
Plausible reconstruction and rendering of

semi-procedural landscapes

Author:

Óscar Argudo Medrano
Director:

Carlos Andújar Gran (CS)

Codirector:

Antonio Chica Calaf (CS)

Defense date: September 10, 2014

Master in Innovation and Research in Informatics
Computer Graphics and Virtual Reality

Facultat d'Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC)

2

Contents

Abstract 9

1 Introduction and motivation 11

2 Previous work 13

2.1 Synthetic generation of trees . 13

2.1.1 Procedural modeling . 13

2.1.2 Rule-based modeling: L-systems . 17

2.1.3 Rule-based object production systems 21

2.2 Reconstruction of real trees . 22

2.2.1 Trees from photographs . 23

2.2.2 Trees from scanned point clouds . 27

2.2.3 Sketch-based reconstruction . 29

2.3 Tree representations . 31

2.3.1 Detailed representations . 31

2.3.2 Global representations . 32

2.3.3 Multiscale representations . 33

3 Overview 35

4 Crown reconstruction 37

4.1 Input . 37

4.1.1 Photograph requirements . 37

4.2 Radial silhouette approach . 40

4.2.1 Radial silhouette . 40

4.2.2 From 2D silhouettes to 3D volumes 42

4.3 In�ation approach . 43

4.3.1 Iterative bilaplacian . 43

4.3.2 Linear system . 44

4.4 Extracting relief . 47

4.5 Texture generation . 49

4.5.1 Improving the synthesis algorithm 51

4.5.2 Synthesizing a cubemap texture . 51

4.6 Crown model . 53

5 Crown rendering 55

5.1 Relief-mapping crown approach . 55

5.2 Detailed crown with leaves . 57

5.3 Shading . 58

3

CONTENTS

6 Terrains with vegetation 59

6.1 Terrain description . 59
6.2 Vegetation description . 60
6.3 Rendering large vegetation areas . 61

6.3.1 Level of detail jittering . 62
6.4 Other scene elements . 62

6.4.1 Trunks . 62
6.4.2 Grass . 63
6.4.3 Terrain . 63
6.4.4 Shadows . 65
6.4.5 Sky . 65

7 Results 67

7.1 Crown reconstruction . 67
7.2 Detailed crowns . 69
7.3 Level of detail test . 70
7.4 Test scenes . 71
7.5 Comparison with previous viewer . 72

8 Conclusions and future work 75

Bibliography 77

4

List of Figures

2.1 Branching structures by Aono and Kunii . 13

2.2 Reeves and Blau particle systems . 14

2.3 Oppenheimer fractal tree . 14

2.4 Bloomenthal's Mighty Maple . 15

2.5 De Re�ye et al. growth simulation . 15

2.6 Trees generated by Weber and Penn . 16

2.7 Overview of Runions et al. method . 16

2.8 Space Colonization algorithm . 17

2.9 Palubicki et al. self-organizing trees . 17

2.10 Koch snow�ake generated with L-systems 18

2.11 Branching structures generated with L-systems 19

2.12 Binary tree generated from a parametric L-system 19

2.13 Context-sensitive L-systems examples . 19

2.14 Examples of various extensions of L-systems 20

2.15 Examples of plants generated with the rule-based object production system 22

2.16 Shlyakhter et al. method overview . 23

2.17 Reche et al. method overview . 24

2.18 Neubert et al. method overview . 24

2.19 Tan et al. method overview . 25

2.20 Tan et al. single image method overview . 25

2.21 Sun et al. method overview . 26

2.22 Quan et al. method overview . 26

2.23 Bradley et al. method overview . 26

2.24 Xu et al. method overview . 27

2.25 Xu et al. main skeleton production . 27

2.26 Livny et al. method overview . 28

2.27 Livny et al. texture lobe reconstruction . 28

2.28 Livny et al. texture lobes . 29

2.29 Okabe et al. sketching process . 29

2.30 Okabe et al. brach positioning . 30

2.31 Wither et al. sketching system . 30

2.32 Classi�cation of tree representations by Boudon et al. 31

2.33 Tree representations using billboards . 32

2.34 Bruneton and Neyret rendering of forests . 32

2.35 Point-based representations of trees . 33

2.36 Decauding et al. rendering from slices . 34

3.1 Overview of the crown reconstruction process 35

4.1 Common tree species found in Catalunya . 38

4.2 Fagus sylvatica forest seen at di�erent scales 39

5

LIST OF FIGURES

4.3 Forest scenarios . 39
4.4 Radial silhouettes . 40
4.5 Optimal center for di�erent crowns . 41
4.6 Radial crowns obtained from di�erent centers 41
4.7 3D extrapolation from 2D radial silhouette 42
4.8 3D crowns from radial silhouettes . 42
4.9 3D crown from a distance �eld . 43
4.10 3D crown from iterative bilaplacian . 44
4.11 3D crown from bilaplacian system . 45
4.12 Di�erence between the 1D and 3D system 46
4.13 E�ect of silhouette connectivity in the bilaplacian system 46
4.14 Modifying silhouette tangents . 46
4.15 Crowns reconstructed using the in�ation method 47
4.16 Tree created from three rotated copies of the base mesh 47
4.17 Crown relief extracted from luminance . 48
4.18 Gaussian and Laplacian pyramids . 48
4.19 Multiscale relief generation . 49
4.20 Wei and Levoy texture synthesis algorithm 50
4.21 Foliage synthesis using Wei and Levoy's algorithm 50
4.22 Patch-based synthesis algorithms . 51
4.23 Comparison between synthesis algorithms 52
4.24 Cubemap texture synthesis . 53
4.25 Summary of the crown reconstruction process 53

5.1 Relief crown rendered using raycasting . 55
5.2 Comparison between bounding cube and icosahedron 56
5.3 Optimizations for relief crowns . 56
5.4 Relief and detailed crown . 57
5.5 Blue noise distribution of points in a sphere 57
5.6 Shading components of a crown . 58
5.7 Shaded and unshaded tree comparison . 58

6.1 Inputs of the viewer application . 59
6.2 Specifying di�erent vegetation distributions 60
6.3 Comparison between mixing with orthophoto color and using model texture 61
6.4 Level of detail switch and jittering . 62
6.5 Trunks diversity . 63
6.6 Grass and shadows under the trees . 63
6.7 Terrain ground rendering with added noise 64
6.8 Comparison between shadowed and unshadowed terrain 65
6.9 Comparison between shadow mapping and PCF shadow mapping 65

7.1 Reconstructed relief crowns . 68
7.2 Detailed crowns with various leaves . 69
7.3 Level of detail visual results . 70
7.4 Test scenes . 71
7.5 Test scenes rendered using the old method 73

6

List of Tables

2.1 Example set of commands for L-system drawing 18
2.2 Components of the system, from [27] . 21

4.1 Added pixels from di�erent crown centers 41

7.1 Crown reconstruction times . 67
7.2 Level of detail distance threshold test . 70
7.3 Test scenes performance test . 72
7.4 Comparison of rendering times between old and new method 73

7

Abstract

In recent years, there have been numerous advances in modeling the world and visualizing
it using virtual globe applications. While the resolution of these 3D scenes has improved
signi�cantly � specially in urban areas � the amount of detail is still insu�cient for its
inspection from points of view close to the ground level such as the height of an average
person. Increasing this detail usually involves scanning again the area of interest with more
accurate equipment or taking more samples per area. Therefore, the acquisition process is
expensive because it involves a substantial amount of time, human resources and expensive
equipment.

This project presents a new approach to increase the visual richness of rural and forest
areas while avoiding the abovementioned costs. We build on the premise that in dense
vegetation areas we do not need to reconstruct exactly the actual trees but a plausible
model that resembles the kind of vegetation found there. We call our approach a semi-
procedural reconstruction, since the trees are procedurally built using real information as
guidance.

Our method requires just an input photograph of the kind of tree or shrub that we
want to introduce to the terrain scene and it produces a tree model in a representation that
allows for e�cient level of detail, thus able to render forest scenes with several thousands
of exemplars in real time.

The reconstruction process uses the silhouette of the tree crown and in�ates a mesh
which has this silhouette and minimizes the thin-plate bending energy by solving a linear
system of equations. Then, using an example-based texture synthesis algorithm, we gener-
ate texture data in all directions around this mesh. This texture is used both to color the
mesh and to perturb its surface relief, adding more detail to the smooth surface produced
by the minimization system. This perturbation is proportional to the luminance of the
texture at di�erent resolution levels.

Once we have the �nal perturbed mesh, we store it using a radial representation in a
cubemap we call the radius cubemap. This cubemap will be the basis of our level of detail
rendering algorithms. Farthest trees will be rendered by instancing a proxy geometry and
raycasting this cubemap to compute the intersection of the viewing ray and the crown
geometry. Nearest trees will be rendered from instancing a variable number of billboards
depending on their projected size on the screen. To ensure shape matching between both
representations, these billboards are cropped to the silhouette of the tree crown by checking
the radius cubemap.

The tests we performed show that our method o�ers a plausible reconstruction of tree
models from photographs, and our representation lets us render tens of thousands of tree
crowns in real time. The visual richness of the terrain model is largely augmented with

9

Abstract

the inclusion of our models, and can be used for realistically rendering points of view close
to the ground and navigating a forest scene that resembles the reality.

10

Chapter 1

Introduction and motivation

During the last years, there have been signi�cant advances in the areas of modeling, recon-
struction and visualization of urban scenes. The use of photogrammetry1 based on aerial
or satellite photographs, as well as the use of laser techniques such as LIDAR2, has allowed
the creation of Digital Terrain Models (DTMs) that can be sent remotely and inspected in
real time through virtual globe applications like Google Earth [17] or NASA World Wind
[31].

Even though the resolution of these 3D scenes has improved noticeably in the last
years, reaching in some urban areas resolutions up to 1m for the DTMs and 25cm/pixel
for the corresponding aerial photographs (according to publicly available data from the
Institut Cartogrà�c i Geològic de Catalunya [21]), this level of detail is only su�cient for
aerial points of view, but it does not have enough information for a visual simulation from
points of view close to the surface - for example, from the eyes of a human observer moving
through the scene.

Some technologies like Google Street View [18] solve this problem and allow detailed
inspection by using a �xed set of 360o panoramic photographs. This constraints the nav-
igation to jumping between �xed positions and do not provide a smooth interpolation
between the viewpoints. Moreover, each panorama is an independent image that has to be
sent to the user, so the amount of redundant data to be sent can be huge.

Another important aspect of the current datasets is their cost of acquisition. Some
of the technologies rely on expensive equipment, like LIDAR. Acquiring the data usually
involves a displacement to the site, mounting the sensors on some vehicle (a car or a plane
for aerial views) and moving through the scene to be captured. In order to improve the
level of detail, a new acquisition with more samples per surface area has to be carried out.
This implies either using a better equipment and/or performing a more in-depth scan of
the area, which takes more time and increases the cost.

This is why we want to propose new methods and tools to help the reconstruction of
terrains and to later visualize them. In particular, for this project we focused on vegetation
for rural scenarios with large areas of forest. The applications mentioned above do not
represent the trees or use a very simple and unnatural representation for them. We want
to build a tool that would allow a user to take pictures from the trees present in the
terrain area being modeled, such that the vegetation layer of this model is procedurally

1Making measurements from photographs, for example the height of a terrain.
2A technology that measures distances using the time of �ight of a laser beam.

11

1. Introduction and motivation

built taking this information into account. This way, the trees shown during the navigation
will look more familiar, increasing its realism and the presence felt by the user.

Trees have a set of characteristics that make them specially hard to reconstruct and to
e�ciently visualize. The next chapter will discuss these and the relevant solutions proposed
so far. Chapter 3 provides an overview of our proposed reconstruction method. We will
then explain in detail how the algorithm produces a crown model and how we use the
results to render it (chapters 4 and 5). Finally, we will see how we use these results in a
real application, a terrain viewer (chapter 6). Finally, the report ends with a gallery of
visual results and some performance tests, the conclusions and ideas for future work.

12

Chapter 2

Previous work

This chapter will analyze and discuss di�erent existing methods used to generate tree
models as well as how to represent them e�ciently. First, we will analyze the synthetic
or procedural methods of generating trees, since they were the �rst methods to appear.
Afterwards, we will see the opposite approach: digitizing real trees. Finally, we will focus
on how to render trees, specially in large scenes.

2.1 Synthetic generation of trees

For a comprehensive and detailed survey on procedural and rule-based methods of tree
generation, the book �Digital Design of Nature: Computer Generated Plants and Organ-
ics� by Oliver Deussen and Bernd Lintermann [14] is a very useful reference. In this
section we brie�y summarize some of the methods described in chapters 4, 5 and 6 of this
book. Therefore, the works cited are classi�ed in the same way: procedural and rule-based
methods.

2.1.1 Procedural modeling

Procedural methods are algorithms that try to reproduce usually a certain type of plant
or species using a set of parameters and rules.

Figure 2.1: Branching structures by Aono and Kunii: (a) binary branching with angles 35◦and
-35◦, (b) single branching with angle -70◦, (c) use of an inhibitor to simulate wind,
(d) branching angle depending on age. Image from [14].

The �rst branching patterns were de�ned using cellular automata on regular grids by
Stanislaw Ulam in 1966. One year later, Dan Cohen proposed the �rst continuous branch-
ing procedural model using a set of rules [9]. The �rst branching structures in 3D were

13

2. Previous work

introduced by Honda in 1971 [20], using also a very simple recursive algorithm charac-
terized by a small set of parameters: branching angles and length ratios of consecutive
branch segments. Aono and Kunii [2] extended Honda's work to support the generation of
a variety of branching patterns, statistical variations of angles, attraction and inhibition.

Reeves and Blau [46] focused on the realistic appearance of the tree model instead
of the botanical correctness of the method. Starting with the main trunk, the branches
are generated recursively. The parameters for this process depend on a distribution for
each type of tree, and include characteristics like tree width and height, �rst branch height,
branching angle and mean branch length. Since the generated structure looks very regular,
a later post-process randomly simulates e�ects like gravity, winds or sunlight direction by
bending and warping branches. Finally, leaves (particles) are added to the branches with
no sub-branches. Leaves are determined by shape, orientation, spacing, density, color and
location.

Figure 2.2: Reeves and Blau particle system used for rendering trees. Image from [14].

Oppenheimer [34] uses a method inspired by fractals that recursively calls itself to
simulate the branching along a trunk and to generate smaller branches onto large ones,
using transformations controlled by a set of parameter distributions such as branching
angle, branch to parent size ratio, branches per stem segment... Random variations of the
parameters are needed to alleviate the e�ects of self-similarity of fractals. For the �rst time,
curved sections are used for a more realistic look of the trunk and its branches. Trunk and
branches are modeled with generalized cylinders. The tree bark is simulated using a saw
tooth function that is modulated by adding Brownian noise.

