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but you are two much, and you know, I would like my thesis to be larger than my
acknowledgements.

I can not forget about the friends that I have gathered during my degree. With-
out your support in long afternoons working on projects and exams where everyone
tried to give his best, becoming a mathematician would have been even more dif-
ficult. Special thanks to Carlos, that despite being a pure algebra mathematician
has always supported me.

I also want to thank my family for their support. Without their help and all
what my parents and my grandparents have offered to me all my life I am sure that
I would not be here. Every advice, every small thing that they taught me has driven
me to be who I am, and this is something I will never forget. I would like to specially
thank the backing that my brother has always given to me.

Finally, I want to thank Maite for all her support and understanding. Without
her advice and her smile all the work would have been harder.





Abstract

Surface meshes composed by triangular and quadrilateral elements are one of the
most used techniques to approximate and represent continuous surfaces. Numeri-
cal simulation requires to use surface meshes composed by non-folded and positive
oriented elements with a shape close to a regular polygon. To ensure these require-
ments, there are several techniques to both untangle (unfold) and smooth (morph
to regular shapes) surface meshes. However, there is not a technique that both un-
tangles and smooths meshes taking into account the surface parameterization. Note
that in numerical simulation surface meshes are usually generated from a computer
aided design (CAD) model, and therefore the surface parameterization is available.
Thus, the main contribution of this work is to present a new technique to both
untangle and smooth meshes on parameterized surfaces. To this end, we extend to
parameterized surfaces the existent untangling and smoothing techniques for planar
meshes and non-parameterized surfaces. Specifically, we propose an extension of
any planar element quality measure to elements on parameterized surfaces. This
quality measure is the basis of the proposed smoothing and untangling procedure.
In addition, for quadrilateral elements we propose a new objective function that re-
quires less computational effort than the standard one. The examples show that the
proposed objective function also provides the same or even better element quality.
We also modify the minimization process of the standard untangling and smoothing
techniques. Successful untangling and smoothing techniques use a modified objective
function to ensure the convergence of the minimization process (robustness). This
modification is controlled by a fixed scalar parameter that is determined heuristi-
cally. However, for meshes with non-uniform distributions of the element size this
approach do not ensure convergence. To overcome this issue, we have proposed
two alternative modifications of the objective function. The resulting minimization
process is more robust and converges for all the tested surface meshes. Finally, we
present the techniques used to improve the performance of the final implementation
of the method.

Keywords: mesh untangling; mesh smoothing; mesh quality; optimization;
quadrilateral meshes; triangular meshes; surface meshes; parameterized surfaces;
mesh generation; finite element method.
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Chapter 1

Introduction

The Finite Element Method is nowadays one of the most used techniques in applied
sciences and engineering. The application of the method requires a previous dis-
cretization of the geometry. The accuracy of the FEM depends on the quality of
this discretization. On the one hand, this discretization has to capture properly the
geometry. On the other hand, this discretization has to be composed by well-shaped
elements that satisfy certain geometrical requirements. Therefore, the use of FEM
in industrial applications is then slowed down by the need of a generation of a good
mesh.

It is well known that the precision of the numerical solution obtained by the
FEM depends on the size and the shape of the elements of the mesh. Several quality
measures have been defined in order to quantify the deviation of the shape of an
element respect to an “ideal” shape. For instance, [Field] presents a comparative
analysis of several quality measures for triangles and tetrahedrons.

It is important to point out that meshing algorithms are hierarchic procedures.
Thus, in order to mesh a 3D object we first have to mesh its 2D boundary. Conse-
quently, the 2D mesh will also require a previous 1D discretization. Therefore, the
quality of a 3D mesh is directly affected by the quality of the boundary discretiza-
tion (surface mesh). Thus, it is of the major importance to generate a high quality
surface mesh.

Several techniques have been developed in order to improve the shape of the
elements of a given mesh. They can be classified in two main categories. The first
one is composed by those procedures that modify the topology (the connectivity)
of the mesh. That is, some elements are removed or modified in order to generate
new ones that have better quality. The second one, is composed by those techniques
that modify the geometry of the mesh (the location of the nodes), without changing
its topology, in order to obtain a better configuration of the mesh. That is, they
“smooth” the location of the nodes.

A wide range of smoothing algorithms have been developed during the last
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10 CHAPTER 1. INTRODUCTION

decades (see for instance [Herrman] and [Giuliani], among others). It is impor-
tant to point out that these methods are based on geometrical and/or numerical
reasoning. In general, these algorithms are fast from the computational point of
view. However, they are not robust, in the sense that they can move nodes outside
of the domain in complex geometries (for instance on convex corners). In addition,
these algorithms are not designed to maximize a given quality measure.

[Knupp 01] introduced a family of quality measures placed within an alge-
braic framework that have been intensively used during the last decade. Later,
[Knupp 03b] proposed a smoothing method based on an optimization of these mea-
sures. In fact, this optimization procedure is transformed into a continuous mini-
mization problem.

These optimization algorithms are more robust than the previous ones. However,
they are still not able to untangle inverted elements. [Escobar 03] introduced a
modification of the measures developed by Knupp in which this lack was covered.
The optimization of the new objective function was able to simultaneously untangle
and smooth a mesh, saving time and effort in order to obtain the final mesh.

Later, [Escobar 06] extended this algorithms to non-planar triangular meshes.
This new method is based on the projection of the surface mesh into a projection
plane. This projection plane is determined by an additional optimization problem
that increases the computational cost of the global smooth algorithm. In this plane
the local mesh is smoothed and then is taken back to the surface, approximating
the new location on the surface mesh.

The aim of this work is to develop a simultaneous smoothing-untangling pro-
cedure for parametrized surfaces. To this end we will extend the definition of the
quality metrics for planar meshes to parametrized surface meshes. Then, we will
develop a minimization approach on the parametric space that will allow smoothing
and untangling the surface mesh. To this end, first we will increase the robustness
of the standard untangling techniques. Then, we will focus on the improvement of
the computational efficiency of the developed approach. Finally, several examples
will be presented in order to illustrate the capabilities of the proposed method.



Chapter 2

Algebraic quality measure

2.1 Basics on the quality of an element

The quality metric of an element (triangle or quadrilateral in 2D problems, tetrahe-
dron or hexahedron in 3D) is a scalar function such that measures a given geometric
property of the analysed element. It is usually a function defined on the vertices of
the element.

To fix notation, we denote the physical space dimension by n (n = 2 for 2D
problems and n = 3 for 3D problems). Moreover, let m be the number of vertices
of the element1, and xk ∈ Rn the coordinates of those vertices. Taking into account
this notation, the quality metric is defined as the following scalar function

q : Rn × (m). . . × Rn −→ R
(x0, . . . ,xm−1) 7−→ q(x0, . . . ,xm−1).

According to [Knupp 01], any quality metric should hold the following properties:

• q is dimension-free.

• q is going to be referenced to an ideal element that describes the desired shape
of the element.

• For all xk in the domain, q(x0, . . . ,xm−1) ∈ [0, 1]. That is:

q : Rn × (m). . . × Rn −→ [0, 1].

Note that q will only be 1 if the element achieves its ideal configuration, and
it will only be 0 if the element is degenerated2.

1For instance m = 3 vertices for triangles and m = 4 for tetrahedrons, or m = 4 for quadrilat-
erals and m = 8 for hexahedra.

2A 2D element will be considered degenerated if it has area 0. Equivalently, it will be degener-
ated in 3D if its volume is 0.

11



12 CHAPTER 2. ALGEBRAIC QUALITY MEASURE

• q is invariable under translations or rotations of the element.

• q does not depend on the numbering of the nodes of the element.

In this work we will use a shape quality metric introduced in [Knupp 03]. The
aim of this metric is to detect the distortions in the shape of the element, letting
apart its size.

2.2 Planar quality measure for triangular ele-

ments

2.2.1 Jacobian matrix and reference and ideal elements

Let tR be a reference element delimited by vertices u0 = (0, 0), u1(1, 0) and u2 =
(0, 1) in a logical space. We want to find an affine mapping f that maps this reference
element onto a given triangle, t, in the physical space, defined by nodes x0 = (x0, y0),
x1 = (x1, y1) and x2 = (x2, y2), see Figure 2.1.

Figure 2.1: Affine mapping between the reference and the physical element.

Let ξk, k = 0, 1, 2, be the barycentric coordinates of any point inside the reference
triangle. Recall that the barycentric coordinates verify that 0 ≤ ξk ≤ 1 for k = 0, 1, 2
and

∑2
k=0 ξk = 1. Then, taking into account these properties the affine mapping

can be written as

f(ξ1, ξ2) ≡ f(ξ0, ξ1, ξ2) =
2∑

k=0

ξkxk
ξ0+ξ1+ξ2=1

= (1− ξ1 − ξ2)x0 + ξ1x1 + ξ2x2. (2.1)

This mapping can also be written in matrix form as

f : tR −→ t
u 7−→ x = A0u + x0,

(2.2)

where

A0 =

(
x1 − x0 x2 − x0

y1 − y0 y2 − y0

)
,
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and x = (x, y)T , u = (ξ1, ξ2)T .

Note that this application maps u0, u1 and u2 in the logical space onto x0, x1

and x2 in the physical space. The vector x0 controls the translation of the element,
and the matrix A0 controls its area, shape and orientation. Matrix A0 is called
the Jacobian matrix, because it is indeed the Jacobian of the affine mapping with
respect to {ξk}k=0,1,2.

We denote by ideal element, tI , the element that represents the desired shape
to achieve. Therefore, to measure the deviation from the ideal triangle, tI , of any
triangle t in the physical space, we want to find an affine mapping, fS, such that
fS : tI −→ t (see Figure 2.2).

According to Equation (2.2) it is really simple to go from the reference triangle
in the logical coordinates to any other triangle in the physical space. Therefore, we
use this idea to determine fS by the composition of two functions.

To this end, we first define the affine mapping between the reference element,
tR, and the ideal one, tI . If x̃k are the coordinates of the ideal element, this affine
mapping can be written as (see Figure 2.2)

fW : tR −→ tI

u 7−→ x = Wu + x̃0,

where

W =

(
x̃1 − x̃0 x̃2 − x̃0

ỹ1 − ỹ0 ỹ2 − ỹ0

)
.

Similarly we define the affine mapping fA, that maps the reference element tR to
the physical triangle t, with coordinates xk, k = 0, 1, 2, as (see Figure 2.2)

fA : tR −→ t

u 7−→ x = Au + x0,

where

A =

(
x1 − x0 x2 − x0

y1 − y0 y2 − y0

)
, (2.3)

Thus, the desired affine mapping fS that maps the ideal element onto the physical
triangle can be defined as:

fS = fA ◦ f−1
W : tI

f−1
W−→ tR

fA−→ t
x̃ 7−→ u = f−1

W (x̃) 7−→ x = fA(u).
(2.4)

Therefore, the analytical expression of affine mapping fS is

fS(x̃) = fA(f−1
W (x̃)) = Af−1

W (x̃) + x0 = A(W−1x̃ + ṽ) + x0 = AW−1x̃ + v,

for a given translation vector v = Aṽ + x0.
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The Jacobian matrix of this application

S = AW−1 (2.5)

is called shape matrix in references [Knupp 03] and [Escobar 03].

Figure 2.2: Affine mappings for triangular elements.

[Knupp 01] proves that the affine mapping fS defined in (2.4) does not depend
on the node that has been chosen as translation vector or on the numbering of the
nodes.

Note that we can select different ideal elements in order to generate elements
with different geometric properties. The following examples will illustrate this idea.

• For isotropic triangular meshes we choose as ideal element the equilateral tri-
angle. Taking x̃0 = (0, 0)T , x̃1 = (1, 0)T and x̃2 = (1

2
,
√

3
2

)T as the coordinates
of the equilateral triangle, the resulting Jacobian matrix is

W =

(
1 1

2

0
√

3
2

)
. (2.6)

• For quadrilateral meshes, each element, delimited by the nodes {x0,x1,x2,x3},
is divided into four triangles {x0,x1,x2}, {x0,x1,x3}, {x0,x2,x3} and
{x1,x2,x3} (see Figure 2.3). The quality of the quadrilateral is a weighting of
the quality of this four triangles (see references [Knupp 03] and [Knupp 03b]).
The ideal quadrilateral element is the square. Thus, if we subdivide it this way
into four triangles, we get four triangles that are indeed rectangle and isosceles.
Therefore, in this case the triangle that represents the geometric property that
we want to achieve is not the equilateral but the rectangle isosceles. Then,
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if we choose x̃0 = (0, 0), x̃1 = (1, 0) and x̃2 = (0, 1), the Jacobian matrix
becomes the identity matrix

W =

(
1 0
0 1

)
, (2.7)

because the logical coordinates are indeed those of the ideal triangle.

Figure 2.3: Division of a square in order to compute its quality.

2.2.2 Planar quality measure for triangles

The shape matrix S defined in (2.5) contains information about how much we have
“distorted” the ideal element to become the physical one. In this section we will
analyse a quality metric for planar triangular meshes based on S. Later, this planar
measure will be extended to surface problems.

In this work we will use the shape metric, introduced by [Knupp 01],

η(S) =
|S|2

nσ(S)2/n

n=2
=

|S|2
2|σ(S)| . (2.8)

where σ(S) = det(S) is the determinant of S, and |S| = √(S,S) =
√

tr(STS) is its
Frobenius norm3. The parameter n is the dimension of the space we are working in,
and hence, n = 2.

The image of this function is the interval [1,∞], achieving ∞ only when the
physical element is degenerated, and 1 when it becomes the ideal triangle. Thus, we
define the quality index as the inverse of the shape metric (see [Knupp 03])

q(S) =
1

η(S)
=

2|σ(S)|
|S|2 , (2.9)

3We use the notation (A,B) = tr(AT B).
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Note that the quality index (2.9) behaves then, as we have previously commented:
it reaches a maximum value of 1 for the ideal element, and a minimum value 0 for
degenerated elements.

Recall that we want to improve the quality of the mesh by means of a minimizing
problem. Since the shape metric takes its minimum value for the ideal element and
goes to infinity for the degenerated case, we use it to design our approach to the
mesh optimization procedure. Hence, we also name this metric as objective function
of the analysed element (see [Escobar 03] and [Escobar 06]), since we use it as the
basic element to define the function that we finally minimize.

To illustrate the behaviour of the quality index q(S), defined in (2.9), and the
objective function η(S), defined in (2.8), we introduce the following example. Con-
sider a triangular element with two fixed nodes, x0 = (0, 0.5) and x1 = (0,−0.5),
and a third node x2(x) = (x, 0) that we move in the x-axis, see Figure 2.4.

Figure 2.4: Triangle moving the node x2.

In Figures 2.5(a) and 2.5(b) the quality index and the objective function are
displayed when node x2 moves from x = −5 to x = 5. Note that we have selected
the equilateral triangle as ideal element.

Figure 2.5(a) shows that there is just a point with quality zero. This is the point
at which the element achieves its degenerated configuration. Note that the quality
index tends to zero when x → ±∞, because the limit ±∞ can also be considered
as a degenerated position.

