

Title: Revocation of Users in RSA Attribute-Based
Signatures

Author: María Rosa Fueyo Pestaña

Advisor: Javier Herranz Sotoca

Department: Matemàtica Aplicada IV

Academic year: 2013/2014

Degree in Mathematics

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41813834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Universitat Politècnica de Catalunya

Facultat de Matemàtiques i Estadística

Bachelor's Degree Thesis

Revocation of Users in RSA

Attribute-Based Signatures

María Rosa Fueyo Pestaña

Advisor: Javier Herranz Sotoca

Matemàtica Aplicada IV

Abstract

Keywords: Attribute-based signatures, RSA, privacy, unforgeability, revocation, accu-

mulators, Zero-Knowledge Proof.

MSC2000: 92A60, 92A62

An attribute-based signature with respect to a signing policy chosen by the signer, con-

vinces the veri�er that the signer sustains a subset of attributes satisfying that signing

policy. The veri�er must not obtain any other information about the identity of the signer

or the attributes he holds. This type of signatures have a lot of applications in real life

scenarios that demand both authentication and privacy properties. The ability of revoking

users that have misbehaved or lost their attributes, so they can not compute more valid

signatures, is very desirable for real life applications of attribute-based signatures.

In this dissertation, the main goal consists in incorporating revocation into an already

existing RSA attribute-based signature that currently does not contain revocation. So as

to achieve this objective a protocol has been developed. The basic notion this protocol

relies on is the concept of dynamic universal accumulators, which is a scheme that would

allow to commit a set of values into an accumulator, in this particular case the list of

revoked users. Furthermore, this particular scheme admits to e�ciently compute a non-

membership witness for any value that has not been accumulated, so a user with a valid

signature would be able to prove that he has not been revoked. It must be noted that

this protocol is built in an anonymous way so as to the user does not need to reveal his

identity to proof that he is not in the revocation list.

Finally, the previous protocol is incorporated into an existing RSA attribute-based sig-

nature, and the resulting signature is analyzed in terms of e�ciency. The length of the

information added to the signatures in order to admit the revocation property is indepen-

dent of the signing policy, as opposed to the length of the original RSA attribute-based

signature. Therefore, the conclusion of the work is that incorporating the revocation

property in this particular case may be relatively e�cient, specially when the considered

signing policies contain many attributes.

Notation

Z Integer numbers

N = PQ RSA modulus

ϕ(·) Euler Function

ZN∗ Set of integers less than N and relative prime to N

neg(·) Negligible function

S Probability space

x←R S Chosen at random according to S

PK· Zero-Knowledge Proof of Knowledge

P Set of Attributes

(P,Γ) Signing Policy

Contents

Chapter 1. Introduction 1

Chapter 2. Preliminaries 3
1. Number-Theoretic assumptions 3
2. Proofs of Knowledge 4
3. Attribute-Based Signatures 6

Chapter 3. Universal Accumulators 9
1. Universal Accumulator 9
2. Dynamic Universal Accumulator 12

Chapter 4. E�cient Proof that a Committed Value was not Accumulated 15
1. Formulation of the protocol 15
2. Detailed analysis of the protocol 16

Chapter 5. Incorporating Revocation of Users into Attribute-Based Signatures 21
1. Existing Attribute-Based Scheme for a Threshold Signing Policy 21
2. Incorporating Revocation into the Signature Scheme 23
3. E�ciency 24

Chapter 6. Conclusions 27

References 29

i

Chapter 1

Introduction

Nowadays, privacy issues are a constant in our life. With the widespread of com-
puter technologies, privacy problems arise everyday wherever personally identi�able
information or other sensitive information, such as �nancial information or medi-
cal records, is used and stored. The work in cryptography is key to face these issues.

Attribute-based cryptography has come into sight in the last years as a very pow-
erful paradigm [18, 17, 19]. An attribute-based signature can only be carried out
by users who hold a subset of attributes that satisfy some policy. The main aspect
of this type of signatures is that a successful execution should leak no information
about the identity of the user or the attributes he holds, besides the fact that these
attributes ful�ll the given policy.

Attribute-based signatures were introduced explicitly in the �rst version of [16].
In an attribute-based signature scheme, each user receives from a master entity a
secret key which depends on the attributes that he holds. Afterwards, a user can
select a signing policy (a family of subsets of attributes) satis�ed by his attributes,
and use his secret key to compute a signature on a message, for this signing policy.
The veri�er of the signature is convinced that some user holding a set of attributes
satisfying the signing policy is the author of the signature, but does not obtain
any other information about the actual identity of the signer or the attributes he
holds. As well as the general applications of any attribute-based cryptosystem such
as private access control, this particular type of signature has many applications
in speci�c scenarios where both authentication and privacy properties are desired,
such as anonymous polls or the leakage of secrets.

Including revocation of users into the signature would be essential in order to apply
it into real-life scenarios where users want to preserve a certain level of privacy. In
situations where a user misbehaves or loses his attributes, it is necessary to have
the option of revoking these users from the system. Implementing revocation into
attribute-based signatures is not trivial at all because of the privacy property.

1

2 1. INTRODUCTION

Incorporating revocation into an already existing RSA attribute-based signature
is the main aim of this dissertation. Furthermore, the e�ciency of the resulting
signature scheme, admitting revocation, will be compared with the e�ciency of the
original signature. In order to do all that a number of papers on the topic have
been read through to understand the concepts necessary to achieve this goal.

In Chapter 2, the underlying mathematics concepts and assumptions that intervene
in the development of attribute based signatures will be explained. Furthermore,
a detailed description of the algorithms that form an attribute-based signature
are developed. Moreover, the main security properties and its relation to other
properties of attribute-based signatures are laid out. Additionally, the concept of
zero-knowledge proof of knowledge was introduced, which will be essential to un-
derstand the following chapters and how the privacy property is achieved.

In Chapter 3, the concept of universal accumulator is introduced. This concept will
be instrumental to ensure privacy when the protocol for user revocation is designed.
In our particular case, the de�nition of universal accumulator was ampli�ed into
the notion of dynamic universal accumulator, thus enabling adding and deleting
users into the list of revoked users.

The protocol that will be used to implement revocation, and that was sketched
originally in [2], is described and analyzed in detail in Chapter 4. Furthermore,
the proofs of the soundness and zero-knowledge proof of knowledge properties are
veri�ed.

Finally, in Chapter 5, the protocol described in Chapter 4 for the revocation of users
is incorporated into the RSA attribute-based signature scheme proposed in [1]. An
e�ciency analysis of the resulting attribute-based signature scheme with revoca-
tion is carried out, in order to know how expensive the addition of the revocation
property will result.

Chapter 2

Preliminaries

1. Number-Theoretic assumptions

The strong RSA assumption was independently introduced by Bari¢ and P�tzmann
[13] and by Fujisaki and Okamoto [12]. It strengthens the widely accepted RSA
assumption that �nding eth-roots modulo N for any e > 1 is hard. The formal
de�nition can be seen below:

Definition 1. (Strong RSA Problem) Given an RSA modulus N = PQ and a
random x←R Z∗

N , the strong RSA problem consists of �nding e > 1 and y ∈ Z∗
N ,

such that ye = xmodN

Assumption 1. (The Strong RSA Assumption) The Strong RSA Assumption
states that the probability that any algorithm A solves the Strong RSA problem
in polynomial time is negligible in λ, the length in bits of the RSA modulus. This
means that the probability decreases, as λ increases, faster than the inverse of any
polynomial. Formally, for any probabilistic polynomial time algorithm A,

Pr

[
N ← G(1λ), x←R ZN , (y, e)← A(N, x) :

ye = x(modN) ∧ 1 < e < N

]
= neg(λ)

where G(1λ) is an algorithm that generates a RSA modulus of size λ, and neg(λ)
is a negligible function.

Lemma 1. For any integer N , given integers u, v ∈ Z∗
N and a, b ∈ Z such that

ua = vb modN and gcd(a, b) = 1, one can e�ciently compute x ∈ Z∗
N such that

xa = vmodN .

Proof. Since gcd(a, b) = 1, one can �nd c, d ∈ Z using the extended Euclidean
algorithm, such that bd = 1 + ac. Let x = (udv−c modN), then

xa = uadv−ac = (ua)dv−ac = (vb)dv−ac = v(modN)

⊓⊔

Assumption 2. (Small order assumption) Let A be any probabilistic polynomial-
time algorithm and G(1λ) an algorithm that generates a RSA modulus of size λ.
Suppose A outputs b ∈ Z∗

N and a number σ. The probability that b ̸= 1, bσ = 1

3

4 2. PRELIMINARIES

and b2 ̸= 1 is negligible. This means that elements of relatively small known order
should be hard to �nd, except possibly for order 2.

