
Universitat Politècnica de Catalunya

Final year project

Parallelization techniques of the
x264 video encoder

Author:
Daniel Ruiz

Advisors:
Marc Casas

Miquel Moretó
Mateo Valero

June 20th, 2014

Acknowledgements

First and foremost, I would like to thank to my advisors, Miquel Moretó, Marc

Casas and Mateo Valero for the priceless guidance and advice they offered to

me during the whole project execution.

Besides, I would like to thank both Tools and Programming Models groups from

Barcelona Supercomputing Center for the support offered to me when anything

was working.

Also I would to take this opportunity to thank Dimitrios Chasapis for the advices

he gave to me with bash scripts related stuff.

Finally, I would like to thank my friends, specially my girl, for all the moral

support, without this I don’t think I would had been able to complete this

project.

II

Abstract

Higher video quality is demanded by the users of any kind of video stream ser-
vice, including web applications, High Definition broadcast terrestrial services,
etc. All of those video streams are encoded first using a compression format, one
of them is H.264/MPEG-4 AVC. The main issue is that the better the quality of
the video the larger the encoding time will be, so it is very important to be able
to improve the performance of video encoders. In order to do it, those video
encoders must be executed in a parallel way, trying to reduce the encoding time
as many times as the number of cores available on the computer which performs
the encoding of the video stream.

One of these video encoders is x264, which already implements a parallel version
using POSIX threads. But this version has some scalability issues we want to
solve using a different programming model. The chosen one is OmpSs, a task-
based parallel programming model.

During this document, we are going to explain the process of porting x264 ap-
plication to OmpSs programming model. Such a task requires doing a planning
and monitoring the resources we will need. All the planning and the resources
used within the project will be explained within several sections. Afterwards, a
bit information about the H.264 compression format and the x264 application
which encodes using this format will be provided, as well as information about
the working environment set up needed for developing the OmpSs version of the
x264 application.

Of course, a section of how the porting has been done, which includes the design,
the implementation and the evaluation of the OmpSs version, will be provided
as well. The obtained version will be compared against current parallel version
of the x264 video encoder, in order to prove that OmpSs is also valid for non
high performance computing workloads. This comparison will allow us to know
if the port we made performs better or worse than the actual implementations
of the x264 application.

Abstract - Spanish

A d́ıa de hoy, podŕıa decirse que todos los usuarios de cualquier tipo de ser-
vicio de reproducción de v́ıdeos demandan una mejor calidad en éstos. Estos
servicios incluyen desde aplicaciones web hasta servicios de difusión de tele-
visión en alta definición. El reto está en que todos los v́ıdeos retransmitidos
deben ser codificados primero utilizando alguno de los formatos de compresión
disponibles, siendo uno de estos H.264/MPEG-4 AVC. El principal problema es
que a mayor calidad de v́ıdeo más tiempo requerirá la codificación, por lo que
es de suma importancia ser capaces de mejor el rendimiento de los codificadores
de v́ıdeo. Para ello, estas aplicaciones deben ser ejecutadas en paralelo, inten-
tando reducir el tiempo de codificación en un orden igual al número de hilos de
ejecución disponibles en el computador donde se ejecute la codificación del flujo
de v́ıdeo.

Uno de estos codificadores es la aplicación x264, la cuál dispone de una imple-
mentación paralela utilizando el estándar POSIX threads. Pero esta aplicación
tiene un problema, y es que su escalabilidad se puede ver reducida en ciertos
casos. Estos problemas son los que queremos resolver mediante el diseño e im-
plementación de una nueva versión la cuál utilizará el modelo de programación
OmpSs.

A lo largo de este documento se explicará el proceso de portar la aplicación
x264 a OmpSs. Esta tarea requiere de una cuidada planificación, aśı como de
la monitorización de recursos que se emplearán en el proyecto. De hecho, la
planificación realizada, y estrictamente necesaria para llevar a cabo el proyecto,
se explicará en diferentes secciones de este mismo documento. Por otra parte,
también se va a proporcionar información sobre el formato de compresión H.264
y la aplicación x264, está última codificando al formato de compresión previa-
mente citado. También se dará información relacionada con la plataforma hard-
ware sobre la que se ha desarrollado el proyecto, aśı como el conjunto de apli-
caciones de desarrollo utilizadas, incluyendo el model de programación OmpSs
y sus componentes.

Por último, pero no menos importante, hablaremos sobre el proceso de portar
la aplicación en śı. Este proceso incluye el diseño e implementación de la nueva
versión basa en tareas, aśı como la evaluación de rendimiento de ésta. A partir
de esta evaluación y de las realizadas sobre las versiones secuencial y paralela ya
implementadas, se realizará una comparación con la idea de descubrir hasta qué
punto nuestra aplicación rinde mejor o no que las actuales implementaciones.

II

Contents

List of Figures VI

List of Tables VII

List of Code Snippets IX

1 Introduction 1
1.1 Motivation . 1
1.2 Stakeholders . 2
1.3 State of the Art . 4
1.4 Objectives . 9
1.5 Project Scope . 9

2 Planning, budget and sustainability 11
2.1 Gantt chart . 11
2.2 Tasks . 15

2.2.1 Resources . 20
2.3 Budget . 21
2.4 Sustainability . 24

3 x264 application 27
3.1 H.264/MPEG-4 Part 10 video compression format 27
3.2 x264 video encoder algorithm . 30
3.3 The PARSEC benchmark Suite 32

4 Working environment set-up 33
4.1 OmpSs programming model . 33

4.1.1 Mercurium compiler . 34
4.1.2 Nanos++ runtime . 35

4.2 Paraver . 35
4.3 Extrae . 36
4.4 Mare Nostrum III . 36

5 x264 application evaluation 39
5.1 Serial version . 40

5.1.1 Profiling . 40
5.1.2 Performance evaluation 42

5.2 pthreads version . 44
5.2.1 Profiling . 44

III

5.2.2 Performance evaluation 48
5.2.3 Scalability . 50

6 Porting the x264 application to OmpSs 51
6.1 Dependencies . 51
6.2 Design of the OmpSs version . 52
6.3 Implementation of the OmpSs version 57

6.3.1 Reading the frame . 57
6.3.2 Encoding the frame . 60
6.3.3 Configuring and installing OmpSs version 67

7 OmpSs version evaluation 71
7.1 Profiling . 71
7.2 Performance evaluation . 72
7.3 Scalability . 75
7.4 Comparison with serial and pthreads version 76

8 Conclusions 79

Glossary 81

Bibliography 85

IV

List of Figures

2.1 Gantt chart . 14
2.2 Critical Path . 15

3.1 I, P and B frames . 30
3.2 x264 algorithm pipeline . 31

4.1 OmpSs implementation . 34

5.1 Call graph using simsmall input set 41
5.2 Call graph using simmedium input set 42
5.3 Call graph using simlarge input set 43
5.4 Call graph using native input set 43
5.5 Trace showing as a gradient color the thread usage within x264

execution with simlarge input set and 8 threads. Green zones are
the ones with only 1 thread, the more blue it comes the more
threads are running, with a maximum of 8. 45

5.6 Trace showing as a gradient color the thread usage within x264
execution with simlarge input set and 16 threads. Green zones
are the ones with only 1 thread, the more blue it comes the more
threads are running, with a maximum of 16. 46

5.7 Trace showing as a gradient color the thread usage within x264
execution with native input set and 8 threads. Green zones are
the ones with only 1 thread, the more blue it comes the more
threads are running, with a maximum of 8. 47

5.8 Trace showing as a gradient color the thread usage within x264
execution with native input set and 16 threads. Green zones are
the ones with only 1 thread, the more blue it comes the more
threads are running, with a maximum of 16. 47

5.9 Execution time using pthreads version with simsmall, simmedium
and simlarge input set and different number of threads 48

5.10 Execution time using pthreads version with native input set and
different number of threads . 49

5.11 Frames per seconds using pthreads version with every input set
and different number of threads 49

5.12 Speed up against serial version using pthreads with native input
set and different number of threads 50

6.1 x264 algorithm pipeline . 52
6.2 x264 algorithm pipeline including reads 53

V

6.3 Scheme of how reads are designed to be performed 54
6.4 I, P and B frames . 55
6.5 x264 parallelism algorithm example 55
6.6 Virtual pipeline obtained after reordering frames when encoding

a B frame . 56

7.1 Trace file showing Tasks executed within OmpSs version with
simlarge as input set and running on 8 threads 71

7.2 Trace file showing Tasks executed within OmpSs version with
simlarge as input set and running on 16 threads 72

7.3 Trace file showing Tasks executed within OmpSs version with
native as input set and running on 8 threads 72

7.4 Trace file showing Tasks executed within OmpSs version with
native as input set and running on 16 threads 73

7.5 Execution time using OmpSs version with simsmall, simmedium
and simlarge input set and different number of threads 73

7.6 Execution time using OmpSs version with native input set and
different number of threads . 74

7.7 Frames per second using OmpSs version with simsmall, simmedium,
simlarge and native input set and different number of threads . . 74

7.8 Percentage of the Execution time spend in Nanos runtime using
simlarge input set . 75

7.9 Percentage of the Execution time spend in each task using sim-
large input set . 76

7.10 Percentage of the Execution time spend in each task using native
input set . 76

7.11 Speed up comparison of pthreads and OmpSs version against
serial version when using simlarge input set 77

7.12 Speed up comparison of pthreads and OmpSs version against
serial version when using native input set 78

VI

List of Tables

2.1 Tasks codification . 13
2.2 Human resources budget . 21
2.3 Hardware budget . 22
2.4 Indirect costs . 23
2.5 Total budget . 24

4.1 Mercurium compilation options for back-end compilation choice . 34

5.1 Different input files for x264 application 40
5.2 Execution time and frames per second of serial version using dif-

ferent input set . 44
5.3 Percentage of execution time where a certain number of threads

are running at the same time using simlarge input set and 8 threads 45
5.4 Percentage of execution time where a certain number of threads

are running at the same time using simlarge input set and 16
threads . 46

5.5 Percentage of execution time where a certain number of threads
are running at the same time using native input set and 8 threads 47

5.6 Percentage of execution time where a certain number of threads
are running at the same time using native input set and 16 threads 48

VII

VIII

List of Code Snippets

6.1 Encoding loop . 57
6.2 Read frame function . 59
6.3 Creation of the task which encodes a frame 61
6.4 Close the frame encoder . 61
6.5 x264 slices write function . 62
6.6 x264 fdec filter row function . 64
6.7 x264 macroblock analyse and x264 mb analyse init functions . . 65
6.8 x264 encoder frame end function 67
6.9 configure help . 68
6.10 configure . 68

IX

X

Chapter 1

Introduction

1.1 Motivation

The main purpose of this project is to design and implement a parallel version
of the x264 application. For this task we will use the task-based programming
model OmpSs (OpenMP SuperScalar), currently developed at BSC (Barcelona
Supercomputing Center).

The x264 application is an H.264/AVC (Advanced Video Coding) video en-
coder. In the 4th annual video codec comparison it was ranked 2nd best codec
for its high encoding quality. It is based on the ITU-T H.264 standard which
was completed in May 2003 and which is now also part of ISO/IEC MPEG-
4. In that context the standard is also known as MPEG-4 Part 10. H.264
describes the lossy compression of a video stream. It improves over previous
encoding standards with new features such as increased sample bit depth preci-
sion, higher-resolution color information, variable block-size motion compensa-
tion (VB-SMC) or context-adaptive binary arithmetic coding (CABAC). These
advancements allow H.264 encoders to achieve a higher output quality with a
lower bit-rate at the expense of a significantly increased encoding and decoding
time. The flexibility of H.264 allows its use in a wide range of contexts with
different requirements from video conferencing solutions to high-definition (HD)
film distribution. Next-generation HD DVD or Blu-ray video players already
require H.264/AVC encoding. The flexibility and wide range of application of
the H.264 standard and its ubiquity in next-generation video systems makes the
x264 application an excellent candidate to improve its performance using the
task-based programming model OmpSs.

OmpSs extends OpenMP with a new set of directives in order to support asyn-
chronous parallelism and heterogeneity (devices like GPU’s). It’s composed by
Mercurium source-to-source compiler and Nanos++ runtime system, both also
developed at BSC. Also, OmpSs provides asynchronous parallelism, so the idea
is to exploit it in order to achieve the maximum performance, this increment can
be computed beforehand using Amdahl’s Law, which will tell us the maximum
performance that we could achieve taking into account the portion of code will
be parallelized.

1

In that context, the idea is to improve the current parallel implementation for
shared memory systems which it is currently implemented using pthreads. This
implies that we are not going to use OmpSs’ heterogeneous features.

Finally, the x264 version we will port to OmpSs is the one that can be found
at the PARSEC Benchmark Suite. PARSEC is a benchmark suite composed
of multithreaded programs. The suite focuses on emerging workloads and was
designed to contain a diverse selection of applications that are representative of
next-generation shared-memory programs for chip-multiprocessors.

1.2 Stakeholders

At this section we are going to discuss about who could be interested on the
project, this is, its stakeholders [St13]. In this line we are going to split the
potential stakeholders in several groups. The following list is a summary of
the different parts of this section. A further detailed discussion about each
stakeholder will be provided afterwards.

Developers
In this case I’m the only one developer. The reasons for being interested
on the project are more than obvious.

Project directors
Both directors of the project are interested on it since it takes part of a big-
ger one which consists on porting the whole PARSEC (Princeton Applica-
tion Repository for Shared-Memory Computers) Benchmark Suite[PSC08]
to OmpSs.

HD video player system developers
It is mandatory for both HD DVD and Bluray players to be able to repro-
duce the H.264 video codec since it is one of the codecs that these formats
support. [Blu05].

Video streaming system developers
H.264 is widely used on these kind of systems, so it could be interesting
for its developers if we improve the current implementations.

OmpSs developers
Increasing the performance over the current x264 implementations means
that OmpSs is a valid programming model that could provide a greater
performance than the actual ones.

Video encoder and decoder software developers
This kind of software usually use applications like x264 as a video encoder
while they only implement the front-end. It could be interesting for them
to use our version if it is better than the actual one.

Users
This includes all the people that will use the encoder and decoder software
to convert their, for example, old non-digital videos to a digital ones. Also
includes television users since H.264 is already used in some countries as
the codec for terrestrial broadcast services.

2

Developers

As we said before, the one and the only developer of this project it will be only
me. The reasons for being interested in are obvious of course. Besides this, I
am concerned about the impact of an improvement of the widely used H.264
video codec on both environment and the market could make.

Nowadays the H.264 is likely an standard for High Definition video. But its
range of applications is not that closed, actually it can also be used as video
codec for HTML 5 embedded videos [htl14]. So, improving the decoding and
encoding performance of the H.264 video codec could reduce the cost in terms
of energy consumption for servers providing these videos, making web services
or also video streaming services more greener. This actually translates into a
less costs in environmental fees for the companies.

Project directors

The project is actually a part of a bigger one consisting on porting the whole
PARSEC Benchmark Suite to OmpSs. Both project directors are participating
on it, so they are interested on designing the task-based version of x264 since it
has to be done on its projects frame.

PARSEC is actually composed of several multi threaded applications, being
x264 one of them. This benchmark suite focuses on emerging workloads and
was designed to be representative of next-generation shared-memory programs
for chip-multiprocessors.

For that reasons they are quite interested on knowing if the performance of
the PARSEC benchmarks can be improved using the task-based programming
model OmpSs. They are also looking forward to trying to port the whole bench-
mark suite to an MPI plus OmpSs version at second stage, and an MPI plus
OmpSs plus CUDA or OpenCL at a third one. Both versions fall on the success
of this project, which consists only on porting the x264 to OmpSs.

HD video player system developers

It is mandatory for Bluray and HD DVD video player systems to support the
H.264 video codec because it is one of the three codecs supported by these
formats. So, improving the encoding performance translates directly into a
more compressed file which, potentially, will be burned on a digital optical disc.

