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Abstract 

 
Machine-to-Machine (M2M) applications require reliable communications, 
especially in the medical field, at low-energy consumption to extend the battery 
life of the sensors. This fact makes BCH codes an interesting option for IEEE 
802.15.6 communications since their algebraic nature permit them to obtain the 
positions of the erroneous bits with mathematical equations of reduced 
complexity. Moreover, the decoder can be enhanced to save energy through 
several ways that are exposed in the project. 
 
M2M networks support a large number of interconnected devices. Given that 
the access to the gateways is through slotted protocols the increase in the 
demand lead to a reduction in the time-slot. Therefore is necessary to 
guarantee the reliability of the transmitted information as fast as possible. In 
addition medical applications are delay non-tolerant since a delay in the 
decisions could cause fatal consequences. 
 
In this project BCH encoding and decoding algorithms will be implemented in a 
motta to determine the reduction of time that provides each improvement in the 
algorithm. 
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Resumen 

 
Las aplicaciones Machine-to-Machine (M2M) exigen comunicaciones seguras, 
especialmente en las médicas, y un bajo consumo de energía para alargar la 
vida de las baterías. Esto hace que los códigos BCH sean una buena opción 
para las comunicaciones IEEE 802.15.6 ya que su naturaleza algebraica les 
permite obtener las posiciones de los bits erróneos a partir de ecuaciones 
matemáticas poco complejas. Además, el decodificador puede ser mejorado 
para ahorrar energía de varias maneras las cuales se exponen en el proyecto. 
 
Las redes M2M soportan un gran número de dispositivos interconectados. 
Dado que el acceso a las puertas de enlace se realiza mediante protocolos 
ranurados, el incremento de peticiones de acceso conlleva a la reducción del 
tiempo de ranura. Por tanto es necesario garantizar la validez de la 
información transmitida tan rápido como sea posible. Además, las aplicaciones 
médicas no son tolerantes a los retrasos ya que en tal caso las consecuencias 
podrían ser fatales. 
 
En este proyecto los algoritmos de codificación y decodificación BCH serán 
implementados en motas para determinar la reducción de tiempo que aporta 
cada mejora en el algoritmo. 
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1 Introduction 
 

1.1. Motivation 
 

M2M communications are characterized by requiring a large throughput, and 
reliable data at very low energy consumption [1]. In this scenario BCH and 
Convolutional codes could be perfectly used in M2M networks since they have 
efficient encoding and decoding algorithms. However, BCH codes can 
outperform the most energy efficient convolutional code by almost 15% due to 
the lower number of parity bits required (in average) [2]. In addition, in the next 
years communication systems will reduce the energy consumption and reduce 
its area. So, the necessity of more energy efficient communication systems 
without losing reliability will be a must. 

  
For that reason short-range communications systems like Bluetooth and IEEE 

802.15.6 resort to BCH codes to assess the reliability of their transmissions. In 
particular, this project is focused on improving the decoding process of BCH 
codes of IEEE 802.15.6 communications. This code will be used to benchmark 
the speed-up and WER of the different low-complexity BCH decoders that will 
be proposed based on hard and soft decisions. The soft BCH decoder is the 
main goal of this project. However, it is based on the hard-BCH decoder. 
Accordingly, a fast BCH soft decoder means to obtain a fast BCH hard decoder 
too. For that reason, we will start in the first chapter explaining how to build a 
hard-BCH decoder and next how to use it in a soft BCH decoder.  

 
In order to speed up the decoding process of BCH codes, it is possible to take 

advantage of the algebraic nature of BCH codes to avoid iterative decoding. 
Specifically, it is possible to resort to mathematical equations of low complexity 
to determine the exact position of the erroneous bits of the codeword. This 
property has been applied in this project to obtain a low-complexity closed 
solution when there are two errors in the codeword. Simulation results show 
that the closed solution for the IEEE 802.15.6 code is 100 faster than the 
conventional decoder.  

 
This project also evaluates the performance of selecting the correctness of 

the decoded frames by means of the use of CRC and Syndromes. The use of 
CRCs does not require Galois Field operations but implies a rate reduction 
compared to the Syndromes. 
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1.2. Objectives 
 
The objectives for this final grade project are: 
 

1) Implement BCH coders and decoders. 
 

2) Obtain efficient soft-BCH decoders, improving the data reliability and 
decoding speed. 
 

 
3) To obtain results, in terms of delay and word error rate, and compare the 

performance between hard-BCH decoders and efficient soft-BCH 
decoders. 
 
 

4) Present all the pros and cons that the soft-BCH decoding has. 

 
 

1.3. Document structure 
 
The rest of this document is organized as follows. Section 2 describes the BCH 
coding structure and how it is implemented in the IEEE 802.15.6 standard. 
Section 3 describes the BCH decoding stages and how to improve them. 
Section 4 shows the results from the improved decoder. Section 5 presents the 
main conclusions of this work. 
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2 BCH Encoding 
 
2.1. Channel encoding 
 
The basic structure of a communications system is presented in this diagram. 
 
 

 

Fig 2.1 Structure of a communication System. 

 
The purpose of the communication systems is to convey the information from 
one point to another with no degradation. 
 
The communicationchannel adds noise to the information which degrades its 
reception. In order to overcome/reduce this drawback the transmitter is 
equipped with an encoder that add some extra bits, so called redundant bits, to 
protect the transmitted data. In this way, the receiver can detect or even correct 
the errors in the received codeword.  

 

Fig 2.2 Encoder block 

 
The addition of extra-bits to the message permits to define an information rate 
when a coding scheme is used which has the following expression: 
 
 

n

k
                                          (2.1) 

 
 
Being k  and n  the number of bits of the message and the codeword length 

respectively. On the other hand  is the code rate of the information due to the 

presence of a coding scheme.  
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2.2. Binary BCH codes 
 
Binary BCH codes are identified by their codeword length n, their message 
length k, the maximum error capability of the code is t, and are represented as 
BCH (n, k, t). 
 
BCH codes belong to the class of linear cyclic algebraic codes and are defined 
over a Galois Field (GF) of q elements GF(q), with q=2m. The parameter m 
corresponds to the degree of the GF, q is the number of states that takes each 
component of the GF elements, and they are related with the codeword length 

as n=2m-1. The r-th GF element is expressed as r , being its vector format 

equal to T
m

rrr ][ 10     taking the j-th component the values  

}.1,,1,0{  m
r

j   

 
This project is focused in the IEEE 802.15.6 standard, which uses the binary 
BCH code BCH (n=63, k=51, t=2). So, the codeword spans n=63 bits, the 
message to transmit has a length of k=51 bits and the maximum error correction 
capability of the code is of t=2 bits. 
 
To generate all the field elements a primitive polynomial in GF(64) is needed. In 
this case the primitive polynomial is 
 

61)( xxxp                                                                            (2.2) 

 

The initial elements are 0, 0 , and  . Raising   to powers successively 

identifies 2 , 3 , 4
 and 5  as members of the extension. When we get to 6 , 

we realize that 
610)( xxp  , so  16 . Thus, we reduce each power 

greater than five using the identity  16 . 