Definition 2. (Decisional Di�e-Hellman Problem in QRN , with known factor-

ization)

An algorithm A solves the Decisional Di�e-Hellman problem in QRN , with known
factorization, if it is able to distinguish between the two probability distributions
(N,P,Q, g, gx modN, gy modN, gxy modN) and (N,P,Q, g, gx modN, gy modN, gz modN),
where (P,Q,N, g) ← G(1λ) is an algorithm that generates a RSA modulus and
x, y, z ←R Zpq.

Assumption 3. (Decisional Di�e-Hellman Assumption) The DDH Assumption
in QRN , with known factorization, states that the success probability of any such
algorithm A is negligible in λ. Formally, for any algorithm A running in polynomial
time, we have that the advantage∣∣∣∣Pr [1← A(N,P,Q, g, gx modN, gy modN, gxy modN);

(P,Q,N, g)← G(1λ);x, y ←R Zpq.

]
(λ)−

Pr

[
1← A(N,P,Q, g, gx modN, gy modN, gz modN);

(P,Q,N, g)← G(1λ);x, y, z ←R Zpq.

]
(λ)

∣∣∣∣
is negligible in the security parameter λ.

This is proved in the full version of [14]: the Decisional Di�e-Hellman problem
in QRN , with known factorization, is equivalent to the Decisional Di�e-Hellman
problem in a cyclic subgroup of QRN of either prime order p or prime order q.
The Decisional Di�e-Hellman problem in a cyclic group of big prime order is con-
sidered to be computationally hard, and therefore the Decisional Di�e-Hellman
Assumption in QRN , with known factorization, makes perfect sense.

2. Proofs of Knowledge

In cryptography, a proof of knowledge is an interactive proof in which the prover

succeeds 'convincing' a veri�er that it knows something, for instance, a solution of
an equation. The trivial solution consists in the prover sending to the veri�er what
he knows, and the veri�er authenticates it. But in some cases, the prover wants
to keep his information private, and just wants to prove the fact that he knows it;
this method receives the name of zero-knowledge proof of knowledge.
A so called zero-knowledge proof of knowledge allows a prover to demonstrate the
knowledge of a secret with respect to some public information such that no other
information is revealed in the process.
Some examples of zero-knowledge proofs of knowledge are:

• Given two graphs G,H, the prover wants to prove to the veri�er that G is
isomorphic to H, without revealing the isomorphism.

• Given a cyclic group G = ⟨g⟩ and y ∈ G, the prover wants to prove that he
knows x ∈ Z such that gx = y, which is the discrete logarithm of y in basis g,
without revealing x.

2. PROOFS OF KNOWLEDGE 5

• Given a public key pk, the prover wants to prove that he knows the matching
secret key sk, without revealing it. This is known as identi�cation protocol.

2.1. Properties of a Zero-Knowledge Proof of Knowledge.

For any given zero-knowledge proof of knowledge, it satis�es the following proper-
ties. Let L be a language in nondeterministic polynomial-time, and given α ∈ L,
let W (α) be the set of witnesses of the fact that α ∈ L. The relation R can be
de�ned as R = {(α, ω) : α ∈ L, ω ∈W (α)}.
Given L and α which are public. The secret input for the prover may be the witness
ω. The properties are:

• Completeness: if the prover knows ω such that (α, ω) ∈ R, then the veri�er
always accepts the prover 's proof.

• Proof of Knowledge: if the prover 's proofs for α are accepted with prob-
ability ϵ, then it is possible to extract a witness ω such that (α, ω) ∈ R with
probability ≥ ϵ, given oracle access to the prover.

• Zero-Knowledge: if the prover knows ω such that (α, ω) ∈ R, then even a
malicious veri�er V ′ obtains no new information on ω from the execution of
the protocol. This means that for any such malicious veri�er, there exists a
Simulator algorithm S such that:

S(α) ≈ Outputs[P (α, ω)↔ V ′(α)].

The description of a zero-knowledge proof of knowledge for the �rst two examples
can be seen below:

• A Zero-Knowledge Proof of Knowledge Protocol for Graph Isomor-

phism

LG0 are the graphs isomorphic to G0. A graph G1 ∈ LG0 if and only if there
exists an isomorphism π such that π(G1) = G0. Therefore, R = {(G1, π) :
G1 ∈ LG0 , π(G1) = G0}. Suppose the prover knows π such that π(G1) = G0.
(1) The prover chooses isomorphism ρ at random and sends H = ρ(G0) to

V .
(2) The veri�er chooses random bit b ∈ {0, 1} and sends b to the prover.
(3) If b = 0, P replies ψ = ρ. If b = 1, the prover replies ψ = ρ ◦ π.
(4) The veri�er outputs 1 if and only if ψ(Gb) = H.

If this process is repeated n times in parallel, the cheating probability of a
dishonest prover is 2−n. This process ful�lls the subsequent properties:

� Completeness: trivial.
� Proof of Knowledge: extractor runs the prover until step 3, with
b = 0, and obtains ψ0. Then rewinds back to step 2, chooses b = 1 and
lets the prover output ψ1. The extracted witness π = ψ−1

0 ◦ ψ1 satis�es
π(G1) = G0.

� Zero-Knowledge: a transcript (H, b, ψ) of the protocol between the
prover and a malicious veri�er can be simulated by S as follows:
(1) choose a random permutation ψ,

6 2. PRELIMINARIES

(2) choose bit b ∈ {0, 1} with the same distribution as the malicious
veri�er does,

(3) compute H = ψ(Gb).

• A Zero Knowledge Proof of Knowledge Protocol for Discrete Loga-

rithm

L(G,g) are the elements in the cyclic group G = ⟨g⟩. A witness for y ∈ G is
x ∈ Z such that gx = y. Therefore, R = {(y, x) : y ∈ G, gx = y}. G has
public prime order p. Suppose the prover knows x ∈ Zp such that gx = y.

(1) The prover chooses r ∈R Z∗
p at random and sends R = gr to the veri�er.

(2) The veri�er chooses h ∈R Zp at random and sends h to the prover.
(3) The prover computes s = r + x · hmod p and sends s to the veri�er.
(4) The veri�er outputs 1 if and only if gs = R · yh.

The previous protocol satis�es this properties:

� Completeness: trivial.
� Proof of Knowledge: the extractor runs the prover until step 3, with
random h, and obtains s. Then rewinds back to step 2, chooses a dif-
ferent h′ ̸= h and lets the prover output s′. The extracted witness

x = s−s′

h−h′ mod p satis�es gx = y.

� Zero-Knowledge: a transcript (R, h, s) of the protocol between the
prover and a malicious veri�er can be simulated by S as follows:
(1) choose at random s ∈ Zp,
(2) choose h ∈ Zp with the same distribution as the malicious veri�er

does,
(3) compute R = gs · y−h.

3. Attribute-Based Signatures

This section focuses on describing the concept and protocols of attribute-based
signatures. These particular protocols were developed in [1] over the protocols
of [15] in order to deal explicitly with the identity of users. An attribute-based
signature is linked to a determined signing policy (P,Γ): a set P of attributes and
a monotone increasing family Γ ⊂ 2P of subsets of P. A valid signature implies that
a signer possessing all the attributes of some of the subsets in Γ is the author of the
signature. The monotonicity property ensures that S1 ⊂ S2, S1 ∈ Γ ⇒ S2 ∈ Γ. A
simple example of such a monotone increasing family of subsets is the threshold case.
Given a (ℓ, n)-threshold signing policy, with a set P which contains n attributes,
and Γ = {S ⊂ P : |S| ≥ ℓ}, a veri�er authenticates a threshold attribute-based
signature if he is convinced that the author of the signature holds at least ℓ of the
attributes included in the set P.

3.1. Syntactic De�nition.

An attribute-based signature scheme consists of four probabilistic polynomial-time
algorithms:

3. ATTRIBUTE-BASED SIGNATURES 7

• Setup(1λ). The setup algorithm takes as input a security parameter λ and
outputs the initial public parameters pms and the master secret key msk for
the master entity. Within the public parameters appear the possible universe
of attributes P̃ = {at1, . . . , atn}.

• KeyGen(id, S,msk, pms). The key generation algorithm takes as input the mas-
ter secret key msk, the public parameters pms, furthermore, an identity id that
satis�es a set of attributes S ⊂ P̃ is required. The output is a private key
skid,S .

• Sign(m,P,Γ, skid,S , pms). The signing algorithm takes as input a message m,

a signing policy (P,Γ) where P ⊂ P̃ and Γ ⊂ 2P , a secret key skid,S and the
public parameters pms, and outputs a signature σ.

