ξ) is referred to as the Bayesian Information Matrix (BIM), its inverse provides
the PCRB matrix [Tre07]. The matrix inequality in (3.15) means that C(ξ̂)− J−1

B (ξ) is a
non-negative definite matrix. The BIM elements are computed as

[JB(ξ)]u,v , Ey,ξ
{
∂ ln p(y, ξ)

∂ξu

∂ ln p(y, ξ)

∂ξv

}
= −Ey,ξ

{
∂2 ln p(y, ξ)

∂ξu∂ξv

}
, (3.16)

4We can also find the Posterior Cramér-Rao Bound in the literature under the name of Bayesian
Cramér-Rao Bound. Along the dissertation we used the former, as it is widespread used in nonlinear
filtering literature.
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with the expectations being over the joint distribution of data y and the parameter ξ,
i.e., p(y, ξ). Similarly as in the CRB, an Bayesian estimator of a random parameter is
said to be Bayesian efficient when its variance attains the PCRB.

The BIM can be expressed as the summation of two terms: JD(ξ) and JP (ξ) [Tre68].
The former corresponds to the contribution of data measurements and the latter represents
the information provided by prior, i.e.,

JB(ξ) = JD(ξ) + JP (ξ) , (3.17)

where the u, v-th element of each term is obtained as

[JD(ξ)]u,v , Ey,ξ
{
∂ ln p(y|ξ)

∂ξu

∂ ln p(y|ξ)

∂ξv

}
= −Ey,ξ

{
∂2 ln p(y|ξ)

∂ξu∂ξv

}
= Eξ

{
−Ey|ξ

{
∂2 ln p(y|ξ)

∂ξu∂ξv

}}
= Eξ

{
[JF (ξ)]u,v

}
(3.18)

and

[JP (ξ)]u,v , Eξ

{
∂ ln p(ξ)

∂ξu

∂ ln p(ξ)

∂ξv

}
= −Eξ

{
∂2 ln p(ξ)

∂ξu∂ξv

}
. (3.19)

From (3.18) we observe that the contribution of data to the Bayesian bound is equiva-
lent to the expected value of JF (ξ) over the distribution p(ξ). Thus, the data contribution
to the Bayesian estimation process corresponds to the averaged information matrix of the
deterministic case, i.e., the Fischer Information Matrix. Moreover, when no prior data
is considered, JD(ξ) equals JF (ξ) and the term JP (ξ) disappears, which reduces to the
deterministic case [Kay93].

So far, the PCRB was discussed from a static parameter estimation point of view.
In other words, parameter ξ was the realization of a r.v. which we wanted to estimate.
Another setup is possible. Dealing with the nonlinear filtering problem, tracking the time
evolution of the parameter of interest (a.k.a. state vector) is the objective. As extensively
discussed earlier, a state-space model can be used to characterize the evolution of the
system and, particularly, we considered the discrete state-space model. We will see in
Section 3.2.1 that, in that case, the evaluation of the PCRB can be demanding due to
a dimensionality growth with time. Fortunately, a result due to [Tic98] allows one to
compute the bound recursively. The result was extended in [Sim01] to the prediction and
smoothing problems.
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3.2.1 Recursive computation of the PCRB for nonlinear filter-
ing

Let yk ∈ Cny be a vector of measured data, xk ∈ Rnx an unknown random parameter
and x̂k(y1:k) an estimator of xk considering available data at time instant k, y1:k =
{y1, . . . ,yk}. The discrete state-space model provides a twofold characterization of the
system under study, i.e., evolution of states and measurement dependence with states:

xk = fk−1(xk−1,νk) (3.20)

yk = hk(xk, ek) , (3.21)

respectively. fk−1(·) and hk(·) are known, possibly nonlinear, functions of the state xk. νk
and ek are referred to as process and measurement noises, respectively. Both noises are
assumed with known statistics and mutually independent. The initial a priori distribution
of the state vector is assumed known, p(x0).

For the filtering problem, the minimum theoretical achievable error variance is given
by the PCRB [Ris04, Tre07, Ber01]. The PCRB states that the covariance matrix of
the estimation error is bounded by the inverse of the Bayesian Information Matrix5,
Jk ∈ Rnx×nx , i.e.,

Ck(xk) , Eyk,xk
{

(x̂k(y1:k)− xk)(x̂k(y1:k)− xk)>
}
≥ J−1

k , (3.22)

where the expectation is with respect to both measurements and states. The inequality
in (3.22) means that the difference Ck(xk) − J−1

k is a positive semidefinite matrix and,
if the equality holds, the estimator is said to be statistically efficient. Let the Trajectory
Information Matrix, J(x0:k) ∈ R(k+1)nx×(k+1)nx , be the information matrix derived from
the joint distribution for estimating x0:k and defined as

J(x0:k) = Eyk,xk
{
−4x0:k

x0:k
ln p(y1:k,x0:k)

}
, (3.23)

where we define x0:k = {x0, . . . ,xk} as the entire trajectory of state-vectors. We are
interested in the problem of computing the BIM for estimating yk, to compute the bound
in (3.22). Decomposing x0:k and J(x0:k) as

x0:k =

(
x0:k−1

xk

)
(3.24)

5where we dropped the subindex B for the sake of clarity, while keeping in mind that

Jk , JB(xk)

= JD(xk) + JP (xk)

= Eyk,xk

{
∂ ln p(yk|xk)

∂xk

∂ ln p(yk|xk)

∂xk

}
+ Exk

{
∂ ln p(xk|xk−1)

∂xk

∂ ln p(xk|xk−1)

∂xk

}
.



3.2. Posterior Cramér-Rao Bound 31

k = 1

J1

J(x0:1)

k = 2

J2

J(x0:2)

k = 3

J3

J(x0:3)

k = 4

J4

J(x0:4)

Figure 3.2: Dimensionality growth of the Trajectory Information Matrix with k.

and

J(x0:k) =

(
Ak Bk

B>k Ck

)
(3.25)

,

 Eyk,xk
{
−4x0:k−1

x0:k−1
ln p(y1:k,x0:k)

}
Eyk,xk

{
−4xkx0:k−1

ln p(y1:k,x0:k)
}

Eyk,xk
{
−4x0:k−1

xk ln p(y1:k,x0:k)
}

Eyk,xk
{
−4xkxk ln p(y1:k,x0:k)

}
 ,

respectively, we can compute the PCRB, J−1
k ∈ Rnx×nx , as the lower-right corner of

J−1(x0:k), i.e.,

Jk = Ck −B>k A−1
k Bk . (3.26)

Notice that the computation of the nx × nx BIM involves either the inversion of Ak ∈
Rknx×knx or the inversion of J−1(x0:k). Clearly, this can imply a high computational cost.

As depicted in Figure 3.2, the dimensionality of J(x0:k) grows with k. This poses a
computational problem to the computation of the PCRB, which conveys the idea of deriv-
ing a recursive computation of the bound. Some papers proposed to relate the nonlinear
filtering problem to an equivalent linear system, e.g., [Bob75]. However, the problem is
partially solved in these approaches and still the recursion was to be found by [Tic98].
The latter provides a recipe for computing Jk without manipulating large matrices, such
as J(x0:k). Proposition 3.1 states the main result of that work.

Proposition 3.1. The sequence {Jk} of posterior information submatrices for estimating
state vectors {xk} can be obtained using the following recursion:

Jk+1 = D22
k −D21

k

(
Jk + D11

k

)−1
D12
k , (3.27)
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where

D11
k = Exk,xk+1

{
−4xkxk ln p(xk+1|xk)

}
D12
k = Exk,xk+1

{
−4xk+1

xk ln p(xk+1|xk)
}

D21
k = Exk,xk+1

{
−4xkxk+1

ln p(xk+1|xk)
}

=
[
D12
k

]>
D22
k = Exk,xk+1

{
−4xk+1

xk+1
ln p(xk+1|xk)

}
+ Exk+1,yk+1

{
−4xk+1

xk+1
ln p(yk+1|xk+1)

}
(3.28)

and the initialization is done considering the prior density of the states:

J0 = Ex0

{
−4x0

x0
ln p(x0)

}
. (3.29)

Proof. See Appendix 3.B.

The recursion in (3.27) is extremely useful in many cases where the computation of
the PCRB is mathematically untractable. In addition, matrices involved in the recursive
formula are nx× nx, in contrast to the problem in equation (3.23) which has a dimension
that increases with k (see Figure 3.2).

When the general DSS model described by (3.20) and (3.21) is particularized, some
simplifications apply to the recursive computation of the PCRB in (3.27) and (3.28). The
rest of the section is devoted to present those particularizations.

a) Additive Gaussian noise

In this case, the general DSS model is expressed as:

xk = fk−1(xk−1) + νk

yk = hk(xk) + ek , (3.30)

where both process and measurement noise are zero-mean and Gaussian distributed, with
covariance matrices being Σx,k and Σy,k respectively. Then, we have that

− ln p(xk+1|xk) = c1 +
1

2
(xk+1 − fk(xk))

>Σ−1
x,k (xk+1 − fk(xk)) (3.31)

− ln p(yk+1|xk+1) = c2 +
1

2

(
yk+1 − hk+1(xk+1)

)>
Σ−1
y,k+1

(
yk+1 − hk+1(xk+1)

)
,



3.2. Posterior Cramér-Rao Bound 33

where c1 and c2 are constants, and

D11
k = Exk

{
F̃>k Σ−1

x,kF̃k

}
D12
k = −Exk

{
F̃>k

}
Σ−1
x,k

D22
k = Σ−1

x,k + Exk+1

{
H̃>k+1Σ

−1
y,k+1H̃k+1

}
. (3.32)

In (3.32) we use the definitions of Jacobian of hk(xk) and hk(xk) evaluated at the true
value of xk:

H̃k =
[
∇xkh>k (xk)

]>
F̃k =

[
∇xkf>k (xk)

]>
, (3.33)

respectively.

The difficulty in evaluating (3.32) comes due to the need of performing the expectation
over xk and xk+1. The common approach is to approximate such expectations using
Monte-Carlo simulation, i.e., create a significative number of state-vector trajectories,
calculate the corresponding PCRB and average them to obtain the theoretical PCRB of
the system under study. In certain cases, where the process noise is small, the expectation
can be dropped out as a good approximation.

b) Linear systems under additive Gaussian noise

The linear DSS model corrupted by additive Gaussian noise reduces to :

xk = Fk−1xk−1 + νk

yk = Hkxk + ek , (3.34)

where Fk−1 and Hk are known matrices that represent linear functions, referred to as
transitional and measurement matrices respectively. νk and ek are mutually independent
random variables drawn from a zero-mean white Gaussian probability density function
with known covariance matrices, Σx,k and Σy,k respectively.

In this case, it is straightforward to show that the recursion can be expressed as:

Jk+1 = Σ−1
x,k −Σ−1

x,kFk

(
Jk + F>k Σ−1

x,kFk

)−1
F>k Σ−1

x,k + H>k+1Σ
−1
y,k+1Hk+1 , (3.35)

and using the matrix inversion lemma

Jk+1 =
(
Σx,k + F>k J−1

k Fk

)−1
+ H>k+1Σ

−1
y,k+1Hk+1 (3.36)

we obtain an expression with two terms: one corresponds to the process prediction and
the other to the measurement update.
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c) Linear states and nonlinear measurements under additive Gaussian noise

Consider a DSS model as:

xk = Fk−1xk−1 + νk

yk = hk(xk) + ek , (3.37)

where the previous definitions hold. Some simplifications apply to (3.32 under that DSS
model. Considering that states are drawn from a Gaussian pdf and p(x0) = N (x̄0,Σx,0),
after mathematical manipulation of equation (3.29) we obtain that J0 = Σ−1

x,0. In addition,

D11
k = F>k Σ−1

x,kFk

D12
k = −F>k Σ−1

x,k

D22
k = Σ−1

x,k + Exk+1

{
H̃>k+1Σ

−1
y,k+1H̃k+1

}
, (3.38)

where we use the definitions in (3.33). Notice that, after simplifications due to the model
at hand, matrices D11

k , D12
k and D21

k are deterministic and can be easily obtained. How-
ever, due to the non-linearity in the measurement model, the expectation operator in
the computation of D22

k cannot be dropped out. In order to compute this expectation, a
Monte-Carlo approximation can be performed as previously commented.

d) Nonlinear states and linear measurements under additive Gaussian noise

Consider a DSS model as:

xk = fk−1(xk−1) + νk

yk = Hkxk + ek , (3.39)

where the transition equation is nonlinear/Gaussian and the measurements are expressed
as a linear/Gaussian equation. Using (3.33), the components of the recursive PCRB for-
mulation are

D11
k = Exk

{
F̃>k Σ−1

x,kF̃k

}
D12
k = −Exk

{
F̃>k

}
Σ−1
x,k

D22
k = Σ−1

x,k + H>k+1Σ
−1
y,k+1Hk+1 . (3.40)

where we D22
k becomes deterministic, but the rest of terms involving expectations have

to be computed by Monte Carlo approximations.