On this could focus the interest of the developers since an smaller file size means
that they can increase the quantity of data per disc (which translates into a
major video duration) or they can improve the bit-rate of the video stream
(which means an increased video quality).

In this line developers will be able to achieve a better product than the actual
one or maybe to continue offering the same quality and duration but with a
lower costs due to the reduced power consumption as the burn process would
take less time than before.

3

Video streaming systems developers

Developers of this kind of systems can be concerned about our version if it is
better enough than the current one to justify adopting it.

Here we have mostly the same reasons as for high definition player system
developers. If we are able to improve the performance, they will be able to
increase the quality or the length of the videos they offer or to reduce the
needed storage capacity.

OmpSs developers

In this case the interest is more about bringing to programmers more reasons to
use its programming model than others. So, improving the performance of the
x264 application over the current one, which don’t use a task-based approach,
grants to OmpSs a better impression of its programming model rather than the
one used at the actual implementation, which it is pthreads.

Video encoder and decoder software developers

An improved version respect to the actual one could be very interesting for video
encoder and decoder software developers because it will improve also its appli-
cation. This software usually implements only a friendly front-end interface to
smooth the way for the users since them could avoid concerning about decoding
or encoding parameters for the application that actually decodes or encodes
[FF]. Furthermore, one of the most used encoding and decoding applications as
FFmpeg uses x264 as its video decoder and encoder for the H.264 video codec
[FFP].

So, this kind of software, which usually uses an application like x264 to en-
code and decode video streams, could improve its overall performance using our
version as long as our one will be better than the others.

Users

Not only terrestrial broadcast services but also direct broadcast satellite TV ones
as well as some IPTV services actually use H.264 video codec. Also Apple (via
iTunes) is offering video content that uses H.264 codec [APL05]. Furthermore,
Android platform natively supports H.264 [ADR].

In this context the end-user of a wide range of applications will take profit of
our version if it is attractive enough to make x264 developers to think about
adding it to its application.

1.3 State of the Art

In this section we are going to go deeper into the solutions that are already on the
market. This is, the current parallel implementations of the x264 application.

4

At the time this document is written, there are only two parallel versions of
the x264 application implemented. The first one is a shared memory based one
that uses pthreads, the second one uses OpenCL [hcl], but this version is not
the best one to do a fair comparison with ours since OpenCL it is not a shared
memory programming model [OCL13].

At this point one can see that there are not too many parallel versions of the
x264 application. Even though some paid H.264 decoders and encoders exist
that are implemented using CUDA, OpenCL, etc. [hcu13]. However, those
implementations are not free of charge as it will be our version.

Of course those implementations must be considered by us in order to see how
our version performs. The idea is to know if there is any reason to propose a
new solution to the problem the H.264 video codec presents. In that line, at the
eighth MPEG-4 AVC/H.264 video codecs comparison [hcm12], x264 was chosen
the best H.264 video encoder. In that comparison the following encoders were
tested:

� DivX H.264

� Elecard H.264

� Intel Ivy Bridge QuickSync (GPU encoder)

� MainConcept H.264 (software)

� MainConcept H.264 (CUDA based encoder)

� MainConcept H.264 (OpenCL based encoder)

� DiscretePhoton

� x264

Note that the x264 implementation used was the parallel one that use pthreads.

About the results of the comparison, the worst version was the CUDA based
one in terms of video quality. The best version at performance tests was the
Intel Ivy Bridge QuickSync (GPU-based). But the one that contributes with
the greatest quality is the x264 application. Maybe it is not the fastest one, but
it is the one that can achieve the greatest video quality, and this is the main
reason because it is actually the most used one.

Then, knowing that the application we are going to port to OmpSs is the best
encoder for the H.264 video codec, we think that it won’t be a waste of time
porting the application.

About using CUDA or OpenCL on the x264 application to offload work to the
GPU instead of the CPU, it seems that in our case it is not better than using
only the CPU, so it looks feasible that our version could be the chosen one to
improve even more the x264 performance. Taking this into account, I think it
is not a waste of resources to design and implement a new parallel version for
shared memory systems, not only because it has been demonstrated that these

5

versions are the best ones, but also because we are going to use a new approach
to design it, a task-based approach.

In order to be able to really understand why we want to use a task-based
approach instead of another one, this is the programming model OmpSs instead
of another one, we are going to explain the current state of the art of the parallel
programming models also.

In this line we are going to focus only on programming models that support
shared memory systems. So we will discuss about the following ones:

� CUDA

� Chapel

� CHARM++

� Liszt

� Loci

� OpenMP

� OmpSs

CUDA

CUDA is a set of C++ language extensions plus an accompanying runtime API
for programming NVIDIA GPUs [cu12]. A computational kernel is programmed
essentially as a C++ function that is run for every thread. Threads are grouped
hierarchically into warps, blocks and grids. The finest group, a warp (currently
32 threads), runs the same set of instructions in SIMD fashion with support for
diverging the execution paths. Threads in the same block are active at the same
time and have access to fast, on-chip shared memory and local synchronization
primitives. Finally, the various thread-blocks in a grid are executed completely
independently and in arbitrary order, allowing for execution of problems too
large to fit on the hardware simultaneously.

Chapel

Chapel is an emerging parallel language initiated under the DARPA HPCS
program with the goal of improving programmer productivity [ch07]. Chapel
is designed using a block-imperative syntax with optional support for object-
oriented programming, type inference, and other productivity-oriented features.
Chapel supports both task and data parallel styles of programming, and permits
these styles to be mixed arbitrarily. Task-parallelism is supported by creating
abstract concurrent tasks that coordinate through shared synchronization and
atomic variables. Data-parallelism is expreseed via loops and operations on data
aggregates. Chapel supports reasoning about locality on node via the concept
of a locale; for example, locales are often used to represent compute nodes on
large-scale systems. Domains and arrays can be distributed across sets of locales
in a high-level manner using the concept of user-defined domain maps [ch11].

6

CHARM++

CHARM++ is a parallel programming system based on message-driven migrat-
able objects [Ka93, La03]. It is implemented as additions to the C++ language
coupled with an adaptive runtime system. Parallelism in CHARM++ is cre-
ated by over-decomposing an application into its logical work and data units,
referred to as chares. The number of chares is typically more than the number of
processors. The programmer expresses application flow, computation and com-
munication as operations performed by chares. The distribution of chares to pro-
cessors and scheduling of their execution is handled by the CHARM++ runtime
system. Communication between chares is performed through remote method
invocations and chares is performeed through remote method invocations and
is also handled by the runtime system. Communication is asynchronous with
respect to other chares which provides the benefit of adaptive overlap with com-
putation. One optional language feature is that the parallel control flow can be
specified by the user through a structured directed acyclic graph (SDAG) which
can lead to more elegant code.

Liszt

Liszt is a Scala-based domain-specific language for solving partial-differential
equations on meshes [De11]. The language is designed for code portability
across heterogeneous platforms. The problem domain is represented as a three-
dimensional mesh whose elements can be accessed only through a mesh-based
topological functions as immutable first-class values. The mesh is initialized at
program start time and its topology does not change over the program’s lifetime.
Fields are abstracted as unordered maps indexed only using mesh elements.
Liszt provides three features for parallelism: a parallel for-comprehension on
sets of mesh elements, atomic reduction operators on field data, and field phases,
i.e. read/write restrictions on field data inside a for-comprehension. Moreover,
Liszt does not support recursion. These semantic constraints ensure that the
Liszt compiler can infer data dependencies automatically, enabling it to gener-
ate a parallel implementation for code written in a serial style. One drawback is
that Liszt provides no high-level abstraction for load balancing and mesh decom-
position. Lack of direct programmer control on these aspects has performance
implications for certain back ends.

Loci

Loci is a C++ framework that implements a declarative logic-relational pro-
gramming model [Lu05]. The programming model is implicitly parallel and
uses relational abstractions to describe distributed irregular data structures. A
logic programming abstraction similar to Datalog [Ul88] is used to facilitate
composition of transformation rules. The programming model exploits a no-
tational similarity to mathematical descriptions found in papers and texts of
numerical methods for the solution of partial differential equations [Zh09]. In
addition, the programming model facilitates partial verification by exploiting
the logic programming model to provide runtime detection of inconsistent or
incomplete program specification. Parallel execution is achieved using loosely
synchronized SPMD approach that exploits the data-parallelism that naturally

7

emerges from the distribution of relations to processors. Communication costs
in the generated parallel schedule are controlled through message vectorization
and work replication optimizations [So08].

OpenMP

OpenMP uses pragma directives that are added to C, C++ and Fortran pro-
grams [Da98]. These directives can specify regions and loops to be parallelized
by the OpenMP compiler using threads. Further, directives can be used to
mark critical or atomic sections within the parallel regions. Through informa-
tion added to the compiler directives, a programmer can specify which variables
are shared or private in order to prevent false sharing and to isolate effects from
multiple threads. Additionallym the pragmas allow specification of the num-
ber of threads per loop as well as reductions. Finally, OpenMP allows nested
parallelism with each thread capable of spawning child threads.

OmpSs

The OmpSs programming model is an effort to integrate features from the StarSs
programming model developed by BSC into a single programming model. In
particular, the objective is to extend OpenMP with new directives to support
asynchronous data-flow parallelism and heterogeneity (as in GPU-like devices).
The most prominent feature of OmpSs programming model is the extension of
OpenMP tasks with dependences. Dependences let the user annotate the data
flow of the program, this way at runtime this information can be used to deter-
mine if the parallel execution of two tasks may cause data races. Asynchronous
parallelism is enabled in OmpSs by the use of data-dependencies between the
different tasks of the program. The OpenMP task construct is extended with
the in (standing for input), out (standing for output) and inout (standing for
input/output) clauses to this end. They allow to specify for each task in the
program what data a task is waiting for and signalling its readiness. Note, that
whether the task really uses that data in the specified way its the programmer
responsibility.

In our case, the chosen programming model was OmpSs. The main reason
for chosen this programming model instead of another one is because we want
to prove that OmpSs can be used also for non high performance computing
workloads.

At second place, we really believe that the characteristics of the x264 application
made feasible to design a better parallel version of it using a task-based approach
than the one used at the current parallel version which it is pthreads.

We think also that OmpSs can achieve a greater levels of performance than the
programming models we discussed before. The last reason is that we believe that
OmpSs is the programming model that mix in a better way all the characteristics
that a parallel programming model must have.

8

1.4 Objectives

Our objectives can be split in main objectives and secondary objectives as fol-
lowing:

� Main objectives:

– Design a parallel version of the x264 application using a task-based
approach.

– Implement the parallel version we designed using the task-based pro-
gramming model OmpSs.

– Comparison with current parallel version, emphasizing on differences
between programming model used on the current parallel version and
OmpSs programming model.

� Secondary objectives:

– Characterization of the x264 application.

– Compare performance analysis of the current parallel version in front
of our parallel version.

– Prove that OmpSs programming model is also valid for non high
performance computing workloads.

1.5 Project Scope

The main purpose of the project is to design and implement an OmpSs version
of the x264 video encoder, so it is needed to specify what will be done and
what not. This is very important to avoid wasting time on tasks that are not
supposed to be done by us.

The following lists show what will be done and what not under the project’s
frame that there are directly related to the porting itself.

� What will be done

– Evaluation of the serial version of the application

– Evaluation of the current parallel version of the application

– Characterization of the application

– Design of the task-based algorithm

– Implementation of the task-based algorithm using OmpSs

– Evaluation of the OmpSs version of the application

� What will not be done

– A version for distributed memory systems

– A study of application’s impact on the market

– Comparison between different programming models

– Evaluation of the final video quality

9

– Comparison in terms of energy efficiency

Of course the tasks we just listed require time in order to be completed. Time
planning will be discussed in a deeper way later on a different section, but the
following list could bring to you a better understanding about how the tasks we
are going to do along the project will be scheduled. Also there is included an
estimation of the time the task will take long to be completed.

Documentation - 10 days
This includes the study of the algorithm.

Performance Analysis - 15 days
We must know which are the portions of the code that needs more time
to be executed than others in order to apply Amdahl’s Law in a proper
way.

Porting x264 application to OmpSs - 40 days
This is the main task of the project. Includes the design and the im-
plementation of the application using the task-based programming model
OmpSs.

OmpSs version evaluation - 10 days
The implemented version must be evaluated and compared with the cur-
rent ones.

Write memory - 30 days
A memory containing all the results as well as the methodology, risk man-
agement, etc. must be written.

10

Chapter 2

Planning, budget and
sustainability

2.1 Gantt chart

Lets begin explaining the Gantt chart. Firstly, I am going to show the chart
(see Figure 2) and then I will start explaining the main tasks. Subtasks are
going to be explained afterwards. The project was started at 21st of March.

The tasks are distributed in time respecting both working and resting days.
The working days of the week are Monday, Tuesday, Wednesday, Thursday and
Friday; the resting are Saturday and Sunday. The idea is to work six hours
every day. So, the theoretical starting day is the 21st of March and it is planned
to be finished at the 20th of June, we had sixty-six working days that made a
total of 396 hours and 34 resting days. These resting days can be used to work
too in case some of the tasks requires more time than the estimated one, adding
204 hours more than the estimated to finish the project.

Note that at Figure 2 it is indicated the working days of each task, but it is
not reflected that some of the tasks can be done at the same time. This is the
reason why the sum of the working days showed at Figure 2 is not the same as
the one explained before. Note also the red tasks are the ones that compose the
critical path of the project.

As we can see at Figure 2, the main tasks are the following:

Project Management
This task is the first one of the project and it consists on designing the
project itself.

Documentation
This task is mainly focus on searching the information we need to be able
to complete the project.

Get familiar with working platform
In this task we will get familiar with the working environment. This
includes tools, compilers and Mare Nostrum the supercomputer itself.

11

Performance Analysis
The intention of this tasks is to analyse the original application in order
to obtain the needed information that will allow us to a better job in the
design and the implementation of the OmpSs version.

Porting x264 application to OmpSs
This task is composed by designing and implementing our application. In
order to do it, we need to study all the code dependencies, both data and
task dependencies.

OmpSs version evaluation
At this point, we will have 3 versions of the application in which we are
interest. First one is the sequential version, second one the current parallel
version implemented at x264 application and the third one is the OmpSs
application we are going to implement. So, we are going to compare all
three in order to know the real performance of our application in front of
the current implementations.

Write memory
This task is actually split in 3 tasks along the project. The idea is to start
writing the memory as soon as possible to avoid writing about sections
that we finished months ago.

Critical Path

As said before, the red nodes that one can see at Figure 2.1 on page 14 are
the ones that compose the critical path. This path is the one that define the
duration of your project in terms of time.

The tasks included at the critical path are also the more critical ones because a
delay on one of them could provoke not to be able to finish the project within
the scheduled time. So it is really needed to be able to manage possible risks to
avoid delays.

In that line the planning has been made making room to this possible delays on
each task. This means that all the estimated time for each plan includes more
time that the one would be needed firstly.

Table 2.1 on page 13 references each task with a code in order to make easier
the identification on Figure 2.2 showed on page 15.

12

Task Name Task Code
Project Management T1

Project Scope T1.1
Time planning T1.2

Budget and Sustainability T1.3
Context and bibliography T1.4

Spec sheet T1.5
Documentation T2

Study of the Algorithm T2.1
State of the Art T2.2

Write documentation memory T3
Get familiar with working platform T4
Get familiar with evaluation tools T4.1

Get familiar with Extre T4.1.1
Get familiar with Paraver T4.1.2
Get familiar with OmpSs T4.2

Get familiar with Mercurium T4.2.1
Get familiar with Nanos++ T4.2.2

Performance Analysis T5
Profiling T5.1
Timing T5.2

Characterization T5.3
Write Performance Analysis memory T6
Porting x264 application to OmpSs T7

Study dependencies T7.1
Desing OmpSs version T7.2

Implement OmpSs vesrion T7.3
OmpSs version evaluation T8

Sequential version evaluation T8.1
Current parallel version evaluation T8.2

OmpSs version evaluation T8.3
Comparison between sequential, parallel and OmpSs version T8.4

Write remaining memory T9

Table 2.1: Tasks codification

13

Figure 2.1: Gantt chart

14

Figure 2.2: Critical Path

2.2 Tasks

We are going to describe in a deeper way all the project tasks. In this line, you
will find an explanation for each task of the project.