• Verify(σ,m,P,Γ, pms). The veri�cation algorithm takes as input the signature
σ, the message m, the signing policy (P,Γ) and the public parameters pms.
The outputs are 1 if the signature is accepted or 0 if it is rejected. signature.

Such a scheme ful�lls the correctness' property, if for a signature and for a signing
policy (P,Γ) that is computed by using skid,S such that S ∈ Γ, the signature is
always accepted by the veri�cation protocol.

3.2. Security De�nitions.

Privacy. The privacy property entails that given a valid signature, nobody can
obtain any information about the real author of the signature. That is to say,
given two pairs (id0, S0) and (id1, S1), with S0, S1 ⊂ P∗, and a valid signature
σ ← Sign(m,P,Γ, skidb,Sb

, pms) for a signing policy Γ such that S0, S1 ∈ Γ, nobody
would be able to guess the bit b with probability signi�cantly bigger than 1/2. The

privacy property is formally de�ned via the following experiments Exppriv
b,B (λ), for

b = 0, 1, involving an adversary B.

Exp
priv
b,B (λ)

(pms,msk)← Setup(1λ)
(m,P,Γ, id0, S0, skid0,S0 , id1, S1, skid1,S1 , st1)← B(pms,msk)
Verify that skidi,Si is a valid secret key for Si, for i = 0, 1
Verify that S0 ∩ P ∈ Γ and S1 ∩ P ∈ Γ
σ∗ ← Sign(m,P,Γ, skidb,Sb

, pms)
b′ ← B(σ∗, pms,msk, st1)
Output b′

The advantage of B in breaking the privacy property is de�ned as

Adv
priv
B (λ) =

∣∣∣Pr[Exppriv
0,B(λ) = 1]− Pr[Exppriv

1,B(λ) = 1]
∣∣∣ .

Definition 3. An attribute-based signature scheme is private if, for any adver-

sary B that runs in polynomial time, the advantage Adv
priv
B (λ) is negligible in the

security parameter λ.

8 2. PRELIMINARIES

Seeing that the adversary B can obtain the master secret key, other properties of
signatures are implied by the privacy property, such as anonymity and unlinkabil-
ity. The anonymity property means that given a valid signature, identifying the
actual signer is computationally hard and the unlinkability property implies that
deciding whether two di�erent valid signatures were computed by the same user is
computationally hard.

Unforgeability. An attribute-based signature scheme must ful�ll the property of
existential unforgeability against chosen message and signing policy attacks. Such
property is de�ned by the following experiment Expunf

F (λ) involving an adversary
F .

Expunf
F (λ)

(pms,msk)← Setup(1λ)
(σ∗,m∗,P∗,Γ∗)← FKeyGen(·,msk,pms), Sign(·,pms)(pms)
Output 1 if the three following statements are true:

(i) Verify(σ∗,m∗,P∗,Γ∗, pms) returns 1;
(ii) F has not made any secret key query (id, S) such that S ∩ P∗ ∈ Γ∗;
(iii) (m∗,P∗,Γ∗, σ∗) is not the result of any signature query from F .

Otherwise, output 0

The advantage of F in breaking the unforgeability of the scheme is de�ned as

AdvunfF (λ) = Pr[Expunf
F (λ) = 1]. We stress that F is allowed to make adaptive

queries for secret keys of pairs (id, S) of his choice, and adaptive signing queries
for tuples (m,P,Γ) of his choice, where Γ ⊂ 2P . The last kind of queries are
answered by choosing a random subset S ⊂ P with S ∈ Γ, and then by running
skid,S ← KeyGen(id, S,msk, pms) and σ ← Sign(m,P,Γ, skid,S , pms).

Definition 4. An attribute-based signature scheme is unforgeable if, for any

adversary F that runs in polynomial time, the advantage AdvunfF (λ) is negligible in
the security parameter λ.

As well as in the privacy de�nition, the unforgeability de�nition implies another
signature's property such as the collusion resistance property. A group of colluding
users (even if it is comprised of all the users) that pool together their secret keys,
will not be able to sign messages for a signing policy that none of the attribute sets
of these users satis�es.

Chapter 3

Universal Accumulators

The strategy employed to incorporate revocation of users in the signature scheme
employs a cryptographic scheme called universal dynamic accumulator. The con-
struction used corresponds to the one de�ned by Li, Li and Xue [2] which is build
upon the one of Camenisch and Lysyanskaya [4]. Subsequently, the de�nition of dy-
namic universal accumulators and the construction used are explained. In the �rst
place, the de�nition of universal accumulators will be introduced, as the dynamic
universal accumulator is developed from this notion.

1. Universal Accumulator

1.1. De�nition.

Let λ be a security parameter, for a family of input {Xλ} a secure universal accu-
mulator is a family of functions {Fλ} that satisfy the following properties:

• E�cient Generation: A random function f of Fλ is produced on input 1λ

by an e�cient probabilistic polynomial time algorithm called G. Furthermore,
auxiliary information about f represented as auxf is obtained with G.

• E�cient Evaluation: ∀f ∈ Fλ, f is a polynomial time function. The inputs
are (g, x) ∈ Gf ×Xλ, where Xλ is the input domain for the elements that will
be accumulated and Gf is the input domain for f . The output value is h ∈ Gf .

• Quasi-Commutative: ∀f ∈ Fλ, ∀g ∈ Gf , and ∀x1, x2 ∈ Xλ, f(f(g, x1), x2) =
f(f(g, x2), x1). If X = {x1, ..., xm} ⊂ Xλ,
f(f(...(g, x1), ...), xm) is denoted as f(g,X).

• Membership Witness: ∀f ∈ Fλ, a membership veri�cation function called
ρ1 exists. w1 is called a membership witness if ρ1(c, x, w1) = 1, where c ∈ Gf
and x ∈ Xλ.

• Nonmembership Witness: ∀f ∈ Fλ, a nonmembership veri�cation func-
tion ρ2 exists. w2 is called a nonmembership witness if ρ2(c, x, w2) = 1, where

9

10 3. UNIVERSAL ACCUMULATORS

c ∈ Gf and x ∈ Xλ.

• Security: A dynamic universal accumulator scheme is secure if, for all prob-
abilistic polynomial-time adversary Aλ,

Pr

f ← G(1λ); g ←R Gf ;

(x,w1, w2, X)← Aλ(f,Gf , g);
x ∈ Xλ;X ⊂ Xλ;

ρ1(f(g,X), x, w1) = 1; ρ2(f(g,X), x, w2) = 1

 = neg(λ)

That is, given any set X ∈ Xλ, it is infeasible to �nd x ∈ X with a valid
nonmembership witness or in the other case, �nd x ∈ Xλ\X with a valid
membership witness.

1.2. Construction.

Let λ be a security parameter. For two integers γ1, γ2 which depend on λ and
which will be speci�ed later, ∆ is the set of integers in the interval [2γ1 − 2γ2 +
1, 2γ1 + 2γ2 − 1]. Let Xλ denote the set of all primes in ∆. The input domain for
the elements accumulated is Xλ. The construction built has the following steps:

• The generation algorithm G takes 1λ as input, the output is a random modu-
lus N of length λ that is a safe prime, N = PQ, where P = 2p+1, Q = 2q+1
, each one of the same length and are also prime numbers.

• fN is the respective function for modulus N . The factorization of N is the
auxiliary information auxf for fN . The input domain Gf for fN is de�ned as
Gf = {g ∈ QRN : g ̸= 1} whereQRN is the set of quadratic residues module N.

• For f = fN , f(g, x) = gx modN .

• For f = fN , the membership veri�cation function ρ1 is de�ned as ρ1(c, x, w) =
1⇔ wx = c, where w ∈ Gf is the original membership witness for x.

• For f = fN , the nonmembership veri�cation function ρ2 is de�ned as ρ2(c, x, a, d) =
1⇔ ca = dxgmodN , where (a, d) ∈ ∆×Gf is the nonmembership witness for
x.

1.2.1. Computing witness without auxf .

Suppose X = {x1, · · · , xm} is a subset of Xλ and g is a random value in QRN . u
is de�ned as

∏m
i=1 xi and f(g,X) = gu modN . The membership witness for any

x ∈ X is cx = gu/x modN and to verify the witness, one checks that x ∈ Xλ and
(cx)

x = cmodN .
In the case that x ∈ Xλ\X, because x, x1, · · · , xm are distinct prime numbers,
gcd(x, u) = 1 and the values a ∈ ∆ and b ∈ Z satisfy that au+ bx = 1. Using the
Euclid algorithm a′ and b′ are �nd such that a′u + b′x = 1. Since x is a positive
integer in ∆, an integer k that satis�es a′ + kx ∈ ∆ can be found. It can be
noted that (a′ + kx)u + (b′ − ku)x = 1, thus a = a′ + kx and b = b′ − ku. The

1. UNIVERSAL ACCUMULATOR 11

nonmembership witness for x is (a, d) where d = g−b modN . In order to verify the
witness, it is checked that x ∈ Xλ, a ∈ ∆, and ca = dxgmodN .