This last case is the situation we will face in this Thesis: noisy/linear observations of
states with nonlinear state evolution, everything under the Gaussian assumption.
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3.3 Algorithms implementing Bayesian filtering

There are few cases where the Bayesian filtering problem can be analytically solved. An
important case is when the system can be considered linear and Gaussian, in which case
the Kalman filter (KF) [Kal60, And79] is known to be optimal. Another interesting case
is when the SS is discrete and finite, where the optimal solution exists and can be found
via optimal grid based methods [Ris04].

In more general models one must resort to suboptimal algorithms. A number of meth-
ods can be found in the literature [Che03]. A popular tool are particle filters (PFs)
[Dou01a, Aru02, Dju03, Ris04] , a set of simulation-based methods which are applica-
ble in very general nonlinear/non-Gaussian setups. Another appealing class of filters is
composed of those variants of the KF which could operate with nonlinearities under the
Gaussian assumption: extended Kalman filter (EKF) [And79, Kay93], unscented Kalman
filter (UKF) [Jul97, Jul00, Wan00], central difference filter (CDF) [Ito00], divided differ-
ence filter (DDF) [Nor00], quadrature Kalman filter (QKF) [Ara08], or cubature Kalman
filter (CKF) [Ara09]. Due to the Gaussian assumption, these algorithms only require the
estimation of the first two moments of the distribution. They basically differ in the way
they perform this estimation. Unlike the EKF, where only mean and covariance are prop-
agated through the nonlinearity by means of a linearization process, the rest of mentioned
KF–like algorithms resort to a set of so-called sigma-points to efficiently characterize the
propagation of the normal distribution over the nonlinear system. Therefore, these filters
are referred to with the general term of sigma–point Kalman filters (SPKFs) [Mer03]. In
this section, we review the most popular Bayesian filtering algorithms.

3.3.1 The Kalman filter

Nobody can question that the KF has been one of the most used algorithms since its con-
ception [Kal60]. Simple in its formulation, the KF provides an optimal Bayesian solution
when the SS model is linear/Gaussian in both state and measurement equations. Thus,
the model considered is

xk = Fk−1xk−1 + νk

yk = Hkxk + ek (3.41)

where Fk−1 and Hk are known matrices that represent linear functions, referred to as
transitional and measurement matrices respectively. νk and ek are mutually independent
random variables drawn from a zero-mean white Gaussian probability density function
with known covariance matrices, Σx,k and Σy,k respectively.
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The KF considers the posterior pdf as a Gaussian distribution, being completely char-
acterized by its mean and covariance. Then, the prediction and update steps in equations
(3.8) and (3.9) result in

p(xk−1|y1:k−1) = N
(
xk−1; x̂k−1|k−1,Pk−1|k−1

)
p(xk|y1:k−1) = N

(
xk; x̂k|k−1,Pk|k−1

)
p(xk|y1:k) = N

(
xk; x̂k|k,Pk|k

)
. (3.42)

The KF provides the mean and covariance of each step in an iterative way [And79]:

x̂k|k−1 = Fk−1x̂k−1|k−1

Pk|k−1 = Σx,k + Fk−1Pk−1|k−1F
>
k−1

x̂k|k = x̂k|k−1 + Kk

(
yk −Hkx̂k|k−1

)
Pk|k = Pk|k−1 −KkSkK

>
k , (3.43)

where it is defined the Kalman gain matrix as

Kk = Pk|k−1H
>
k S−1

k (3.44)

and the variance of the innovation term as

Sk = E
{∣∣yk −Hkx̂k|k−1

∣∣2} = HkPk|k−1H
>
k + Σy,k . (3.45)

Intuitively, a state prediction x̂k|k−1 is done considering state equation in (3.41), i.e., a
priori information. The state estimation at k is given by updating x̂k|k−1 with a term that
depends on the innovation error yk −Hkx̂k|k−1, which corrects the state prediction. The
innovation error refers to the misadjusting between actual and predicted measurements,
being controlled by the Kalman gain matrix. Initially, this matrix takes large values, since
the main source of information are the measurements. Conversely, for increasing k, the
updated values of Kk decrease since the algorithm gives more importance to prior data.

As said, the KF computes the mean and covariance matrices of the densities involved
in (3.42) in a sequential way. In the case of linear/Gaussian models, the KF is the optimal
solution. However, the assumptions might be too tight. They may not hold in some appli-
cations where the dependence of measurements on states is nonlinear or noises cannot be
considered normally distributed or zero-biased. This is one of the main criticisms made
against the use of such algorithm, which is nowadays still (widely) used.
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3.3.2 Extended Kalman Filter

The KF can be extended to the case of nonlinear models of the form of:

xk = fk−1(xk−1) + νk

yk = hk(xk) + ek (3.46)

where fk−1(·) and hk(·) are known nonlinear functions. νk and ek are mutually independent
random variables drawn from a zero-mean white Gaussian probability density function
with known covariance matrices Σx,k and Σy,k, respectively.

The approach taken by the EKF is based on a local linearization of the model, while
maintaining the Gaussian constraint on the involved density functions [Jaz70]. The EKF
approximates the posterior pdf as a Gaussian in the vein of (3.42). Thus, the posterior
characterization is provided by its estimated mean and covariances. Similarly as done in
the KF algorithm, the mean and covariance of both predictive and updated distributions
are obtained in a sequential way [And79]:

x̂k|k−1 = fk−1(x̂k−1|k−1)

Pk|k−1 = Σx,k + F̂k−1Pk−1|k−1F̂
>
k−1

x̂k|k = x̂k|k−1 + Kk

(
yk − hk(x̂k|k−1)

)
Pk|k = Pk|k−1 −KkSkK

>
k (3.47)

where

Kk = Pk|k−1Ĥ
>
k S−1

k

Sk = E
{∣∣∣yk − Ĥkx̂k|k−1

∣∣∣2} = ĤkPk|k−1Ĥ
>
k + Σy,k . (3.48)

The computation of this first and second order statistics is done after linearizing mea-
surement and/or state evolution functions in (3.46). Local linearizations of fk−1(x̂k−1|k−1)
and hk(x̂k|k−1) are obtained by the Gradient evaluated at the point of interest as

F̂k−1 =
[
∇xk−1

f>k−1(xk−1)
]> ∣∣∣
xk−1=x̂k−1|k−1

Ĥk =
[
∇xkh>k (xk)

]> ∣∣∣
xk=x̂k|k−1

, (3.49)

respectively.

As said the EKF deals with nonlinearities in the model. However, the posterior density
is still modeled as being Gaussian. Thus, it might fail in applications where the Gaussian
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assumption is not valid or the nonlinearity is severe, which causes the true posterior to
differ from Gaussianity. In addition, the EKF requires an accurate initialization of states
and covariances in order to converge to the optimal solution, since the approximations in
(3.49) are local.

3.3.3 The family of sigma-point Kalman filters

It is known that the EKF fails under severe nonlinearities. However, if the Gaussian
assumption is still valid both for process and measurement noises we can seriously consider
the family of SPKFs to infer the states of our system. As shown in [Ito00], for an arbitrary
nonlinearity, we can derive a recursive algorithm by equating the Bayesian formulae with
respect to the first and second moments of the distributions, that is, means and covariances
of the conditional densities involved. The Bayesian filtering problem is then cast into a
numerical evaluation of the involved integrals in (3.8) and (3.9).

As stated in the previous Section, there are a number of alternatives to evaluate such
integrals under the Gaussian assumption. Here we are interested in SPKFs, a family
of derivative-free algorithms which are based on a weighted sum of function values at
specified (i.e., deterministic) points within the domain of integration, as opposite to the
stochastic sampling performed by particle filtering methods. A pseudocode description of
a generic SPKF is given in Algorithm 3.1, where it is easy to recognize the underlying
KF-like structure. This algorithm is valid for any SPKF–like algorithm, only differing on
the generation of sigma-points in step 1. Notice that weights are normalized such that∑

i ω
(m)
i =

∑
i ω

(c)
i = 1.

A further improvement of the standard SPKF scheme comes from the fact that, when
we propagate the covariance matrix through a nonlinear function, the filter should preserve
the properties of a covariance matrix, namely, its symmetry, and positive-definiteness. In
practice, however, due to lack of arithmetic precision, numerical errors may lead to a loss
of these properties. To circumvent this problem, a square-root filter can be considered to
propagate the square root of the covariance matrix instead of the covariance itself. Even
more, it avoids the inversion of the updated covariance matrix, entailing additional com-
putational saving [Pot63]. The idea has been applied to the UKF [Van01] (although it does
not guarantee positive definiteness of the covariance matrix) and, more successfully, to the
Square–Root Quadrature Kalman Filter (SQKF)[Ara08] and the Square–Root Cubature
Kalman Filter (SCKF) [Ara09].
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As an outcome of Algorithm 3.1 one obtains the two distributions in (3.8) and (3.9)
as

p(xk|y1:k−1) ≈ N
(
x̂k|k−1,Σx,k|k−1

)
(3.50)

p(xk|y1:k) ≈ N
(
x̂k|k,Σx,k|k

)
, (3.51)

respectively, which can be directly used to obtain an estimate of the states of interest.

Here we discuss the most popular algorithms falling in the SPKF category. As said,
their sole difference is on the generation and weighting of sigma-points. At a glance:

UKF: It is based on the unscented transform (UT), whose sigma-points generation and
weighting can be consulted6 in Algorithm 3.3. The UT uses 2nx + 1 points to op-
timally characterize mean and covariance propagation of up to third order nonlin-
earities, under the Gaussian assumption. The square–root unscented Kalman fil-
ter (SRUKF) was first introduced in [Van01]. Intuitively, the role of parameter λ is
to adjust the distance among the generated sigma–points and the mean. Therefore,
if the dimension of the state–space increases, the distance also increases, forcing the
transform to take into account non-local effects. The parameters required for the
UT to operate are: α is a positive scaling parameter which can be made arbitrarily
small to minimize higher order effects (e.g. 10−3), and it determines the spread of
sigma-points around a mean value; κ is a secondary parameter typically set to 0;
and β = 2 was seen to be optimal in the Gaussian case [Jul04].

CKF: Recently, the Cubature Kalman filter (CKF) and its square-root version (SR-
CKF) were proposed in [Ara09]. The CKF is based on a spherical–radial cubature
rule [Str71] to generate and weight the sigma-points in Algorithm 3.1 and thus ap-
proximate the integrals in (3.8) and (3.9). Specifically, the authors claim that a
third–degree cubature rule is enough in many filtering problems over higher–degree
rules. Moreover, a third-degree spherical-radial cubature rule is said to be an opti-
mal approximation to the Bayesian filter when the Gaussian assumption holds. This
setup yields a total of 2nx sigma–points, details found in Algorithm 3.4.

QKF: Another alternative for numerically solving the integrals in (3.8) and (3.9) is to
resort to the Gauss–Hermite quadrature rules [Gol73]. Recently, this procedure was
used to develop the so-called Quadrature Kalman filter (QKF) [Ito00, Ara07] and
the corresponding square-root version (SRQKF) in [Ara08], exhibiting remarkable
performance results. A single parameter is required for the use of Gauss–Hermite
quadrature rule, which is the number of sigma–points per dimension γ. The pseu-
docode can be consulted in Algorithm 3.5. The square–root quadrature Kalman

6where 1i denotes the vector having a 1 at the i-th element and 0 otherwise.
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Algorithm 3.1 Sigma-point Kalman Filter

Require: x̂0, Σx,0 = Sx,0|0S
>
x,0|0, Q0, R0.