Figure 2.5(a) also shows that the quality index has two maximums, achieved
for x = ±√3/2. In these two points, the value of the measure is 1, because the
equilateral (ideal) configuration is achieved. However, when we have the triangle in
a mesh, it inherits an order in the nodes from the connectivity matrix. Lets consider
that the analysed triangle inherits the nodal order {x0,x1,x2}. Then, the only valid
position to place the nodes is in the right side domain (x =

√
3/2). The other

maximum (x = −√3/2) leads to an inverted configuration that is not acceptable in
a mesh.
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Figure 2.5: (a) Quality index q(S(x0,x1,x2(x))) and (b) objective function
η(S(x0,x1,x2(x))), moving x0(x) for x ∈ [−5, 5].

Figure 2.5(b) shows that the optimal locations for node x2 are at the two mini-
mums. Moreover, an asymptote has appeared at x = 0, due to the achievement of
the degenerated configuration (σ(S) = 0).

Note that function (2.8) is not able to untangle elements because it only measures
the shape of the elements, but it does not consider their orientation. Thus, it can
not distinguish the correct position among the two minima. These difficulties will
be overcome on Section 2.6.

2.3 Planar quality measure for quadrilateral ele-

ments

As we have already introduced in Section 2.2.1, in order to define the quality of a
quadrilateral element, we shall divide it into four triangles defined by each vertex
of the quadrilateral and the two adjacent ones (see Figure 2.3). Recall that we
anticipated this idea in order to remark that the ideal triangle is no necessarily
always the equilateral one. Now that we are strictly working with quadrilaterals,
lets formulate a more precise development of the quality of a quadrilateral element.

In Section 2.2, we have revised the construction of a quality measure for triangles
that holds the properties required by reference [Knupp 01]. It has been a simple
and useful construction based on three main elements: the physical element, and
the ideal and reference ones. The physical element was the triangle that is being
analysed, the ideal element was the equilateral one, and the reference element was
the isosceles triangle (with vertices (0, 0), (1, 0), (0, 1)), which lets us define affine
mappings between the other triangles in a simple way.
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Taking advantage of the simplicity of the construction for triangular elements,
we use this theory in order to define a quality index for quadrilateral elements. To
this end, we also need an ideal quadrilateral element in order to compare it with the
physical quadrilateral, and thus, determine its quality. The ideal quadrilateral is the
square because it represents the shape that we would like for all the quadrilaterals
of a mesh.

However, there is no simple way to directly develop an analogous quality theory
for quadrilaterals. Thus, the quality measure for a quadrilateral is defined through
the decomposition of the quadrilateral into four triangles (recall Figure 2.3). The
quality measure is defined then by a weighting of the sum of the quality functions
of the four triangles.

Since we have commented that the ideal quadrilateral is the square, the ideal
triangle is becomes then isosceles rectangle triangle, due to the fact that if one
decomposes the way we have exposed a square into triangles, the resulting trian-
gles are isosceles rectangle. Thus, lets proceed defining the quality measure for a
quadrilateral with nodes x0, x1, x2 and x3.

If we denote by η(xi,xj,xk) ≡ η(S(xi,xj,xk)) the shape metric of a triangular
element defined by nodes xi,xj,xk, the extended definition for a quadrilateral {x0,
x1, x2, x3} is presented in Equation (2.10) (see [Knupp 03] and [Knupp 03b]):

η(x0,x1,x2,x3) =
η(x0,x1,x2) + η(x0,x1,x3) + η(x0,x2,x3) + η(x1,x2,x3)

4
. (2.10)

Note that since Equation (2.10) achieves its minimum when all the triangles are
isosceles rectangle and will tend to infinite when any of the subtriangles becomes
degenerated, since the shape metric of such degenerated triangle tends to infinity.

Similarly to Equation (2.9), we define the quality index of a quadrilateral as the
inverse of the shape metric

q(x0,x1,x2,x3) =
1

η(x0,x1,x2,x3)
. (2.11)

Note that the quality function q(x0,x1,x2,x3) behaves as introduced on Section 2.1,
holding all the points that the definition of quality function requires. Specifically,
it will take value 1 for the ideal quadrilateral, since the shape metric of all the
subtriangles will take value 1. Moreover, it will take value 0 when any of the the
subtriangles is degenerated (and so it is the quadrilateral), since the shape metric
of such triangle will tend to infinity, and thus, q(x0,x1,x2,x3)→ 0.

In order to illustrate the behaviour of the quality index q(x0,x1,x2,x3), pre-
sented in (2.11), and the objective function η(x0,x1,x2,x3), defined in (2.10), for a
given quadrilateral {x0,x1,x2,x3}, we introduce the following example: consider a
quadrilateral element with three fixed nodes, x1 = (0, 0.5) and x2 = (−0.5, 0) and
x3 = (0,−0.5), and a fourth node x0(x) = (x, 0) that we can move on the x-axis,
see Figure 2.6.
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Figure 2.6: Quadrilateral element with a moving the node, x0.

Figures 2.7(a) and 2.7(b) show the quality index and the objective function when
node x0 moves from x = −5 to x = 5. Note that we have selected the square as
ideal element.
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Figure 2.7: (a) Quality index q(x0(x),x1,x2,x3) and (b) objective function
η(x0(x),x1,x2,x3), moving x0(x) for x ∈ [−5, 5].

The first remarkable property comparing these plots to the analogous ones for
triangles is the fact that the quadrilaterals have just one global maximum (minimum
for the objective function). While in the triangle case we can always have two
possible ideal configurations, the decomposition of the quadrilateral element into
several triangles allows only one ideal position of the free node. Thus, for triangles
the correct position of the free node can only be chosen taking on account the
orientation of the triangle, but, for quadrilaterals, the own definition of the shape
metric does not let any room for several possible configurations.

However, the number of local maxima/minima increases and hence, it also does
increase the difficulty to untangle the quadrilateral if the free node is in a tangled
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Figure 2.8: Triangular mesh with 2 inner nodes. Marked in grey the local submesh
Mv, for v ≡ x5.

position. In Section 2.6 we will introduce a technique that is able to untangle
triangular and quadrilateral meshes by modifying the definition of the triangular
objective function (2.8).

Finally, note that it is a bit harder than for triangles to read the behaviour of
the quality/objective function in the central domain, since the decomposition of the
quadrilateral definition into four triangles amplifies the casuistry (this will be better
exemplified in Section 2.5 when working with a whole quadrilateral mesh).

2.4 The objective function for a triangular mesh

Suppose that we have a given mesh M, instead of just an element as we had in
Section 2.2.2. In order to improve the quality of all the elements of the mesh (smooth
the mesh) we will modify the location of the inner nodes. Thus, all boundary nodes
will be fixed. Let V be the set of inner nodes and let v be a given node v ∈ V .

Given a node v ∈ V we define the local submesh associated to it,Mv, as the set
of elements that contain node v. Figure 2.8 shows the local mesh associated to the
inner node x5. The coordinates of the nodes of the mesh in Figure 2.8 are:

x1 = (0, 0) x2 = (1
2
, 0)

x3 = (1, 0) x4 = (0, 1
2
)

x5 = (1
3
, 1

2
) x6 = (1

6
, 1

2
)

x7 = (1, 1
2
) x8 = (1, 0)

x9 = (1, 1
2
) x10 = (1, 1)

The objective function on node v will be computed as a weighting of the contri-
bution of all the elements that belong to its local mesh.
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Let x = (x, y) be the coordinates of the inner node v, and let Mv be the
associated local submesh. Assume that Mv is composed by m elements (triangles
in our case).

Let Sk be the Jacobian matrix of the kth triangle of Mv. Then, according to
[Knupp 03b], we write the objective function (or shape metric) on the kth triangle
as

ηk(x) =
|Sk(x)|2

2σ(Sk(x))
. (2.12)

We define the objective function on node v as the p-norm4 of the objective function
of all the triangles of its local submesh:

Kp
η (x) =

(
m∑
k=1

(ηk)
p (x)

)1/p

. (2.13)

In this context, we define the feasible region as the set of points where the free
node can be located to get a valid mesh. Concretely, the feasible region is the
interior of the polygonal set H = ∩k=m

k=1 Hk where Hk are the half-planes defined
by σk(x) ≥ 0. We say that a triangle of the mesh is inverted if σ(x) < 0, and
degenerated if σ(x) = 0.

Figure 2.9 presents the surface and the contour plots of the objective function
corresponding to node 5 of the mesh presented in Figure 2.8.
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Figure 2.9: Objective function of node 5 of the mesh of Figure 2.8, with a fixed
threshold equal to 25.

4In this project we will consider by default the 2-norm, p=2.
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The objective function (2.13) has several asymptotes at the boundary of the fea-
sible region, where σ = 0. This avoids the optimization algorithm creating a tangled
mesh when it starts from a valid position of node x5. However, these asymptotes do
not allow the optimization algorithm to reach a valid position when it starts from a
tangled one (x5 initially placed in a position that defines a tangled triangle).

Moreover, the objective function also presents local minima outside the feasible
region. Then, the optimization algorithm, that is indeed a minimization, will find
a minimum that is not the optimal position. Furthermore this local minimum will
generate a tangled triangle.

2.5 The objective function for a quadrilateral

mesh

Given a quadrilateral mesh M and a certain local submesh Mv associated to an
inner node v, let x = (x, y) be the coordinates of the node v. Assuming that
Mv is composed by m quadrilaterals, let ηk be the objective function of the kth
quadrilateral that contains node v, see Equation (2.15).

Analogously to the triangular case, we define the objective function on node v
as the p-norm of the objective function of all the quadrilaterals of its local submesh:

Kp
η (x) =

(
m∑
k=1

(ηk)
p (x)

)1/p

. (2.14)

However, note that at the same time, if ηk is the objective function for the kth
quadrilateral, it is indeed defined by ηk = η1

k + η2
k + η3

k + η4
k, where ηjk, j = 1, . . . , 4

denotes the jth triangle that defines the objective function of the analysed quadri-
lateral (Equation (2.15)).

Figure 2.10 shows the local mesh associated to the inner node x6. The coordi-
nates of the nodes of the mesh in Figure 2.10 are:

x1 = (0, 0) x2 = (1
3
, 0)

x3 = (2
3
, 0) x4 = (1, 0)

x5 = (0, 0.5) x6 = (1
3
, 0.5)

x7 = (2
3
, 0.5) x8 = (1, 0.5)

x9 = (0, 1) x10 = (1
3
, 1)

x11 = (2
3
, 1) x12 = (1, 1)

Figure 2.11 presents the contour plot of the objective function corresponding to
node 6 of the mesh presented in Figure 2.10. Note that for the quadrilateral case
we avoid displaying the surface plot, since the number of local minima would not
let a proper understanding of the figure.
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Figure 2.10: Quadrilateral mesh with 2 inner nodes. Marked in grey the local
submesh Mv, for v ≡ x5.
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Figure 2.11: Objective function of node 6 of the mesh of Figure 2.10, with a fixed
threshold equal to 25.

As it already happened for the triangle case, the objective function (2.14) has
several asymptotes at the boundary of the feasible region, where σ = 0 for any of the
triangles that define the objective function of the four quadrilaterals that compose
the selected submesh. The same observations that were brought up for triangular
meshes still hold. On the one hand, the asymptotes prevent the optimization algo-
rithm of creating a tangled mesh when the optimization starts from a valid position
of node x6. On the other hand they do not allow the optimization algorithm to
reach a valid position when it starts from a tangled one. Note that now the ob-
jective function presents even more local minima outside the feasible region, due to
the increase in the number of underlying triangles needed to define the objective
function.
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2.5.1 Computational improvement of the standard planar
objective function for a free node in a quadrilateral
mesh

In this section analyse the definition of objective function that we have brought up
for quadrilateral elements. We will find that it can be computationally improved
when used in an optimization procedure through a minimization process.

Equation (2.10) defines the objective function of any quadrilateral element as
a weighting of the objective functions related to the four underlying triangles, see
Figure 2.3.

In an optimization procedure, we loop on the submeshes defined by each inner
node and we will improve the location of the inner node maintaining the boundary
nodes fixed. Thus, if we place ourselves in one of the quadrilaterals of the submesh
and we let x ≡ x0 be the free node, x1,x2,x3 are constants.

Hence, ,

dη
dx

(x,x1,x2,x3) =
1
4

dη
dx

(x,x1,x2) +
dη
dx

(x,x1,x3) +
dη
dx

(x,x2,x3) +

0︷ ︸︸ ︷
dη
dx

(x1,x2,x3)


=

1
4

(
dη
dx

(x,x1,x2) +
dη
dx

(x,x1,x3) +
dη
dx

(x,x2,x3)
)
.

Therefore, when computing the derivatives, the fourth triangle does not provide
any information. Furthermore, note that in an optimization procedure of node
x the contribution to the quadrilateral objective function of the constant triangle
(x1,x2,x3) can be directly eliminated, since it is a constant and its elimination will
not modify the location of the global minimum.

Thus, we can redefine the objective function as follows:

η(x0,x1,x2,x3) =
η(x0,x1,x2) + η(x0,x1,x3) + η(x0,x2,x3)

3
, (2.15)

being x0 the free node.

Note that we cannot take this expression any more as a shape index to define
a quality measure, since it does not measure correctly the overall quality of the
analysed quadrilateral element. However, note that in an optimization procedure
it performs as the standard objective function defined from the four underlying
triangles.

The objective function 2.15 presents a reduction of 3/4 of its original cost. Note
that this is an important improvement, since all the optimization procedure is based
on this function and it will be called a large number of times.
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Next we repeat the examples introduced in Figures 2.6 and 2.10, using the ob-
jective function (2.15) instead of (2.10).

Figure 2.12(a) presents the optimized objective function for the quadrilateral
with three fixed nodes and a fourth node free on the x-axis (Figure 2.6). Note
that Figure 2.12(a) is exactly the same function that was presented in Figure 2.7(b)
except from a constant.
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Figure 2.12: a) Optimized objective function of x2(x), x ∈ [−5, 5], of the mesh
presented on Figure 2.4. b) Optimized objective function of node 6 of the mesh
presented of Figure 2.10, with a fixed threshold equal to 25.

Figure 2.12(b) shows a representation of the optimized objective function (2.15).
We can compare it with Figure 2.11 in order to see that this new definition of
objective function does still hold the same global minimum.

Note that the level curves are similar in both figures. The only difference is the
value that the level curves take, which now differences from the original plot from
just a constant.

Further on, the definition of the quadrilateral objective function can be even
more optimized. The decomposition into four triangles and thus, taking as ideal
triangle the isosceles one, guaranties that the ideal quadrilateral is the square.

However, note that if we decompose a quadrilateral element into three triangles
(selecting the triangles that belong to the free node, as we have just done) and we
impose them to be the ideal triangle, we already have the ideal quadrilateral. This
indeed proves that Definition 3.18 of objective function is correct.

Moreover, if we only take into account two of the four underlying triangles con-
sidered in the decomposition of the quadrilateral element, we still can define an
objective function with a behaviour similar to the objective function (2.15). That
is, if we impose that the ideal triangle for the two selected triangles is the isosceles
and rectangle triangle, then, the ideal quadrilateral element is the square.
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The prove is straight forward: since we impose that three edges of the quadri-
lateral have the same length and that two angles are rectangle, the quadrilateral
defined by such triangles can only be the square. This property can be really useful,
since it reduces the number of required computations of the initial objective function
to the half.