 

GF(26) with 01)( 6  p  

0 0           (000000) 
0  1           (100000) 
1              (010000) 
2      2        (001000) 
3        3      (000100) 
4          4    (000010) 
5            5  (000001) 
6  1 +           (110000) 
7      + 2        (011000) 
8      2  + 3      (001100) 
9        3  + 4    (000110) 

10          4  + 5  (000011) 
11  1 +         + 5  (110001) 
12  1   + 2        (101000) 
13        + 3      (010100) 
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14      2    + 4    (001010) 
15        3    + 5  (000101) 
16  1 +       + 4    (110010) 
17      + 2      + 5  (011001) 
18  1 +   + 2  + 3      (111100) 
19      + 2  + 3  + 4    (011110) 
20      2  + 3  + 4  + 5  (001111) 

21  1 +     + 3  + 4  + 5  (110111) 
22  1   + 2    + 4  + 5  (101011) 
23  1     + 3    + 5  (100101) 
24  1       + 4    (100010) 
25            + 5  (010001) 
26  1 +   + 2        (111000) 
27      + 2  + 3      (011100) 
28      2  + 3  + 4    (001110) 
29        3  + 4  + 5  (000111) 
30  1 +       + 4  + 5  (110011) 
31  1   + 2      + 5  (101001) 
32  1     + 3      (100100) 
33          + 4    (010010) 
34      2      + 5  (001001) 
35  1 +     + 3      (110100) 
36      + 2    + 4    (011010) 
37      2  + 3    + 5  (001101) 
38  1 +     + 3  + 4    (110011) 
39      + 2    + 4  + 5  (110100) 
40  1 +   + 2  + 3    + 5  (111101) 
41  1   + 2  + 3  + 4    (101110) 
42        + 3  + 4  + 5  (010111) 
43  1 +   + 2    + 4  + 5  (111011) 
44  1   + 2  + 3    + 5  (101101) 
45  1     + 3  + 4    (100110) 
46          + 4  + 5  (010011) 
47  1 +   + 2      + 5  (111001) 
48  1   + 2  + 3      (101100) 
49        + 3  + 4    (010110) 
50      2    + 4  + 5  (001011) 
51  1 +     + 3    + 5  (110101) 
52  1   + 2    + 4    (101010) 
53        + 3    + 5  (010101) 
54  1 +   + 2    + 4    (111010) 
55      + 2  + 3    + 5  (011101) 
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56  1 +   + 2  + 3  + 4    (111110) 
57      + 2  + 3  + 4  + 5  (011111) 
58  1 +   + 2  + 3  + 4  + 5  (111111) 
59  1   + 2  + 3  + 4  + 5  (101111) 
60  1     + 3  + 4  + 5  (100111) 
61  1       + 4  + 5  (100011) 
62  1         + 5  (100001) 

163   

Table 2.1 Galois Field GF(2
6
) with p(α) = 1 + α + α

6
  

 
The table 2.1 defines the words of the code, BCH codes are cyclic since a shift 
of a word generates another word of the alphabet. In particular the sum of two 
Galois Field (GF) elements is determined by this table. In example the sum of 

the elements 10  and 14  will be: 

 

141034

14

10

)001001(

)001010(

)000011(













        (2.3) 

 
The computation of the binary elements can be performed easily by using the 

logical XOR. As seen the result of the sum is 34  since the exclusive OR of the 

binary values 10  and 14  corresponds to the 34  binary value. Therefore, the 

sum of two GFelements does not match with the sum of their indexes 
(10+14=24). Then we need the table 2.1 defined by the primitive polynomial to 
be able to compute the sum of two GF elements. After obtaing the expressions 
of the elements that conform GF(26) it is necessary to explain how to obtain the 
generator polynomial of the BCH code for WBAN applications, the BCH (63, 51, 
2) [3]. 
 

2.3. Generator polynomial of the BCH (63, 51, 2) code 
 
In order to obtain the generator polynomial of the BCH code we need and 
auxiliary polynomial called primitive polynomial. The generator polynomial is the 

polynomial of lowest degree over GF(2) with  , 2 , 3 , …, t2  as roots. 

Let mi(x) be the minimal polynomial of i . Then, )(xg  must be the least 

common multiple (LCM) of )(1 xm , )(2 xm , …, )(2 xm t , that is, 

 

)}.(,),(),({)( 221 xmxmxmLCMxg t                                          (2.4) 

 
A simplification is possible because every even power of a primitive element 
has the same minimal polynomial as some odd power of the element, halving 
the number of factors in the polynomial. Then 
 

)}.(,),(),({)( 1231 xmxmxmLCMxg t                                         (2.5) 
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Hence, every even power of   in the sequence of (2.3) has the same minimal 

polynomial as some preceding odd power of   in the sequence. As a result, 

the generator polynomial )(xg  of the binary t-error-correcting BCH code of 

length 12 m  given by (2.4) can be reduced to 
 

)}.(,),(),({)( 1231 xxxLCMxg t                                             (2.6) 

 

The even powers minimal polynomials are duplicates of odd powers minimal 
polynomials, so we only use the first two minimal polynomials corresponding to 
odd powers of the primitive element. 
 
We need first a primitive element. Well, α is a primitive element in GF(64). Next 
we need the minimal polynomials of the first two odd powers of  . 

 

Elements Minimal polynomials 
321642 ,,,,   

61 XX   

3348241263 ,,,,,   
6421 XXXX   

34174020105 ,,,,,   
6521 XXXX   

35495628147 ,,,,,   
631 XX   

36189 ,,   
321 XX   

375025442211 ,,,,,   
65321 XXXX   

381941522613 ,,,,,   
6431 XXXX   

395157603015 ,,,,,   
65421 XXXX   

4221,  
21 XX   

435358294623 ,,,,,   
6541 XXXX   

455427 ,,   
31 XX   

475559616236 ,,,,,   
651 XX   

Table 2.2 Minimal polynomials of the elements 

 

The first two odd power of α minimal polynomials are: 
 

  : 1)( 6

1  xxxm  

 3 : 1)( 246

3  xxxxxm  

 

Therefore, )()()}(),({)( 3131 xmxmxmxmLCMxg   (since these are irreducible). 

 

So .1)1)(1()( 345810122466  xxxxxxxxxxxxg  

 
The parity bits are determined by computing the remainder polynomial )(xr  [3].  

 
In this project we focus in the BCH code (n=63, k=51, t=2). That means that the 
codewords have a length of 63 bits composed of 51 information bits and 12 
parity bits. 
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To encode a block of bits firstly we append a number of zeros equal to the 
degree of the generator polynomial to our message )(xk . This is the same as 

multiplying )(xk  by x12. Next we divide by the generator polynomial using binary 

arithmetic. 
 

















11

0

12

)1(

0

)(

)(mod)()(

)(mod)()(

i

i

i

kn

i

kni

i

xgxkxxrxr

xgxkxxrxr

                 (2.7) 

 

Where k(x) is the message polynomial which it is expessed in a polynomial way 
as follows: 
 















50

0

1

0

)(

)(

i

i

i

k

i

i

i

xkxk

xkxk

           (2.8) 

 

2.4. BCH applications 
 
BCH codes are formed by two families: the binary and non-binary ones. The 
main difference between them is the number of states that can take each 

codeword i of the code. Specifically, for binary BCH codes the codewords i

only can take the states 0 and 1 generating a Galois Field of 2m elements, being 
m the degree of the GF. On the contrary, the non-binary BCH codes are formed 
by codewords that can take more than two states. Thus, generate a GF of am 
elements.In particular, the non-binary BCH codes so-called Reed–Solomon 
codes, are used in applications such as satellite communications, compact disc 
players, DVDs, disk drives, and two-dimensional bar codes. Moreover 
Facebook and Google drive use them to protect the stored data. 
 