1: Define sigma–points and weights {ξi, ω(m)
i , ω

(c)
i }i=1,...,L

2: Set k ⇐ 1

Time update

3: Factorize the estimation covariance matrix:

Σx,k−1|k−1 = Sx,k−1|k−1S
>
x,k−1|k−1.

4: Evaluate the sigma points:

xi,k−1|k−1 = Sx,k−1|k−1ξi + x̂k−1|k−1, i = 1, ..., L.

5: Evaluate the propagated sigma-points:

x̃i,k|k−1 = fk−1(xi,k−1|k−1).

6: Estimate the predicted state:

x̂k|k−1 =
∑L
i=1 ω

(m)
i x̃i,k|k−1.

7: Estimate the predicted error covariance:

Σx,k|k−1 =
∑L
i=1 ω

(c)
i x̃i,k|k−1x̃

>
i,k|k−1 −∆x,k,

with ∆x,k = x̂k|k−1x̂
>
k|k−1 −Σν,k−1.

Measurement update

8: Factorize the predicted error covariance matrix:

Σx,k|k−1 = Sx,k|k−1S
>
x,k|k−1.

9: Evaluate the sigma points:

xi,k|k−1 = Sx,k|k−1ξi + x̂k|k−1, i = 1, ..., L.

10: Evaluate the propagated sigma-points:

ỹi,k|k−1 = hk(xi,k|k−1).

11: Estimate the predicted measurement:

ŷk|k−1 =
∑L
i=1 ω

(m)
i ỹi,k|k−1.

12: Estimate the innovation covariance matrix:

Σy,k|k−1 =
∑L
i=1 ω

(c)
i ỹi,k|k−1ỹ

>
i,k|k−1 −∆y,k,

with ∆y,k = ŷk|k−1ŷ
>
k|k−1 −Σn,k.

13: Estimate the cross–covariance matrix

Σxy,k|k−1 =
∑L
i=1 ω

(c)
i x̃i,k|k−1ỹ

>
i,k|k−1 − x̂k|k−1ŷ

>
k|k−1.

14: Estimate the Kalman gain

Kk = Σxy,k|k−1Σ
−1
y,k|k−1.

15: Estimate the updated state

x̂k|k = x̂k|k−1 + Kk

(
yk − ŷk|k−1

)
.

16: Estimate the corresponding error covariance:

Σx,k|k = Σx,k|k−1 −KkΣy,k|k−1K
>
k .

17: Set k ⇐ k + 1 and go to step 4.
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filter (SRQKF) algorithm has the appealing feature of coping with arbitrary non-
linearities since a γ-point Gauss–Hermite quadrature rule is exact for nonlinearities
of order 2γ − 1. The total number of generated points is γnx . Thus, the SRQKF
has one major drawback: the curse of dimensionality [Clo12b]. It is clear that for
high–dimensional systems the implementation of the method is unfeasible for com-
putational reasons (even for γ = 3), and alternatives should be explored.

3.3.4 Particle filtering for nonlinear/nonGaussian systems

In the recent years PFs played an important role in many research areas such as
signal detection and demodulation, target tracking, positioning, Bayesian inference,
audio processing, financial modeling, computer vision, robotics, control or biology
[Spe02, Dju03, Pun03, Kar05, Hen08, Clo09]. The reason being its ability to deal with
general nonlinear/nonGaussian systems. PFs are also referred to as Sequential Monte-
Carlo (SMC) methods, since these tools are simulation-based methods to suboptimally
(although close to it) sample from the marginal filtering distribution in situations where
analytical solutions are hard to work out, or simply impossible. Many interesting text-
books on the topic can be consulted [Dou01a, Aru02, Che03, Ris04, Sär13]. For the sake
of completeness, we have included a tutorial introduction to PFs in Appendix 3.D. In this
section, only the basic algorithm is discussed.

Notice at this point that PFs constitute the core methods in this Thesis, and thus we
devote here some effort in its understanding. The rest of algorithms presented earlier are
provided for the sake of completeness, but bear in mind that the methods designed in
Chapter 4 are based on the PF methodology.

Recall that Bayesian filtering involves the recursive estimation of states xk ∈ Rnx

given measurements yk ∈ Rny at time t based on all available measurements, y1:k =
{y1, . . . ,yk}. To that aim, we are interested in the marginal filtering distribution
p(xk|y1:k), which can be recursively expressed as

p(xk|y1:k) =
p(yk|xk)p(xk|xk−1)

p(yk|y1:k−1)
p(xk−1|y1:k−1) , (3.52)

with p(yk|xk) and p(xk|xk−1) referred to as the likelihood and the prior distributions,
respectively. Unfortunately, (3.52) can only be obtained in closed-form in few special
cases. Under the Gaussian assumption, we have seen in previous sections that Kalman-
like methods provide interesting solutions. In more general setups – nonlinear and/or non-
Gaussian – we should resort to more sophisticated methods such as PFs [Aru02, Dju03].

PFs approximate the filtering distribution by a set of N weighted random samples,

forming the so-called set of particles
{
x

(i)
k , w

(i)
k

}N
i=1

. These random samples are drawn
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Algorithm 3.2 Sequential Importance Sampling with systematic resampling

Require:
{
x

(i)
k−1, w

(i)
k−1

}N
i=1

and yk

Ensure:
{
x

(i)
k , w

(i)
k

}N
i=1

and x̂k

1: for i = 1 to N do
2: Generate x

(i)
k ∼ π(xk|x(i)

0:k−1,y1:k)

3: Calculate w̃
(i)
k = w

(i)
k−1

p(yk|x
(i)
0:k,y1:k−1)p(x(i)

k |x
(i)
k−1)

π(x(i)
k |x

(i)
0:k−1,y1:k)

4: end for
5: for i = 1 to N do

6: Normalize weights: w
(i)
k =

w̃
(i)
k∑N

j=1 w̃
(j)
k

7: end for
8: MMSE state estimation: x̂k =

∑N
i=1w

(i)
k x

(i)
k

9:

{
x

(i)
k , 1/N

}N
i=1

= Resample(
{
x

(i)
k , w

(i)
k

}N
i=1

)

from the importance density distribution, π(·),

x
(i)
k ∼ π(xk|x(i)

0:k−1,y1:k) (3.53)

and weighted according to the general formulation

w
(i)
k ∝ w

(i)
k−1

p(yk|x
(i)
0:k,y1:k−1)p(x

(i)
k |x

(i)
k−1)

π(x
(i)
k |x

(i)
0:k−1,y1:k)

. (3.54)

The derivation of the weights expression can be consulted in Appendix 3.D, here
we remark the idea that the random particles are weighted according its probability of
occurrence a posteriori. Notice that the expression accounts for the likelihood and the a
priori distributions, as well as the previous posterior given by the weights at k − 1. This
resembles the expression in (3.52).

Algorithm 3.2 outlines the operation of the standard PF when a new measurement
yk becomes available. After particle generation, weighting and normalization, a Minimum
Mean Square Error (MMSE) estimate can be obtained by a weighted sum of particles.
A typical problem of PFs is the degeneracy of particles, where all but one weight tend
to zero. This situation causes the particle to collapse to a single state point. To avoid
the degeneracy problem, we apply resampling, consisting in eliminating particles with low
importance weights and replicating those in high-probability regions [Bol04b, Dou05]. In
this work, we consider a multinomial sampling scheme for the resampling step.
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There are many types of PFs based on the aforementioned concepts of Sequen-
tial Importance Sampling (SIS), the most popular being Sampling Importance Resam-
pling (SIR) filter [Gor93], Auxiliary SIR (ASIR) filter [Pit01, God01], Regularized par-
ticle filter [Mus00], Local Linearization particle filter [Mer00], Gaussian particle fil-
ter [Kot03a, Kot03b], Multiple Model particle filter [McG00], Rao-Blackwellized parti-
cle filter [Sch05], Cost Reference particle filter [Mı́g04], and multiple particle filtering
[Bug07, Clo12a].

3.4 Summary

This chapter presented the basic ideas and tools in Bayesian filtering theory. At a glance,
these tools become handy when inferring the evolution of signals that can be formulated
in state-space. The conceptual solution is not always analytically tractable, and thus we
analyzed the most popular approximation to the problem. We also discussed on theoretical
lower bounds of accuracy and recursive formulae to compute these benchmark curves.
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Appendix 3.A Useful equalities

The Chapman-Kolmogorov equation

Conditional densities can be manipulated in order to obtain more tractable expressions
by removing some variables. Denote some random variables as x1, x2 and x3. If we want
to remove x2 from the joint pdf f(x1, x2|x3), we integrate with respect to this variable,

f(x1|x3) =

∫ ∞
−∞

f(x1|x2, x3)dx2 . (3.55)

On the other hand, if x2 has to be removed from f(x1|x2, x3), the Chapman-Kolmogorov
equation [Pap01] is extensively used:

f(x1|x3) =

∫ ∞
−∞

f(x1, x2|x3)f(x2|x3)dx2 . (3.56)

The Bayes’ rule

Bayes’ rule [Bay63] states that the probability density function of an event x conditioned
to the event y can be expressed as

p(x|y) =
p(y|x)p(x)

p(y)
, (3.57)

where the denominator can be computed using the Total probability theorem:

p(y) =

∫ ∞
−∞

p(y|x)p(x)dx . (3.58)
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Appendix 3.B Proof of Proposition 3.1

Proceeding as in [Tic98], let us write the joint distribution of measurements and states as

p(y1:k+1,x0:k+1) = p(y1:k,x0:k)p(xk+1|x0:k,y1:k)p(yk+1|xk+1,x0:k,y1:k)

= p(y1:k,x0:k)p(xk+1|xk)p(yk+1|xk+1) . (3.59)

Using the decomposition of J(x0:k) made in (3.25), the definitions in (3.28) and the
expression for the joint distribution in (3.59), the Trajectory Information Matrix can be
written in block form as

J(x0:k+1) =

 Ak Bk 0
B>k Ck + D11

k D12
k

0 D21
k D22

k

 . (3.60)

The desired BIM can be found as the nz × nz lower-right submatrix of J−1(x0:k+1):

Jk+1 = D22
k −

(
0,D21

k

)( Ak Bk

B>k Ck + D11
k

)−1(
0

D21
k

)
= D22

k −D21
k

(
Ck + D11

k −B>k A−1
k Bk

)−1
D12
k , (3.61)

which follows from basic algebra [Gol96].
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Appendix 3.C Sigma-point generation

Algorithm 3.3 Generation of sigma-points and weights using the unscented transforma-
tion
Require: nx, α, κ, β

1: Set L = 2nx + 1.
2: Set scaling parameter λ = α2(nx + κ)− nx.
3: Set sigma-points:
ξ0 = 0
ξi =

√
(nx + λ) 1i, i = 1, . . . , nx

ξi =
√

(nx + λ) 1i−nx , i = nx + 1, . . . , 2nx
4: Set mean weights:

ω
(m)
0 = λ/(nx + λ)

ω
(m)
i = 0.5/(nx + λ), i = 1, . . . , 2nx

5: Set covariance weights:

ω
(c)
0 = λ/(nx + λ) + (1− α2 + β)

ω
(c)
i = 0.5/(nx + λ), i = 1, . . . , 2nx

Algorithm 3.4 Generation of sigma-points and weights for third-degree spherical-radial
cubature rule
Require: nx

1: Set L = 2nx.

2: Set the cubature points ξi =
√
nx

[
Inx×nx

−Inx×nx

]
i
, where [·]i=1,...,L indicates the i–th column.

3: Set the cubature weights ωi = 1
2nx

, i = 1, . . . , L.
4: Same mean and covariance weights:

ω
(m)
i = ωi

ω
(c)
i = ωi

}
i = 1, . . . , L
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Algorithm 3.5 Generation of sigma-points and weights for multi-dimensional Gauss-
Hermite quadrature rule
Require: nx, γ

1: Set L = γnx

2: Set Ji,i+1 =
√

i
2 , where i = 1, . . . , (γ − 1)

3: Compute λi, the eigenvalues of J
4: Set ξi =

√
2λi

5: Set ωi = (ei)
2
1, where (ei)1 is the first element of the i-th normalized eigenvector of J

6: if nx > 1 then
7: Set ζ1,: = ξi and $1,: = ωi
8: for m = 2 to nx do
9: Set ξ1:m−1,: = ζ ⊗ 11×γ

10: Set ξm,: = 11×γ ⊗ ζm−1,:
11: Set Ω1:m−1,: = $ ⊗ 11×γ
12: Set Ωm,: = 11×γ ⊗$m−1,:
13: Set ζ = ξ and $ = Ω
14: end for
15: ξi = ξ:,i, where i = 1, . . . , L
16: ωi =

∏nx

l=1 Ωl,i

17: end if
18: Same mean and covariance weights:

ω
(m)
i = ωi

ω
(c)
i = ωi

}
i = 1, . . . , L
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Appendix 3.D A Brief Introduction to Particle Fil-

ters

The basic ideas of SMC methods date back to [Ham54], but the widespread use in non-
linear filtering theory is much more recent, the main reason being the high computational
cost required, which is only affordable in modern computing facilities. This appendix
presents a short overview of the fundamental concepts in particle filtering.