Thus, we could define the quadrilateral objective function as a weighting of the
sum of the objective functions corresponding to two triangles, even obtaining the
same results. Note that we can freely choose which triangles (from the three that
have the free node as a vertex) we do include in the definition of the objective
function. In order to have a more robust optimization objective function we can
choose the two triangles with opposite angles, since the symmetry of such definition
may help to have a more robust function for our purpose (see Figure 2.13).

Figure 2.13: Simplification of the standard division of a square in order to compute
its objective function.

This way, the objective function would be defined as:

η(x0,x1,x2,x3) =
η(x0,x1,x2) + η(x0,x2,x3)

2
, (2.16)

being x0 the free node.

Figures 2.14(a) and 2.14(b) present the plot of the second modification of the
objective function for the presented examples. Note that this third definition gives
the same global minimum but some of the asymptotes that appeared in the previous
definitions have disappeared. This indicates that this objective function does not rec-
ognize some positions that define the eliminated triangle as degenerated. However,
since the minimum is not modified, the fact that some asymptotes are eliminated
could be indeed useful, since the resulting objective function is smoother, having
less local minima.



2.6. MODIFIED OBJECTIVE FUNCTION: A FUNCTION FOR
UNTANGLING AND SMOOTHING ELEMENTS 27

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

x=0.5

(a)

 

 

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

4

6

8

10

12

14

16

18

20

22

24

(b)

Figure 2.14: a) Second optimized objective function of x2(x), x ∈ [−5, 5], of the
mesh presented on Figure 2.4. b) Second optimized objective function of node 6 of
the mesh presented of Figure 2.10, with a fixed threshold equal to 25.

The objective function (2.16) avoids the computation of the objective function
of a subtriangle that does vary with the optimization of the free node. However,
the argument that we are using to eliminate the contribution of the third triangle is
that imposing to two of the subtriangles to be isosceles rectangle is enough to have
as ideal element the square.

As result we have a key that does accomplish the proposed objective in a com-
putationally cheaper way, but that may be indeed less robust than the previous
definitions. This way we cannot say anything about which of the new modifications
of the original objective function will be more efficient in our optimization procedure
without testing them.

From now on, we take (2.15) as the default objective function to use. However,
when working with the examples, we will bring back (2.16) in order to check if the
results of this second modified function are good or not compared to the ones of
(2.15).

2.6 Modified objective function: a function for

untangling and smoothing elements

2.6.1 Modified objective function for triangular element
meshes

In this section we review a modification of the objective function developed in
[Escobar 03] in order to avoid the asymptotes and the local minimum that appear
using the original objective function (2.13).
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Figure 2.9 shows that despite the fact that the objective function is smooth in
the region that defines a valid local meshMv, it has discontinuities at the boundary.
This happens due to the fact that when σk tends to zero, ηk tends to infinity.

If we want to smooth the mesh and the free node is inside the feasible region,
function (2.13) behaves well, because it is smooth in this region. But if there exist
tangled elements, function (2.13) can not be used due to the existence of these
asymptotes.

To avoid this drawback, according to [Escobar 03], we modify the objective func-
tion (2.13) in order to obtain a new one that is smooth all over R2. As stated in
[Escobar 03], the new objective function will achieve its minimum near to the one
of the original function.

The modification consists on replacing σ in (2.12) by

h(σ) =
1

2

(
σ +
√
σ2 + 4δ2

)
, (2.17)

where δ is an arbitrary parameter that is chosen depending on the problem (see
[Escobar 03] for further details). Note that function (2.17) is a positive increasing
function that verifies h(0) = δ. Figure 2.15 presents a plot of h(σ) versus σ that
illustrates the properties of h(σ).

 

 

δ

σ

h(σ)

Figure 2.15: h(σ) vs σ

Note that limδ→0 h(σ) = σ, ∀σ ≥ 0, and limδ→0 h(σ) = 0, ∀σ ≤ 0. Then, on
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the one hand, for small values of δ when the free node is in the feasible region, the
modified function is similar to the original one. On the other hand, if it is in a
tangled position, as it gets further from the feasible region (σ → ±∞), the function

never loses its smoothness but has limit equal to infinity (η
h(σ)→0−→ ∞). Further

details on the behaviour of h(σ) and on the selection of the value of δ can be found
in [Escobar 03].

Taking into account this modification, see Equation (2.17), the new objective
function for the local mesh is

|K∗η |(x) =

(
m∑
k=1

(η∗k)
p(x)

)1/p

, (2.18)

where

η∗k =
|Sk|

2h(σk)
. (2.19)

We will proceed by reproducing the already presented examples for the standard
objective function, but now using the modified version. Figure 2.16 presents the
modified objective function5 of the mesh on Figure 2.4 where all the nodes of a
triangle where fixed and one free node was moved on the x-axis:
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Figure 2.16: a) Modified objective function of x2(x), x ∈ [−5, 5] (of the mesh
presented on Figure 2.4). b) Modified objective function of x2(x), x ∈ [−5, 5] (of
the mesh presented on Figure 2.4) with a threshold equal to 10.

Note that now the asymptotes have disappeared and that the function is smooth
over all the x-axis and preserves the minimum close to the original one. This would

5Note that Figures 2.16(a) and 2.16(b) present the same plot, but Figure 2.16(b) focuses in the
behaviour of the function near the minimum.
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let us find the correct configuration of the triangle if we assume that the order on
the nodes of the triangle6 is {x0,x1,x2} (and hence, the minimum must be on the
right-hand side of the domain).

Figure 2.17 presents the plots of the new objective function, Equation (2.18), for
the node x5 of the mesh defined in Figure 2.8.
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Figure 2.17: Modified objective function of node 5 of the mesh of Figure 2.8.

Note that this new function has no asymptotes and is smooth all over the domain.
The minimum of the function approximately the same that the original function had
in the feasible zone. Then, using this function instead of the original (2.9) will let
us untangle as well as smooth the mesh.

2.6.2 Modified objective function for quadrilateral element
meshes

Taking into account the modification for the objective function for triangular ele-
ments introduced in Section 2.6 and taking into account the new objective function
for quadrilaterals, presented in Equation (2.15), we define the modified objective
function for quadrilateral elements as

η∗(x0,x1,x2,x3) =
η∗(x0,x1,x2) + η∗(x0,x1,x3) + η∗(x0,x2,x3)

3
, (2.20)

and then, the objective function for a local mesh is defined analogously to Equation
(2.18).

6Note that there are two possible ideal configurations, but that once we infuse an orientation
and an order on the triangle -inherited from the mesh in which it is placed-, just one configuration
is valid.
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Figure 2.18 shows the modified objective function for the mesh presented on
Figure 2.6, a quadrilateral with a free node. Note that this modified objective
function has no asymptotes and through a minimization procedure we would be
able to find its global minimum (the optimal configuration of the quadrilateral)
starting from any initial point.
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Figure 2.18: a) Modified objective function of x0(x), x ∈ [−5, 5] (of the mesh
presented on Figure 2.6). b) Modified objective function of x0(x), x ∈ [−5, 5] (of
the mesh presented on Figure 2.6) with a threshold equal to 10.

Figure 2.19 presents the plot of the modified objective function for a submesh
for the node x6 of the example presented in Figure 2.10:
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Figure 2.19: Modified objective function of node 6 of the mesh presented in Figure
2.10.

Once again, the modified objective function eliminates the asymptotes but main-
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tains the global minimum on approximately the same location than the original
objective function (2.15). Hence, the modification of the objective function allows
us using a minimization method from any starting point (even if it defines a tan-
gled configuration) ensuring that it will reach the global minimum of the objective
function.

Similarly, this modification can be also applied to the objective function (2.16).
In this case, the modified objective function becomes:

η∗(x0,x1,x2,x3) =
η∗(x0,x1,x2) + η∗(x0,x2,x3)

2
. (2.21)

If we use the second simplification of the standard objective function, the same effect
is still preserved: the remaining asymptotes that this objective function disappear
and it results in a smooth function all over the domain. Moreover, note that function
(2.21) presents the minimum in the same position than (2.20). Now, the asymptotes
that differentiated both functions are not present, and Figures 2.18 and 2.20 become
nearly equal.
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Figure 2.20: a) Modified optimized objective function of x0(x), x ∈ [−5, 5] (of
the mesh presented on Figure 2.6). b) Modified optimized objective function of
x0(x), x ∈ [−5, 5] (of the mesh presented on Figure 2.6) with a threshold equal to
10.

Figure 2.21 presents the modified optimized objective function (2.21) for the
second proposed example. Note that the asymptotes have disappeared but the
minimum is kept in the same position than in the standard objective function (Figure
2.11) and its modified version (Figure 2.19).
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Figure 2.21: Modified objective function (2.16) of node 6 of the mesh of Figure 2.10,
with a fixed threshold equal to 25.

As we commented when we presented this second optimized objective function,
it seems to hold the same minimum and to have an even smoother behaviour than
the original one (with three or four triangles). However, for the moment we do not
consider it as the standard objective function for quadrilaterals, since we are not
able to ensure that it is as robust as the standard one. In the examples, see Chapter
5, we will compare the behaviour of both presented objective functions and analyse
which one is more convenient.

2.6.3 Determination of parameter δ

We have already checked the good performance of the modification of the standard
objective function. Despite the good results that the use of h(σ, δ) presents, the
modified objective function is sensitive to the selection of the δ parameter. Hence,
in this section we detail how to determine the proper value of parameter δ. We
detail the selection of δ for triangular meshes to simplify the exposition. The case
of quadrilateral elements can be reduced to the triangular case in a straightforward
manner.

To determine the right value of parameter δ we have to take into account the
value σ. That is, δ has to be large enough to ensure that δ2 is significant compared
to σ2. In addition, it has to be small enough to ensure a small perturbation of the
location of the minimum of the objective function. Specifically, h(σ, δ) can slightly
modify the location of the minimum if it ensures always that the new location is
inside the feasible region. Thus, once the modified objective function has driven the
free node inside the feasible region, we can use the standard objective function to
obtain the exact minimum.

The modification of the objective function by means of function h(σ, δ) is pro-
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posed in [Escobar 03]. In this work the authors present several examples where δ
has the same value for all the mesh nodes. However, we have detected that this
approach does not work properly for several of our test meshes. To address this
issue, we propose two different approaches to determine the value of δ.

The goal of the first approach is to obtain for each submesh the smallest δ that
determines a convex objective function without asymptotes. Moreover, we require
δ to be a constant in each submesh to simplify the computation of the objective
function derivatives. To this end, the value of δ can only depend on the initial σ0

k

of the k = 1, . . . , n triangles of the submesh.

We propose to use the modified objective function only if there is a tangled tri-
angle in the analysed submesh, that is, an element with a negative σ0

k. Moreover, we
use as a reference the value σ0

− corresponding to the triangle with the smallest value
of σ0. In this way, we can control undesired numerical cancellations in the expression
of h(σ0

−, δ) that determine singularities of η∗. These numerical cancellations appear
in triangle configurations where σ0

− � 0 and 0 < δ � 1 because (σ0
−)2 +4δ2 ≈ (σ0

−)2

and therefore h(σ0
−, δ) ≈ 0.

We proceed to develop a formula to determines the proper value of δ. If we recall
Figure 2.15, h(σ, δ) is an increasing function. In addition, in each iteration of the
minimization procedure we obtain new positions of the free node that determine
increasing values of σ. Thus, it is enough to ensure that h(σ0

−, δ) > 0 to avoid
singularities arise during the minimization. Moreover, we propose to select the
lowest possible value for δ that ensures h(σ0

−, δ) 6= 0.

Following these ideas, we can deduce the formula that determines the proper
value of δ. We want

h(σ0
−, δ) =

1

2

(
σ0
− +

√
(σ0−)2 + 4δ2

)
= tol > 0. (2.22)

Hence,

δ(σ0
−) =

√
(2 · tol + |σ0−|)2 − (σ0−)2

2
=
√
tol2 + tol · |σ0−|. (2.23)

The parameter tol must be relatively smaller than σ0
−, but large enough to not

becoming zero compared to it. Thus, we should take it as

tol = α · |σ0
−|, (2.24)

where α = 10−n ∈ (10−3, 10−6). Note that now, we are controlling that

• h(0, δ(σ0
−)) = δ(σ0

−), and

• h(σ0
−, δ(σ

0
−)) = tol.
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Figure 2.22 presents the same plot of Figure 2.15, highlighting the points we are
now able to control:

 

 

δ

tol

σ0
−

σ

h(σ)

Figure 2.22: h(σ, δ(σ0
−)) vs σ

As we choose tol to be (2.24), expression (2.23) can be simplified:

δ(σ0
−) =

√
tol2 + tol · |σ0−|

tol=α·|σ0
−|

= |σ0
−| ·
√
α2 + α. (2.25)

This first approach determines a formula for δ in function of the initial σ0
k of the

analysed submesh. Following, we detail the second approach which is simpler and
even more robust and effective.

The second approach is based in the fact that the presented quality metric only
depends on the shape of the measured element. Specifically, the quality metric is
invariant under rotations, translations and changes of scale. Hence, in this approach
we propose to scale any given triangle into a certain size that fits to a constant delta.

For triangles whose side length is around one, we have empirically tested that
a value δ = 0.01 accomplishes the two already explained points that we want δ to
hold. Hence, given a submesh we follow the next procedure:

1. Compute the lengths of the boundary edges of the triangles of the submesh.

2. Compute the maximum of such lengths, Λ.

3. Finally, scale the triangles dividing the length of the edges by Λ.

This approach is robust because δ can be determined for a reference configu-
ration and all other configurations can be reduced to this one by scaling. In our
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implementation we use the value δ = 0.01, that slightly perturbs the location of the
minimum and ensures the convergence of the minimization process. Note that, the
empirical value δ = 0.01 can also be obtained from formula (2.23), since δ(1) ≈ 0.01.
That is, 1 is a upper bound of the area of a general triangle with edges of length
less or equal to 1.

Note that from now on we will use the second approach. Abusing the notation,
given a submesh M and its triangles tk, k = 1, . . . ,m, we define a scaling function
λ̃(t), and instead of using the standard objective function η∗(t), use a composed
version η̆∗(t) = η∗ ◦ λ̃(t). Since the objective function is invariant under change of
scale, it holds that

η̆∗(t) = η∗ ◦ λ̃(t) = η∗(t).

In order to simplify the notation for the following sections, we rename η̆∗(t) by the
usual name η∗, since we are no more going to use the standard one (in Section 3.3
we retake this function and specify its formulation mixed with the surface theory).

It is important to point out that the second approach can only be applied when
the objective function is invariant under scaling. In that case, such when the quality
measure takes into account the size of the elements, we can use the first approach
determined by Equation (2.23).



Chapter 3

Objective function for surfaces

3.1 Objective function for triangles on surfaces

The purpose of this chapter is to extend the smoothing and untangling algorithms
for planar meshes presented in Chapter 2 to meshes defined on parametric surfaces.
To this end, we will express the objective function of a triangle in function of the two
variables that define the surface parametric space. Since a triangle on the surface
is planar but it is immersed in R3, we want to achieve our goal by mapping this
triangle to a geometrically equivalent triangle in R2 and apply the already known
theory for triangles immersed in R2 [Knupp 01].

