

FORWARD ERROR CORRECTION IN OPTICAL

ETHERNET COMMUNICATIONS

A Degree's Thesis
Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de
Barcelona

Universitat Politècnica de Catalunya
by

Jordi Oliveras Boada

In partial fulfilment
of the requirements for the degree in

Telecommunications systems ENGINEERING

Advisor: Josep Prat Gomà

Barcelona, June 2014

 1

Abstract

A way of incrementing the amount of information sent through an optical fibre is ud-WDM
(ultra dense – Wavelength Division Multiplexing). The problem is that the sensitivity of the
receiver requires certain SNR (Signal Noise Ratio) that are only achieved in low
distances, so to increase them a codification called FEC (Forward Error Correction) can
be used. This should reduce the BER (Bit Error Rate) at the receiver letting the signal to
be transmitted to longer distances. Another problem that has to be faced is that due to
the phase noise of the lasers, there are BER floors that cannot be reduced incrementing
the SNR so that makes the use of the FEC even more interesting. Moreover, Ethernet
also does another codification called 8b/10b and this one has to be combined with the
FEC. This project tests different models of encoding the signals to try to reach the one
that is the most useful.

 2

Resum

Una manera d’incrementar la informació que es pot enviar per fibra òptica és la ud-WDM
(ultra dens – multiplexat per divisió de longitud d’ona). El problema és que degut a la
limitada sensibilitat dels receptors es requereix una SNR (Relació Senyal a Soroll) que
només es pot obtenir a curtes distancies, i per tal d’incrementar-la es pot usar una
codificació anomenada FEC (Correcció d’Errors a Posterior). Això hauria de permetre
reduir la BER (quantitat de bits erronis) al receptor permetent la possibilitat de transmetre
el senyal a més llargues distàncies. Un altre problema que ens hem d’enfrontar és a que
degut al soroll de fase dels làsers hi ha BER mínims que no es poden reduir
incrementant la SNR, el qual fa l’ús del FEC encara més interessant. A més a més,
Ethernet fa una altre codificació anomenada 8b/10b i ha de ser combinada amb la FEC.
Aquest projecte prova diferents models per tal de trobar el que sigui més òptim.

 3

Resumen

Un modo de incrementar la información que se puede enviar a través de una fibra óptica
es usando ud-WDM (ultra denso – multiplexado por división de longitud de onda). El
problema es que debido a limitaciones en la sensibilidad del receptor se requieren SNR
(Relación de Señal a Ruido) solo conseguibles a cortas distancias, y con tal de
incrementarla se puede usar una codificación llamada FEC (Corrección de Errores a
Posteriori). Esto debería permitir reducir la BER (cantidad de bits erróneos) al receptor
permitiendo así la posibilidad de transmitir la señal a distancias más largas. Otro
problema que resolver es que debido a ruido de fase de los láseres aparecen limites de
BER que no pueden ser reducidos aunque se incremente la SNR, lo cual hace aún mas
interesante la FEC. Además, Ethernet hace otra codificación llamada 8b/10b que tiene
que ser combinada con la FEC. Este proyecto prueba distintos modelos con el objetivo
de conocer el sistema más óptimo.

 4

Acknowledgements

I would like to express my gratitude towards a couple of people that had helped a lot in
this project. First of all, to my project tutor Josep Prat who guided on how to develop
properly the project and oriented it. Also I would like to thank all the team that has been
helping me every time I needed, but specially to Victor Polo and Javi Martinez.

 5

Revision history and approval record

Revision Date Purpose

0 09/07/2014 Document creation

1 10/07/2014 Document revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 [Student name] Jordi Oliveras Boada jordi0603@gmail.com

[Project Supervisor 1] Josep Prat Gomà jprat@tsc.upc.edu

[Project Supervisor 2]

Written by: Reviewed and approved by:

Date 09/07/2014 Date 10/07/2014

Name Jordi Oliveras Boada Name Josep Prat Gomà

Position Project Author Position Project Supervisor

 6

Table of contents

Abstract .. 1	

Resum .. 2	

Resumen .. 3	

Acknowledgements .. 4	

Revision history and approval record ... 5	

Table of contents ... 6	

List of Figures .. 8	

List of Tables: ... 10	

1.	
 Introduction ... 11	

1.1.	
 Motivation ... 11	

1.2.	
 Requirements ... 11	

1.3.	
 Method .. 12	

1.4.	
 Tasks .. 12	

1.5.	
 Deviations from the initial plan .. 14	

2.	
 State of the art of the technology used or applied in this thesis: 15	

2.1.	
 System .. 15	

2.2.	
 Laboratory equipment ... 16	

2.3.	
 Codifications ... 17	

3.	
 Methodology / project development: ... 19	

3.1.	
 Theoretical Model ... 19	

3.2.	
 Mathematical Model ... 20	

3.3.	
 Real Model ... 20	

3.3.1.	
 Only FEC ... 20	

3.3.2.	
 8b/10b study .. 21	

3.3.3.	
 FEC and 8b/10b study ... 22	

4.	
 Results .. 24	

4.1.	
 Theoretical model vs. mathematical model .. 24	

4.2.	
 8b/10b and FEC results .. 24	

4.3.	
 FEC + 8b/10b vs. 8b/10b + FEC .. 27	

5.	
 Budget ... 31	

6.	
 Environment Impact .. 33	

7.	
 Conclusions and future development: ... 34	

Bibliography: .. 35	

 7

Annexes: .. 36	

ANNEX 1. STANDARD SUMMARY TABLES: ... 36	

ANNEX 2. INITIAL WORK PACKAGES: .. 43	

ANNEX 3. 8b-10b ENCODING TABLES: ... 45	

ANNEX 4. MATLAB FUNCTIONS: ... 46	

Glossary ... 68	

 8

List of Figures

Figure 1.1. Initial WBS. .. 13	

Figure 1.2. Initial Gantt diagram of the project. .. 14	

Figure 2.1. Scheme of the part of the system contained at home. 15	

Figure 2.2. Scheme of the part of the system located at the co. 15	

Figure 3.1. Theoretical win of BER using a system with FEC. ... 19	

Figure 3.2. Mathematical model scheme. .. 20	

Figure 3.3. Scheme of the first part of the model of 8b/10b to test errors. 21	

Figure 3.4. Third model scheme: FEC + 8b/10b. ... 22	

Figure 3.5. Fourth model scheme: 8b/10b + FEC. ... 22	

Figure 4.1. Results of the mathematical model. ... 24	

Figure 4.2. Error bits after doing 10b/8b decoding when there is 1 error per 10 bits word
in the channel. .. 25	

Figure 4.3. System with only FEC working with a SNR of 10dB. 26	

Figure 4.4. System with only FEC working with a SNR of 8.5dB. 26	

Figure 4.5. System with only FEC working with a SNR of 7dB. 26	

Figure 4.6. System with only FEC working with a SNR of 4dB. 27	

Figure 4.7. System with only FEC working with a SNR of 0dB. 27	

Figure 4.8.1. FEC + 8b/10b model working with a SNR of 8.5dB. 28	

Figure 4.8.2. 8b/10b + FEC model working with a SNR of 8.5dB. 28	

Figure 4.9.1. FEC + 8b/10b model working with a SNR of 5dB. 29	

Figure 4.9.2. 8b/10b + FEC model working with a SNR of 5dB. 29	

Figure 4.10. Comparison graph of all the models. ... 30	

Figure x.1. Physical codding sub layer diagram. ... 36	

Figure x.2. Transmit block diagram. ... 38	

Figure x.3. Receiver data block diagram. .. 38	

Figure x.4. Block diagram of a submarine system using FEC. .. 39	

Figure x.5. FEC frame construction. .. 39	

Figure x.6. Subframe of the FEC frame. .. 40	

Figure x.7. Theoretical BERs. .. 40	

Figure x.8. Outer code and inner code of super FEC. ... 41	

Figure x.9. Net equations. .. 41	

Figure x.10. BER characteristics. ... 41	

Figure x.11. Effective optical gain G achieved with FEC. .. 42	

 9

Figure x.12. D/S frame with FEC and last codeword shorter. .. 43	

Figure x.13. Definition of the FEC header. ... 43	

 10

List of Tables:

Table 1.1. Table with a summary ... 12	

Table 1.2. List of milestones. ... 14	

Table 2.1. List of equipment of the lab. .. 16	

Table 4.1. Comparison chart of the BER obtained in all the models. 29	

Table 4.2. Bandwidth effect of all the models analysed. .. 30	

Table 5.1. List of the laboratory items with each correspondent price. 31	

Table 5.2. Calculus of the prototype cost (physical resources + human resources +
software licences). ... 32	

Table x.1. Theoretical BERs. ... 40	

Table x.2. Optical interface parameters for 1Gbit/s upstream. .. 42	

Table x.3. Loss budget for the G-PON system. ... 43	

Table x.4. 3b/4b encoding table. .. 45	

Table x.5. 5b/6b encoding table. .. 46	

Table x.6. Rules for running disparity. ... 46	

 11

1. Introduction

A passive optical network (PON) is an access telecommunications network that uses
optical devices mentioned below. The main parts are the OLT (optical line terminal) that
is what provides the service (located on the central office) and the ONUs (optical network
terminal) located as near to the user as possible. The network itself is formed of optical
fibres, optical splitters and other non-active devices such as multiplexers and filters.

The main advantages of the PONs are the lack of need of powering the installation, the
optical devices do not need to be powered, and also that there is no necessity to maintain
it, once it is built it is not necessary to touch it again.

Wavelength Division Multiplexing, shortened as WDM, is a technique to multiplex
different signals and send them through the same optical fibre, using for each signal a
different wavelength. This projects aims to use ud-WDM (ultra-dense) through the current
optical networks installed. Ultra-dense means that it has very narrow spacing between
frequencies.

1.1. Motivation
Every modern computer has an Ethernet chip at 1Gbit/s, maybe optical or maybe electric.
In an optical system of communication, the power budget allowed is 28 dB; to get that in
quite long distances it is necessary to use FEC (Forward Error Correction) in order to
enhance the bit error rate (BER).

The FEC consist on adding redundancy to the Ethernet signal to be able to correct errors
at the receiver. This allows going from a BER of 10-3 to a one of 10-10. This codification is
already implemented for 10G Ethernet; however, it is not for the 1G, which is the one that
can be found in most personal computers.

To sum up, if there is the need of creating a low-cost 1Gbit/s system network (because is
the usual LAN (Local Area Network) rate to access), this redundancy must be
implemented. Otherwise the cost of the installation in order to maintain the 28 dB of
power budget for a certain BER would increase considerably.

1.2. Requirements
The requirements of the system can be divided into 2 types: the requirements imposed by
the standards and the technical requirements of the transmitter and receiver.

Project requirements:

- The distance at which something can be transmitted must increase considerably

when using the FEC codification, which will enhance the BER.

- The size of the frame cannot increase too much when including the FEC

(bandwidth efficiency).

Standard Specifications

IEEE Section III.
Clause 36.2.4.

• 8B/10B transmission codes specified in the standard
have high transition density, run-length limited and
have DC balance.

• The running disparity value has to be used and is re-

 12

calculated for every code-group transmitted.
• The running disparity is also contained on the receiver,

and if it matches with the code-group received is
considered valid and decoded, otherwise it is
considered invalid.

IEEE Section V.
Clause 65.2.3.

• Optional.
• BER objective 10-12 at PCS.
• BER objective 10-4 at FEC sublayers.
• FEC code used is a linear cyclic bloc code.
• RS(255,239,8) over a GF(28).

ITU-T G.975 • BERinput=BERc+BERoutput (BERc are the number of bits
corrected).

• The system works properly for 10-3<BERinput<10-15.
• Blocks of N = K + R where N is the number of

symbols, K the symbols with information and R the
redundancy.

• Codification used: RS(255,239) with 8 bits words.

SMPTE St 2022-1 • RTP shall be required.
• The error correcting function is XOR.

Table 1.1. Table with a summary

On the table above, the most relevant specifications of the standards of IEEE and ITU
can be observed. For further information, check ANNEX 1. Standard summary table,
which is also referenced to all the standards used.

1.3. Method
This project is part of another more general project that is trying to implement ud-WDM
(explained above) using the current optical installations. This concrete part of the project
is focusing on implementing a forward error correction (FEC) to the message and
observe how improves the BER.

To do so, first some mathematical models simulated with matlab, comparing the BER
using and not using FEC, concretely a Reed-Solomon codification. After performing those
simulations it will also be test using a laboratory prototype of the current optical
installation.