3.D.1 Monte-Carlo integration

The aim of PFs is to recursively estimate the posterior distribution p(x0:k|y1:k), the
marginal filtering distribution p(xk|y1:k) and its associated expectations

I(gk) = E {gk(x0:k)|y1:k} =

∫
gk(x0:k)p(x0:k|y1:k)dx0:k , (3.62)

with gk(·) a function of the state vector and the DSS model being as defined by equations
(3.1) and (3.2) – or alternatively by (3.3) and (3.4).

PFs rely on the Monte-Carlo integration concept. Assume that we can simulate Ns

independent identically distributed (i.i.d.) random samples from p(x0:k|y1:k), this set is

denoted as {x(i)
0:k, i = 1, . . . , Ns}. Then, the estimates of the distribution and its expecta-

tion are

ps(x0:k|y1:k) =
1

Ns

Ns∑
i=1

δ(x0:k − x(i)
0:k)

Is(gk) =

∫
gk(x0:k)ps(x0:k|y1:k)dx0:k =

1

Ns

Ns∑
i=1

gk(x
(i)
0:k) , (3.63)

respectively. The estimate Is(gk) is unbiased and

P

{
lim

Ns→∞
Is(gk) = I(gk)

}
= 1 , (3.64)

according to the law of large numbers [Cri02]. Moreover, if the variance of gk is finite, i.e.,

σ2
gk

=

∫
(gk(x0:k)− I(gk))

2p(x0:k|y1:k)dx0:k

=

∫
g2
k(x0:k)p(x0:k|y1:k)dx0:k − I2(gk) <∞ , (3.65)



50 Chapter 3. Fundamentals of Bayesian Filtering

then by the central limit theorem the estimation error converges in distribution, that is

lim
Ns→∞

√
Ns(Is(gk)− I(gk)) ∼ N

(
0, σ2

gk

)
. (3.66)

Notice also that the rate of convergence is independent of the dimension of the integral, at
least in theory. However, it is well known that PFs suffer from the curse of dimensionality
[Dau03]. The latter convergence results are the basis of the success of PFs, compared to
other suboptimal algorithms that lack of theoretical foundations to ensure convergence to
the true posterior.

At this point one can wonder why such a method is named Monte-Carlo integration.
Actually, it is a historically nomenclature since this method was first used to numerically
solve integrals [Pap01]. For example, if we want to integrate a function f(x), we can split
it into two components: one plays the role of the probability density function ϑ(x) while
the other is the function g(x). Thus, the integral is obtained as

I =

∫
f(x)dx =

∫
g(x)ϑ(x)dx ≈ 1

Ns

Ns∑
i=1

g(x(i)) , (3.67)

where Ns points are generated from ϑ(x).

3.D.2 Importance Sampling and Sequential Importance Sam-
pling

Unfortunately, usually it is not possible to sample effectively from the posterior distribu-
tion as required in (3.63), since it can be a complicated/unknown distribution. A classical
alternative is the Importance Sampling (IS) method [Gew89]. Imagine we can only gener-
ate samples from a density π(x0:k|y1:k) which is similar to p(x0:k|y1:k), which means that
both functions have the same support (in equation (3.79) and the corresponding text,
further details will be given on this issue). We refer to π(x0:k|y1:k) as the importance or
proposal density function. We can write equation (3.62) as

I(gk) =

∫
gk(x0:k)p(x0:k|y1:k)dx0:k

=

∫
gk(x0:k)

p(x0:k|y1:k)

π(x0:k|y1:k)
π(x0:k|y1:k)dx0:k

=

∫
gk(x0:k)w̃(x0:k)π(x0:k|y1:k)dx0:k , (3.68)

provided that w̃(x0:k) =
p(x0:k|y1:k)

π(x0:k|y1:k)
is upper bounded. Applying the Monte-Carlo inte-

gration method, we draw Ns independent samples from the importance density function,



3.D. A Brief Introduction to Particle Filters 51

{
x

(i)
0:k

}Ns
i=1

, then an estimate of I(gk) is

Is(gk) =
1

Ns

Ns∑
i=1

gk(x
(i)
0:k)w(x

(i)
0:k) , (3.69)

where

w(x
(i)
0:k) =

w̃(x
(i)
0:k)

Ns∑
j=1

w̃(xj0:k)

(3.70)

are known as the normalized importance weights, and

w̃(x
(i)
0:k) =

p(x0:k|y1:k)

π(x
(i)
0:k|y1:k)

(3.71)

are the unnormalized importance weights, which are normalized in (3.70) to obtain a
proper probability density function.

The IS method has one main drawback which makes it inadequate for recursive fil-
tering purposes: to estimate p(x0:k|y1:k) one needs to have all data y1:k available. Then,
when new data is available, one has to compute the importance weights over the entire
state trajectory. Thus, the computational complexity increases with time. Instead, we
are interested in an algorithm that is able to include new data in the estimation process
without recomputing weights from the scratch.

In an attempt to obtain a sequential algorithm relying on IS method, the SIS algo-
rithm is obtained. It is a Monte-Carlo method that forms the basis of most SMC-based
filters, being the natural recursive version of IS to approach the optimal Bayesian solution.
Recalling from the IS method, we have that the posterior distribution is characterized by

the Ns generated points and its associated normalized weights,
{
x

(i)
0:k, w

(i)
0:k

}Ns
i=1

, as

p(x0:k|y1:k) ≈
Ns∑
i=1

w
(i)
k δ(x0:k − x(i)

0:k)

w
(i)
k ∝ p(x

(i)
0:k|y1:k)

π(x
(i)
0:k|y1:k)

. (3.72)

Under the assumption that we have a discrete approximation of p(x0:k−1|y1:k−1), the
aim of SIS is to obtain a set of particles that characterize the distribution at k when new
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measurements are received, yk. If we choose the importance function to factorize as

π(x0:k|y1:k) = π(xk|x0:k−1,y1:k)π(x0:k−1|y1:k−1)

= π(x0)
k∏
t=1

π(xt|y0:t−1,y1:t) , (3.73)

then the generation of samples can be done by augmenting the existing samples{
x

(i)
0:k−1 ∼ π(x0:k−1|y1:k−1)

}Ns
i=1

(3.74)

with the new state being {
x

(i)
k ∼ π(xk|x0:k−1,y1:k)

}Ns
i=1

. (3.75)

The associated weights are computed from the following posterior recursion:

p(x0:k|y1:k) =
p(yk|x0:k,y1:k−1)p(x0:k|y1:k−1)

p(yk|y1:k−1)

=
p(yk|x0:k,y1:k−1)p(xk|x0:k−1,y1:k−1)p(x0:k−1|y1:k−1)

p(yk|y1:k−1)

=
p(yk|xk)p(xk|xk−1)

p(yk|y1:k−1)
p(x0:k−1|y1:k−1)

∝ p(yk|xk)p(xk|xk−1)p(x0:k−1|y1:k−1) , (3.76)

which only depends on the posterior at time k − 1 and the likelihood and the prior at
time k. Given that p(x0) , p(x0|y0), where y0 is the set of no measurements, we can
assume that the required density at time k − 1 is available in the sequential approach.
Substitution of (3.73) and (4.15) in (3.72) yields to the weight update equation,

w
(i)
k ∝ w

(i)
k−1

p(yk|x
(i)
k )p(x

(i)
k |x

(i)
k−1)

π(x
(i)
k |x

(i)
0:k−1,y1:k)

. (3.77)

Now the recursion is closed and we are able to find an approximation of the filtering
distribution given by

p̂(xk|y1:k) =
Ns∑
i=1

w
(i)
k δ(xk − x

(i)
k ) , (3.78)

being δ(·) the Kronecker’s delta function. This approximation converges a.s. to the true
posterior7 as Ns → ∞ under weak assumptions, according to the strong law of large

7Notice that a.s. convergence is equivalent to convergence w.p.1. Then, the convergence of the SIS
estimate of the filtering distribution is expressed as

P {p̂(xk|y1:k)→ p(xk|y1:k)} = 1 as Ns →∞ .
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numbers [Dou98, Cri02]. These assumptions hold if the support of the chosen importance
density (π̆) include the support of the filtering distribution (p̆), i.e.,

π̆ = {xk ∈ Rnx| π(xk|y1:k) > 0}
p̆ = {xk ∈ Rnx| p(xk|y1:k) > 0}

and p̆ ⊆ π̆ . (3.79)

Thus, for the convergence results to hold we have to ensure that the importance
function has the same support as the true posterior, meaning that the set closure of the
set of arguments of these functions for which the value is not zero is the same.

From the new set of sample points, one can compute a number of statistics. As con-
ceptually presented in (3.11) and (3.12), the MMSE and MAP estimators can be obtained
as

x̂MMSE
k =

Ns∑
i=1

w
(i)
k x

(i)
k (3.80)

x̂MAP
k = arg max

x(i)
k

{
w

(i)
k

}
, (3.81)

respectively. The covariance (or uncertainty region) of an estimate x̂k can be calculated
as

Σx̂ =
Ns∑
i=1

w
(i)
k

(
x

(i)
k − x̂k

)(
x

(i)
k − x̂k

)>
. (3.82)

A pseudocode description of the SIS algorithm is shown in Algorithm 3.6. Notice
that SIS is an algorithm that approximates the posterior by sequentially updating the
measurement vector and propagating the importance weights. Basically, to sum up, it
involves the approximation of the posterior by a set of Ns random samples taken from an
importance density function, x

(i)
k ∼ π(xk|x(i)

0:k−1,y1:k), with associated importance weights

w
(i)
k . The choice of π(·) is a critical issue in the design of any PF, which still remains as an

open topic for statisticians [Dou00] and is usually an application-dependent issue. For a

set of generated particles,
{
x

(i)
k , w

(i)
k

}Ns
i=1

, the approximation of the filtering distribution

as given by PFs is obtained via equation (3.78).

3.D.3 Resampling

Everything has its payback, and PFs are not the exception. The main drawback of the
SIS algorithm is that it suffers from the so-called degeneracy phenomenon, which states
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Algorithm 3.6 Sequential Importance Sampling (SIS) algorithm

Require:
{
x

(i)
k−1, w

(i)
k−1

}Ns
i=1

and yk

Ensure:
{
x

(i)
k , w

(i)
k

}Ns
i=1

1: for i = 1 to Ns do
2: Generate x

(i)
k ∼ π(xk|x(i)

k−1,y1:k)

3: Calculate w̃
(i)
k = w

(i)
k−1

p(yk|x
(i)
k )p(x(i)

k |x
(i)
k−1)

π(x(i)
k |x

(i)
0:k−1,y1:k)

4: end for
5: for i = 1 to Ns do

6: Normalize weights: w
(i)
k =

w̃
(i)
k∑Ns

j=1 w̃
j
k

7: end for

that the variance of importance weights can only increase over time [Dou00]. In other
words, after a certain number of sequential steps, one finds that the value of one of the
normalized weights tends to 1 while the rest tend to 0. The problem then is to keep
particle trajectories with significant weights and remove those which hardly contribute to
the estimation of the filtering distribution. The solution was proposed in [Rub88] and is
known as resampling : discarding samples with low importance weights and keep/multiply
those with high importance weights. Resampling was proposed for SIS in a number of
works [Gor93, Liu95, Ber97].