Figure 2.3: Oppenheimer fractal tree. Image from [14].

Previous methods do not have a natural appearance of branching. Bloomenthal [3]
focused on the geometrical aspects of tree modeling. Tree skeleton control points are

14

2.1. Synthetic generation of trees

connected using interpolating splines and the surface reconstructed by connecting disks
perpendicular to the spline. To reproduce branching faithfully, saddle surfaces (ramiforms)
are constructed between the two branching strands (compare �gures 2.3 and 2.4). Roots
are modeled using �blobs�, geometric surfaces de�ned by a distance to a set of objects, in
this case the rami�cation skeleton of the roots.

Figure 2.4: (a) Bloomenthal's Mighty Maple. (b) Detailed view of the bark, branching saddle
and �blobby� roots. Image from [14].

De Re�ye et al. [11] proposed another procedural method inspired by botanical growth
rules. The growth of the shoots is simulated in discrete time steps, and each bud carries
the probability of dying (stop branching), resting or branching out. They admit that it
takes a considerable knowledge of both botany and of their model to create images with
great �delity to nature.

Figure 2.5: Left, randomized growth simulation using two di�erent sets of parameters (dead
shoots are marked with ×). Right, some results. Image from [14].

Weber and Penn's work [53] tries to �nd another method that captures the approximate
appearance of the trees instead of using botanical principles. Their procedural method
uses a very large amount of parameters (about 80) which is listed in the appendix of their
article. Fundamental parameters are, for instance, the overall appearance of the tree (as
an enclosing geometry), the size of the lower part of the tree without branches, the number
of branching levels, and the shape of the foot of the trunk. For each of the maximal
three branching levels, additional parameters are indicated, using an average value with
a respective range of variation: vertical branching angle to the father branch, deviation
angle, length relative to the father, number of branches, and phototropism (termed as a

15

2. Previous work

curve parameter). The results, however, look very realistic.

Figure 2.6: Trees generated by Weber and Penn, and a detailed view of a Black Tupelo tree.
Images from [53].

In a more recent work, Runions et al. [48] explore a modeling approach they call Space
Colonization, in which the competition of branches for space - instead of the de�nition
of a recursive branching process - plays the major role. This idea, which was already
present in the early cellular automata models, was also present in the work of Rodkaew
et al. [47]: particles were distributed on the shape of a tree crown, and their paths were
attracted both to their neighbors and towards the tree base. The tracked converging paths
of these particles formed the tree. However, this approach generates branches from the
tips downwards, disregarding the biological processes. The Space Colonization algorithm
of Runions et al. follows a natural, base-to-leaves order.

Figure 2.7: Overview of Runions et al. method: (a) initial envelope with attraction points, (b,
c) two steps of the skeleton generation, (d) node decimation reduces the amount of
geometry, (e) node relocation improves the overall appearance, (f) subdivision creates
more smoothly curved limbs, (g) tree geometry, (h) addition of organs. Right, trees
generated using this algorithm. Images from [48].

The Space Colonization algorithm of Runions et al. (see �gure 2.7) starts with a
de�nition of the tree crown envelope, and �lls it with hundreds or thousands of attraction
points (a). These points signal the availability of empty space for growth and will be
removed when a branch grows close to them. The tree skeleton is formed by an iterative
process beginning at the base node of the tree. In each iteration, new nodes extend and
branch the skeleton towards nearby attraction points (b, c). The process ends when all

16

2.1. Synthetic generation of trees

attraction nodes have been removed, when no skeleton nodes have attraction points close
to their radius of in�uence or when a maximum number of iterations is reached. Then, the
tree skeleton may be edited (d, e, f). The geometry of the branches (g) is generated using
generalized cylinders as in [3]. Finally, the leaves and organs are attached to the model
(h). Figure 2.8 provides more details about the branching algorithm.

Figure 2.8: Space Colonization algorithm. (a) The tree consists now of six nodes (black) and
four attraction points (red). (b) Each attraction point is associated with its closest
node inside a radius of in�uence. (c) In�uence vectors from a node to its associated
attraction points. (d) Normalized sum of in�uence vectors (red arrows) provides new
node locations (e). The neighborhoods of the two leftmost attraction points have
been penetrated (f), so they are removed (g). A new iteration begins (h). Image
from [48].

Palubicki et al. [36] also propose a self-organizing model for plant development. In
addition to the space colonization, they also model the competition for light using a shadow
propagation algorithm, proposed also by Palubicki in [35]. In this algorithm, the space is
discretized using a grid, and each bud casts a penumbra pyramid onto voxels underneath.
The optimal growth direction is then computed as the negative gradient of the shadow
values of the cells, or by selecting the voxel inside the growth range with the minimum
shadow value. The results of space and light availability are used to control the fate of the
buds: produce a new branch, produce a �ower, remain dormant or abort.

Figure 2.9: Palubicki et al. self-organizing trees. Left, evaluation of space available for coloniza-
tion. Right, shadow propagation. Images from [36].

2.1.2 Rule-based modeling: L-systems

The L-systems take their name from their author Aristid Lindenmayer, who described
morphological forms of plants using string rewriting systems [26], a subset of rule-based
systems. In a rule-base system, contrary to a procedural method, a formal rule basis is
used to transform an initial state into a �nal state by applying a number of changes or
substitutions. One of the essential di�erences with procedural methods is the parallelism of

17

2. Previous work

the replacements, which allows the modeling of mechanisms such as the exchange of signals
which are otherwise di�cult to achieve. Often, L-systems provide a compact description for
complex �nal conditions. Prusinkiewicz and Lindenmayer's book �The algorithmic beauty
of plants� [40] examines many aspects of plant modeling using L-systems. Since this is one
of the most popular methods to generate synthetic vegetation, a brief introduction follows.
A description of other rule-based methods such as Iterated Function Systems or the Object
Instancing paradigm can be found in [14].

An L-system is a string rewriting system de�ned using a formal grammar G = (V, ω, P),
where V is an alphabet, ω a nonterminal string (axiom), and P a �nite set of replacement
rules (productions). A production p ∈ P is written as φ ::= χ, where φ, χ ∈ V +. If φ
has length 1, i.e. is a character of V , the L-system is context free. Otherwise, if φ = τaν,
where a ∈ V, τ, ν ∈ V + and the length of τ and ν is k and l, we speak of a context sensitive
(k, l)-system. If for any φ ∈ V + there exists at most one production rule with φ at the
left side, the L-system is deterministic. Otherwise, when random processes are needed,
stochastic L-systems extend the grammar G = (V, ω, P, π) with the set of probabilities
π : p → (0, 1]. When φ is found on the left side of one or several rules, one of them is
randomly selected according to their probabilities.

The plant geometry is obtained from the �nal string. To interpret this string, the turtle
metaphor was proposed by Prusinkiewicz [40]: a virtual turtle is moved over the drawing
plane (or 3D space) and during this movement a line may be drawn tracking its position.
For example, we can de�ne the following commands:

F move into current direction d units, drawing a line
f move into current direction d units, without drawing a line
+ increase current angle by δ
− decrease current angle by δ
[store current state (position and direction) on the stack
] load state (position and direction) from the top of the stack

Table 2.1: Example set of commands for L-system drawing

And use them to draw the following L-system: G = (V, ω, P) with alphabet V =
{F,+,−}, axiom ω = F − −F − −F and a set of one production rule P = {F ::=
F +F −−F +F}. Setting d = 1 and δ = 60◦, the axiom produces an equilateral triangle.
The de�ned rule is the generator for the Koch curve fractal. And each derivation step
produces a new iteration of the Koch snow�ake:

Figure 2.10: Koch snow�ake generated using the described L-system. (a) production rule inter-
pretation, (b) axiom interpretation, (c) result after 1, 2, 3 and 7 rewritting opera-
tions. Image from [14].

Branching structures require a push-down automaton to process the string sequence.
Using the symbols [and] we can push and pop the turtle state into a stack structure.
Also, we can add non-drawable symbols to represent branching nodes instead of rewriting
the previous branches. The following �gure shows some examples:

18

2.1. Synthetic generation of trees

Figure 2.11: Branching structures generated using L-systems: (a) and (b) are based on edge
rewriting, (c) and (d) use the non-drawable symbol X to simulate node rewriting.
Image from [14].

Obviously, L-systems are also extended to 3D using additional symbols and parameters.
The examples seen so far always produce the same structures. In order to introduce the
variability present in natural structures, stochastic and parametric L-systems can be used.
As de�ned before, in a stochastic L-system the same left side appears in more than one
rule and the rule to be applied is selected randomly according to a set of probabilities.
A parametric L-system allows dynamic modi�cation of the parameters during expansion.
The commands use a parameter vector w, so F (w) would mean into current direction d(w)
units, and so on.

Figure 2.12: Binary tree generated from a parametric L-system with a single production rule
A(s) ::= F (s)[+A(s/R)][−A(s/R)] applied 10 times to the axiom ω = A(1). δ =
85◦, R = 1.456. Image from [14].

Context-sensitive L-systems allow signal exchanges that can control the growth in dif-
ferent parts of the plant. In order to make the context more visible, traditionally L-systems
used the notation τ < A > ν ::= χ, where A ∈ V and τ, ν, χ ∈ V +. See �gure 2.13.

Figure 2.13: Context-sensitive L-systems examples. Note (a) and (b) are almost identical but
produce very di�erent results. Image from [14].

19

2. Previous work

L-systems have also been extended to use time information in timed L-systems and
di�erential L-systems [39], which permit the simulation of growth procedures through the
use of di�erential equations for the parameter set. Environment-sensitive L-systems [41]
can simulate local aspects of the environment (for example, pruning) with an inquiry
symbol based on the position. Open L-systems [30] also enable communication modules
for sending and receiving parameters, so interaction between branches or trees such as light
competition can be simulated. Finally, user-de�ned functions and modeling tools can also
be inserted [42], facilitating the reproduction of a particular plant.

(a) Animation with di�erential L-systems

(b) Pruning with environment-sensitive L-systems

(c) Tree interaction with open L-systems

(d) Modeling a fern leaf using positional functions

Figure 2.14: Examples of various extensions of L-systems. Images from [14].

20

2.1. Synthetic generation of trees

2.1.3 Rule-based object production systems

The rule-based procedures such as the L-systems we have seen are a very powerful method
that allows the generation of a large variety of plants. However, the use of L-systems
is not very intuitive, and the production of a precise plant is a di�cult process even
for skilled users. Small changes can cause a complete modi�cation of the total shape,
and after a parameter change the whole expansion process must be worked through, and
the geometry production is expensive. On the other hand, procedural methods have the
opposite characteristics: only a very limited number of plants can be modeled with a
method, but the parametrization is usually straightforward and intuitive.

Therefore, some tools like the Xfrog modeling system by Lintermann and Deussen [27]
o�er a combination of the two approaches in the so-called rule-based object production
approach. Here, a plant is represented by connecting components. Each component gen-
erates parts of the plant geometry such as leaves, stems or simple geometric primitives by
using procedural methods. These components are connected in a directional graph and
using multiplication components, which represents the rule system.

Simple Creates and transforms simple geometries (cubes, spheres,
cylinders, torii, point sets). All other components derive
from this one.

Revolution Produces a surface of revolution from the user-speci�ed
outline.

Leaf Produces the geometry for leaves and petals.

Horn Basis for stems, branches, twigs... Produces point sets or
generalized cylinders.

Tree Produces a generalized cylinder like the Horn, but can also
be instructed to multiply its children nodes as branches of
its stem. Its parameters can control the branching struc-
ture (angles, sizes, ...)

Hydra Multiplies subsequent components and places them in a
star-like arrangement.

Wreath Arranges its successors on a ring.

Phiball Multiplied components are arranged on a section of a
sphere by the golden section algorithm (like sun�ower
seeds).

FFD Free form deformation of the shape by user-de�ned func-
tions.

Hyperpatch Free form deformation of the shape by moving control
points of a 3D Bézier patch (degree 1 to 3).

World Allows the de�nition of functions for gravitropism and pho-
totropism.

Camera Scene camera transform and projection.

Table 2.2: Components of the system, from [27]

21

2. Previous work

The following �gure shows some examples of plants modeled using this system, as well
as their associated graphs:

Figure 2.15: Examples of plants generated with the system. Images from [14].

2.2 Reconstruction of real trees

Instead of automatically generating a tree as we have seen in the previous section, some
works use real data - such as photographs or point clouds - to generate the models. Ob-
viously, these methods have the advantage of producing realistically looking results and
often do not need to spend some trial and error time tuning parameters of an algorithm
nor expertise in the rule de�nition. The disadvantage is that they need to capture input
data. Moreover, the traditional methods of scanning objects cannot be applied because
the small geometries of all the leaves introduce many high frequency details. Trees have
an interesting structure at di�erent scale levels, at the upper scale of its branches and
at the lower scale of the leaves. Therefore, several approaches have been introduced to

22

2.2. Reconstruction of real trees

reconstruct tree models from photographs or scanned point clouds.

2.2.1 Trees from photographs

Most of the reconstruction methods we have found use a picture set as input, probably
due to their ease of acquisition.

In the work of Shlyakhter et al. [49], the trunk and major branches are recovered from
a set of instrumented photographs, and then an L-system is applied to grow the small
branches and leaves. The input consists in a set of 4 to 15 images with known camera
poses, which are then manually segmented. The second stage uses the silhouettes obtained
previously for each photograph and computed the visual hull of the tree. To do so, each
silhouette polygon is back-projected using the camera information and a cone-like shape is
obtained. The intersection of all these 3D shapes is the approximation of the tree shape.
This visual hull is used to compute the tree skeleton as an approximation of the medial
axis, giving the main trunk and �rst levels of branching. To complete the tree with small
branches and �ne level detail, an L-system is used. Their method uses the skeleton as
starting axiom with buds at the last two levels of branching. Also, they ensure similarity
with the pictured tree by pruning branches that grow outside the visual hull shape.

Figure 2.16: Shlyakhter et al. method overview: input images (a) are segmented (b) and a visual
hull (c) constructed from their silhouettes. This hull is used to compute the tree
skeleton (d) from which the L-system will produce the �ner details (e). Image from
[49].

Reche et al. [45] developed a volumetric approach for individual tree reconstruction
and rendering from calibrated photographs. For each image (they use about 20-30), an
alpha mask is extracted. This process requires user intervention to segment foreground
and background, and produces an approximation of the visibility coverage for each pixel.
Then, a recursive grid containing an opacity value at each cell is constructed from these
masks. For each pixel of each alpha mask, the set of intersected cells is found using ray
casting. From an optimization procedure, an estimation of the opacity of all the cells is
found after a few iterations. In order to render this volume, each cell is assigned a small

23

2. Previous work

billboard extracted from the original photographs (using a heuristic approach to overcome
opacity in the inner cells). Finally, they use a direct volume rendering algorithm. It is
worth to mention that the authors note their method is particularly suited for trees with
relatively sparse foliage.

