

FINAL GRADE PROJECT

TITLE FGP : Characterization of BCH codes and its use in M2M
healthcare applications

TITULATION: Telecommunications technical engineering, specializing in
Telematics

AUTHOR: Albert Enrich de León

DIRECTOR: Joan Bas

TUTOR: Luis Alonso Zárate

DATE: 25th June, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41813153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Title: Characterization of BCH codes and its use in M2M healthcare
applications

Author: Albert Enrich de León

Director: Joan Bas

Tutor: Luis Alonso Zárate

Date: 25th June, 2014

Abstract

Machine-to-Machine (M2M) applications require reliable communications,
especially in the medical field, at low-energy consumption to extend the battery
life of the sensors. This fact makes BCH codes an interesting option for IEEE
802.15.6 communications since their algebraic nature permit them to obtain the
positions of the erroneous bits with mathematical equations of reduced
complexity. Moreover, the decoder can be enhanced to save energy through
several ways that are exposed in the project.

M2M networks support a large number of interconnected devices. Given that
the access to the gateways is through slotted protocols the increase in the
demand lead to a reduction in the time-slot. Therefore is necessary to
guarantee the reliability of the transmitted information as fast as possible. In
addition medical applications are delay non-tolerant since a delay in the
decisions could cause fatal consequences.

In this project BCH encoding and decoding algorithms will be implemented in a
motta to determine the reduction of time that provides each improvement in the
algorithm.

Título: Caracterización de códigos BCH y su desarrollo en aplicaciones
médicas M2M.

Autor: Albert Enrich de León

Directores: Joan Bas

Tutor: Luis Alonso Zárate

Data: 25 de junio de 2014

Resumen

Las aplicaciones Machine-to-Machine (M2M) exigen comunicaciones seguras,
especialmente en las médicas, y un bajo consumo de energía para alargar la
vida de las baterías. Esto hace que los códigos BCH sean una buena opción
para las comunicaciones IEEE 802.15.6 ya que su naturaleza algebraica les
permite obtener las posiciones de los bits erróneos a partir de ecuaciones
matemáticas poco complejas. Además, el decodificador puede ser mejorado
para ahorrar energía de varias maneras las cuales se exponen en el proyecto.

Las redes M2M soportan un gran número de dispositivos interconectados.
Dado que el acceso a las puertas de enlace se realiza mediante protocolos
ranurados, el incremento de peticiones de acceso conlleva a la reducción del
tiempo de ranura. Por tanto es necesario garantizar la validez de la
información transmitida tan rápido como sea posible. Además, las aplicaciones
médicas no son tolerantes a los retrasos ya que en tal caso las consecuencias
podrían ser fatales.

En este proyecto los algoritmos de codificación y decodificación BCH serán
implementados en motas para determinar la reducción de tiempo que aporta
cada mejora en el algoritmo.