Also we find BCH codes in the Smart Cities, in fact this project is focused in the 
Body Area Network communications specified in the IEEE 802.15.6 standard. 
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2.4.1. IEEE 802.15.6 standard 
 
The IEEE 802.15 Task Group 6 (BAN) has developed a communication 
standard optimized for low power devices and operation on, in or around the 
human body (but not limited to humans) to serve a variety of applications 
including medical, consumer electronics / personal entertainment and others. 
 
This is the standard that we have chosen to analyze the performance of the 
decoders proposed in this project. 
 
The physical layer is responsible for the following tasks: 
 

- Activation and deactivation of the radio transceiver. 
- Clear channel assessment (CCA) within the current channel. 
- Data transmission and reception. 

 
There is a method for transforming a physical-layer service data unit (PSDU) 
into a physical-layer protocol data unit (PPDU). During the transmission, the 
PSDU shall be pre-appended with a physical-layer preamble and a physical-
layer header in order to create the PPDU. At the receiver, the physical-layer 
preamble and physical-layer header serve as aids in the demodulation, 
decoding and delivery of the PSDU. 

 
2.4.1.1. Physical-layer protocol data unit (PPDU) 

 

 

Fig 2.3 Standard PPDU structure 

 
Figure 2.3 shows the format for the physical-layer protocol data unit (PPDU), 
which is composed of three main components: the physical layer convergence 
protocol (PLCP) preamble, the PLCP header, and the physical-layer service 
data unit (PSDU). The components are listed in the order of transmission. The 
PLCP preamble is the first component of the PPDU. The purpose of the 
preamble is to aid the receiver during timing synchronization and carrier-offset 
recovery. 
 
The PLCP header is the second main component of the PPDU (see Fig 2.4). 
The purpose of this component is to convey the necessary information about 
the PHY parameters to aid in the decoding of the PSDU at the receiver. The 
PLCP header can be further decomposed into a RATE field, a LENGTH field, a 
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BURST MODE field, a SCRAMBLER SEED field, reserved bits, a header check 
sequence (HCS), and BCH parity bits. The BCH parity bits are added in order to 
improve the robustness of the PLCP header. The PLCP header shall be 
transmitted using the given header data rate in the operating frequency band. 
 
The PSDU is the last component of the PPDU. This component is formed by 
concatenating the MAC header with the MAC frame body and frame check 
sequence (FCS). 

 
2.4.1.2. PHY header 

 
The PHY header contains information about the data rate of the MAC frame 
body, the length of the MAC frame body (which does not include the MAC 
header or the FCS) and information about the next packet whether it is being 
sent in a burst mode. 
 
The PHY header field shall be composed of 15 bits, numbered from 0 to 14 as 
illustrated in Fig 2.4. 
 
Bits 0–2 shall encode the RATE field, which conveys the information about the 
type of modulation, the information data rate, the pulse shaping, the coding rate, 
and the spreading factor used to transmit the PSDU. Bits 4–11 shall encode the 
LENGTH field, with the LSB being transmitted first. 
 
Bit 13 shall encode whether or not the packet is being transmitted in the burst 
(streaming) mode. Bit 14 shall encode the scrambler seed. All other bits that are 
not defined in this clause shall be understood to be reserved for future use and 
shall be set to zero. 
 

 

Fig 2.4 PHY header bit assignment 

 
2.4.1.3. PLCP header 
 

A PLCP header shall be added after the PLCP preamble to convey information 
about the PHY parameters that is needed at the receiver in order to decode the 
PSDU. The length of the PLCP header is 31 bits, and it shall be constructed as 
shown: 
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Fig 2.5 BCH encoding scheme for PLCP header construction 

 
2.4.1.4. Header Check Sequence 
 
The PHY header shall be protected with a 4-bit (CRC-4 ITU) header check 
sequence (HCS). The HCS shall be the ones complement of the remainder 
generated by the modulo-2 division of the PHY header by the polynomial. The 
HCS bits shall be processed in the transmit order. An example schematic of the 
processing order is shown in Fig 2.4. The registers shall be initialized to all 
ones. 
 

 

Fig 2.6 BCH encoding scheme for PLCP header construction 
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2.4.1.5. BCH encoder for PLCP header 

 
The PLCP header shall use a systematic BCH (31, 19, t = 2) code, which is a 
shortened code derived from a BCH (63, 51, t = 2) code by appending 32 zero 

(or shortened) bits to the 19 information bits, to improve the robustness of the 
PLCP header. The shortened bits are removed prior to transmission [10]. 
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3 Decoding 
 

After the encoding process the codewords are modulated, RF converted and 
transmitted to the receiver. There, the incoming signal for the q-th modulated 

symbol, qx , is: 

 

qqq

bb

q wxh
N

nE
y 

0

                  (3.1) 

 

where 0/ NEb  is the Energy per bit to Noise density ratio, bn , is the number of 

bits per modulated symbol, qh , is a flat fading channel, and qw  represents the 

Additive White Gaussian Noise (AWGN) signal of variance unity. The received 
signal is equalized and demapped by means of hard decision since we assume 
that M2M devices cannot support the complexity of demappers based on soft-
decisions [5]. For that reason we have devised low-complexity soft-BCH 
decoders based on hard-decision BCH decoders of very small computational 
load. By doing so, we have optimized each one of the decoding stages of the 
BCH decoder. In particular these stages are: 1) Computation of the Syndromes; 
2) Determination of the Error Locator Polynomial (ELP), 3) Solving the Error 
Locator Polynomial and 4) Bit Flipping. 

 
The first stage of the decoder is to compute the syndromes, this stage is time-
consuming since is necessary to determine several syndromes. For that reason 
some authors propose parallel implementations for computing the Syndromes 
of BCH codes [3][4]. Nevertheless, parallel architectures are not possible in 
sensor-based systems due to their limited-signal processing capability. 
Fortunately, it is possible to overcome this drawback by resorting to Galois Field 
properties in order to compute only the half of them [5]. If the sum of the 
syndromes is zero it means that the word does not contain errors otherwise the 
decoder proceeds to compute the ELP (Error Locator Polynomial) through the 
Berlekamp-Massey algorithm. 
 
In order to find out the erroneous positions in the word the decoder searches 
the roots of the ELP using Chien’s search method. It can take a long time to find 
the zeroes of the polynomial because it is a brute-force method. To reduce the 
time of the Chien’s search this project proposes to update the polynomial every 
time that a solution is found. By doing so, the degree of the polynomial 
decreases which permits to speed up the BCH decoder. Another improvement 
is to avoid the Chien’s search in the case that there are only two errors in the 
word, the positions can be directly found through the ELP and resorting to 
Galois Field properties. 
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3.1. Classical BCH decoding 
 
This section describes how to decode and correct, if possible, the received 
codewords,. In particular, the BCH decoder is formed by the next stage: 1) 
Syndrome Computation, 2) Computation of the Error Locator Polynomial (ELP), 
3) Finding the roots of the ELP, 4) Bit Flipping of the erroneous positions and 5) 
Assessment that the corrected codeword belongs to the codeword set. 