1.4. Tasks
The initial work breakdown structure (WBS) was the following:

 13

Figure 1.1. Initial WBS.

However this WBS has suffered some modifications. These changes are explained at the
point 1.5.Deviations from the initial plan. The work packages can be found on ANNEX 2.
Initial Work Packages, and milestones associated with this initial WBS can be found
below:

WP# Task# Short title Milestone / deliverable Date (week)

2 2 CDR Deliver CDR including
the chosen design, the
studies performed to
support this choice.

30/04/14

3 1 Implementation Deliver the
implementation of the
FEC codification.

25/05/14

4 1 FEC tests Deliver a document with
the results of the tests.

29/06/14

4 2 Integration Demonstration of the
whole system.

06/07/14

 14

Table 1.2. List of milestones.

The corresponding Gantt diagram of this project is the following:

Figure 1.2. Initial Gantt diagram of the project.

1.5. Deviations from the initial plan
 The design of the FEC codifications RS required for the standards was already
developed so instead of focusing on creating this codification from scratch, the project
has moved to implement it to the current PONs.

More precise, some simulations have been performed, emulating the Ethernet 8b/10b
encoding and decoding, the FEC codification and decodification and the noise of the
channel. Moreover changing a little bit the position of each part of the system has also
been added to the objective of this project (e.g. doing first 8b/10b or FEC).

 15

2. State of the art of the technology used or applied in this
thesis:

2.1. System
As commented on the introduction, this project aims to use the current communication
systems already deployed. This scheme below shows the part of the system that would
be contained in each house.

Figure 2.1. Scheme of the part of the system contained at home.

The first bloc is the one where the user can operate. It can be a computer, a laptop or
whatever element which can transmit in 1 Gbit/s Ethernet, either in optical or in electrical
domain. The next block is the transmitter, this block is in charge first of all to convert the
signal to optical and modulate it. For this system it doesn’t matter if it transmits on second
or the third window of the optical spectrum because it will have to be converted into
electrical again for using the ud-WDM laser and modulator. These are the third and fourth
blocks.

Once this signal goes out of this first part of the system, it enters to the PON. Here the
signal can find optical multiplexers and de-multiplexers, splitters, optical switches… Then
this signal arrives to the co (central office), the receiver, which its bloc diagram can be
seen below.

Figure 2.2. Scheme of the part of the system located at the co.

As it can be seen the first part of the receiver is the coherent detector used to demodulate
properly the signal. Then this signal is converted into the electrical domain in order to go
into the transceiver. Once the information is known, it can be electrically transmitted to
the PC used as a receiver. This system has to follow the standards specified on the sub-
section of the introduction of this project 1.2. Requirements.

PC TX OE
ud-WDM

mod
1GE

Electric O E O PON

Rx
Coherent

OE Transceiver PC O E E O PON

 16

2.2. Laboratory equipment
Here below a list can be found with all the equipment available to do tests in the lab,
which is a really good orientation of the technology used nowadays:

Name	
 Type	
 Characteristics	
 Amount	

Trend	
 Unipro	
 GbE	
 Tx/Rx/Analyzer	

	

2	

Planet	
 Networking	
 &	

Communication	
 Gigabit	
 Ethernet	
 Converter	

100Base-­‐T	
 to	

1000Base-­‐XS/LX	
 5+2	

	

Gigabit	
 Ethernet	
 Media	

Converter	

Fiber/T	
 Transeiver	

10/100/1000	
 Base-­‐T	

&	
 1000	
 Base-­‐SX	
 3	

Infineon	
 Technologies	
 OLT1G	
 V23818-­‐S5-­‐V2	
 REV	
 2	

Luminent	
 OIC	
 SFP	
 1250nm	
 1	

Sumito	
 Electric	
 SFP	

	

4	

JPSV	
 Electrical	
 converter	
 10G	
 1	

	

SFP	
 1310nm	
 1	

	

SFP	
 52M	
 1	

Luminent	
 OIC	
 SFP	
 1551.225nm	
 1	

Alcatel	
 (Sumito	
 Electric)	
 SFP	

	

1	

Optoway	
 SFP	
 1310nm	
 2	

APAC	
 Opto	
 SFP	
 1550nm	
 1.25Gbps	
 1	

SMC	
 Networks	
 SFP	
 10Gbase	
 1	

Finisar	
 SFP	
 1547.7nm	
 1	

Finisar	
 SFP	
 1552.52nm	
 1	

Zenko	
 SFP	

	

1	

	

Cable	
 SC	
 green	
 -­‐	
 LC	
 blue	
 5	

	

Cable	
 LC	
 blue	
 -­‐	
 LC	
 blue	
 12	

	

Cable	
 SC	
 blue	
 -­‐	
 LC	
 blue	
 7	

	

Cable	
 SC	
 blue	
 -­‐	
 LC	
 green	
 1	

	

Adapter	
 2x2	
 LC	
 2	

	

Adapter	
 SC-­‐SC	
 1	

Table 2.1. List of equipment of the lab.

Tx/Rx/Analyser: It is a machine capable of either transmitting, receiving or analysing
some parameters of the communication link such as the BER.

Gigabit Ethernet Media Converter: It is a simple device that tries to connect two different
types of media, for example an optical fibre with an RJ45.

OLT: Optical Line Termination/Terminal is a device that is used at an endpoint of a PON.
It has to receive the electrical control signals to control the optical signals of the PON and
also to coordinate the multiplexing between it and the other end of the PON, either if it is
an OLT or an ONU (Optical Network Unit).

SFP: Small Form-factor Pluggable is a transceiver used in communications to connect a
network device with an optical fibre. There can be different types according to the rate or
to the wavelength it transmits.

Connector LC: These types of connectors are small (can be connected to another LC
connector using an LC adapter).

 17

Connector SC: These types of connectors are much bigger than LCs (can be connected
to another SC using an SC adapter).

Green connector: These types of connectors are when the optical fibre is cut with a
certain angle to avoid return losses of the light at the connecting point.

Blue connector: These types of connectors have the cut perpendicular to the optical fibre.

2.3. Codifications
According to the standards, there is a compulsory codification before sending Ethernet
data through an optical fibre: 8b10b. The aim of this encoding is to convert a symbol of 8
bits into a 10 bits. The motivation of doing that is to ensure the achievement of a DC-
balance and also to simplify the clock recovery at the receiver.

It can be found that the 8 bit symbol to be 8 0s or 8 1s, so there can be problems with the
receiver synchronization and is also adding a high continuous component to the signal.
This codification ensures that this will not happen. This encoding is done separating the 5
lower bits and the 3 top ones and also takes into account which is the less significant bit
of each pack and the disparity of the signal. See ANNEX 3. 8b/10b encoding tables to
see the encoding tables.

This codding tables work the following way, the initial byte is formed by the 8 bits
HGFEDCBA where A is the lowest bit and H the highest. As said before, the codification
separates the EDCBA bits and converts them into abcdei using the first table from the
HGF bits, which are converted to fghj using the second table.

There are some of this words that contain more 1s that 0s and vice versa. To control so,
it uses the current parity RD. This can be 1 or -1, and it changes every time a conflictive
word is encoded, e.g. RD=1 and codifies a 00000 the codified word will be 011000 and
RD=-1.

Doing this process at the inverse can also be used to detect errors. The errors can be
caused because it arrives a wrong bit and the decoder does not have the translation for
that word, because even the word has translation it does not correspond with the current
RD or because there was a non-detected error before and the RD was wrongly computed.

When 8b/10b decoder detects an invalid word, it sets it to an arbitrary number and sends
also a signal warning the error.

FEC codifications, also known as channel codding, is a process used to control errors in
a data transmitted over channels that may introduce errors. It works by adding
redundancy on the transmitted signal in order to be able to recover it at the receiver.

There are two types of FEC, fixed-size blocs and convolutional codes. In this project it is
used a specific type of the first category, named Reed-Solomon. This codification comes
from a polynomial taking into account some parameters and a cyclic polynomial
generator. Reed-Solomon codes receive this name in honour of its developers, Irving S.
Reed and Gustave Solomon.

Reed-Solomon codes are a family of codes which can be defined with the parameters q,
n and k: q is the length of the alphabet, n the block length (n<q) and k the message
length (k<n). The rate R of the code is R=k/n. Cauchy- RS and Vandermonde-RS are
specialized forms of Reed-Solomon codes commonly used to recover unreliable data.

 18

According to the standards of IEEE and ITU-T, the codification that has to be done to
send data through Ethernet is RS(255,239,8) where q=255, k=239 and n=8. Nevertheless
there are other standards such as SMPTE St 2022-1 that instead of using this correcting
function it uses XOR.

The number of errors that the RS codification is capable to correct is the following:

𝑡 = !!"#!!
!

 Where 𝐷!"# = 𝑁 − 𝐾 + 1

Taking that into account and also the codification recommended by the standard, the
proposed codification RS(255,239) would be able to correct 8 bytes per each packet of
239 bytes of payload + 16 bytes of redundancy.

To do the codification, first of all the generator polynomial has to be computed following
the next equation:

𝑔 𝑥 = 𝑥 + 𝛼 𝑥 + 𝛼! … (𝑥 + 𝛼!!)

Once this generator polynomial is known, P(x), which are the protection words, can be
found. To do so, it is need to know the V(x) (source information). Combining this together
with the generator polynomial, the codewords to send can be found following the next
equation:

𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝑠 = 𝑥!! · 𝑉 𝑥 + 𝑉 𝑥 · 𝑥!! 𝑚𝑜𝑑 𝑔(𝑥)

 19

3. Methodology / project development:

3.1. Theoretical Model
FEC codifications (Forward Error Correction), as explained before, is a method that
consists on adding redundancy to a message that has to be send in order to correct
some errors that may occur when sending the information through non-reliable channels.

First of all, it is necessary to have some knowledge about FEC and specifically, RS
(Reed-Solomon), which is the FEC codification recommended by the IEEE and ITU-T
standards, is needed. According to previous points of this project, this codifications are
done using a generator polynomial that can be get from the GF (Galois Field) taking into
consideration the numbers of bits per word. Once known that, the extra bytes can be
computed.

According to the standards, the codification recommended to implement FEC in
messages that are sent in optical fibre using ud-WDM is RS(255,239). This means that
each frame would contain 239 bytes of payload (the useful information desired to be sent)
and 16 bytes of redundancy. This would lead that this encoding would have an overhead
of 6.69%.

Taking into consideration some theoretical models, the aim of this codification that
generates this overhead (so we are loosing useful bandwidth) is to enhance the BER (Bit
Error Rate) at the receiver. According to these theoretical models, the improvements in
the BER would be similar than the following:

Figure 3.1. Theoretical win of BER using a system with FEC.

As can be seen, the BER should improve considerably when using FEC. Nowadays
another FEC system called super-FEC is being studied, which consists on applying two
times the FEC codification. However this codification is not being implemented yet.

 20

3.2. Mathematical Model
To verify up to what to expect of a FEC codification system using the software proposed
for this project, Matlab, the following model is realized as a first approximation of what
can be obtained. The used model is the following:

Figure 3.2. Mathematical model scheme.

This model consists on creating a large random message, then this message is copied
and one of the copies is codified with FEC whereas the other not. Once done that, it is
added some Gaussian noise to both messages. After that, the FEC code is decodified
and it is computed the number of errors in both cases.

The detector, as is supposed that 1s and 0s would have the same probability to be
transmitted, has the threshold at 0.5. The power of the Gaussian noise and the signal is
controlled by an SNR (Signal to Noise Ratio) input. Modifying this input and repeating this
function several times, a model that would be similar to the mathematical model should
be obtained (Maybe a little worse taking into account that this receiver of this system is
quite simple).

3.3. Real Model
To simulate exactly what would really happen, the mathematic model is not enough. It is
necessary to implement another function to simulate the codifications done in the
Ethernet system, 8b/10b. To do so, a couple of different models have been simulated.
These models call different function according to what are simulating. The main functions
used are FECcod, FECdec, enc8b10b, dec8b10b, bit2byte and byte2bit. All these
functions, as well as the Matlab models of each of the systems, can be found on the
ANNEXES.

3.3.1. Only FEC
The first system created calls the functions FECenc and FECdec to simulate a system
that would only have the first codification. This system would not be a real simulation of
what would happen on a real case but it serves as a first approximation of which would
be the enhance of the BER on the receiver.