A measure of the degeneracy is the effective sample size Neff , introduced in [Kon94],
which is estimated as

N̂eff =
1∑Ns

i=1

(
w

(i)
k

)2 (3.83)

where 1 ≤ N̂eff ≤ Ns and values close to the lower bound indicate high degeneracy. The
common approach is to specify a threshold such that, when the effective sample size is
below, indicates the algorithm to apply resampling (see Algorithm 3.7). Although highly
dependent on the chosen threshold, this approach is the most used in the literature. In
[Ber99] a suggested threshold is Nth = 2

3
Ns.

The process of resampling particles can be implemented in several ways. Common
schemes include multinomial resampling [Gor93], residual resampling [Liu98] and strat-
ified/systematic resampling [Kit96, Cri01]. It is out of the scope of the dissertation the
study of novel resampling strategies, in the sequel a multinomial resampling is considered
which is one of the easiest to implement.

Although it solves the degeneracy phenomenon, resampling can result in a sample
impoverishment, that is particles with high weights are selected many times. Notice that
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Algorithm 3.7 Generic Particle Filtering with Resampling

Require:
{
x

(i)
k−1, w

(i)
k−1

}Ns
i=1

and yk

Ensure:
{
x

(i)
k , w

(i)
k

}Ns
i=1

1:

[{
x

(i)
k , w

(i)
k

}Ns
i=1

]
= SIS(

{
x

(i)
k−1, w

(i)
k−1

}Ns
i=1

, yk)

2: Calculate N̂eff

3: if N̂eff < Nth then

4: Resample Particles:

[{
x

(i)
k , w

(i)
k

}Ns
i=1

]
= Resample(

{
x

(i)
k , w

(i)
k

}Ns
i=1

)

5: end if

this loss of diversity is severe when process noise is small [Gor93, Hig95]. Thus, convergence
results of the algorithm should be re-established [Ber97]. Another undesired aspect of
resampling is that it constitutes the bottleneck in any parallel implementation of PFs
[Bol05], since all particles must be combined in this process.

Nevertheless, resampling is a key step in the design of a PF since degeneracy jeopar-
dizes posterior estimates in a way that cannot be tolerated. Many work has been directed
in the design of efficient resampling strategies and architectures [Bol04a].

3.D.4 Selection of the importance density

One of the key points of a PF algorithm is the choice of a good importance density function,
π(xk|x(i)

0:k−1,y1:k). Actually, a bad choice can lead the algorithm to a poor characterization
in (3.78) and, thus, to a bad performance. Some common alternatives might be found in
the literature:

The optimal choice

Since the aim of a PF is to characterize the filtering distribution, it is quite intuitive to
say that this distribution is the best choice for particle generation. Indeed, the optimal
distribution is the target distribution that we wish to estimate:

π(xk|x(i)
0:k−1,y1:k) = p(xk|x(i)

0:k−1,y1:k) , (3.84)

which is optimal in the sense that it minimizes the variance of importance weights con-
ditional upon the trajectory and the observations [Dou00]. The use of such an optimal
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importance density reduces the degeneracy effect discussed previously. In this case, the
calculation of weights reduces to:

w
(i)
k ∝ w

(i)
k−1p(yk|x

(i)
k−1) , (3.85)

which does not depend on the current particle value x
(i)
k , facilitating parallelization of the

PF [Bol04a].

Thus, in order to use the optimal importance density, one has to i) be able to draw

samples from p(xk|x(i)
0:k−1,y1:k) and to ii) evaluate

p(yk|xk−1) =

∫
p(yk|xk)p(xk|xk−1)dxk . (3.86)

Few special cases can be found that allow the generation/evaluation from these distribu-
tions. One case is when the states xk are finite, as in [Dou01b]. Another case is when the
DSS model is Gaussian with linear measurements [Dou00, Ris04]. Unfortunately, these
two requirements may not hold in general and one has to resort to suboptimal choices.

Suboptimal choices

Since the only condition imposed on π(xk|x(i)
0:k−1,y1:k) is to fulfill (3.73), the amount of

possible suboptimal importance densities seems huge8. Indeed, a general methodology for
selecting an importance density is still missing, being several alternatives proposed in the
literature. Actually, in most of the cases this choice highly depends on the application
itself and has to be carefully designed.

The simplest approach, and the most popular, is to consider the transitional prior as
the importance function. In this case, weights are proportional to the likelihood function:

π(xk|x(i)
0:k−1,y1:k) = p(xk|x(i)

k−1)

w
(i)
k ∝ w

(i)
k−1p(yk|x

(i)
k ) . (3.87)

The popularity of the transitional prior choice is due to its simple implementation
and the lack of computationally intensive calculations. Note that in the Gaussian case,
generation in (3.87) reduces to sample from a Gaussian distribution. Nevertheless, this
choice was shown to be inefficient as it requires a large number of samples to effectively
characterize the posterior distribution [Ris04]. The main reason is that, since measure-
ments are not taken into consideration when generating particles, the algorithm is likely
to exhibit a high degeneracy.

8Keeping in mind that the importance density has to share the same support as the target distribution,
in order to claim convergence [Cri02].
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More sophisticated, though also suboptimal, alternatives aim at approximating the op-
timal importance density in (3.84). Although they require a higher computational burden,
their performance is typically better than the one provided by the transitional prior. Some
of the strategies reported in the literature include local model linearization [Dou00], Gaus-
sian approximations [Kot03a] or the use of the unscented transform [Mer00]. In Section
3.3.4 of this dissertation, we consider another importance density function. The method
was originally proposed in [Cev07] for an acoustic multitarget tracking problem. Basically
it is based on a Gaussian approximation of the optimal distribution.
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4
Sequential estimation of neural
activity from voltage traces in

single-neuron models

THE membrane potential, obtained from intracellular recordings, is one of the most
valuable signals of neurons’ activity. Most of the neuron models have been derived

from fine measurements and allow the progress of “in silico” experiments. However, other
interesting quantities informing about the neuron’s intrinsic activity or synaptic connec-
tions [Piw04, Béd11] are either costly to obtain (channel blocking and clamping techniques
[Hod52, Bre12]) or impossible to measure explicitly with today’s techniques. Thus, estima-
tion methods can be very useful, mostly those that can be applied to obtain time evolution
on-line; that is, avoiding the need of repetitions that could be contaminated by neuronal
variability. In this chapter, as a first step, we concentrate on methods to extract intrinsic
activity of ionic channels, namely the probabilities of opening and closing channels. To
this purpose, we consider a neuron model and, using a PF algorithm with optimal impor-
tance density, we recover both the membrane potential and the activity of the potassium
channel with the minimum attainable error. Moreover, we design an enhanced algorithm
that can cope with model uncertainties and thus relaxing the assumption of perfect model
knowledge of the former algorithm.

59
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In the open literature similar solutions could be found. [Kob11] deals with a similar
inference problem, under correct model assumptions for the ionic channels [Pos08], and
solve the filtering problem by a Kalman filter. The authors assume synaptic inputs as
white noise and estimate the mean and variances of the process.

Another similar setup is treated in [Pan12], where a PF is used to filter voltage and
synaptic conductances. In this case, the voltage observations are assumed subthreshold,
as opposite to our approach in this Thesis. A similar solution, this time based on the
Gaussian mixture Kalman filtering, was proposed in [Lan13]. More recently, the same au-
thors proposed in [Lan14] a Kalman-like solution to estimate voltage and gating variables,
as well as the maximal conductances of the ionic channels (thus implicitly assuming the
latter as time-varying). Our approach is similar in essence, although we go further in the
method and present a solution that can cope with the estimation of any time-varying
signal in the system (gathered in the state vector) and those deterministic parameters
that describe the model (gathered in an unknown parameter vector).

In [Rud03, Béd11], it is shown how to extract synaptic conductances from noisy voltage
traces. The work considers subthreshold activity. This approach might introduce errors in
situations where spiking is present or when there is sub-threshold ionic activity [Gui06].
The approach we follow in this Thesis is to work in the spike regime, without the sub-
threshold assumption [Clo13b, Clo13a].

The remainder of the chapter is organized as follows. The problem is stated in discrete
state-space in Section 4.1, for which we focused in the model named after Morris and Lecar
introduced in Section 2.3.1. The main causes of model inaccuracies are enumerated in
Section 4.2, as well as hints to account for them in the method. We present a PF solution
for the filtering problem under perfect model knowledge in Section 4.3 and design an
enhanced algorithm that can estimate the parameters of the model in Section 4.4. Section
4.5 discusses computer simulations, with comparison to the theoretical estimation bounds
derived in Appendix 4.A, and Section 4.6 wraps up the main conclusions of the study.

4.1 Problem statement

As introduced earlier in Chapter 2, the problem investigated in this Thesis considers
recordings of noisy voltage traces to infer the hidden gating variables of the neuron model,
as well as filtered voltage estimates. Data is recorded at discrete time-instants k at a
sampling frequency fs = 1/Ts. The problem can thus be posed in the form of a discrete-
time, state-space model. The observations are

yk ∼ N (vk, σ
2
y,k) , (4.1)
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with σ2
y,k modeling the noise variance due to the sensor or the instrumentation inaccuracies

when performing the experiment. To provide comparable results, we define the signal-to-
noise ratio (SNR) as SNR = Ps/Pn, with Ps being the average signal power and Pn = σ2

y,k

the noise power.

On the other hand, we have models for the evolution of the voltage-traces and the
hidden variables of a neuron. For instance, the Morris-Lecar model presented in Section
2.3.1. The unknown state vector in this case is

xk =

(
vk
nk

)
. (4.2)

Notice that the Morris-Lecar neuron model is defined by a system of continuous-time,
ODEs. In general, all the mathematical models for neurons are of this type. However, we
are interested in expressing the model in the form of a discrete state-space,

xk = fk(xk−1) + νk , (4.3)

where νk ∼ N (0,Σx,k) is the process noise which includes the model inaccuracies. The
covariance matrix Σx,k is used to quantify our confidence in the model that maps fk :
{vk−1, nk−1} 7→ {vk, nk}. In general, obtaining a closed-form analytical expression for
fk without approximations is not possible. An alternative option are numerical methods,
which aim at solving the differential equation at discrete instants. One simple, yet popular,
method to approximate ẋ = f(x) is the Euler method (a finite difference approximation)
that is based on the approximation

ẋ
.
=
dx

dt
≈ ∆x

∆t
= f(x) (4.4)

where ∆t = Ts is the sampling period and thus,

∆x

∆t
=
x(t+ Ts)− x(t)

Ts

= f(x(t)) (4.5)

or equivalently in discrete notation

ẋ ≈ xk − xk−1

Ts

= f(xk−1) , (4.6)

from which it follows that

xk = xk−1 + Tsf(xk−1) , (4.7)

which is of the Markovian type in (3.1).
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If we focus on the Morris-Lecar model, the resulting discrete version of the ODE
system in (2.8)-(2.9) is:

vk = vk−1 −
Ts

Cm

(
ḡL(vk−1 − EL)

+ ḡCam∞(vk−1)(vk−1 − ECa) + ḡKnk−1(vk−1 − EK)− Iapp

)
(4.8)

nk = nk−1 + Tsφ
n∞(vk−1)− nk−1

τn(vk−1)
, (4.9)

with m∞(vk), n∞(vk), and τn(vk) defined as in (2.13)-(2.15). Then, (4.8) and (4.9) can be
interpreted as xk = fk(xk−1).

The goal is to express the inference problem in state-space formulation and apply the
tools learned in Chapter 3. The final ingredient to do so is to introduce the so-called
process noise in the state equation

xk = fk(xk−1) +

(
νv,k
νn,k

)
, (4.10)

where the noise terms νv,k and νn,k are jointly Gaussian with covariance matrix Σx,k.
Further details of this matrix are discussed in Section 4.2.

4.2 Model inaccuracies

The proposed estimation method highly relies on the fact that the neuron model is known.
This is true to some extend, but most of the parameters in the model discussed in Section
2.3.1 are to be estimated beforehand. Therefore, the robustness of the method to possible
inaccuracies should be assessed. In this section, we point out possible causes of missmod-
eling. In next section, computer simulations are used to characterize the performance of
the method under these impairments.

In the single-neuron model considered, three major sources of inaccuracies can be
identified:

1. The applied current Iapp can be itself noisy, with a variance depending on the quality
of the instrumentation used and the experiment itself. We model the actual applied
current as the random variable

Iapp = Io + νI,k , νI,k ∼ N (0, σ2
I ) , (4.11)

where Io is the nominal current applied and σ2
I the variance around this value.