 
3.1.1. Syndrome Computation 
 
If we denote by, )(xc  the code polynomial we may define a t-error-correcting 

BCH code of length n = 2m – 1 in the following manner: a binary n-tuple 

),...,,,( 1210  nccccc  is a codeword if and only if the polynomial 

1

110 ...)( 

 n

n xcxccxc  has 
t22 ,...,,   as roots. This equality can be 

written as a product of vectors as follows: 
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
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         (3.2) 

 
for ti 21  . The condition given by (3.2) simply says that the inner product of 

),...,,,( 1210 ncccc and ),...,,,1( )1(2 inii   is equal to zero. Now we form the 

following matrix: 
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





      (3.3) 

 
 

It follows from (3.2) that if ),...,,,( 1210  nccccc  is a codeword in the t-error 

correcting BCH code, then 
 

0 THc .           (3.4) 

 
Hence the code is the null space of the matrix H, and H is a parity-check matrix 
of the code. 
 
As usual, the first step of decoding a code is to compute the syndrome from the 
received vector )(xc . For decoding a t-error-correcting primitive BCH code, the 

syndrome is a 2t-tuple: 
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T

t HcSSSS  ),,( 221           (3.5) 

 
The expression of the i-th syndrome, Si, is: 
 









 









1

0

k )(c
n

k

ik

GFDGFi TTS                   (3.6) 

 

where ik  is the ik  -th GF element of the BCH code, kc  is the k-th 

bit/symbol of the estimated codeword whereas GFT  and DGFT   are the functions 

that convert from the GF to integer and vice-versa, respectively. Given that 
there is no closed expression for the sum of two GF elements, it is necessary to 

build two auxiliary tables. The table of the GF elements GFT , and the conversion 

table from GF elements to their power, DGFT  . Table 2.1 represents the 

polynomial expression of the GF elements for GF(64) expressed in a binary 

format, i.e., 6-tuple way ( GFT ). However, the decimal value of GFT  does not 

correspond with the power index of the GF element. For this reason is 
necessary to build a table that associates the decimal magnitude of each GF 

element with its GF power index. That is the goal of DGFT  . 

 

Because 
t22 ,,,    are roots of each code polynomial, 0)( ic   for ti 21  . 

When a syndrome is not zero we get the relationship between the syndrome 
and the error pattern: 
 

)( i

i eS             (3.7) 

 
For ti 21  . From (3.7) we see that the syndrome S depends on the error 

pattern e  only. Suppose that the error pattern e(x) has v  errors at locations 
jvjj xxx ,,, 21  ; that is, 

 
jvjj xxxxe ,,,)( 21  ,         (3.8) 

 

where njjj v  210 .  

 

3.1.2. Computation of the Error Locator Polynomial 

 
The Error Locator Polynomial (ELP) can be determined by multiple methods: 
Peterson-Welch method, Berlekamp-Massey Algorithm, Euclidean Algorithm, 
etc. However, in this project the Berlekamp-Massey Algorithm is used. 
 
Massey showed that to find the ELP )(X  is necessary to make equivalence 

with a shift-register synthesis problem. Namely, given a sequence of syndromes 

tSSS 221 ,,,   find the minimum-degree polynomial v ,,, 21   that generates 

tv SS 21 ,,  from vSS ,,1   in a shift-register of v  degree. 
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Fig 3.1 ELP from a shift-register view 

 
From (3.7) and (3.8) we obtain the following set of equations: 
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                (3.9) 

 

where 
jvjj  ,,, 21   are unknown. Any method for solving these equations is 

a decoding algorithm for the BCH codes. Once we have found 
jvjj  ,,, 21  , 

the powers vjjj ,,, 21   tell us the error locations in )(xe . In general, the 

equations of (3.9) have many possible solutions( k2 of them). Each solution 
yields a different error pattern. If the number of errors in the actual error pattern 

)(xe is t or fewer (i.e., tv  ), the solution that yields an error pattern with the 

smallest number of errors is the right solution; that is, the error pattern 
corresponding to this solution is the most probable error pattern )(xe  caused by 

channel noise. For large t, solving the equations of (3.9) directly is difficult and 
ineffective. In the following, we describe an effective procedure for determining 

jl  for vl ,,2,1   from the syndrome components iS ’s. For convenience, let 
jl

l            (3.10)  

 
for vl 1 . We call these elements error location numbers, since they tell us 

locations of errors. 
 
Now we define the following polynomial: 
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)1()1)(1()(

2

210

21

v

v

v

XXXX

XXXX












     (3.11) 
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The roots of )(X  are 
11

2

1

1 ,,,


v  , which are the inverses of the error-

location numbers. For this reason )(X  is called the error-location polynomial. 

Note that )(X  is an unknown polynomial whose coefficients must be 

determined. The coefficients of )(X  and the error-location numbers are 

related by the following equations: 
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The i ’s are known as elementary symmetric functions of l ’s. From (3.9) and 

(3.12), we see that the i ’s are related to the syndrome components jS ’s. In 

fact, they are related to the syndrome components by the following Newton’s 
identities: 
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      (3.13) 

 

If it is possible to determine the elementary symmetric functions v ,,, 21   

from the equations of (3.13), the error-location numbers v ,,, 21   can be 

found by determining the roots of the error-location polynomial ).(X  Again, the 

equations of (3.13) may have many solutions: however, we want to find the 
solution that yields a )(X  of minimal degree. This )(X  will produce an error 

pattern with a minimum number of errors. If tv  , this )(X  will give the actual 

error pattern )(Xe . 

 
3.1.2.1. Berlekamp-Massey Algorithm 

 
Here we present Berlekamp’s iterative algorithm for finding the error-location 
polynomial. 
 

The first step of iteration is to find a minimum-degree polynomial )()1( X  whose 

coefficients satisfy the first Newton’s identity of (3.13). The next step is to test 

whether the coefficients of )()1( X  also satisfy the second Newton’s identity of 

(3.13). If the coefficients of )()1( X  do satisfy the second Newton’s identity of 

(3.13), we set 
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).()( )1()2( XX           (3.14) 

 

If the coefficients of )()1( X  do not satisfy the second Newton’s identity of 

(3.13), we add a correction term to )()1( X  to form )()2( X  such that )()2( X  

has a minimum degree and its coefficients satisfy the first two Newton’s 
identities of (3.13). Therefore, at the end of the second step of iteration, we 

obtain a minimum-degree polynomial )()2( X  whose coefficients satisfy the first 

two Newton’s identities of (3.13). The third step of iteration is to find a minimum-

degree polynomial )()3( X  from )()2( X  such that the coefficients of )()3( X  

satisfy the first three Newton’s identities of (3.13). Again, we test whether the 

coefficients of )()2( X  satisfy the third Newton’s identity of (3.13). If they do, we 

set )()3( X = )()2( X . If they not, we add a correction term to )()2( X  to form 

)()3( X . Iteration continues until we obtain )()2( Xt . Then )()2( Xt  is taken to 

be the error-location polynomial )(X , that is, 

 

).()( )2( XX t          (3.15) 

 
This )(X  will yield an error pattern )(Xe  of minimum weight that satisfies the 

equations of (3.9). If the number of errors in the received polynomial )(Xc  is t  

or less, then )(X  produces the true error pattern. 