This system first of all imports a picture from your computer. It copies it and one of them
is divided into 255 bytes packets, whereas the other in 239 bytes. This second one is
encoded using the FEC codification RS(255,239). Then a noisy channel similar to the
mathematical model is simulated. At the receiver is decoded the FEC pictures and are

Rand	

msg

AWGN

FEC

Att
Coherent	

Detector
X>0.5	
 à	
 1
X<0.5	
 à	
 0 FEC

-­‐1

Err	

counter

Err	

counter

PLOT +

Mathematic	
 Model

 21

plotted both of them to compare which is the best. Also some information about the BER,
the erroneous bytes and the erroneous pixels of each picture is shown.

The scheme of this system would be really similar with the mathematical model with the
exception of the signal transmitted that is not random and also the way it plots the results
is a little bit different too.

3.3.2. 8b/10b study
This second model is done with the aim of simulating the effect of 1 error in the 10 bits
words that are sent through Ethernet. This error, when is decoded to the 8 bits word, can
be worsening.

To simulate that possible effect, this model uses the functions enc8b10b and the
dec10b8b. The way it works can be seen in the following scheme:

Figure 3.3. Scheme of the first part of the model of 8b/10b to test errors.

As it can be observed, there is a counter to generate all possible combinations of bits of
the 10 bits words. These words are encoded and an error is artificially generated. The
type of errors are classified according if it is a bit error with RD=1, RD=-1 or if the error is
on the RD. This RD is the variable used to compute the disparity of the words, for further
information seek for the chapter 2 of this project where it is explained more deeply the
8b/10b encoding and decoding.

Counter

enc8b10b

Error	

generator

Vector	
 (8	

bits)

Vector	

(10	
 bits)

Vector	

(10	
 bits)

Vector	

(10	
 bits)

Error	

with	

RD=-­‐1

Error	
 in	

RD

Error	

with	

RD=1

 22

Once done that, the 10b/8b decoding is performed in order to see the effects in any
possible case. It is calculated the number of erroneous bits per every case and also the
mean of them is computed in the three cases.

Moreover, as commented on the chapter 2 of this project, this encoding and decoding
system can also detect errors, not correct but detect. Each time the error is detected a
signal notifies the receiver of the error. This means that depending of the Internet protocol
that the receiver is using, it could ask for a retransmission or it could ignore the error
signal. In any case, these detected errors are also computed on this model as a
percentage of the errors received.

3.3.3. FEC and 8b/10b study
The third and fourth models aim to simulate the nearest approximation to what will really
happen. These systems both combine the RS FEC codification with the 8b/10b
codification done by the Ethernet.

Both systems are quite similar, with the only difference of the order in which are
combined these 2 functions.

Figure 3.4. Third model scheme: FEC + 8b/10b.

Figure 3.5. Fourth model scheme: 8b/10b + FEC.

Picture	

[PC]

FEC

8b/
10b

Coherent	

Detector
X>0.5	
 à	
 1
X<0.5	
 à	
 0

FEC-­‐1

Err	
 counter

Err	
 counter
PLOT

+	

AWG
N

10b
/8b

Picture	

[PC]

FEC

8b/
10b Coherent	

Detector
X>0.5	
 à	
 1
X<0.5	
 à	
 0

FEC-­‐1

Err	
 counter

Err	
 counter
PLOT

10b
/8b

+AW
GN

 23

The third model is the one recommended for the standards IEEE Section V clause 65.2.3.,
ITU-T G.975 and ITU-T G.984.2 and G.984.3, but both have interesting properties to take
into consideration when choosing the system to implement. The advantage of the first
model is that it ensures all the advantages of the 8b/10b codification, for example it
ensures that the signal does not have a high continuous component and it helps with the
clock synchronizer, whereas on the second case these properties may be lost.

The second model has the advantage that, if there is an error in a certain bit, when this
word is decoded, it can lead to more erroneous bits than at the beginning. So if the errors
were corrected before this 10b/8b decoding, it would decrease even more the BER.
However the price to pay with this second model is that the signal to be transmitted wins
an extra overhead, so its bandwidth useful is reduced.

 24

4. Results

4.1. Theoretical model vs. mathematical model
As seen on the chapter before of this project, the mathematical model of how the FEC
affects to the BER is not exactly the same compared as the theoretical model. So as in
the model schemes can be observed some differences, so does with the results. The
graph below shows the results obtained using the mathematical model (all the functions
needed to simulate this can be found on the annexes).

Figure 4.1. Results of the mathematical model.

As can be seen in this figure, it follows the same relation as the mathematical model seen
in previous chapters, as it keeps the same BER for low SNRs but the BER using FEC
decreases much faster than the one that is not using it.

According to the mathematical model, the results are not as good as on the theoretical
one. This is due mainly to two reasons. The first one, the detector on the receiver is
assuming that the bits have the same probability to appear, whereas in a better detector
could approximate the threshold better. The second is that on a real case the signal
would be codded with some more modulations, and this could worsen more one of the
cases.

Apart from that, this model is not able to reach lower values of the BER. This is due to
limitations on the simulation. As is increased the number of points, with this system the
BER decreases really slow so to simulate lower BER values than the ones on this
example would be really time-consuming for the computer.

4.2. 8b/10b and FEC results
The first and second models are in charge of simulating separately the effect of the two
main codifications the signal is going to have: 8b/10b and FEC.

As it was explained on the previous chapter, to compute the average amount of errors
produced by a single error on a word of 10 bits it has been using a couple of counters:
one for generating any possible word and the other to place a single error on any

 25

possible position. The results obtained with the 8b/10b codification when there is 1 error
on the channel behave as can be seen in the following picture:

Figure 4.2. Error bits after doing 10b/8b decoding when there is 1 error per 10 bits
word in the channel.

From this first simulation, some important information can be extracted. The first
important thing before starting to analyse the results is to distinguish the first two graphs
from the graph at the right. Whereas the first two are simulating what would happen when
there is an error in any bit of the 10b, the third one is an error on RD, what means that
this is not actually an error but is detected as so due to a previous error that has lead to a
wrong calculation of the RD value.

The first important result is the mean of an error when the word is codded with 10 bits,
when is reconverted has an average of 4 bits with error. This would lead to a worsening
of the signal at the decoder. Contrasting that, the effect is not so harmful when the error
is in the RD.

Another important result that has been obtained is that, although this codification worsens
the BER, it is able to detect that an error has occurred with an average of 60%. This
means that depending on the application and on the Internet protocol, it could ask for a
retransmission if it is necessary. However, if the protocol used is like UDP, this signal is
not useful any more.

Moving to the next model (the model that simulates the system only taking into account
the FEC codification but not the 8b/10b), the FEC result is quite as it was expected to be
according to the theoretical model and the mathematical model. Below here, three
pictures can be seen: the left one is the original one, the centre one is the image at the
receiver using FEC codification and the right one is the one at the receiver without using
any codification. Also the error important parameters of each picture appear below it.
These pictures have been taken for several different SNRs.

 26

Figure 4.3. System with only FEC working with a SNR of 10dB.

Figure 4.4. System with only FEC working with a SNR of 8.5dB.

Figure 4.5. System with only FEC working with a SNR of 7dB.

 27

Figure 4.6. System with only FEC working with a SNR of 4dB.

Figure 4.7. System with only FEC working with a SNR of 0dB.

As it can be observed in the previous figures, the results are similar to the mathematical
model and the theoretical model. With SNRs higher, the FEC reduces more the BER in
comparison with the case that is not using the FEC. Complementary, when the SNR is
reduced, the difference between both cases is not so important.

Another thing that can be gathered from these results is that when the BER is the
minimum required by the standard, it is even not noticeable by the human eye to see the
errors.

4.3. FEC + 8b/10b vs. 8b/10b + FEC
As it was explained on the chapter 3 of this project, there are two possibilities of
connecting these two codifications. The figures below show the resultant picture of both
cases for different SNRs. The top picture is with the system configuration of FEC +
8b/10b and the bottom one is the 8b/10b + FEC model.

 28

Figure 4.8.1. FEC + 8b/10b model working with a SNR of 8.5dB.

Figure 4.8.2. 8b/10b + FEC model working with a SNR of 8.5dB.

 29

Figure 4.9.1. FEC + 8b/10b model working with a SNR of 5dB.

Figure 4.9.2. 8b/10b + FEC model working with a SNR of 5dB.

To be able to compare the results easily, the table below shows the comparison between
the BER in three different models according to the SNR. The three models are the
system using only FEC, the FEC + 8b/10b system and the 8b/10b + FEC system.

SNR
(dB)

BER

----------- FEC 8b/10b FEC + 8b/10b 8b/10b + FEC

10dB 2.0829*10-7 0 0.0014392 1.6559*10-5 0

8.5dB 0.00020496 0 0.0014628 4.1866*10-5 0

7dB 0.006138 0.0055916 0.026283 0.026258 0.024933

4dB 0.10455 0.10459 0.2661 0.26607 0.26564

0dB 0.3.855 0.3088 0.44263 0.44285 0.44237

Table 4.1. Comparison chart of the BER obtained in all the models.

As expected, when the FEC codifications are combined with the 8b/10b encoding and
decoding of the Ethernet, the BER worsens considerably. The BER is a little bit better on
the second case, but not much better.

Another result that can be observed in the pictures is the number of bytes and pixels with
errors. As normally the pictures, unless the black and white ones, uses RGB, a pixel is
constructed with 3 bytes. This mean that if any of these bytes has an error, the pixel has
an error even the others are correct. So if there is some luck 3 wrong bytes could be 1
wrong pixel but it could also be 3. And the same applies from the bits to bytes, with the
difference that due to the 8b/10b it is more probable to find wrong bits together.

 30

Figure 4.10. Comparison graph of all the models.

As can be observed, the configurations with FEC are far better than without FEC (in this
graph cannot be notified so clear due to the reduced number of values as well as that the
scale is in linear instead of logarithmic, what would help to analyse it better). Even though
if it is look carefully to the values, and if a zoom is done in the values with the BER higher,
it can be seen that the 8b/10b codification on its own is far lower than the other two.

Bandwidth effect:

The table below shows the bandwidth available of all the previous models that have been
analysed:

 ----------- FEC 8b/10b FEC+8b/10b 8b/10b+FEC

Rate at output
of the receiver

1 Gb/s 1 Gb/s 1.25 Gb/s 1.25 Gb/s 1.3337 Gb/s

Rate of
payload

1Gb/s 0.9331 Gb/s 1 Gb/s 0.9331 Gb/s 1 Gb/s

Table 4.2. Bandwidth effect of all the models analysed.

As can be seen, when the FEC is being used, the overhead due to its redundancy
reduces the useful rate. This rate even worsens with the last configuration, though the
payload rate is not reduced, maybe not all the systems are able to transmit at 1.3337
Gb/s because normally Ethernet is prepared to work at 1Gb/s or 1.25Gb/s if it is after the
8b/10b codification.

0,00	

0,05	

0,10	

0,15	

0,20	

0,25	

0,30	

0,35	

0,40	

0,45	

0,50	

0dB	
 4dB	
 7dB	
 8.5dB	
 10dB	

BE
R	

SNR	

FEC	

8b/10b	

FEC	
 +	
 8b/10b	

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

8b/10b	
 +	
 FEC	

 31

5. Budget

To compute with certain accuracy the cost of the system first of all is important to know
the cost of all components. On the table below, an approximate cost of each of the lab
components can be seen:

Device Price

TP-Link MC200CM Gigabit Media
Converter.

51.66 $ = 38.00 €

Unipro GbE So o 2560.28 $ = 1883.33 €

 23818-S5-V2 (OLT1G) 299.89 $ = 220.60 €

Alcatel-Lucent1000BASE-T SFP 59.00 $ = 43.40 €

Adapter SC 1.31 € + IVA = 1.59 €

 dapte LC 1.88 € + IVA = 2.28 €

Optical fibre (450x1.2m) 5.00 $ = 3.68 €

SC-SC cable 2.50 $ = 1.84 €

L -LC duplex cable 6.99 $ = 5.14 €

Optical attenuator (5 dB 18.10 $ = 13.31 €

Table 5.1. List of the laboratory items with each correspondent price.

Once known that, the cost of a prototype can be estimated, taking into account the
elements that would be used.