1.2.2. Computing witness with auxf .

The membership witness and nonmembership witness can be calculated e�ciently
given the auxiliary information auxf . An existing trusted master entity who knows
auxf , keeps the set X, and has already computed the accumulator c = f(g,X),
this master entity is able to compute the nonmembership witness for any x ∈ Xλ

with one short modular exponentiation.
For x ∈ X, the master entity �rst checks whether x ∈ X, then computes a =
x−1 modϕ(N), and �nally computes cx = ca modN . The membership witness for

x is cx, it can be observed that (cx)
x = (ca)x = cx

−1xmodϕ(N) = c(modN).
For x ∈ Xλ\X, let u′ = umodϕN , the master entity �rst checks if gcd(x, u′) = 1.

• If gcd(x, u′) = 1, the master entity �nds a and b such that au′ + bx = 1, and
sets the nonmembership witness for x as (a, g−b modN). The nonmembership

witness is legitimate because ca = (gu)a = (gu
′
)a = gu

′a = g1−bx = g−bxg =
dxg(modN).

• If gcd(x, u′) ̸= 1, the master entity �nds a and b such that au + bx = 1,
then computes b′ = bmodϕ(N), and sets the nonmembership witness for x

as (a, g−b′ modN). The nonmembership witness is legitimate because ca =

gua = g1−bx = g−bxg = (g−b′)xg = dxg(modN).

It must be reminded that in some scenarios, computing witness using auxiliary in-
formation may not be recommended, since the auxiliary information can be used
to prove arbitrary statements. Only in the case the party that computes the accu-
mulator is trusted, it is adequate to give up the auxiliary information.

Theorem 2. Under the strong RSA assumption, the aforementioned construction

is a secure universal accumulator.

Proof. The strong RSA assumption says that given a RSA modulus N and a
random value g ←R QRN , it is computationally infeasible to �nd x and y such that
x > 1 and yx = g.
Daresay there is a polynomial time adversary A, which on input N and g ∈ QRN ,
outputs cx ∈ Gf , d ∈ Gf , x ∈ Xλ, a ∈ ∆ and X = {x1, · · · , xm} ⊂ Xλ, where c =
gx1,··· ,xm modN , (cx)

x = cmodN and ca = dxgmodN . From here, an algorithm
B can break the strong RSA assumption invoking A. There are two cases:

• In the �rst case, assume x ∈ X and u represents
∏m

i=1 xi. The adversary can
compute u, a, d and x, such that c = gu modN and ca = dxgmodN . Because
x ∈ X, x|u and gcd(au − 1, x) = 1. By Lemma 1, y can be found such that
yx = g.

• In the second case, assume x /∈ X and u represents
∏m

i=1 xi. The adversary
can compute u, cx and x, such c = gu modN and (cx)

x = cmodN which
implicates that (cx)

x = gu modN . Since x1, · · · , xm are all prime and x /∈ X,
gcd(x, u) = 1 and by Lemma 1 y can be e�ciently found such that yx = g.

12 3. UNIVERSAL ACCUMULATORS

An e�cient algorithm B that breaks the strong RSA assumption can be constructed
as follows. Given a RSA modulus N and g ←R QRN , B invokes A with inputs N
and g which obtains the outputs cx, d, x, a,X from A. B can e�ciently compute y
from cx, d, x, a,X such that yx = d, which contradicts the strong RSA assumption.

⊓⊔

Corollary 3. In the construction mentioned above, for any f ∈ Fλ and any

given set X ⊂ Xλ, it is computationally infeasible to �nd x ∈ X with a valid

nonmembership witness.

2. Dynamic Universal Accumulator

2.1. De�nition.

Dynamic universal accumulators were proposed so as to dynamically add and delete
elements. The construction is based in the one of universal accumulators with some
modi�cations that can be seen below:

• E�cient Update of Accumulator: There is an e�cient algorithm D that
given c = f(g,X), if x̂ /∈ X, thus D(c, x̂) = ĉ such that ĉ = f(g,X ∪ {x̂}), in
the other case, x̂ ∈ X, then D(auxf , c, x̂) = ĉ such that ĉ = f(g,X\{x̂}).

• E�cient Update of Membership Witness: c and ĉ are the original and
updated accumulators, and x̂ is the new updated element. An e�cient algo-
rithm called W1 satis�es that, if x ̸= x̂, x ∈ X, and rho1(c, x, w) = 1, then
W1(w, c, ĉ, x, x̂) = ŵ such ρ1(ĉ, x, ŵ) = 1.

• E�cient Update of Nonmembership Witness:c and ĉ are the original
and updated accumulators, and x̂ is the new updated element. An e�cient
algorithm called W2 satis�es that, if x ̸= x̂,x /∈ X, and ρ2(c, x, w) = 1, then
W2(w, c, ĉ, x, x̂) = ŵ such ρ2(ĉ, x, ŵ) = 1.

• Security: A dynamic universal accumulator scheme is secure if, for all prob-
abilistic polynomial-time adversary Aλ,

Pr

 f ← G(1λ); g ←R Gf ;
(x,w1, w2, X)← Aλ(f,Gf , g)↔M(f, auxf , g)→ (X, c);

x ∈ Xλ;X ⊂ Xλ; ρ1(c, x, w1) = 1; ρ2(c, x, w2) = 1

 = neg(λ)

where M is an interactive Turing machine whose inputs are (f, auxf , g). M
keeps a list of values X which is initially empty. g is set to be the initial
accumulator c. M answers two types of messages:
� (add, x): Adds x ∈ Xλ to the set X, runs D which modi�es c and then
updatesc.

� (delete, x): Checks that x ∈ Xλ, then deletes it from X, updates c by
running D.

The output of M consists of the current values of X and c.

2. DYNAMIC UNIVERSAL ACCUMULATOR 13

2.2. Construction.

In the case of the dynamic universal accumulators some additional functionalities
have been built on the existing universal accumulator construction (see Section
1.2).

• Update of the accumulator: If a value x̂ wants to be added to the accumulator,
it can be computed as ĉ = cx modN . On the other hand, if a value x̂ wants to
be deleted from the accumulator,it will be computed as ĉ = D(ϕ(N), c, x̂) =

cx̂
−1 modϕ(N) modN , where ϕ(N) is the auxiliary information.

• Update of membership witness: w is considered the original membership wit-
ness of x. c and ĉ are the original and new accumulators. The two operations
consists in:
� Addition: Once x̂ has been added, the new membership is computed as
ŵ = f(w, x̂) = wx̂ modN .

� Deletion: If x̂ ̸= x has been deleted, the new membership witness ŵ
is computed choosing an algorithm W1 who chooses two integer values a
and b that satisfy ax+ bx̂ = 1 and so ŵ is computed as ŵ = wbĉa modN .

ŵx = (wbĉa)x = ((wbĉa)xx̂)1/x̂ = (cbx̂cax)1/x̂ = ĉmodN

• Update of Nonmembership Witness: Let (a, d) be the original nonmembership
witness of x.
� Addition: If x̂ ̸= x has been added, given x, x̂, c, ĉ that verify ĉ = cx̂

modN . The algorithm W2 is used to compute the new nonmembership

witness (â, d̂). In �rst place, two integers â0 and r0 that verify â0x̂+r0x =
1 are chosen. Then, the former equation is multiplied by a in both sides,
and â0ax̂ + r0ax = a is obtained. After that, W2 computes â = â0a
modx, and �nds r ∈ Z such that âx̂ = a + rx where â ∈ ∆. Finally

W2 computes d̂ = dcr modN . It can be veri�ed that ρ2(ĉ, x, â, d̂) = 1 or

ĉâ = d̂xg holds.

ĉâ = câx̂ = ca+rx = crxca = crxdxg = (dcr)xg = d̂xgmodN

� Deletion: If x̂ has been deleted, given x, x̂, c, ĉ that verify c = ĉx̂ modN .

The new nonmembership witness (â, d̂) is obtained through the algorithm

W2. W2 chooses an integer r that satis�es ax̂ − rx ∈ ∆. If â, d̂ are

â = ax̂−rx and d̂ = dĉ−r modN . It can be veri�ed that ρ2(ĉ, x, â, d̂) = 1

or ĉâ = d̂xg holds.