First, we introduce the following notation:

• The space of triangles immersed in R3 is:

T3 := {τ = (y0,y1,y2) ∈ R3 × R3 × R3}

• The space of triangles in the plane R2 is:

T2 := {t = (x0,x1,x2) ∈ R2 × R2 × R2}

• The space of triangles in the parametric plane U is:

TU := {tU = (u0,u1,u2) ∈ U × U × U}

Recall that given a triangle t = (x0,x1,x2) ∈ T2, it has been explained in Section
2.2.1 how to determine its quality and objective functions. In this section, the
objective function for t ∈ T2 is renamed as η2 and it is defined according to Equation
(2.8).

37
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3.1.1 The parametric objective function for triangles

Given a triangle τ = (y0,y1,y2) ∈ T3 on a surface Σ, we can map it to a triangle
with the same size and shape in R2. Assume, with no loss of generality, that y0 is
the free node of the triangle.

Figure 3.1: Diagram of mappings determining the parametric objective function.

Assume that the triangle τ = (y0,y1,y2) lies on a surface Σ that can be locally
parameterized by a given function

ϕ : U ⊂ R2 −→ Σ ⊂ R3

u = (u, v) 7−→ y = ϕ(u),
(3.1)

that is invertible and at least C2. We define a new function ϕ̃,

ϕ̃ : T2
U ⊂ U × U × U −→ T3 ⊂ R3 × R3 × R3

(u0,u1,u2) 7−→ (y0,y1,y2) = (ϕ(u0), ϕ(u1), ϕ(u2)),
(3.2)

that maps a triangle tU = (u0,u1,u2) on the parametric plane to a triangle τ =
(y0,y1,y2) that lies on the surface defined by ϕ, see Figure 3.1.

Since τ is planar, we can define a mapping T̃ (see Figure 3.1) such that

T̃ : T3 −→ T2

τ = (y0,y1,y2) 7−→ t = (x0,x1,x2),
(3.3)
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where τ and t are geometrically equivalent, but each one is placed on a different
space. Several affine mappings can be constructed such that they map a certain
triangle with three coordinate vertices to an equivalent triangle in R2.

Following, we define a linear mapping T from the canonical basis on R3, where the
triangle τ is defined, to a new orthogonal basis obtained from a proper combination
of two edges of the triangle.

Figure 3.2: Vector edges e1 and e2 for a triangle τ = (y0,y1,y2) on a surface Σ.

Let

e1 := y2 − y1,

e2 := y0 − y1,

be two vector edges of the triangle, see Figure 3.2. We define

ẽ1 :=
e1

‖e1‖ , and

ẽ2 := sign · ẽ2,0, where ẽ2,0 =
e2 − (eT2 · ẽ1)ẽ1

‖e2 − (eT2 · ẽ1)ẽ1‖
as the two orthonormal vectors of the new basis, where sign is defined such that we
obtain a well oriented orthonormal basis. Specifically, if we denote by n the normal
vector to the surface at y1, obtained as n(y1) = ∂ϕ

∂u
(u1, v1) × ∂ϕ

∂v
(u1, v1), then we

define the sign as

sign :=
(ẽ1 × ẽ2,0) · n
|(ẽ1 × ẽ2,0) · n| =

det(ẽ1, ẽ2,0,n)

| det(ẽ1, ẽ2,0,n)| .

Now, we can define the required linear mapping

T : R3 −→ R2

y 7−→ M · (y − y1)
(3.4)

where M is the 2× 3 matrix

M =

(
ẽT1
ẽT2

)
.
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Note that M does depend on the three nodes of the considered triangle, M ≡
M(y0,y1,y2).

Now, using the linear mapping T, we can define T̃ for the space T3:

T̃ : T3 −→ T2

τ = (y0,y1,y2) 7−→ t = (x0,x1,x2) = (T(y0),T(y1),T(y2)).
(3.5)

Note that

T(y1) = M · (y1 − y1) =
(

0
0

)
, and (3.6)

T(y2) = M · (y2 − y1) =

(
eT
1
‖e1‖

sign · (ẽ2,0)T

)
· e1 =

( ‖e1‖
0

)
. (3.7)

Therefore, T(y1) and T(y2) are independent from node y0. This is of the major
importance in order to simplify the final expression of the objective function for
surfaces.

Finally, we compute T(y0):

T(y0) = M · (y0 − y1) =

 eT
1

‖e1‖

sign ·
(

e2−(eT
2 ·ẽ1)ẽ1

‖e2−(eT
2 ·ẽ1)ẽ1‖

)T
 · e2

=

 eT
1 e2

‖e1‖

sign · eT
2 e2−(eT

2 ·ẽ1)ẽT
1 e2

‖e2−(eT
2 ·ẽ1)ẽ1‖

 =

 eT
1 e2

‖e1‖

sign · eT
2 e2−(eT

2 ·ẽ1)ẽT
1 e2√

eT
2 e2−(eT

2 ẽ1)2


=

( ‖e2‖ cos(α)

sign ·
√

eT2 e2 − (eT2 ẽ1)2

)
=

( ‖e2‖ cos(α)

sign ·√‖e2‖2 − (‖e2‖ cos(α))2

)

=

( ‖e2‖ cos(α)

sign · ‖e2‖
√

1− cos2(α)

)
=

( ‖e2‖ cos(α)

sign · ‖e2‖ · | sin(α)|

)

=

( ‖e2‖ cos(α)

‖e2‖ sin(α)

)
,

where α is the inner angle defined between e1 and e2 (see Figure 3.3).

Therefore, the proposed mapping, is equivalent to a geometric transformation by
means of trigonometry reasoning presented in Figure 3.3. Note that we define the
mapping in a vectorial approach in order to avoid angle indeterminations brought
up by the inverse of the trigonometry functions that are required to compute α.
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Figure 3.3: Scheme of function T̃.

Now, we have a set of mappings that allow us to write the objective function for
a triangle τ according to its parametric coordinates (see Figure 3.1):

η̃3 : TU ϕ̃−→ T3
η3−→ R

(u0,u1,u2) 7−→ ϕ̃(u0,u1,u2) 7−→ η3(ϕ̃(u0,u1,u2)),
(3.8)

where

η3 : T3
T̃−→ T2

η2−→ R
(y0,y1,y2) 7−→ T̃(y0,y1,y2) 7−→ η2(T̃(y0,y1,y2)).

(3.9)

We denote the previous composition

η̃3 := η3 ◦ ϕ̃ = η2 ◦ T̃ ◦ ϕ̃ (3.10)

as the parametric objective function. We have determined a new approach for the
objective function (shape index for surface triangles). As in the planar case, we
can directly define the parametric quality measure as the inverse of the parametric
objective function:

q̃ :=
1

η̃3

. (3.11)

3.1.2 The parametric objective function for an optimization
procedure in a triangular mesh

The parametric objective function η̃3 defined on Section 3.1.1 assigns a scalar value
to a triangle determined by its three parametric coordinates:

η̃3 : TU ⊂ R6 ϕ̃−→ T3 ⊂ R9 T̃−→ T2 ⊂ R6 η2−→ R
(u0,u1,u2) 7−→ (y0,y1,y2) 7−→ (x0,x1,x2) 7−→ η2((x0,x1,x2)).

Given a triangular mesh on a parametric surface, we consider the submesh My

around a node y = y0 = ϕ(u0). Consider a triangle τ = (y0,y1,y2) of this submesh,
in which y0 denotes the free node.
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In this section we prove that for fixed values of u1 and u2, the function η̃3 can
be expressed as the new function

η̂3 : U ⊂ R2 ϕ̃−→ Σ ⊂ R3 T̃−→ R2 η̂2−→ R
u0 7−→ y0 7−→ x0 7−→ η̂2((x0,x1,x2)),

(3.12)

where u0 is the free node required for the optimization procedure.

To this end, we first define η̂3 as the parametric objective function for a free node
y = ϕ(u):

η̂3 : U ⊂ R2 −→ R
u 7−→ η̂3(u) := η̃3(u,u1,u2) = η̂2(T̃(ϕ̃(u))).

(3.13)

We will prove that
η̂3(u) := η̂2 ◦T ◦ ϕ(u) (3.14)

is equivalent to (3.13). Note that in (3.14) presents η̂3 as a composition of simpler
functions than (3.13). Recall that T has been defined in Section 3.1.1 and that the
following definition has been introduced:

η̂2(x) := η2(x,x1,x2), (3.15)

being

x1 = T(y1) =

(
0
0

)
,

x2 = T(y2) =

( ‖e1‖
0

)
,

the image by T of the physical coordinates of the fixed vertices y1 and y2. Note
that in order to be able to define the restriction (3.13) of function (3.8) through the
composition of functions (3.1), (3.4) and (3.15) it has to be checked that x1 and x2

can be computed independently of the free node y = ϕ(u):

First, it is clear that y1 = ϕ(u1) and y2 = ϕ(u2) are independent from u0.
Second, despite we have seen that the analytical expression of function T, Equation
(3.4), does depend on both y,y1,y2, we have checked in (3.6) and (3.7) that the
image by T of y1 and y2 is constant on y.

Hence, it is correct to consider η̂3(u) as objective function of the free node of
a given physical 3D triangle parameterized from a parametric plane U . Equation
(3.16) proves that η̂3(u) and η̃3(u,u1,u2) are indeed equivalent when u1 and u2 are
fixed:

η̂3(u) = (η̂2 ◦T ◦ ϕ)(u) = η2(T(ϕ(u)),x1,x2)

= η2(T(ϕ(u)),T(y1),T(y2)) = η2(T̃(ϕ(u),y1,y2))

= η2(T̃(ϕ̃(u,u1,u2))) = (η2 ◦ T̃ ◦ ϕ̃)(u,u1,u2)

= η̃3(u,u1,u2).

(3.16)
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We define the parametric objective function of the submesh Mu of u as the
p-norm (recall that we use p = 2) of the parametric objective function of all the
triangles of its local submesh. Similarly to Equation (2.13), given an inner node u
we define the parametric objective function of the submesh on node u as

Kp
η̂3

(u) =

(
m∑
k=1

(η̂3k)
p (u)

)1/p

. (3.17)

3.2 Objective function for quadrilateral meshes

on surfaces

In this section we extend the parametric approach for the quality and objective
functions in a triangular surface mesh to a quadrilateral surface mesh. To develop
the extension, we follow up the approach presented in Section 2.3 for planar elements
in the plane.

First recall that the objective function of a quadrilateral is defined through a
weighting of the objective functions of the triangles in which we subdivide such
quadrilateral (see Figure 2.3). As we explained in Section 2.5.1, we use the first sim-
plification of the standard objective function for quadrilaterals, see Equation (2.15).
Thus, we use the three triangles adjacent to the free node to define the quadrilateral
objective function. If we denote by η̃3(ui,uj,uk) the parametric objective function
of a given triangle (ui,uj,uk) on the parametric plane U (recall Figure 3.1), the
parametric function for a quadrilateral surface mesh can be written as

η̃3(u0,u1,u2,u3) :=
η̃3(u0,u1,u2) + η̃3(u0,u1,u3) + η̃3(u0,u2,u3)

3
, (3.18)

being u0 the free node.

Note that this is the natural extension that follows from the approach for planar
quadrilaterals. However, now the objective function is determined by the parametric
coordinates of the vertices of three triangles instead of their physical coordinates.

Moreover, we define the restricted parametric objective function for quadrilater-
als as

η̂3(u0) :=
η̂3

u1,u2(u0) + η̂3
u1,u3(u0) + η̂3

u2,u3(u0)

3
, (3.19)

where η̂3
ui,uj (u0) denotes the restricted objective function for the triangle defined

by the free node u0 and the fixed vertices ui and uj.

We have also to extend the parametric objective function for quadrilaterals to
local meshes of a given surface node. This extension will allow to smooth the surface
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nodes. Thus, as in the previous section for the triangular case, given a submeshMu

of an inner node u, we define the parametric objective function of the submesh as:

Kp
η̂3

(u) :=

(
m∑
k=1

(η̂3k)
p (u)

)1/p

, (3.20)

where η̂3k is the restricted parametric objective function for the kth quadrilateral
element of the submesh.

3.3 Final formulation of the parametric objective

function

In this section, we present the final formulation of the objective function based on the
previously developed ideas. This objective function allows to perform the quality
optimization process for meshes on parameterized surfaces. We just specify the
objective function for a triangle, since the extension to quadrilaterals and submeshes
is straightforward from the triangle expression.

Given a triangle t expressed in parametric coordinates as (u,u1,u2), where u
are the coordinates of the free node, the parametric objective function of the free
node is:

η̂3(u) = η̂2 ◦ λ ◦T ◦ ϕ(u), (3.21)

where functions η̂2, λ, T, and ϕ were presented in previous sections. Recall that
function λ scales the triangles in order to use a fixed δ, see Section 2.6.3.

In order to simplify the expressions that evolve from the planar case to the
surface one, we have obviated λ function until now. However, lets give now a
precise formulation of this auxiliary function. As we explained in Section 2.6.3, λ
function determines the lengths of the external edges of the triangles of the submesh,
takes the maximum of such lengths and finally scales the triangles dividing by this
maximum length. Note that the required information for λ function can be obtained
from the computation of function T without additional computational cost. Among
other calculus that T function requires, we obtain the norm of the vectors that
define the external edges: ‖ek1‖, k = 1, . . . , n.

We define function λ̃ for a triangle t in the plane as

λ̃ : T2 −→ T2

t = (x0,x1,x2) 7−→ tΛ = 1
Λ

(x0,x1,x2),
(3.22)

where
Λ = max

k=1,...,n
‖ek1‖ (3.23)
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is the maximum of the external length of the edges of the k = 1, . . . , n triangles that
compose the submesh.

As we did for the objective function, we define the restricted scaling function for
the free node as

λ : R2 −→ R2

x 7−→ 1
Λ
· x. (3.24)

Moreover, note that function η̂2(x) = η2(x,x1,x2) defined on Equation (3.15) has to
be redefined as η̂2(x) = η2(x, x1

Λ
, x2

Λ
), in order to include the scaling of the constant

vertices.

Following a similar reasoning to the one presented in Section 3.1.2, we check that
the restriction (3.21) is equivalent to the expression for a whole triangle with two
fixed vertices:

η̂3(u) := η̂2 ◦ λ ◦T ◦ ϕ(u) = η2(λ(T(ϕ(u)), x1

Λ
, x2

Λ
))

= η2(λ̃(T(ϕ(u)),T(y1),T(y2))) = η2(λ̃(T̃(ϕ(u),y1,y2))

= η2(λ̃(T̃(ϕ̃(u),u1,u2)) = η̃3(u,u1,u2).

(3.25)

In order to perform the optimization procedure with the final formulation of the
restricted parametric objective function η̂3, we need to compute its derivatives with
respect to the parametric variables u = (u, v):

Dη̂3(u) = D(η̂2 ◦ λ ◦T ◦ ϕ)(u) = Dη̂2|λ(T(ϕ(u))) ·Dλ|T(ϕ(u)) ·DT|ϕ(u) ·Dϕ|u .