Concept Price

P ysical resources:

2xMedia Conv rt r 2x38€=76€

2xSFP 2x43.40€=86.80€

4xSC-SC cable 4x1.84€=7.36€

1xOptical attenuator 1x13.31€=13.31€

1xTx/Rx/Analyser 1x1883.33€=1883.33€

Human resources:

 32

2xSenior engineer (50€/hour) 50€/hour*8hour*5days*20weeks=40000€

2xJunior engineer (20€/hour) 20€/hour*8hour*5days*20weeks=16000€

Software licences:

2xMatlab licence 2x500 € = 1000€

TO AL: 59066.80 €

Table 5.2. Calculus of the prototype cost (physical resources + human resources +
software licences).

Taking into account that this project is aimed to take advantage of the current installations
of optical networks, the real cost would be only the money inverted on software and on
human resource. This sums a really high percentage of the total, but as it has not
physical requirements (because all the facilities are already there), can be inverted as a
long-term project if the company does not have the money at the current moment.

But in order to ensure the real viability of the project it has to take into account the
number of products that can be sold. The following equation shows the price that would
have the product:

User Cost = Unit Cost (materials) + Unit Cost (fabrication) + R&D cost / (Number of units)

As said before, if it is used the current facilities the Unit Cost would be 0 and this R&D
cost / (Number of units) would be translated in economical terms into an increase of the
price of the service divided per the number of users. So with a number of users large
enough this project can be viable.

 33

6. Environment Impact

Building telecommunications systems has always had a huge impact against the
environment. When it is necessary to be built an infrastructure like deploying and optical
network, it sometimes has to be dig under earth which contributes on destroying the earth.
Some others are not under earth, but what happens with those is that they destroy the
“visual” environment and also have to be held somehow and these holding points also
destroy the environment.

When there is an advance on technology, not only on the systems that have to be
deployed but also on the technology used on the computers, this normally requires
another installation.

The aim of this project is to use the current installations already deployed with some
relatively new technology and at more distances. Due this project does not require any
special facilities, it is allowing to use new features without creating any impact on the
environment at the same time as saving the money that those modifications would have
required.

Another thing to mention is that this system would allow HD streaming or
videoconferences. This would indirectly reduce the need of having to commute to assist
personally to those conferences which in environmental terms would be translated as a
reduction of the pollution done by the travels.

On the other hand, this project is not totally eco-friendly because even though these
telecommunication systems are already deployed as well as all the components of the
system, it does not do anything to help the environment (apart from that indirect way of
reducing the pollution). Creating these items has done certain impact on the environment,
which is not repaired with this project.

To sum up, this project does not worsen the environment but it does not do anything to
repair it directly (though it helps a little bit indirectly), so it is only “half-eco-friendly”.

 34

7. Conclusions and future development:

As a brief summary of the work done on the project, the use of ud-WDM requires some
extra encoding methods to correct the errors obtained at the receiver; otherwise the
distances it would be possible to send information using this method would be really short,
or even impossible due to the BER floors imposed by the phase of the noise of the
conventional lasers used in these new networks (DFBs with few MHz spectral linewidths).

This extra codification is called FEC and according to the standards, the most
recommended to be used is RS(255,239). Another important aspect to remember is that
Ethernet does another encoding called 8b/10b to reduce the continuous component of
the signal and also to help the clock recovery at the receiver.

When combining both encodings, two different possible models appear: doing first the
FEC encoding and afterwards the 8b/10b or just the opposite, start encoding with the
8b/10b and finish with the FEC.

Both models have several advantages from the other but also some drawbacks, but once
seen the results the final recommendation is to encode first with the FEC and then the
8b/10b.

This has been developed in a simulating layer and it will soon be tested in a real case.
However it would be really interesting this to be implemented in the real facilities that are
already deployed, even if it is an application that allows to do video streaming codifying it
with FEC or if it is a more universal update of all the system (which is quite improbable).

 35

Bibliography:

[1] Norris, Mark. Gigabit Ethernet technology and applications. Boston: Artech House,
2003. Print.

[2] Held, Gilbert. Ethernet networks: design, implementation, operation, management.
4th ed. Chichester: J. Wiley, 2003. Print.

[3] Cunningham, David G., and William G. Lane. Gigabit Ethernet networking.
Indianapolis, IN: Macmillan Technical Pub., 1999. Print.

[4] "Conectar MATLAB y Simulink a Hardware." MATLAB and Simulink for Technical
Computing. <http://www.mathworks.es/>.

[5] "Coconut Project" Home. Web. <http://www.ict-coconut.eu/>.

[6] Lai, Cheah Cheng, P’Ng Won Tiang, Mohd Khazani Abdullah, Borhanuddin Mohd Ali,
and Mohd Adzir Mahdi. "FEC Performance Analysis Based on Poisson and Bursty
Error Patterns for SDH and OTN Systems." Photonic Network Communications 11.3
(2006): 265-270. Print.

[7] IEEE Standard for Ethernet. Section III. Clause 36.2.4. 8B/10B transmission code.
IEEE Std 802.3-2012.

[8] IEEE Standard for Information technology. Telecommunications and information
exchange between systems Local and metropolitan area networks. Specific
requirements. Part 3: Carrier Sense Multiple Access With Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications. Section V. Clause
65.2.3. Forward Error Correction. IEEE Std 802.3-2008.

[9] ITU-T G.975. Error Correction in Reception for Submarine Systems. 2004.

[10] ITU-T G.984.2. Gigabit-capable Passive Optical Networks (G-PON). Physical Media
Dependent (PMD) layer specification. 2003.

[11] ITU-T G.984.3. Gigabit-capable Passive Optical Networks (G-PON). Transmission
convergence layer specification. 2008.

[12] SMPT 2022-1. Forward Error Correction for Real-Time Video/Audio Transport Over
IP Networks. 2007.

[13] N. Kiran Babu, P. S. Srinivas Babu. "Design of Physical Coding Sublayer using
8b/10b Algorithm." International Journal of Recent Technology and Engineering
(IJRTE). May (2013) Print.

 36

Annexes:

ANNEX 1. STANDARD SUMMARY TABLES:
Below here there is a brief summary of the standards that are somehow related with this
project (Ethernet, FEC…) for further information seek for the standard named at the left
side of the tables:

SUMMARY STANDARD CHART (8b10b)

IEEE

Section
III.
Clause
36.2.4.

• 8B/10B transmission codes specified in the standard have high
transition density, run-length limited and have DC balance.

• The system of 8B/10B codification and decodification is illustrated in
the following figure:

Figure x.1. Physical codding sub layer diagram.

• The non-codified octets only have a control variable Z that can be D
or K, each of it refers to a different code-group.

• Non-codified word: A,B,C,D,E,F,G,H.
• Codified word: a,b,c,d,e,i,f,g,h,.
• /Dx.y/ for 256 valid data.
• /Kx.y/ for special control.
• The first block transmitted is the special code-group to distinguish the

ordered_set.
• The first code-group of each multi-code-group (group of codes-

groups that are sent together) is transmitted in an even number code-
group position.

• The contents are transmitted sequentially starting with the SPD, then
the packets and then the EPD.

• The running disparity value has to be used and is re-calculated for
every code-group transmitted.

• The running disparity is also contained on the receiver, and if it

 37

matches with the code-group received is considered valid and
decoded, otherwise it is considered invalid.

• However this does not mean that the error is in that code-group,
maybe it has happened before and computed a wrong running
disparity.

• Even with errors the running disparity is kept computed.
• The number of invalid codes is related with the BER and counting the

number of invalid groups can perform error monitoring.

SUMMARY STANDARD CHART (FEC)

IEEE

Section V.

Clause 65.
2.3. (2005)

• Optional.
• BER objective 10-12 at PCS.
• BER objective 10-4 at FEC sublayers.

Section V.

Clause 65.
2.3.1. (2005)

• FEC specifications in ITU-T G.975
• FEC code used is a linear cyclic bloc code RS(255,239,8) over a

GF(28). (Cyclic means that a cyclic shift of any codeword is
another codeword).

• RS based on the generating polynomial
 𝐺 𝑥 = (𝑥 − 𝛼!)!"

!!! where 𝛼 is 0x02 and root of x8+x4+x3+x2+1

Section V.

Clause 65.
2.3.2. (2005)

• The 16 parity symbols are added at the end of the 239 symbols
block.

• If the last block is shorter the data is on D238 to Dr and the rest of
the symbols are filled with 0. The symbols are sent without the
0s and at the receiver are added again to do the recovery.

• Ethernet frame markers are not protected by FEC. Special start
/S_FEC/ and stop /T_FEC/ markers are added at the beginning
and end of the FEC coded frame.

Section V.

Clause 65.
2.3.3.

• The following figures show the transmitter and receiver
schemes:

 38

Figure x.2. Transmit block diagram.

Figure x.3. Receiver data block diagram.

 39

ITU

ITU-T G.975
(2000)

• This figure shows a system using FEC:

Figure x.4. Block diagram of a submarine system using FEC.

• BERinput=BERc+BERoutput (BERc are the number of bits
corrected).

• The system works properly for 10-3<BERinput<10-15.
• Blocks of N = K + R where N is the number of symbols, K the

symbols with information and R the redundancy.
• Codification used: RS(255,239) with 8 bits words.
• When applying interleaving the frame structure is the following:

Figure x.5. FEC frame construction.

• Each subframe has the following structure:

 40

Figure x.6. Subframe of the FEC frame.

• Scrambling not compulsory.
• Theoretical results:

Figure x.7. Theoretical BERs.

BERinput BERoutput

10-4 5·10-15

10-5 6.3·10-24

10-6 6.4·10-33

Table x.1. Theoretical BERs.

ITU-T REC
G.975.1
(2004)

• For DWDM use super FEC instead of normal FEC.
• The following figure shows a super FEC scheme:

 41

Figure x.8. Outer code and inner code of super FEC.

• Super FEC has 5.6dB of Net Codding Gain at 10-12 BERoutput
(Net Coding Gain is the gain between BERinput and BERoutput).

• In the next figure can be found the equations of the BERs and
Net Coding Gain:

Figure x.9. Net equations.

• This last figure is a comparison between the BERs with no FEC,
with normal FEC and with super FEC:

Figure x.10. BER characteristics.

• The redundancy ratio of super FEC is 24.48%.

ITU-T
G.984.2.
(2003)

• In the following table can be seen the parameters required for
1Gbit/s connections:

 42

Table x.2. Optical interface parameters for 1Gbit/s upstream.

• The next figure shows the definition of the optical gain G using FEC:

Figure x.11. Effective optical gain G achieved with FEC.

ITU-T
G.984.2.
(2006)

• In the following table there are the loss budget for G-PON systems:

 43

Table x.3. Loss budget for the G-PON system.

ITU-T
G.984.3.
(2004)

• RS(255,239).
• In the following figure there is a FEC frame with the last word shorter

than the others:

Figure x.12. D/S frame with FEC and last codeword shorter.

• In the IDEN field there is a FEC indication bit (0 if FEC off and 1 if
FEC on).

SMPTE

St 2022-1
(2007)

• RTP shall be required.
• The error correcting function is XOR.
• FEC header has 12 bits and is like that:

Figure x.13. Definition of the FEC header.

ANNEX 2. INITIAL WORK PACKAGES:

Project: IFECOEC WP ref: 1

Major constituent: Standards and Current System Study Sheet 1 of 1

Short description:

The current system must be studied carefully and in
detail of all the components.

Planned start date:
10/03/2014

Planned end date: 06/04/2014

 44

The standards related with the system to implement
must be studied as well.

Start event: Opt. Tx study

End event: FEC for fibre study

Internal task T1:

General study (Optical Ethernet Tx, EPON and
10GPON, 8b10b coding…).

Internal task T2:

FEC for optical fibre study.

Deliverables: Dates:

T1: 10/03/14
to 23/03/14

T2: 24/03/14
to 13/04/14

Project: IFECOEC WP ref: 2

Major constituent: Design and Simulation Sheet 1 of 1

Short description:

The aim in this work package is to create some different
designs that accomplish the requirements of the system.

It also aims to simulate each of the designs.

Planned start date: 07/04/14

Planned end date: 30/04/14

Start event: Design systems

End event: CDR

Internal task T1:

Design different possible systems.

Internal task T2:

Simulate and choose the best system.

Deliverables:

T2: System
chosen info. +
CDR

Dates:

T1: 01/04/14
to 20/04/14

T2: 14/04/14
to 30/04/14

Project: IFECOEC WP ref: 3

Major constituent: Implementation (SW) Sheet 1 of 1

Short description:

The system chosen after being simulated must be
implemented using a matlab toolbox.