Figure 2.17: Reche et al. method overview: one of the input images (a), its transparency mask
(b), two slices of the volume grid containing opacities (c) and a synthetic volume
rendering (d). Image from [45].

Neubert et al. [32] reuse this idea of a volume grid and simulate a 3D particle �ow to
model the branches. Their method starts from an automatic matting of each input image,
which can be seen as a tree density estimation. On these images, a set of branch seed
points is randomly selected from the silhouette or user de�ned, and a path to the trunk is
found. This de�nes a skeleton for each image that the authors call attractor graph. Then,
using the density images and an algorithm like the one presented by Reche et al [45], a
coarse density grid is computed. This tree density grid is used to initialize the positions
of a set of 500-2000 particles. Then, a particle simulation will move these particles and
create the tree branches. The force acting at each step on each particle is de�ned by the
attraction of nearby particles as well as the direction �eld computed from the set of 2D
attractor graphs. Particles are merged when they get close. Once the branching structure
has been computed, the model of the branches is generated and populated with leaves
extracted from photographs according to the density grid. The user is also able to sketch
regions to add additional branching or foliage coverage.

Figure 2.18: Neubert et al. method overview: one of the input images (a), its density estimation
and attractor graph in red (b), the density grid (c), branching structure obtained
from the particle simulation (d) and �nal rendering (e). Images from [32].

In Tan et al. [52], a structure from motion algorithm is run to produce a 3D point cloud
from a set of 10-20 captured photographs. These points are segmented onto branches or
leaves, depending on their color and position, and a set of visible branches is extracted.
The branch reconstruction process assumes the trunk and a representative set of branches
are visible. Therefore, the occluded branches can be generated using the visible ones as
replication block examples. Finally, to populate the tree with leaves, input images are
analyzed to produce a set of regions with homogeneous colors, which will be the candidate
leaves (usually represented as ellipsoids). Then, these regions are projected to �nd a close

24

2.2. Reconstruction of real trees

3D point from the previously extracted point cloud or a branch and the leaf is attached
to the model. After all the input images have been processed, more leaves are synthesized
to the lowest density areas. Although the method can be fully automatic, the user can
interact during the matting, branch editing and the leaves segmentation/clustering.

Figure 2.19: Tan et al. method overview. Image from [52].

In a more recent article, Tan et al. [51] describe a new method that allows tree modeling
from a single image and some user interaction. On the image plane, the user �rst draws
one stroke following the shape of the crown, and the foliage is segmented from the closed
region of this stroke using a Gaussian mixture model. Then, more strokes are drawn to
mark the visible branches. The interface automatically tries to follow visible branches close
to the user strokes, and the user can correct this result adding or removing strokes. The
set of 2D branches is converted to 3D using a greedy strategy: adjusting their orientation
such that distance between them is as large as possible. Like in their previous work,
a library of branching structures is built from this set of visible branches and possibly
user de�ned patterns. Then, an iterative process selects a branch and replaces it with a
subtree. This process tries to minimize the distance from the branches to a set of point
attractors sampled on the segmented foliage region in the input image. In order to ensure
a balanced 3D growth, a set of extrapolated 3D attractors is also computed by rotation 90
degrees the branch joints. The iterative process alternates between minimizing distance
to image attractors and distance to these 3D points. Finally, the leaves are added using
rectangles textured with the input image foliage. Branches and leaves that project outside
the segmented foliage region are pruned.

Figure 2.20: Tan et al. single image method overview: input image (a), user-drawn strokes (b)
for crown (red) and branches (blue), generated branch structure (c) and �nal tree
model (d). Image from [51].

Sun et al. [50] proposed a method to combine rule-based modeling and image-based
reconstruction to create lightweight trees from two input images. From one of the source
images, the tree branches are segmented using an automatic algorithm and thinned to
�nd the 2D skeleton of the tree trunk. The result is a set of branch segments, which
are then classi�ed as real branching points or fake branching relationships introduced due
to occlusions. Once the branching structure of the 2D image is recovered, the second
image is used to �nd the branch correspondence and recover the 3D position of the start
and end points of the branches. This branching structure is then analyzed to produce an
axiom, a set of productions and parameters (length and width of branch, branching angle
and divergence angle) for a parametric L-system. The �nal model is produced from this

25

2. Previous work

L-system. They also generate a Web3D �le from this L-system that allows an e�cient
transmission of the model.

Figure 2.21: Sun et al. method overview. Image from [50].

For the case of plants with well di�erentiated leaves, Quan et al. [44] showed a method
to realistically reconstruct the plant model. Running a structure from motion algorithm
on the input images (30-45) a 3D point cloud is obtained. Then, the individual leaves
are segmented using a graph-based optimization using the 3D point positions and their
projections on the images to identify continuous regions. The user also assists this process
by re�ning the segmentation. Next, an example leaf is selected by the user. A �at version
of it is �tted onto each group of points segmented as a leaf to determine its orientation,
and then deformed to match the boundary. Input images are used to modify the texture.
Finally, the user is asked to model the branch structure of the plant.

Figure 2.22: Quan et al. method overview. Image from [44].

Quan et al. method is able to produce accurate leaves, but does not scale to large
dense foliage areas. On the other hand, the previously described methods or the methods
we will see in section 2.2.2 capture large-scale branching structure of trees but arbitrarily
synthesize the �ne details. In a recent work, Bradley et al. [5] proposed a method aimed
to reconstruct details as they appear on the real tree.

Figure 2.23: Bradley et al. method overview. Image from [5].

In their work, the input consists of a small number of overlapping images of the foliage
to reconstruct and at least one exemplar leaf, which they obtain by scanning a real leaf
pruned from the plant. From a structure from motion algorithm, they estimate the camera
parameters and an initial sparse 3D point set. Then, a custom multi-view stereo algorithm
generates a dense point cloud. Then, the exemplar leaves are aligned to the point cloud

26

2.2. Reconstruction of real trees

data. During this alignment, the leaf exemplars are allowed some deformation to match
the leaf points shape. From this deformations, a statistical model of shape variations is
learned. Similarly, a color statistical model can also be built. Finally, the statistical models
are used to synthesize new leaves which could not be reconstructed or were occluded in
the point set.

2.2.2 Trees from scanned point clouds

Other authors propose solutions based on tree reconstruction from a point cloud. Some of
the approaches we have already seen in section 2.2.1 ran a structure from motion algorithm
to the input photographs and obtained a 3D point cloud [44, 52, 5]. However, others start
directly from a laser-scanned point cloud. In recent years, these techniques have become
more popular due to the increasing number of scanned datasets produced, specially from
city streets. This section gives a few insights onto some representative works.

Xu et al. [58] method �rst builds a graph connecting each point to its neighbors. Then,
starting from the root point (which is manually selected or automatically by taking the
lowest point) the shortest distance path from it to each other point is computed. This set
of lengths is then quantized, and connecting the centroids of neighboring bins produces the
skeleton of the tree. Since several connected components may appear in the initial graph,
an appropriate position and angle is found for each of the main branches to be attached to
the main trunk. The points in the subgraphs that are not connected to the main skeleton
are considered to be leaves, and clustered according to some species-speci�c parameters to
de�ne leaf locations. Then, �ne branches are synthesized to reach these positions. Finally,
the tree mesh is constructed around the skeleton and the leaves are textured.

Figure 2.24: Xu et al. method overview: original scanned point set (a), connected graph com-
ponents identi�ed (b), reconstructed skeleton and identi�ed leaf positions (c), �nal
model (d). Image from [58].

Figure 2.25: Xu et al. main skeleton production: neighbors graph (a), shortest distance paths to
root (b), clustered distances to root (c) and skeleton formed by connecting neigh-
boring bins (d). Image from [58].

27

2. Previous work

Livny et al. [29] de�ne a fully automatic method to reconstruct a scanned point set
containing one or more trees. Like in the method we saw before, all scanned points are
connected to their neighbors with weighted edges according to their Euclidean distances
and the minimum-weight spanning tree is extracted from this graph. If the input point set
contains di�erent trees, the selected root points of each one are connected with zero-weight
edges and removed after the spanning tree has been created. Then, these tree skeletons
obtained need to be smoothed to obtain a more natural look. They generate an orientation
�eld for each skeleton by minimizing the sum of directional di�erences between adjacent
edges weighted by edge importance. The importance of an edge is equal to the size of
its subtree. This orientation �eld will be used to optimize the spatial embedding of the
skeleton, by formulating a least squares problem. Finally, the skeletons are in�ated into
tree geometry and branches are populated with textured leaves. The authors note that
trees that have very dense crowns, leading to large-scale occlusion of the interior branches,
cannot be faithfully reconstructed.

Figure 2.26: Livny et al. trunk reconstruction, from left to right: input points, minimal-weight
spanning tree, colored importance weights of the edges, orientation �eld, smoothed
tree structure. Image from [29].

In an extension to their work, Livny et al. [28] propose a lobe-based representation to
reconstruct and lightly store and transmit trees. They show how to convert a point cloud
a lobe-based representation and how to reconstruct the tree by texturing the lobes and
producing the branch geometry. Using three parameters that depend on the tree species,
they follow the edges in the tree graph and identify points in which the average edge
length is bigger than the expected diameter of the branches. These points are unlikely
to be connected to the branching structure, so they cluster them in lobes. Each lobe is
represented as the triangulated surface produced from its α-shape1. In order to reconstruct
the tree from the lobes representation, each species has a de�ned set of branch patches
with anchor points. Starting from a branch patch inside the lobe, new �tting patches are
anchored iteratively until the lobe volume is covered depending on the desired level of
detail.

Figure 2.27: Linvy et al. texture lobes. Left, the e�ect of one of the parameters on the �nal
shape of the lobes. Right, lobe reconstruction from patches. Images from [28].

1α-shapes are extensions of convex hulls that allow non-convex envelopes to be created

28

2.2. Reconstruction of real trees

Figure 2.28: Linvy et al. texture lobes, left to right: comparison picture, point set, lobe-based
representation, and full tree after lobe texturing. Images from [28].

2.2.3 Sketch-based reconstruction

Instead of capturing a real tree, other authors have researched the possibility to allow
artists to directly draw the desired shape and appearance of the desired tree. Here we will
discuss a pair of these approaches, since they provide some interesting ideas on how to
infer a 3D structure from a 2D sketch and how to add �ne details.

Okabe et al. [33] propose a user interface to sketch trees. To model a tree, the user
starts drawing in 2D the branch structure. When the user �nishes, the sketched branches
are converted into a 3D tree skeleton. The density of branches can be increased by the user
successively clicking on parent branches. Next, the user can start sketching and placing
leaves, and the system automatically infers and proposes leaf arrangement patterns the
user can choose to �ll the branch. The arrangement of a branch can be copied to the rest
of branches of the tree. An additional feature allows the user to duplicate the tree by
sketching a trunk and a silhouette shape, and the branches of the copy are adjusted to �t
this shape.

Figure 2.29: Okabe et al. sketching process. Image from [33].

To convert the 2D sketch into a 3D tree model, the authors propose a greedy strategy.
Branches are placed one by one, and the sibling order is random. They use the following
constraints: the branch projection of branches onto the 2D plane must �t the sketch,
branches must be located inside the 3D convex hull obtained from the sketch 2D convex
hull by sweeping a circle along it, and the distance between branches must be as large as
possible. Other typical relations such as the size and length of child branches with respect
to the parent branch are also taken into account. By doing this method, the tree only
resembles the sketch from a front view, lateral views can be very di�erent. The authors

29

2. Previous work

make the observation that users often draw those branches pointing sideways from the main
trunk and omit the branches pointing forward of backwards. Therefore, they propose to
position the branches deviating only 45 degrees from the sketch plane, do the same again
after rotating 90 degrees the sketch along the trunk direction, and �nally merging the two
resulting trees.

Figure 2.30: Okabe et al. branch positioning. Image from [33].

The approach of Wither et al. [57] builds on the methodologies used by botanists and
artists when they create 2D drawings of trees incrementally. Also, instead of drawing the
full tree with details, they usually draw the shape and specify details on certain areas using
zoom rectangles. Thus, the authors design a system that starts from a crown silhouette
and only needs to re�ne a subpart of the tree, the style of this re�ned area is copied to the
rest of the tree. Starting from the trunk and crown silhouette sketch, the system infers the
�rst level of branching by connecting the trunk with the centroids of the silhouette bumps
using information from the crown geometric skeleton and botanical rules. Each detected
bump on the sketched silhouette also indicates a crown of a sub-branching system. The
system provides a simple version of these that serves as construction lines for the user to
re�ne these regions as well as guides during style copying from one branch to another. The
process �nishes when the user draws the silhouette of a leaf. To construct the 3D model,
the system also assumes like in the work of Okabe et al. [33] that users draw branches close
to the sketch plane and generates new branches to cover all the angles while maximizing
distances between branches.

Figure 2.31: Wither et al. sketching system. The user �rst sketches the main trunk and the
silhouette. Then the �rst level branching is inferred. The user redraws a branch,
and this change is propagated to the rest of branches. When the user zooms in, the
outline of the simple inferred sub-silhouette appears, serving as the basis to draw
the structure of the next level. When the user zooms out, styles are transferred
between branching systems and branches are positioned in 3D, resulting in a full
3D tree. Image from [57].

30

2.3. Tree representations

2.3 Tree representations

As we have seen, trees are complex objects and their representation usually requires a large
number of polygons. Some characteristics that in�uence the rendering realism of a plant
[4] are: the number and variety of organ shapes, the number of organs and the spatial or-
ganization of these organs depending on the species. Also, a plant aspect drastically varies
with observation distance: at close scale we see a branching system with detailed organs,
but at large distances the aggregation of individual details yields an overall impression of
a fuzzy volume.

This is why most classical rendering optimization and simpli�cations techniques that
are successfully applied on regulars objects usually produce non-adequate results for plants,
and a wide range of techniques tailored for plants has been developed. Boudon et al. made
a survey of these techniques in [4], and a short summary is provided here for completeness
of this chapter.

Figure 2.32: Classi�cation of tree representations by Boudon et al. Image from [4].

2.3.1 Detailed representations

Detailed representations try to model the tree in the most realistic manner for close views.
Trunk, branches and leaves usually require di�erent modeling and rendering techniques.
We have already discussed some representations in section 2.1.

Pioneering approaches used cylinders to represent trunks and branches. Bloomenthal
[3] proposed the use of generalized cylinders and the saddle structure to improve the realism
of branching points. He also proposed the use of implicit surfaces to represent �blobby�
structures like the roots, and this approach has been extended and improved to represent
the tree branches in later works. Finally, subdivision surfaces have been also used to obtain
a smooth surfaces at the branching points.