Plugging (4.11) into (4.8) we obtain that the contribution of Iapp to the noise term

is Ts
Cm
νI,k ∼ N (0, (Ts/Cm)2σ2

I ).
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2. The conductance of the leakage term has to be estimated beforehand. In general,
this term is considered constant although it gathers relatively distinct phenomena
that can potentially be time-varying. The maximal conductance of the leakage term
is therefore inaccurate and modeled as

ḡL = ḡoL + νg,k , νg,k ∼ N (0, σ2
g) , (4.12)

where ḡoL is the nominal, estimated conductance and σ2
g the variance of this estimate.

Similarly, inserting (4.12) into (4.8) we see that the contribution of ḡL to the noise

term is Ts
Cm
νg,k ∼ N (0, (Ts/Cm)2(vk−1 − EL)σ2

g).

3. The parameters in m∞(vk), n∞(vk), and τn(vk) are to be estimated. In general, these
parameters are properly obtained by standard methods [Izh06]. However, as they are
estimates, a residual error typically remains. To account for these inaccuracies, we
consider that the equation governing the evolution of gating variables is corrupted
by a zero-mean additive white Gaussian process with variance σ2

n.

At the end of the day, we came up with a way of constructing the model covariance
matrix, as the contribution of the aforementioned inaccuracies. In a practical setup, in
order to compute the noise variance due to leakage, we need to use the approximation
v̂k−1 ≈ vk−1, where v̂k−1 is computed by the filter. We construct the covariance matrix of
the model as

Σx,k =

(
σ2
v 0

0 σ2
n

)
, (4.13)

where we used that the overall noise in the voltage model is Ts
Cm

(νI,k − νg,k) ∼ N (0, σ2
v)

and

σ2
v =

(
Ts

Cm

)2 (
σ2
I + (v̂k−1 − EL)2σ2

g

)
(4.14)

could be an estimate of σ2
v , provided accurate knowledge of σ2

I and σ2
g . Otherwise, the

covariance matrix of the process has to be estimated by other means, as the ones presented
in this Chapter for mixed state-parameter estimation in nonlinear filtering problems.

4.3 Sequential estimation of voltage traces and gat-

ing variables by particle filtering

Bayesian filtering involves the recursive estimation of states xk ∈ Rnx given measurements
yk ∈ R at time t based on all available measurements, y1:k = {y1, . . . , yk}. To that aim, we
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are interested in the filtering distribution p(xk|y1:k), which can be recursively expressed
as

p(xk|y1:k) =
p(yk|xk)p(xk|xk−1)

p(yk|y1:k−1)
p(xk−1|y1:k−1) , (4.15)

with p(yk|xk) and p(xk|xk−1) referred to as the likelihood and the prior distributions,
respectively. Unfortunately, (4.15) can only be obtained in closed-form in some special
cases and in more general setups we should resort to more sophisticated methods. In this
paper we consider PF to overcome the nonlinearity of the model [Dju03].

As explained in Section 3.3.4, PFs approximate the filtering distribution by a set of

N weighted random samples, forming the random measure
{
x

(i)
k , w

(i)
k

}N
i=1

. These random

samples are drawn from the importance density distribution, π(·),

x
(i)
k ∼ π(xk|x(i)

0:k−1, y1:k) (4.16)

and weighted according to the general formulation

w
(i)
k ∝ w

(i)
k−1

p(yk|x(i)
0:k, y1:k−1)p(x

(i)
k |x

(i)
k−1)

π(x
(i)
k |x

(i)
0:k−1, y1:k)

. (4.17)

The importance density from which particles are drawn is a key issue in designing
efficient PFs. It is well-known that the optimal importance density is π(xk|x(i)

0:k−1, y1:k) =

p(xk|x(i)
k−1, yk), in the sense that it minimizes the variance of importance weights. Weights

are computed using (4.17) as w
(i)
k ∝ w

(i)
k−1p(yk|x

(i)
k−1). This choice requires the ability to

draw from p(xk|x(i)
k−1, yk) and to evaluate p(yk|x(i)

k−1). In general, the two requirements
cannot be met and one needs to resort to suboptimal choices. However, we are able to use
the optimal importance density since the state-space model assumed here is Gaussian, with
nonlinear process equations but related linearly to observations [Dou00]. The equations
are:

p(xk|x(i)
k−1, yk) = N (µ

(i)
π,k,Σπ,k) (4.18)

with

µ
(i)
π,k = Σπ,k

(
Σ−1
x,kfk(x

(i)
k−1) +

yk
σ2
y,k

)
(4.19)

Σπ,k =
(
Σ−1
x,k + σ−2

y,kI
)−1

, (4.20)

and the importance weights can be updated using

p(yk|x(i)
k−1) = N (hfk(x

(i)
k−1),hΣx,kh

> + σ2
y,k) , (4.21)
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with h = (1, 0). The PF provides a discrete approximation of the filtering distribution of

the form p(xk|y1:k) ≈
∑N

i=1 w
(i)
k δ(xk − x

(i)
k ), which gather all information from xk that

the measurements up to time t provide. This was discussed when introducing (3.78). For
instance, the minimum mean square error estimator can be obtained as

x̂k =
N∑
i=1

w
(i)
k x

(i)
k , (4.22)

where x̂k = (v̂k, n̂k)
>. Recall that the method discussed in this section could be eas-

ily adapted to other neuron models simply substituting by the corresponding transition
function fk and constructing the state vector xk conveniently.

As a final step, PFs incorporate a resampling strategy to avoid collapse of particles
into a single state point. As introduced earlier in Section 3.3.4, resampling consists in
eliminating particles with low importance weights and replicating those in high-probability
regions [Dou05]. The overall algorithm can be consulted in Algorithm 4.1 at instance k.
Notice that this version of the algorithm requires knowledge of noise statistics and all the
model parameters

Θ = (ḡL, EL, ḡCa, ECa, ḡK, EK, φ, V1, V2, V3, V4)> . (4.23)

Algorithm 4.1 Particle filtering with optimal importance density

Require: Σx,k, σ
2
y,k, Θ,

{
x

(i)
k−1, w

(i)
k−1

}N
i=1

and yk

Ensure:
{
x

(i)
k , w

(i)
k

}N
i=1

and x̂k

1: Calculate Σπ,k =
(
Σ−1
x,k + σ−2

y,kI
)−1

2: for i = 1 to N do
3: Calculate µ

(i)
π,k = Σπ,k

(
Σ−1
x,kfk(x

(i)
k−1) + yk

σ2
y,k

)
4: Generate x

(i)
k ∼ N (µ

(i)
π,k,Σπ,k)

5: Calculate w̃
(i)
k = w

(i)
k−1

p(yk|x(i)
0:k,y1:k−1)p(x(i)

k |x
(i)
k−1)

N (µ
(i)
π,k,Σπ,k)

6: end for
7: for i = 1 to N do

8: Normalize weights: w
(i)
k =

w̃
(i)
k∑N

j=1 w̃
(j)
k

9: end for
10: MMSE state estimation: x̂k =

∑N
i=1w

(i)
k x

(i)
k

11:

{
x

(i)
k , 1/N

}N
i=1

= Resample(
{
x

(i)
k , w

(i)
k

}N
i=1

)
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4.4 Joint estimation of states and model parameters

by particle filtering

In practice the parameters in (4.23) might not be known. It is reasonable to assume that
Θ, or a subset of these parameters θ ⊆ Θ, are unknown and need to be estimated at the
same time the filtering method in Algorithm 4.1 is executed. Therefore, the ultimate goal
in this case is to estimate jointly the time evolving states and the unknown parameters
of the model, x and θ respectively.

We follow the approach in [Sär13] to present one of the possible methodologies to
enhance the PF presented in Algorithm 4.1 with parameter estimation capabilities. Joint
estimation of states and parameters is a longstanding problem in Bayesian filtering, and
specially hard to handle in the context of PFs. Refer to [And04, And05, Poy11] and the
references for a complete survey.

Following the Bayesian philosophy adopted in this Thesis, the problem fundamentally
reduces to assigning an a priori distribution for the unknown parameter θ ∈ Rnθ and
extending the state-space model in (3.3)-(3.4) with

θ ∼ p(θ) (4.24)

xk ∼ p(xk|xk−1,θ) for k ≥ 1 (4.25)

yk ∼ p(yk|xk,θ) for k ≥ 1 (4.26)

and initial state distribution x0 ∼ p(x0|θ). Applying Bayes rule, the full posterior distri-
bution can be expressed as

p(x0:T ,θ|y1:T ) =
p(y1:T |x0:T ,θ)p(x0:T |θ)p(θ)

p(y1:T )
(4.27)

with

p(y1:T |x0:T ,θ) =
T∏
k=1

p(yk|xk,θ) (4.28)

p(x0:T |θ) = p(x0|θ)
T∏
k=1

p(xk|xk−1,θ) . (4.29)

Notice here that we are dealing with a finite horizon of observations T . Then, from a
Bayesian perspective, the estimation of θ is equivalent to obtaining its marginal posterior
distribution

p(θ|y1:T ) =

∫
p(x0:T ,θ|y1:T )dx0:T ; (4.30)
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however, this is in general extremely hard to compute analytically and one needs to find
workarounds. Evaluation of the full posterior turns to be not only computationally pro-
hibitive, but useless if states cannot be marginalized out analytically. Alternative methods
resort on the factorization of the parameter marginal distribution as

p(θ|y1:T ) = p(y1:T |θ)p(θ) (4.31)

and how Bayesian filters can be transformed to provide characterizations of the marginal
likelihood distribution p(y1:T |θ) and related quantities. The marginal likelihood distribu-
tion can be recursively factorized in terms of the predictive distributions of the observa-
tions:

p(y1:T |θ) =
T∏
k=1

p(yk|y1:k−1,θ) , (4.32)

with

p(yk|y1:k−1,θ) = Exk|y1:k−1,θ

{
p(yk|xk,θ)

}
(4.33)

=

∫
p(yk|xk,θ)p(xk|y1:k−1,θ)dxk (4.34)

obtained straightforwardly as a byproduct of any of the Bayesian filtering methods dis-
cussed earlier in Section 3.3.

A useful transformation of the marginal likelihood is the so-called energy function,
which is sometimes more convenient when implementing the solution. The energy function
is defined as

ϕT (θ) = − ln p(y1:T |θ) (4.35)

= − ln p(y1:T |θ)− ln p(θ) (4.36)

or, equivalently, p(y1:T |θ) ∝ exp(−ϕT (θ)). The energy function can then be recursively
computed as a function of the predictive distribution

ϕ0(θ) = − ln p(θ) (4.37)

ϕk(θ) = ϕk−1(θ)− ln p(yk|y1:k−1,θ) for k ≥ 1 . (4.38)

Then, the basic problem is to obtain an estimate of the predictive distribution
p(yk|y1:k−1,θ) from the PF we have designed in Section 4.3 and use it in conjunction
with p(θ) to infer the marginal distribution p(θ|y1:T ) of interest. This latter step can
be performed in several ways, from which we choose to use the Markov-Chain Monte-
Carlo (MCMC) methodology to continue with a fully Bayesian solution. Besides, it is
known to be the solution that provides best results when used in a PF. Next, we de-
tail how ϕk(θ) can be obtained from a PF algorithm, present the MCMC method for
parameter estimation, and finally we sketch the overall algorithm.
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Computing the energy function from particle filters:

The modification needed is very small. Actually, it is non-invasive in the sense that the
algorithm remains the same and the energy function can be computed adding some extra
equations. Recall that the predictive distribution is

p(yk|y1:k−1,θ) =

∫
p(yk|xk,θ)p(xk|y1:k−1,θ) (4.39)

and that the PF provides characterizations of the two distributions in the integral. Then,
one can get an approximation by

p(yk|y1:k−1,θ) ≈ p̂(yk|y1:k−1,θ) (4.40)

=
N∑
i=1

w
(i)
k−1ζ

(i)
k (4.41)

with w
(i)
k−1 as in the original algorithm and

ζ
(i)
k =

p(yk|x
(i)
k ,θ)p(x

(i)
k |x

(i)
k−1,θ)

π(x
(i)
k |x

(i)
0:k−1,y1:k,θ)

. (4.42)

Then, it is straightforward to identify the energy function approximation as

ϕT (θ) = − ln p(θ)− ln p(y1:T |θ) (4.43)

= − ln p(θ)− ln
T∏
k=1

p(yk|y1:k−1,θ) (4.44)

= − ln p(θ)−
T∑
k=1

ln p(yk|y1:k−1,θ) (4.45)

≈ − ln p(θ)−
T∑
k=1

ln p̂(yk|y1:k−1,θ) (4.46)

= − ln p(θ)−
T∑
k=1

ln
N∑
i=1

w
(i)
k−1ζ

(i)
k = ϕ̂T (θ) , (4.47)

which can be computed recursively in the PF algorithm.