Evaluation of its implementation with FPGA for real time
operation.

Planned start date: 28/04/14

Planned end date: 25/05/14

Start event: CDR

End event: Implementation

Internal task T1:

Implement the FEC code of the system.

Deliverables:

T1: FEC
implementation

Dates:

T1: 28/04/14
to 25/05/14

 45

Project: IFECOEC WP ref: 4

Major constituent: Test (whole system as a prototype) Sheet 1 of 1

Short description:

Test the implemented design on its own.

Test the implemented design with the whole system.

Integrate the design to the whole system and test it
again, demonstrating it with multimedia content.

Planned start date: 26/05/14

Planned end date: 6/07/14

Start event: FEC test

End event: FEC integration

Internal task T1:

Tests of FEC alone and in the system.

Internal task T2:

FEC integration.

Deliverables:

T1: FEC
results.

T2: System
demonstration.

Dates:

T1: 26/05/14
to 29/06/14

T2: 23/06/14
to 06/05/14

ANNEX 3. 8b-10b ENCODING TABLES:
The 8b-10b encoding is divided into 2 different encoding: the lowers 5 bits using the first
table and the top 3 using the second table. These tables can be found through the
Internet to avoid having to use the longest tables of the standards, however it has an
important mistake (marked in red on the table) because it has a couple of values
swapped from the disparity:

Table x.4. 3b/4b encoding table.

 46

Table x.5. 5b/6b encoding table.

The RD (Running Disparity) depends on how many 1s or 0s in a row had been and also
depends on the last RD:

Table x.6. Rules for running disparity.

ANNEX 4. MATLAB FUNCTIONS:
In this annex it can be found all the Matlab functions required to do all the simulations
explained on the chapter 3 and 4 of this project.

This first function is the function that converts a vector with the bits into its byte value:

00011
1

11100
0

 47

function B = bit2byte(b)

B=0;
for i=1:8
 B=B+b(9-i)*(2^(i-1));
end

The following function is in charge of converting bytes into a vector of the corresponding
bits:

function b = byte2bit(B)

b=zeros(1,8);
b(8)=mod(B,2);
aux=floor(B/2);
b(7)=mod(aux,2);
aux=floor(aux/2);
b(6)=mod(aux,2);
aux=floor(aux/2);
b(5)=mod(aux,2);
aux=floor(aux/2);
b(4)=mod(aux,2);
aux=floor(aux/2);
b(3)=mod(aux,2);
aux=floor(aux/2);
b(2)=mod(aux,2);
b(1)=floor(aux/2);

The function below does the FEC encoding to a certain input, taking into account the
length of the symbols as an input too:

function D255 = FECcod(D239,M)
% D239: data to encode.
%M: number of bits per word.
%RS(239,255)

Daux=gf(D239,M);
D255aux=rsenc(Daux',255,239);
D255=(double(D255aux.x))';

This function reverses the previous function and has also as inputs the length of the
words as well as what is desired to decode:

function D239 = FECdec(D255,M)
% D255: data to decode.
%M: number of bits per word.
%RS^-1(239,255)

Daux=gf(D255,M);
D239aux=rsdec(Daux',255,239);
D239=(double(D239aux.x))';

The following function does the 8b/10b encoding, the inputs are a single value in bytes
and is reconverted to its corresponding value of 10 bits in a vector:

function [b10,RD] = enc8b10b(b8,RD)

aux=byte2bit(b8);
H=aux(1);
G=aux(2);
F=aux(3);
E=aux(4);
D=aux(5);
C=aux(6);
B=aux(7);
A=aux(8);

 48

EDCBA=[E,D,C,B,A];
HGF=[H,G,F];

%5b6b
if RD==1
 if EDCBA==[0,0,0,0,0]
 abcdei=[0,1,1,0,0,0];
 RD=-1;
 elseif EDCBA==[0,0,0,0,1]
 abcdei=[1,0,0,0,1,0];
 RD=-1;
 elseif EDCBA==[0,0,0,1,0]
 abcdei=[0,1,0,0,1,0];
 RD=-1;
 elseif EDCBA==[0,0,0,1,1]
 abcdei=[1,1,0,0,0,1];
 RD=1;
 elseif EDCBA==[0,0,1,0,0]
 abcdei=[0,0,1,0,1,0];
 RD=-1;
 elseif EDCBA==[0,0,1,0,1]
 abcdei=[1,0,1,0,0,1];
 RD=1;
 elseif EDCBA==[0,0,1,1,0]
 abcdei=[0,1,1,0,0,1];
 RD=1;
 elseif EDCBA==[0,0,1,1,1]
 abcdei=[0,0,0,1,1,1];
 RD=-1;
 elseif EDCBA==[0,1,0,0,0]
 abcdei=[0,0,0,1,1,0];
 RD=-1;
 elseif EDCBA==[0,1,0,0,1]
 abcdei=[1,0,0,1,0,1];
 RD=1;
 elseif EDCBA==[0,1,0,1,0]
 abcdei=[0,1,0,1,0,1];
 RD=1;
 elseif EDCBA==[0,1,0,1,1]
 abcdei=[1,1,0,1,0,0];
 RD=1;
 elseif EDCBA==[0,1,1,0,0]
 abcdei=[0,0,1,1,0,1];
 RD=1;
 elseif EDCBA==[0,1,1,0,1]
 abcdei=[1,0,1,1,0,0];
 RD=1;
 elseif EDCBA==[0,1,1,1,0]
 abcdei=[0,1,1,1,0,0];
 RD=1;
 elseif EDCBA==[0,1,1,1,1]
 abcdei=[1,0,1,0,0,0];
 RD=-1;
 elseif EDCBA==[1,0,0,0,0]
 abcdei=[1,0,0,1,0,0];
 RD=-1;
 elseif EDCBA==[1,0,0,0,1]
 abcdei=[1,0,0,0,1,1];
 RD=1;
 elseif EDCBA==[1,0,0,1,0]
 abcdei=[0,1,0,0,1,1];
 RD=1;
 elseif EDCBA==[1,0,0,1,1]
 abcdei=[1,1,0,0,1,0];
 RD=1;
 elseif EDCBA==[1,0,1,0,0]
 abcdei=[0,0,1,0,1,1];
 RD=1;
 elseif EDCBA==[1,0,1,0,1]
 abcdei=[1,0,1,0,1,0];
 RD=1;
 elseif EDCBA==[1,0,1,1,0]
 abcdei=[0,1,1,0,1,0];
 RD=1;
 elseif EDCBA==[1,0,1,1,1]
 abcdei=[0,0,0,1,0,1];

 49

 RD=-1;
 elseif EDCBA==[1,1,0,0,0]
 abcdei=[0,0,1,1,0,0];
 RD=-1;
 elseif EDCBA==[1,1,0,0,1]
 abcdei=[1,0,0,1,1,0];
 RD=1;
 elseif EDCBA==[1,1,0,1,0]
 abcdei=[0,1,0,1,1,0];
 RD=1;
 elseif EDCBA==[1,1,0,1,1]
 abcdei=[0,0,1,0,0,1];
 RD=-1;
 elseif EDCBA==[1,1,1,0,0]
 abcdei=[0,0,1,1,1,0];
 RD=1;
 elseif EDCBA==[1,1,1,0,1]
 abcdei=[0,1,0,0,0,1];
 RD=-1;
 elseif EDCBA==[1,1,1,1,0]
 abcdei=[1,0,0,0,0,1];
 RD=-1;
 elseif EDCBA==[1,1,1,1,1]
 abcdei=[0,1,0,1,0,0];
 RD=-1;
 end
elseif RD==-1
 if EDCBA==[0,0,0,0,0]
 abcdei=[1,0,0,1,1,1];
 RD=1;
 elseif EDCBA==[0,0,0,0,1]
 abcdei=[0,1,1,1,0,1];
 RD=1;
 elseif EDCBA==[0,0,0,1,0]
 abcdei=[1,0,1,1,0,1];
 RD=1;
 elseif EDCBA==[0,0,0,1,1]
 abcdei=[1,1,0,0,0,1];
 RD=-1;
 elseif EDCBA==[0,0,1,0,0]
 abcdei=[1,1,0,1,0,1];
 RD=1;
 elseif EDCBA==[0,0,1,0,1]
 abcdei=[1,0,1,0,0,1];
 RD=-1;
 elseif EDCBA==[0,0,1,1,0]
 abcdei=[0,1,1,0,0,1];
 RD=-1;
 elseif EDCBA==[0,0,1,1,1]
 abcdei=[1,1,1,0,0,0];
 RD=1;
 elseif EDCBA==[0,1,0,0,0]
 abcdei=[1,1,1,0,0,1];
 RD=1;
 elseif EDCBA==[0,1,0,0,1]
 abcdei=[1,0,0,1,0,1];
 RD=-1;
 elseif EDCBA==[0,1,0,1,0]
 abcdei=[0,1,0,1,0,1];
 RD=-1;
 elseif EDCBA==[0,1,0,1,1]
 abcdei=[1,1,0,1,0,0];
 RD=-1;
 elseif EDCBA==[0,1,1,0,0]
 abcdei=[0,0,1,1,0,1];
 RD=-1;
 elseif EDCBA==[0,1,1,0,1]
 abcdei=[1,0,1,1,0,0];
 RD=-1;
 elseif EDCBA==[0,1,1,1,0]
 abcdei=[0,1,1,1,0,0];
 RD=-1;
 elseif EDCBA==[0,1,1,1,1]
 abcdei=[0,1,0,1,1,1];
 RD=1;
 elseif EDCBA==[1,0,0,0,0]
 abcdei=[0,1,1,0,1,1];

 50

 RD=1;
 elseif EDCBA==[1,0,0,0,1]
 abcdei=[1,0,0,0,1,1];
 RD=-1;
 elseif EDCBA==[1,0,0,1,0]
 abcdei=[0,1,0,0,1,1];
 RD=-1;
 elseif EDCBA==[1,0,0,1,1]
 abcdei=[1,1,0,0,1,0];
 RD=-1;
 elseif EDCBA==[1,0,1,0,0]
 abcdei=[0,0,1,0,1,1];
 RD=-1;
 elseif EDCBA==[1,0,1,0,1]
 abcdei=[1,0,1,0,1,0];
 RD=-1;
 elseif EDCBA==[1,0,1,1,0]
 abcdei=[0,1,1,0,1,0];
 RD=-1;
 elseif EDCBA==[1,0,1,1,1]
 abcdei=[1,1,1,0,1,0];
 RD=1;
 elseif EDCBA==[1,1,0,0,0]
 abcdei=[1,1,0,0,1,1];
 RD=1;
 elseif EDCBA==[1,1,0,0,1]
 abcdei=[1,0,0,1,1,0];
 RD=-1;
 elseif EDCBA==[1,1,0,1,0]
 abcdei=[0,1,0,1,1,0];
 RD=-1;
 elseif EDCBA==[1,1,0,1,1]
 abcdei=[1,1,0,1,1,0];
 RD=1;
 elseif EDCBA==[1,1,1,0,0]
 abcdei=[0,0,1,1,1,0];
 RD=-1;
 elseif EDCBA==[1,1,1,0,1]
 abcdei=[1,0,1,1,1,0];
 RD=1;
 elseif EDCBA==[1,1,1,1,0]
 abcdei=[0,1,1,1,1,0];
 RD=1;
 elseif EDCBA==[1,1,1,1,1]
 abcdei=[1,0,1,0,1,1];
 RD=1;
 end
end

%3b4b
if RD==1
 if HGF==[0,0,0]
 fghj=[0,1,0,0];
 RD=-1;
 elseif HGF==[0,0,1]
 fghj=[1,0,0,1];
 elseif HGF==[0,1,0]
 fghj=[0,1,0,1];
 elseif HGF==[0,1,1]
 fghj=[1,1,0,0];
 RD=-1;
 elseif HGF==[1,0,0]
 fghj=[0,0,1,0];
 RD=-1;
 elseif HGF==[1,0,1]
 fghj=[1,0,1,0];
 elseif HGF==[1,1,0]
 fghj=[0,1,1,0];
 elseif HGF==[1,1,1]
 if abcdei(5:6)==[0,0]
 fghj=[1,0,0,0];
 else
 fghj=[0,0,0,1];
 end
 end
elseif RD==-1
 if HGF==[0,0,0]