The bark texture of trunk and branches has been either addressed as a texturing ap-
proach and as a mechanical simulation to generate it. In the texturing approaches, one
of the main problems is the parametrization of junctions. Some proposed solutions are
blending by interpolation between the texture of each branch, or using particle �ow along
branches to compute the parametrization. Realism of the bark rendering is usually im-
proved using bump mapping or displacement mapping.

The foliage of the tree is often built from a few leaf representations, each of them being
a textured polygon. Other approaches construct more complex leaves using splines, sweep
surfaces [42] or from a skeleton or silhouette.

31

2. Previous work

2.3.2 Global representations

These representations provide e�cient rendering at distant views, by only representing the
overall appearance of the tree. The most common tool to achieve a realtime rendering
of forests or scenes with a large number of trees are billboards. Classical billboards use
a single quad oriented towards the camera, but there is no parallax when the camera
moves and a tree slightly behind another may pop in front depending on the angle. Cross
billboards use a small set of �xed quads crossing each other, but artifacts appear when a
quad is viewed from a grazing angle.

Figure 2.33: Tree representations using billboards: (a) classical, (b) cross billboard, (c) 3-cross
billboard, (d) 4-cross billboard, (e) billboard slices. Image from [4].

Jakulin [22] extended the cross billboard representation for the crown, and used tra-
ditional geometry rendering for the trunk and limbs. In a preprocess step, several sets of
parallel slices are created from various viewpoints, and for each set the crown leaves are
assigned to the closest slice. The leaves of each slice are then rendered to a 2D texture.
During rendering, the two slice sets closest to the viewing direction are selected, and the
slices rendered using the correct transparency and blending. Another extension of bill-
boards was proposed by Qin et al. [43] in a representation they called quasi-3D trees. This
representation stores a set of 2D bu�ers containing the tree billboards for color, normal
vectors, relative depths and shadowing.

A more recent approach by Bruneton and Neyret [7] proposes a representation for
medium distance views called z-�eld. The tree is rendered from 181 views on the upper
hemisphere, and they store the minimal and maximal depths, the ambient occlusion and
the opacity. During rendering, the three closest precomputed views are used to reconstruct
the tree shape and compute the shading. Although the modeled forests display a variety
of realistic lighting e�ects such as view-dependent re�ectance, slope-dependent re�ectance,
hotspots and silverlining2, each di�erent tree model requires about 50MB.

Figure 2.34: Bruneton and Neyret rendering of forests: comparison between photographs (top)
and renderings (bottom). Image from [7].

2The silhouettes of backlit trees appear brighter than the rest of the tree because they are optically
thinner [7].

32

2.3. Tree representations

2.3.3 Multiscale representations

The structure of a tree plays an important role on how its model can be simpli�ed. Its
multiscale hierarchy of components de�ne di�erent levels of abstraction that can be used
for simpli�cation: trees are composed of a trunk and main branches, each main branch
groups smaller branches, boughs are made of leaves or needles, and leaves, needles, boughs
and branches resemble each other [4].

Finding repetitive patterns leads to simpli�cations based on plant structure. More
generic methods regroup or merge primitives based on proximity.

Based on plant structure

Tree structures are hierarchical, and thus many techniques base their levels of details on
this nature. The disadvantage is the simpli�cation techniques are often highly coupled
with the generation process, since speci�c knowledge about the tree structure is needed
to build a multiscale representation. For example, the procedural modeling method could
directly include the generation of geometry based on the level of detail. Furthermore, if the
generation were fast enough, storage space can be saved by directly generating the models
on the �y.

Like in the global representations, image-based representations are also widely used to
build a hierarchy of billboards from a single quad representing the whole tree to hundreds
of quads for the branches or even to the leaves level.

Point-based rendering has also proven to be useful. This approach builds on the ob-
servation that in increasingly complex scenes triangles become smaller than a single pixel,
so triangle-based scan-line rendering wastes time in super�uous computations. Thus, the
degree of detail can be adapted by adding or removing points. We have already seen this
approach in the early Reeves and Blau particle system for trees [46] in section 2.1, and it
was later extended by Weber and Penn [53] and [13]. To render a large number of trees,
in these approaches the geometry of the branches is progressively reinterpreted: branches
become lines and leaves become points.

Figure 2.35: Point-based representations of trees: (a)(b) stochastic shadowing model for particle
systems proposed by Reeves and Blau [46], (c) results by Weber and Penn [53],
(d)(e) results from Deussen et al. [13]. Image from [4].

Finally, there are also proposed solutions that replace the indistinguishable distant
data by a simple primitive combined with an illumination model that reproduces the same
photometric behavior.

33

2. Previous work

Based on spatial proximity and visibility

This set of techniques use arbitrary rules disconnected from the modeling process, allowing
the construction of hierarchical structures from unstructured inputs like polygon soups.
The hierarchy is usually built into an spatial structure such as octrees or BSP trees. In
some approaches, rendering is performed by raycasting or slicing a volumetric texture. In
others, the hierarchy stores points or polygons to draw.

Decaudin et al. [12] propose a volumetric texture rendering technique using a sliced
triangular prism shape, which they call texcell. They use two di�erent kinds of texcells:
a simple one in which the slices are parallel to the ground, which serves for most views
except grazing angles, and a more complex one sliced parallel to the screen, used near the
landscape silhouette.

Figure 2.36: Decauding et al. rendering from slices. Left, slicing scheme with level of detail.
Center, aperiodic tiling. Right, forest with 30000 trees rendered in real time. Images
from [12].

Finally, other authors propose simpli�cation methods based on visibility rules or based
on distance by collapsing leaves to build a multiresolution model.

34

Chapter 3

Overview

We propose a semi-procedural technique for tree generation. In particular, we focused on
the reconstruction of trees and shrubs models with a dense crown from a single photograph.
A dense crown is that in which the foliage does not allow us to see the branches nor through
the tree. The main goal is to obtain a model close enough to the pictured tree and which
allows the visualization of thousands of instances e�ciently.

In contrast with the approaches presented in 2.2.1, which reconstruct the underlying
branching structure and then add the leaves, we will only approximate the shape of the
crown. This is su�cient for representing the trees at medium and far distances. For close
views, we will switch to a representation using textured leaves. Since we assume the crown
is dense enough, we do not need to construct a branching structure. However, should we
want to build it, we could use the Space Colonization algorithm of Runions et al. [48] and
set our reconstructed crown volume as input.

Figure 3.1: Overview of the crown reconstruction process

Our method starts with a picture of a tree or shrub crown, together with a segmentation
of the crown foliage area. From this picture, we obtain two outputs: a volume mesh
representing the general shape of the crown (base mesh), and a color cubemap representing
the appearance of the foliage. This cubemap is used to compute an approximation of the
crown relief, and the base mesh is perturbed accordingly.

The reconstructed crown mesh is rendered into a depth cubemap storing the maximum
distance from its center to the crown. In other words, for each direction we store the radius

35

3. Overview

from the center of the crown to the silhouette. This sort of radial representation allows us
to e�ciently render trees using a shader inspired by relief mapping.

Chapter 4 explains in detail how we reconstruct the crown from the input photograph,
as well as a previous attempt method we �nally discarded. The rendering algorithm is
described in chapter 5. The integration of our trees in a real terrain navigation is shown
in chapter 6. Finally, chapter 7 provides more tests and results.

36

Chapter 4

Crown reconstruction

This chapter describes the method we use to obtain a crown model from a single photo-
graph. First, we will specify the required input and how it is treated. Then, we will explain
an early approach we implemented and to which we refer to as radial silhouette approach.
Then, the actual used approach based on in�ation is presented. Finally, we will show how
we obtain the �ne relief details from the picture.

4.1 Input

Our method starts from a single picture of a tree or shrub and a segmentation mask for
its crown foliage area. Early reconstruction methods presented in section 2.2.1 also asked
the user to provide a segmentation of the tree. Newer methods integrate automatic or
used-aided matting algorithms. Analyzing the various matting methods and implementing
one of them was out of the scope of this project, but in the future we would like to research
them and thus provide a fully automatic method that only needs the input photograph.

4.1.1 Photograph requirements

Currently, we need to ensure the following conditions about the input photograph in order
to produce correct results:

• The crown silhouette must be completely visible. This condition could be relaxed in
the case of user-provided segmentations if the user speci�es the shape of the crown
as well as the occluded areas (otherwise, texture from the occluders would be used).

• The foliage should be dense and uniform, the underlying branching structure should
be hidden or hardly visible.

• The shading seen in the crown must be caused by self-occlusions in lighting conditions
similar to ambient light. Our method will produce an inadequate relief if there is
some gradient due to the direction of the lighting.

• The crown can be approximated as a single volume. For now, we consider only simple
crowns. In the future we might extend the method to deal with trees with sparse
foliage nuclei.

37

4. Crown reconstruction

Although these conditions may seem too restrictive, we will see now that in fact they
are not di�cult to satisfy.

Figure 4.1 shows some of the most typical trees found in Catalan forests1. These
species, when they are in the wild, usually grow dense crowns with a volumetric appearance.
Some exceptions are fagus sylvatica, which grows a dense crown but its branches are very
separated and with a sparse foliage, and many individuals of pinus sylvestris and pinus

halepensis, whose crown is usually made up of smaller dense crowns for the major branches,
thus revealing the underlying branching structure.

(a) Alzina (quercus ilex) (b) Roure (quercus humilis)

(c) Faig (fagus sylvatica) (d) Castanyer (castanea sativa) (e) Pi blanc (pinus halepensis)

(f) Pi pinyer (pinus pinea) (g) Pi roig (pinus sylvestris) (h) Pi negre (pinus uncinata)

Figure 4.1: Common tree species found in Catalunya. Images (a)(c)(d)(g) from Wikimedia Com-
mons. Images (f)(h) from www.�oracatalana.net.

Even for the above mentioned bad cases, their global appearance as seen from afar may
hide the branches. Therefore, even for the cases in which our method is not applicable,
we can still obtain a plausible reconstruction to be used in far views. A clear example is
shown in �gure 4.2.

1See http://www.creaf.uab.es/iefc/pub/Catalunya/MenuEspecies.htm for a detailed list and descrip-
tions, and http://www.creaf.uab.es/iefc/pub/Introduccio/Especies for coverage maps.

38

4.1. Input

Finally, the images in �gure 4.3 show di�erent forest landscapes at medium to far
views. Notice the density and regular shape of the crowns. Most of the species in picture
4.1 usually show a dense crown at medium distances (10m and beyond).

(a) Inside a fagus sylvatica forest, although
the forest is dense, individual trees show
many branches with a sparse crown.

(b) The same forest seen from above.

Figure 4.2: Fagus sylvatica forest seen at di�erent scales.

(a) Serra de Turp, Alt Urgell (b) Serra del Verd, Berguedà/Solsonès

(c) Cingles de Vilanova, Osona (d) Serralada litoral, Maresme

(e) Puig de les Bruixes, Garrotxa (f) Montseny, Vallès Oriental

Figure 4.3: Forest scenarios pictured in Catalunya like the landscapes we aim to reconstruct.

39

4. Crown reconstruction

4.2 Radial silhouette approach

This is the �rst, naive method we came up with to reconstruct the crown shape. The
basic idea is to generate a crown volume from a silhouette, like in one of the steps of the
sketch-based approach proposed by Okabe et al. [33].

4.2.1 Radial silhouette

Given the crown segmentation, the �rst thing we do is to extract the radial silhouette of
the crown. We call radial silhouette the approximation of the input silhouette de�ned by a
function r(ϕ) = dist(s− c), where ϕ is an angle, s a point on the crown silhouette (which
may not be unique) and c the centroid, a point inside the crown segmentation area.

The result is the silhouette of a star-shaped polygon in which every point inside it is
visible from c. However, this polygon may include regions outside the original segmented
crown and exclude regions inside it, depending on the chosen position of c. At �rst, we
set c to be the centroid of the segmented crown area, computed as the sum of valid pixel
positions divided by the number of them. From now on, we may refer to the polygon
obtained from the radial silhouette as radial crown.

To construct the function r, we discretize the set of angles and �nd the intersection
of the ray shoot from c and the input crown silhouette. Therefore, we have to set a
rule for the cases in which the ray intersects the silhouette multiple times, i.e. whether
we want to overestimate or underestimate the input crown. We decided to keep the last
intersection, since the resulting crown looks more faithful to the original shape. However,
for approximately star-shaped crowns the result is almost perfect.

Figure 4.4: Radial silhouettes for �rst (top row) and last (bottom row) intersection. White
pixels represent the original crown segmentation, onto which green pixels showing
the obtained polygon or radial crown are overlaid. The centroid is shown in red.

The next thing we can do is to check if there is a point c for which the radial represen-
tation is more faithful than using the centroid. Although e�cient algorithms exists to test
whether a given polygon (in this case the input segmentation of the crown) is star-shaped
and what its kernel is, most of our crown examples do not have a kernel. Running a
brute-force search for the optimal c, i.e. the point from which its radial crown area outside

40

4.2. Radial silhouette approach

the original segmentation is minimum, would take a huge amount of time. Therefore, we
implemented a gradient descent-like algorithm starting from the centroid and moving to
the best of its neighbors. When we ran the tests for this version, we observed the distance
between the segmented crown centroid and the optimum found by gradient descent was
very small.

Then, we did a brute-force test computing the number of pixels that would be added
for each position inside the segmented crown if we took that position as center of the
radial silhouette. Results showed that the domain has a large number of local minima, so
gradient descent approaches are going to fall into one of them. But another observation
was that the relative di�erence in amount of added pixels between centroid and optimum
is really small (see table 4.1). Moreover, the �nal shape of the radial silhouette was very
similar.

Figure 4.5: Optimal center for di�erent crowns. The green color represents the optimality of
choosing each point as center for the radial silhouette, the brighter the better. Ma-
genta point is the global optimum, cyan point marks the centroid, and white points
represent the path followed by gradient descend.

segmented crown pixels c = centroid c = local optimum c = global optimum

33753 +373 +361 +341
39438 +580 +560 +546
29695 +1742 +1717 +1574
36836 +2702 +2702 +2623

Table 4.1: Amount of added pixels for each of the test crowns shown in �gure 4.5, in order. This
test was run on 256× 256 images.

Figure 4.6: Radial crowns obtained from di�erent centers. Three di�erent radial crowns have
been overlaid to the original segmentation drawn in gray: the one using centroid in
red, using local optimum from gradient descend in blue, using the global optimum
in green. Notice that most of the shape is white/gray, meaning all three overlays
intersect. Other colors represent either a single crown or the intersection of two of
them.

As a consequence, we decided to keep the centroid as the center of our radial silhouette,
since it is the easiest and fastest solution and the obtained radial crown is good enough
compared to the best we could do. Now, all we have to do is extrapolate a 3D function
from r to de�ne the 3D crown.