 
Let 
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be the minimum-degree polynomial determined at the  th step of iteration 

whose coefficients satisfy the first   Newton’s identities (3.14). To determine 

)()1( X , we compute the following quantity: 
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  ll SSSSd   1

)(

1

)(

2

)(

11      (3.17) 

 

This quantity d  is called  th discrepancy. If 0d , the coefficients of 

)()( X  satisfy the )1(  th Newton’s identity. In this event, we set 

 

).()( )()1( XX   
        (3.18) 

 

If 0d , the coefficients of )()( X  do not satisfy the )1(  th Newton’s 

identity, and we must add a correction term to )()( X  to obtain )()1( X . To 

make this correction, we go back to the steps prior to the  th step and 

determine a polynomial )()( X  such that the  th discrepancy 0d , and 

 l  [ l  is the degree of )()( Xp ] has the largest value. Then, 
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),()()( )()(1)()1( XXddXX 


        (3.19)  

 
which is the minimum-degree polynomial whose coefficients satisfy the first  

1  Newton’s identities. 

 
The described iterative algorithm for finding )(X  applies to both binary and 

nonbinary BCH codes, in example Reed-Solomon codes; however, for binary 
BCH codes, this algorithm can be simplified to t -steps for computing )(X . 

 
It is possible to prove that if the first, third, …, (2t-1)th Newton’s identities hold, 
then the second, fourth, …, 2t th Newton’s identities also hold. This implies that 

with the iterative algorithm for finding the ELP, the solution )()12( X  at the 

)12(  th step of iteration is also the solution )()2( X  at the 2 th step of 

iteration; that is, 
 

).()( )12()2( XX           (3.20) 

 
This suggests that the )12(  th and the 2 th steps of iteration can be 

combined. As a result, the foregoing iterative algorithm for finding )(X  can be 

reduced to t steps. Only the even steps are needed. 
 
The Berlekamp-Massey algorithm builds the error locator polynomial iteratively. 
Using the notation of Lin and Costello, a 2t  line table may be used to handle 

the bookkeeping details of the error correction procedure for binary BCH 
decoding. It is described next. 
 
First, make a table (using BCH(63,51,2) as our example): 
 

  )()( X  d  l   l2  

2
1  1 1 0 -1 

0 1 
1S  0 0 

1     

t=2     

Table 3.1 Berlekamp procedure for finding the error-location polynomial 

 
The BCH decoding algorithm follows. 
 
1. Initialize the table as above. Set 0 . 

 

2. If 0d , then )()( )()1( XX   
.  
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3. If 0d , then find a preceding row (row  ) with the most positive  l2

 and 0d . Then ).()()( )()(21)()1( XXddXX 


     If 1 t ,

 terminate the algorithm. 
 

4. )).(deg( )1(

1 Xl 

  
   
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

  ll SSSSd   i is the coefficient 

of the i-th  term in  ).(X  

 
6. Increment  and repeat from step 2. 

 
For a better understanding of the Berlekamp-Massey algorithm we proceed to 
show an example. In this example a codeword contains 2 errors in the positions 
55 and 12, since our BCH can correct up to two errors we must be able to find a 
valid ELP. 
 
Firstly we compute the syndromes of the codeword, these are: 
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Using the algorithm, we fill the table. 
 

  )()( X  d  l   l2  

2
1  1 1 0 -1 

0 1 
1S  0 0 

1 151 X  27  1 1 

t=2 15124  XX   - - - 

 

Set 0 . We see that 0d , so we chose 21 , and 
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Set 1 . We see that 0d , so we chose 0 , and 
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The final error locator polynomial is .1)( 5124)(  XXX  
 

 
After deriving the Error Locator Polynomial (ELP) we have computed the 
average number of iterations of the Berlekamp-Massey algorithm and its 
deviation number. Next section plots if with further details. 
 
3.1.2.2. Number of iterations and deviation for the Berlekamp-Massey 

Algorithm 
 
The expression the number of iterations is: 
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In case of considering bit error probabilities, the number of iterations is: 
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The expression for deviation in the number of iterations is: 
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In case of considering bit error probabilities, the deviation in the number of 
iterations is: 
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Fig 3.2 Average number of iterations Berlekamp-Massey algorithm 

 

 

Fig 3.3 Deviation in the number of iterations Berlekamp-Massey algorithm  

 
When the number of errors in the codeword is higher than t, the number of 
iterations of the Berlekamp-Massey algorithm is t, since it is not able to 
determine a polynomial to find the erroneous positions.  
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3.1.3. Chien’s search 
 
The Chien search is an algorithm for determining roots of polynomials defined 
over a finite field. The most typical use of the Chien search is in finding the roots 
of error-locator polynomials encountered in decoding Reed-Solomon codes and 
BCH codes. 
 
It is well known that one of the most time-consuming stages of decoding 
process of BCH and some other codes is finding roots of the error-locator 
polynomial. The most widely known root finding algorithm is Chien search 
method, which is a simple substation of all elements of the field GF(64) into the 
polynomial, so it has very high time complexity for the case of large fields and 
polynomials of high degree. 
 

The number of iterations of Chien’s search is determined by the furthest 
position of the k -th erroneous bits. If we consider that the furthest erroneous 

position is in the bit of the codeword and that there are erroneous bits will be the 

combinatorial number 












1

1

v

k
. If the total number of possibilities for having v  

errors in n  bits is the combinatorial number of 








v

n
 then the average number of 

iterations of the Chien’s search when there are erroneous bits, denoted by vitn ,
ˆ , 

is 
 

 .1
1

1

1

ˆ
, 































n
v

v

v

n

k
v

k

n

n

vk

vit       (3.25) 

 
Note that when the number of errors is zero, the number of iterations of Chien’s 
search is also zero (there is no error in the codeword). On the contrary, if the 
number of errors tends to the codeword length ( )nv  , i.e. practically all the 

bits of the codeword are incorrect, then the average number of errors tends to 

the codeword length ( ).ˆ
, nn vit   

 
Given that the number errors are due to the channel impairments, the actual 
number of iterations of the Chien’s search depends on the bit error probability 

after the demodulation process, which is denoted by bP . Therefore, the number 

of iterations of Chien’s method, itn , considering the effect of the demapping 

process is 
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The expression for deviation in the number of iterations is: 
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In case of considering bit error probabilities, the deviation in the number of 
iterations is: 
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3.1.3.1. Number of iterations and deviation for the Chien’s search 

 

Fig 3.4 Average number of iterations for the Chien’s search 
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Fig 3.5 Deviation number of iterations for the Chien’s search 

 
The minimum distance of a BCH code is 12min  td . This means that flipping 

12 t  bits or more may generate another codeword that belongs to the set of 

possible codewords, therefore the decoder considers there are no errors. 
 
The reason why the Chien’s search algorithm does not try all the 63 elements to 
solve the ELP is because the noisy channel and the FEC of the decoder flip 

12 t  bits or more from the original codeword. 