All the analytical expressions of Dη̂2, Dλ, DT and Dϕ can be found on the Appen-
dices A.1. Since η̂3 is a function from R2 to R, its gradient is a vector 1 × 2. We
also detail the sizes of the rest of Jacobian matrices

Dη̂3|u︸ ︷︷ ︸
1×2

= Dη̂2|T(ϕ(u))︸ ︷︷ ︸
1×2

·Dλ|T(ϕ(u))︸ ︷︷ ︸
2×2

·DT|ϕ(u)︸ ︷︷ ︸
2×3

·Dϕ|u︸ ︷︷ ︸
3×2

,

since they are helpful for implementation purposes.





Chapter 4

Mesh quality optimization

In this chapter we present the main skeleton of the programs for the optimization of
the parametric objective function for both quadrilateral and triangular meshes. We
will start describing the structure of the smoother that we have developed using the
presented theory. Afterwards, we will analyse the minimization algorithms that we
have implemented in order to perform the numerical minimization of the objective
function.

4.1 Mesh quality optimization algorithm

In the previous sections we have developed the parametric objective function. Specif-
ically, given a node and its local submesh in a surface, we are able to quantify the
quality of the submesh depending on the position of the inner node. Now, we want
to use it in order to smooth meshes on parameterized surfaces.

Given an initial mesh, we optimize the position of each inner node by minimizing
the objective function of the corresponding submesh. Once we obtain the optimal
position, the mesh is updated before the position of the next nodes is optimized.
The program iterates through all the nodes of the mesh several times. The process
stops when the maximum displacement divided by the minimum external edge is
smaller than a prescribed tolerance for all the mesh nodes. Algorithm 4.1 presents
this scheme.
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Algorithm 4.1 Optimization Algorithm

Ensure: Mesh M.
1: function SmoothMesh(Mesh M)
2: E ←∞;
3: nnodes← number of inner nodes of M;
4: while E > tol do
5: E ← 0;
6: for k = 1 : nnodes do
7: uk ← initial parametric coordinates of the kth node;
8: y0

k ← ϕ(uk), physical coordinates of the kth node;
9: (uk,yk)← SetInitialPoint(Submesh Muk

);
10: uk ← OptimizeSubmesh(uk, Submesh Myk

);
11: yk = ϕ(uk);

12: Er =
‖y0k−yk‖

min edge submesh Myk

13: E ← max(E,Er);
14: end for
15: end while
16: end function

During the execution of the inner loop on the nodes, two functions are called:
SetInitialPoint and OptimizeSubmesh.

Note that the optimal position of the inner node does not depend on its initial
location. However, if the initial location of the inner point is close to the optimum,
the minimization process requires less iterations. In this way, procedure SetIni-
tialPoint is responsible to choose a good guess of the optimal location to use as
initial point for the minimization process.

Specifically, procedure SetInitialPoint selects the initial point from among
two candidates. The first candidate is the current location of the node. The second
candidate is the geometrical centre of the external nodes of the submesh. Then,
procedure SetInitialPoint computes the value of the objective function for both
candidates. Finally, the candidate point with the lowest value of the objective
function is selected as the initial point of the minimization process. It is important
to point out that the geometrical centre is always inside the convex hull1 of the
external nodes. Thus, if these nodes determine a convex set, the geometrical centre
is inside the feasible region, it determines an untangled configuration and it is close
to the minimum of the objective function. Function SetInitialPoint is detailed
in Algorithm 4.2.

1The convex hull or convex envelope for a set of points X in a real vector space V is the minimal
convex set containing X.
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Algorithm 4.2 Initial point for a submesh

Ensure: (ui,yi).
1: function setInitialPoint(Submesh Mu0)
2: f 0 ← η̃(u0;Mu0);
3: uc ← assign the geometrical centre of the nodes adjacent to u0;
4: f c ← η̃(uc;Muc);
5: if f c > f 0 then
6: ui = u0;
7: else
8: ui = uc;
9: end if

10: yi = ϕ(ui);
11: end function

The second subfunction called in Algorithm 4.1, OptimizeSubmesh, gets a
submesh and the parametric coordinates of the inner node, constructs the objective
function, and brings up the minimization procedure.

We want to highlight that the performance of the implementation of the Algo-
rithm 4.1 depends on the selected programming language. We have selected MAT-
LAB to develop and implement the prototype of the algorithm. Thus, to enhance
the performance we use a vectorized implementation instead of a loop based imple-
mentation. To this end, we have substituted the loops by vectorized expressions and
we have reorganized the data. Note that non-vectorized implementations perform
a loop for each inner node. In each step of the loop, the coordinates of the sur-
rounding nodes (determined by the connectivity matrix T ) and the current nodes
are used to compute and optimize the value of the objective function. Recall that
the coordinates matrix is a n × nnodes array, being n the dimension of the space
(n = 3 for us), and nnodes the number of nodes of the matrix. These standard
implementations perform very poorly in MATLAB because loops are interpreted
and not compiled.

To overcome the low performance of non-vectorized implementations in MAT-
LAB, we propose to write code that deals with several nodes at the same time. To
achieve this goal, we first have to group the nodes in independent sets. That is, two
nodes that are adjacent must not be moved at the same time. Specifically, we colour
the mesh ensuring that all pairs of adjacent nodes have different colours (note that
any surface graph can be coloured with four or less colours). Hence, all the nodes
that have the same colour are not adjacent and can be optimized at the same time.
In addition, we pre-compute a multi-array with all the adjacent nodes for a given
node. This multi-array can be re-used through the minimization process to query
the coordinates of the nodes that compose the submeshes. As this multi-array is pre-
computed and re-used, the performance of the final implementation is improved. In
the vectorized implementation we use a four-way array with the following ordering
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of the indices:

• the first index denotes the inner node of a submesh,

• the second index denotes the adjacent elements to the inner node of a submesh,

• the third index denotes the physical coordinates of a node (three coordinates
in our case),

• and the fourth index denotes the nodes for a given element of a submesh (three
nodes for triangles, four for quadrilaterals).

However, if we just subdivide the mesh into colours, some multi-array entries
are wasted storing empty values. That is, not all the nodes of the same colour
have a submesh with the same number of elements. Therefore, if we store all the
coordinates in a static multi-array, the dimension for the second index has to be
the maximum number of adjacent elements for all the nodes of a given colour. This
results in a wasted memory storage corresponding to the submeshes that have less
elements. To overcome this issue, we propose to decompose the mesh in groups of
nodes with the same number of adjacent elements. Then, each one of this groups is
coloured. Lets summarize the advantages of this approach:

• The classification of the nodes in adjacency groups permits to have data struc-
tured in multi-arrays that are dense (there are no zeros on the array) and static
(the size of the different components of the multi-array is known). Hence, this
results in a faster implementation.

• The sub-classification in colours permits that several nodes are optimized at
the same time. Hence, we substitute slow interpreted loops by vectorized
code. Moreover, the colouring of the mesh is the first step to the parallel
implementation of the code we want to carry in the near future.

Taking into account above advantages, the initial Algorithm 4.1 is turned into
Algorithm 4.3. For the implementation, it is not enough to change the structure of
the program. We have also to convert standard sequential expressions to vectorized
ones.
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Algorithm 4.3 Restructured Optimization Algorithm

Ensure: Mesh M.
1: function SmoothMesh(Mesh M)
2: d←∞;
3: classAdjColour, numberAdjacencies←GroupByClasses(Mesh M);
4: while Stopping criteria not achieved do
5: for a = 1, . . . , numberAdjacencies do
6: numberColours, nodesClass← ExtractInfo(classAdjColour, a);
7: for c = 1, . . . , numberColours do
8: nodesColour ← ExtractNodesColour(nodesClass, c);
9: U←parametric coordinates of the inner nodes;

10: X←ExtractMultimatrix(nodesColour);
11: U← OptimizeSubmesh(Matrix U , 4D Matrix X);
12: end for
13: end for
14: end while
15: end function

Finally, we can use two different stopping criteria, for a given tolerance tol:

1. Either, we can check over the relative displacements of the nodes:

Er(Y) =
‖Y −Y0‖
‖emin‖ < tolu,

where Y = ϕ(U) and emin is the length of the shortest edge in the submesh.

2. Or, we can check over the relative error of the value of the objective function:

Er(K) =
|η̃(U)− η̃(U0)|
|η̃(U)| < tolη.

Both criteria are valid and will terminate correctly the procedure. However, in our
tests the first criteria, checking on the displacements, has proved more effective.
Hence, in all the presented examples of this work we have used the stopping criteria
based on the displacements and not on the value of the objective function.

4.2 Minimization methods

Our quality optimization procedure is based on the minimization of the objective
function. The minimum of such function gives the position of the central node of
the submesh that results in a better configuration of the elements that compose it.



52 CHAPTER 4. MESH QUALITY OPTIMIZATION

However, it has not been possible for us to find a general analytical expression of
the global minimum.

Hence, numerical minimization methods have to be used to find the minimum of
the parametric objective function. We have used several numerical methods to find
which one fits better the properties of the objective function.

The numerical methods are an auxiliary (but essential) key for our objective.
Despite our purpose is not to extend too much on this section, we will take a quick
look to the methods that we have chosen in this thesis: the Newton’s Method and
a set of line search methods (Steepest Descent Method, BFGS and Line Search
Newton with Modification).

Note that we will not specify for each method which stopping criteria that has
been applied, since we have established two common conditions for all of them. Until
both

• condition 1: ‖xk−xk−1‖
‖xk‖ < tolx, and

• condition 2: η(xk) = f(xk) < tolf ,

do not hold, the minimization will continue (until a fixed maximum number of
iterations has been achieved).

All the methods require the computation of the first or second derivatives. The
computation of the derivatives of the objective function can be found on Appendix
A.1.

4.2.1 Newton’s Method

The Newton’s method is a numerical minimization method that computes the new
position advancing towards the so called Newton direction:

pN
k = −(∇2f(xk))

−1∇f(xk), (4.1)

xk+1 = xk + pN
k . (4.2)

The Newton direction is derived from the second-order Taylor series approximation
to f(xk + p),

f(xk + p) ≈ fk + pT∇fk +
1

2
pT∇2fkp

def
= mk(p).

Assuming that ∇2fk is positive definite, the Newton direction is obtained by finding
the vector p that minimizes mk(p). Simply setting the derivative of mk(p) equal to
zero, the explicit formula (4.1) is obtained.

We present the scheme for Newton’s method in Algorithm 4.4:
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Algorithm 4.4 Newton’s Method
Ensure: Vector xk.

1: function NewtonMethod(Vector x0, Mesh M)
2: Fix a tolerance tol;
3: Set δx0 = −∇2f−1

0 ∇f0;
4: x1 ← x0 + δx0;
5: k ← 1;
6: while Convergenve not achieved do
7: Set δxk = −∇2f−1

k ∇fk;
8: xk+1 ← xk + δxk;
9: k ← k + 1;

10: end while
11: end function

Newton’s method is expensive from the computational point of view, since in each
iteration we have to compute the Hessian matrix and to solve a linear system. Given
a good initial point, the Newton’s direction δx = pN is a descent direction, and N-R
method has quadratic convergence (see [Nocedal]). However, to ensure that δx is a
descent direction, the Hessian matrix ∇2f has to be positive definite. In general,
this is only achieved near the minimum. But in our case, since the objective function
is convex, ∇2f is always positive, and so N-R always has quadratic convergence.

4.2.2 Line search methods

The line search strategies choose a direction pk and search along this direction from
the current point xk in order to find a new position in which the function takes a
lower value. We move in this direction a distance αk that has to be determined.
The new position is computed as

xk+1 = xk + αkpk. (4.3)

Note that several different advancing directions pk can be chosen. Each direc-
tion generates a different method, each one with different computational costs and
convergence velocities. In Chapter 5 we analyse the behaviour of each one of the
methods that we use in this work. Except from the modified Newton’s method,
none of following methods do require second derivatives, and reduce the computa-
tional cost. We now present the different methods that have been tested for the
minimization procedure:

• Steepest descent method (see [Nocedal]): this is the simplest line search
method, using the line search strategy in the steepest descent direction:

pk = −∇fT
k . (4.4)
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This is the simplest method used in this work. It has the disadvantage that
depending on the behaviour of the objective function, the convergence of the
method can slow. Further discussion can be found in [Nocedal].

Algorithm 4.5 presents the programming scheme for the Steepest Descent
Method. We realize that it is indeed straightforward to implement and thus,
it was the first method we used to carry out the minimization.

Algorithm 4.5 Steepest Descent Method
Ensure: Vector xk.

1: function SteepestDescentMethod(Vector x0, Mesh M)
2: Fix a tolerance tol;
3: Set p0 = −∇fT

0 ≡ − (∇f(x0))T ;
4: α0 ←FindStepLength(Vector x0, Vector p0, Mesh M);
5: x1 ← x0 + α0p0;
6: k ← 1;
7: while Convergenve not achieved do
8: Set pk = −∇fT

k ;
9: αk ←FindStepLength(Vector xk, Vector pk);

10: xk+1 ← xk + αkpk;
11: k ← k + 1;
12: end while
13: end function

• BFGS: the Broyden-Fletcher-Goldfarb-Shanno method is the most popular
quasi-Newton method.

The main idea of the BFGS is to approximate of the inverse of the Hessian
in order to avoid the high cost of the computation of the Hessian and after-
wards solve the required linear system. It uses the following update formula
to compute the inverse of the Hessian:

Hk+1 = (I− ρkskyk
T )Hk(I− ρkyksk

T ) + ρksksk
T , (4.5)

where

sk = xk+1 − xk, (4.6)

yk = ∇fk+1 −∇fk, (4.7)

ρk =
1

yk
Tyk

. (4.8)

The initial matrix H0 is often set to some multiple of the identity, but there
is no good general strategy for choosing the multiple. We use a quite effective
heuristic that consists on scaling the starting matrix after the first step has
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been computed but before the first BFGS update is performed (see [Nocedal]).
Then, we change the default H0 = I by setting

H0 =
yk

T · sk

yk
T · yk

I.

Algorithm 4.6 presents the programming scheme for the BFGS Method.

Algorithm 4.6 BFGS Method
Ensure: Vector xk.

1: function BFGS(Vector x0, Mesh M)
2: Fix a tolerance tol;
3: Compute H0;
4: k ← 0;
5: while Convergenve not achieved do
6: Set pk = −Hk∇fT

k ;
7: αk ←FindStepLength(Vector xk, Vector pk);
8: xk+1 ← xk + αkpk;
9: Define sk, yk and ρk by means of (4.6), (4.7) and (4.8);

10: Compute Hk+1;
11: k ← k + 1;
12: end while
13: end function

• Newton’s Method with Hessian Modification: as we have previously com-
mented, away from the solution in a standard function, the Hessian matrix
may not be positive definite, and so the Newton direction (4.1) may not be a
descent direction. The modification that follows overcomes this difficulty.

Despite that when we presented the Newton’s Method we commented that
when working with the objective function the Hessian should be positive def-
inite in all the domain, it is worth it to implement this modification of the
standard Newton’s Method in order to check how this modification behaves
when dealing with our minimization problem (since this modification ensures
not only that the Hessian is positive definite but also that it is positive enough
-not close to zero-).