ĉâ = cax̂−rx = caĉ−rx = dxgĉ−rx = (d(ĉ)−r)xg = d̂xgmodN

Several values can be added or deleted at the same time with this algo-
rithm, x̂ only needs to be the product of the values that want to be added
or deleted.

Theorem 4. Under the strong RSA assumption, the dynamic universal accumu-

lator construction is secure.

14 3. UNIVERSAL ACCUMULATORS

Proof. A dynamic universal accumulator is a secure construction against an adap-
tive adversary if the underlying universal accumulator is secure. This can be demon-
strated using the reduction argument. If an adversary A breaks the security prop-
erty of the dynamic universal accumulator, another adversary B can be built that
breaks the security property of the universal accumulator by invoking A. On input
(f,Gf , g), B gives these values to A. B is chosen to act as the manager M , hence
A can interact with it to update the elements:

• If A sends an (add,x) query, B inserts x into X and computes c = f(g,X).

• If A sends a (delete,x) query, B removes x from X and computes c = f(g,X).

Finally A outputs an element x ∈ Xλwith a valid membership witness w1 and a
valid nonmembership witness w2, and B outputs (x,X,w1, w2), seemingly breaking
the security property of the universal accumulator. ⊓⊔

Chapter 4

E�cient Proof that a Committed Value

was not Accumulated

In Chapter 3, the main concepts of universal accumulators were explained, in this
section a protocol using accumulators will be build in order to certi�cate revocation
of users in an anonymous setting. Since the anonymity of the users is required, one
can not just simply show his serial number to verify that he is not in the revocation
list. The basic notion is that the user commits his value or serial number in his
signature or certi�cate (in a private way) and proves that this value has not been
accumulated in the revocation list. The protocol used has been proposed in Section
5 of [2].

1. Formulation of the protocol

The commitment scheme is originally from [12], but in this case the main goal is to
implement it in the attribute-based signature scheme of [1]. The main parameters of
the scheme are N , g, h where N is a RSA modulus of lenght λ, g ∈ QRN , h ∈ QRN

and r ←R ZN . To commit a value x belonging to ∆ = [2γ1 − 2γ2 +1, 2γ1 +2γ2 − 1]
for certain parameters γ1, γ2 which depend on λ, the commitment is computed as
commitment(x, r) = gxhr modN

Aside from the parameters of commitment scheme, the protocol requires an element
h̃ in QRN such that logg̃h̃ is unknown to the prover, where g̃ and N are the
parameters of the universal accumulators in the previous Chapter 3. The basic
inputs of the protocol are B̃, N , g, h, g̃, h̃, and c. The additional inputs of the
prover are x, r, a, d such that B = gxhr modN and ca = dxgmodN , where the
�rst equation depicts that x is the committed value of B and the second equation
shows that x is not accumulated in c.

The protocol to prove knowledge of a nonmembership witness has six steps, which
are shown below.

Protocol PK{(x, r, a, d) : B = gxhr ∧ ca = dxg ∧ x ∈ ∆ ∧ a ∈ ∆}

15

16 4. EFFICIENT PROOF THAT A COMMITTED VALUE WAS NOT ACCUMULATED

• Step 1: The prover selects uniformly at random the values w, rx, ra, rw, rz
and rf of length λ. Afterwards, the prover computes the following values

modN : cx = g̃xh̃rx , ca = g̃ah̃ra , cd = dg̃w, cw = g̃wh̃rw , z = xw, cz = g̃zh̃rz ,
cf = (cd)

xh̃rf and sends (cx, ca, cd, cw, cz, ce) to the veri�er and carry out the
zero-knowledge proofs.

• Step 2: The prover proves to the veri�er that the value committed in B in
bases (g, h) is the same as the value committed in cx in bases (g̃, h̃):

PK{(x, r, rx) : B = gxhr ∧ cx = g̃xh̃rx}

• Step 3: The prover proves to the veri�er that the value committed in cf in

bases (cd, h̃) is the same as the value committed in cx in bases (g̃, h̃):

PK{(x, rf , rx) : cf = (cd)
xh̃rf ∧ cx = g̃xh̃rx}

• Step 4: The prover proves to the veri�er that cf g̃ is also a commitment in

bases ((c, g̃), h̃) and the values committed in cf g̃ are the same as the values

committed in ca, cz and the power of h̃ in cf g̃ is the same as in cf in bases

(cd, h̃):

PK{(a, z, x, ra, rz, rx) : cf g̃ = cag̃zh̃rf ∧ cf = (cd)
xh̃rf ∧ ca = g̃ah̃ra ∧ cz = g̃zh̃rz}

• Step 5: The prover proves to the veri�er that cz is a commitment to the
product of values committed in cx and cw:

PK{(x,w, z, rz, rw, rx, r) : cz = (cw)
xh̃r ∧ cx = g̃xh̃rx ∧ cw = g̃wh̃rw ∧ cz = g̃zh̃rz}

• Step 6: The prover proves to the veri�er that cx is a commitment to an integer
belonging in ∆, and that ca is a commitment to an integer belonging in ∆:

PK{(x, r, a, d) : B = gxhr ∧ ca = dxg ∧ x ∈ ∆ ∧ a ∈ ∆}

2. Detailed analysis of the protocol

The details of the protocol were omitted in [2], but similar protocols were described
in other articles, for example, step 2,3,6 can be found in [8], the protocol for zero-
knowledge proof that a committed value is the product of two other in step 5 can be
found in [7]. However, step 4 has been completely developed here since a description
of the protocol could not be found in the literature as it can be seen below:

Step 2: The prover proves to the veri�er that the value committed in B in bases
(g, h) is the same as the value committed in cx in bases (g̃, h̃):

PK{(x, r, rx) : B = gxhr ∧ cx = g̃xh̃rx}

2. DETAILED ANALYSIS OF THE PROTOCOL 17

(1) The prover chooses y ∈ [0, 2(γ2+κ)], ρ1, ρ2 ∈ [0, 2(2λ+κ)] at random and sends

Y1 = gyhρ1 and Y2 = g̃yh̃ρ2 to the veri�er.
(2) The veri�er chooses random s ∈ [0, 2κ] and sends it to the prover.
(3) The prover sends u = y + sx, v1 = ρ1 + sr and v2 = ρ2 + srx.

(4) The veri�er checks that guhv1 = Y1(B)s and g̃uh̃v2 = Y2(cx)
s.

Step 3: The prover proves to the veri�er that the value committed in cf in bases

(cd, h̃) is the same as the value committed in cx in bases (g̃, h̃):

PK{(x, rf , rx) : cf = (cd)
xh̃rf ∧ cx = g̃xh̃rx}

(1) The prover chooses y ∈ [0, 2(γ2+κ)], ρ1, ρ2 ∈ [0, 2(2λ+κ)] at random and sends

Y1 = (cd)
yh̃ρ1 and Y2 = g̃yh̃ρ2 to the veri�er.

(2) The veri�er chooses random s ∈ [0, 2κ] and sends it to the prover.
(3) The prover sends u = y + sx, v1 = ρ1 + srf and v2 = ρ2 + srx.

(4) The veri�er checks that (cd)
uhv1 = Y1(cf)

s and g̃uh̃v2 = Y2(cx)
s.

Step 4: The prover proves to the veri�er that cf g̃ is also a commitment in bases

((c, g̃), h̃) and the values committed in cf g̃ are the same as the values committed

in ca, cz and the power of h̃ in cf g̃ is the same as in cf in bases (cd, h̃):

PK{(a, z, x, ra, rz, rx) : cf g̃ = cag̃zh̃rf ∧ cf = (cd)
xh̃rf ∧ ca = g̃ah̃ra ∧ cz = g̃zh̃rz}

(1) The prover chooses y1, y2, y3 ∈ [0, 2(γ2+κ)], ρ1, ρ2, ρ3 ∈ [0, 2(2λ+κ)] at random

and sends Y1 = cy1 g̃y2 h̃ρ1 , Y2 = g̃y1 h̃ρ2 Y3 = g̃y2 h̃ρ3 and Y4 = (cd)
y3 h̃ρ1 to the

veri�er.
(2) The veri�er chooses random s ∈ [0, 2κ] and sends it to the prover.
(3) The prover sends u1 = y1 + sa, u2 = y2 + sz, u3 = y3 + sx v1 = ρ1 + srf ,

v2 = ρ2 + sra and v3 = ρ3 + srz.
(4) The veri�er checks that cu1 g̃u2 h̃v1 = Y1(cf g̃)

s, g̃u1 h̃v2 = Y2(ca)
s, g̃u2 h̃v3 =

Y3(cz)
s and (cd)

u3hv1 = Y4(cf)
s.