41

4. Crown reconstruction

4.2.2 From 2D silhouettes to 3D volumes

The radial silhouette is de�ned using a function r(ϕ). What we really want is to represent
a radius in any 3D direction, so we need to extend this function with another angle R(ϕ, φ)
and then use this function to build a cubemap of the crown radius.

Given a direction d = (x, y, z) and using the world up direction (0, 0, 1), we project d
onto the XZ plane and compute the angle ϕ, and φ is computed from the projection onto
the XY plane. Then, the two radii r1 = r(ϕ) and r2 = r(−ϕ) are linearly interpolated
using φ ∈ [−π, π]:

R(ϕ, φ) =
|φ|
π
r1 + (1− |φ|

π
)r2 =

|φ|
π
r(ϕ) + (1− |φ|

π
)r(−ϕ)

Figure 4.7: The two radii being interpolated to extrapolate the 3D silhouette.

The �gure below shows the 3D crown obtained with this method. The most noticeable
artifact at �rst sight is the circular bands caused by the interpolation using the angle φ of
the direction vector projected onto the horizontal plane. This bands, however, are removed
when we add fractal noise or a relief (see section 4.4) to the reconstructed volume.

Then, if we take a second look and compare the resulting volume with its 2D radial
crown, we will realize it is much more convex than the radial silhouette computed for it.
In fact, if we project the 3D crown onto the XZ plane, the fourth volume is very di�erent
from its radial crown. The reason is our extrapolation scheme is covering the concavities
of the radial crown when it �revolves� the silhouette along φ.

Figure 4.8: 3D crowns reconstructed from their radial silhouettes (shown in the upper-left cor-
ner). Color intensity indicates the magnitude of the radius at each point.

The approach presented in this section is very simple but it has some limitations,
specially for very concave shapes. Therefore, we propose an alternative more complex
method to reconstruct a crown from its silhouette in the next section that gives better
results (see �gure 4.15 on page 47, which shows the same crowns except the �rst one). The
di�erence between both methods is specially noticeable in the last example crown.

42

4.3. In�ation approach

4.3 In�ation approach

The artifacts in the previous approach were partly produced by using an overly simpli�ed
representation for the crown silhouette. In fact, even before extrapolating the 3D model
we were already introducing distortions to the silhouette with our radial function. Thus,
we want a new method that fully leverages the silhouette as segmented by the user.

Although the input to our algorithm is a photograph, for now all the information we
needed was the segmentation, more precisely the segmentation silhouette. Therefore, we
looked at the sketch-based approaches of tree reconstruction like [33, 57] and both of them
mention that users tend to draw branches extending lateral to the trunk. Moreover, Tan
et al. in [51] also cite this observation from [33] when they extract the crown foliage area
shape. Therefore, we are going to make the same assumption: the silhouette lies on a
plane (for example, z = 0) and the inner pixels of the segmented crown extend toward the
viewer (z > 0). All we need to do is to in�ate these inner pixels, like if we were blowing
them from behind but keeping the silhouette �xed.

Our �rst idea was to use the distance �eld d(i, j), de�ned for each inner pixel (i, j) as
distance to the silhouette, as altitude for the inner pixels. This produces ridges along the
maximal values of the distance �eld that are visible even if we try to make the distance-
altitude relationship more spherical, for example by applying a sinus function.

Figure 4.9: 3D crowns reconstructed from the distance �eld. Left, segmented crown. Center,

z(i, j) = d(i, j). Right, z(i, j) = D sin(π2
d(i,j)
D), where D is the maximum distance in

the �eld.

What we actually want is to minimize the thin-plate energy de�ned by a biharmonic
equation inside the crown C, and restrict the silhouette S to have z = 0:

min
z

∫
C
∇4z, such that z ≥ 0 and z(p) = 0 for p ∈ S (4.1)

Obviously, the equation above has a trivial solution z(p) = 0 for p ∈ C. We still need
to constraint the tangent direction for points on the silhouette. Since we want the crown
to be in�ated upwards in the z direction, we will set tangents of the form t = (0, 0, k) for
those points on the silhouette.

4.3.1 Iterative bilaplacian

In a �rst implementation, we solved the biharmonic equation using an iterative bilaplacian
method. We started with the planar mesh obtained by creating a vertex v at each inner
pixel in the crown segmentation with z = 0 and replicating the silhouette vertices with a

43

4. Crown reconstruction

negative displacement of k units in the z direction. Then, 2N iterations of the laplacian
smoothing are applied alternating the sign of λ:

L(v(i)) =
1

|Neigh(v(i))|
∑

n(i)∈Neigh(v(i))

n(i) − v(i)

v(i+1) = v(i) + λL(v(i))

This method is not only very slow but also reaches and gets stuck into a local optimum
of the thin plate energy function that is not what we are looking for:

Figure 4.10: 3D crowns reconstructed using the iterative bilaplacian with 2N = 2000 iterations,
λ = 0.5 and k = 5. Increasing k only increments the height of the extruded
silhouette shown in the picture. We tried increasing the iterations up to millions
(which took several hours to complete) but the results were still very similar.

4.3.2 Linear system

Then, we switched to a more direct solver for the biharmonic equation, this time based on a
linear system for z. We need to discretize the domain C, so we use our input segmentation
as a 2D grid discretization. But now we need a di�erent strategy to specify the tangents,
since each cell (pixel) has a unique height z. We de�ne an outer silhouette So as the set of
pixels neighboring a silhouette pixel, and apply the negative displacement in z to it. For
each inner pixel (i, j):

z(i, j) = x if (i, j) ∈ C\S
z(i, j) = 0 if (i, j) ∈ S
z(i, j) = −k if (i, j) ∈ So

where x represents an unknown of the linear system, and k is a user-de�ned value.

Then, for each unknown x we create the equation obtained from the convolution of this
point with its neighbors, representing the thin-plate energy computation:∑

−2≤di≤2
−2≤dj≤2

Mdi+2,dj+2 · z(i+ di, j + dj) = 0 (4.2)

M =
1

16

0 0 1 0 0
0 2 −8 2 0
1 −8 16 −8 1
0 2 −8 2 0
0 0 1 0 0

44

4.3. In�ation approach

We solve this system using the SimplicialLDLT solver included in the Eigen library
[19], which implements an LDLT Cholesky factorization. This is the result obtained with
this system:

Figure 4.11: 3D crowns from the bilaplacian system and k = 3. Left, the direct height�eld
obtained as a solution to the system. Right, mesh after cropping the crown area
and merging it with its mirror mesh.

This result looks promising, but there are still some issues. Due to the way we are now
de�ning the tangents using the outer silhouette on the grid, tangents can not be de�ned as
we wanted: as vectors pointing in the z direction, because there is always a displacement
in x and y between the outer silhouette and the real silhouette. Therefore, the crown does
not look as spherical as we expected. Increasing the value of k increases the protuberance
height, but tangents never match with the mirrored ones at the silhouette and the overall
shape looks like a large ellipsoid. Another possible cause may be that each inner point has
its x and y �xed, so we may be limiting the degrees of freedom needed to produce almost
vertical tangents at the silhouette.

This is why we decided to extend the previous linear system to 3D with unknowns for x
and y as well. Now, inner vertices will no longer be restricted to be on a grid arrangement:

z(i, j) = (xx, xy, xz) if (i, j) ∈ C\S
z(i, j) = (i, j, 0) if (i, j) ∈ S
z(i, j) = (i− 0.5di, j − 0.5dj ,−k) if (i, j) ∈ So

where xx, xy and xz are the unknowns, and we use equation 4.2 independently on each of
them.

The values di and dj that appear on the position of pixels in So are the same as the
ones in equation 4.2. Note that for each inner pixel we de�ne a convolution that has a
radius of 2 pixels, therefore some of them will convolve with the outer silhouette pixels and
the resulting value will be added to the independent term. What we are doing is setting
the position of these outer pixels halfway through their actual position and the position
of the inner pixel that is consulting them, thus simulating they are located on the real
silhouette. We saw empirically that this trick improves a lot the tangents obtained from
the solver at the silhouette. See �gure 4.12.

Finally, we found the connectivity of the silhouette pixels plays a big role in the recon-
struction process. Figure 4.13 shows that we were not able to reconstruct a sphere from
a circle image using 4-connected silhouettes. For small values of k we obtained very �at
shapes, but increasing these values produced excessively elongated volumes and made a
star-shaped pattern appear. Using 8-connectivity in the silhouette pixels, however, solved
all these artifacts.

45

4. Crown reconstruction

Figure 4.12: Di�erence between the 1D and 3D system reconstructions, using a circle as input
image. Left, the result of the 1D system. Center, the result of the 3D system
without displacing the pixels in So. This shows that our hypothesis that using more
dimensions would allow vertices to move was wrong. Right, the result of the 3D
system with the displacement trick for pixels in So, now the tangents look good and
the reconstructed mesh is spherical.

Figure 4.13: E�ect of silhouette connectivity in the 3D bilaplacian system. From left to right:
4-connected and k = 2, 4-connected and k = 8, 8-connected and k = 2.

One of the advantages of using the in�ation method is that we can play with the
tangents at the silhouette and have a better control over the �nal reconstructed shape. In
our current implementation, this is done by modifying the value of k, either by setting a
constant value or de�ning a hard-coded function k(i, j). An interesting feature for a �nal
software would be allowing the user to de�ne these functions.

(a) k(i, j) = 3 (b) k(i, j) = 3 ∗ (1 + j2) (c) k(i, j) = 3 ∗ (0.5 + 42j

8)

Figure 4.14: E�ect of modifying the silhouette tangents. Origin is located in upper-left corner,
and i, j ∈ [0, 1].

46

4.4. Extracting relief

These are the rest of the test crowns reconstructed using this method, shown below.
When the mesh is viewed laterally it is clearly evident that it is composed of two mirrored
parts. However, this symmetry is removed once we add the relief (see next section).

Figure 4.15: Crowns reconstructed using the in�ation method.

Also, as one can see, silhouettes with lots of concavities produce a �nal mesh that looks
�at, like a helium balloon. We still need to improve our method for these cases. Right
now, what we do for these silhouettes is similar to how Tan et al. [51] extrapolated their
3D attractors: we create rotated copies of the base mesh and merge them to cover more
viewing angles while respecting the similarity to the input silhouette. For example, the
following image shows how we managed to reconstruct a plausible model from the center
mesh of the �gure above.

Figure 4.16: Tree created from three rotated copies of the base mesh and relief perturbation.

4.4 Extracting relief

When we look at a picture of a tree, we are not only able to distinguish its silhouette
but also we perceive its volume and relief. Even with a single picture of a tree we have
never seen before, we are capable of mentally modeling the visible part of it with relief.
The perceived illumination gives us visual cues of the relief and occlusions between the
elements in the picture, so maybe we could use it to obtain the crown relief.

Shape-from-shading approaches are an under-constrained problem, lots of di�erent
shapes, materials and lights can produce a given shaded picture. However, taking some
assumptions, there are previous works that o�er solutions to the problem. For example,
Glencross et al. [16] proposed a technique they call Depth Hallucination method. It is based
on the premise that under di�use lighting, surface luminance depends primarily on a local
aperture function de�ned as the solid angle subtended by the visible sky at each surface
point. In other words, if there is no light creating shadows and shading gradients on the
picture, the luminance can be seen as ambient occlusion. They estimate depth by modeling

47

4. Crown reconstruction

the pits as cylinders and the protrusions as hemispheres, and then they deterministically
calculate the height of the cylinder/hemisphere that is producing the corresponding shad-
ing at each pixel.

Our relief estimation method was inspired by this work, but uses a more simple ap-
proach. We directly use the luminance as the estimator for depth. We consider that a
tree has a huge number of self-occlusions from the di�erent branches and leaves, but these
are not completely opaque and a fraction of incoming light still reaches occluded portions.
The deeper we are inside the crown, the darker we expect it to be. We are using the fact
that the input crown is required to be dense, otherwise deep areas close to the center of
the crown could be receiving direct light and our model would fail.

(a) Input image (b) Luminance (c) Relief mesh obtained

Figure 4.17: Crown relief extracted from the luminance.

The image above shows that a plausible reconstruction is obtained using our hypotheses
and method. Using the luminance directly, the result is very noisy. Instead, we developed
a multiresolution approach. A more in-depth description of this procedure follows.

We start by computing the luminance of the input image. Since the input is RGB, we
obtain luminance as L = 0.2126R+ 0.7152G+ 0.0722B and normalize the resulting image
to be in the range [0, 1]. Then, we compute a blur pyramid of this luminance image, similar
to the Gaussian pyramid of Burt and Adelson [8]. The di�erence is that instead of reducing
the image at each level, we increase the Gaussian blur radius. Since the 2D Gaussian blur is
separable, using large kernel radii does not impact the method performance. If we instead
reduce the image, we will need to upsample it to combine all the levels, and upsampling
artifacts appear in the �nal relief.

Figure 4.18: Result using Gaussian (top) and Laplacian (bottom) pyramids. The result using
Gaussian pyramid is more prominent because lower frequencies are counted multiple
times.

Optionally, once we have the set of blurred images, we can subtract each level with the

48

4.5. Texture generation

next (except the last one) to obtain a Laplacian pyramid, in which each level can be seen
as the result of a band-pass �lter instead of a low-pass �lter. In practice, both �ltering
methods produced almost identical reliefs.

Once we have N levels of the pyramid (we used N = 4 and N = 5), we combine them
using a weighted sum of the luminances at each level. Lower levels (more blurred) will
have more impact because they represent larger structures, while higher levels are usually
more prone to noise and just add small �ne details to the relief.

Figure 4.19: Multiscale relief generation: each height�eld is the result of adding its corresponding
Gaussian pyramid level to the previous one, and reducing the weight at each step.

Finally, we are interested in forcing the silhouette to lie on the plane, i.e. to have a
value of 0 in this height�eld. To achieve this, we followed the ideas in the Poisson Image

Editing method of Pérez et al. [37]: we �paste� the obtained height�eld to a plane with
height 0 and force the values to coincide at the silhouette of the crown. This is done in
gradient domain by solving a Poisson equation with Dirichlet boundary conditions whose
corresponding discrete version solution satis�es the following linear system:

for all p ∈ Ω, |Np|fp −
∑

q∈Np∩Ω

fq =
∑

q∈Np∩δΩ
f∗q +

∑
q∈Np

vpq

where fp is the source value of p, f∗p the destination value of p, vpq the gradient in ~pq
direction, Np the set of neighbors of p, Ω the domain in which the source is de�ned, and
δΩ the boundary of it. If we apply this to our particular case, the following system results:

for all p = (i, j) ∈ C, 4xp −
∑

q∈Np∩C
xq = 4Hi,j −Hi+1,j −Hi−1,j −Hi,j+1 −Hi,j−1

where C represents the set of pixels segmented as crown, xp the unknown for p, and Hi,j

means the height�eld value at (i, j). Note that our destination image is a �at plane, so
f∗p = 0 for all p, and the neighborhood of p is de�ned by its 4-connected neighboring pixels.