The presented approach obtains the step pk from a linear system identical
to (4.1), except that the inverse of the Hessian matrix is replaced with a
positive definite approximation. The modified Hessian is obtained by adding
either a positive diagonal matrix or a full matrix to the true Hessian ∇2f(xk).
Algorithm 4.7 presents the programming scheme of the method:
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Algorithm 4.7 Line Search Newton with Hessian Modification
Ensure: Vector xk.

1: function NewtonModified(Vector x0, Mesh M)
2: Fix a tolerance tol;
3: k ← 0;
4: while Convergenve not achieved do
5: Compute Bk = ∇2f(x2) + Ek;
6: pk ← −Bk

−1∇f(xk);
7: αk ←FindStepLength(Vector xk, Vector pk);
8: xk+1 ← xk + αkpk;

9: if ‖xk−xk−1‖
‖xk‖ < tol then

10: ConvergenceAchieved = true;
11: end if
12: k ← k + 1;
13: end while
14: end function

Note that matrix Ek is chosen as zero when ∇2f(xk) is sufficiently positive
definite. Otherwise, it is chosen to ensure that Bk is sufficiently positive
definite. See [Nocedal] for more information about the Hessian modification.

Once the advancing direction is fixed using any of the previous presented ap-
proaches, it has to be decided the distance α that has to be covered from the initial
position along the decided direction. According to [Nocedal], the step length α has to
satisfy several conditions depending on the specific criteria that one wants to follow.
We will use several strategies that we summarize in the following algorithms:

• Standard Line Search (for Wolfe conditions): this scheme sets the initial step
length to 1 and reduces it a given scalar ρ until it holds the Wolfe conditions
(see [Nocedal]):

f(xk + αpk) ≤ f(xk) + c1αk∇fT (xk)pk, (4.9)

∇fT (xk)pk ≥ c2∇fT (xk)pk, (4.10)

with 0 < c1 < c2 < 0 (in this project c1 = 10−4 and c2 = 0.9 as recommended
on [Nocedal]). We summarize this procedure in Algorithm 4.8.
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Algorithm 4.8 Line Search for complete Wolfe conditions

Ensure: Real αk.
1: function LineSearch(Vector xk, Vector pk)
2: Fix α > 0, ρ ∈ (0, 1), 0 < c1 < c2 < 1;
3: while (4.9) and (4.10) don’t hold do
4: α← ρα;
5: end while
6: αk ← α;
7: end function

Note that ρ is the factor we use to decrease the step length if it is too big and
the computed point does not hold the Wolfe conditions. This scalar can take
different values, but for our project we have fixed it to ρ = 1

2
.

• Backtracking Line Search: this approach is indeed a simplification of Wolve
conditions (see [Nocedal] for details). We summarize this procedure in Algo-
rithm 4.9.

Algorithm 4.9 Backtracking Line Search

Ensure: Real αk.
1: function BackLineSearch(Vector xk, Vector pk)
2: Fixed α > 0, ρ ∈ (0, 1), c ∈ (0, 1);
3: while f(xk + αpk) > f(xk) + cα∇fT

k pk do
4: α← ρα;
5: end while
6: αk ← α;
7: end function

The variables that determine the backtracking line search have to be fixed. We
inherit from the Wolfe conditions that the variable c has to be quite small, and
thus, we have taken c = 10−4 as it is proposed on [Nocedal]. In addition we
fix ρ = 1

2
as we did in Algorithm 4.8. Note that both Algorithms 4.8 and 4.9

have the exact same structure, and that the differences just lie on the stopping
conditions.





Chapter 5

Examples

In this chapter several examples are presented in order to assess the properties of
the proposed method. In this work, all algorithms have been implemented using
MATLAB. In all the examples, the parametric surfaces are represented by NURBS.

We present four parametric surfaces with both triangular and quadrilateral
meshes. For the triangular meshes we have presented three figures for each ex-
ample. First, we plot an initial triangular mesh. In the second figure we present a
mesh with the same topology than the initial one, but with a high number of tangled
elements. In order to highlight the capabilities of the developed method, the tangled
mesh is the input of the smoothing-untangling algorithm. Then, in the third figure
we present the result of smoothing the tangled mesh. For the quadrilateral case we
present two figures with smoothed meshes. The first figure presents the mesh that
results from smoothing using the objective function (2.15) and the second one using
the simplified objective function (2.16). Note that in all the figures the elements are
coloured according to their quality, from blue (quality 0) to red (quality 1).

For all the examples we provide the number of nodes and elements, and statistical
information about the quality of the elements of the mesh. In particular, we compute
for the initial, the tangled and the optimized mesh, the following quality statistics:

• Minimum quality value over all the elements of the mesh.

• Maximum quality value over all the elements of the mesh.

• Mean value of the quality of the elements of the mesh.

• Standard deviation of the quality of the elements of the mesh.

• Number of tangled elements of the mesh.

59
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Finally, we analyse several computational aspects of the proposed smoothing
method. In particular, for each example we provide the following information:

• Number of iterations of the global algorithm.

• Elapsed time for the minimization process.

• Ratio elapsed time per iteration.

• Ratio elapsed time per iteration and node.

In the triangular case we extract this information for each one of the proposed
numerical minimizing methods. From the different results of the methods we deduce
which is the best one. For quadrilateral meshes we just analyse the computational
aspects of the best minimization method for triangular meshes, since the mini-
mization process for quadrilaterals is based on the algorithm for triangles. In the
quadrilateral case we focus on the comparison between the two possible objective
functions. The computational information of both functions and the quality statis-
tics obtained with each of them is presented for all the examples. Looking at the
presented results, conclusions are drawn on whether the reduced objective function
(2.16) can be used instead of (2.15) or not.

5.1 Examples of triangular element meshes

In this section we apply the minimization process presented in Chapter 4 to four
meshes composed by triangular elements that have been generated on parametric
surfaces.

5.1.1 Example 1: Torus

Figure 5.1(a) presents an initial mesh created on a torus. This mesh is composed
by 1200 nodes and 2242 elements. Figure 5.1(b) presents a mesh with the same
topology than 5.1(a) but with almost half of the elements tangled. Starting from
the tangled mesh, we have applied the smoothing-untangling procedure for surfaces
and we have obtained the smoothed mesh presented in Figure 5.2.
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Figure 5.1: Surface meshes for a torus: (a) initial mesh, and (b) tangled mesh.
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Figure 5.2: Smoothed and untangled surface mesh for a torus.

Table 5.1 presents statistical information corresponding to the meshes presented
in this example. It is important to point out that the proposed algorithm has been
able to untangle an input mesh with 545 tangled elements.

Mesh Min. Q. Max. Q. Mean Q. Std. Dev. Tangled el.
Initial 0.50 0.87 0.73 0.13 0

Tangled 0.00 0.99 0.47 0.34 545
Smoothed 0.50 0.93 0.74 0.11 0

Table 5.1: Quality statistics for meshes presented in Figures 5.1(a), 5.1(b) and 5.2.
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Although the minimum quality of the smoothed mesh is equal to the one of the
initial mesh for the torus, the maximum and mean qualities have been increased.
In addition, the standard deviation of the smoothed mesh is smaller that the initial
one.

5.1.2 Example 2: Cup

Figure 5.3(a) presents an initial mesh created on a model of a cup. This mesh is
composed by 675 nodes and 1232 elements. Figure 5.3(b) presents a tangled mesh
on the cup with the same topology than 5.3(a). Taking as input the tangled mesh
we have obtained the smoothed mesh is presented in Figure 5.4.
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Figure 5.3: Surface meshes for a cup: (a) initial mesh, and (b) tangled mesh.
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Figure 5.4: Smoothed and untangled surface mesh for a cup.
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Table 5.2 presents statistical information of the meshes presented in Figures 5.3
and 5.4. It is important to point out that the proposed algorithm has been able
to untangle an input mesh with 249 tangled elements. Note that in this example
all the quality statistics presented are improved with respect with the initial mesh
created on the presented geometry. Recall that the minimum quality over all the
elements of the mesh has increased from 0.30 to 0.35. The standard deviation is
equal in both the initial and the smoothed meshes.

Mesh Min. Q. Max. Q. Mean Q. Std. Dev. Tangled el.
Initial 0.30 0.93 0.55 0.15 0

Tangled 0.00 0.99 0.42 0.29 249
Smoothed 0.35 0.99 0.58 0.15 0

Table 5.2: Quality statistics for meshes presented in Figures 5.3(a), 5.3(b) and 5.4.

5.1.3 Example 3: Undulated surface

Figure 5.5(a) presents an initial mesh created on an undulated surface generated
from the revolution of a curve. This mesh is composed by 1200 nodes and 2242
elements. Figure 5.5(b) presents a mesh with the same topology than 5.5(a) but
with almost all the nodes defining tangled submeshes. Using the presented algorithm
to smooth and untangle 5.5(b) we obtain the mesh presented in Figure 5.6.
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Figure 5.5: Surface meshes for an undulated surface: (a) initial mesh, and (b)
tangled mesh.

Table 5.3 presents statistical information of the different meshes presented in
this example. Recall that the proposed algorithm has been able to untangle an
input mesh with a high number of tangled elements. Note that in this example all
the qualities presented are improved with respect with the initial mesh created on
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Figure 5.6: Smoothed and untangled surface mesh for an undulated surface.

the presented geometry. Once again the minimum is increased, from 0.62 to 0.67.
Notice that an important improvement is presented on the maximum quality, that
is incremented from 0.89 to 0.97. The standard deviation is also slightly reduced,
obtaining a mesh with elements with a more uniform quality.

Mesh Min. Q. Max. Q. Mean Q. Std. Dev. Tangled el.
Initial 0.62 0.89 0.79 0.06 0

Tangled 0.00 0.99 0.48 0.34 564
Smoothed 0.67 0.97 0.81 0.05 0

Table 5.3: Quality statistics for meshes presented in Figures 5.5(a), 5.5(b) and 5.6.

5.1.4 Example 4: Rolled surface

Figure 5.7(a) presents an initial mesh created on a rolled surface. This mesh is
composed by 1800 nodes and 3332 elements. Figure 5.7(b) presents a tangled mesh
on the surface conserving the topology of the initial mesh 5.7(a). Using the presented
algorithm to smooth and untangle 5.7(b) we obtain the mesh presented in Figure
5.8. Note that Figure 5.8 contains two views of the smoothed mesh in order to
facilitate the understanding of the presented geometry.
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Figure 5.7: Surface meshes for a rolled surface: (a) initial mesh, and (b) tangled
mesh.

Figure 5.8: Two views of the smoothed and untangled surface mesh for a rolled
surface.

Table 5.4 presents statistical information of the different meshes presented in
Figures 5.7 and 5.8. Note that the proposed algorithm is able to untangle a mesh
with 1191 tangled elements achieving better minimum, maximum and mean quality
than in the initial presented mesh. The minimum is increased from 0.60 to 0.62 and
the maximum quality is incremented from 0.88 to 0.97. The mean quality is slightly
increased and standard deviation is conserved with respect to the initial mesh for
the surface.
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Mesh Min. Q. Max. Q. Mean Q. Std. Dev. Tangled el.
Initial 0.60 0.88 0.78 0.07 0

Tangled 0.00 0.99 0.33 0.31 1191
Smoothed 0.62 0.97 0.79 0.07 0

Table 5.4: Quality statistics for meshes presented in Figures 5.7(a), 5.7(b) and 5.8.

5.2 Examples of quadrilateral element meshes

In this section we apply the minimization process presented in Chapter 4 to quadri-
lateral meshes. We use the same parametric surfaces that have been studied for
triangle meshes. First, a structured quadrilateral mesh is created on the surface.
Second, we tangle the initial mesh in order to check the capabilities of the presented
theory for quadrilaterals. The tangled mesh is the input of the smoothing-untangling
algorithm. Then, two different figures of the smoothed quadrilateral mesh are shown
for each example. In the first one, we show the smoothed mesh obtained using ob-
jective function (2.15) for the optimization procedure. In the second figure we show
the results when using objective function (2.16). The aim of the examples is to
check that the presented theory for quadrilaterals is able to untangle and smooth
quadrilateral meshes obtaining good quality final meshes.

5.2.1 Example 1: Torus

Figure 5.9(a) presents an initial mesh created on a torus. This mesh is composed
by 1200 nodes and 1121 elements. Figure 5.9(b) presents a tangled mesh on the
torus conserving the topology of 5.9(a). Taking as input the tangled mesh and
applying the presented algorithm with the two objective functions for triangles, we
have obtained the untangled meshes presented in Figure 5.10.
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Figure 5.9: Surface meshes for a torus: (a) initial mesh, and (b) tangled mesh.
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Figure 5.10: Smoothed surface mesh for a torus using: (a) objective function (2.15),
and (b) objective function (2.16).

Table 5.5 presents statistical information of the meshes presented in Figures 5.9
and 5.10. It is important to point out that the proposed algorithm has been able to
untangle an input mesh with 568 tangled elements. Note that in this example all
the quality statistics presented are improved with respect to the initial mesh created
on the presented geometry, independently of the objective function that we select.

Mesh Min. Q. Max. Q. Mean Q. Std. Dev. Tang. el.
Initial 0.57 0.89 0.78 0.11 0

Tangled 0.00 0.92 0.27 0.30 568
Smoothed 5.10(a) 0.58 0.91 0.80 0.10 0
Smoothed 5.10(b) 0.58 0.92 0.80 0.09 0

Table 5.5: Quality statistics for meshes presented in Figures 5.9 and 5.10.

5.2.2 Example 2: Cup

Figure 5.11(a) presents an initial mesh created on a cup. This mesh is composed by
675 nodes and 616 elements. Figure 5.11(b) presents a mesh with the same topology
than 5.11(a) but with almost half of the elements tangled. Starting from the tangled
mesh, we have applied the smoothing-untangling procedure for surfaces and we have
obtained the two smoothed meshes presented in Figure 5.12.
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Figure 5.11: Surface meshes for a cup: (a) initial mesh, and (b) tangled mesh.
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Figure 5.12: Smoothed surface mesh for a cup using: (a) objective function (2.15),
and (b) objective function (2.16).

Table 5.6 presents statistical information of the different meshes presented in this
example. Recall that the proposed algorithm has been able to untangle an input
mesh with a high number of tangled elements. Note that in this example all the
qualities presented are improved with respect with the initial mesh created on the
presented geometry. Note that both objective functions present a final mesh with
almost the same quality.
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Mesh Min. Q. Max. Q. Mean Q. Std. Dev. Tang. el.
Initial 0.29 0.91 0.59 0.15 0

Tangled 0.00 0.90 0.29 0.27 236
Smoothed 5.12(a) 0.32 0.93 0.61 0.14 0
Smoothed 5.12(b) 0.33 0.94 0.61 0.14 0

Table 5.6: Quality statistics for meshes presented in Figures 5.11 and 5.12.

5.2.3 Example 3: Undulated surface

Figure 5.13(a) presents an initial mesh created on a undulated surface. This mesh
is composed by 1200 nodes and 1121 elements. Figure 5.13(b) presents a tangled
mesh on the surface conserving the topology of the initial mesh 5.13(a). Figures
5.14(a) and 5.14(b) show the smoothed and untangled meshes by means of objective
functions (2.15) and (2.16), respectively.
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Figure 5.13: Surface meshes for an undulated surface: (a) initial mesh, and (b)
tangled mesh.
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Figure 5.14: Smoothed surface mesh for an undulated surface using: (a) objective
function (2.15), and (b) objective function (2.16).