Step 5: The prover proves to the veri�er that cz is a commitment to the product
of values committed in cx and cw:

PK{(x,w, z, rz, rw, rx, r) : cz = (cw)
xh̃r ∧ cx = g̃xh̃rx ∧ cw = g̃wh̃rw ∧ cz = g̃zh̃rz}

It is important to note that cz = (cw)
xh̃(rz−rwx), as it will be used in the proof.

(1) The prover chooses y ∈ [0, 2(γ2+κ)], ρx, ρz ∈ [0, 2(2λ+κ)] at random and sends

Yx = g̃yh̃ρx and Yz = g̃yh̃ρz to the veri�er.
(2) The veri�er chooses random s ∈ [0, 2κ] and sends it to the prover.
(3) The prover sends u = y + sx, vx = ρx + srx and vz = ρz + s(rz − rwx).
(4) The veri�er checks that g̃uh̃vx = Yx(cx)

s and g̃uh̃vz = Yz(cz)
s.

Step 6: The prover proves to the veri�er that cx is a commitment to an integer
belonging in ∆, and that ca is a commitment to an integer belonging in ∆:

PK{(x, r, a, d) : B = gxhr ∧ ca = dxg ∧ x ∈ ∆ ∧ a ∈ ∆}

18 4. EFFICIENT PROOF THAT A COMMITTED VALUE WAS NOT ACCUMULATED

As it can be seen in the construction of the dynamic universal accumulator, the
updated value of a is calculated modx, thus proving that x is an integer belonging
to the interval ∆ will be enough. The complete description and proof of this step
6 can be found in the Section 3 of [8].

Theorem 5. The previous protocol is a zero-knowledge proof of knowledge of the

values (x, r, a, d) such that B = gxhr modN and (a, d) is a valid nonmembership

witness of x for the accumulator c.

Proof. Completeness of the protocol is clear. The commitments cx, ca, cf , cz, cd
and cw are computed at random, since the commitments do not reveal anything
statistically, in order to prove the zero-knowledge of the protocol, it is su�cient
to verify the zero-knowledge of each step. In this case, since it would be very
similar for each step, only the zero-knowledge proof of knowledge of step 2 would
be demonstrated. It will be shown that even a malicious veri�er V ′, would not
obtain new information on x from the execution of the protocol.
Step 2:

PK{(x, r, rx) : B = gxhr ∧ cx = g̃xh̃rx}
A transcript (Y1, Y2, s, u, v1, v2) of the protocol between the prover and V ′ can be
simulated as follows:

(1) Choose at random u ∈ [0, 2(γ2+κ)], v1, v2 ∈ [0, 2(2λ+κ)]
(2) Choose at random s ∈ [0, 2κ] with the same distribution as V ′ does and,

(3) compute Y1 = guhv1 ·B−s and Y2 = g̃uh̃v2 · (cx)−s

In order to show soundness, just as in the zero-knowledge proof, it is enough with
the veri�cation of each step of the protocol. Such proofs of soundness are very
similar for instance, the ones in [7]. Only the proof for Step 4 will be detailed, since
this is the step that was nos explicitly available in the existing literature.
To demonstrate soundness, it can be assumed that some prover P ∗ can execute the
protocol with a non-negligible success probability. An algorithm that uses P ∗ as
a subroutine and computes a way to open the commitment, except with negligible
probability, is shown below.
By assumption on P ∗, using standard rewinding techniques, there is a situation,
for a given PK, P ∗ could answer for two di�erent challenges s and s′ the values
(u1, u2, u3, v1, v2, v3) and (u′1, u

′
2, u

′
3, v

′
1, v

′
2, v

′
3). Let â = u1 − u′1, ẑ = u2 − u′2,

x̂ = u3− u′3, r̂f = v1− v′1, r̂a = v2− v′2, r̂z = v3− v′3 and ŝ = s− s′. Then we have:

(1) cŝa = g̃âh̃r̂a

(2) cŝz = g̃ẑh̃r̂z

(3) cŝf g̃ = câg̃ẑh̃r̂f

(4) cŝf = (cd)
x̂h̃r̂f

In this case, only the value ca will be developed, as the other three can be computed
in the same way.
Straightaway, consider that ŝ divides both â and r̂a. Let a

′ = â/ŝ and r′a = r̂a/ŝ,

then the element b = c−1
a g̃a

′
h̃r

′
a satis�es that bŝ = 1. But under the small order

assumption stated in the number theoretic assumptions (see Section 1 of prelimi-
naries), the probability that b ̸= 1 is negligible and so ca can be open correctly by

2. DETAILED ANALYSIS OF THE PROTOCOL 19

sending â/ŝ, r̂a/ŝ, b. Now, the case where ŝ does not divide both â and r̂a happens
with negligible probability, as we argue below.
Now suppose the case where ŝ does not divide both â and r̂a happens with non-
negligible probability. It will be demonstrated that an algorithm can be constructed
that breaks the strong RSA assumption.
Let h be an input chosen at random. Then, g is set as g = hα for a random α. Then
g, h are sent to the adversary. Now, suppose the case cŝa = g̃âh̃r̂a and ŝ does not
divide both â and r̂a, which by assumption happens with non-negligible probability.
If the equation g = hα is inserted in the other equation it is obtained:

cŝa = hα(â)+r̂a

Suppose s > s′ that is ŝ > 0. The analysis is divided into two cases:

• ŝ does not divide α(â) + r̂a. In this case, let m = gcd(ŝ, α(â) + r̂a). η, β are
chosen that

η(ŝ) + β(α(â) + r̂a) = m

and

hm = hη(ŝ)+β(α(â)+r̂a) = (hηcβa)
ŝ

b̃ is set as b̃ = (hηcβa)
ŝ/mh−1, where b̃m = 1 and hb̃ = (hηcβa)

ŝ/m.

If b̃ = 1, then the strong RSA assumption is broken. Otherwise, the only
remaining non-negligible case is b̃2 = 1 under the small order assumption. In
this case, two options can be considered:

� if (ŝ)/d is odd, then b̃ŝ/d = b̃, but this breaks again the strong RSA
assumption.

� if (ŝ)/d is even, then (hηcβa)
ŝ has odd order, which contradicts the fact

that ord(hb̃) = 2ord(h).
In both cases, the assumptions of the group are broken if ŝ does not divide
α(â) + r̂a.

• ŝ divides α(â) + r̂a. Since the adversary does not know the full information
of the choice of α, this case happens with a probability at most of 1/2 in the
situation that ŝ does not divide both â and r̂a. Let q be some prime factor
in ŝ such that qj is the maximal q-power dividing ŝ, and at least one of â, r̂a
are non-zero module qj (such q must exist since ŝ does not divide both â and
r̂a). Mind that if qj divides â, it would have to divide r̂a as well, which is a
contradiction. Therefore â ̸= 0mod qj . α can be written as α = y + z.ord(h),
where y = α(mod ord(h)). It must be mentioned that g represents all the
information the adversary has about α, and y is uniquely determined from g
and z is completely unknown. Seeing that qj actually divides α(â)+ r̂a, it can
be observed:

α(â) + r̂a = z(â)ord(h) + y(â) + r̂a = 0(mod qj)

z must satisfy the previous equations in order for the bad case to occur. The
number of solutions modulo qj of this equation is at most gcd((â)ord(h), qj).
This number is a power of q, but is at most qj−1. The probability that z
satis�es the equation is statistically close to 1/q ≤ 1/2.

20 4. EFFICIENT PROOF THAT A COMMITTED VALUE WAS NOT ACCUMULATED

Now, that soundness for ca has been shown, the same protocol can be followed
for the other values cz, cf , cf g̃ and the soundness of the whole step 4 could be
demonstrated.

⊓⊔

Combining the proofs of soundness of the six steps, there is a knowledge extractor
that outputs a valid committed value x and its nonmembership witness. In case
the knowledge extractor fails, the strong RSA assumption can be broken. If it can
be assumed that the extractor succeeds and computes (x, a, w, z, r, rx, ra, rw, rz, rf)
such that:

(1) B = gxhr

(2) cx = g̃xh̃rx

(3) ca = g̃ah̃ra

(4) cz = g̃zh̃rz

(5) cz = g̃xwh̃rz

(6) cf = cdh̃
rf

(7) cf g̃ = cag̃zh̃rf

(8) cd = dg̃w

where the equations (1) and (2) are obtained in step 1, the (2) and (6) equations
are procured in step 3 of the protocol, in step 4 the equations (3), (4) and (7) are
�nd, and �nally the equations (4) and (5) come from the step 5 of the protocol.
From equations (4) and (5), it can be derived that z = xw. (cd)

xg̃ = cag̃z is deduce
by equation (6) and (7). From equation (8), d can be de�ned as d = cd/g̃

w, by
elevating this to x, it is obtained dx = (cd/g̃

w)x = (cd)
x/g̃z = cag̃−1, so ca = dxg̃. It

is known from step 6 that x and a are integers in the interval ∆, therefore (x, r, a, d)
are the outputs of the protocol, where B is a commitment of x, and (a, d) are the
nonmembership witness for x.