 

3.2. Proposed Low Energy BCH decoding 
 
The decoding process of a channel coding algorithm represents one of the most 
time consuming parts of the communication receivers. For that reason it is 
necessary to introduce strategies for reducing its energy consumption. 
Specially, when parallel techniques cannot be used and very strict energy 
requirements have to be satisfied. That it is the case of medical applications, 
which demands very high reliable communication. In particular this work 
proposes to optimize BCH’s decoding stages by resorting to a priori knowledge. 
This knowledge comes from: 
 
1) The use of GF arithmetic.  
2) Data frame information.  
3) Cross-layer information and apply them to reduce of each stage. 
 
The next sub-sections details the principles of each optimization. 
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3.2.1. Syndrome Computation 
 
Binary GF has the nice property that the sum of two GF elements, denoted by 

1x  and 
2x , raised to a power of two is equal to the raised power two of the sum 

of the GF elements:  
 

              ,)( 2

21

2

2

2

1

ggg
xxxxy                   (3.29) 

 

being g2  the g-th power two, taking g an integer non-negative value. This 
property is used for speeding up the computation of the syndromes, since it 
means that it is not necessary to compute all Syndromes: 
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     (3.30) 

 
If it is applied (3.26) to (3.27), then the even Syndromes can be expressed in 
terms of the odd ones as:  
 

   
2

z
z

zS
S                                      (3.31) 

 

where in (3.28) zS  represents the GF value of the z-th even Syndrome and its 

value is equal to the z  shifts of the GF degree of  the z/2 odd Syndrome. As a 
result the even syndromes can be obtained from the odd ones by shifting [5].  

 
3.2.2. Error Locator Polynomial Computation 
 
It is not always necessary to apply the Berlekamp-Massey algorithm for 
obtaining the ELP. When the number of errors in the codeword is lower than 
four, it is possible to have closed-expressions of the Error Locator Polynomial of 
amenable complexity (Table 3.2). 
 

Num. 
Errors 

Error Locator Polynomial σ(x) 

1 XX
S11)(    

2 20111)( XXX
ddS 

   

3 32 01201121 )(1)( XXXX
dddddddS 

   

Table 3.2 Expressions of the Error Locator Polynomial σ(X). 

 
It is known from the Berlekamp-Massey algorithm that the discrepancy is: 
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Then, 

34153
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)2(
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dd
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



             (3.33) 

 
Applying these equations instead of using the iterative Berlekamp-Massey 
algorithm allows the decoder to obtain the ELP in a faster way. 
 
But the Berlekamp-Massey algorithm also gives us information about the 
number of errors in the codeword, since it is the degree of the polynomial. So if 
we want to avoid the Berlekamp-Massey algorithm we need another way to 
know the number of errors. 
 
Actually there is a way to know if the number of errors is zero, one or more 
through the Syndromes (Table 3.3): 
 

- Zero errors: If the received codeword does not contain any error the 
value of Syndromes is zero.  
 

- One error: If there is one error in the codeword the Syndromes follow a 
specific pattern: 
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                (3.34) 

 
Being j  the erroneous position of the codeword. 

 
- Two or more errors: If the Syndromes do not satisfy any of the above 

cases there are two or more errors in the codeword. 
 

Num. 
Errors 

Condition 

0 01 S      03 S  

1 01 S      13 3SS   

2 01 S      13 3SS   

Table 3.2 Number of errors in the codeword based on the Syndrome. 

 
Since we are working with a BCH (63, 51, t = 2) code the decoder does not 

need the Berlekamp-Massey algorithm to compute the ELP, the expressions of 
the ELP are enough. 
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3.2.3. Chien’s Search 
 
In order to find out the erroneous positions in the word the decoder searches 
the roots of the ELP using the Chien’s search method. It can take a long time to 
find the zeroes of the polynomial because it is a brute-force method. This 
project shows several ways to reduce the time of the Chien’s search: 
 
1) Knowing the data frame structure is possible to avoid some iterations in the 
Chien’s search. 
 
2) Knowing the structure of the error-locator polynomial coefficients is possible 
to update the polynomial every time that a solution is found. By doing so, the 
degree of the polynomial decreases. 
 
3) Avoid the Chien’s search in the case that there are only two errors in the 
word. 
 
3.2.3.1. Knowing Data Frame Structure to reduce the load of Chien’s 

search 
 

If the number of erroneous bits is higher than two, then Chien’s search has to 
test, in a serial way, the GF elements of the BCH code into the Error Locator 
Polynomial. 
 
However, the information of the data frame can be used in order to: 
  
1) Improve the error control process. 
2) Speed-up the Chien’s search. 
 
Note that if some fields or bits of the received codeword are known then it is 
possible to pre-fix them before starting the classical BCH decoding process. 
That assumption is reasonable since some fields of the frames are known due 
to: 
 
1) They are reserved.  
2) Identify the type of frame.  
3) They are forbidden.  
4) Used for extending the code.  
 
In this way the WER is reduced since the aided information increase the error 
correction capacity of the code. In addition the number of iterations of the 
Chien’s search is also reduced since there are some positions in the codeword 
known at the receiver side.  
 
As example case Fig 2.3 shows the frame structure for the IEEE 802.15.6 
Physical Layer Convergence Procedure (PLCP). This frame is protected by 
BCH(63,51,2) code and has a CRC of 4 bits allocated in the Header Control 
Sequence (HCS). The message length of the PHY layer is 31k  whereas the 

codeword length is 63n .  
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This frame has 2 reserved bits and 32 bits that are zero due to the BCH code is 
extended from the BCH(31,19,2). So, all these 34 bits correspond to GF 
positions that are not necessary to test in the Chien’s search since they are 
known at the receiver side. As a result, the introduction of aided information in 
the BCH’s decoder permits to reduce its load if it is compared to the 
conventional non-data aided BCH decoder. For instance the rate spans three 
bits but some of its combinations are not used since there are less code rates 
than possible combinations. 
 
 

 
Fig 3.6 Average number of iterations for the Chien’s search 

 

 
Fig 3.7 Deviation number of iterations for the Chien’s search 
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Due to the reduced Chien algorithm just tests 29 out of 63 elements, the 
consumed energy in this stage is reduced to more than a half. 

 
3.2.3.2. Structure of the Error Locator Polynomial Coefficients 

 
The Error Locator Polynomial has the next structure when there are v  

erroneous positions in the codeword. 
 

  ..1 ,1,1 vgg
XXX vvv         (3.35) 

 

Being X the GF field element to test, whereas vjg ,  is the j-th GF coefficient of 

the ELP when there are v  errors in the codeword. The coefficients of the Error 

Locator Polynomial have a structure that depends on the positions of the v  

roots. In particular, the general expression for the j-th coefficient of an ELP of 
degree v  is: 
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being ujP  the u-th erroneous position of the codeword. 

 
Basically, from (3.34) we observe that the j-th GF coefficient of the ELP is 
formed by the sum of the erroneous positions taken in groups of j elements. 