Project Management

This task is the initial one and it consists on designing the project itself. So it
includes time planning, budgets, sustainability, state of the art, etc.

It is also a dependency for every task since one cannot start a project without
designing it in a first place.

Resources:

� Laptop Dell Latitude E5420

� Linux Ubuntu 13.10 Gnome

Documentation

This section is split in two minor tasks. The first one is the study of the
algorithm and the second one writing the state of the art. Both tasks can be
done at the same time. No especial resources are need for this task, we have
more than enough with a laptop in order to access papers that located on the
Internet.

Resources:

� Laptop Dell Latitude E5420

� Linux Ubuntu 13.10 Gnome

Study of the algorithm - 7 days

The main activity of this task is to read papers, documentation, etc. in order
to get as much information as possible about the algorithm. The idea is to
become an expert about the algorithm in order to easily find all the data and
task dependencies while porting the x264 application to OmpSs.

15

So a lot of papers, documentation will be read in order to know not only the
portions of code that can be potentially improved but also to be able to split in
different tasks the algorithm.

As well as this task is the first one, it has only one dependency, this is the
project management of the project.

State of the Art - 3 days

We will search about all the current parallel implementations, not only the ones
that can be executed on a shared memory system but also implementations for
distributed memory systems or accelerators as CUDA and OpenCL.

We will look at different programming models also, comparing it with the one we
are going to use to make our version as well as discussing about the advantages
and the contras of using the programming model OmpSs.
As same as for the study of the algorithm, this task has the same dependencies
as the one before.

Get familiar with working platform

This task mainly consists on experimenting and reading the manuals of the
software we are going to use. In this case we would need access to the working
environment, this is Mare Nostrum. This means this task has a resource de-
pendency since the required steps to be allowed to use Mare Nostrum can take
long.

In our case we already have access to the cluster, so the task could start as soon
we start to work on the project.

Resources:

� Laptop Dell Latitude E5420

� Mare Nostrum III

� Linux Ubuntu 13.10 Gnome

� SuSe Distribution 11 SP2

� OmpSs

� Extrae

� Paraver

Get familiar with evaluation tools - 10 days

We are going to work a lot with Extrae and Paraver, so I decided to include a
task where to get familiar with these tools. So, at this task the idea is to do
some training with Extrae and Paraver in order to avoid wasting time in the
future.

16

About Extrae, we will need to do some training in order to know all the capa-
bilities it offers like which parameters we could gather of the application and
how to configure and run the application in order to obtain it.

Once we get traces, then they have be visualized using Paraver, but it offers a lot
of configuration that allow the user to see several information of the application.
So we will need to do some research in order to know which ones are the most
important to see in order to be able to understand in a better way why our
application is not giving us the expected performance.

Get familiar with OmpSs - 10 days

This task is almost the same as the one before. We are going to use OmpSs
which includes Mercurium and Nanos, so we must be an experts using both
compiler and runtime. This includes compiler flags, execution options, etc.

About Mercurium, is very important to know which are the best flags we will
need to improve even more our application at compilation time. We will need
to integrate our building configuration with the actual one that it is currently
implemented. In order to do this we will need to study how to compile the
application using mercurium as well as how to compile normal code.

Nanox is a runtime, but it accepts some parameters that could improve the
application at execution time. So we need to know which are these parameters
and the only way to do this is doing some training using it.

Performance Analysis

In order to be able to compare and also to design the application we are going
to implement, we will need first to characterize the application as well measure
how time it needs to be executed and how this execution time is distributed
into the portions of the code.

This task depends on the last one because we need to get familiar with the tools
we are going to use if we want to make a nice performance analysis.

Resources:

� Laptop Dell Latitude E5420

� Mare Nostrum III

� Linux Ubuntu 13.10 Gnome

� SuSe Distribution 11 SP2

� OmpSs

� Extrae

� Paraver

� GNU gprof

17

Profiling - 4 days

Before we start to design our OmpSs implementation we must need to know
where are we spending the CPU time in order to be able to optimize the max-
imum portion of code as Amdahl’s Law suggests. In this line we must do the
best profile we can. We will use GNU gprof software to get the application
profiles.

These profiles will allow us to focus our efforts on improving only the portions
of code that will have a bigger impact on the performance of the application.

Performance evaluation - 4 days

We need to know also the quantity of time the original application needs to
execute. In order to do this we will need to run several times the application
using real input data. This can be very expensive in time terms, but it is
absolutely needed.

This tasks consists on run several times the application at Mare Nostrum in
order to obtain different measures that will allow us to approximate in a better
way the real execution time calculating the median. Depending on the size of
the input data, each execution can take more or less time to be completed.

Characterization - 7 days

At this point, we will use both Extrae and Paraver in order to make a complete
characterization of the application to be able to know and understand the factors
that affect the performance of our application.

As same as for the timing and the profiling, we will need to run the application
in order to obtain traces. And then we will need to study these ones using
Paraver, looking for the issues in the execution that makes our application to
run slower than we expect.

Porting x264 application to OmpSs

This is the main task of the project. So every task is dependant of this task or
its results will be use by this task.

So it is not strange that this task uses the major percentage of time of the whole
project.

Resources:

� Laptop Dell Latitude E5420

� Mare Nostrum III

� Linux Ubuntu 13.10 Gnome

� SuSe Distribution 11 SP2

� OmpSs

18

� Extrae

� Paraver

� GNU gprof

Study dependencies - 10 days

We are going to do a deeper study of the algorithm and the characterization
of the application in order to know which are the data and task dependencies.
This task has an incredible importance because we will not be able to design
our version without knowing which dependencies we really have. Also, it will
allow us to exploit OmpSs asynchronous parallelism.

In this line we will need to study the algorithm and try to break all the depen-
dencies we found. This will require time and the knowledge of the algorithm
that we learned at the documentation task.

Design OmpSs version - 15 days

At the time we start this task, we already would have finished the study of
dependencies, so this task is going to use that knowledge in order to design a
solution to overcome dependencies. At the time this task will be finished, we
will have a pseudo code implementation of our version. This pseudo code will
be the starting point of the next task.

Implement OmpSs version - 15 days

In this task we are going to convert our design, obtained at the previous task
(the one where we designed the OmpSs vesrion), to an OmpSs application. So,
this task is only about the translation from pseudo code to OmpSs.

This task also consists on debugging the application and running it with a small
inputs to know if all the improvements we made are not affecting to the output
of the application.

OmpSs version evaluation

In order to know if our implementation is good enough for us, we need to
compare it with the current versions of the application. In our case we are
going to compare it with the sequential one and the current parallel version
that uses pthreads.

Resources:

� Laptop Dell Latitude E5420

� Mare Nostrum III

� Linux Ubuntu 13.10 Gnome

� SuSe Distribution 11 SP2

19

Sequential version evaluation - 3 days

Here we are going to evaluate sequential version of the x264 application in order
to be able to compare it with our OmpSs implementation. This task can be
started as soon as we start the project.

Current parallel version evaluation - 3 days

Same as before, we need to evaluate the current parallel version of the applica-
tion to be able to compare it with our implementation. As before, we can start
the task at the earliest stage of the project.

OmpSs version evaluation - 3 days

We also need an evaluation of the OmpSs version to compare with the sequential
and the parallel versions. At the time all three evaluations are done we would
be able to do the comparison between each. This task cannot be started until
we have finished the implementation of the OmpSs version.

Comparison between sequential, parallel and OmpSs verion - 1 day

At this task we are going to compare all three versions of the x264 we have
evaluated. The result of this task will be the one that will allow us to write the
remaining memory with the results of our work.

Write memory - 30 days

This task is actually split in several ones. The idea is to be able to write down
all the details as soon as possible. So to accomplish that we are going to write a
portion of the memory after we finish the study of the algorithm and the state of
the art, another one after we finish the performance analysis and the remaining
after finishing the evaluation of the application.

Resources:

� Laptop Dell Latitude E5420

� Linux Ubuntu 13.10 Gnome

� LaTex

2.2.1 Resources

In this section we are going to list all the resources that appeared before. These
resources are the ones needed to develop this project:

� Hardware

– Laptop Dell Latitude E5420

– Mare Nostrum III

� Software

– Linux distributions

20

* Ubuntu 13.10 Gnome at Laptop

* SuSe Distribution 11 SP2 at Mare Nostrum III

– LaTex

– OmpSs

* Mercurium compiler

* Nanos++ runtime

– Extrae

– Paraver

– GNU gprof

2.3 Budget

Budget monitoring

First of all, we compulsory need to have a method to control project budget
in order to avoid a startling rise of it. In consequence, the budget would be
updated at the end of each main task of the project.

This monitoring technique will allow us to maintain a real budget that will
consider not only the real time we spend on each task but also the real indirect
costs.

Human resources budget

Despite the fact that the project will be developed by only one person, this
one will will be forced to do several roles along it, like a project manager, a
programmer, etc. Also, Mare Nostrum requires a strict maintenance. This will
be handled by BSC support team, it will be reflected as if we are paying them
this service. The reason behind is to reflect the cost as if we are renting the
working platform. In Table 2.2, an estimation of cost is provided.

Role
Estimated
hours

Estimated price
per hour

Total
estimated cost

Project Manager 75 40,00 e 3.000,00 e

Programmer 396 25,00 e 9.900,00 e

Technical Support 50 25,00 e 1.250,00 e

TOTAL N/A N/A 11.450,00 e

Table 2.2: Human resources budget

21

Hardware budget

In order to study, design, implement and check our application as well as to ex-
ecute it in order to obtain traces, we will need a set of hardware. This includes
a laptop, Mare Nostrum computing nodes and some extra equipment. You will
find an estimation cost of the different hardware equipment at Table 2.3, that
table includes their service life as well as their depreciations1.

Two Mare Nostrum nodes have been added to the hardware budget as we will
need at least that number of nodes to be able to compile and execute the ap-
plication in an isolated way. This means that one node will be used to edit
and compile the application and other one just to execute the application using
the job scheduler that Mare Nostrum offers. Each node is composed by the
following hardware:

� Intel Xeon E5-2670 8-core at 2.6 GHz - 1.480,98e

� 8x4GB DDR3-1600 DIMMS - 360,00e

� HDD IBM 500GB SATA 3.5” - 240,00e

� Mellanox ConnectX-3 Dual Port QDR/FDR10 Mezz Card - 950,00¿

� 2 Gigabit Ethernet network cards - 100,00e

Product Price Units
Service
life

Estimated
residual
value

Total
estimated de-
preciation

Dell Latitude
E5420

1.445,00 e 1 5 years 250,00 e 79,67 e

Mare Nostrum
node

3.130,98 e 2 5 years 500,00 e 175,40 e

Dell Monitor
P2213

185,00 e 1 8 years 50,00 e 5,29 e

Lenovo Key-
board
SK-8825

30,00 e 1 10 years 5,00 e 0,83 e

Logitech Mouse
RX-250

8,00 e 1 10 years 2,00 e 0,20 e

TOTAL 4.798,98 e N/A N/A N/A 261,39 e

Table 2.3: Hardware budget

1Depreciation can be obtained by the following formula:
Depreciation = V alue−ResidualV alue

ServiceLife

22

Software budget

All the software that is going to be used at this project is free of charge at
the time this document is written. This includes Mercurium, Nanos++, Linux
distributions, Extrae, Paraver, GNU gprof and LaTex.

But, as long as we are going to keep updated the project budget along the
different stages of the project, if any of the application starts to require a fee,
or we need to use a software that needs it, it will be reflected on the budget.

Indirect costs

In this section we are going to estimate the cost of having Mare Nostrum exe-
cuting our application and obtaining the traces of it.

To do this we need to take into account the actual electrical fee. But nowadays
this fee has a very volatile value, this means we will need to update this cost
constantly to make our budget more realistic.

Despite of that, you will find an estimation of the indirect costs at Table 2.4.
Please note it is also provided Mare Nostrum’s power consumption taking into
account the whole cluster, not only the nodes that will be used. The reason of
this is that Mare Nostrum cannot be only powered on node by node, it must be
powered on completely before using it.

Product Price Units
Total
estimated
cost

Mare Nostrum
power
consumption

0,133295 e/kWh 772.200 kWh 76.537,99 e

Two nodes
power
consumption

0,133295 e/kWh 505,37 kWh 67,36 e

Table 2.4: Indirect costs

Total budget

By adding all the budgets provided, we are able to calculate the total estimated
cost of our project. All this information is gathered at Table 2.5.

23

Concept Estimated cost
Human resources 11.450,00 e

Hardware 4.798,98 e

Software 0,00 e

Indirect costs 67,36 e

TOTAL 16.316,34 e

Table 2.5: Total budget

2.4 Sustainability

In this section we will discuss about the sustainability of the project. The
sustainability of a project is the quality which made your project able to last
for a long time after it is finished. In this line we are going to discuss about the
market needs, quality and investment.

Market need

The x264 video enconder is widely used all over the world in several scenarios
as the ones listed below:

� Video streaming services

� HDDVD and Blu-ray players

� Video conferencing systems

� etc.

As we can see, the impact of an improved version of the x264 encoder is likely
to be very high. This means that community and companies could be interested
in our application if we guarantee a minimum performance and quality.

Quality

As said above, both companies and community can be interested in our applica-
tion, but this will only be a true statement if it achieves a minimum of quality.
In our case quality will be granted via performance.

Taking into account that there are some other versions of the application that
can be executed on a shared memory system as ours, quality is mandatory
because our application will compete with the current parallel version.

Also, if we are able to ensure the quality, it will be more likely that our appli-
cation will be used as a starting point to design new versions of the x264 video
encoder as, for example, an OmpSs plus CUDA or MPI version, thus improving
the performance of the application.

24

Investment

As well as market needs are strictly dependant on the application’s quality, the
investment is also dependant on it because nobody is going to invest on its
improvement if the application doesn’t work as it is expected to.

The investment has an extremely importance because it will lead to many op-
portunities to improve the application since you will have the resources needed
to continue developing the application. As we said before, it is feasible to write
a version of the application using OmpSs plus CUDA or MPI, but we need
resources for this, and we cannot have resources without investment.

25

26

Chapter 3

x264 application

The x264 application is a free software library for encoding video streams into
H.264/MPEG-4 Part 10 compression format. It is released under the terms of
the GNU General Public License.

During this sections we are going to explain the compression format the ap-
plication encodes and how is actually doing it. Afterwards, we will talk about
PARSEC benchmark suite because the x264 application is one of the bench-
marks which PARSEC is composed and because this project is part of a bigger
one which consists on porting all the PARSEC benchmark Suite to OmpSs
programming model.

3.1 H.264/MPEG-4 Part 10 video compression
format

H.264/MPEG-4 Part 10 or AVC (Advanced Video Coding) is a video compres-
sion format that is currently one of the most commonly used formats for the
recording, compression, and distribution of video content, like for example High
Definition films or video streaming services. The final drafting work on the first
version of the standard was completed in May 2003, several extensions of its
capabilities have been added in new editions.

H.264/MPEG-4 AVC is a block-oriented motion-compensation-based video com-
pression standard developed by the ITU-T Video Coding Experts Group (VCEG)
together with the ISO/IEC JTC1 Moving Picture Experts Group (MPEG). The
project partnership effort is known as the Joint Video Team (JVT). The ITU-T
H.264 standard and the ISO/IEC MPEG-4 AVC standard (formally, ISO/IEC
14496-10 – MPEG-4 Part 10, Advanced Video Coding) are maintained at the
same time so they have identical technical content.