INDEX

1 INTRODUCTION .. 1

1.1. Motivation .. 1

1.2. Objectives .. 2

1.3. Document structure ... 2

2 BCH ENCODING ... 3

2.1. Channel encoding.. 3

2.2. Binary BCH codes ... 4

2.3. Generator polynomial of the BCH (63, 51, 2) code ... 6

2.4. BCH applications ... 8

2.4.1. IEEE 802.15.6 standard .. 9

2.4.1.1. Physical-layer protocol data unit (PPDU) ... 9

2.4.1.2. PHY header .. 10

2.4.1.3. PLCP header .. 10

2.4.1.4. Header Check Sequence ... 11

2.4.1.5. BCH encoder for PLCP header .. 12

3 DECODING .. 13

3.1.1. Syndrome Computation .. 14

3.1.2. Computation of the Error Locator Polynomial ... 15

3.1.2.1. Berlekamp-Massey Algorithm ... 17

3.1.2.2. Number of iterations and deviation for the Berlekamp-Massey Algorithm 21

3.1.3. Chien’s search ... 23

3.1.3.1. Number of iterations and deviation for the Chien’s search 24

3.2. Proposed Low Energy BCH decoding .. 25

3.2.1. Syndrome Computation .. 26

3.2.2. Error Locator Polynomial Computation .. 26

3.2.3. Chien’s Search... 28

3.2.3.1. Knowing Data Frame Structure to reduce the load of Chien’s search 28

3.2.3.2. Structure of the Error Locator Polynomial Coefficients 30

3.2.3.3. Solving the Error Locator Polynomial when there are two errors 31

3.2.4. Checking the Validness of the Corrected Codeword ... 33

3.2.4.1. Fast syndrome update ... 33

3.2.4.2. CRC for determining the validness of the codeword 34

3.2.5. Soft decoder .. 34

4 RESULTS... 36

4.1. Word Error Rate ... 36

4.1.1. Hard decoder ... 36

4.1.2. Soft decoder .. 37

4.2. Decoding time .. 38

4.2.1. Syndromes ... 38

4.2.2. Error-Locator polynomial .. 39

4.2.3. Chien’s search ... 39

4.2.4. Checking the validness of the corrected codeword .. 40

5 CONCLUSIONS ... 40

6 FUTURE LINES OF RESEARCH .. 41

7 BIBLIOGRAPHY .. 41

1

1 Introduction

1.1. Motivation

M2M communications are characterized by requiring a large throughput, and
reliable data at very low energy consumption [1]. In this scenario BCH and
Convolutional codes could be perfectly used in M2M networks since they have
efficient encoding and decoding algorithms. However, BCH codes can
outperform the most energy efficient convolutional code by almost 15% due to
the lower number of parity bits required (in average) [2]. In addition, in the next
years communication systems will reduce the energy consumption and reduce
its area. So, the necessity of more energy efficient communication systems
without losing reliability will be a must.

For that reason short-range communications systems like Bluetooth and IEEE

802.15.6 resort to BCH codes to assess the reliability of their transmissions. In
particular, this project is focused on improving the decoding process of BCH
codes of IEEE 802.15.6 communications. This code will be used to benchmark
the speed-up and WER of the different low-complexity BCH decoders that will
be proposed based on hard and soft decisions. The soft BCH decoder is the
main goal of this project. However, it is based on the hard-BCH decoder.
Accordingly, a fast BCH soft decoder means to obtain a fast BCH hard decoder
too. For that reason, we will start in the first chapter explaining how to build a
hard-BCH decoder and next how to use it in a soft BCH decoder.

In order to speed up the decoding process of BCH codes, it is possible to take

advantage of the algebraic nature of BCH codes to avoid iterative decoding.
Specifically, it is possible to resort to mathematical equations of low complexity
to determine the exact position of the erroneous bits of the codeword. This
property has been applied in this project to obtain a low-complexity closed
solution when there are two errors in the codeword. Simulation results show
that the closed solution for the IEEE 802.15.6 code is 100 faster than the
conventional decoder.

This project also evaluates the performance of selecting the correctness of

the decoded frames by means of the use of CRC and Syndromes. The use of
CRCs does not require Galois Field operations but implies a rate reduction
compared to the Syndromes.

2

1.2. Objectives

The objectives for this final grade project are:

1) Implement BCH coders and decoders.

2) Obtain efficient soft-BCH decoders, improving the data reliability and
decoding speed.

3) To obtain results, in terms of delay and word error rate, and compare the

performance between hard-BCH decoders and efficient soft-BCH
decoders.

4) Present all the pros and cons that the soft-BCH decoding has.

1.3. Document structure

The rest of this document is organized as follows. Section 2 describes the BCH
coding structure and how it is implemented in the IEEE 802.15.6 standard.
Section 3 describes the BCH decoding stages and how to improve them.
Section 4 shows the results from the improved decoder. Section 5 presents the
main conclusions of this work.

3

2 BCH Encoding

2.1. Channel encoding

The basic structure of a communications system is presented in this diagram.

Fig 2.1 Structure of a communication System.

The purpose of the communication systems is to convey the information from
one point to another with no degradation.

The communicationchannel adds noise to the information which degrades its
reception. In order to overcome/reduce this drawback the transmitter is
equipped with an encoder that add some extra bits, so called redundant bits, to
protect the transmitted data. In this way, the receiver can detect or even correct
the errors in the received codeword.

Fig 2.2 Encoder block

The addition of extra-bits to the message permits to define an information rate
when a coding scheme is used which has the following expression:

n

k
 (2.1)

Being k and n the number of bits of the message and the codeword length

respectively. On the other hand  is the code rate of the information due to the

presence of a coding scheme.

4

2.2. Binary BCH codes

Binary BCH codes are identified by their codeword length n, their message
length k, the maximum error capability of the code is t, and are represented as
BCH (n, k, t).