The Particle Markov-Chain Monte-Carlo algorithm:

Once an approximation of the energy function is available, we can apply MCMC to infer
the marginal distribution of the parameters. MCMC methods constitute a general method-
ology to generate samples recursively from a given distribution by randomly simulating



4.4. Joint estimation of states and model parameters by particle filtering 69

from a Markov chain [Gil96, Ber97, Liu08, Bro11]. There are many algorithms implement-
ing the MCMC concept, being one of the most popular the Metropolis-Hastings (MH)
algorithm. At the j-th iteration, the MH algorithm samples a candidate point θ∗ from a
proposal distribution q(θ∗|θ(j−1)) based on the previous sample θ(j−1). Starting from an
arbitrary value θ(0), the MH algorithm accepts the new candidate point (meaning that it
was generated from the target distribution, p(θ|y1:T )) using the rule

θ(j) =

{
θ∗, if u ≤ α(j)

θ(j), otherwise
(4.48)

where u is drawn randomly from a uniform distribution, u ∼ U(0, 1), and

α(j) = min

{
1, exp(ϕT (θ(j−1))− ϕT (θ∗))

q(θ(j−1)|θ∗)
q(θ∗|θ(j−1))

}
(4.49)

is referred to as the acceptance probability.

It is critical for the performance of the algorithm the choice of the proposal density.
A common choice is

q(θ|θ(j−1)) = N (θ;θ(j−1),Σ(j−1)) (4.50)

with the selection of the transitional covariance remaining as the tuning Σ(j−1) parameter.
This covariance can be adapted as iterations of the MCMC method progress. In this Thesis
we have adopted the Robust Adaptive Metropolis (RAM) algorithm [Vih12]. The RAM
algorithm can be consulted in Algorithm 4.2. We use the notation that S = Chol (A)
denotes the Cholesky factorization of an Hermitian positive-definite matrix A such that
A = SS>, and S is a lower triangular matrix [Gol96]. The RAM algorithm outputs a set

of samples
{
θ(j)
}M
j=1

, where M is the number of iteration of the MCMC procedure. This

samples are originated from the target distribution{
θ(j) ∼ p(θ|y1:T )

}M
j=1

, (4.51)

which can be used to approximate (after neglecting the first samples corresponding to the
transient phase of the algorithm) it as

p(θ|y1:T ) ≈ 1

M

M∑
j=1

δ(θ − θ(j)) , (4.52)

and one can obtain the desired statistics from the characterization of the marginal distri-
bution. For instance, point estimates of the parameter like these 2 options

θ̂
MMSE

=
1

M

M∑
j=1

θ(j) or θ̂ = θ(M) . (4.53)
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The main assumption in Algorithm 4.2 is the ability of evaluating the energy function,
ϕT (·). We have seen earlier how this can be done in a PF. Roughly speaking, the particle
Markov-Chain Monte-Carlo (PMCMC) algorithm consists on putting together these two
algorithms [And10]. The resulting PMCMC method can be consulted in Algorithm 4.3

Algorithm 4.2 Robust Adaptive Metropolis

Require: M , θ(0), Σ(0), γ ∈ (1
2
, 1], ᾱ∗, and ϕT (·)

Ensure:
{
θ(j)
}M
j=1

1: Initialize: S0 = Chol
(
Σ(0)

)
and ϕT (θ(0)) = 0

2: for j = 1 to M do
3: Draw a ∼ N (0, I)
4: Compute θ∗ = θ(j−1) + Sj−1a

5: Compute α(j) = min
{

1, exp(ϕT (θ(j−1))− ϕT (θ∗))
}

6: Draw u ∼ U(0, 1)
7: if u ≤ α(j) then
8: θ(j) = θ∗

9: else
10: θ(j) = θ(j−1)

11: end if
12: Compute η(j) = j−γ

13: Compute Sj = Chol
(
Sj−1

(
I + η(j)(α(j) − ᾱ∗) aa>

||a||2

)
S>j−1

)
14: end for

4.5 Computer simulation results

We simulated data of a neuron of the type described in Section 2.3.1, i.e. following a
Morris-Lecar model. Particularly, we generated 500 ms of data, sampled at fs = 4 kHz.
The model parameters were set to Cm = 20 µF/cm2, φ = 0.04, V1 = −1.2 mV, V2 = 18
mV, V3 = 2 mV, and V4 = 30 mV; the reverse potentials were EL = −60 mV, ECa = 120
mV, and EK = −84 mV; and the maximal conductances were ḡCa = 4.4 mS/cm2 and
ḡK = 8.0 mS/cm2. We considered a measurement noise with a standard deviation of 1
mV and model inaccuracies generated as in Section 4.2. Three sets of simulations are
discussed:

• First, we validate the filtering method in a nominal model with perfect knowledge
of the model and its inaccuracies gathered in the process noise random term. In this
case, the method in Algorithm 4.1 was used.



4.5. Computer simulation results 71

Algorithm 4.3 Joint state-parameter estimation by Particle MCMC

Require: y1:T , M , θ(0), Σ(0), γ ∈ (1/2, 1], ᾱ∗, and ϕT (·)
Ensure: x̂1:T and θ̂

1: Initialize: S0 = Chol
(
Σ(0)

)
and ϕ̂T (θ(0)) = 0

2: for j = 1 to M do
3: Draw a ∼ N (0, I)
4: Compute θ∗ = θ(j−1) + Sj−1a
5: Run the PF in Algorithm 4.1 with model parameters set to θ∗.

Required outputs:
State filtering x̂∗1:T as in (4.22)
Energy function ϕ̂T (θ∗) as in (4.47)

6: Compute α(j) = min
{

1, exp(ϕ̂T (θ(j−1))− ϕ̂T (θ∗))
}

7: Draw u ∼ U(0, 1)
8: if u ≤ α(j) then
9: θ(j) = θ∗

10: x̂1:T = x̂∗1:T

11: else
12: θ(j) = θ(j−1)

13: end if
14: Compute η(j) = j−γ

15: Compute Sj = Chol
(
Sj−1

(
I + η(j)(α(j) − ᾱ∗) aa>

||a||2

)
S>j−1

)
16: end for
17: State filtering ⇒ x̂1:T

18: Parameter estimation with
{
θ(j)
}M
j=1

as in (4.53) ⇒ θ̂

• Secondly, the model assumptions are relaxed in the sense that the parameters of
the model are not known by the method. We analyze the capabilities of the pro-
posed method to infer both the time-evolving states of the system and some of the
parameters defining the model in (4.10). In this case, the method in Algorithm 4.3
was used.

• Finally, we validated the performance of the proposed methods in inferring the
synaptic conductances. We used the Morris-Lecar model and a OU model for the
synaptic contributions. We tested both PF and PMCMC methods.
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4.5.1 Correct model parameters

In the simulations we considered the aforementioned model inaccuracies. To excite the
neuron into spiking activity a nominal applied current was injected with Io = 110 µA/cm2

and two values for σI where considered, namely 1% and 10% of Io. The nominal conduc-
tance used in the model was ḡL = 2 mS/cm2, whereas the underlying neuron had a
zero-mean Gaussian error with standard deviation σḡL . Two variance values where con-
sidered as well, 1% and 10% of ḡL. Finally, we considered σn = 10−3 in the dynamics of
the gating variable.

In order to evaluate the efficiency of the proposed estimation method, we computed
the Bayesian Cramér-Rao Bound (PCRB) according to the recursive formulation given
in [Tic98], which we plot as a benchmark for the root mean square error (RMSE) curves
obtained by computer simulations after 200 independent Monte Carlo trials. The deriva-
tion of the PCRB for the Morris-Lecar model can be consulted in Appendix 4.A. For a
generic time series wk, the RMSE of an estimator ŵk is defined as

RMSE(wk) =
√

E{(wk − ŵk)2} ≈

√√√√ 1

M

M∑
j=1

(wk − ŵj,k)2 , (4.54)

where ŵj,k denotes the estimate of wk at the j-th realization and M the number of
independent Monte Carlo trials used to approximate the mathematical expectation.

Figures 4.1 and 4.2 show the time course of the RMSE using N = {500, 1000} particles
and the PCRB. We see that in both scenarios, our method attains the PCRB and thus
is efficient. We measure the efficiency (η ≥ 1) of the method as the quotient between the
RMSE and the PCRB, averaged over the entire simulation time. The worse efficiency on
estimating vk was 1.43 corresponding to 500 particles and 10% of inaccuracies, the best
was 1.11 for 1000 particles and 1% of errors. In estimating nk the discrepancy was even
lower, 1.06 and 1.03 for maximum and minimum η. To sum up, the PF approaches the
PCRB with the number of particles and the performance (both theoretical and empirical)
can be improved if model inaccuracies are reduced, i.e., if the model parameters are better
estimated at a previous stage. For the sake of clarity, we summarize the results in Table
4.1, where the average RMSE and PCRB along the 500 ms simulation can be consulted.
It is apparent that increasing the number of particles from N = 500 to N = 1000 does
not improve significantly the performance of the method.

To give some intuition on the operation and performance of the PF method in Algo-
rithm 4.1, we show the results for a single realization. The results are for 500 particles
and two different values for σ2

y,k, corresponding to 0 and 32 dB respectively. The latter
corresponds to σy,k = 1 mV, which is considered a reasonable value in today’s intracellular
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σI = 0.01 · Io, σgL = 0.01 · ḡoL σI = 0.1 · Io, σgL = 0.1 · ḡoL
N = 500 N = 1000 N = 500 N = 1000

avg. RMSE(vk) 0.3344 0.3211 0.4269 0.4203
avg. PCRB(vk) 0.2325 0.2325 0.3777 0.3777
avg. RMSE(nk) 0.0046 0.0045 0.0056 0.0055
avg. PCRB(nk) 0.0043 0.0043 0.0053 0.0053

Table 4.1: Averaged results over simulation time.

sensing devices. Even in very low SNR regimes, the method is able to operate and provide
reliable filtering results.
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Figure 4.1: Evolution of the RMSE and the PCRB over time. Model inaccuracies where
σI = 0.01 · Io and σgL = 0.01 · ḡoL.

4.5.2 Unknown model parameters

In this section we validate the Algorithm presented in Section 4.4. According to the
previous analysis, we deem that 500 particles are enough for the filter to provide reliable
results. The parameters of the PMCMC algorithm where set to γ = 0.9, ᾱ∗ = 0.234.
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Figure 4.2: Evolution of the RMSE and the PCRB over time. Model inaccuracies where
σI = 0.1 · Io and σgL = 0.1 · ḡoL.

Fig. 4.4 shows the results for a single realization when a number of parameters in the
nominal model are unknown. We considered 1, 2, and 4 unknown parameters. Each of the
plots include M = 100 iterations of the MCMC showing the evolution of the parameter
estimation (top) and the superimposed recorded voltage in black and the filtered voltage
trace in red (bottom). Model inaccuracies are of 1%, similarly as in Fig. 4.1. In these
plots we have omitted the estimation of the gating variable for the sake of clarity. The
true and initial values used in the experiments, as well as the initial covariance assumed
by the method, can be consulted in Table 4.2. From the plots we can observe that the
method performs reasonably well even in the case of estimating the model parameters at
the same time it is filtering out the noise in the membrane voltage traces.

A biologically meaningful signal is the leakage current, IL. In general, the leakage
gathers those ionic channels that are not explicitly modeled and other non-modeled sources
of activity. The parameters driving the leak current are ḡL and EL. Therefore, we tested
and validated the proposed PMCMC in an experiment where the leak parameters are
estimated at the same time the filtering solution is computed. Moreover, the statistics
of the process noise are estimated as well, Σx,k. In this case, we iterated the PMCMC
method 1000 times and average the results over 100 Monte Carlo independent trials. The
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Figure 4.3: A single realization of the particle filtering method for SNR = 0 dB (left) and
SNR = 32 dB (right).
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Parameter True value Initial value Initial Covariance
ḡCa 4.4 8 1
ḡK 8 5 1
σv 0.0307 0.05 0.01
σn 0.001 0.01 0.001
σy,k 1 10 0.5

Table 4.2: True value, initial value, and covariance of the parameters in Fig. 4.4.

results might be consulted in Fig. 4.5, where the RMSE performance of the PMCMC
method is compared to the performance of the original PF with perfect knowledge of the
model. Also, the performance curves for the estimation parameters are also shown for the
sake of completeness.