H.264 is perhaps best known as being one of the video encoding standards for
Blu-ray Discs. Actually, all Blu-ray Disc players must be able to decode H.264.
It is also widely used by streaming internet sources, such as videos from Vimeo
and the iTunes Store. It is also used in web applications like Adobe Flash
Player and Microsoft Silverlight as well as in several High Definition Television

27

broadcasts over terrestrial. For example, DVB-T (Digital Video Broadcasting
- Terrestrial), which is used in Europe, Greenland, Russia, Australia and some
areas from Africa, Asia and South America uses H.264 video compression for-
mat.

H.264 is mainly used for lossy compression, even though the amount of loss may
sometimes be imperceptible. Furthermore, it is possible in some exceptional
cases to create a truly lossless video file using H.264 video encoder.

Features

H.264/AVC/MPEG-4 Part 10 contains unique features that allow it to com-
press video in a more effective way than older video compression formats and
is also able to provide more flexibility for using it into quite different network
environments. Some of those features are the following:

� Multi-picture inter-picture prediction including the following features:

– Variable block-size motion compensation (VBSMC) with block sizes
as large as 16Ö16 and as small as 4Ö4, enabling precise segmentation
of moving regions.

– The ability to use multiple motion vectors per macroblock.

– The ability to use any macroblock type in B-frames, including I-
macroblocks, resulting in much more efficient encoding when using
B-frames.

– Weighted prediction, allowing an encoder to specify the use of a scal-
ing and offset when performing motion compensation, and providing
a significant benefit in performance in special cases—such as fade-
to-black, fade-in, and cross-fade transitions. This includes implicit
weighted prediction for B-frames, and explicit weighted prediction
for P-frames.

� Spatial prediction from the edges of neighbouring blocks for intra coding.

� Lossless macroblock coding features including:

– A lossless ”PCM macroblock” representation mode in which video
data samples are represented directly, allowing perfect representation
of specific regions.

– An enhanced lossless macroblock representation mode allowing per-
fect representation of specific regions while using fewer bits than the
PCM mode.

� Flexible interlaced-scan video coding features, including:

– Macroblock-adaptive frame-field (MBAFF) coding, using a macroblock
pair structure for pictures coded as frames, allowing 16Ö16 mac-
roblocks in field mode.

� New transform design features, including:

28

– Adaptive encoder selection between the 4Ö4 and 8Ö8 transform block
sizes for the integer transform operation.

– A secondary Hadamard transform to obtain even more compression
in smooth regions.

� A quantization design including:

– Logarithmic step size control for easier bit rate management by en-
coder.

– Frequency-customized quantization scaling matrices selected by the
encoder.

� An in-loop de-blocking filter that helps preventing blocking artifacts, re-
sulting in better visual appearance and compression efficiency.

� An entropy coding design including:

– Context-adaptive binary arithmetic coding (CABAC), an algorithm
to losslessly compress syntax elements in the video stream knowing
the probabilities of syntax elements in a given context.

– Context-adaptive variable-length coding (CAVLC), which is a lower-
complexity alternative to CABAC.

– A common simple and highly structured variable length coding (VLC)
technique for many of the syntax elements not coded by CABAC or
CAVLC.

� Loss resilience features including:

– A Network Abstraction Layer (NAL) definition allowing the same
video syntax to be used in many network environments.

– Flexible macroblock ordering (FMO), also known as slice groups, and
arbitrary slice ordering (ASO), which are techniques for restructur-
ing the ordering of the representation of the fundamental regions
(macroblocks) in pictures.

– Data partitioning (DP), a feature providing the ability to separate
more important and less important syntax elements into different
packets of data.

– Redundant slices (RS), an error/loss robustness feature.

– Frame numbering, a feature that allows the creation of ”sub-sequences”,
enabling temporal scalability by optional inclusion of extra pictures
between other pictures.

� Switching slices, called SP and SI slices, allowing an encoder to direct a
decoder to jump into an ongoing video stream for such purposes as video
streaming bit rate switching and ”trick mode” operation.

� Supplemental enhancement information (SEI) and video usability infor-
mation (VUI), which are extra information that can be inserted into the
bitstream to enhance the use of the video for a wide variety of purposes.

29

� Auxiliary pictures, which can be used for such purposes as alpha com-
positing.

� Support of monochrome (4:0:0), 4:2:0, 4:2:2, and 4:4:4 chroma sub-sampling
(depending on the selected profile).

� Support of sample bit depth precision ranging from 8 to 14 bits per sample.

� The ability to encode individual color planes as distinct pictures with their
own slice structures, macroblock modes, motion vectors, etc.

� Picture order count, a feature that serves to keep the ordering of the
pictures and the values of samples in the decoded pictures isolated from
timing information.

All of these features, along with others, makes H.264 one of the best compression
formats in several cases. For example, H.264 can often perform better than
MPEG-2 obtaining the same quality at half of the bit rate, especially on high
bit rates and high resolution video files.

As other ISO/IEC MPEG video standards, H.264 has a reference software im-
plementation that can be downloaded for free. The main purpose of this imple-
mentation is to give examples of H.264 features rather than being used daily.

Finally, H.264 has several profiles. A profile is a set of features which can be
implemented or not within the video encoder application. This mean that not
all the features must be supported in every video encoder or decoder implemen-
tation. In our case, x264 is one the applications that implements most of the
features, but not all of them actually.

3.2 x264 video encoder algorithm

x264 application follows the same main algorithm as almost all the H.264 video
encoders. Actually, differences between several H.264 encoders are usually num-
ber of H.264 features implemented or not.

So, the main idea when encoding H.264 video codec is to avoid encoding the
maximum number of frames. Three different type of frames exist in order to do
that: I, P and B frames. See Figure 3.1 as a example of this.

Figure 3.1: I, P and B frames

30

I frames
An I frame is an Intra-coded picture, in effect a fully specified picture, like
a conventional static image file. P frames and B frames hold only part of
the image information, so they need less space to store than an I frame
and thus improve video compression rates.

P frames
A P frame (Predicted picture) holds only the changes in the image from
the previous frame. For example, in a scene where a car moves across
a stationary background, only the car’s movements need to be encoded.
The encoder does not need to store the unchanging background pixels in
the P frame, thus saving space. P frames are also known as delta frames.

B frames
A B frame (Bi-predictive picture) saves even more space by using differ-
ences between the current frame and both the preceding and following
frames to specify its content.

The x264 application works at macroblock level thus. This means each frame
is split in several sub-frames, allowing the application to choose which type of
frame use for every segment of the frame. This feature increase the compression
of the final video stream as well as the complexity of the code, but of course is
worth the effort.

Once the macroblock is analysed the application decides the type (I, P or B)
of it. Depending on this decision the encoding process will be different. In case
the macroblock is P or B type, then the encoding process cannot start until the
reference macroblock or macroblocks are encoded. Refer to Figure 3.2 in order
to see a diagram of the algorithm.

Figure 3.2: x264 algorithm pipeline

31

3.3 The PARSEC benchmark Suite

The PARSEC benchmark Suite is currently developed at the Princeton Uni-
versity. It aims to be a reference benchmark suite for Chip Multiprocessors
(CMPs) since they have become the most widespread kind of general purpose
processors.

There a lot of benchmark suites actually, but almost all of them are focused
on high performance computing workloads. But of course, evaluating the per-
formance of general purpose processor by using a benchmark designed for high
performance computing systems is not a good metric. For this same reason
PARSEC Benchmark Suite was developed, to give computer architects and
chip designers information about future applications, making tomorrow’s ap-
plications available today.

Key features

PARSEC differs from other benchmark suites in the following ways:

Multithreaded
Nowadays serial programs are the most common, but they are not useful
to test multiprocessor machines. PARSEC is one of a few benchmark
suites that are parallel.

Emerging Workloads
PARSEC benchmark suite includes emerging workloads which are likely
to become widespread application in the near future. The goal of this
suite is to provide a set of application that could be typical in a few years.

Diverse
PARSEC includes a huge variety of different applications. Latest version
includes 13 different workloads, trying to be as representative as possible.

Not HPC focused
Parallel programs are very common in the domain of High Performance
Computing, but are just a small subset of the whole parallel applications.
So it is very important to be able to apply parallelization techniques into
all application domains and the aim of PARSEC is to be prepared for this.

Research
This suite was mainly developed for research but it can also be used for
measuring performance on real machines, but its original purpose is in-
sight, not numbers.

32

Chapter 4

Working environment
set-up

4.1 OmpSs programming model

OmpSs is a programming model currently developed at Barcelona Supercom-
puting center which aims to extend OpenMP with some new directives in order
to add support for asynchronous parallelism and heterogeneity. One of OmpSs
capabilities is to execute regions of code in a parallel way even if they are not
explicitly declared as parallel with respect other regions. This can be done be-
cause OmpSs parallelism declarations are made by using data dependencies for
each task. This means, a section of code (i.e. an OmpSs task) will be queued in
pool of ready tasks only when its data dependencies are satisfied. Once in that
queue the tasks will be executed once a thread will be available.

About heterogeneity, OmpSs provides support for executing parts of the appli-
cation at the GPU just adding an OpenMP directive to the code. So one can
see that one of the most important features is the simpleness. This translates
into clear-cut code which is easy to maintain afterwards. It allow the developer
to forget about complex functions and only think into the algorithm he want to
implement and nothing else.

As mentioned before, OmpSs creates a pool of tasks. Those tasks will be bind to
any available thread. In order to know which thread is available a pool of threads
is created as well. This means that all threads are created at the initialization of
the application, being one of those threads the master one which is responsible
of the user serial code execution. The rest of threads are called worker threads.
This worker threads can become master ones in case they create more tasks,
this means nesting is also possible within OmpSs programming model.

As we already said, each parallel region of code is defined as a task in OmpSs
programming model. Each task has its own dependencies, which are declared
using in, out and inout directives. These directives are set by the user and using
it only serves to help the runtime when constructing the graph dependency in
order to be able to execute each task just when the data is available. Use of each

33

directive is self-evident, in directive tells the runtime the task needs to read the
data indicated at in clause, out directive tells the runtime the task will modify
the data indicated at out clause, finally, inout directive tells the runtime the
task will need to read and write the data indicated at inout directive. There are
some other directives like concurrent which tells the runtime that the assuring
properly access to data will be in charge of the programmer.

Figure 4.1 shows how OmpSs programming model works. We can see that from
the source code, compiling it with Mercurium, which can use several native
compilers for serial execution, an executable will be obtained. Mercurium also
uses Nanos++ runtime libraries at linking time. Finally, the executable will use
dynamic libraries from Nanos++ in order to be executed in a parallel way.

Figure 4.1: OmpSs implementation

4.1.1 Mercurium compiler

Mercurium is a source-to-source compiler which currently supports C and C++
languages. Mercurium is maninly used with Nanos runtime, providing support
for OmpSs and OpenMP programming model. Actually, it also supports some
other programming models (e.g. Chapel) and compiler transformations (e.g.
Cell Superscalar and Distributed Shared Memory). All of this features are
included in form of plugins written in C++ and dynamically loaded by the
compiler depending on what configuration the programmer chooses.

Mercurium compiler has stable support to compile several programming lan-
guages. Table 4.1 shows current supported ones.

Mercurium Language
mcc C
mcxx C++
mnvcc CUDA and C
mnvcxx CUDA and C++
mfc Fortran
oclmcc OpenCL and C
oclmcxx OpenCL and C++

Table 4.1: Mercurium compilation options for back-end compilation choice

34

4.1.2 Nanos++ runtime

Nanos++ is a runtime library (RTL) mainly developed in C++ which aims to
give support for parallel environment. Its main objective is to be in charge of
dependencies generated by OmpSs directives. It has also support for OpenMP
and Chapel. OmpSs tasks are implement by Nanos++ with user-level threads
when possible, in this line x86, x86.64, ia64, ppc32 and ppc64 are supported.

One of the most important features of Nanos++ runtime is that the programmer
does not need to deal with complex usage, he only needs to compile the source
code of its applications linking Nanos++ runtime libraries to that executable.
This mean the executable can be executed the same way you can execute a
serial application for example.

Nanos++ structure is mainly an idle loop in which idle threads are waiting to
the be called by the master thread. Once this happen, master thread will assign
work to the worker thread, the way this is actually done consist on creating a
work descriptor for the task using a thread also represented in Nanos++ runtime
library.

Finally, Nanos++ package can be compiled in four versions: performance, de-
bug, instrumentation and instrumentation-debug.

4.2 Paraver

Paraver is a development tool currently developed at Barcelona Supercomputing
Center and aims to respond to the need of having a way to visualize in a graphical
view the behaviour of an application in order to obtain an analysis of it. One
of its features is to be able to read the traces generated via Extrae.

Those traces can be analysed using Paraver. Of course, what is showed and how
can be configured by the developer in order to allow him to debug or to know
what is really happening inside his application.

Another important feature is that its trace format has no semantics, this trans-
lates into support for new programming models with no cost. Furthermore,
metrics are programmed within the tool. To compute them, the tool offers
large set of time functions, filters and mechanisms to combine two time lines.
This means the developer can obtain a huge number of metrics with the avail-
able data provided by the trace. Of course, once views are configured, this
configuration can be saved for using it later by only loading the configuration
file.

Some other Paraver features are the support for:

� Detailed quantitative analysis of program performance

� Concurrent comparative analysis of several traces

� Customizable semantics of the visualized information

� Cooperative work, sharing views of the trace

� Building of derived metrics

35

4.3 Extrae

Extrae is a development tool currently developed at Barcelona Supercomputing
Center which allows the developer to generate traces from the execution of
its application. These traces can be analysed later using Paraver. This tool
uses different mechanisms to obtain significant information of the execution like
hardware counters or function calls from both user or system space. Extrae
instrumentation package can instrument the following programming models:

� MPI

� OpenMP

� CUDA

� OpenCL

� pthreads

� OmpSs

All parallel programming models are supported in conjunction with MPI, except
MPI of course.

Extrae configuration is made via an XML file, which contain which kind of
counters, events or execution states will be gathered by the tool.

4.4 Mare Nostrum III

For this project we are going to use Mare Nostrum III, which is hosted at Capella
building located at Campus Nord, for running, debugging and evaluating our
application. This supercomputer is based on Intel SandyBridge processors, iDat-
aPlex compute racks interconnected through an Infiniband network and runs a
Linux Operating System.

Further information is provided at the following list:

� Peak Performance of 1.1 Petaflops

� 100.8 TB of main memory

� Homogeneous Nodes

– 3,056 compute nodes

– 2x Intel SandyBridge-EP E5-2670/1600 20M 8-core at 2.6 GHz

– 8x4GB DDR3-1600 DIMMS (2GB/core)

� Heterogeneous Nodes

– 42 heterogeneous compute nodes

– 2x Intel SandyBridge-EP E5-2670/1600 20M 8-core at 2.6 GHz

– 2x Xeon Phi 5110 P

36

– 8x8GB DDR3-1600 DIMMS (4GB/core)

� 2 PB of disk storage

� Interconnection networks:

– Infiniband FDR10

– Gigabit Ethernet

� Operating System: Linux - SuSe Distribution

37

38

Chapter 5

x264 application evaluation

The x264 application provided with the PARSEC benchmark suite has two
versions implemented. The first one is mean to be executed on a single processor
with one thread, this means, in a serial way. The other one uses POSIX threads
(i.e. pthreads) in order to reach a new level of performance via encoding more
than one frame at a time.

The objective of this project is to design and implement a new parallel version of
the x264 video encoder using OmpSs programming model. In order to do it, we
need to evaluate the performance of current implementations to know what can
be done and what not in order to improve the performance via parallelization.

We are going to start evaluation the serial version of the application, obtaining
a complete profile of it as well as computing the execution time and the frame
per second processed for several different input files.

The input file is quite important in this application because the main idea,
as it was explained in section 3, is to create a virtual pipeline where all the
macroblocks of every frame are enqueued and are processed taking into account
potential dependencies between each. Is for this reason as well as the resolution
of the frame (i.e. the number of the pixels to be encoded) that scalability is not
perfect.