This height�eld we have obtained will be used to perturb the base crown mesh we
created before. But �rst, we need to deal with the non visible rear part of the crown.

4.5 Texture generation

A single picture of a tree contains a representation of about less than half the tree surface.
However, it is logical to assume that the parts which are not visible will have a similar
appearance to those we see. What we need to do is to generate these remaining parts,
synthesize them to look like the provided image.

This problem is called example-based texture synthesis and has been well studied by
many authors; a survey is available in [54]. We implemented the texture synthesis method
of Wei and Levoy [55].

49

4. Crown reconstruction

Their technique initializes the output texture with random pixels taken from the input
image. Then, pixels in the output image are replaced in raster scan ordering. To determine
the color of a pixel p, its local neighborhood N(p) is compared against all neighborhoods
N(pi) of input image pixels pi. The value of pi corresponding to the most similar neigh-
borhood will be assigned to p. Causal neighborhoods ensure that only already synthesized
and valid pixels - except for the �rst rows which use the random values - determine the
value of the current pixel. Borders are treated toroidally.

Figure 4.20: Wei and Levoy texture synthesis algorithm. Left, the single resolution texture
synthesis. The neighborhood N(p) is compared against all neighborhoods in the
input image (a), and the output image is built in scan order (b)(c)(d). Right, the
de�nition of a neighborhood for multiresolution synthesis. N(x) includes all the
pixels marked with O, Q, and Y .

Wei and Levoy's method allows for multiresolution texture synthesis. They build a
Gaussian pyramid for both input and output image. The top (smaller) level is synthesized
as before. And then each successive (bigger) level uses a neighborhood containing both the
causal neighborhood in the current level and the corresponding non-causal neighborhood
of the previous one. See �gure 4.20.

(a) Input photograph (b) Synthesized texture

Figure 4.21: Foliage synthesis using Wei and Levoy's algorithm. For this example, we used a
7× 7 neighborhood and 3 pyramid levels.

The �gure above shows the result we obtained from one of the test crowns foliage.
Although texture synthesis allows us to produce arbitrarily large images, the output image
must be about the same size as the input crown because we want to capture the same
structures size. If we built a texture twice as big and mapped it to the tree, the apparent
size of feature would be half the size of the features seen in the original picture.

After having implemented this method like Wei and Levoy described, we made some
changes to improve the results. We were not satis�ed with the produced outputs, still some
of the structures seen in the original photograph were not being represented. For example,

50

4.5. Texture generation

in the synthesis shown in 4.21 it failed to capture the rounded structures from the input
image. Increasing the neighborhood size or the pyramid levels did not improve the output.

4.5.1 Improving the synthesis algorithm

Other approaches that reproduce more faithfully the original picture are the ones that
directly take patches from it and stitch them, instead of synthesizing one pixel at a time.
Two examples are the Image Quilting method of Efros and Freeman [15] and the Graphcut
Textures by Kwatra et al. [23]. The problem with approaches like those is that if a
very characteristic spot or salient feature is present in the input image, it is easy to �nd
repetitions of it in the output.

Figure 4.22: Patch-based synthesis algorithms. Top, texture quilting from [15]. Bottom, graph-
cuts [23] �nd the best seam between blocks by �nding a min-cut on a cost graph.

Therefore, we implemented an approach combining the best of pixel-based and patch-
based synthesis. The �rst synthesized level of the Gaussian pyramid used by Wei and
Levoy starts with noise. Instead, we create this level using square patches taken directly
from the input, like in Image Quilting, and �nd the best seam between two overlapping
blocks using a graphcut. We implemented the graphcut by Kwatra et al. instead of the
dynamic programming cut that Efros and Freeman propose because it not only has more
freedom to �nd the best seam but we will also need this method later (see section 4.5.2).

Once we have the �rst level synthesized, we proceed like before, using the pixel-based
multiresolution algorithm of Wei and Levoy. This change in the initial conditions provides
much better results (see �gure 4.23).

4.5.2 Synthesizing a cubemap texture

So far we have implemented a texture synthesis algorithm that produces 2D textures.
Since we want to represent the crown foliage in any direction, what we actually need is
to synthesize a cubemap texture. This introduces new challenges such as how to de�ne
neighborhoods across faces of the cube.

51

4. Crown reconstruction

(a) Synthesis using Wei and Levoy multiresolution algorithm

(b) Synthesis using our modi�ed version with patch-based synthesis on the �rst pyramid level

Figure 4.23: Comparison between synthesis algorithms. Note that the new version captures bet-
ter the rounded structures visible in �gure 4.21a. Furthermore, the raster scan
traversal is visible in the original version as diagonal patterns from top-left to
bottom-right. This is not visible in the new algorithm.

Instead of trying to de�ne an overly complicated neighborhood at corners and edges
of the cube, we decided to reuse the tools we had already implemented: a 2D texture
synthesizer and the graphcut algorithm to �nd the best seam between two overlapping
images. Suppose we want a cubemap with N pixels on each side, our synthesis proceeds
as follows:

1. Synthesize a (4N + B) × (N + 2B) image IL. This image will become the lateral
faces of the cube.

2. Synthesize two N ×N images, corresponding to the top IT and bottom IB.

3. Find the best seam between the leftmost B pixels of IL and its rightmost B pix-
els, obtaining a new image I ′L of size 4N × (N + 2B) that is horizontally tileable.
Therefore, the cubemap lateral is continuous.

4. Now, use the top B rows of I ′L to �nd the best seam with a border of size B in IT ,
and produce a new image I ′T that is continuous with the lateral faces after discarding
the top B rows of I ′L.

5. Do the same with the bottom B rows of I ′L to merge it with IB.

6. Separate each lateral face from I ′L, and build the cubemap from the six textures
produced.

B is the size of the bands we will use to �nd the best cut and join the textures. In our
tests, we usually set it to N/8.

52

4.6. Crown model

Figure 4.24: Cubemap texture synthesis by merging 2D textures. On the left, IT , IL and IB ,
respectively, with the merging bands color-coded. The �nal cubemap is shown on
the right.

4.6 Crown model

In the previous sections, we have seen all the tools we need to build the crown model. This
is a summary of the crown reconstruction steps:

1. The base mesh is built from the silhouette using the in�ation method (section 4.3).

2. We synthesize a color cubemap from the segmented crown foliage (section 4.5.2).

3. The color cubemap is used to create a height cubemap, using the relief estimation
algorithm (section 4.4).

4. Combine the crown base with the height cubemap, and store the result as a radial
representation from the crown center into a cubemap we call the radius cubemap.

Figure 4.25: Summary of the crown reconstruction process

The only step we had not seen yet was the last one. To combine the base mesh with
the relief cubemap, we just render the mesh and use the fragment shader to compute the

53

4. Crown reconstruction

radius as follows:
||p− c|| · (1 + ρ · (h(p− c)− 0.5))

where p is a point on the base mesh surface, c the center of the crown, h(p− c) the relief
cubemap value in the direction p− c and ρ a parameter to control the weight of the relief
map.

This result is rendered to the radius cubemap. Also, if we wanted to use various
rotated copies of the base mesh (see �gure 4.16), we do this during this stage by rendering
it multiple times and keeping the maximum radius value in the output cubemap.

54

Chapter 5

Crown rendering

The previous chapter discussed how we build a crown model from a photograph. Recall
that the result is two cubemaps, one for the texture (colors) of the crown and another one
with a radial representation of it. We propose two di�erent methods to render this model.

5.1 Relief-mapping crown approach

The �rst method implements a direct visualization of the radius cubemap, similar to a
relief mapping algorithm [38]. Basically, we draw a volume that encloses the crown and
raycast from the surface of this volume until we either exit and discard the fragment or
intersect the crown and then we texture and shade it accordingly.

Like in relief mapping, we �rst do a linear search until we detect we are inside the
volume, and then a binary search to re�ne the intersection point. The main di�erence
is that we use world space positions and traverse a ray in the viewing direction from the
bounding volume position of the fragment.

The number of linear steps, their length, and the number of binary steps are computed
dynamically in the vertex shader and linearly depend on the radius of the bounding sphere
projected on the screen.

Figure 5.1: Relief crown rendered using raycasting. Starting on the surface of the enclosing
volume, we do linear steps until we are outside the volume again or inside the crown.
The plots on the right side show the crown distance to the center (green) and the
ray distance samples.

55

5. Crown rendering

The choice of the bounding volume is relevant: we want it to be as tight as possible
to the crown shape so fewer fragments end up being discarded. As we are using a radial
representation inside the cubemap, it is reasonable to assume that a sphere would give the
best results on average (some trees are more elliptical than spherical). However, rendering
a detailed sphere would be very costly, so we approximate it with a scaled icosahedron.
In order to guarantee a proper rendering, the bounding volume must be big enough to
inscribe a sphere with a radius equal to the maximum value of the radius cubemap.

(a) Bounding cube (red) and icosahedron
(blue) drawn around the crown model.

volume normal optimized

cube 15.4 ms 12.8 ms
icosahedron 12.9 ms 12.5 ms

(b) Measured rendering times for a forest
scene with about 22000 trees.

Figure 5.2: Comparison between bounding cube and icosahedron.

The table in �gure 5.2b shows that drawing a tighter volume improves performance
(�normal� column). Then, we did a further optimization to the fragment shader. Since
we know the minimum and maximum value in a radius cubemap, Rmin and Rmax, if
the distance between the crown center and the ray is bigger than Rmax, we can directly
discard this fragment without performing the relief mapping algorithm. While this change
is noticeable for the case of using a cube bounding volume, the icosahedron does not
improve much because it is already close to being a sphere of radius Rmax (see �optimized�
column in �gure 5.2b).

Similarly, if the distance between the ray and the crown center is smaller than Rmin,
we know that this ray will hit the crown. In this case, we compute the intersection point
of the ray with this sphere of radius Rmax and skip the linear search, we only do the binary
steps. This optimization, however, did not show a signi�cant e�ect on the performance. A
plausible explanation of this behavior is the performance penalty of branch divergence in
current GPU architectures.

Figure 5.3: Optimizations for relief crowns. The rays for the red fragments do not intersect the
circumsphere of the crown, so are directly discarded. Similarly, the green fragments
only perform binary search since we know they intersect the crown. The rest of
fragments use the full algorithm, some of them end up being discarded (magenta)
and others are part of the crown (cyan).

56

5.2. Detailed crown with leaves

5.2 Detailed crown with leaves

The relief representation of the crowns looks unnatural when we get too close. One of
the main reasons is that it lacks leaves and high frequency details. Therefore, we propose
another representation for close views.

For each crown, we will place a number of billboards textured with leaves and small
branches inside a unit sphere scaled to the maximum radius of the crown. Since this
approach by itself would produce rounded spherical crowns, in the fragment shader we
discard all the fragments of the billboards that are outside the crown volume. We can do
this e�ciently with a single query to the crown radius cubemap.

Figure 5.4: Relief crown (left) and detailed crown (right). The texture used for the leaves is
shown next to it.

The points are randomly placed following a blue noise distribution. One method to
generate blue noise is dart throwing. Instead, we randomly perturbed the voxel centers of
the �rst three levels of an octree. The magnitude of the perturbation is set to be in the
range [−dL, dL], where dL is the length of the octree cells at level L. If a point is outside
the unit sphere, we discard it. We obtained 320 points shown in the �gure below:

Figure 5.5: Blue noise distribution of points in a sphere.

Each point will potentially become the center of a billboard facing the camera. The
geometry shader, depending on the crown projection size on the screen, will decide how
many of the points to render, it will create the quad for each one of them, and discard the
others. The last few leaves selected to be drawn fade in progressively to minimize popping
e�ects. To ensure a good coverage of all the crown with few billboards in far views, we
have previously sorted the points such that for the point pi in the i-th position:

i−1∑
j=M

dist(pi, pj) >
i−1∑
j=M

dist(pk, pj) ∀k > i

where M is the number of �xed positions that will always be drawn.

57

5. Crown rendering

5.3 Shading

Visual realism increases if we add lighting to the scene. Since a full global illumination
approach is too computationally expensive to be done in real time, we focused only on
ambient occlusion, which will add more detail to the shapes and reliefs of the crowns.

We could bake the shading and store it in another cubemap like the relief, but then
those billboards that are placed parallel to the radial direction of the cubemap would
look bad. Screen space ambient occlusion techniques are not applicable for the detailed
representation using billboards because the depth map would look as a set of squares put
one above the other. Also, we do not want to change the depth of individual leaves from a
billboard in the fragment shader, as this would prevent the GPU from using early-z culling,
which has a high impact on performance.

Therefore, we use an approximation of the ambient occlusion based on the data we
already have. Our shading uses three components:

• Height with respect to the crown center: lower branches receive more occlusions from
the other branches above them.

• Radial distance to the center of the crown: the outer leaves will receive more light
than those deep inside the crown.

• Lambertian shading: classic local illumination model depending on the position of
the light source.

(a) Height term (b) Radial term (c) Di�use term (d) Combination

Figure 5.6: Shading components of a crown.

Figure 5.7: Unshaded (left) and shaded (right) tree comparison.

58

Chapter 6

Terrains with vegetation

In this chapter, we discuss how we integrate our results in a terrain viewer application to
display forest areas with thousands of trees.

6.1 Terrain description

Our terrain models are built from the information publicly available at Institut Cartogrà�c
i Geològic de Catalunya (ICGC) [21]. Speci�cally, we use their webservices to obtain the
orthographic pictures and digital terrain model (DTM) for a desired region. The terrain
mesh is built from the DTM image, and then we use a segmentation procedure [10] to
classify terrain areas.

The input to our viewer application is:

• A digital terrain model provided as an Wavefront/obj �le. We then render this model
to a depth map to compute the DTM image automatically, since we need it to know
the elevation at each point when placing trees in the scene.

• The orthographic picture for its region.

• The segmentation mask. This mask classi�es each region of the terrain as: trees,
shrubs, grass or no vegetation. Furthermore, it contains the location of tree trunks.

(a) Orthophoto (b) DTM (c) Segmentation

Figure 6.1: Inputs of the viewer application, Volcà del Croscat (Garrotxa) terrain model.

59

6. Terrains with vegetation

6.2 Vegetation description

There is also another input �le describing the vegetation distribution and appearance in
the scene. This �le contains:

• The list of leaves textures to use.

• The list of crowns to use. Recall that a crown is made up of two cubemaps: the
color and the radius cubemap. Also, for each crown we specify in this �le the range
of scaling and elevation we want to uniformly sample from to obtain the size and
position of each individual instance of this crown.