It can be observed that the filtering performances with perfect knowledge of the model
and with estimation of parameters by PMCMC are similar. Moreover, both approaches
attain the theoretical lower bound of accuracy given by the PCRB.

In Fig. 4.6, validation results for the parameter estimation capabilities of the PMCMC
are shown. Particularly, we plotted in Fig. 4.6(a) and 4.6(c) a number of independent

realizations of the samples trajectories
{
θ(j)
}M
j=1

. We observe that all of them converge

to the true values of the parameter. Recall that these true values are

θ =

(
ḡL
EL

)
=

(
2
−60

)
. (4.55)

In Fig. 4.6(b) and 4.6(d), the average of these realizations can be consulted, where the
aforementioned convergence to the true parameter is highlighted.

4.5.3 Estimation of synaptic conductances

Finally, the algorithms were used to estimate jointly the intrinsic states of the neuron
and the extrinsic inputs (i.e., the synaptic conductances). In this case, by simply putting
together (2.8), (2.9), and (2.22), the continuous-time state-space model is defined by the
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Parameter True value Initial value Initial Covariance
τE 2.73 1.5 1
gE,0 12.1 10 1
σE 12 25 5
τI 10.49 15 10
gI,0 57.3 45 10
σI 26.4 35 5

Table 4.3: True value, initial value, and covariance of the parameters in Fig. 4.8.

following equations

Cmv̇ = −ḡL(v − EL)− ḡCam∞(v)(v − ECa)− ḡKn(v − EK)− Isyn + Iapp (4.56)

ṅ = φ
n∞(v)− n
τn(v)

(4.57)

ġE = − 1

τE

(gE − gE,0) +

√
2σ2

E

τE

χ (4.58)

ġI = − 1

τI

(gI − gI,0) +

√
2σ2

I

τI

χ , (4.59)

where Isyn = gE(t)(v(t)−EE)+gI(t)(v(t)−EI). Discretization is straightforward following
Section 4.1, but continuous-time provides here a more compact expression of the system.

First, the method with perfect knowledge of the model (see Algorithm 4.1) was val-
idated in Fig. 4.7. It can be observed in Fig. 4.7(a) that the intrinsic signals can be
effectively recovered as before where synaptic inputs where not accounted for. The esti-
mation of gE(t) and gI(t) is seen in Fig. 4.7(b). We see that the estimation of the the
excitatory and inhibitory terms is quite accurate, and that the presence of spikes does not
degrade the estimation capabilities of the method.

The PMCMC algorithm (see Algorithm 4.3) was tested in the same experiment. In
this case, we assumed that the model parameters related to vk and nk where accurately
estimated, for instance using the procedure described earlier in this chapter. Therefore,
we focused on the estimation of those parameters that describe the OU process of each of
the synaptic terms. Particularly, we considered the values in Table 4.3. The results can be
consulted in Fig. 4.8 and compared to those in Fig. 4.7. We observe that little degradation
with respect to the optimal case of perfectly knowing the model can be identified.
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4.6 Summary

In this chapter we proposed a particle filtering method with optimal importance density
that is able to sequentially infer the time-course of the membrane potential and the in-
trinsic activity of ionic channels from noisy observations of voltage traces. In addition, we
tackle the problem of joint parameter estimation and state filtering by extending the de-
sign PF with an MCMC procedure. The overall method is iterative. The results show the
validity of the approaches. The procedure can be applied to any neuron model. Forthcom-
ing applications would be validating the method using real data recordings and adding
synaptic terms to the neuron model and use our method to infer the synaptic conduc-
tances. The latter problem (addressed in next Chapter) is a challenging hot topic in the
neuroscience literature, which is recently focusing on methods to extract the conductances
from single-trace measurements, [Béd11], [Kob11]. We think that our PF method would
give useful and interesting results to physiologists that aim at inferring brain’s activation
rules from neurons’ activities.
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Appendix 4.A PCRB in Morris-Lecar models

This Appendix is devoted to the derivation of the PCRB estimation bound for the Morris-
Lecar model used in this Chapter. We follow the procedure learned in Chapter 3 for the
case of nonlinear states and linear measurements under additive Gaussian noise.

Recall that the state-space we are dealing with is of the form

xk = fk−1(xk−1) + νk

yk = hxk + ek , (4.60)

where h = (1, 0), xk = (vk, nk)
>, and fk−1(xk−1) defined by (4.8) and (4.9). The noise

terms are of the form

νk ∼ N (0,Σx,k) (4.61)

ek ∼ N (0, σ2
y,k) . (4.62)

In this case, the PCRB can be computed recursively by virtue of Proposition 3.1 with

D11
k = Exk

{
F̃>k Σ−1

x,kF̃k

}
D12
k = D21

k = −Exk
{

F̃>k

}
Σ−1
x,k

D22
k = Σ−1

x,k + H>k+1Σ
−1
y,k+1Hk+1 . (4.63)

where we D22
k becomes deterministic, but the rest of terms involving expectations have

to be computed by Monte Carlo approximations.

Since the state function is nonlinear, we use the Jacobian evaluated at the true value
of xk instead, that is

F̃k =
[
∇xkf>k (xk)

]>
=

( ∂f1
∂vt

∂f1
∂nt

∂f2
∂vt

∂f2
∂nt

)
, (4.64)

where functions f1 and f2 are as in (4.8) and (4.9), respectively. Therefore, to evaluate
the bound we need to compute the derivatives in the Jacobian. These are,

∂f1(xk)

∂vk
= 1− Ts

Cm

(
ḡL + ḡKnk + ḡCa

∂m∞(vk)

∂vk
vk + ḡCam∞(vk)

)
(4.65)

∂f1(xk)

∂nk
= − Ts

Cm
ḡK(vk − EK) (4.66)

∂f2(xk)

∂vk
= Tsφ

∂n∞(vk)
∂vk

τn(vk)− (n∞(vk−1)− nk−1)∂τn(vk)
∂vk

τ 2
n(vk)

(4.67)

∂f2(xk)

∂nk
= 1− Tsφ

τn(vk)
(4.68)
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with

∂m∞(vk)

∂vk
=

1

2V2

sech2

(
vk − V1

V2

)
(4.69)

∂n∞(vk)

∂vk
=

1

2V4

sech2

(
vk − V3

V4

)
(4.70)

∂τn(vk)

∂vk
= − 1

2V4

sinh
(
vk−V3

2V4

)
cosh2

(
vk−V3

2V4

) . (4.71)
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(c) ḡCa and ḡK
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Figure 4.4: Realizations of the PMCMC algorithm for joint state-parameter estimation.
Each plot corresponds to different unknown parameters, featuring the MCMC iterations
(top) that converge to the true value of the parameter and the filtered voltage trace
(bottom).
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Figure 4.5: Evolution of RMSE(vk) (top) and RMSE(nk) (bottom) over time for the
PMCMC method estimating the leakage parameters. Model inaccuracies where σI = 0.1·Io
and σgL = 0.1 · ḡoL.
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Figure 4.6: Parameter estimation performance of the proposed PMCMC algorithm. Top
plots show results for ḡL = 2 estimation and bottom plots for EL = −60. Left plots
show superimposed independent realizations and right plots the average estimate of the
parameter.
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Figure 4.7: A single realization of the PF method with perfect model knowledge, estimat-
ing voltage and gating variables (top) and synaptic conductances in nS (bottom).



4.A. Appendix: PCRB in Morris-Lecar models 85

0 100 200 300 400 500 600 700 800 900 1000
−60

−40

−20

0

20

40

v k [m
V

]

Membrane potential

 

 
y

k

v
k

v
k
 estimate

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

time [ms]

n k

Gating variable

 

 
n

k

n
k
 estimate

(a)

0 100 200 300 400 500 600 700 800 900 1000
−20

0

20

40

60

80

100
synaptic conductances

g E
(t

)

time [ms]

 

 
g

E
(t)

g
E
(t) estimates

0 100 200 300 400 500 600 700 800 900 1000
−20

0

20

40

60

80

100

g I(t
)

time [ms]

 

 

g
I
(t)

g
I
(t) estimates

(b)

Figure 4.8: A single realization of the PMCMC method, estimating voltage and gating
variables (top) and synaptic conductances in nS (bottom) as well as model parameters.
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5
Conclusions and Outlook

THIS Thesis has dealt with the problem of estimating the dynamics of a neuron,
its intrinsic signals, and the extrinsic contributions from neighboring neurons. The

experimental setup was presented in Fig. 2.3. The main results and conclusions are
herein itemized:

• We reviewed the addressed neuroscience problem, providing some basic facts
for the non-specialist to follow the Thesis and understand the contribution.

• We provided a tutorial review of Bayesian filtering, which is the mathemat-
ical tool used along the dissertation. We identified the existing solutions to treat
problems in state-space.

• The experimental problem was discussed, highlighting the impairments intro-
duced by the sensing devices that provide the observations. Namely, we discussed
the need to work in the discrete domain and the efficient treatment of noisy obser-
vations.

• We designed a method, based on particle filtering, that is able to estimate the
ionic channel activity and filter out the noise in voltage traces. We have
designed the particle filter such that it uses the optimal importance density to
randomly generate the particles, contrary to other solutions in the literature. This

87
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method is model-dependent and requires perfect knowledge of its parameters. The
method attains the initial goals of operating in a single-trial basis, sequentially, in
the presence of spikes, and efficiently.

• To accomplish the targeted robustness goal, we investigated a further improve-
ment of the particle filtering algorithm were the parameters of the neural model are
estimated from the single-trial voltage trace along with the time-evolving states of
the neuron. We used the so-called particle MCMC algorithm, which we tested
in the problem under study, obtaining promising results. The method attains the
initial goals of operating in a single-trial basis, in the presence of spikes, robustly,
and efficiently. The method is not purely sequential, as the MCMC step requires the
successive processing of batches of observations, and thus there is a need for storing
a set of data.

• We were able to show, by realistic computer simulation experiments, that the meth-
ods are able to recover the intrinsic activity of a neuron and the extrinsic inputs,
i.e. the synaptic conductances.

• To benchmark the filtering solutions, we derived the PCRB for the system. This is
of particular relevance since no other work in the literature has derived it, and thus
compared their results to those provided by the fundamental estimation bounds. We
derived the PCRB for the state-space system based on the Morris-Lecar neural
model, but it could be straightforwardly derived for other neuron models.

• In summary, the reported work goes beyond the state-of-the-art in the esti-
mation of neural activity, both providing novel filtering solutions and deriving the
benchmark bounds.

Due to time limitations, there are a number of topics that we were not able to address
or investigate further in this Thesis. Therefore, the following is a list of future research
topics that are a result of the work reported in this dissertation:

• The filtering tools proposed in this Thesis should be further investigated in the
context of synaptic conductance estimation. Here we only draw some preliminary
results, but more exhaustive analysis are required.

• Use the methods with real data to show the benefits of the tools derived in this
work.

• The parameter estimation procedure is not on-line. A further improvement could
be to study purely on-line methods such as the on-line EM.
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• From an algorithmic point of view, one may argue that under the Gaussian assump-
tion one might use solutions based on SPKF methods. This would eventually
produce savings in the computational complexity of the algorithm, which in the
case of PF is rather high. Future work could be addressed to the comparison of such
approaches to the ones based on particle filtering that are considered here.

• The inference methods herein proposed are model-dependent. Even the algorithm
that is able to estimate the parameters of the model needs a model. Sometime it
is not possible to identify which of the plethora of neural mathematical models
to select (e.g., Morris-Lecar, HodgkinHuxley, Fitz-Nagumo,etc.). In the Bayesian
paradigm it is natural to let the method know that we have several options for
the model themselves. Therefore, future work could be in the incorporation of the
so-called Interating Multiple Model structures in the proposed algorithms.

• We did some preliminary tests with the smoothing versions of the proposed filters.
The results were promising and could be further investigated.
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