Table 5.7 presents statistical information of the meshes presented in Figures 5.13
and 5.14. It is important to point out that the proposed algorithm has been able
to untangle an input mesh with 264 tangled elements. Note that in this example
all the quality statistics presented are improved with respect to the initial mesh
created on the presented geometry, using objective function (2.15) or either using
(2.16). Note that both (2.15) and (2.16) present no substantial differences in the
quality statistics.

Mesh Min. Q. Max. Q. Mean Q. Std. Dev. Tang. el.
Initial 0.62 0.89 0.79 0.06 0

Tangled 0.00 0.99 0.48 0.34 264
Smoothed 5.14(a) 0.71 0.93 0.84 0.05 0
Smoothed 5.14(b) 0.71 0.93 0.86 0.04 0

Table 5.7: Quality statistics for meshes presented in Figures 5.13 and 5.14.

5.2.4 Example 4: Rolled surface

Figure 5.15(a) presents an initial mesh on rolled surface. This mesh is composed
by 1800 nodes and 1666 elements. Figure 5.15(b) presents a mesh with the same
topology than 5.15(a) but with almost all the nodes defining tangled submeshes.
Using the presented algorithm to smooth and untangle 5.15(b) we obtain the meshes
presented in Figure 5.16.
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Figure 5.15: Surface meshes for a rolled surface: (a) initial mesh, and (b) tangled
mesh.
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Figure 5.16: Smoothed surface mesh for a rolled surface using: (a) objective function
(2.15), and (b) objective function (2.16).

Table 5.8 presents statistical information corresponding to the meshes presented
in this example. It is important to point out that the proposed algorithm has been
able to untangle an input mesh with 457 tangled elements. Note that smoothing
with both objective functions all the quality aspects of the final meshes improve
respect to the ones of the initial one. Comparing the results of (2.15) and (2.16) we
realize that they are almost equal, but (2.16) presents slightly better results.
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Mesh Min. Q. Max. Q. Mean Q. Std. Dev. Tang. el.
Initial 0.56 0.90 0.82 0.07 0

Tangled 0.00 0.93 0.53 0.28 457
Smoothed 5.16(a) 0.59 0.92 0.83 0.07 0
Smoothed 5.16(b) 0.60 0.93 0.83 0.07 0

Table 5.8: Quality statistics for meshes presented in Figures 5.15 and 5.16.

5.3 Computational aspects of the presented ex-

amples

In this section we analyse the performance of the smoothing procedure for all the
examples. For the triangle meshes we compare the performance of the four mini-
mization methods proposed in Section 4.2. Based on the results of this comparison
we fix the method with the best performance. Then, for quadrilateral surface meshes
we analyse which of the two presented modifications, (2.15) or (2.16), of the standard
objective function (2.10) carries out a better performance.

For the meshes composed by triangles we have used four numerical minimizing
methods: the Newton-Raphson, the Steepest Descent, the BFGS and the modified
Newton-Rapshon (line search Newton with Hessian modification). For the three
line search methods we have used the Bactracking line search method presented in
Algorithm 4.9 as the step length selection criterion.

For each one of the examples corresponding to triangular meshes, tables 5.9,
5.10, 5.11 and 5.12 present

• the number of iterations of the global Algorithm 4.3,

• the elapsed time required to smooth the whole mesh,

• the elapsed time per iteration, and

• the elapsed time per iteration and node

of each one of the four minimizing methods. Note that all the computational times
are presented in seconds.
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Statistics N-R Steepest D. BFGS Modified N-R
Number of iterations 21 68 36 11
Global elapsed time 3.86 24.78 138.07 3.59

Elapsed time per iteration 0.18 0.36 3.84 0.33
Time per iter. and node 1.53·10−4 3.03·10−4 3.19·10−3 2.72·10−4

Table 5.9: Computational aspects corresponding to example 1 in Section 5.1.1. Mesh
composed by 1200 nodes and 2242 elements.

Statistics N-R Steepest D. BFGS Modified N-R
Number of iterations 123 38 49 8
Global elapsed time 14.85 96.03 1976.76 3.02

Elapsed time per iteration 0.12 2.53 40.34 0.38
Time per iter. and node 1.78·10−4 3.74·10−3 5.97·10−2 5.59·10−4

Table 5.10: Computational aspects corresponding to example 2 in Section 5.1.2.
Mesh composed by 675 nodes and 1222 elements.

Statistics N-R Steepest D. BFGS Modified N-R
Number of iterations 28 60 60 6
Global elapsed time 3.94 367.01 3443.62 3.25

Elapsed time per iteration 0.14 6.12 57.39 0.54
Time per iter. and node 1.17·10−4 5.09·10−3 4.78·10−2 4.51·10−4

Table 5.11: Computational aspects corresponding to example 3 in Section 5.1.3.
Mesh composed by 1200 nodes and 2242 elements.

Statistics N-R Steepest D. BFGS Modified N-R
Number of iterations 13 40 7 4
Global elapsed time 4.07 82.13 239.60 2.71

Elapsed time per iteration 0.31 2.05 34.23 0.68
Time per iter. and node 9.78·10−5 6.41·10−5 1.06·10−2 2.11·10−4

Table 5.12: Computational aspects corresponding to example 4 in Section 5.1.4.
Mesh composed by 1800 nodes and 3332 elements.

It is important to point out that all the methods leads to the same smoothed mesh
except in Example 3. In this example we have stopped the Steepest Descent and
BFGS after 60 iterations because convergence was not achieved. Note that in this
example the crests of the surface are discretized by just a few elements. Therefore,
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both minimizing methods are not able to compute the advancing direction with
enough accuracy and hence do not converge to the final optimal configuration.

From Table 5.9 to Table 5.12 we realize that the modified Newton-Raphson
is the fastest method in terms of global elapsed time. In addition, it is also the
method that needs less number of iterations to converge. However, the elapsed time
per iteration and the elapsed time per iteration and node of the modified Newton-
Raphson is higher than the corresponding value of the standard Newton-Raphson
method. Note that despite that standard Newton-Raphson has a smaller cost per
iteration, it takes more iterations to converge and hence the global elapsed time is
higher than for the modified version.

It is worth to notice that both the modified and the standard Newton-Raphson
methods outperform the Steepest Descent and the BFGS methods. In particular,
the elapsed time or the number of iterations for the Steepest Descent and the BFGS
methods can be one or two orders of magnitude higher than the corresponding values
for the modified and the standard Newton-Raphson.

From these results we conclude that the modified Newton-Raphson method is the
best option for our purposes. Since the objective function for quadrilateral meshes is
based on the objective functions for triangles we only will use the modified Newton-
Raphson method to smooth and untangle quadrilateral surface meshes. However,
in Section 2.5.1 we have introduced two objective functions for quadrilateral sur-
face meshes, see equations (2.15) and (2.16). Therefore, in Table 5.13 we compare
the computational efficiency of the modified Newton-Raphson method when it is
applied to minimize these two objective functions. Note that all the presented com-
putational times are in seconds, except the time per iteration and node, that is given
in milliseconds. In addition, Table 5.13 also presents statistics about the quality of
the meshes.

Example 1 Example 2 Example 1 Example 4
(2.15) (2.16) (2.15) (2.16) (2.15) (2.16) (2.15) (2.16)

Number it. 11 8 10 9 13 11 9 8
Elapsed time 3.97 2.60 4.77 3.17 6.64 4.59 9.15 6.41
Time per it. 0.36 0.32 0.48 0.35 0.51 0.42 1.02 0.80

Time/(it·node) 0.30 0.27 0.71 0.52 0.43 0.35 0.57 0.44
Min. Qual. 0.58 0.58 0.32 0.33 0.71 0.71 0.59 0.60
Max. Qual. 0.91 0.92 0.93 0.94 0.93 0.93 0.92 0.93
Mean Qual. 0.80 0.80 0.61 0.61 0.84 0.86 0.83 0.83
Std. dev. 0.10 0.09 0.14 0.14 0.05 0.04 0.07 0.07
Tang. el. 0 0 0 0 0 0 0 0

Table 5.13: Statistics of objectives function (2.15) and (2.16): computational and
quality aspects of the presented examples.
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Comparing the results obtained using objective functions (2.15) and (2.16) in Ta-
ble 5.13 we conclude that objective function (2.16) provides better results in terms
of number of iterations, elapsed time, elapsed time per iterations and elapsed time
per iteration and node. It is important to point out that although objective func-
tion (2.16) reduces the number of triangles that are used to compute the objective
function, it does not reduce the robustness of the approach. Moreover, notice that
using objective function (2.16) the final quality of the mesh is always equal or bet-
ter than with objective function (2.15). Hence, the reduced objective function for
quadrilaterals (2.16) has proved computationally more efficient without penalizing
the quality of the final mesh.





Chapter 6

Conclusions and future research

In this work a new procedure to smooth and untangle meshes on parameterized
surfaces has been developed. This procedure is based on a numerical minimization
of an objective function locally defined on the parametric coordinates of each node
of the surface mesh. It is important to point out that the proposed procedure is
valid for triangular and quadrilateral surface meshes. Moreover, for quadrilateral
elements we propose a new objective function that requires less computational effort
than the standard one.

The minimization process is performed in the parametric space. Specifically,
we propose an extension of any planar element quality measure to elements on
parameterized surfaces. This prevents the requirement of smoothing the surface
submeshes through an approximation in a certain tangent plane.

To improve the robustness of the minimization process, we have proposed two
modifications of the objective function to improve the robustness of the minimization
process. These modifications are based on a standard technique and are controlled
by a scalar parameter. In the first modification a different scalar parameter is
computed on each node of the surface mesh. In the second one, a fixed value of
the scalar parameter is determined for a reference size. Then, all the elements are
scaled to the reference size and the fixed value of the scalar parameter is used on
each node of the surface mesh.

Several minimization algorithms have been implemented and compared both on
triangular and quadrilateral surface meshes. From our experimental results we con-
clude that the modified Newton-Raphson (line search Newton with Hessian modifi-
cation) outperforms the standard Newton-Raphson method and the other analysed
line-search methods both in terms of the total time and the time per iteration.

An important contribution of this project is the improvement of the computa-
tional performance of the minimization process. In particular, we first group the
nodes with the same number of adjacent elements. Second, in each one of these
groups we colour the nodes in independent sets (two adjacent nodes have different

77
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colours). Then, the coordinates of the nodes in each colour set can be stored in a
static array and their location can be optimized at the same time. This results in a
vectorized and fast implementation of the method.

The results of this work lead to a new scientific and technological challenges. For
instance,

• The parallelization of the current code. Since we have proposed a vectorized
implementation, where the nodes in the same colour are independent, we pro-
pose to implement the code in parallelized manner. Specifically, we propose
to move the nodes with the same colour in parallel. We consider to implement
this technique in a vector processor such as graphics processing units (GPU).

• The implementation of the proposed method in a mesh generation environment
EZ4U. Therefore, the MATLAB (interpreted) code will be translated to C++
(compiled). This will improve the efficiency of the method and will enlarge its
applicability.

• The extension of the developed ideas for high-order elements. In the near
future we would like to develop a quality measure for high order elements, and
then extend it to surface problems.



Appendix A

Derivatives of the parametric
objective function

A.1 First order derivatives of the parametric ob-

jective function

In order to compute the derivative of the parametric objective function, we use the
chain rule in the main expression

dη̂3

du
(u) =

d(η̂2 ◦ λ ◦T ◦ ϕ)

du
(u) = Dη̂2|λ(T(ϕ(u))) ·Dλ|T(ϕ(u)) ·DT|ϕ(u) ·

dϕ

du
|u . (A.1)

In this Appendix we compute the different derivatives that appear in the chain rule
that we have just shown.

A.1.1 Derivatives of ϕ

The derivative of the parametrization that we use will depend on the surface we are
working with in each case, or in the area of the surface we are in. Thus, we directly
give to the optimization procedure the analytical expression of such derivatives.

A.1.2 Derivatives of T

In these appendices we will compute the derivatives of T, that is the new component
of our construction. We write T function as

T (y) = M(y) · (y − y1),

and thus,
∂T (y)

∂α
=
∂M

∂α
(y) · (y − y1) + M(y) · Iα,
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FUNCTION

where Iα is the zero vector with a 1 value on coordinate α.

In the computation of the second derivatives of M, we will introduce the notation
eprev

2 = e2 − (eT2 · ẽ1)ẽ1, in order to have more compact expressions. Lets proceed
with the computation of the derivative of the matrix M:

∂M

∂α
(y) =

(
0

∂ẽT
2

∂α
(y)

)
,

∂ẽ2

∂α
(y) =

∂

∂α

(
sign · ẽ2,0

)
=
∂sign

∂α
· ẽ2,0 + sign · ∂

∂α
ẽ2,0,

∂sign

∂α
=

∂

∂α

det(ẽ1,ẽ2,0,n)

|det(ẽ1,ẽ2,0,n)|

=
∂det(ẽ1,ẽ2,0,n)

∂α
· 1

|det(ẽ1,ẽ2,0,n)| + det(ẽ1,ẽ2,0,n) · ∂
∂α

1

|det(ẽ1,ẽ2,0,n)| ,
∂

∂α

1

|det(ẽ1,ẽ2,0,n)| = − 1

|det(ẽ1,ẽ2,0,n)|2
∂

∂α
|det(ẽ1,ẽ2,0,n)|

= − 1

|det(ẽ1,ẽ2,0,n)|2 · (±1) · ∂det(ẽ1,ẽ2,0,n)

∂α

= − ±1

|det(ẽ1,ẽ2,0,n)|2 ·
∂det(ẽ1,ẽ2,0,n)

∂α

∂

∂α
det(ẽ1,ẽ2,0,n) =

∂

∂α

(
(n× ẽ1) · ẽ2,0

)
= (n× ẽ1) · ∂

∂α
ẽ2,0,

∂

∂α
ẽ2,0 =

∂

∂α

eprev
2

‖eprev
2 ‖ =

=
1

‖eprev
2 ‖

∂eprev
2

∂α
+ eprev

2

∂

∂α

1

‖eprev
2 ‖ ,

∂

∂α
‖eprev

2 ‖−1 = − 1

‖eprev
2 ‖2

∂

∂α
‖eprev

2 ‖

= −1

2

1

‖eprev
2 ‖3

· ∂
∂α

((eprev
2 )T (eprev

2 ))

= − 1

‖eprev
2 ‖3

(
(eprev

2 )T · ∂eprev
2

∂α

)
∂eprev

2

∂α
= Iα − (ẽ1 · Iα)ẽ1 = Iα − ẽα1 ẽ1

Note that in order to simplify the notation we have avoided to explicit the terms
that do depend on y, and in order to reduce some unnecessary space we have written
det(ẽ1,ẽ2,0,n) instead of det(ẽ1, ẽ2,0,n). Moreover, we have to point out that the sign
function is indeed not derivable everywhere. Since it contains the absolute value of
the determinant of ẽ1, ẽ2,0 and n, sign is not derivable when det(ẽ1,ẽ2,0,n) = 0.
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A.1.3 Derivatives of λ

Recall that λ(x) has been defined in Equation (3.24) as λ(x) = 1
Λ
· x. Note then

that the Jacobian is the constant matrix

Dλ =
1

Λ
I2,2, (A.2)

the identity divided by the scalar factor Λ.