The input files we are going to use are the same as PARSEC benchmark Suite
provide. All the input files have been derived from the uncompressed version
of the short film Elephants Dream. You can see the differences between each
different input at Table 5.1.

Each input file is mean to be used in different situation. For example, simtest
and simdev are intended to use them as test files to check if the application
works properly or not. About simsmall, simmedium and simlarge, are used to be
chosen when one wants to check scalability depending on the number of frames,
as we are going to do later when evaluating pthreads version. Finally, native
version allows us to check the real performance of the application providing a
very close real case input.

39

Name Resolution Number of frames
simtest 32x18 1
simdev 64x36 3
simsmall 640x360 8
simmedium 640x360 32
simlarge 640x360 128
native 1920x1080 512

Table 5.1: Different input files for x264 application

5.1 Serial version

The serial version of the application encodes every macroblock in a serial way.
This means that one frame cannot be encoded before the encoding process of
the previous one is finished, no matter the type of it.

So in this version we will see that the time of the encoding process depends on
the resolution of each frame, which affects on how many time the encode process
of a frame last long, and the number of the frames to be encoded.

5.1.1 Profiling

During this section we are going to obtain a profile of the serial version of the
x264 video encoder when encoding simsmall, simmedium, simlarge and native
input files. These profiles will allow us to know which parts of the code are
executed more often, this mean which functions are consuming more execution
time in our application.

For this we are going to use GNU gprof. GNU gprof is a performance analysis
tool for Unix applications. It uses a hybrid of instrumentation and sampling
and was created as extended version of the older prof tool. Unlike prof, gprof
is capable of limited call graph collecting and printing.

Starting from profile obtained via GNU gprof we will get also a call graph using
a script called Gprof2Dot which parses the output of gprof in order to generate
a DOT file (i.e. a plain text file describing a graph) which can be processed by
Graphviz to obtain an image with a function call graph.

Figure 5.1 shows the function call graph of an execution of the serial version of
x264 using the simsmall input set. As one can notice looking at the graph, the
application does not call more than one function before it starts x264 slice write
one. From there, it calls three different functions one of them consuming 87% of
the execution time. This function is x264 macroblock analyse, which is called
8280 times. Note also that x264 slice write is called 9 times when we are only
encoding 8 frames. This is because it is possible to call this function before
reading the input file, in this case the function will do an early exit in order to
try to be executed later.

40

Figure 5.1: Call graph using simsmall input set

Now, we can apply Amdahl’s Law in order to know which is the maximum speed
up we can achieve if we optimize only x264 macroblock analyse function. Note
the use of infinite in order to compute the maximum reachable speed up.

S(B) =
1

(1 −B) + B
∞

Where S is the speed up achieved and B the portion of the application which is
optimized. If we use the percentage of the execution time used by x264 macroblock analyse,
which is a 87.79% we can see the maximum speed up is the following:

S(0.8779) =
1

(1 − 0.8779)
= 8.19

This means that even optimizing the application in a level that the cost of the
most execution time consuming function would be zero (i.e. infinite improve-
ment), the speed up we could reach would be around 8 in case of the simsmall
input set.

At Figure 5.2 we can see the call graph of an execution using the simmedium
input set. It is mostly the same as the one using the simsmall input set. The
most important here is to note that the number of the calls to x264 slice write
and x264 macroblock analyse has increased due to the rising of the number of
frames that must be encoded.

In this line we can see that the number of calls to x264 slice write has increased
from 9 to 33 (now we are encoding 32 frames) while the number of calls to
x264 macroblock analyse rises from 8280 to 30360. This means that the calls to
the most consuming functions have been increased by a factor of around 4. Note
also the percentage of the execution time consumed by x264 macroblock analyse
is virtually the same as before so the theoretical speed up would be nearly the
same in this case.

41

Figure 5.2: Call graph using simmedium input set

For simlarge input set we can see the same behaviour as with simsmall and
simmedium, but increasing the number of calls. See Figure 5.3 in order to see
it. The percentages are likely the same as well as the number of calls is increased
by a factor of around 4 again.

Finally, native input set, which its call graph can be seen at Figure 5.4, repeats
the same behaviour. Nevertheless, is important to note how the percentage
of time executing analysis (which will decide what kind of macroblock we are
working with at that moment) grows up at the same time we increase the number
of frames. The reason of that behaviour is that these functions are the ones that
need more compute.

5.1.2 Performance evaluation

First, let me explain that we computed both total execution time and frames
per second. The difference between each is the frames per second does not take
into account the overhead of having a runtime neither synchronization. In the
case of the serial version both are very close to each because we don’t have
overhead caused by runtime nor synchronization.

Table 5.2 shows the execution time and the frames per second for simsmall,
simmedium, simlarge and native input set. Note that both measures are ob-
tained computing the median of 5 executions.
We can see execution time rises as we increase the number of frames to be en-
coded but is not the same for frames per second value. Looking at execution
time, we can see the reason for this increase is self-evident. At the same reso-
lution (simsmall, simmedium and simlarge) the increase is more or less lineal.
When using native input set, the execution time goes sky high due to the change
on the resolution of the video, this can be noticed also at frame per second value,
which is the lowest of all the different input set.

42

Figure 5.3: Call graph using simlarge input set

Figure 5.4: Call graph using native input set

43

Input Set Execution Time (seconds) Frames per second (fps)
simsmall 0.8252 9.715
simmedium 5.4505 5.875
simlarge 17.4204 7.345
native 612.8471 0.835

Table 5.2: Execution time and frames per second of serial version using different
input set

About frames per second metric, we can see that there is a lot of difference
when using different input set. In the case of native, the reason is the resolution
of each frame. At HD resolution (i.e. 1920x1080 pixels, a total of 2073600
pixels) the amount of pixels is greater than at a resolution of 640x360 pixels
(i.e. 230400), actually, in native we have 9 times more pixels than at simsmall,
simmedium or simlarge. This is the reason why the frames per second is too low
compared with the other input set. About the rest (i.e. simsmall, simmedium
and simlarge) differences are produced because in case of P type frames, it is
not mandatory to encode every pixel. So this is the reason to have a different
values when encoding frames of equal resolution.

5.2 pthreads version

The x264 application provided with PARSEC benchmark Suite also implements
a parallel version using POSIX threads. This version performs very nice but
has some scalability issues when encoding video files with low resolutions as we
will see during the following sections.

5.2.1 Profiling

As we did before, we are going to start discovering how the applications works.
In this case we are going to focus on the usage of the cores. This mean we are
going to study how many cores we have running at the same time during the
whole execution. This is very important for us since the bigger the number of
cores are running at the same time the better will be the final performance. We
can check again Amdahl’s Law taking into account the parallelization made by
using pthreads.

S(B,N) =
1

B + 1
N ∗ (1 −B)

Where S is the speed up we achieve, B the fraction of the algorithm that is
strictly serial and N the number of threads using at the parallel region.

In our application, pthreads parallelize the x264 slices write function, so, if we
look at native profiling of the serial version, we could see that using 8 and 16
threads the potential speed up is supposed to be the following:

S(0.9998, 8) =
1

1 − 0.9998 + 1
8 ∗ (0.9998)

= 7.9888

44

S(0.9998, 16) =
1

1 − 0.9998 + 1
16 ∗ (0.9998)

= 15.9521

With these results one can see that the potential speed up we can achieve seems
to be approximately the same as the number of threads we will use. But, in
order to do a deeper analysis we are going to look at the trace of the application
using Extrae to obtain the trace files and Paraver to visualize them.

Looking at Figure 5.5 we can see a trace which shows how many cores are used
during the whole execution of the application using simlarge input set and 8
threads. We can see that the 8 threads are not running at the same time in
a big portion of the application. This reason of this is the size of each frame.
Since it is not as bigger as it is at native input set, computation does not require
more time, so we spent more time synchronizing threads because of the potential
dependencies between different frames. This is a big issue for performance. See
also Table 5.3 to see the same information in a table.

Figure 5.5: Trace showing as a gradient color the thread usage within x264
execution with simlarge input set and 8 threads. Green zones are the ones with
only 1 thread, the more blue it comes the more threads are running, with a
maximum of 8.

Number of threads Execution Time (percentage)
1 1.05
2 1.29
3 1.97
4 2.20
5 2.63
6 2.21
7 21.02
8 66.45

Table 5.3: Percentage of execution time where a certain number of threads are
running at the same time using simlarge input set and 8 threads

So now we are going to look at the same figure and table but using 16 threads.
Now we can see the that the synchronizing time is more percentage than before.
The reason now is again the resolution. Each thread, if we are encoding a P
or B frame, has to wait to the threads which are encoding the frame that is
a dependency of the other. This means that we need to wait a lot of times
during the encoding of the frame, affecting the final performance because we

45

are not using the maximum number of threads the maximum possible time. See
at Figure 5.6 to see the trace and Table 5.4 to see a table containing the same
information Figure 5.6 but in a numerical way.

Figure 5.6: Trace showing as a gradient color the thread usage within x264
execution with simlarge input set and 16 threads. Green zones are the ones
with only 1 thread, the more blue it comes the more threads are running, with
a maximum of 16.

Number of threads Execution Time (percentage)
1 1.18
2 0.99
3 1.28
4 2.13
5 2.13
6 2.35
7 2.72
8 2.36
9 2.47
10 2.32
11 2.64
12 2.44
13 3.06
14 2.32
15 10.87
16 57.99

Table 5.4: Percentage of execution time where a certain number of threads are
running at the same time using simlarge input set and 16 threads

Now, we are going to see the same but for native input set. At Figure 5.7 we
can see the trace showing how many threads are used by the x264 application in
each moment. At Table 5.5 the information is showed in numerical way. We also
provide Figure 5.8 and Table 5.6 for the same input set but using 16 threads.
We can see that the usage of the threads is not as different as it was when using
simlarge input set. The reason is the amount of pixels that need to be encoded.
Nevertheless, we are going to spend more time doing computation, which can
be done in a parallel way, and less time doing synchronization, which affects the
performance.

46

Figure 5.7: Trace showing as a gradient color the thread usage within x264
execution with native input set and 8 threads. Green zones are the ones with
only 1 thread, the more blue it comes the more threads are running, with a
maximum of 8.

Number of threads Execution Time (percentage)
1 0.92
2 1.50
3 1.03
4 1.61
5 2.07
6 2.84
7 7.23
8 79.54

Table 5.5: Percentage of execution time where a certain number of threads are
running at the same time using native input set and 8 threads

Figure 5.8: Trace showing as a gradient color the thread usage within x264
execution with native input set and 16 threads. Green zones are the ones with
only 1 thread, the more blue it comes the more threads are running, with a
maximum of 16.

47

Number of threads Execution Time (percentage)
1 0.83
2 0.39
3 0.30
4 0.26
5 0.36
6 0.40
7 0.78
8 1.52
9 0.96
10 1.45
11 2.87
12 7.51
13 8.63
14 6.20
15 10.30
16 52.64

Table 5.6: Percentage of execution time where a certain number of threads are
running at the same time using native input set and 16 threads

5.2.2 Performance evaluation

As we saw when performing the profile of this version, there are several issues
which could potentially affect the final performance of the application. And
they do as we can see at Figure 5.9 and Figure 5.10. We can see that for all
input set except for native, scalability is not lineal.

Figure 5.9: Execution time using pthreads version with simsmall, simmedium
and simlarge input set and different number of threads

48

Figure 5.10: Execution time using pthreads version with native input set and
different number of threads

At Chart 5.11 we could see a similar figure but using frames encoded per second
as performance value. Again, we can see that for all input set except for native,
scalability is not lineal.

Figure 5.11: Frames per seconds using pthreads version with every input set
and different number of threads

The performance we obtained is the expected for all the reasons we mention
when studying the traces of the application. The main issue with the application
is when we are not able to split each frame in order to be able to do the encoding

49

with all the threads at the same time. When this happens, some threads needs
to wait to have its dependencies satisfied, affecting the final performance. So
a better performance is expected when using native input set just because the
amount of computation that has to be done is huge comparing with, for example,
simlarge input set.

5.2.3 Scalability

Chart 5.12 shows the speed up achieved for several input sets using different
number of threads. As it shows, the speed up when using native input set
scales properly due to the percentage of the time spent in computation and not
doing synchronization. For other input sets we can see the speed up stuck when
reaching certain number of threads.

Figure 5.12: Speed up against serial version using pthreads with native input
set and different number of threads

In some cases the problem is the time spent at doing synchronization between
threads, at others the reason is more self-evident. If we are using 8 threads to
encode a video with 3 frames and each frame is encoded only by one thread,
then we are not able to use the 8 threads at all. This is the case of simsmall
input set for example, and for simmedium when using 16 threads (remember
simmedium is a video composed by 32 frames only). Even though, the main
reason is the size of the frames for all of them.

50

Chapter 6

Porting the x264
application to OmpSs

During this chapter we are going to study which are the dependencies we have
at the x264 application that can be a problem for reaching the degree of par-
allelization we want to achieve, which is the same as the pthreads version at
least.

Afterwards, we will discuss about how we are going to use OmpSs and its
capabilities trying to avoid those dependencies. The idea is to try to use these
OmpSs features to design a better parallel version than pthreads one.

Finally, we will show how this design is implemented at the code of the appli-
cation. The code is a bit large, so we are not going to show the whole source
code during this section. Only the parts of the code that need to be modified
will be showed.

6.1 Dependencies

As we already explained, the x264 video encoder creates a virtual pipeline of
frames to be encoded. The idea is to be able to encode the highest number of
frames at the same time, but there is not that easy due to the different types
of frames, more exactly P and B frames. These kind of frames are the ones
which take profit of the pixels that are already encoded in another frame or
frames in order to avoid re-encoding them again. This translates directly into
dependencies.

Figure 6.1 shows an example of the virtual pipeline the application makes. There
are also marked dependencies between frames. Actually, a P frame doesn’t need
to wait until the whole previous frame is encoded. One idea is to wait until a
part of the frame is already computed and then start the encoding process of
the frame. Potentially, we will not have to wait again, but it will not be the
common case, so when reaching some point of the encoding process of the frame,
it will be mandatory to check if the next portion of the previous frame is already

51

computed in order to continue. With B frames it will be worst, just because we
need to wait also for the following frame.

Figure 6.1: x264 algorithm pipeline

This is the main dependency of the application. As we mentioned at pthreads
version performance evaluation section, a lack of scalability is expected when
encoding videos with a low resolution, but only if there are a lot of P or B
frames. If not (i.e. all frames are I type) then scalability is expected to be more
or less lineal, but in that case the frames per second metric will be worse since it
will be mandatory to encode all the pixels, work that is not done when encoding
a P or B frame, in those cases, only some pixels are really encoded. Of course a
perfect scalability is not possible just because we are not executing in a parallel
way the whole application, only a portion of it.

We have another dependency which is not that critical. As one can guess, input
video file must be read before start encoding it. Actually, the read process is
split in many parts as the amount of frames has the video file, this means we
will read the video file frame per frame. This means we cannot start encoding a
frame before reading it. This dependency is not a big issue just because the time
the application spends reading the frame is negligible compared to the encoding
time of each frame. Figure 6.2 shows the same pipeline as before but adding
the read process for each frame.

6.2 Design of the OmpSs version

At first we are going to start summarizing the last section. We must deal with
two dependencies which we need to break them with our design. These are:

P frame depends on I or P frame
One P frame cannot be encoded before the preceding I or P frame is not
encoded.

52

Figure 6.2: x264 algorithm pipeline including reads

B frame depends on previous I or P frame and following I frame
One B frame cannot be encoded before the preceding I or P frame and
the following I frame are not encoded.

Frame depends on the read of the frame
One frame cannot be encoded before it has been read from the input file.

The last one is quite self-evident actually, we depend on the input file to be read
before start processing (i.e. encoding) the data stream. About the first and the
second kind of dependency, this inter-frame dependency is likely the same, we
need to wait until some data is processed before starting to process the one we
have.