BCH codes belong to the class of linear cyclic algebraic codes and are defined
over a Galois Field (GF) of q elements GF(q), with q=2m. The parameter m
corresponds to the degree of the GF, q is the number of states that takes each
component of the GF elements, and they are related with the codeword length

as n=2m-1. The r-th GF element is expressed as r , being its vector format

equal to T
m

rrr][10    taking the j-th component the values

}.1,,1,0{  m
r

j 

This project is focused in the IEEE 802.15.6 standard, which uses the binary
BCH code BCH (n=63, k=51, t=2). So, the codeword spans n=63 bits, the
message to transmit has a length of k=51 bits and the maximum error correction
capability of the code is of t=2 bits.

To generate all the field elements a primitive polynomial in GF(64) is needed. In
this case the primitive polynomial is

61)(xxxp  (2.2)

The initial elements are 0, 0 , and  . Raising  to powers successively

identifies 2 , 3 , 4
 and 5 as members of the extension. When we get to 6 ,

we realize that
610)(xxp  , so  16 . Thus, we reduce each power

greater than five using the identity  16 .

GF(26) with 01)(6  p

0 0 (000000)
0 1 (100000)
1  (010000)
2 2 (001000)
3 3 (000100)
4 4 (000010)
5 5 (000001)
6 1 +  (110000)
7  + 2 (011000)
8 2 + 3 (001100)
9 3 + 4 (000110)

10 4 + 5 (000011)
11 1 +  + 5 (110001)
12 1 + 2 (101000)
13  + 3 (010100)

5

14 2 + 4 (001010)
15 3 + 5 (000101)
16 1 +  + 4 (110010)
17  + 2 + 5 (011001)
18 1 +  + 2 + 3 (111100)
19  + 2 + 3 + 4 (011110)
20 2 + 3 + 4 + 5 (001111)

21 1 +  + 3 + 4 + 5 (110111)
22 1 + 2 + 4 + 5 (101011)
23 1 + 3 + 5 (100101)
24 1 + 4 (100010)
25  + 5 (010001)
26 1 +  + 2 (111000)
27  + 2 + 3 (011100)
28 2 + 3 + 4 (001110)
29 3 + 4 + 5 (000111)
30 1 +  + 4 + 5 (110011)
31 1 + 2 + 5 (101001)
32 1 + 3 (100100)
33  + 4 (010010)
34 2 + 5 (001001)
35 1 +  + 3 (110100)
36  + 2 + 4 (011010)
37 2 + 3 + 5 (001101)
38 1 +  + 3 + 4 (110011)
39  + 2 + 4 + 5 (110100)
40 1 +  + 2 + 3 + 5 (111101)
41 1 + 2 + 3 + 4 (101110)
42  + 3 + 4 + 5 (010111)
43 1 +  + 2 + 4 + 5 (111011)
44 1 + 2 + 3 + 5 (101101)
45 1 + 3 + 4 (100110)
46  + 4 + 5 (010011)
47 1 +  + 2 + 5 (111001)
48 1 + 2 + 3 (101100)
49  + 3 + 4 (010110)
50 2 + 4 + 5 (001011)
51 1 +  + 3 + 5 (110101)
52 1 + 2 + 4 (101010)
53  + 3 + 5 (010101)
54 1 +  + 2 + 4 (111010)
55  + 2 + 3 + 5 (011101)

6

56 1 +  + 2 + 3 + 4 (111110)
57  + 2 + 3 + 4 + 5 (011111)
58 1 +  + 2 + 3 + 4 + 5 (111111)
59 1 + 2 + 3 + 4 + 5 (101111)
60 1 + 3 + 4 + 5 (100111)
61 1 + 4 + 5 (100011)
62 1 + 5 (100001)

163 

Table 2.1 Galois Field GF(2
6
) with p(α) = 1 + α + α

6

The table 2.1 defines the words of the code, BCH codes are cyclic since a shift
of a word generates another word of the alphabet. In particular the sum of two
Galois Field (GF) elements is determined by this table. In example the sum of

the elements 10 and 14 will be:

141034

14

10

)001001(

)001010(

)000011(













 (2.3)

The computation of the binary elements can be performed easily by using the

logical XOR. As seen the result of the sum is 34 since the exclusive OR of the

binary values 10 and 14 corresponds to the 34 binary value. Therefore, the

sum of two GFelements does not match with the sum of their indexes
(10+14=24). Then we need the table 2.1 defined by the primitive polynomial to
be able to compute the sum of two GF elements. After obtaing the expressions
of the elements that conform GF(26) it is necessary to explain how to obtain the
generator polynomial of the BCH code for WBAN applications, the BCH (63, 51,
2) [3].