Chapter 5

Incorporating Revocation of Users into

Attribute-Based Signatures

In this section, it is formulated how to incorporate revocation of users into an
attribute-based signature scheme. In this particular case, the original scheme is
the one in [1]. The security of this scheme (privacy and unforgeability of the
signatures) is proven under the Strong RSA Assumption and the Decisional Di�e-
Hellman Assumption in QRN with known factorization (Assumptions 1 and 3 in
Chapter 2). Firstly, it will be explained the main aspects of this signature scheme
and then how to add revocation into the scheme. Finally, e�ciency will be assessed
as it is important to evaluate how more costly our resulting scheme would be.

1. Existing Attribute-Based Scheme for a Threshold

Signing Policy

The original attribute-based signature scheme was developed in [1]. For simplicity
of explanation, the signature scheme is developed in the case of threshold signing
policies, a pair (P,Γ) will be represented as (P, ℓ), where 1 ≤ ℓ ≤ |P|. The four
existing algorithms (Setup, KeyGen, Sign, Verify), will be explained below.

Setup(1λ). The setup algorithm starts by running (P,Q,N, g) ← RSA.Inst(1λ),
where N = PQ, P = 2p+1 and Q = 2q+1. Choose security parameters κ, γ1, γ2 ∈
N and ϵ ∈ R, ϵ > 1, such that γ1 − 2 > ϵ(γ2 + κ) > λ. We denote as ∆ the set of
integers in the interval [2γ1 − 2γ2 + 1, 2γ1 + 2γ2 − 1].

A prime number q′ in the interval [2κ−1, 2κ] is chosen. Two cryptographic hash
functions H0 : {0, 1}∗ → QR(N) and H1 : {0, 1}∗ → Z∗

q′ are also chosen. Finally,

the global set of attributes P̃ has to be chosen.

The public parameters are pms = (κ, γ1, γ2, ϵ,∆, λ,N, g,H0,H1, q
′, P̃), whereas the

master secret key is msk = (P,Q).

21

22 5. INCORPORATING REVOCATION OF USERS INTO ABS

KeyGen(id, S,msk, pms). The key generation algorithm takes as input an identity

id, a subset of attributes S ⊂ P̃ satis�ed by id, the master secret key msk and
the public parameters pms. The master entity chooses at random a prime number
e R← ∆ such that gcd(e, pq) = 1 and, for each ati ∈ S, computes the value ski =
H0(ati)

1/e modN (using the knowledge of the prime numbers P,Q). The global
secret key is skid,S = (e, {ski}ati∈S).

Sign(m,P, ℓ, skid,S , pms). The signing algorithm takes as input a message m, a set

of attributes P ⊂ P̃, a threshold ℓ, a secret key skid,S = (e, {ski}ati∈S) and the
public parameters pms. The algorithm selects a minimally authorized set S′, this
is, a subset of S ∩ P of cardinality exactly ℓ. Without loss of generality, let us
assume P = {at1, . . . , atn} and S′ = {at1, . . . , atℓ}. To generate the signature, it
proceeds as follows:

(1) Choose h R← QR(N) and r R← ZN . ComputeA = gr modN , B = ge·hr modN .

(2) For j = ℓ+ 1, . . . , n, choose cj
R← Zq′ , Cj , Zj

R← QR(N), uj
R← ±{0, 1}ϵ(γ2+κ),

vj
R← ±{0, 1}ϵ(λ+κ), wj

R← ±{0, 1}ϵ(γ1+λ+κ+1), and compute the values Dj =
Auj−cj2

γ1

gwj modN , Ej = gvj

Acj modN , Fj = guj−cj2
γ1 · hvj · Bcj modN and

Gj =
C

uj−cj2
γ1

j ·H0(atj)
cj

Z
wj
j

modN .

(3) For i = 1, . . . , ℓ, choose Zi
R← QR(N), αi

R← ±{0, 1}ϵ(γ2+κ), βi
R← ±{0, 1}ϵ(2λ+κ),

δi
R← ±{0, 1}ϵ(γ1+2λ+κ+1), and compute the values Ci = ski · Zr

i modN ,

Di =
Aαi

gδi
modN , Ei = gβi modN , Fi = gαi ·hβi modN and Gi =

C
αi
i

Z
δi
i

modN .

(4) Compute the hash value c = H1 (m,P, ℓ, h, A,B, {Ci, Di, Ei, Fi, Gi, Zi}ati∈P).

(5) Find the (only) polynomial f(x) ∈ Zq′ [X] with degree at most n− ℓ such that
f(0) = cmod q′ and f(j) = cj mod q′ for all j = ℓ+ 1, . . . , n.

(6) For i = 1, . . . , ℓ, compute ci = f(i)mod q′ and then compute the values ui =
αi − ci · (e− 2γ1), vi = βi − ci · r and wi = δi − ci · e · r, over the integers.

The resulting signature is σ = (f(x), h, A,B, {(Ci, ui, vi, wi, Zi)}ati∈P).

Verify(σ,m,P, ℓ, pms). The veri�cation algorithm takes as input a message m, the
signature σ of m, the threshold signing policy (P, ℓ), with n = |P|, and the public
parameters pms. It proceeds as follows:

(1) Verify that the degree of f(x) is at most n − ℓ. For all ati ∈ P, verify that
ui ∈ ±{0, 1}ϵ(γ2+κ), vi ∈ ±{0, 1}ϵ(λ+κ) and wi ∈ ±{0, 1}ϵ(γ1+λ+κ+1). Return
0 if this is not the case.

2. INCORPORATING REVOCATION INTO THE SIGNATURE SCHEME 23

(2) For all ati ∈ P, compute ci = f(i) and then compute the values Di =
Aui−ci2

γ1

gwi
modN , Ei = gvi

Aci
modN , Fi = gui−ci2

γ1 · hvi · Bci modN and

Gi =
C

ui−ci2
γ1

i ·H0(ati)
ci

Z
wi
i

modN .

(3) Return 1 if f(0) = H1 (m,P, ℓ, h,A,B, {Ci, Di, Ei, Fi, Gi, Zi}ati∈P), and re-
turn 0 otherwise.

2. Incorporating Revocation into the Signature Scheme

The revocation of users method, based on the dynamic universal accumulator pro-
tocol de�ned in the previous Chapter 4, is developed in this section. Our main goal
is to design a protocol to remove users that have misbehaved or that have lost their
attributes. The major problem consists in maintaining privacy, a user who wants
to prove that he is not in the revocation list, can not just show his serial number
and its corresponding nonmembership witness, because the user will be revealing
his serial number. With the aid of this protocol, there is the possibility to revoke
a user without revealing his identity to a master entity, which is essential in the
attribute-based signature previously formulated.

Setup: In the RSA attribute-based signature, the master entity chooses N = PQ,
P = 2p+1 and Q = 2q+1. The public parameters are pms = (κ, γ1, γ2, ϵ,∆, λ,N, g,

H0,H1, q
′, P̃) and the master secret key is msk = (P,Q). Additionally, the master

creates the universal accumulator of Chapter 3, and chooses a random g̃ ∈ QRN

and adds g̃ to the public parameters.

KeyGen: In our signature, we take as input an identity id, a subset of attributes
S ⊂ P̃ satis�ed by id, the master secret key msk and the public parameters pms.
The master entity chooses at random a prime number e, and the global secret key
(skid,S = (e, {ski}ati∈S)) is computed. Moreover, the master entity secretly stores
the relation between id and e in a table st, and given the current revocation list c, the
master computes the nonmembership witness (a, d) for the non-accumulated value
e and sends it to the user. The new global secret key (skid,S = (e, {ski}ati∈S), a, d)

Sign and Verify: (m,P, ℓ, skid,S , pms).The signature consists of a zero-knowledge
non-interactive proof of knowledge of an integer e and at least ℓ e-th roots modulo
N of the values H(at1), . . . , H(atn). In addition, the prover proves to the veri�er
that e is not in the revocation list. This can be achieved with the zero-knowledge
proof protocol in Chapter 4. The prover �rst commits his value e, and then proves
that it is the same as the value committed in the element B of the signature, and
that this value has not been accumulated in c.

Revocation: If we want to revoke a user, the master entity must add his value to
the current accumulator. Let c be the current accumulator, the new accumulator
results in c̃ = ce modN .