A.1.4 Derivatives of η̂2

The objective function for a certain triangle with a free node u is

η̂2k(x) =
|Sk(x)|2

2h(σk(x))
=
|Sk(x,x1,x2)|2

2h(σk(x,x1,x2))
, (A.3)

being σk(x) = det (Sk(x)).

Moreover Sk(x) was defined in (2.5) by

S(x) ≡ S(x,x1,x2) = A(x,x1,x2) ·W−1.

Then, to compute the derivatives of the objective function we must apply the chain
rule to these expressions. In order to simplify the notation, lets denote by α the
variable respect to which we are computing the derivative:

• First, we deduce the expression corresponding to the derivative of equation
(A.3). Recall that |S| =

√
(S,S), where (A,B) = tr(ATB). To this end, we

also need the following derivatives:

2 Derivative of the Frobenius norm of matrix S:

∂|S(x)|
∂α

=
∂
√

(S,S)

∂α
=

1

2

1√
(S,S)

∂(S,S)

∂α
=

1

2

1

|S|
∂(S,S)

∂α
=

(
∂S
∂α
,S
)

|S| .

2 Derivative of function h(σ) (see Equation (2.17)):

∂h(σ(x))

∂α
=

∂

∂α

(
1

2

(
σ +
√
σ2 + 4δ2

))
=

1

2

(
1 +

σ√
σ2 + 4δ2

)
∂σ

∂α
.

2 To compute the derivative of σ we just have to apply the formula for the
derivative of a determinant of a matrix, see reference [Golberg]. Then,

∂σ(x)

∂α
=
∂det(S)

∂α
= det(S)tr

(
S−1∂S

∂α

)
= σtr

(
S−1∂S

∂α

)
.
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With these previous calculations, now lets proceed with the derivative of
η̂2k(x):

∂η̂2

∂α
(x) =

∂|S|2
∂α

1

2h(σ)
+ |S|2 ∂

∂α

(
1

2h(σ)

)
=

1

2h(σ)
2|S|∂|S|

∂α
− |S|2 1

2(h(σ))2

∂h(σ)

∂α

=

(
∂S
∂α
,S
)

h(σ)
− |S|2

2(h(σ))2

(
1

2
+

σ

2
√
σ2 + 4δ2

)
∂σ

∂α

= 2η̂2

(
∂S
∂α
,S
)

|S|2 − η̂2

h(σ)

σ +
√
σ2 + 4δ2

2
√
σ2 + 4δ2

∂σ

∂α

= 2η̂2

(
∂S
∂α
,S
)

|S|2 − η̂2

h(σ)

h(σ)√
σ2 + 4δ2

∂σ

∂α

= 2η̂2

((
∂S
∂α
,S
)

|S|2 −
∂σ
∂α

2
√
σ2 + 4δ2

)
.

• Second we deduce the expression corresponding to the partial derivative of the
shape matrix S:

∂S

∂α
(x) =

∂A

∂α
(x)W−1, (A.4)

where A is defined in (2.3) as

A(x) = A((x, y)) = A((x, y),x1,x2) =

(
x1 − x x2 − x
y1 − y y2 − y

)
. (A.5)

Then, the partial derivatives are:

∂A

∂x
(x, y) =

( −1 −1
0 0

)
, (A.6)

∂A

∂y
(x, y) =

(
0 0
−1 −1

)
. (A.7)

A.2 Second order derivatives of the objective

function for a submesh

In the minimization procedure that we develop in order to find the optimal config-
uration of the mesh we need to compute the derivatives of the objective function.
According (3.17), the objective function that we have used for the surface mesh
optimization is

Kη̂3(u) =

(
m∑
k=1

(η̂3k)
p (u)

)1/p

, (A.8)
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where η̂3k is defined in (3.13 ).

Then, to compute the derivatives of the objective function we must apply the
chain rule to these expressions. In order to simplify the notation, lets denote by α
the variable respect to which we are computing the derivative (since u = (u, v)T ,
then α can be equal to u or v).

The expression corresponding to the derivative of equation (A.8) is:

∂Kη̂3(u)

∂α
=

1

p

(
m∑
k=1

(η̂3k)
p (u)

) 1
p
−1

·
m∑
k=1

(
p (η̂3k)

p−1 (u) · ∂η̂3k

∂α
(u)

)

=

(
m∑
k=1

(η̂3k)
p (u)

) 1
p
−1

·
m∑
k=1

(
(η̂3k)

p−1 (u) · ∂η̂3k

∂α
(u)

)
.

A.3 Computation of the second order derivatives

of the parametric objective function

Recall the first order derivative of the parametric objective function, computed in
Equation (A.1) in Appendix A.1:

dη̂3

du
(u) =

d(η̂2 ◦ λ ◦T ◦ ϕ)

du
(u) = Dη̂2|λ(T(ϕ(u))) ·Dλ|T(ϕ(u)) ·DT|ϕ(u) ·

dϕ

du
|u .

Note that , the Hessian of a composition of functions, is not in general the product of
the Hessian matrices of the functions, as happens with the Jacobian matrices. Hence,
in order to compute the second order derivative of the parametric objective function
we require to use tensorial notation (and compute the derivative component by
component). We first rewrite the matrix expression of the first derivative, avoiding
to explicitly specify the point in which we evaluate each expression:

∂η̂3

∂α
=

∂(η̂2 ◦ λ ◦T ◦ ϕ)

∂α
= Dη̂2 ·Dλ ·DT · ∂ϕ

∂α

= Dη̂2 · 1

Λ
I2,2 ·DT · ∂ϕ

∂α
=

1

Λ
Dη̂2 ·DT · ∂ϕ

∂α

=
1

Λ

∑
i=1,2,3

∑
j=1,2

(
η̂2xj
·Tj

yi
· ϕiα

)
,

We denote by (x1, x2) the two variables of the plane where we map τ and (y1, y2, y3)
the variables of R3 where we express the surface. A more compact expression can
be written using Einstein notation in order to simplify the second order derivative:

∂η̂3

∂α
=

1

Λ
η̂2aT

a
bϕ

b
α,
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where fab denotes the derivative respect the variable b of the component a of function
f . Hence, the second derivative of η̂3 using Einstein notation is shown on Equation
(A.9):

∂2η̂3

∂α∂β
=

1

Λ

(
η̂2acT

c
dϕ

b
β ·Ta

bϕ
b
α + η̂2aT

a
bcϕ

c
β · ϕbα + η̂2aT

a
bϕ

b
αβ

)
. (A.9)

Therefore, we need to compute the second derivatives of function ϕ, T and η̂2.

A.3.1 Second order derivatives of ϕ

As we commented on Appendix A.1.1, ϕ defines the surface in which the mesh is
smoothed. Hence, for each surface the analytical expression of the derivatives is
given.

A.3.2 Second order derivatives of T

In these appendices we will compute the second derivatives of T. Recalling that

T (y) = M(y) · (y − y1), and

∂T (y)

∂α
=

∂M

∂α
(y) · (y − y1) + M(y) · Ii,

we continue with the expressions of the second order derivatives:

∂2T (y)

∂α∂β
=

∂

∂β

(
∂M

∂α
(y) · (y − y1) + M(y) · Iα

)
=

∂M

∂β
· Iα +

∂M

∂α
· Iβ +

∂2M

∂α∂β
(y) · (y − y1).

Note that in this expression there is just one component unknown: ∂2M
∂α∂β

(y), since
the expressions related to the first derivatives have been previously computed.
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Lets proceed with the computations of the second order derivatives of matrix M:

∂2M

∂α∂β
=

∂2

∂α∂β

(
ẽT1
ẽT2

)
=

(
0

∂2ẽT
2

∂α∂β

)
,

∂2ẽ2

∂α∂β
=

∂

∂β

(
∂ẽ2,0

∂α
· sign + ẽ2,0 ·

∂sign

∂α

)
=
∂2ẽ2,0

∂α∂β
· sign +

∂ẽ2,0

∂α
· ∂sign

∂β
+
∂ẽ2,0

∂β
· ∂sign

∂α
+ ẽ2,0 ·

∂2sign

∂α∂β
,

∂2sign

∂α∂β
=

∂

∂β

(
∂

∂α
det(ẽ1,ẽ2,0,n) · 1

|det(ẽ1,ẽ2,0,n)| + det(ẽ1,ẽ2,0,n)
∂

∂α

1

|det(ẽ1,ẽ2,0,n)|
)

=
∂2det(ẽ1,ẽ2,0,n)

∂α∂β
· 1

|det(ẽ1,ẽ2,0,n)| +
∂det(ẽ1,ẽ2,0,n)

∂α

∂

∂β

1

|det(ẽ1,ẽ2,0,n)|

+
∂det(ẽ1,ẽ2,0,n)

∂α

∂

∂β

1

|det(ẽ1,ẽ2,0,n)| + det(ẽ1,ẽ2,0,n)
∂2

∂α∂β

1

|det(ẽ1,ẽ2,0,n)| ,

∂2

∂α∂β

1

|det(ẽ1,ẽ2,0,n)| =
∂

∂β

(
− ±1

|det(ẽ1,ẽ2,0,n)|2 ·
∂det(ẽ1,ẽ2,0,n)

∂α

)
=

2

|det(ẽ1,ẽ2,0,n)|3
∂det(ẽ1,ẽ2,0,n)

∂α
· ∂|det(ẽ1,ẽ2,0,n)|

∂β
− ±1

|det(ẽ1,ẽ2,0,n)|2
∂2det(ẽ1,ẽ2,0,n)

∂α∂β
,

∂2

∂α∂β
det(ẽ1,ẽ2,0,n) =

∂2

∂α∂β

(
(n× ẽ1) · ẽ2,0

)
= (n× ẽ1) · ∂

2ẽ2,0

∂α∂β
,

∂2ẽ2,0

∂α∂β
=

∂

∂β

(
1

‖eprev
2 ‖ ·

∂

∂α
eprev

2 + eprev
2 · ∂

∂α

1

‖eprev
2 ‖

)
=

1

‖eprev
2 ‖ ·

∂2

∂α∂β
eprev

2 +
∂

∂β

1

‖eprev
2 ‖ ·

∂

∂α
eprev

2

+
∂

∂β
eprev

2 · ∂
∂α

1

‖eprev
2 ‖ + eprev

2 · ∂2

∂α∂β

1

‖eprev
2 ‖ ,

∂2

∂α∂β

1

‖eprev
2 ‖ =

∂

∂β

( −1

‖eprev
2 ‖2

∂

∂α
‖eprev

2 ‖
)

=
∂

∂β

( −1

‖eprev
2 ‖2

)
· ∂
∂α
‖eprev

2 ‖ − 1

‖eprev
2 ‖2

∂2‖
∂α∂β

eprev
2 ‖

=
2

‖eprev
2 ‖3

∂

∂β
‖eprev

2 ‖2 · ∂
∂α
‖eprev

2 ‖ − 1

‖eprev
2 ‖2

∂2‖
∂α∂β

eprev
2 ‖,

∂2

∂α∂β
‖eprev

2 ‖ =
∂

∂β

(
ẽ2,0 ·

∂

∂α
eprev

2

)
=

∂

∂β
ẽ2,0 ·

∂

∂α
eprev

2 + ẽ2,0 ·
∂2eprev

2

∂α∂β
,

∂2eprev
2

∂α∂β
=

∂

∂β
(Iα − ẽα1 · ẽ1) = 0.
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A.3.3 Second order derivatives of η2

The second derivatives of η2 are

∂2η2

∂α∂β
=

∂2(S,S)

∂α∂β
· 1

2h(σ)
+
∂(S,S)

∂α
· ∂
∂β

1

2h(σ)

+
∂(S,S)

∂β
· ∂
∂α

1

2h(σ)
+ (S,S) · ∂2

∂α∂β

1

2h(σ)
,

where we just need to compute the second derivative expressions, since the first
derivatives have already been computed in Appendix A.1.4. Hence, ,

∂2(S,S)

∂α∂β
=

∂

∂β

(
∂(S,S)

∂α

)
=

∂

∂β

(
2(
∂S

∂α
,S)

)
= 2(

0︷ ︸︸ ︷
∂2S

∂α∂β
,S) + 2(

∂S

∂α
,
∂S

∂β
)

= 2(
∂S

∂α
,
∂S

∂β
),

∂2

∂α∂β

1

2h(σ)
=

∂

∂β

(
− 1

2h2(σ(S))

∂h(σ(S))

∂α

)
=

∂

∂β

(
− 1

2h2(σ(S))

)
· ∂h(σ(S))

∂α
− 1

2h2(σ(S))

∂2h(σ(S))

∂α∂β

=
1

h3(σ(S))

∂h(σ(S))

∂β
· ∂h(σ(S))

∂α
− 1

2h2(σ(S))

∂2h(σ(S))

∂α∂β
,

∂2h(σ(S))

∂α∂β
=

∂

∂β

(
1

2

(
1 +

σ(S)√
σ2(S) + 4δ2

)
∂σ(S)

∂α

)

=
1

2

(
1√

σ2(S) + 4δ2
− σ(S)

2

2σ(S)

(σ2(S) + 4δ2)3/2

)
∂σ(S)

∂β

∂σ(S)

∂α

+
1

2

(
1 +

σ(S)√
σ2(S) + 4δ2

)
∂2σ(S)

∂α∂β

=
2δ2

(σ2(S) + 4δ2)3/2

∂σ(S)

∂β

∂σ(S)

∂α
+

1

2

(
1 +

σ(S)√
σ2(S) + 4δ2

) 0︷ ︸︸ ︷
∂2σ(S)

∂α∂β

=
2δ2

(σ2(S) + 4δ2)3/2

∂σ(S)

∂β

∂σ(S)

∂α
,

∂2σ(S)

∂α∂β
=

∂2 det(S)

∂α∂β
= det(W−1)

∂2 det(A)

∂α∂β

= det(W−1)
∂2

∂α∂β
((x1 − x)(y2 − y)− (x2 − x)(y1 − y))

∀α,β=x,y
= 0.
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A.4 Computation of the second order derivatives

of the objective function for a submesh

In order to compute the second order derivative of Equation (A.8), we explicit for
completeness the first order derivative computed on Appendix A.2,

∂Kη̂3

∂α
=

(
m∑
k=1

(η̂3k)
p

) 1
p
−1

·
m∑
k=1

(
(η̂3k)

p−1 · ∂η̂3k

∂α

)
.

Hence, computing the derivative respect the symbolic variable β, we obtain the
second order derivatives:

∂2Kη̂3

∂α∂β
=

(
m∑
k=1

(η̂3k)
p

)− p−1
p m∑

k=1

(
(η̂3k)

p−2

(
∂η̂3k

∂α

∂η̂3k

∂β
+
∂2η̂3k

∂α∂β
η̂3k

))

−(p− 1)

(
m∑
k=1

(η̂3k)
p

)−2p+1
p
(

m∑
k=1

(η̂3k)
p−1 ∂η̂3

∂α

)(
m∑
k=1

(η̂3k)
p−1 ∂η̂3

∂β

)
.
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