2.3. Generator polynomial of the BCH (63, 51, 2) code

In order to obtain the generator polynomial of the BCH code we need and
auxiliary polynomial called primitive polynomial. The generator polynomial is the

polynomial of lowest degree over GF(2) with  , 2 , 3 , …, t2 as roots.

Let mi(x) be the minimal polynomial of i . Then,)(xg must be the least

common multiple (LCM) of)(1 xm ,)(2 xm , …,)(2 xm t , that is,

)}.(,),(),({)(221 xmxmxmLCMxg t (2.4)

A simplification is possible because every even power of a primitive element
has the same minimal polynomial as some odd power of the element, halving
the number of factors in the polynomial. Then

)}.(,),(),({)(1231 xmxmxmLCMxg t  (2.5)

7

Hence, every even power of  in the sequence of (2.3) has the same minimal

polynomial as some preceding odd power of  in the sequence. As a result,

the generator polynomial)(xg of the binary t-error-correcting BCH code of

length 12 m given by (2.4) can be reduced to

)}.(,),(),({)(1231 xxxLCMxg t   (2.6)

The even powers minimal polynomials are duplicates of odd powers minimal
polynomials, so we only use the first two minimal polynomials corresponding to
odd powers of the primitive element.

We need first a primitive element. Well, α is a primitive element in GF(64). Next
we need the minimal polynomials of the first two odd powers of  .

Elements Minimal polynomials
321642 ,,,, 

61 XX 

3348241263 ,,,,, 
6421 XXXX 

34174020105 ,,,,, 
6521 XXXX 

35495628147 ,,,,, 
631 XX 

36189 ,, 
321 XX 

375025442211 ,,,,, 
65321 XXXX 

381941522613 ,,,,, 
6431 XXXX 

395157603015 ,,,,, 
65421 XXXX 

4221,
21 XX 

435358294623 ,,,,, 
6541 XXXX 

455427 ,, 
31 XX 

475559616236 ,,,,, 
651 XX 

Table 2.2 Minimal polynomials of the elements

The first two odd power of α minimal polynomials are:

  : 1)(6

1  xxxm

 3 : 1)(246

3  xxxxxm

Therefore,)()()}(),({)(3131 xmxmxmxmLCMxg  (since these are irreducible).

So .1)1)(1()(345810122466  xxxxxxxxxxxxg

The parity bits are determined by computing the remainder polynomial)(xr [3].

In this project we focus in the BCH code (n=63, k=51, t=2). That means that the
codewords have a length of 63 bits composed of 51 information bits and 12
parity bits.

8

To encode a block of bits firstly we append a number of zeros equal to the
degree of the generator polynomial to our message)(xk . This is the same as

multiplying)(xk by x12. Next we divide by the generator polynomial using binary

arithmetic.

















11

0

12

)1(

0

)(

)(mod)()(

)(mod)()(

i

i

i

kn

i

kni

i

xgxkxxrxr

xgxkxxrxr

 (2.7)

Where k(x) is the message polynomial which it is expessed in a polynomial way
as follows:















50

0

1

0

)(

)(

i

i

i

k

i

i

i

xkxk

xkxk

 (2.8)

2.4. BCH applications

BCH codes are formed by two families: the binary and non-binary ones. The
main difference between them is the number of states that can take each

codeword i of the code. Specifically, for binary BCH codes the codewords i

only can take the states 0 and 1 generating a Galois Field of 2m elements, being
m the degree of the GF. On the contrary, the non-binary BCH codes are formed
by codewords that can take more than two states. Thus, generate a GF of am
elements.In particular, the non-binary BCH codes so-called Reed–Solomon
codes, are used in applications such as satellite communications, compact disc
players, DVDs, disk drives, and two-dimensional bar codes. Moreover
Facebook and Google drive use them to protect the stored data.

Also we find BCH codes in the Smart Cities, in fact this project is focused in the
Body Area Network communications specified in the IEEE 802.15.6 standard.

9

2.4.1. IEEE 802.15.6 standard

The IEEE 802.15 Task Group 6 (BAN) has developed a communication
standard optimized for low power devices and operation on, in or around the
human body (but not limited to humans) to serve a variety of applications
including medical, consumer electronics / personal entertainment and others.

This is the standard that we have chosen to analyze the performance of the
decoders proposed in this project.

The physical layer is responsible for the following tasks:

- Activation and deactivation of the radio transceiver.
- Clear channel assessment (CCA) within the current channel.
- Data transmission and reception.