Next, if separate the term of an erroneous positions, for instance, the first one
1p

, the expression (3.34) results: 
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   (3.37) 

 
However, if we compare (3.33) and (3.32), then we obtain that the two groups of 
summatories correspond to the values of the j-1-th and j-th coefficients of an 

ELP with v-1 erroneous positions, denoted as 
vjg ,1 and

1,1  vjg
  respectively 
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     (3.38) 

 
In this way if we plug (3.34) into (3.33) then, the recursive relationship of the 
ELP’s GF coefficients is: 
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        vjvjvjvj ggpg
  1,1,1,11,          (3.39) 

 
This relationship is quite useful in the Chien’s search since it permits to updates 
the ELP polynomial once a root has been estimated. In this case, the value of 

1p would represent the root that has been detected in the Chien’s search after 

testing a GF element. In this way, it is matched the degree of the ELP with the 
number of roots to search which reduces the load of the Chien’s search.  In this 
case there are two techniques for obtaining the immediate ELP polynomial of 
lower degree. Starting from the lowest degree coefficient from the highest one 
as follows: 
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Or starting by the highest degree coefficient and descending to the lowest one 
as: 
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     (3.41) 

 
Both strategies of updating the ELP polynomial are quite similar since only differ 
in the initial condition. However, if it is started from the highest GF degree is a 
bit easier to get the GF degree of the ELP’s polynomial. 

 
3.2.3.3. Solving the Error Locator Polynomial when there are two errors 
 

The terms 2,1g
 and 2,2g

 represent the coefficients of first and second degree of 

the ELP. In order to detect an erroneous position is necessary to evaluate the 
GF value of the possible erroneous position into the ELP. If the value of ELP is 
null, then the tested GF value corresponds to an erroneous position of the 
codeword.  
 

.01)( 12,212,11 2


 pgpgp
X       (3.42) 

 

Next, if it is multiplied (3.38) by 1p : 

 

.2,112,21
gpgp  


        (3.43) 

 
At that point, the strategy is to get the addition of two complementary GF 
elements in the left side part of (3.39). In order to obtain it, is necessary to raise 
to power two all the coefficients of (3.39) by taking advantage of GF properties. 

In this way, after some posterior manipulations with 2,2g
  is obtained: 
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2,22,112,212,2 222 ggpgpg 

                (3.44) 

 

However, from (3.13) the expression of 2,2g
 is equal to 212,2 ppg 

 , being 
1

p

and 
2

p the two erroneous positions of the codeword. Next, if the distance 

between the two erroneous positions is r ,  
 

              ,
12

rpp                                   (3.45) 

 
and (3.39) is introduced into (3.38), the next expression results: 
 

               
2,22,12 ggrr                     (3.46) 

 
This equation tells us that the key parameter for decoding two errors is the 

distance between them not their respective positions. Although the terms 2,1g


and 2,2g
 depends on the erroneous positions of the codeword, if their relative 

distance r  is the same, the expression (3.40) produces identical value. 
Consequently, it is possible to match the value of r  with the magnitude 

2,22,1
2 gg   to obtain r . This matching can be done in a Look-Up-Table (LUT) or 

in logical gates. The number of entries of the LUT is reduced to 2/)1( n , since 

it is possible to apply the symmetry of the two erroneous positions in the GF. 
Recall that in GF a negative GF degree is converted to a positive one by adding 

the GF order, xnx   .Note that if the value of 
2,22,1

2 gg   belongs to a 

forbidden combination, it is possible to conclude that a decoding failure has 
happened. So, it is not necessary to compute any CRC or Syndrome which 
speeds up the decoding process. Moreover, take into account that for the case 
of two errors the use of (3.39) only requires the computation of 2 syndromes 
instead of 2t ones required for solving the key-equation of BCH decoder ¡Error! 
No se encuentra el origen de la referencia..  
 
After estimating the distance between the two erroneous positions, the 

detection of the erroneous positions
1

p is carried out by means of the next 

expression: 
 

     ,
2

2,2

1

2 12,2
gr

prpg 
 

              (3.47) 

 

which corresponds to a bit shifting of the distance of r from
2,2

g . So, it is not 

necessary any division. After computing,
1

p and r the second erroneous positions 

comes from (3.39). Note that the symmetry properties permit to apply (3.39) and 
(3.41) with independence of knowing what root is the biggest one.  In case that 
having a number of errors higher than two, then it is applied Chien’s search with 
updating the coefficients of the ELP once the roots of the ELP are detected. 
Once, the degree of the ELP is equal to two is applied the reduced load strategy 
for the two erroneous positions. This solution is even valid for ELP of higher 
degree if they have the next pattern: 
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
  ,1

2222,
222222,1 222 uuuuu

XXX
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 
 

(3.48) 

Following the same example that we used to prove the Berlekamp-Massey 
algorithm we proceed to prove the two errors algorithm. In example the received 
codeword contains 2 errors in the positions 55 and 12 and its Error Locator 

Polynomial is .1)( 2451 XXX    
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Using the LUT we find out that .20r  Then ,
2

2,2

1

2 12,2
gr
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Finally, after obtaining Chien’s search, comes the correction of the received 
codeword. Given that the studied BCH code is the binary one, the correction of 
the received codeword consists on the bit flipping of the erroneous positions 
obtained in the Chien’s search. Nevertheless, it does not mean that the 
corrected codeword be the true one. There are several techniques to carry out 
this process. The next section details them. 


 

3.2.4. Checking the Validness of the Corrected Codeword 
 
In order to assess the validness of the corrected codeword two strategies are 
proposed: 
 
1) Fast Computation of the Syndromes of the corrected codeword. 
 
2) Resort to an additional Cyclic Redundancy Code (CRC) to check if the 
corrected message codeword is the true one. 
 

3.2.4.1. Fast syndrome update 
 
After the Chien’s search, BCH’s decoder knows the number of erroneous bits in 
the codeword, their positions and the syndromes of the received data. 
Therefore, if it is not necessary to compute the Syndromes since its load 
depends on the codeword length n. The proposed alternative consists on 
updating the Syndromes of the received data by adding the GF elements of the 
erroneous positions normalized by the number of Syndrome. Thus, their 
updating law is: 
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Where 
newj

S
, oldj

S
,

represent the j-th syndrome after and before the decoding 

process, v  is the number of erroneous bits and 
q

p is the q-th position of the 

received codeword with erroneous bit, whereas the symbol  expresses sum in 
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modulo two, i.e. or-exclusive. The syndromes that have to be recomputed are 
only the odd ones, and if there were one syndrome that after the updating 
process was different from zero, then the updating process would finish. In this 
stage, the WER given by Syndrome strategy tends to be: 
 

  qn

b

t

q

q

b
pp

q

n
WER













  11

0

      (3.50) 

 
Which it is the BCH bound for hard decoding. The larger is the codeword length 
the closer is the approximation[5]. 
 

3.2.4.2. CRC for determining the validness of the codeword 
 
An additional degree of information comes from the use of a CRC code in the 
frame structure. Its main its use pursues to determine if the message contained 
in the codeword is correct. This strategy is still valid although the syndromes are 
not zero after the decoding process. This strategy does not require carry out 
any Galois Field operation but reduces the rate. However, this strategy has also 
an error probability in determining the correct codeword [10]: 
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being 
b

p the erroneous bit probability, 
q

d is the q-th Hamming distance of the 

code whereas 
q

A represents the number of codewords with Hamming distance 

equal to 
q

d . 

 
At that point it has been detailed how to design an efficient BCH decoder guided 
by hard-decisions .The next step uses the additional information to obtain a soft 
BCH decoder of reduced load. The following section details it. 