It is mandatory to break those dependencies because is the only way to achieve
a degree of performance we want, at least equal to the current implementation
which uses pthreads. At least equal just because one of the objectives of the
project is to prove that OmpSs is also valid for non high performance computing
workloads. This can be proven improving the performance of this application
over the current parallel implementation or achieving the same performance but
reducing the complexity of the code.

The following sections will explain how each dependency is broken.

A frame depends on the read of the the frame itself

This dependency is not very hard to break actually. The main reason is that
there are a lot of work to do between reading of the frame and encoding it like
preparing data structures for example. Taking this into account, the idea is to
read the frame and continue executing the application until we do not reach the
start of the encoding process at the same time. Figure 6.3 shows this idea.

53

Figure 6.3: Scheme of how reads are designed to be performed

P frame depends on I or P frame

The following dependency relation is about two frames. We are going to suppose
that both frames are already read and analysed. We are not working with frames
actually but with macroblocks, which are a portion of the frame, but we are
going to imagine that each frame is composed by macroblocks of the same type.

At this point we have an I or P frame and another P frame which depends on
the first one. Now we are going to design what happens if there is an I frame
and a P frame just to avoid complexity.

Both frames cannot be encoded at the same time, so we need to encode the I
frame first, which is the one that entered first into the virtual pipeline. The idea
is to avoid waiting for the whole encoding process of the I frame to avoid having
threads without any work to do. So we are going to think how this dependency
work.

Looking at Figure 6.4 we can see not all the pixels of the P frame depend on all
the pixels of the I frame, there are only a few of them that actually do. So is
worth to start the encoding process of the P frame just when some point of the
I frame is already encoded. The idea is split the frame into several portions in
order to do this synchronization within different frames several times in order
to avoid reaching pixels of the frame that have dependencies.

One could think about marking which pixels are the ones that depend on others.
The problem with this design is that those dependencies are movement of the
pixels, not change on them, so one would need to store transformations and
displacements for every dependent pixel, which can be potentially more than
a three quarts of the total pixels in the frame. Another issue is the need of
checking every pixel, which can affect the final performance.

54

Figure 6.4: I, P and B frames

So the idea is to design a sort of waterfall algorithm. I mean, imagine we have
a succession of frames starting from one I frame followed by a finite number of
P frames. Then, the idea is to encode, for example, a 10% of the I frame until
start encoding the first P frame we will have on the virtual pipeline.

The second frame, which is the first P frame, will eventually encode a 10% of
its picture. At this point, this encoding process will wait until the I frame will
reach a 20% of the encoding process, but the third frame queued (i.e. the second
P frame which depends on the first P frame) will start its encoding process.

After encoding again, we will have 3 frames with a 30, 20 and 10% of the total of
the encoding process done. Again, a fourth frame could start because depends
on the one which is currently on a 10% of the encoding process.

This behaviour could continue forever, but one can see that if we use a 10% of
the image as synchronization value then we will be able to have only ten frames
being encoding at the same time. If we think about parallelism, the idea is to set
this percentage taking into account how many threads we are using. This way
is not worth to set 10% if we have only 2 threads for example, the best choose
would be 50% in order to avoid the maximum synchronization possible. Figure
6.5 shows how the virtual pipeline will be executed when using the explained
algorithm.

Figure 6.5: x264 parallelism algorithm example

55

B frame depends on previous I or P frame and the following
I frame

This dependency is quite similar as the one before, but the frame depends not
only on the previous frame but also on the following one. The nice part is that
we can be sure that the following frame will be and I one, i.e. a frame with no
dependencies.

So the idea is to start encoding the previous I or P frame and the following I
frame at the same time. The B frame will not start its encoding process until
a percentage of the other two frames is achieved. As before, we will have a sort
of checkpoints where the B frame will must wait until the other two frames get
that percentage of encoded pixels.

The only modification is the order in which are encoded the frames actually.
This translates into a little modification in the virtual pipeline. Now, the frames
that must be encoded before the B frame must be encoded first, so we need to
move them within the virtual pipeline. Figure 6.6 shows how the actual pipeline
is modified.

Figure 6.6: Virtual pipeline obtained after reordering frames when encoding a
B frame

After this modification of the pipeline the dependency turns into something
very similar to the dependency between a P frame and its predecessor. The
only difference between that P frame and the B frame is that when checking if
we can continue encoding it is mandatory to check both frames which the frame
is dependent and not start the encoding process until both dependencies are
satisfied.

56

6.3 Implementation of the OmpSs version

In this section we are going to explain how the design we already explained has
been implemented. As there are already implemented a parallel version which
takes care about the creation of several data structures to isolate each encoding
process properly, some of the code of the current pthread version was reused.
Of course, any call to any pthreads function will not be executed never within
our OmpSs implementation, we just reused data structures actually.

Modified source code will be provided for each modification. Of course not the
whole code of the application will be showed here, so only affected ones will be
provided. This section will be split into several ones as well in order to isolate
properly each part of the design that was implemented.

In this line, the main parts will be the ones for the reading and the one for
the encoding process itself. Another section will explain how the application
installation scripts are modified in order to allow the user to generate the OmpSs
version implemented. First and second parts are dependent between, but we
thought that splitting them will give a more understandable approach to the
reader.

During the first section we are going to explain how it was implemented the
process of reading each frame. For this read we are creating a task for reading
each frame. Furthermore, more child tasks can be created from this one taking
into account some special cases that will be explained later.

The second section will explain how the encoding process was parallelized. As
before, a task is created for each encoding process, this actually means for
each frame. Since each frame could have dependencies with others, we need to
synchronize each task with the ones which are encoding the frame which the
first one is dependent. How this synchronization is done will be explained in a
more detailed way at the specific section for this dependency case.

The last section will explain how configuration and installation scripts were
modified in order to use Mercurium compiler to generate the OmpSs version
executable.

6.3.1 Reading the frame

Reading a frame needs to be done before starting the encoding process of the
frame. In order to read the frame, we create a new task each time a frame needs
to be read, this is once per frame.

The processing of each frame, which includes the read of it is included at the
following code:

Listing 6.1: Encoding loop

1 for(i_frame = 0, i_file = 0; b_ctrl_c == 0 && (i_frame <

i_frame_total || i_frame_total == 0);)

2 {

57

3 int res = 0;

4 #ifndef HAVE_OMPSS

5 res = p_read_frame(&pic , opt ->hin , i_frame + opt ->i_seek);

6 #else

7 #pragma omp task out(pic) label(p_read_frame)

8 res = p_read_frame(&pic , opt ->hin , i_frame + opt ->i_seek);

9 #pragma omp taskwait on(pic)

10 #endif

11 if(res)

12 break; // frame not readed properly , exiting

13
14 pic.i_pts = (int64_t)i_frame * param ->i_fps_den;

15
16 if(opt ->qpfile)

17 parse_qpfile(opt , &pic , i_frame + opt ->i_seek);

18 else

19 {

20 /* Do not force any parameters */

21 pic.i_type = X264_TYPE_AUTO;

22 pic.i_qpplus1 = 0;

23 }

24
25 i_file += Encode_frame(h, opt ->hout , &pic);

26
27 i_frame ++;

28
29 /* update status line (up to 1000 times per input file) */

30 if(opt ->b_progress && i_frame % i_update_interval == 0)

31 {

32 int64_t i_elapsed = x264_mdate () - i_start;

33 double fps = i_elapsed > 0 ? i_frame * 1000000. / i_elapsed

: 0;

34 double bitrate = (double) i_file * 8 * param ->i_fps_num / (

(double) param ->i_fps_den * i_frame * 1000);

35 if(i_frame_total)

36 {

37 int eta = i_elapsed * (i_frame_total - i_frame) / ((

int64_t)i_frame * 1000000);

38 sprintf(buf , "x264 [%.1f%%] %d/%d frames , %.2f fps ,

%.2f kb/s, eta %d:%02d:%02d",

39 100. * i_frame / i_frame_total , i_frame ,

i_frame_total , fps , bitrate ,

40 eta /3600 , (eta /60)%60, eta%60);

41 }

42 else

43 {

44 sprintf(buf , "x264 %d frames: %.2f fps , %.2f kb/s",

i_frame , fps , bitrate);

45 }

46 fprintf(stderr , "%s \r", buf+5);

47 SetConsoleTitle(buf);

48 fflush(stderr); // needed in windows

49 }

50 }

We can see that for each frame of the video file the application reads a frame
(line 8), performs several checks and set up the frame to encode it and finally
calls Encode frame function at line 25 which actually performs the encoding
of the frame. Afterwards there is a conditional statement at line 30 which
outputs information about the encoding process of the frame if the user has set
the verbose flag when launching the application. The initialization of the data

58

structure which represents the frame (i.e pic variable) is not showed because is
out of the loop.

About the modifications that have been done within the loop are all contained
within line 4 to 10. As one could see, we used a conditional group in order to
check if HAVE OMPSS is defined or not. This macro is set up at compilation
time in case we want to compile OmpSs version of the application. If it is
defined, code from lines 7 to 9 will be executed and line 5 if not. Line 5 was the
original code.

At line 7 the task is declared using OmpSs syntax. We are declaring one output
and setting the label of the task in order to improve traces visualizations in near
future. After declaring the task, we wait until this task is finished.

It is not a lack of performance waiting at this moment just because the time we
spend on reading from the input file is negligible. About why we are creating the
task when we are waiting until is finished is just because we need to assure some
conditions within the task and creating it at this moment will reduce complexity
afterwards. Furthermore, more threads can be created within the tasks, so it is
not serial execution after all.

Now, let me explain something about p read frame function. This function
is actually a variable that contains a pointer to the function which is called.
This was made that way because we have several implementations of the same
function depending on which version is compiled. So for example, the function
which reads a frame is different if we are using serial version of the application
or pthreads version. In case of the OmpSs, we are using the same as used in
pthreads version but modifying it. The following code shows the function used
to read a frame.

Listing 6.2: Read frame function

1 static void read_frame_thread_int(thread_input_arg_t *i)

2 {

3 i->status = i->h->p_read_frame(i->pic , i->h->p_handle , i->

i_frame);

4 }

5
6 int read_frame_thread(x264_picture_t *p_pic , hnd_t handle , int

i_frame)

7 {

8 thread_input_t *h = handle;

9 UNUSED void *stuff;

10 int ret = 0;

11
12 if(h->next_frame >= 0)

13 {

14 #ifndef HAVE_OMPSS

15 x264_pthread_join(h->tid , &stuff);

16 #else

17 #pragma omp taskwait

18 #endif

19 ret |= h->next_args ->status;

20 h->in_progress = 0;

21 }

59

22
23 if(h->next_frame == i_frame)

24 {

25 XCHG(x264_picture_t , *p_pic , h->pic);

26 }

27 else

28 {

29 ret |= h->p_read_frame(p_pic , h->p_handle , i_frame);

30 }

31
32 if(!h->frame_total || i_frame +1 < h->frame_total)

33 {

34 h->next_frame =

35 h->next_args ->i_frame = i_frame +1;

36 h->next_args ->pic = &h->pic;

37 #ifndef HAVE_OMPSS

38 x264_pthread_create(&h->tid , NULL , (void*)

read_frame_thread_int , h->next_args);

39 #else

40 #pragma omp task label(read_frame_thread_int)

41 read_frame_thread_int(h->next_args);

42 #endif

43 h->in_progress = 1;

44 }

45 else

46 h->next_frame = -1;

47
48 return ret;

49 }

Looking at the code you can see there are actually two functions. The first one
(i.e. read frame thread int actually call the function which it is called. This
means that function only serves for calling recursively your own function in a
clear way.

The other function called read frame thread is the one that actually performs
the read of the frame. This function tries to read all the frames actually. The
idea is to start reading all the frame and afterwards we continue the execution
of the application. In order to do it we create a task for each frame, doing a
parallel read of the input file in order to skip a lack of performance.

The interesting portion of the code is compressed between lines 37 and 42. As
you can see we are using again a conditional group in order to split the original
implementation which uses pthreads from ours which uses OmpSs. In case
HAVE OMPSS macro is defined, we create a new task which will read the next
frame.

6.3.2 Encoding the frame

This is the biggest modification that has been done in the code in order to cre-
ate our OmpSs version. First we added the creation of the main task which
actually encodes the frame. The function which actually do that is called
x264 slices write. This function is called for another one called x264 encoder encode
which prepares a lot of data structures that are mandatory to encode the frame.

About x264 slices write function, is the one who calls another ones to encode
the frame. Those functions are the ones that split the frame into macroblocks,

60

analyse them in order to choose the best type (i.e. I, P or B type) for each of
them and perform the encode of each macroblock of the frame. The following
code snippet shows the creation of the task and the code which finalizes the
encoding process of one frame.

Listing 6.3: Creation of the task which encodes a frame

1 int x264_encoder_encode(x264_t *h,

2 x264_nal_t **pp_nal , int *pi_nal ,

3 x264_picture_t *pic_in ,

4 x264_picture_t *pic_out)

5 {

6
7 ...

8
9 /* Write frame */

10 if(h->param.i_threads > 1)

11 {

12 #ifndef HAVE_OMPSS

13 x264_pthread_create(&h->thread_handle , NULL , (void*)

x264_slices_write , h);

14 #else

15 #pragma omp task out(*h) label(x264_slices_write)

16 x264_slices_write(h);

17 #endif

18 h->b_thread_active = 1;

19 }

20 else {

21 x264_slices_write(h);

22 }

23
24 ...

25
26 x264_encoder_frame_end(thread_oldest , thread_current , pp_nal ,

pi_nal , pic_out);

27 return 0;

28 }

We can see the task is created from a function called x264 encoder encode as
it was explained before. The modified part is the enclosed in lines from 12 to
17. We use a conditional group to check if we are using OmpSs or not and if
so, we create a task which will execute x264 slices write. This task will have an
output value and a custom label which will allow us to improve the trace files
we will generate later.

Finally, within the same function, we will close the frame encoder, this means
we will clean up all the data that is not going to be used again to avoid memory
leaks. The code of the function x264 encoder frame end is the following.

Listing 6.4: Close the frame encoder

1 static void x264_encoder_frame_end(x264_t *h, x264_t *

thread_current ,

2 x264_nal_t **pp_nal , int *

pi_nal ,

3 x264_picture_t *pic_out)

4 {

5 int i, i_list;

61

6 char psz_message [80];

7
8 if(h->b_thread_active)

9 {

10 #ifndef HAVE_OMPSS

11 x264_pthread_join(h->thread_handle , NULL);

12 #else

13 #pragma omp taskwait on(*h)

14 #endif

15 h->b_thread_active = 0;

16 }

17 if(!h->out.i_nal)

18 {

19 pic_out ->i_type = X264_TYPE_AUTO;

20 return;

21 }

22
23 ...

24
25 }

This function waits until the task just created to encode a frame is already
finish. This is useful because we are constantly checking if a frame is already
encoded in order to do some operations that needs this condition. So it is the
only way to be sure that one frame is already encoded. Allowing us clean up
data structures or reusing them again.

Now we are going to take a look inside x264 slices write function. The following
code shows the content of it and important code of x264 slice write function,
which is called from the other one:

Listing 6.5: x264 slices write function

1 static int x264_slices_write(x264_t *h)

2 {

3 int i_frame_size;

4
5 ...

6
7 x264_stack_align(x264_slice_write , h);

8 i_frame_size = h->out.nal[h->out.i_nal -1]. i_payload;

9
10 ...

11
12 h->out.i_frame_size = i_frame_size;

13 return 0;

14 }

15
16 static void x264_slice_write(x264_t *h)

17 {

18 int i_skip;

19 int mb_xy , i_mb_x , i_mb_y;

20 int i, i_list , i_ref;

21
22 ...