There is a method for transforming a physical-layer service data unit (PSDU)
into a physical-layer protocol data unit (PPDU). During the transmission, the
PSDU shall be pre-appended with a physical-layer preamble and a physical-
layer header in order to create the PPDU. At the receiver, the physical-layer
preamble and physical-layer header serve as aids in the demodulation,
decoding and delivery of the PSDU.

2.4.1.1. Physical-layer protocol data unit (PPDU)

Fig 2.3 Standard PPDU structure

Figure 2.3 shows the format for the physical-layer protocol data unit (PPDU),
which is composed of three main components: the physical layer convergence
protocol (PLCP) preamble, the PLCP header, and the physical-layer service
data unit (PSDU). The components are listed in the order of transmission. The
PLCP preamble is the first component of the PPDU. The purpose of the
preamble is to aid the receiver during timing synchronization and carrier-offset
recovery.

The PLCP header is the second main component of the PPDU (see Fig 2.4).
The purpose of this component is to convey the necessary information about
the PHY parameters to aid in the decoding of the PSDU at the receiver. The
PLCP header can be further decomposed into a RATE field, a LENGTH field, a

10

BURST MODE field, a SCRAMBLER SEED field, reserved bits, a header check
sequence (HCS), and BCH parity bits. The BCH parity bits are added in order to
improve the robustness of the PLCP header. The PLCP header shall be
transmitted using the given header data rate in the operating frequency band.

The PSDU is the last component of the PPDU. This component is formed by
concatenating the MAC header with the MAC frame body and frame check
sequence (FCS).

2.4.1.2. PHY header

The PHY header contains information about the data rate of the MAC frame
body, the length of the MAC frame body (which does not include the MAC
header or the FCS) and information about the next packet whether it is being
sent in a burst mode.

The PHY header field shall be composed of 15 bits, numbered from 0 to 14 as
illustrated in Fig 2.4.

Bits 0–2 shall encode the RATE field, which conveys the information about the
type of modulation, the information data rate, the pulse shaping, the coding rate,
and the spreading factor used to transmit the PSDU. Bits 4–11 shall encode the
LENGTH field, with the LSB being transmitted first.

Bit 13 shall encode whether or not the packet is being transmitted in the burst
(streaming) mode. Bit 14 shall encode the scrambler seed. All other bits that are
not defined in this clause shall be understood to be reserved for future use and
shall be set to zero.

Fig 2.4 PHY header bit assignment

2.4.1.3. PLCP header

A PLCP header shall be added after the PLCP preamble to convey information
about the PHY parameters that is needed at the receiver in order to decode the
PSDU. The length of the PLCP header is 31 bits, and it shall be constructed as
shown:

11

Fig 2.5 BCH encoding scheme for PLCP header construction

2.4.1.4. Header Check Sequence

The PHY header shall be protected with a 4-bit (CRC-4 ITU) header check
sequence (HCS). The HCS shall be the ones complement of the remainder
generated by the modulo-2 division of the PHY header by the polynomial. The
HCS bits shall be processed in the transmit order. An example schematic of the
processing order is shown in Fig 2.4. The registers shall be initialized to all
ones.

Fig 2.6 BCH encoding scheme for PLCP header construction

12

2.4.1.5. BCH encoder for PLCP header

The PLCP header shall use a systematic BCH (31, 19, t = 2) code, which is a
shortened code derived from a BCH (63, 51, t = 2) code by appending 32 zero

(or shortened) bits to the 19 information bits, to improve the robustness of the
PLCP header. The shortened bits are removed prior to transmission [10].

13

3 Decoding

After the encoding process the codewords are modulated, RF converted and
transmitted to the receiver. There, the incoming signal for the q-th modulated

symbol, qx , is:

qqq

bb

q wxh
N

nE
y 

0

 (3.1)

where 0/ NEb is the Energy per bit to Noise density ratio, bn , is the number of

bits per modulated symbol, qh , is a flat fading channel, and qw represents the

Additive White Gaussian Noise (AWGN) signal of variance unity. The received
signal is equalized and demapped by means of hard decision since we assume
that M2M devices cannot support the complexity of demappers based on soft-
decisions [5]. For that reason we have devised low-complexity soft-BCH
decoders based on hard-decision BCH decoders of very small computational
load. By doing so, we have optimized each one of the decoding stages of the
BCH decoder. In particular these stages are: 1) Computation of the Syndromes;
2) Determination of the Error Locator Polynomial (ELP), 3) Solving the Error
Locator Polynomial and 4) Bit Flipping.