 
3.2.5. Soft decoder 
 
In information theory, a soft-decision decoder is a class of algorithm used to 
decode data that has been encoded with an error correcting code. Whereas a 
hard-decision decoder operates on data that take on a fixed set of possible 
values (typically 0 or 1 in a binary code), the inputs to a soft-decision decoder 
may take on a whole range of values in-between. This extra information 
indicates the reliability of each input data point, and is used to form better 
estimates of the original data. Therefore, a soft-decision decoder will typically 
perform better in the presence of corrupted data than its hard-decision 
counterpart. 
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Fig 3.8 Soft-Decision scheme. 

 
Soft BCH decoders are designed in order to i) compute the Log-Likelihood 
Ratios (LLRs) of the  received codeword, ii) determine the p-lowest LLRs, iii) 
modify the least p-reliable positions of the codeword until a maximum set of 2p 
hard-decided codewords and iv) evaluate by each candidate to codeword the 
BCH hard-decoder. Given that the soft-BCH decoder introduces an iterative 
mechanism for selecting the candidate codewords, the elimination of the 
iterations in the BCH-Hard decoder permits to obtain practical soft-BCH 
decoders. This strategy is faster than the use of a hard BCH code with the 
same codeword length and higher protection level. Faster in the sense that the 
increase of the protection level of the soft-BCH does not imply the reduction in 
the transmission rate of BCH hard with higher protection level and in the 
number of iterations. If only consider the average number of iterations of 
Chien’s search [8], the trade-off for selecting the number of errors that can 
correct the soft-decoder will be: 
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being 
e

n the number of positions that the soft-decoder can consider as no 

reliable, whereas 1n ,
1

t  and 
2n ,

2
t correspond to the codeword length and the 

maximum error correction capabilities of the BCH code with soft-decisions and 

hard ones. In our case, 
1

t  is equal to two and the BCH soft decoder follows the 

Chase-3 Algorithm with 
1

tn
e
 . [9] The expression (3.52) assumes the worst 

case criterion for designing the soft-decoder since considers that it is necessary 

to test all combinations of 
e

n  possible error patterns to successfully decode the 

BCH’s codeword [9]. After presenting the hard and soft BCH decoders, next 
section presents the results. 
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4 Results 
 
This section shows the results obtained in the decoder about the Word Error 
Rate and the decoding time. 
 
Firstly we show the WER obtained with the strategies submitted above. Then 
we show the improvement of the WER when a soft decoder is implemented. 
 
Next we show the results about the decoding time, we compare the time 
obtained in each stage and the total decoding time between a classic BCH 
decoder and a fast BCH decoder. 

 
4.1. Word Error Rate 
 
4.1.1. Hard decoder 

 
Fig 3.9 WER comparison of BCH(63,51,2) assuming that receiver uses CRC and Syndrome 

information for estimating the true WER. 

 
This graph shows the WER obtained when we use Syndromes, CRC, and both 
to check the validness of the codewords. 
 
The Syndromes strategy has a WER away from the True WER because when 
the decoder uses the FEC find other codewords that does not correspond with 
the original one. 
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But the CRC in the message helps the decoder to decide if the final codeword 
contains the same message than the original codeword. 
 
Using both Syndromes and CRC the decoder is able to obtain a WER similar to 
the true WER. 
 

4.1.2. Soft decoder 

 
Fig 3.10 WER comparison for Hard and Soft decoding of BCH(63,51,2) assuming that receiver 

uses CRC and Syndrome information for estimating the true WER. 
 
The soft decoder allows the decoder to improve the true WER, therefore if our 
BCH code is capable to correct up to t  errors, using a soft decoder most of the 

times the decoder will be able to correct more than t  errors. 

 
The WER of the CRC is closer to the true WER than the syndromes WER, this 
is because the syndromes is some cases consider that the corrected codeword 
is the original codeword although it has erroneous positions compared to the 
original. This can happen if the corrected codeword overcomes the minimum 
distance of the code. 
 
Moreover a soft decoder increases the probability of overcoming the minimum 
distance of the code because it flips more bits than the hard decoder. So it is 
easier to obtain a codeword of the code which is different from the original. That 
is the reason why the WER of the syndromes when using a soft decoder is so 
low, because sometimes it obtains the original codeword and sometimes 
generates another one. 
 
The next graph shows how the soft decoder performance depends on the rate 
of the code. 
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Fig 3.11 WER comparison for Hard and Soft decoding for BCH(63,51,2), BCH(63,45,3) and 

BCH(63,39,4). 

 
 
The soft decoder performs better for high values of t , because it is harder to 

overcome the minimum distance of a codeword. 
 

4.2. Decoding time 
 
4.2.1. Syndromes 

 
Fig 3.12 Syndromes time comparison between the classic and the fast decoder. 
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The fast decoder is two times faster in this stage compared to the classic one 
since only the half of the Syndromes are computed. 
 

4.2.2. Error-Locator polynomial 

 
Fig 3.13 ELP time comparison between the classic and the fast decoder. 

 

The fast decoder computes the error-locator polynomial much faster than the 
classic one because the iterative Berlekamp-Massey algorithm is not needed, 
unlike the classic decoder. 
 

4.2.3. Chien’s search 
 

 
Fig 3.14 Chien’s search time comparison between the classic and the fast decode. 
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The fast decoder does not need to use the Chien’s search algorithm to find the 
zeroes of the error-locator polynomial, the coefficients of the polynomial and a 
Look-Up Table are enough to find the erroneous positions of the codeword. 
While the classic decoder searches the roots of the ELP using the Chien’s 
search method. It can take a long time to find the zeroes of the polynomial 
because it is a brute-force method. 
 

4.2.4. Checking the validness of the corrected codeword 
 

 
Fig 3.15 Decoding time comparison between the classic and the fast decode. 

 

The classic decoder computes all the Syndromes of the corrected codeword 
from zero to determine if it is valid, while the fast decoder updates the 
Syndromes of the received codeword by adding the GF elements of the 
erroneous positions normalized by the number of Syndrome. 
 

5 Conclusions 
 
BCH codes belong to the class of linear cyclic codes supported by an algebra 
de Galois Field, GF. In particular, the decoding processes of BCH codes have 
the following stages: i) Computation of the Syndromes; ii) Determination of the 
Error Locator Polynomial; iii) Solving the roots of the ELP; and iv) Validating the 
corrected codeword. 
 
From all these stages, the Computation of the Syndromes and the Solving 
process of the ELP are the most time consuming stages since they depend on 
the codeword length. In order to speed up the Solving Process of the ELP this 
project proposes to express the coefficients of the ELP in terms of the 
erroneous positions of the codeword. In this way, it is possible to i) update the 
ELP once a root has been detected; and ii) obtain decoding architectures of 
reduced complexity. 
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In particular, it is shown that if there are two erroneous bits separated a power 
of two then it is possible to obtain a low complexity solution for the two 
erroneous positions. That solution can be implemented in reduced size LUT or 
in a reduced number of logical gates. 
 
In addition, for this case it is shown that only is required to compute the odd 
syndromes which reduce the complexity of the Computation of the Syndromes’ 
stage to the half. Finally, in the validating process of the corrected codeword is 
provided a fast updating strategy of the syndromes that avoids their 
dependence from the codeword length. 
 

6 Future lines of research 
 

 Join design of the Berlekamp-Masey algorithm and the Chien’s search 
algorithm. 
 

 Extend the fast solution of two errors to three and more. 
 

 Obtain the fast solution of two errors without using a Look-Up Table. 
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