• A set of tuples that will de�ne the actual �species� that can be found during naviga-
tion. Each of them is made of:

� Type of vegetation (tree, bush or grass)

� Crown model

� Leaves texture

� Probability of appearing

During the application startup, the individual plants are created by sampling the dis-
tributions speci�ed in this �le. The position of the individual trees is given by the seg-
mentation mask, since they will try to match the position of apparent trees seen in the
orthophoto. For bushes we sample a position inside a cell around the pixel segmented as
shrub. For each tree, bush or grass individual being created, we select one of the crown-
leaves pairs de�ned in the tuples according to their appearance probability by sampling a
uniform distribution.

(a) 4 species with equal probability

(b) Probabilities: 0.6, 0.2, 0.1, 0.1

Figure 6.2: Specifying di�erent vegetation distributions.

This is a very simple and unnatural model for plant distribution. In the future, we
want to explore how to place them more realistically.

60

6.3. Rendering large vegetation areas

6.3 Rendering large vegetation areas

One of our goals is to allow the rendering of large forest scenes with thousands of individ-
uals. We take advantage of modern GPU features to e�ciently render the plants. This is
the outline of the rendering pipeline:

1. Render the terrain. This will allow the GPU to discard occluded trees using early
depth tests.

2. On the CPU, for each plant position perform a frustum culling test.

3. Classify the visible plants either as close or far, based on their distance to the camera.

4. Render close plants using the detailed crown model.

5. Render far plants using the relief crown model.

Each individual plant is created from an instance of its base model. For the case of
detailed plants we instance a model made of 320 points (see chapter 5.2), and for the relief
crowns we create an instance of an icosahedron.

The input attributes for each instance are: crown translation (position in the world),
crown rotation, crown scaling, height of crown center from the ground, average color in the
plant position (see below), and plant type. The plant type is an integer used to index the
attribute arrays in the shaders that store data that varies only between species like crown
cubemaps or leaves textures.

The color each plant has associated corresponds to the value of the orthophoto in the
plant position. Using it, we perturbate the resulting plant color and make it more similar
to what can be seen in the orthophoto as trees get farther. In addition, this adds more
diversity to the plant instances.

(a) Mixing tree models with orthophoto color

(b) Tree models with their original texture color

Figure 6.3: Comparison between mixing with orthophoto color and using model texture.

61

6. Terrains with vegetation

6.3.1 Level of detail jittering

Although both detailed and relief representations are based on the same crown volume
given by the radius cubemap, due to the di�erent way they are rendered they do not
produce the same exact result for a tree. As a result, for some plants the LOD change
between the detailed and relief models can be seen.

If we change LOD just on a threshold distance, the e�ect we see during navigation is
that of a wavefront moving away from the camera, corresponding to the switch distance.
This regularity makes the LOD switch more apparent than it should be.

To reduce this e�ect, we introduce jitter to the LOD switch: we de�ne a range of
distances [dmin, dmax] in which the plants can change LOD. For each individual, during
initialization we randomly sample a variable t ∈ [0, 1] such that this plant will switch
between models at a distance d = dmin + t · (dmax − dmin).

Figure 6.4: Top, LOD switch at �xed d = 160. Bottom, LOD switch in range [120, 200]. Although
both images look almost identical, the visual e�ect of LOD change during navigation
is considerably reduced using jittering.

6.4 Other scene elements

Apart from the foliage, which has been the focus of this project, our viewer needs to render
other terrain elements to produce a complete scene. In the following subsections there is a
brief description of how we render such elements. Since we used very simple representations
for them, we will also mention some improvements or extensions that could be done as a
future work.

6.4.1 Trunks

This part is just an adaptation from the previous viewer (see [1]) into the new one, so
a brief description is provided for completeness. The trunks are drawn entirely using the
geometry shader. A Vertex Bu�er Object is built once during initialization, and it contains
all the trunk positions in the scene as a point for each one. Then, the geometry shader

62

6.4. Other scene elements

creates an hexagonal prism with the base located at this point. This prism is composed
of various sections along its main axis, so we can make curved trunks. To add variety, the
shader randomly samples parameters such as the height, rotation, radius, curvature of the
trunk, etc. The fragment shader randomly selects two bark textures, one as a base color
and the other one to perturb it.

Figure 6.5: Trunks diversity

As one can see in the previous picture, the interface between the trunk and the ground
is given by the intersection. One future extension could be modeling the group of roots
that extend on the ground. Also, since we modeled dense crowns, our trunks only have
the main trunk and no branching.

6.4.2 Grass

Currently, we just apply a grass texture to the ground on those terrain areas near the
camera that have been segmented as vegetation of any kind. We assume that there is
grass under the trees and shrubs, not only on the areas speci�cally segmented as grass. If
the grass receives shadow from the trees, we modulate the texture with another one that
represents the pattern that could produce tree leaves. See the following picture:

Figure 6.6: Grass and shadows under the trees

A future extension might be drawing billboards on the ground with a texture of grass
blades, and even animating it.

6.4.3 Terrain

Using only the orthophoto to texture the terrain ground does not provide enough level
of detail for close views, since the resolution is about 25 cm/pixel. To add more detail

63

6. Terrains with vegetation

we compute a Fractional Brownian Motion (fBm) perturbation of both the color and the
normal by summing successive octaves of a 3D noise function. Since we do this directly
on the GPU, it is one of the most expensive steps in the rendering of the scene. Although
terrain noise was already implemented in the previous version of the viewer, now the
number of octaves to add is determined by the distance of the terrain fragment, which
improves performance signi�cantly.

(a) Orthophoto, no perturbation

(b) Orthophoto, 8 to 2 octaves of fBm

(c) Level of detail of the number of octaves

Figure 6.7: Terrain ground rendering with added noise.

There is still many improvements to be done in the terrain rendering. Using a more
e�cient noise algorithm (maybe moving it to the CPU side) is one of the pending tasks.
Moreover, tessellating the terrain and adding a simulated displacement map with rocks and
bumps could yield more realistic results than the noise we are currently using. Similarly,
it could also be interesting to have a variety of grounds, for example trails with a more
uniform and sandy appearance, or screes with both small and large rocks.

64

6.4. Other scene elements

6.4.4 Shadows

Shadows add more realism to the scene, since one expects areas under the trees to appear
darker. The previous viewer used the vegetation density provided by the segmentation
input to estimate the occlusions. Now we render a shadow map using an orthographic
camera from the light direction, with a resolution of 4096 × 4096. To provide smooth
shadows on the ground, we use Percentage Close Filtering and take 16 samples around the
projection using a 16-tap Poisson disk. For the trunks we just use 4 samples.

Figure 6.8: Comparison between shadowed and unshadowed terrain.

Figure 6.9: Shadow mapping from 1 sample (left) and PCF shadow mapping using a 16-tap
Poisson disk.

6.4.5 Sky

The sky simply uses a textured spherical dome, see the images included in this chapter for
some examples. In the future, we would like to simulate and add an atmospheric scattering
model like in [6].

65

Chapter 7

Results

In this chapter we will show the visual results obtained with our reconstruction algorithm,
the cost of the preprocessing and the performance of our algorithm during rendering.

Unless otherwise speci�ed, the tests have been executed on a laptop with an NVIDIA
GeForce GTX 860M graphics card and an Intel Core i7 4712MQ processor running at
2.3-3.3 GHz. The screen resolution is set to Full HD (1920× 1080).

7.1 Crown reconstruction

The crown reconstruction is done as a preprocess separated from the rendering program.
The following table shows the reconstruction times for a cubemap with a side of 256 pixels.
The intervals show the measured times for the crowns in �gure 7.1.

step time

base mesh generation 2-3 s
texture synthesis 40-45 min

cubemap assembly 20-25 s
relief extraction < 1 s

�nal model composition < 1 s

Table 7.1: Crown reconstruction times

Base mesh generation is the time needed to solve the bilaplacian linear system. Texture
synthesis counts the time needed to produce the three individual textures that will make
up the color cubemap: laterals, top and bottom. In this test, the sizes including the
merging band are, respectively: 1056× 320, 256× 256 and 256× 256. Cubemap assembly
accounts for the time needed to merge the previous images into a continuous cubemap.
Relief extraction is the algorithm that computes a height�eld for this cubemap, and the
composition is the application of the relief upon the base mesh and storing it into the �nal
radius cubemap.

As we can see, all the generation process would take less than a minute except for
the texture synthesis. The algorithm we have implemented is costly due to its per pixel
based execution, and it is not easy to run in parallel since each new pixel to synthesize
needs the previous ones to be already synthesized. Still, some parallel algorithms have
been developed (see [56, 25, 24]) and we would like to improve our synthesis in the future.

67

7. Results

In the following �gure we can see �ve reconstruction examples. Note how the added
relief avoids a symmetric side silhouette and the seam between the two mirrored meshes is
not visible.

Figure 7.1: Reconstructed relief crowns: input photograph, front view and side view.

68

7.2. Detailed crowns

7.2 Detailed crowns

The detailed crowns combine a volume like the ones we have seen in the previous section
with a leaves texture. This allows us to multiply the variety of di�erent trees we can have,
as shown in the next images:

Figure 7.2: Detailed crowns with various leaves. The last row shows how we can add more variety
combining di�erent textures with the same crown model. For clarity, the mask that
generated the base crown is included on the bottom right, as well as the leaves texture
used on the billboards.

69

7. Results

7.3 Level of detail test

This test evaluates the performance of combining both representations (detailed and relief)
in a real scene and the e�ect of modifying the switch distance. The chosen scene is a forest
landscape with views on a mountain side, which o�ers a wide range of tree distances in
sight.

(a) d = 0 (b) d = 100 (c) d =∞

(d) d = 50 (e) d = 200

Figure 7.3: Level of detail visual results at various distances d.

distance Ndetail Nrelief Tdetail Trelief Ttotal
0 0 27424 0.0 21.0 21.0
50 97 27327 3.8 16.9 20.7
100 678 26746 12.7 12.5 25.2
150 1347 26077 16.8 9.9 26.7
200 2318 25106 19.5 8.3 27.8
250 3477 23947 21.6 6.8 28.4
∞ 27424 0 46.9 0.0 46.9

Table 7.2: Level of detail distance threshold test: number N of trees for each representation and
time T in milliseconds to render them.

We can see that the relief representation is obviously more e�cient, but also provides
worse visual results for close views due to its lack of high frequencies and leaves. Also,
there is a case not contemplated in this test in which the relief representation becomes
really expensive: when the tree is viewed very close and the number of pixels executing
the relief mapping is very high.

Regarding the detailed representation, the �rst and closer trees are the most expensive
because we compute the number of leaves depending on the projection of the tree on the
screen. Typical ranges are between 128 and 20 leaves.

As can be seen in the test results, increasing the distance at which we switch repre-
sentations also increases the rendering time. However, the visual quality of relief trees is
poor for close views. Therefore, we decided to set the LOD threshold in the range 100-200.
Recall that trees do not change representation at a �xed distance - unlike in this test - but
we add a jittering to minimize the LOD wavefront e�ect.

70

7.4. Test scenes

7.4 Test scenes

Now we will analyze the performance of our rendering algorithm in test cases extracted
from real segmented terrains.

Below are the di�erent scenes and chosen viewpoints. They show di�erent kinds of
landscapes, with varying ratios of trees, shrubs, and bare terrain, and di�erent kinds of
vegetation crowns all reconstructed from input photographs.

(a) Creu de Gurb 1 (b) Creu de Gurb 2

(c) Croscat 1 (d) Croscat 2

(e) Montserrat 1 (f) Montserrat 2

(g) Garraf 1 (h) Garraf 2

Figure 7.4: Test scenes.

The following tables show the number of plants drawn for each representation as well
as the number of trunks drawn (only for trees), and the rendering times for each scene
element.

71

7. Results

scene Ndetail Nrelief Ntrunks Tdetail Trelief Ttrunks Tterrain
Creu de Gurb 1 887 75736 39162 15.2 13.3 17.7 1.2
Creu de Gurb 2 3527 55172 39162 11.8 13.4 14.5 0.6

Croscat 1 718 43691 62333 13.3 10.4 27.5 4.2
Croscat 2 1753 45425 62333 42.1 9.7 27.6 0.6

Montserrat 1 1847 28496 13305 14.8 5.9 6.1 2.3
Montserrat 2 768 29243 13305 2.5 10.4 6.0 2.2

Garraf 1 3714 102006 9353 17.5 7.3 6.0 3.6
Garraf 2 9502 92986 9353 28.1 16.7 6.2 1.8

scene Tveg Ttotal FPSveg FPStotal
Creu de Gurb 1 28.5 47.4 35.1 21.1
Creu de Gurb 2 25.2 40.3 39.7 24.8

Croscat 1 23.7 55.4 42.2 18.1
Croscat 2 51.8 80.0 19.3 12.5

Montserrat 1 20.7 29.1 48.3 34.4
Montserrat 2 12.9 21.1 77.5 47.4

Garraf 1 24.8 34.4 40.3 29.1
Garraf 2 44.8 52.8 22.3 18.9

Table 7.3: Test scenes performance test. Times in milliseconds for Full HD rendering. Bottom
table shows the total of time for vegetation rendering, and the total time for complete
scene rendering, as well as the frames per second.

First, we can say that our vegetation rendering algorithm runs in real time for almost
all the test scenarios (see columns Tveg and FPSveg). The bottleneck is the rendering of
the detailed representation in those views in which we have many close trees, because the
number of leaves drawn per tree is very high.

If we now look at the overall results, Ttotal and FPStotal, we see that on average the
viewer runs on real time. On scenes with a large number of trees (Creu de Gurb, Croscat)
the trunks can be the most expensive element to render, since we have not optimized them
at all. Their geometry shader produces always a triangle strip with 42 vertices for each
trunk input point. One possible optimization could be creating the geometry of the prism
depending on the distance to the camera, using a single billboard for farther trunks and
more rounded prisms on close views.

Lastly, we observe that the terrain overhead is usually very small. Only in the cases
in which a considerable amount of bare rock or ground is visible, the computation of the
noise to perturb the colors and normals becomes perceptible.

7.5 Comparison with previous viewer

We now compare our results with the previous version of the terrain viewer, the one used
in [1]. That version used the tessellation shaders to create the leaves billboards around the
crown. The shape of the crown was controlled by the exponents of two cosine functions:
one for the upper half of the crown and another one for the lower.

The following results were produced using an early version of the viewer developed in
this project, one that used the same shaders to render vegetation as [1]. This is why there

72

7.5. Comparison with previous viewer

is no skydome and the terrain shader is just a rendering of the orthophoto. Nevertheless,
this still allows us to compare the visual quality and rendering cost of the vegetation.

(a) Creu de Gurb (b) Croscat

(c) Montserrat (d) Garraf

Figure 7.5: Test scenes rendered using the old method.