 51

 fghj=[1,0,1,1];
 RD=1;
 elseif HGF==[0,0,1]
 fghj=[1,0,0,1];
 elseif HGF==[0,1,0]
 fghj=[0,1,0,1];
 elseif HGF==[0,1,1]
 fghj=[0,0,1,1];
 RD=1;
 elseif HGF==[1,0,0]
 fghj=[1,1,0,1];
 RD=1;
 elseif HGF==[1,0,1]
 fghj=[1,0,1,0];
 elseif HGF==[1,1,0]
 fghj=[0,1,1,0];
 elseif HGF==[1,1,1]
 if abcdei(5:6)==[1,1]
 fghj=[0,1,1,1];
 else
 fghj=[1,1,1,0];
 end
 end
end

b10=[abcdei,fghj];

The next function does the decoding of the previous function, but this one also have an
extra output notifying if there has been an error detected:

function [b8,RD,ERR10b] = dec10b8b(b10,RD)

a=b10(1);
b=b10(2);
c=b10(3);
d=b10(4);
e=b10(5);
i=b10(6);
f=b10(7);
g=b10(8);
h=b10(9);
j=b10(10);

abcdei=[a,b,c,d,e,i];
fghj=[f,g,h,j];
ERR6b=1;
ERR4b=1;

%Arbitrary value for error case
HGF=[0,0,0];
EDCBA=[0,0,0,0,0];

%5b6b
if RD==1
 if abcdei==[0,1,1,0,0,0]
 EDCBA=[0,0,0,0,0];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[1,0,0,0,1,0]
 EDCBA=[0,0,0,0,1];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[0,1,0,0,1,0]
 EDCBA=[0,0,0,1,0];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[1,1,0,0,0,1]
 EDCBA=[0,0,0,1,1];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,0,1,0,1,0]
 EDCBA=[0,0,1,0,0];
 RD=-1;
 ERR6b=0;

 52

 elseif abcdei==[1,0,1,0,0,1]
 EDCBA=[0,0,1,0,1];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,1,1,0,0,1]
 EDCBA=[0,0,1,1,0];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,0,0,1,1,1]
 EDCBA=[0,0,1,1,1];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[0,0,0,1,1,0]
 EDCBA=[0,1,0,0,0];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[1,0,0,1,0,1]
 EDCBA=[0,1,0,0,1];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,1,0,1,0,1]
 EDCBA=[0,1,0,1,0];
 RD=1;
 ERR6b=0;
 elseif abcdei==[1,1,0,1,0,0]
 EDCBA=[0,1,0,1,1];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,0,1,1,0,1]
 EDCBA=[0,1,1,0,0];
 RD=1;
 ERR6b=0;
 elseif abcdei==[1,0,1,1,0,0]
 EDCBA=[0,1,1,0,1];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,1,1,1,0,0]
 EDCBA=[0,1,1,1,0];
 RD=1;
 ERR6b=0;
 elseif abcdei==[1,0,1,0,0,0]
 EDCBA=[0,1,1,1,1];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[1,0,0,1,0,0]
 EDCBA=[1,0,0,0,0];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[1,0,0,0,1,1]
 EDCBA=[1,0,0,0,1];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,1,0,0,1,1]
 EDCBA=[1,0,0,1,0];
 RD=1;
 ERR6b=0;
 elseif abcdei==[1,1,0,0,1,0]
 EDCBA=[1,0,0,1,1];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,0,1,0,1,1]
 EDCBA=[1,0,1,0,0];
 RD=1;
 ERR6b=0;
 elseif abcdei==[1,0,1,0,1,0]
 EDCBA=[1,0,1,0,1];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,1,1,0,1,0]
 EDCBA=[1,0,1,1,0];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,0,0,1,0,1]
 EDCBA=[1,0,1,1,1];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[0,0,1,1,0,0]

 53

 EDCBA=[1,1,0,0,0];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[1,0,0,1,1,0]
 EDCBA=[1,1,0,0,1];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,1,0,1,1,0]
 EDCBA=[1,1,0,1,0];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,0,1,0,0,1]
 EDCBA=[1,1,0,1,1];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[0,0,1,1,1,0]
 EDCBA=[1,1,1,0,0];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,1,0,0,0,1]
 EDCBA=[1,1,1,0,1];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[1,0,0,0,0,1]
 EDCBA=[1,1,1,1,0];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[0,1,0,1,0,0]
 EDCBA=[1,1,1,1,1];
 RD=-1;
 ERR6b=0;
 end
elseif RD==-1
 if abcdei==[1,0,0,1,1,1]
 EDCBA=[0,0,0,0,0];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,1,1,1,0,1]
 EDCBA=[0,0,0,0,1];
 RD=1;
 ERR6b=0;
 elseif abcdei==[1,0,1,1,0,1]
 EDCBA=[0,0,0,1,0];
 RD=1;
 ERR6b=0;
 elseif abcdei==[1,1,0,0,0,1]
 EDCBA=[0,0,0,1,1];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[1,1,0,1,0,1]
 EDCBA=[0,0,1,0,0];
 RD=1;
 ERR6b=0;
 elseif abcdei==[1,0,1,0,0,1]
 EDCBA=[0,0,1,0,1];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[0,1,1,0,0,1]
 EDCBA=[0,0,1,1,0];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[1,1,1,0,0,0]
 EDCBA=[0,0,1,1,1];
 RD=1;
 ERR6b=0;
 elseif abcdei==[1,1,1,0,0,1]
 EDCBA=[0,1,0,0,0];
 RD=1;
 ERR6b=0;
 elseif abcdei==[1,0,0,1,0,1]
 EDCBA=[0,1,0,0,1];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[0,1,0,1,0,1]
 EDCBA=[0,1,0,1,0];
 RD=-1;
 ERR6b=0;

 54

 elseif abcdei==[1,1,0,1,0,0]
 EDCBA=[0,1,0,1,1];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[0,0,1,1,0,1]
 EDCBA=[0,1,1,0,0];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[1,0,1,1,0,0]
 EDCBA=[0,1,1,0,1];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[0,1,1,1,0,0]
 EDCBA=[0,1,1,1,0];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[0,1,0,1,1,1]
 EDCBA=[0,1,1,1,1];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,1,1,0,1,1]
 EDCBA=[1,0,0,0,0];
 RD=1;
 ERR6b=0;
 elseif abcdei==[1,0,0,0,1,1]
 EDCBA=[1,0,0,0,1];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[0,1,0,0,1,1]
 EDCBA=[1,0,0,1,0];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[1,1,0,0,1,0]
 EDCBA=[1,0,0,1,1];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[0,0,1,0,1,1]
 EDCBA=[1,0,1,0,0];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[1,0,1,0,1,0]
 EDCBA=[1,0,1,0,1];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[0,1,1,0,1,0]
 EDCBA=[1,0,1,1,0];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[1,1,1,0,1,0]
 EDCBA=[1,0,1,1,1];
 RD=1;
 ERR6b=0;
 elseif abcdei==[1,1,0,0,1,1]
 EDCBA=[1,1,0,0,0];
 RD=1;
 ERR6b=0;
 elseif abcdei==[1,0,0,1,1,0]
 EDCBA=[1,1,0,0,1];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[0,1,0,1,1,0]
 EDCBA=[1,1,0,1,0];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[1,1,0,1,1,0]
 EDCBA=[1,1,0,1,1];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,0,1,1,1,0]
 EDCBA=[1,1,1,0,0];
 RD=-1;
 ERR6b=0;
 elseif abcdei==[1,0,1,1,1,0]
 EDCBA=[1,1,1,0,1];
 RD=1;
 ERR6b=0;
 elseif abcdei==[0,1,1,1,1,0]

 55

 EDCBA=[1,1,1,1,0];
 RD=1;
 ERR6b=0;
 elseif abcdei==[1,0,1,0,1,1]
 EDCBA=[1,1,1,1,1];
 RD=1;
 ERR6b=0;
 end
end

%3b4b
if RD==1
 if fghj==[0,1,0,0]
 HGF=[0,0,0];
 RD=-1;
 ERR4b=0;
 elseif fghj==[1,0,0,1]
 HGF=[0,0,1];
 ERR4b=0;
 elseif fghj==[0,1,0,1]
 HGF=[0,1,0];
 ERR4b=0;
 elseif fghj==[1,1,0,0]
 HGF=[0,1,1];
 RD=-1;
 ERR4b=0;
 elseif fghj==[0,0,1,0]
 HGF=[1,0,0];
 RD=-1;
 ERR4b=0;
 elseif fghj==[1,0,1,0]
 HGF=[1,0,1];
 ERR4b=0;
 elseif fghj==[0,1,1,0]
 HGF=[1,1,0];
 ERR4b=0;
 elseif fghj==[1,0,0,0]
 HGF=[1,1,1];
 ERR4b=0;
 elseif fghj==[0,0,0,1]
 HGF=[1,1,1];
 ERR4b=0;
 end
elseif RD==-1
 if fghj==[1,0,1,1]
 HGF=[0,0,0];
 RD=1;
 ERR4b=0;
 elseif fghj==[1,0,0,1]
 HGF=[0,0,1];
 elseif fghj==[0,1,0,1]
 HGF=[0,1,0];
 ERR4b=0;
 elseif fghj==[0,0,1,1]
 HGF=[0,1,1];
 RD=1;
 ERR4b=0;
 elseif fghj==[1,1,0,1]
 HGF=[1,0,0];
 RD=1;
 ERR4b=0;
 elseif fghj==[1,0,1,0]
 HGF=[1,0,1];
 ERR4b=0;
 elseif fghj==[0,1,1,0]
 HGF=[1,1,0];
 ERR4b=0;
 elseif fghj==[0,1,1,1]
 HGF=[1,1,1];
 ERR4b=0;
 elseif fghj==[1,1,1,0]
 HGF=[1,1,1];
 ERR4b=0;
 end
end

if (ERR6b==1)||(ERR4b==1)

 56

 ERR10b=1;
else
 ERR10b=0;
end

b8=bit2byte([HGF,EDCBA]);

These couple of functions below implement the mathematic model:

function [N_err, N_err_FEC] =
mathematic_model(msg,msg_FEC,m_FEC,n_FEC,k_FEC,P_tx,P_N,N_rx,att)
%SYSTEM PARAMETERS
%---
N=length(msg);
msg_b=zeros(1,N*8);
%CONVERSION TO BITS OF msg and msg_FEC
for i=1:N
 msg_b((8*i-7):(8*i))=byte2bit(msg(i));
end
N_FEC=length(msg_FEC);
msg_FEC_b=zeros(1,8*N_FEC);
for i=1:N_FEC
 msg_FEC_b((8*i-7):(8*i))=byte2bit(msg_FEC(i));
end
N_b=length(msg_b); %Lenght of the transmited signal.
N_FEC_b=length(msg_FEC_b); %Lenght of the transmited signal.
%---

%Simulation of the system without FEC
%---
msg_tx=msg_b*P_tx; %Transmited signal.
Nrx=P_N*N_rx(1:N_b); %Noise at the receiver.
P_Srx=msg_tx/(10^(att/10)); %Received signal without noise.
Xrx=P_Srx+Nrx; %Received signal with noise.
threshold=0.5*P_tx/(10^(att/10)); %Threshold.
%Detection
S_Rx=zeros(1,N_b);
for i=1:N_b
 if Xrx(i)>threshold
 S_Rx(i)=1;
 end
end
%Restauration
S_det=zeros(1,N);
for i=1:N
 S_det(i)=bit2byte(S_Rx((8*i-7):(8*i)));
end
%BER_results
N_err=0;
for i=1:N
 if S_det(i)~=msg(i)
 N_err=N_err+1;
 end
end
%---

%Simulation of the system with FEC
%---
msg_FEC_tx=msg_FEC_b*P_tx; %Transmited signal.
Nrx=P_N*N_rx; %Noise at the receiver.
P_Srx=msg_FEC_tx/(10^(att/10)); %Received signal without noise.
Xrx=P_Srx+Nrx; %Received signal with noise.
threshold=0.5*P_tx/(10^(att/10)); %Threshold.
%Detection
S_Rx=zeros(1,N_FEC_b);
for i=1:N_FEC_b
 if Xrx(i)>threshold
 S_Rx(i)=1;
 end
end
%Restauration
S_det_FEC=zeros(1,N_FEC);
for i=1:N_FEC
 S_det_FEC(i)=bit2byte(S_Rx((8*i-7):(8*i)));
end