Membership Update: Let c̃ be the current accumulator and c be the previous
accumulator stored. Each new user updates his nonmembership witness using the
method described in Chapter 4.

24 5. INCORPORATING REVOCATION OF USERS INTO ABS

3. E�ciency

At last, it is essential to assess the e�ciency of the resulting signature scheme. In
order to do that, with the choice of the parameters given in [1], the growth in the
length of the signature will be determined. For a security level of λ = 1024, the
parameters used are γ1 = 1080, γ2 = 800 and κ = 160. It must be noted that,
although in the preceding Chapter 4 the protocol used to prove that a committed
value was not accumulated was interactive, when executing the protocol now, as
part of the attribute-based signature scheme, a non-interactive method must be
enlisted, thus a hash function will be used instead. For example, the resulting pro-
tocol for Step 2 of the protocol developed in Chapter 4 will be:

Step 2: The prover proves to the veri�er that the value committed in B in bases
(g, h) is the same as the value committed in cx in bases (g̃, h̃):

PK{(x, r, rx) : B = gxhr ∧ cx = g̃xh̃rx}

(1) The prover chooses y ∈ [0, 2(γ2+κ)], ρ1, ρ2 ∈ [0, 2(2λ+κ)] and computes Y1 =

gyhρ1 and Y2 = g̃yh̃ρ2 .

(2) The prover computes s = H(Y1 ∥ Y2).

(3) The prover computes u = y + sx, v1 = ρ1 + sr, v2 = ρ2 + srx and sends
(s, u, v1, v2) to the veri�er.

(4) The veri�er checks whether:

s = H(guhv1B−s modN ∥ g̃uh̃v2(cx)−s modN)

The length of this particular step with the parameters given is 5536 bits and four
additional exponentiations will be needed for the prover to perform this step. In
particular, for the complete protocol described in Chapter 4 for proving that the
value e has not been accumulated, the length of the proof would be around 50000
bits and the cost of the protocol is dominated by 44 exponentiations modulo N .

The original attribute-based signature scheme for a (ℓ, n)-threshold signing policy
with n = |P| attributes has an approximate length of 6800n+3200−160ℓ bits. The
cost of each execution of the signing protocol is dominated by 10n exponentiations
modulo N . Since the length of the signature depends on the number of attributes
and revocation of users is independent of it, implementing revocation of users might
not be e�cient for a small number of attributes, but it could be e�cient for larger
signing policies, with a larger number of attributes. In Table 1 below, the length
of the attribute-based signatures is included, with and without the revocation ex-
tension, for di�erent values of the number n of attributes of the signing policy, as
well as the percentage increase of length of the signatures. The results in Table 1
give an idea about how much does it cost, at least in terms of communication cost,
to add revocation to this particular attribute-based signature. This was the main
goal of this work.

3. EFFICIENCY 25

n Approx. Kbit of
ABS

Approx. Kbit of ABS +
Revocation

Increasing
%

5 34 84 147%
10 68 118 74%
15 102 152 49%
20 136 186 37%
30 204 254 25%
50 340 390 15%
75 510 560 10%
100 680 730 7%

Table 1. Cost of ABS Signatures with and without revocation.

Chapter 6

Conclusions

In this dissertation, the main goal was to incorporate revocation of users into an
existing RSA attribute-based signature. In the �rst place, I already had some ba-
sic notions about cryptography prior to my involvement in this project. However,
despite my knowledge of this �eld, attribute-based cryptography was an area into
which I had not delved before. Therefore, in order to get acquainted with the
concepts of attribute-based cryptography I undertook an extensive research on the
subject reading a number of papers on the topic. Some of these concepts appear in
the preliminaries which are used later in the development of the work.

Afterwards, in order to incorporate revocation into the attribute-based signature,
a protocol was chosen from the existing literature. This protocol proposed in [2]
in a sketched way and described in detail here in Chapter 4, was based on the
concept of universal accumulators. The sketched description of the protocol in [2]
referred to some other papers: [8], [7]; and even in some cases such as step 4, the
description could not be found in the literature and was developed from scratch.
For this step 4, the soundness property was demonstrated using similar arguments
as the ones that could be found in [7]. The development of Chapter 4 is maybe the
main technical contribution of our work.

Furthermore, once the protocol was completely developed, it was incorporated into
the RSA attribute-based signature. The value e of the secret key of the user is
the value that would be used by the protocol to prove that this user has not been
revoked. At last, once the new scheme that incorporates revocation was designed,
the e�ciency of the new protocol was analyzed, in particular for the case of the
communication cost, or in other words the length of the signature. From the table
at the end of Chapter 5, it can be observed that this protocol for incorporating
revocation should work better in policies with a large number of attributes as the
total length of the new signature would not be much bigger than the original sig-
nature. An analysis of the computational complexity, that is, the time required to
verify a signature, could be done essentially in the same way, and the conclusions
would be almost identical.

27

28 6. CONCLUSIONS

Finally, I would like to say that this has been an excellent learning experience
and I am satis�ed with the results from applying and adapting the revocation
protocol into the existing attribute-based signature scheme. In addition, thanks
to my acquired knowledge on this �eld after the research and application of this
protocol, I could further develop this paper in the future by studying di�erent types
of revocation protocols and testing them for e�ciency in the same given signature.

References

[1] Javier Herranz. Attribute-Based Signatures from RSA. Theoretical Computer Science, Vol-
ume 527, pag. 73-82 (2014).

[2] J. Li, N. Li and R. Xue. Universal accumulators with e�cient nonmberbership proofs. Proc.
of ACNS'07, LNCS 4521, Springer-Verlag, pg. 253-269 (2007)

[3] J. Camenisch and A. Lysyanskaya. A signature scheme with e�cient protocols. Proceedings
of the 3rd Conference on Security in Communication Networks, pg. 268-289 (2002)

[4] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to e�cient revo-
cation of anonymous credentials. Advances of Criptology - CRYPTO '02, pg. 61-76 (2002)

[5] J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the product of
two safe primes. Advances of Criptology - EUROCRYPT '99, pg. 106-121 (1999)

[6] J. Camenisch and M. Michels. Separability and e�ciency for generic group signature schemes.
Advances of Criptology - CRYPTO '99, pg. 413-430 (1999)

[7] I. Damgård and E. Fujisaki. An integer commitment scheme based on groups with hidden
order. Advances of Criptology - ASIACRYPT '02, pg. 125-142 (2002)

[8] F.Boudot. E�cient proofs that a committed number lies in an interval. Advances of Criptology
- EUROCRYPT '00, pg. 431-444, (2000)

[9] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure coalition-
resistant group signature scheme. Advances of Criptology - CRYPTO '00, pg. 255-270, (2000)

[10] G. Ateniese, D. Song and G. Tsudik. Quasi-e�cient revocation of group signatures. Proceed-
ings of Financial Cryptography, pg. 183-197 (2001)

[11] J. Camenisch and A. Lysynskaya. E�cient Revocation of Anonymous Group Membership
Certi�cates and Anonymous Credentials (2001)

[12] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial
relations. Advances of Criptology - CRYPTO '97, pg. 16-30, (1997)

[13] N. Bari¢ and B. P�tzmann. Collision-free accumulators and fail-stop signature schemes with-
out trees. Advances of Criptology - EUROCRYPTO '97, pg. 480-494, (1997)

[14] A. Kiayias and M. Yung. E�cient secure group signatures with dynamic joins and keeping
anonymity against group managers. Proc. of Mycrypt '05, LNCS 3715, Springer-Verlag, pg.
151-170 (2005)

[15] H.K. Maji, M. Prabhakaran and M. Rosulek. Attribute-based signatures. Proc. of CT-

RSA'11, LNCS 6558, Springer Verlag, pg. 376-392 (2011)
[16] H.K. Maji, M. Prabhakaran and M. Rosulek. Attribute-based signatures. Proc. of CT-

RSA'11, LNCS 6558, Springer-Verlag, pg. 376-392 (2011)
[17] J. Bethencourt, A. Sahai and B. Waters. Ciphertext-policy attribute-based encryption. Proc.

of IEEE Symposium on Security and Privacy,IEEE Society Press, pg. 321-334 (2007)
[18] V. Goyal, O. Pandey, A. Sahai and B. Waters. Attribute-based encryption for �ne-grained

access control of encrypted data. Proc. of Computer and Communications Security, CCS'06,
ACM Press, pg. 89-98 (2006)

[19] A. Lewko, T. Okamoto, A. Sahai, K. Takashima and B. Waters. Fully secure functional
encryption: attribute-based encryption and (hierarchical) inner product encryption. Proc. of
Eurocrypt'10, LNCS 6110, Springer-Verlag, pg. 62-91 (2010)

29