23
24 while((mb_xy = i_mb_x + i_mb_y * h->sps ->i_mb_width) < h->sh.

i_last_mb)

25 {

62

26 int mb_spos = bs_pos (&h->out.bs) + x264_cabac_pos (&h->cabac

);

27
28 if(i_mb_x == 0) {

29 x264_fdec_filter_row(h, i_mb_y);

30 }

31
32 /* load cache */

33 x264_macroblock_cache_load(h, i_mb_x , i_mb_y);

34
35 /* analyse parameters

36 * Slice I: choose I_4x4 or I_16x16 mode

37 * Slice P: choose between using P mode or intra (4x4 or 16

x16)

38 * */

39 x264_macroblock_analyse(h);

40
41 /* encode this macroblock -> be careful it can change the

mb type to P_SKIP if needed */

42 x264_macroblock_encode(h);

43
44 x264_bitstream_check_buffer(h);

45
46 ...

47
48 /* save cache */

49 x264_macroblock_cache_save(h);

50
51 ...

52
53 x264_ratecontrol_mb(h, bs_pos (&h->out.bs) + x264_cabac_pos

(&h->cabac) - mb_spos);

54
55 ...

56
57 }

58
59 ...

60
61 x264_fdec_filter_row(h, h->sps ->i_mb_height);

62
63 ...

64
65 }

At line 7 you can see the function x264 slice write is called. Actually this call is
the most important part of the function x264 slices write for us because the rest
of the code is for updating the display in case we were using on fly visualization
feature of the application.

So looking at the x264 slice write function, we can see that after doing other
stuff like preparing variables, at some point the execution will enter in a loop
statement. This loop is the one that allows to do the same operations for each
macroblock of the frame. Looking into the loop statement we will see some calls
to functions that are important to explain how the video encoder works.

The very first one is x264 fdec filter row. This function basically updates the
status of the encoding process for this frame in order to allow other tasks (which
will be encoding other frames) to be able to check if they can continue its

63

execution (i.e. synchronization). So the first thing we need to do is update the
current status of the encoding process, afterwards we will load the macroblock
and then we will analyse this macroblock via x264 macroblock analyse function.
It is during the execution of this function where we will check the status of the
frame or frames which the current frame depends. In case the status of those
frames are not enough to start analysing the macroblock, we will wait until
those frames encode enough macroblocks and then we will continue analysing
the frame.

There are some other functions which are the ones that encode the macroblock
and saving it and updating some data that will be used afterwards. Of course,
before exiting x264 slice write it is mandatory to update the status of the encod-
ing process of this frame. This is done by calling again the x264 fdec filter row
function.

Now we are going to look into x264 fdec filter row function in order to see how
the status is updated. It is important because there are some code in there
which has been modified in order to make version OmpSs work. The imporant
portion of function are the following.

Listing 6.6: x264 fdec filter row function

1 static void x264_fdec_filter_row(x264_t *h, int mb_y)

2 {

3
4 ...

5
6 if(h->param.i_threads > 1 && h->fdec ->b_kept_as_ref)

7 {

8 #ifndef HAVE_OMPSS

9 x264_frame_cond_broadcast(h->fdec , mb_y *16 + (b_end ?

10000 : -(X264_THREAD_HEIGHT << h->sh.b_mbaff)));

10 #else

11 #pragma omp atomic

12 h->fdec ->i_lines_completed = mb_y *16 + (b_end ? 10000 : -(

X264_THREAD_HEIGHT << h->sh.b_mbaff));

13 #endif

14 }

15
16 ...

17
18 }

As one can see, this update is only done when the number of threads is more
than one. This means that if we are running the application only with one
thread, we will not do any kind of synchronization just because is not needed
at all.

Besides this, a conditional group has been used in order to be able to obtain
our OmpSs version. We can see that the update of the status consists only on
updating one variable which will be accessed afterwards by other tasks. Because
of that, this access must be protected in order to avoid race conditions. We are
using an OmpSs atomic statement to protect the access to the variable.

And now, we are going to see how this variable is consulted at x264 macroblock analyse
function. The access to that variable is actually performed in a function called

64

from x264 macroblock analyse which name is x264 mb analyse init. Both func-
tions are showed at the following code snippet. Only important portions of code
are provided.

Listing 6.7: x264 macroblock analyse and x264 mb analyse init functions

1 void x264_macroblock_analyse(x264_t *h)

2 {

3 x264_mb_analysis_t analysis;

4 int i_cost = COST_MAX;

5 int i;

6
7 ...

8
9 x264_mb_analyse_init(h, &analysis , h->mb.i_qp);

10
11 /* --------------------------- Do the analysis

---------------------------*/

12
13 ...

14
15 }

16
17 static void x264_mb_analyse_init(x264_t *h, x264_mb_analysis_t *a,

int i_qp)

18 {

19 int i = h->param.analyse.i_subpel_refine - (h->sh.i_type ==

SLICE_TYPE_B);

20
21 ...

22
23 /* I: Intra part */

24
25 ...

26
27 /* II: Inter part P/B frame */

28 if(h->sh.i_type != SLICE_TYPE_I)

29 {

30 int i, j;

31 int i_fmv_range = 4 * h->param.analyse.i_mv_range;

32 int i_fpel_border = 5; // umh unconditional radius

33 int i_spel_border = 8; // 1.5 for subpel_satd , 1.5 for

subpel_rd , 2 for bime , round up

34
35 /* Calculate max allowed MV range */

36
37 ...

38
39 if(h->mb.i_mb_x == 0)

40 {

41 int mb_y = h->mb.i_mb_y >> h->sh.b_mbaff;

42 int mb_height = h->sps ->i_mb_height >> h->sh.b_mbaff;

43 int thread_mvy_range = i_fmv_range;

44
45 if(h->param.i_threads > 1)

46 {

47 int pix_y = (h->mb.i_mb_y | h->mb.b_interlaced) *

16;

48 int thresh = pix_y + h->param.analyse.

i_mv_range_thread;

49
50 for(i = (h->sh.i_type == SLICE_TYPE_B); i >= 0; i

65

--)

51 {

52 x264_frame_t **fref = i ? h->fref1 : h->fref0;

53 int i_ref = i ? h->i_ref1 : h->i_ref0;

54 for(j=0; j<i_ref; j++)

55 {

56 #ifndef HAVE_OMPSS

57 x264_frame_cond_wait(fref[j], thresh);

58 #else

59 while(fref[j]->i_lines_completed < thresh)

{

60 #pragma omp taskwait

61 }

62 #endif

63 thread_mvy_range = X264_MIN(

thread_mvy_range , fref[j]->

i_lines_completed - pix_y);

64 }

65 }

66
67 ...

68
69 }

70
71 ...

72
73 }

74 #undef CLIP_FMV

75
76 ...

77
78 }

79
80 ...

81
82 }

83 }

At line 9 we can see that x264 mb analyse init is invoked and it will start exe-
cuting. Then, the important part is contained within lines 56 and 62. We can
see in there another conditional group, and in case HAVE OMPSS is defined,
we will check if the status of the frame which we have a dependency is enough
to allows us to continue. If not, we will perform a taskwait in order to check
it later. Once the check will be positive we will continue the analysis of the
macroblock. This check will be performed for every frame which we will have a
dependency.

I want to say that this is not the best option to implement this synchroniza-
tion within OmpSs programming model. The main problem here is the need
to synchronize different tasks which cannot be seen by each other. OmpSs pro-
gramming model is focused on establishing input and output dependencies, but
in our application we will need to synchronize with an state of one variable, so
it is not that easy to create this dependency using OmpSs statements.

One possible solution will be using a sentinel (i.e. a variable that does nothing
but creating fake dependency relationships) but we decide not doing it. The
reason is that using sentinels in OmpSs is not suggested since you could face
issues if an improvement of the runtime is done.

66

Finally, the last modification into the application was adding a taskwait when
finalizing the encoding process for each frame. This is mandatory since you need
to update some parameters and free some resources in order to use it afterwards.
The code of the function that performs that is the following.

Listing 6.8: x264 encoder frame end function

1 static void x264_encoder_frame_end(x264_t *h, x264_t *

thread_current ,

2 x264_nal_t **pp_nal , int *

pi_nal ,

3 x264_picture_t *pic_out)

4 {

5 int i, i_list;

6 char psz_message [80];

7
8 if(h->b_thread_active)

9 {

10 #ifndef HAVE_OMPSS

11 x264_pthread_join(h->thread_handle , NULL);

12 #else

13 #pragma omp taskwait on(*h)

14 #endif

15 h->b_thread_active = 0;

16 }

17 if(!h->out.i_nal)

18 {

19 pic_out ->i_type = X264_TYPE_AUTO;

20 return;

21 }

22
23 x264_frame_push_unused(thread_current , h->fenc);

24
25 ...

26
27 /* ---------------------- Update encoder state

------------------------- */

28
29 ...

30
31 /* ---------------------- Compute/Print statistics

--------------------- */

32
33 ...

34
35 }

As one can see in lines from 10 to 14, a conditional group is declared and, in
case the macro HAVE OMPSS is defined, we just execute a taskwait on the h
variable. This means that we will only wait for the task x264 slices write of this
encoding process to be finished. More work is performed within the function,
but the only important part for us is the one we already mentioned.

6.3.3 Configuring and installing OmpSs version

The x264 video encoder provides a configuration script which configures all the
needed variables and programs in order to compile the application. This allows
the user to choose which version of the application wants to compile as well as
enabling debugging information or not for example.

67

This script must be modified in order to use Mercurium compiler to obtain
an OmpSs version of the application. Available options can be obtained using
the command ./configure –help, obtaining the following output. Note that the
output showed here already contains our modifications.

Listing 6.9: configure help

1 Usage: ./ configure [options]

2
3 available options:

4
5 --help print this message

6 --disable -avis -input disables avisynth input (win32 only)

7 --disable -mp4 -output disables mp4 output (using gpac)

8 --disable -pthread disables multithreaded encoding

9 --enable -ompss enable OmpSs version

10 --enable -ompss -instrumentation adds --instrumentation (--

enable -ompss must be set)

11 --disable -asm disables assembly optimizations on x86

12 --enable -debug adds -g, doesn ’t strip

13 --enable -gprof adds -pg, doesn ’t strip

14 --enable -visualize enables visualization (X11 only)

15 --enable -pic build position -independent code

16 --enable -shared build libx264.so

17 --extra -asflags=EASFLAGS add EASFLAGS to ASFLAGS

18 --extra -cflags=ECFLAGS add ECFLAGS to CFLAGS

19 --extra -ldflags=ELDFLAGS add ELDFLAGS to LDFLAGS

20 --host=HOST build programs to run on HOST

You can see there are two options OmpSs related. One is –enable-ompss which
will configure the application to be compiled using OmpSs, this is compiling
the port we made during this project. The second one is –enable-ompss-
instrumentation, setting this option will compile the application using OmpSs
instrumented libraries. This is useful if one wants to get traces using Extrae or
a dependency graph afterwards.

Now we will see which modifications were performed at configure script in order
to implement the options showed. The following code snippet will show the
modified portions of code.

Listing 6.10: configure

1
2 ...

3
4 MCFLAGS=""

5 if test "$ompss_instr" = "yes"

6 then

7 if test "$ompss" = "no"

8 then

9 ompss_instr="no"

10 fi

11 fi

12 if test "$ompss" = "yes"

13 then

14 CC="mcc"

15 if test "$ompss_instr" = "yes"

16 then

68

17 CFLAGS="--ompss --instrument $CFLAGS -DHAVE_OMPSS"

18 MCFLAGS="$CFLAGS"

19 LDFLAGS="$LDFLAGS"

20 else

21 CFLAGS="--ompss $CFLAGS -DHAVE_OMPSS"

22 MCFLAGS="$CFLAGS"

23 LDFLAGS="$LDFLAGS"

24 fi

25 if test "$gprof" = "yes"

26 then

27 echo "--enable -gprof incompatible with --enable -ompss"

28 exit 1

29 fi

30 fi

31
32 ...

33
34 echo "Platform: $ARCH"

35 echo "System: $SYS"

36 echo "asm: $asm"

37 echo "avis input: $avis_input"

38 echo "mp4 output: $mp4_output"

39 echo "pthread: $pthread"

40 echo "debug: $debug"

41 echo "gprof: $gprof"

42 echo "PIC: $pic"

43 echo "shared: $shared"

44 echo "visualize: $vis"

45 echo "ompss: $ompss"

46 echo "ompss instr: $ompss_instr"

47 echo

48 echo "You can run ’make ’ or ’make fprofiled ’ now."

At the code we can see how we check if OmpSs related options are enabled and if
so we set some variables like the compiler and some flags. Note also that in case
we try to set both –enable-ompss and –enable-gprof the configuration will
fail just because it will not be possible to compile the application afterwards.

Finally, information about what has been configured or not is printed out. This
lines will provide the user information regarding the executable he will obtain
if he executes make command afterwards.

69

70

Chapter 7

OmpSs version evaluation

During the following sections we will do an evaluation of the OmpSs version we
already implemented. This evaluation will be done through profiles, trace files
obtained from the execution of the application and measuring the execution
time as well as the frames per second achieved. We will do also a study of
the scalability of the application, discussing which are the scalability issues we
faced.

Finally, we will compare our version which the ones that are already evaluated
within this project (i.e. serial and pthreads version).

7.1 Profiling

First we are going to take a look into a trace file obtained by executing OmpSs
version using simlarge input set with 8 and 16 threads. Figure 7.1 shows which
task was executed in which moment. Color red is for x264 slices write task
and pink for p read frame. Color brown is for read frame thread int. We can
see that parallel part is only a small part of the whole execution. This is the
reason why the scalability is not lineal when encoding a video file with a small
resolution.

Figure 7.1: Trace file showing Tasks executed within OmpSs version with sim-
large as input set and running on 8 threads

Now, looking at Figure 7.2 we can see the same as before but using 16 threads
instead of 8. Colours used are the same as before. We can see that, now, the

71

encoding part (i.e. x264 slices write) spends less time than before, but not the
same for read frame thread int function. The reason of this behaviour is that
there are more synchronization than before.

Figure 7.2: Trace file showing Tasks executed within OmpSs version with sim-
large as input set and running on 16 threads

But looking at the traces generated when using native input set, we can see a
quite different behaviour. So if we look at Figure 7.3 we can see such a difference
comparing the trace with the one generated using simlarge input set. Here we
can see that x264 slices write (red color) spends a lot more time than before.
We can see also that reading the frame (brown color) is also expensive, just
because of the size of the input video file and the size of each frame.

Figure 7.3: Trace file showing Tasks executed within OmpSs version with native
as input set and running on 8 threads

Figure 7.4 shows a trace generated by the execution of the OmpSs version using
native input set and 16 threads. It is straightforward to see that the behaviour is
likely the same as with 8 threads. As computation is heavier than using simlarge,
we can split better the encoding process of each frame in order to achieve a better
parallelism degree which translates directly into more scalability.

7.2 Performance evaluation

This version has the same performance issues that pthreads one, but in some
cases could perform a bit better though. Actually, when using native input set
we could see a slightly better performance than in pthreads version.

In Figure 7.5 and Figure 7.6 we can see the execution time of OmpSs version
for each input set (i.e. simsmall, simmedium, simlarge and native). We can

72

Figure 7.4: Trace file showing Tasks executed within OmpSs version with native
as input set and running on 16 threads

see a similar behaviour as in pthreads version evaluation. For a small number
of frames the execution time reduction is near to zero. The reason is that we
cannot take profit of executing in more than one core. But for simlarge and
native, we can see a bigger reduction in execution time. The reason is that
simlarge and native have a higher number of frames, 128 frames for simlarge
input set and 512 in native input set. Furthermore, for native input set one
could appreciate the reduction in terms of execution time is more lineal than
for simlarge. This is caused by the difference resolutions of each input set. A
more resolution more computing which translates into more parallelism degree.

Figure 7.5: Execution time using OmpSs version with simsmall, simmedium and
simlarge input set and different number of threads

Now, we are going to take a look into another metric, frames per second. This
is another important metric since is the one which tells the user how fast is
encoding the application each frame. At Figure 7.7 we can see that chart.