 57

S_det_FEC=gf(S_det_FEC,m_FEC);
S_det=rsdec(S_det_FEC,n_FEC,k_FEC);
S_det=double(S_det.x);
%BER_results
N_err_FEC=0;
for i=1:N
 if S_det(i)~=msg(i)
 N_err_FEC=N_err_FEC+1;
 end
end
%---

clear all;
close all;

m=8;
n=2^m-1;
k=239;
P_tx=100;
mean_N=0;
att=0;
P_N_min=1;
P_N_max=100;
err=zeros(1,P_N_max-P_N_min+1);
err_FEC=zeros(1,P_N_max-P_N_min+1);
SNR=zeros(1,P_N_max-P_N_min+1);
for i=P_N_min:P_N_max
 SNR(i-P_N_min+1)=10*log10(P_tx/i);
end
ERR=zeros(1,P_N_max-P_N_min+1);
ERR_FEC=zeros(1,P_N_max-P_N_min+1);
x=50; %Number of sent packages

for j=1:x
 msg=randi([0 n],1,k);
 msg=gf(msg,m);
 msg_FEC=rsenc(msg,n,k);
 msg=double(msg.x);
 msg_FEC=double(msg_FEC.x);
 N_rx=randn(1,n*8)+mean_N;

 for i=P_N_min:P_N_max
 [err(i-P_N_min+1),err_FEC(i-
P_N_min+1)]=mathematic_model(msg,msg_FEC,m,n,k,P_tx,i,N_rx,att);
 end
 ERR=ERR+err;
 ERR_FEC=ERR_FEC+err_FEC;
end
BER=ERR/(k*x);
BER_FEC=ERR_FEC/(k*x);

semilogy(SNR,BER,'b');
hold on
semilogy(SNR,BER_FEC,'r');
hold off
xlabel('SNR (dB)');
ylabel('BER');
title('Mathematic Model');
legend('BER without FEC','BER with FEC');

The following function implements the transmitter, so it reads a picture from your
computer (this picture must be on the same path as this function!), is divided into 255 and
239 bytes words’ and it is given as three outputs (the one divided into 239 the one into
255 and the original image without being modified). The default format is *.png but it
accepts any kind of picture if it is changed:

function [D,DATA_239,DATA_255] = transmitter()

clear all;
FILENAME = uigetfile('*.jpeg');
D=importdata(FILENAME);

 58

imshow(D);
[Dx,Dy,Dz]=size(D);
V=zeros(1,Dx*Dy*Dz);
aux=1;
%DATA to vector
for i=1:Dx
 for j=1:Dy
 for k=1:Dz
 V(aux)=D(i,j,k);
 aux=aux+1;
 end
 end
end
%Fragmenting data parameters
I=zeros(1,6);
I(1)=floor(Dx/255);
I(2)=floor(Dy/255);
I(3)=floor(Dz/255);
I(4)=Dx-255*I(1);
I(5)=Dy-255*I(2);
I(6)=Dz-255*I(3);

V2send=[I,V];
aux=length(V2send);

%CASE 239
aux2=ceil(aux/239);
size2=aux2*239;
V239=zeros(1,size2);
for h=1:aux
 V239(h)=V2send(h);
end
DATA_239=reshape(V239,239,aux2);

%CASE 255
aux2=ceil(aux/255);
size2=aux2*255;
V255=zeros(1,size2);
for h=1:aux
 V255(h)=V2send(h);
end
DATA_255=reshape(V255,255,aux2);

%Clearing auxiliar variables
clear Dx; clear Dy; clear Dz; clear I; clear FILENAME; clear V; clear V239; clear V255;
clear V2send; clear aux; clear aux2; clear h; clear i; clear j; clear k;
clear l; clear o; clear p; clear size2;

%Saving data ready to send
save ready2send

The next function acts as the receiver, it reconstructs the pictures, counts the wrong
bytes and pixels (the bits have to be counted before this) and plots the three pictures with
each corresponding information:

function [R239,R255]=receiver(D239,D255,D0,NberrFEC,Nberr)

%Preparing figures:
close all;
figure('name','results');
hold on;
subplot(1,3,1);
imshow(D0);
title('Original Image');

%Vectorizing
%239
[a,b]=size(D239);
Dv239=reshape(D239,1,a*b);
%255
[a,b]=size(D255);
Dv255=reshape(D255,1,a*b);

%Extract parameters

 59

%239
Dx239=255*Dv239(1)+Dv239(4);
Dy239=255*Dv239(2)+Dv239(5);
Dz239=255*Dv239(3)+Dv239(6);
%255
Dx255=255*Dv255(1)+Dv255(4);
Dy255=255*Dv255(2)+Dv255(5);
Dz255=255*Dv255(3)+Dv255(6);

%239 Reconstruction
R239=zeros(Dx239,Dy239,Dz239);
aux=7;
for i=1:Dx239
 for j=1:Dy239
 for k=1:Dz239
 R239(i,j,k)=Dv239(aux);
 aux=aux+1;
 end
 end
end
R239=uint8(R239);
subplot(1,3,2);
imshow(R239);
title('FEC Image');
text(0,Dx239+100,strcat('Bit errors: ',num2str(NberrFEC),' BER:
',num2str(NberrFEC/(Dx239*Dy239*Dz239*8))));
ByteErr=0;
PixelErr=0;
for i=1:Dx239
 for j=1:Dy239
 for k=1:Dz239
 if D0(i,j,k)~=R239(i,j,k)
 ByteErr=ByteErr+1;
 end
 end
 if (D0(i,j,1)~=R239(i,j,1))||(D0(i,j,2)~=R239(i,j,2))||(D0(i,j,3)~=R239(i,j,3))
 PixelErr=PixelErr+1;
 end
 end
end
text(0,Dx239+200,strcat('Byte errors: ',num2str(ByteErr)));
text(0,Dx239+300,strcat('Pixel errors: ',num2str(PixelErr)));

%255 Reconstruction
R255=zeros(Dx255,Dy255,Dz255);
aux=7;
for i=1:Dx255
 for j=1:Dy255
 for k=1:Dz255
 R255(i,j,k)=Dv255(aux);
 aux=aux+1;
 end
 end
end
R255=uint8(R255);
subplot(1,3,3);
imshow(R255);
title('No-FEC Image');
text(0,Dx255+100,strcat('Bit errors: ',num2str(Nberr),' BER:
',num2str(Nberr/(Dx255*Dy255*Dz255*8))));
ByteErr=0;
PixelErr=0;
for i=1:Dx255
 for j=1:Dy255
 for k=1:Dz255
 if D0(i,j,k)~=R255(i,j,k)
 ByteErr=ByteErr+1;
 end
 end
 if (D0(i,j,1)~=R255(i,j,1))||(D0(i,j,2)~=R255(i,j,2))||(D0(i,j,3)~=R255(i,j,3))
 PixelErr=PixelErr+1;
 end
 end
end
text(0,Dx255+200,strcat('Byte errors: ',num2str(ByteErr)));
text(0,Dx255+300,strcat('Pixel errors: ',num2str(PixelErr)));

 60

Hold off;

With all this functions the model functions can also be implemented. First the model
which contains only the FEC codification:

function [R239,R255,D] = systemFEC(SNR_dB)

%TX
[D,D239,D255] = transmitter();
DFEC=FECcod(D239,8);
hFEC=zeros(1,6);
h255=zeros(1,6);
for i=1:6
 hFEC(i)=DFEC(i,1);
 h255(i)=D255(i,1);
end

%CHANNEL
L=length(DFEC);
P_N=1;
P_Tx=P_N*10^(SNR_dB/10);
Noise=randn(L,255*8)*P_N;

%FEC case
DFEC_Rx=zeros(255,L);
for i=1:L
 v2send=DFEC(:,i);
 bits2send=zeros(1,255*8);
 for j=1:255
 bits2send((8*j-7):(8*j))=byte2bit(v2send(j));
 end
 v_Rx=bits2send*P_Tx+Noise(i,:);
 %DETECTOR--
 threshold=0.5*P_Tx; %Threshold.
 S_Rx=zeros(1,255*8);
 for aux=1:(255*8)
 if v_Rx(aux)>threshold
 S_Rx(aux)=1;
 end
 end
 %--
 for k=1:255
 DFEC_Rx(k,i)=bit2byte(S_Rx((8*k-7):(8*k)));
 end
end

%NO-FEC case
L=length(D255);
D255_Rx=zeros(255,L);
for i=1:L
 v2send=D255(:,i);
 bits2send=zeros(1,255*8);
 for j=1:255
 bits2send((8*j-7):(8*j))=byte2bit(v2send(j));
 end
 v_Rx=bits2send*P_Tx+Noise(i,:);
 %DETECTOR--
 threshold=0.5*P_Tx; %Threshold.
 S_Rx=zeros(1,255*8);
 for aux=1:(255*8)
 if v_Rx(aux)>threshold
 S_Rx(aux)=1;
 end
 end
 %--
 for k=1:255
 D255_Rx(k,i)=bit2byte(S_Rx((8*k-7):(8*k)));
 end
end

%RX
DFEC_ready=FECdec(DFEC_Rx,8);
%Bit error counter FEC---------------------------------------
L=length(DFEC_ready);

 61

NberrFEC=0;
Nberr=0;
for i=1:L
 for j=1:239
 bitDFEC_Rx=byte2bit(DFEC_ready(j,i));
 bitAux=byte2bit(D239(j,i));
 for k=1:8
 if bitDFEC_Rx(k)~=bitAux(k)
 NberrFEC=NberrFEC+1;
 end
 end
 end
end
L=length(D255_Rx);
for i=1:L
 for j=1:255
 bitD255_Rx=byte2bit(D255_Rx(j,i));
 bitAux=byte2bit(D255(j,i));
 for k=1:8
 if bitD255_Rx(k)~=bitAux(k)
 Nberr=Nberr+1;
 end
 end
 end
end
%--
for i=1:6
 DFEC_ready(i,1)=hFEC(i);
 D255_Rx(i,1)=h255(i);
end
[R239,R255] = receiver(DFEC_ready,D255_Rx,D,NberrFEC,Nberr);

The next function implements the model that computes the effect of the errors in 8b/10b:

function system8b10b()

close all;
figure('name','Errors in 8b/10b');

%Case 1: RD=1 i error in 10b
errors=zeros(1,2560);
detErr=zeros(1,2560);

for i=0:255
 v8b=byte2bit(i);
 [v10b,RD]=enc8b10b(i,1);
 for j=1:10
 if v10b(j)==1
 v10b(j)=0;
 else
 v10b(j)=1;
 end
 [res,RD,detErr(i*10+j)]=dec10b8b(v10b,1);
 result=byte2bit(res);
 for k=1:8
 if result(k)~=v8b(k)
 errors(i*10+j)=errors(i*10+j)+1;
 end
 end
 end
end

mErr=mean(errors);
meanErr=zeros(1,2560);
for i=1:2560
 meanErr(i)=mErr;
end

subplot(1,3,1);
hold on;
stem(errors,'b');
plot(meanErr,'r','linewidth',5);
title('Errors in 8b for 1 error in 10b (RD=1)');
ylabel('Number of errors (bits) per Byte');
legend('Errors','Error mean');

 62

text(1800,7.2,strcat('Errors detected:
',num2str(100*sum(detErr)/2560),'%'),'BackgroundColor',[.7 .9 .7]);
hold off;

%Case 2: RD=-1 i error in 10b
errors=zeros(1,2560);
detErr=zeros(1,2560);

for i=0:255
 v8b=byte2bit(i);
 [v10b,RD]=enc8b10b(i,-1);
 for j=1:10
 if v10b(j)==1
 v10b(j)=0;
 else
 v10b(j)=1;
 end
 [res,RD,detErr(i*10+j)]=dec10b8b(v10b,-1);
 result=byte2bit(res);
 for k=1:8
 if result(k)~=v8b(k)
 errors(i*10+j)=errors(i*10+j)+1;
 end
 end
 end
end

mErr=mean(errors);
meanErr=zeros(1,2560);
for i=1:2560
 meanErr(i)=mErr;
end

subplot(1,3,2);
hold on;
stem(errors,'b');
plot(meanErr,'r','linewidth',5);
title('Errors in 8b for 1 error in 10b (RD=-1)');
ylabel('Number of errors (bits) per Byte');
legend('Errors','Error mean');
text(1800,7.2,strcat('Errors detected:
',num2str(100*sum(detErr)/2560),'%'),'BackgroundColor',[.7 .9 .7]);
hold off;