Visually, the crowns look a lot more similar between them than in our results because
the cosine function used to de�ne the shapes only accounts for ellipsoidal crowns, and
thus it is di�cult to design a particular forest look (compare the pine trees in Garraf 1).
Furthermore, it is di�cult to control the desired level of detail and, depending on the
settings, trees can disappear in the distance because very few billboards are used to render
them. Our raycasted relief representation for far trees does not su�er from this problem
while still allowing for an easy level of detail control using the ray step size and number of
steps.

These are the measured rendering times for the vegetation in the test scenes. For
convenience, we included a copy of the vegetation rendering time shown in table 7.3 as
well as the total number of plants drawn. As we can see, for a reasonable quality and level
of detail, the previous method only achieved interactive frame rates.

scene N
(old)
plants T

(old)
veg T

(new)
veg N

(new)
plants

Creu de Gurb 1 45051 199.3 28.5 76623
Creu de Gurb 2 45051 220.3 25.2 58699

Croscat 1 51246 207.7 23.7 44409
Croscat 2 51246 301.8 51.8 47178

Montserrat 1 31087 119.7 20.7 30343
Montserrat 2 50406 198.2 12.9 30011

Garraf 1 137478 377.5 24.8 105720
Garraf 2 137478 1140.1 44.8 102488

Table 7.4: Comparison of rendering times between old and new method. Times in milliseconds.

73

Chapter 8

Conclusions and future work

In this project, we have successfully designed and implemented a method for crown recon-
struction from photographs and a representation which allows an e�cient rendering with
good visual quality. The main contributions have been:

• Our method is capable of reconstructing a variety of crowns from a single input
photograph, and the obtained model is very similar to the picture.

• We proposed two di�erent representations for crown foliage rendering that allow a
level of detail transition with minimum impact.

• We can render real terrain scenarios with tens of thousands of trees in real time.

• The performance with respect to the previous rendering method has been improved
by an order of magnitude.

This project has been the starting point of my PhD studies. Therefore, we still have
future work to do in tree reconstruction from photographs and related semi-procedural
methods. These are some ideas for the crown reconstruction and rendering that we would
like to explore next:

• Currently the input requires the segmentation of the crown foliage by the user. Most
of the matting algorithms we have seen require some kind of input by the user, like
scribbles on both foreground and background, to start the process. We could try to
use knowledge about the kind of pictures we want to process to provide at least a
�rst fully automatic segmentation proposal to the user.

• The base mesh is extracted as a single volume from the segmented crown. For the
case of more sparse trees with dense subcrowns, or dense trees that have a clear
�blobby� structure, we could apply the reconstruction for each segmented subcrown.

• Instead of synthesizing the color cubemap textures from scratch, we could start from
the segmented crown foliage on one lateral face and synthesize new texture around it.
This way, for a given viewpoint the tree could look almost identical to the photograph.

• A radial representation such as the one we have presented is limited in the amount
of crowns we can reproduce. For example, crowns with concavities in the radial

75

8. Conclusions and future work

directions cannot be represented, since we only store one distance along this direction.
Similarly, we do not allow transparencies through the crown. We could research
the use of other structures, for example octrees, to use a volumetric representation
instead of a radial one. In this direction, we could leverage techniques from the �eld
of volume rendering to e�ciently render the levels of detail.

• During rendering, we are using a very simple and non-physically based approximation
for the tree ambient lighting. A more realistic approach would be precomputing it
using an appropiate BRDF model for the leaves and crown light propagation and
store it in the model representation.

• When the leaves billboards are cropped to match the crown volume shape, we are
doing it on a per fragment test and some leaves are partially discarded. We want
to extend the leaves textures with information about the center of each individual
leaf so a fragment is only discarded if its associated leaf center is outside the crown
volume.

• Finally, the plant distribution we used is random and looks very unnatural. Species
tend to grow in certain areas according to distribution of light, humidity, soil proper-
ties, other species... There exist already published works that simulate the develop-
ment of plant ecosystems, but we want to see how we could integrate the information
of existing datasets to directly extract the distribution of the species: crown heights
provided by Digital Surface Models, color of the crowns from the orthophoto, terrain
altitude, etc.

76

Bibliography

[1] C. Andújar, A. Chica, M. A. Vico, S. Moya, and P. Brunet. Inexpensive reconstruction
and rendering of realistic roadside landscapes. Computer Graphics Forum, pages n/a�
n/a, 2014.

[2] M. Aono and T. Kunii. Botanical tree image generation. IEEE Comput. Graph. Appl.,
4(5):10�34, May 1984.

[3] J. Bloomenthal. Modeling the mighty maple. SIGGRAPH Comput. Graph., 19(3):305�
311, July 1985.

[4] F. Boudon, A. Meyer, and C. Godin. Survey on Computer Representations of Trees
for Realistic and E�cient Rendering. Rapport de recherche 2301, LIRIS, Université
Claude Bernard Lyon 1, 2006.

[5] D. Bradley, D. Nowrouzezahrai, and P. Beardsley. Image-based Reconstruction and
Synthesis of Dense Foliage. ACM Trans. Graph., 32(4):74:1�-74:10, July 2013.

[6] E. Bruneton and F. Neyret. Precomputed atmospheric scattering. Comput. Graph.

Forum, 27(4):1079�1086, June 2008. Special Issue: Proceedings of the 19th Euro-
graphics Symposium on Rendering 2008.

[7] E. Bruneton and F. Neyret. Real-time Realistic Rendering and Lighting of Forests.
Computer Graphics Forum, 31(2pt1):373�382, May 2012.

[8] P. J. Burt and E. H. Adelson. The laplacian pyramid as a compact image code. IEEE
Transactions on Communications, 31:532�540, 1983.

[9] D. Cohen. Computer simulation of biological pattern generation processes. Nature,
216:246�248, 1967.

[10] M. Comino. 3D Reconstruction of vegetation from orthophotos, 2013.

[11] P. de Re�ye, C. Edelin, J. Françon, M. Jaeger, and C. Puech. Plant models faithful to
botanical structure and development. In Proceedings of the 15th Annual Conference

on Computer Graphics and Interactive Techniques, SIGGRAPH '88, pages 151�158,
New York, NY, USA, 1988. ACM.

[12] P. Decaudin and F. Neyret. Rendering forest scenes in real-time. In A. Keller and
H. W. Jensen, editors, Rendering Techniques, pages 93�102. Eurographics Association,
2004.

[13] O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis. Interactive visualization
of complex plant ecosystems. In Proceedings of the Conference on Visualization '02,
VIS '02, pages 219�226, Washington, DC, USA, 2002. IEEE Computer Society.

77

BIBLIOGRAPHY

[14] O. Deussen and B. Lintermann. Digital Design of Nature: Computer Generated Plants

and Organics. Springer Publishing Company, Incorporated, 1st edition, 2010.

[15] A. A. Efros and W. T. Freeman. Image quilting for texture synthesis and transfer.
In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH '01, pages 341�346, New York, NY, USA, 2001. ACM.

[16] M. Glencross, G. J. Ward, F. Melendez, C. Jay, J. Liu, and R. Hubbold. A perceptually
validated model for surface depth hallucination. In ACM SIGGRAPH 2008 Papers,
SIGGRAPH '08, pages 59:1�59:8, New York, NY, USA, 2008. ACM.

[17] Google earth. http://earth.google.com.

[18] Google street view. http://www.google.com/maps/views/streetview.

[19] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[20] H. Honda. Description of the form of trees by the parameters of the tree-like body:
E�ects of the branching angle and the branch length on the shape of the tree-like
body. Journal of Theoretical Biology, 31(2):331 � 338, 1971.

[21] Institut cartogrà�c i geològic de catalunya. http://www.icgc.cat.

[22] A. Jakulin. Interactive vegetation rendering with slicing and blending. In A. d. Sousa
and J. C. Torres, editors, Proc. of Eurographics (Short Presentations), Interlaken,
Switzerland, 2000.

[23] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick. Graphcut textures: Image
and video synthesis using graph cuts. In ACM SIGGRAPH 2003 Papers, SIGGRAPH
'03, pages 277�286, New York, NY, USA, 2003. ACM.

[24] A. Lasram and S. Lefebvre. Parallel patch-based texture synthesis. In High Perfor-

mance Graphics conference proceedings, 2012.

[25] S. Lefebvre and H. Hoppe. Parallel controllable texture synthesis. ACM Trans. Graph.,
24(3):777�786, July 2005.

[26] A. Lindenmayer. Mathematical models for cellular interactions in development: Parts
i and ii. Journal of theoretical biology, 18(3):280�315, 1968.

[27] B. Lintermann and O. Deussen. Interactive modeling of plants. IEEE Comput. Graph.

Appl., 19(1):56�65, Jan. 1999.

[28] Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-Or, and B. Chen. Texture-
lobes for Tree Modelling. ACM Trans. Graph., 30(4):53:1�-53:10, 2011.

[29] Y. Livny, F. Yan, M. Olson, B. Chen, H. Zhang, and J. El-Sana. Automatic Recon-
struction of Tree Skeletal Structures from Point Clouds. ACM Transactions on . . . ,
29(6):151:1�-151:8, 2010.

[30] R. M¥ch and P. Prusinkiewicz. Visual models of plants interacting with their envi-
ronment. In Proceedings of the 23rd Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH '96, pages 397�410, New York, NY, USA, 1996.
ACM.

[31] Nasa world wind. http://worldwind.arc.nasa.gov.

78

BIBLIOGRAPHY

[32] B. Neubert, T. Franken, and O. Deussen. Approximate Image-based Tree-modeling
Using Particle Flows. ACM Trans. Graph., 26(3), 2007.

[33] M. Okabe, S. Owada, and T. Igarashi. Interactive Design of Botanical Trees using Free-
hand Sketches and Example-based Editing. Computer Graphics Forum, 24(3):487�496,
2005.

[34] P. E. Oppenheimer. Real time design and animation of fractal plants and trees. In
Proceedings of the 13th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH '86, pages 55�64, New York, NY, USA, 1986. ACM.

[35] W. Palubicki. Fuzzy Plant Modeling with OpenGL- Novel Approaches in Simulat-

ing Phototropism and Environmental Conditions. VDM Verlag, Saarbrücken,
Germany, Germany, 2007.

[36] W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. M¥ch, and
P. Prusinkiewicz. Self-organizing tree models for image synthesis. In ACM SIG-

GRAPH 2009 Papers, SIGGRAPH '09, pages 58:1�58:10, New York, NY, USA, 2009.
ACM.

[37] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. ACM Trans. Graph.,
22(3):313�318, July 2003.

[38] F. Policarpo, M. M. Oliveira, and J. L. D. Comba. Real-time relief mapping on
arbitrary polygonal surfaces. In Proceedings of the 2005 Symposium on Interactive 3D

Graphics and Games, I3D '05, pages 155�162, New York, NY, USA, 2005. ACM.

[39] P. Prusinkiewicz, M. S. Hammel, and E. Mjolsness. Animation of plant development.
In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH '93, pages 351�360, New York, NY, USA, 1993. ACM.

[40] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer-
Verlag New York, Inc., New York, NY, USA, 1996.

[41] P. Prusinkiewicz, L. Mündermann, R. Karwowski, and B. Lane. The use of positional
information in the modeling of plants. In Proceedings of the 28th Annual Conference

on Computer Graphics and Interactive Techniques, SIGGRAPH '01, pages 289�300,
New York, NY, USA, 2001. ACM.

[42] P. Prusinkiewicz, L. Mündermann, R. Karwowski, and B. Lane. The use of positional
information in the modeling of plants. In Proceedings of the 28th Annual Conference

on Computer Graphics and Interactive Techniques, SIGGRAPH '01, pages 289�300,
New York, NY, USA, 2001. ACM.

[43] X. Qin, E. Nakamae, K. Tadamura, and Y. Nagai. Fast photo-realistic rendering of
trees in daylight. Computer Graphics Forum, 22(3):243�252, 2003.

[44] L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang, and S. B. Kang. Image-based Plant
Modeling. ACM Trans. Graph., 25(3):599�604, 2006.

[45] A. Reche, I. Martin, and G. Drettakis. Volumetric Reconstruction and Interactive
Rendering of Trees from Photographs. ACM Transactions on Graphics, 23(3):720�
727, 2004.

[46] W. T. Reeves and R. Blau. Approximate and probabilistic algorithms for shading and
rendering structured particle systems. SIGGRAPH Comput. Graph., 19(3):313�322,
July 1985.

79

BIBLIOGRAPHY

[47] Y. Rodkaew, P. Chongstitvatana, S. Siripant, and C. Lursinsap. Particle systems for
plant modeling. Plant growth modeling and applications, pages 210�217, 2003.

[48] A. Runions, B. Lane, and P. Prusinkiewicz. Modeling Trees with a Space Colonization
Algorithm. In Proceedings of the Third Eurographics Conference on Natural Phenom-

ena, NPH'07, pages 63�70, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics
Association.

[49] I. Shlyakhter, M. Rozenoer, J. Dorsey, and S. Teller. Reconstructing 3D Tree Mod-
els from Instrumented Photographs. IEEE Computer Graphics and Applications,
21(3):53�61, May 2001.

[50] R. Sun, J. Jia, H. Li, and M. Jaeger. Image-based Lightweight Tree Modeling. In
Proceedings of the 8th International Conference on Virtual Reality Continuum and Its

Applications in Industry, volume 1 of VRCAI '09, pages 17�22, New York, NY, USA,
2009. ACM.

[51] P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan. Single Image Tree Modeling. ACM
Transactions on Graphics, 27(5):108:1�-108:7, Dec. 2008.

[52] P. Tan, G. Zeng, J. Wang, S. B. Kang, and L. Quan. Image-based Tree Modeling.
ACM Transactions on Graphics, 26(3):87, 2007.

[53] J. Weber and J. Penn. Creation and rendering of realistic trees. In Proceedings

of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH '95, pages 119�128, New York, NY, USA, 1995. ACM.

[54] L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk. State of the art in example-based
texture synthesis. In Eurographics 2009, State of the Art Report, EG-STAR. Euro-
graphics Association, 2009.

[55] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector quan-
tization. In Proceedings of the 27th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH '00, pages 479�488, New York, NY, USA, 2000.
ACM Press/Addison-Wesley Publishing Co.

[56] L.-Y. Wei and M. Levoy. Order-independent texture synthesis. Technical report, TR
2002, 2002.

[57] J. Wither, F. Boudon, M.-P. Cani, and C. Godin. Structure from silhouettes: a new
paradigm for fast sketch-based design of trees. Computer Graphics Forum, 28(2):541�
550, 2009.

[58] H. Xu, N. Gossett, and B. Chen. Knowledge and heuristic-based modeling of laser-
scanned trees. ACM Trans. Graph., 26(4), Oct. 2007.

80