Note that the frames per seconds depend basically on two factors, the first one
is the size of the frame (i.e. the resolution) and the other one is the quantity

73

Figure 7.6: Execution time using OmpSs version with native input set and
different number of threads

of compression (i.e. number of P or B frames) has been applied. This means is
not fair comparing different input set. Even tough one can notice that for all
input set except for native, after 4 or 8 cores, frames per second remains quite
constant. As it is already said, this is due to the need of spend too many time
doing synchronization instead of doing computation, this is the opposite when
using native input set. As the resolution of video file increase, the computation
also does, so it is easier to hide the synchronization overhead.

Figure 7.7: Frames per second using OmpSs version with simsmall, simmedium,
simlarge and native input set and different number of threads

74

7.3 Scalability

As we already saw, scalability is not lineal when encoding video files with a small
resolution like it does when using simsmall, simmedium or simlarge input set.
Actually the reduction in terms of execution time starts to decrease when we are
executing with more than 8 threads. One of the reasons is that the application
we made achieves better degree of parallelism when encoding bigger frames due
to the relation between computation and synchronization. The other reason is
the overhead of the Nanos runtime. So lets see how this can affect the final
performance and the scalability.

Figure 7.8 shows the percentage of the time spend in each one of the different
states of the Nanos runtime in an execution of OmpSs version using simlarge
input set and 8 threads. You can see that almost all the time is spend on the
runtime. The reason is that not too many computation is done actually, so the
overhead of the runtime is very high. This affects the final performance and the
scalability as well.

Figure 7.8: Percentage of the Execution time spend in Nanos runtime using
simlarge input set

Now at Figure 7.9 we can see a similar figure but now it shows how many time
is spent in each task when executing the OmpSs version using simlarge input
set and 8 threads. Not too many time is spend on x264 slices write actually.
The reason is that the size of the frame does not require too much computation,
which translates into a short encoding process per frame. This is reflected also
at execution time in form of poor scalability when simsmall, simmedium and
simlarge input set.

In summary, the higher the resolution of the frames the better the scalability
will be as we can see at Figure 7.10. This figure shows the percentage of the
execution time spend in each OmpSs task of the application. We can see that
now we are most of the time encoding frames, not doing other work as it happens

75

Figure 7.9: Percentage of the Execution time spend in each task using simlarge
input set

when using simlarge input set. This behaviour translates directly into a better
scalability of the application.

Figure 7.10: Percentage of the Execution time spend in each task using native
input set

7.4 Comparison with serial and pthreads ver-
sion

Now we are going to compare our application with serial and pthreads versions.
The idea is to know if our application performs better or not against pthreads
version and also discover the speed up achieved against serial one.

76

In this line, Figure 7.11 shows the speed up of both pthreads and OmpSs version
against serial one when using simlarge input set. We can see that speed up
is better in OmpSs application for 1, 2, 4 and 8 threads, but not 16. The
main problem here is the overhead of the Nanos runtime and the lack of heavy
computation.

Figure 7.11: Speed up comparison of pthreads and OmpSs version against serial
version when using simlarge input set

Now, Figure 7.12 shows the same chart but using native input set. As one can
see, the performance is slightly better when executing OmpSs version with 16
threads. This is due to the heavy computation have to be done with high resolu-
tions. Now the Nanos runtime overhead is hidden by computation and, since we
can avoid the synchronization that pthreads version has, a better performance
and scalability than in pthreads version can be noticed.

In summary, our application scales slightly better when using high resolution
video files but scales slightly worst when using low resolution video files. The
cause of this is the relation between synchronization and computation that have
to be done.

77

Figure 7.12: Speed up comparison of pthreads and OmpSs version against serial
version when using native input set

78

Chapter 8

Conclusions

Now that the application is already ported to OmpSs and an evaluation has
been done, is time to think about the results we have obtained. In this line
we will talk not only about performance results but also about what we have
learned from this project.

In this line, I will run through objectives that were set in order to know which
ones have been achieved and which ones not. So lets start remembering which
were those objectives.

� Main objectives:

– Design a parallel version of the x264 application using a task-based
approach.

– Implement the parallel version we designed using the task-based pro-
gramming model OmpSs.

– Comparison with current parallel version, emphasizing on differences
between programming model used on the current parallel version and
OmpSs programming model.

� Secondary objectives:

– Characterization of the x264 application.

– Compare performance analysis of the current parallel version in front
of our parallel version.

– Prove that OmpSs programming model is also valid for non high
performance computing workloads.

In summary, we could say that both main and secondary objectives are accom-
plished. We designed a parallel version which was implemented using OmpSs
programming model afterwards. We compared also this version against the
current parallel version which uses pthreads. About the secondary objectives,
a characterization and a comparison in terms of performance has been done
against both serial and pthreads version of the x264 video encoder, with nice
results.

79

About if OmpSs programming model was the best choose or not, I personally
think that has been proved that OmpSs programming model is also valid for
non high performance computing workloads. I mean, maybe we are not that
faster compared to pthreads version, but we are not worst. Actually, we proved
that for high resolution video streams our application scales a bit better than
pthreads version does.

About the design and the implementation, I think we are not taking profit of
all the features that OmpSs provides just because the way the dependencies are
made are not the best ones when using OmpSs programming model. I mean,
OmpSs is just perfect when we have a lot of data dependency, but not when
we need to synchronize tasks between each using a certain value contained in a
certain variable. Besides this issue, the performance was more than enough to
perform as the pthreads version.

Furthermore, I think that our version is more understandable than pthreads
one. In this line, I have to say that many of the things that are performed by
pthreads version were translated into OmpSs version using less lines of code,
reducing complexity of the code. This is very important because it reduces
the cost of maintaining the application or maybe adding modifications in the
future. This, in addition of the fact that OmpSs provides the user with features
like obtaining trace files very easily as well as a graph dependency, provides the
developer with a lot of tools to debug or maintain its application.

In summary, I think it has been worth the time and the effort spent on this
project, not only because was an amazing journey (this does not mean it was
easy) but also because I think that all the objectives were accomplished in one
way or another.

Finally, the following list will show a summary of what I have already mention
within this section.

� Using OmpSs programming model for a non data dependency algorithm
is a bit difficult.

� Even though it can be used also in this kind of applications.

� Implementing an algorithm using OmpSs is easier than doing the same
with pthreads.

� OmpSs provides the developer with very useful development tools which
allow to debug or improve the application.

� Using OmpSs translates easily into less lines of code.

� Using development tools like Extrae, Paraver or gprof are the only way to
know what is happening within your application in order to correct bugs
or improve the performance.

80

Glossary

B | C | E | F | G | L | M | O | P | R | T

B

benchmark

The result of running a computer program to assess performance. 2, 3,
27, 32, 39, 44

C

codec

Computer program capable of encoding or decoding a digital data stream
or signal. 1–5, 30

compiler

Computer program that transforms source code written in a programming
language into another computer language that can be executed by the
computer. 1, 7, 8, 11, 17, 21, 34, 57, 68, 69

CPU

Acronym for Central Processing Unit. 5, 18

CUDA

Acronym for Compute Unified Device Architecture. A programming model
mean to be executed at a GPU. 3, 5, 6, 16, 24, 25, 34, 36

E

encoder

Software program that converts information from one format or code to
another, for the purposes of standardization, speed, secrecy, security or
compressions. 1, 2, 4, 5, 9, 28–31, 39, 40, 51, 61, 63, 67, 79, I

F

frame

One of the many single photographic images in a motion picture. 3, 9,
28–31, 39–42, 44, 45, 49–64, 66, 67, 71–75

81

G

GPU

Acronym for Graphics Processing Unit. 1, 5, 6, 8, 33

L

LaTex

Is a mark up language specially suited for scientific documents. 20, 21, 23

Linux

Is a generic term referring to the family of Unix-like computer operating
systems that use the Linux kernel. 15–20, 23

M

MPEG

Acronym for Moving Pictures Experts Group. 1, 5, 27, 28, 30, I

MPI

Acronym for Message Passing Interface. Is a standardized and portable
message-passing system designed and implemented for distributed memory
systems. 3, 24, 25, 36

O

OmpSs

OpenMP Super-scalar programming model. 1–6, 8–10, 12, 13, 15–21, 24,
25, 27, 33–36, 39, 51, 53, 57, 59–61, 64, 66, 68, 69, 72, 75, 77, 79, 80

OpenCL

Open Computing Language. A programming model mean to be executed
across heterogeneous platforms. 3, 5, 16, 34, 36

P

PARSEC

Acronym for Princeton Application Repository for Shared-memory Com-
puters. 2, 3, 27, 32, 39, 44

pixel

Physical point in a raster image, or the smallest addressable element in
an all points addressable display device. 31, 39, 44, 46, 51, 52, 54, 56

POSIX

Acronym for Portable Operating System Interface for Unix-like operating
system. 39, 44, I

82

pthreads

Is a POSIX standard for threads. 2, 4, 5, 8, 19, 36, 39, 44, 51–53, 57, 59,
60, 71–73, 76, 77, 79, 80

R

runtime

Software designed to support the execution of computer programs. 1, 6–8,
17, 21, 33–35, 42, 66, 75, 77

T

thread

The smallest sequence of programmed instructions that can be managed
independently by an operating system scheduler. 6, 8, 33, 35, 39, 44–48,
50, 54, 55, 59, 64, 71, 72, 75, 77, I

trace

A list of a computer program’s past execution steps. 17, 18, 22, 23, 35,
36, 45, 46, 49, 59, 61, 68, 71, 72, 80

83

84

Bibliography

[St13] Edward Freeman and Alexander Moutchnik, Stakeholder management
and CSR: questions and answers, Springer Berlin Heidelberg, 2013

[PSC08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh and Kai Li, The
PARSEC Benchmark Suite: Characterization and Architectural Implications
, Princeton University Technical Report TR-811-08, January 2008

[Blu05] Application Definition Blu-ray Disc Format, http://www.

blu-raydisc.com, March, 2005

[htl14] HTML 5.1 A vocabulary and associated APIs for HTML and XHTML,
http://www.w3.org/TR/html51/, W3C, February 2014

[Kar13] Ian Karlin, Abhinav Bhatele, Jeff Keasler, Bradford L. Chamberlain,
Jonathan Cohen, Zachary DeVito, Riyaz Haque, Dan Laney, Edward Luke,
Felix Wang, David Richards, Martin Schulz and Charles H. Still, Explor-
ing Traditional and Emerging Parallel Programming Models Using a Proxy
Application, IEE 27th International Symposium on Parallel and Distributed
Processing, 2013

[FF] FFmpeg-Based Projects, http://www.ffmpeg.org/projects.html

[FFP] FFmpeg Codecs Documentation, http://www.ffmpeg.org/

ffmpeg-codecs.html#Video-Decoders, March 2014

[APL05] Apple Announces iTunes 6 With 2,000 Music Videos, Pixar Short
Films and Hit TV Shows, http://www.apple.com/pr/library/2005/, Oc-
tober 2005

[ADR] Supported Media Formats, http://developer.android.com/guide/

appendix/media-formats.html

[OCL13] The OpenCL Specification, https://www.khronos.org/registry/

cl/specs/opencl-2.0.pdf, November 2013

[hcu13] CUDA H.264/AVC ENCODER SDK 2.0, http://www.mainconcept.
com/products/sdks/gpu-acceleration.html, 2013

[hcm12] MPEG-4 AVC/H.264 Video Codecs Comparison, http:

//compression.ru/video/codec_comparison/h264_2012/mpeg4_avc_

h264_video_codecs_comparison.pdf, May 2012

85

http://www.blu-raydisc.com
http://www.blu-raydisc.com
http://www.w3.org/TR/html51/
http://www.ffmpeg.org/projects.html
http://www.ffmpeg.org/ffmpeg-codecs.html#Video-Decoders
http://www.ffmpeg.org/ffmpeg-codecs.html#Video-Decoders
http://www.apple.com/pr/library/2005/
http://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com/guide/appendix/media-formats.html
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://www.mainconcept.com/products/sdks/gpu-acceleration.html
http://www.mainconcept.com/products/sdks/gpu-acceleration.html
http://compression.ru/video/codec_comparison/h264_2012/mpeg4_avc_h264_video_codecs_comparison.pdf
http://compression.ru/video/codec_comparison/h264_2012/mpeg4_avc_h264_video_codecs_comparison.pdf
http://compression.ru/video/codec_comparison/h264_2012/mpeg4_avc_h264_video_codecs_comparison.pdf

[hcl] x264 Main Development tree, http://git.videolan.org/gitweb.cgi/

x264.git/

[cu12] NVIDIA CUDA C Programming Guide Version 4.2, Technical Report,
April 2012

[ch07] B. Chamberlain, D. Callahan and H. Zima, Parallel Programmability and
the Chapel Language, In. J. High Perform. Comput. Appl, vol. 21, no. 3, pp.
291-312, August 2007

[ch11] B. L. Chamberlain, S. E. Choi, S. J. Deitz, D. Iten and V. Litvinov,
Authoring User-defined Domain Maps in Chapel, Cray, Inc., May 2011

[Ka93] L. Kalé and S. Krishnan, CHARM++: A portable Concurrent Object
Oriented System Based on C++, in Proceedings of OOPSLA’93, A. Paepcke,
Ed. ACM Press, September 1993

[La03] O. S. Lawlor and L. V. Kalé, Supporting dynamic parallel object arrays,
Concurrency and Computation: Practice and Experience, vol. 15, pp. 371-
393, 2003

[De11] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrien-
tos, E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso and P.
Hanrahan, Liszt: a domain specific language for building portable mesh-based
PDE solvers, in Proceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis, ser. SC’11. ACM,
2011

[Lu05] E. A. Luke and T. George, Loci: A rule-based framework for parallel
multi-disciplinary simulation synthesis, Journal of Functional Programmin,
Special Issue on Functional Approaches to High Performance Parallel Pro-
gramming, vol. 15, no. 93, pp. 477-502, 2005

[Ul88] J. Ullman, Principles of Database and Knowledgebase Systems, Com-
puter Science Press, 1988

[Zh09] Y. Zhang and E. A. Luke, Concurrent composition using Loci, IEEE/AIP
Computing in Science and Engineering, vol. 11, no. 3, pp. 27-35, May/June
2009

[So08] K. Soni, N. Cain and E. A. Luke, Work replication: A communication
optimization in Loci, in Proceedings of the ISCA 21nd International Confer-
ence on Parallel and Distributed Computing and Communication Systems,
New Orleans, LA, September 2008

[Da98] L. Dagum and R. Menon, OpenMP: an industry standard API for
shared-memory programming, Computational Science Engineering, IEEE,
vol. 5, no. 1, pp. 46-55, January-March 1998

86

http://git.videolan.org/gitweb.cgi/x264.git/
http://git.videolan.org/gitweb.cgi/x264.git/

	List of Figures
	List of Tables
	List of Code Snippets
	Introduction
	Motivation
	Stakeholders
	State of the Art
	Objectives
	Project Scope

	Planning, budget and sustainability
	Gantt chart
	Tasks
	Resources

	Budget
	Sustainability

	x264 application
	H.264/MPEG-4 Part 10 video compression format
	x264 video encoder algorithm
	The PARSEC benchmark Suite

	Working environment set-up
	OmpSs programming model
	Mercurium compiler
	Nanos++ runtime

	Paraver
	Extrae
	Mare Nostrum III

	x264 application evaluation
	Serial version
	Profiling
	Performance evaluation

	pthreads version
	Profiling
	Performance evaluation
	Scalability

	Porting the x264 application to OmpSs
	Dependencies
	Design of the OmpSs version
	Implementation of the OmpSs version
	Reading the frame
	Encoding the frame
	Configuring and installing OmpSs version

	OmpSs version evaluation
	Profiling
	Performance evaluation
	Scalability
	Comparison with serial and pthreads version

	Conclusions
	Glossary
	Bibliography