%Case 3: 1 error in RD
errors=zeros(1,512);
detErr=zeros(1,512);

for i=0:255
 v8b=byte2bit(i);
 for j=1:2
 [v10b,RD]=enc8b10b(i,(-1)^j);
 [res,RD,detErr(i*2+j)]=dec10b8b(v10b,(-1)^(j-1));
 result=byte2bit(res);
 for k=1:8
 if result(k)~=v8b(k)
 errors(i*2+j)=errors(i*2+j)+1;
 end
 end
 end
end

mErr=mean(errors);
meanErr=zeros(1,512);
for i=1:512
 meanErr(i)=mErr;
end

subplot(1,3,3);
hold on;
stem(errors,'b');
plot(meanErr,'r','linewidth',5);
title('Errors in 8b for 1 error in RD');
ylabel('Number of errors (bits) per Byte');
legend('Errors','Error mean');
text(350,4.5,strcat('Errors detected:
',num2str(100*sum(detErr)/512),'%'),'BackgroundColor',[.7 .9 .7]);

 63

hold off;

The following function is the model that combines first the FEC and afterwards the 8b/10b
encoding:

function [R239,R255,D] = system_FEC_8b10b(SNR_dB)

%TX
[D,D239,D255] = transmitter();
DFEC=FECcod(D239,8);
hFEC=zeros(1,6);
h255=zeros(1,6);
for i=1:6
 hFEC(i)=DFEC(i,1);
 h255(i)=D255(i,1);
end

%CHANNEL
L=length(DFEC);
P_N=1;
RD=1;
P_Tx=P_N*10^(SNR_dB/10);
Noise=randn(L,255*10)*P_N;

%FEC case
DFEC_Rx=zeros(255,L);
for i=1:L
 v2send=DFEC(:,i);
 bits2send=zeros(1,255*10);
 for j=1:255
 %8b/10b encoding---------------------------------------
 [bits2send((10*j-9):(10*j)),RD]=enc8b10b(v2send(j),RD);
 %--
 end
 v_Rx=bits2send*P_Tx+Noise(i,:);
 %DETECTOR--
 threshold=0.5*P_Tx; %Threshold.
 S_Rx=zeros(1,255*10);
 for aux=1:(255*10)
 if v_Rx(aux)>threshold
 S_Rx(aux)=1;
 end
 end
 %--
 RD=1;
 for k=1:255
 %8b/10b decodding--------------------------------------
 [DFEC_Rx(k,i),RD,errs]=dec10b8b(S_Rx((10*k-9):(10*k)),RD);
 %--
 end
end

%NO-FEC case
L=length(D255);
RD=1;
D255_Rx=zeros(255,L);
for i=1:L
 v2send=D255(:,i);
 bits2send=zeros(1,255*10);
 for j=1:255
 %8b/10b encoding---------------------------------------
 [bits2send((10*j-9):(10*j)),RD]=enc8b10b(v2send(j),RD);
 %--
 end
 v_Rx=bits2send*P_Tx+Noise(i,:);
 %DETECTOR--
 threshold=0.5*P_Tx; %Threshold.
 S_Rx=zeros(1,255*10);
 for aux=1:(255*10)
 if v_Rx(aux)>threshold
 S_Rx(aux)=1;
 end
 end
 %--

 64

 for k=1:255
 %8b/10b decodding--------------------------------------
 [D255_Rx(k,i),RD,errs]=dec10b8b(S_Rx((10*k-9):(10*k)),RD);
 %--
 end
end

%RX
DFEC_ready=FECdec(DFEC_Rx,8);
%Bit error counter FEC---------------------------------------
L=length(DFEC_ready);
NberrFEC=0;
Nberr=0;
for i=1:L
 for j=1:239
 bitDFEC_Rx=byte2bit(DFEC_ready(j,i));
 bitAux=byte2bit(D239(j,i));
 for k=1:8
 if bitDFEC_Rx(k)~=bitAux(k)
 NberrFEC=NberrFEC+1;
 end
 end
 end
end
L=length(D255_Rx);
for i=1:L
 for j=1:255
 bitD255_Rx=byte2bit(D255_Rx(j,i));
 bitAux=byte2bit(D255(j,i));
 for k=1:8
 if bitD255_Rx(k)~=bitAux(k)
 Nberr=Nberr+1;
 end
 end
 end
end
%--
for i=1:6
 DFEC_ready(i,1)=hFEC(i);
 D255_Rx(i,1)=h255(i);
end
[R239,R255] = receiver(DFEC_ready,D255_Rx,D,NberrFEC,Nberr);

This last function implements the model that combines the 8b/10b first of all and then the
FEC:

function [R239,R255,D] = system_8b10b_FEC(SNR_dB)

%TX
[D,D239,D255] = transmitter();
hFEC=zeros(1,6);
h255=zeros(1,6);
for i=1:6
 hFEC(i)=D239(i,1);
 h255(i)=D255(i,1);
end
%8b/10b encoding--
%---
[aux1,aux2]=size(D239);
D239b10=zeros(aux1,aux2);
RD=1;
for i=1:aux1
 for j=1:aux2
 [aux3,RD]=enc8b10b(D239(i,j),RD);
 B=0;
 for k=1:10
 B=B+aux3(11-k)*(2^(k-1));
 end
 D239b10(i,j)=B;
 end
end
[aux1,aux2]=size(D255);
D255b10=zeros(aux1,aux2);
RD=1;

 65

for i=1:aux1
 for j=1:aux2
 [aux3,RD]=enc8b10b(D255(i,j),RD);
 B=0;
 for k=1:10
 B=B+aux3(11-k)*(2^(k-1));
 end
 D255b10(i,j)=B;
 end
end
%---
%---
DFEC=FECcod(D239b10,10);

%CHANNEL
L=length(DFEC);
P_N=1;
P_Tx=P_N*10^(SNR_dB/10);
Noise=randn(L,255*10)*P_N;

%FEC case
D239_Rx=zeros(255,L);
for i=1:L
 v2send=DFEC(:,i);
 bits2send=zeros(1,255*10);
 for j=1:255
 %baud2bit---
 B=v2send(j);
 b=zeros(1,10);
 b(10)=mod(B,2);
 aux=floor(B/2);
 b(9)=mod(aux,2);
 aux=floor(aux/2);
 b(8)=mod(aux,2);
 aux=floor(aux/2);
 b(7)=mod(aux,2);
 aux=floor(aux/2);
 b(6)=mod(aux,2);
 aux=floor(aux/2);
 b(5)=mod(aux,2);
 aux=floor(aux/2);
 b(4)=mod(aux,2);
 aux=floor(aux/2);
 b(3)=mod(aux,2);
 aux=floor(aux/2);
 b(2)=mod(aux,2);
 b(1)=floor(aux/2);
 bits2send((10*j-9):(10*j))=b;
 %--
 end
 v_Rx=bits2send*P_Tx+Noise(i,:);
 %DETECTOR--
 threshold=0.5*P_Tx; %Threshold.
 S_Rx=zeros(1,255*10);
 for aux=1:(255*10)
 if v_Rx(aux)>threshold
 S_Rx(aux)=1;
 end
 end
 %--
 for k=1:255
 %bit2baud--
 B=0;
 b=S_Rx((10*k-9):(10*k));
 for l=1:10
 B=B+b(11-l)*(2^(l-1));
 end
 D239_Rx(k,i)=B;
 %--
 end
end

%NO-FEC case
L=length(D255b10);
D255_Rx=zeros(255,L);
for i=1:L
 v2send=D255b10(:,i);

 66

 bits2send=zeros(1,255*10);
 for j=1:255
 %baud2bit---
 B=v2send(j);
 b=zeros(1,10);
 b(10)=mod(B,2);
 aux=floor(B/2);
 b(9)=mod(aux,2);
 aux=floor(aux/2);
 b(8)=mod(aux,2);
 aux=floor(aux/2);
 b(7)=mod(aux,2);
 aux=floor(aux/2);
 b(6)=mod(aux,2);
 aux=floor(aux/2);
 b(5)=mod(aux,2);
 aux=floor(aux/2);
 b(4)=mod(aux,2);
 aux=floor(aux/2);
 b(3)=mod(aux,2);
 aux=floor(aux/2);
 b(2)=mod(aux,2);
 b(1)=floor(aux/2);
 bits2send((10*j-9):(10*j))=b;
 %--
 end
 v_Rx=bits2send*P_Tx+Noise(i,:);
 %DETECTOR--
 threshold=0.5*P_Tx; %Threshold.
 S_Rx=zeros(1,255*10);
 for aux=1:(255*10)
 if v_Rx(aux)>threshold
 S_Rx(aux)=1;
 end
 end
 %--
 for k=1:255
 %bit2baud--
 B=0;
 b=S_Rx((10*k-9):(10*k));
 for l=1:10
 B=B+b(11-l)*(2^(l-1));
 end
 D255_Rx(k,i)=B;
 %--
 end
end

%RX
D239_Rx=FECdec(D239_Rx,10);
%10b/8b decoding--
%---
[aux1,aux2]=size(D239_Rx);
RD=1;
for i=1:aux1
 for j=1:aux2
 %baud2bit---
 B=D239_Rx(i,j);
 b=zeros(1,10);
 b(10)=mod(B,2);
 aux=floor(B/2);
 b(9)=mod(aux,2);
 aux=floor(aux/2);
 b(8)=mod(aux,2);
 aux=floor(aux/2);
 b(7)=mod(aux,2);
 aux=floor(aux/2);
 b(6)=mod(aux,2);
 aux=floor(aux/2);
 b(5)=mod(aux,2);
 aux=floor(aux/2);
 b(4)=mod(aux,2);
 aux=floor(aux/2);
 b(3)=mod(aux,2);
 aux=floor(aux/2);
 b(2)=mod(aux,2);
 b(1)=floor(aux/2);

 67

 %--
 [aux3,RD,errs]=dec10b8b(b,RD);
 D239_Rx(i,j)=aux3;
 end
end
[aux1,aux2]=size(D255_Rx);
RD=1;
for i=1:aux1
 for j=1:aux2
 %baud2bit---
 B=D255_Rx(i,j);
 b=zeros(1,10);
 b(10)=mod(B,2);
 aux=floor(B/2);
 b(9)=mod(aux,2);
 aux=floor(aux/2);
 b(8)=mod(aux,2);
 aux=floor(aux/2);
 b(7)=mod(aux,2);
 aux=floor(aux/2);
 b(6)=mod(aux,2);
 aux=floor(aux/2);
 b(5)=mod(aux,2);
 aux=floor(aux/2);
 b(4)=mod(aux,2);
 aux=floor(aux/2);
 b(3)=mod(aux,2);
 aux=floor(aux/2);
 b(2)=mod(aux,2);
 b(1)=floor(aux/2);
 %--
 [aux3,RD,errs]=dec10b8b(b,RD);
 D255_Rx(i,j)=aux3;
 end
end
%---
%---
%Bit error counter FEC---------------------------------------
L=length(D239_Rx);
NberrFEC=0;
Nberr=0;
for i=1:L
 for j=1:239
 bitDFEC_Rx=byte2bit(D239_Rx(j,i));
 bitAux=byte2bit(D239(j,i));
 for k=1:8
 if bitDFEC_Rx(k)~=bitAux(k)
 NberrFEC=NberrFEC+1;
 end
 end
 end
end
L=length(D255_Rx);
for i=1:L
 for j=1:255
 bitD255_Rx=byte2bit(D255_Rx(j,i));
 bitAux=byte2bit(D255(j,i));
 for k=1:8
 if bitD255_Rx(k)~=bitAux(k)
 Nberr=Nberr+1;
 end
 end
 end
end
%--
for i=1:6
 D239_Rx(i,1)=hFEC(i);
 D255_Rx(i,1)=h255(i);
end
[R239,R255] = receiver(D239_Rx,D255_Rx,D,NberrFEC,Nberr);

 68

Glossary

FEC: Forward Error Correction.

PCS: Physical Codding Sublayer.

RS: Reed-Solomon.

GF: Galois Field.

BER: Bit Error Rate.

RTP: Real-time Transport Protocol.

WDM: Wavelength Division Multiplexing.

ud-WDM: ultra dense – Wavelength Division Multiplexing.

PON: Passive Optical Network.

OLT: Optical Line Terminal.

ONU: Optical Network Unit.

LAN: Local Area Network.

WBS: Work Breakdown Structure.

SFP: Small Form-factor pluggable.