The first stage of the decoder is to compute the syndromes, this stage is time-
consuming since is necessary to determine several syndromes. For that reason
some authors propose parallel implementations for computing the Syndromes
of BCH codes [3][4]. Nevertheless, parallel architectures are not possible in
sensor-based systems due to their limited-signal processing capability.
Fortunately, it is possible to overcome this drawback by resorting to Galois Field
properties in order to compute only the half of them [5]. If the sum of the
syndromes is zero it means that the word does not contain errors otherwise the
decoder proceeds to compute the ELP (Error Locator Polynomial) through the
Berlekamp-Massey algorithm.

In order to find out the erroneous positions in the word the decoder searches
the roots of the ELP using Chien’s search method. It can take a long time to find
the zeroes of the polynomial because it is a brute-force method. To reduce the
time of the Chien’s search this project proposes to update the polynomial every
time that a solution is found. By doing so, the degree of the polynomial
decreases which permits to speed up the BCH decoder. Another improvement
is to avoid the Chien’s search in the case that there are only two errors in the
word, the positions can be directly found through the ELP and resorting to
Galois Field properties.

14

3.1. Classical BCH decoding

This section describes how to decode and correct, if possible, the received
codewords,. In particular, the BCH decoder is formed by the next stage: 1)
Syndrome Computation, 2) Computation of the Error Locator Polynomial (ELP),
3) Finding the roots of the ELP, 4) Bit Flipping of the erroneous positions and 5)
Assessment that the corrected codeword belongs to the codeword set.

3.1.1. Syndrome Computation

If we denote by,)(xc the code polynomial we may define a t-error-correcting

BCH code of length n = 2m – 1 in the following manner: a binary n-tuple

),...,,,(1210  nccccc is a codeword if and only if the polynomial

1

110 ...)(

 n

n xcxccxc has
t22 ,...,,  as roots. This equality can be

written as a product of vectors as follows:

0

1

),...,,(

)1(

2

110 





























in

i

i

nccc









 (3.2)

for ti 21  . The condition given by (3.2) simply says that the inner product of

),...,,,(1210 ncccc and),...,,,1()1(2 inii  is equal to zero. Now we form the

following matrix:

































1232222

1333233

1232222

132

)()()()(1

)()()()(1

)()()()(1

1

ntttt

n

n

n

H



















 (3.3)

It follows from (3.2) that if),...,,,(1210  nccccc is a codeword in the t-error

correcting BCH code, then

0 THc . (3.4)

Hence the code is the null space of the matrix H, and H is a parity-check matrix
of the code.

As usual, the first step of decoding a code is to compute the syndrome from the
received vector)(xc . For decoding a t-error-correcting primitive BCH code, the

syndrome is a 2t-tuple:

15

T

t HcSSSS ),,(221  (3.5)

The expression of the i-th syndrome, Si, is:









 









1

0

k)(c
n

k

ik

GFDGFi TTS  (3.6)

where ik is the ik  -th GF element of the BCH code, kc is the k-th

bit/symbol of the estimated codeword whereas GFT and DGFT  are the functions

that convert from the GF to integer and vice-versa, respectively. Given that
there is no closed expression for the sum of two GF elements, it is necessary to

build two auxiliary tables. The table of the GF elements GFT , and the conversion

table from GF elements to their power, DGFT  . Table 2.1 represents the

polynomial expression of the GF elements for GF(64) expressed in a binary

format, i.e., 6-tuple way (GFT). However, the decimal value of GFT does not

correspond with the power index of the GF element. For this reason is
necessary to build a table that associates the decimal magnitude of each GF

element with its GF power index. That is the goal of DGFT  .

Because
t22 ,,,   are roots of each code polynomial, 0)(ic  for ti 21  .

When a syndrome is not zero we get the relationship between the syndrome
and the error pattern:

)(i

i eS  (3.7)

For ti 21  . From (3.7) we see that the syndrome S depends on the error

pattern e only. Suppose that the error pattern e(x) has v errors at locations
jvjj xxx ,,, 21  ; that is,

jvjj xxxxe ,,,)(21  , (3.8)

where njjj v  210 .

3.1.2. Computation of the Error Locator Polynomial

The Error Locator Polynomial (ELP) can be determined by multiple methods:
Peterson-Welch method, Berlekamp-Massey Algorithm, Euclidean Algorithm,
etc. However, in this project the Berlekamp-Massey Algorithm is used.

Massey showed that to find the ELP)(X is necessary to make equivalence

with a shift-register synthesis problem. Namely, given a sequence of syndromes

tSSS 221 ,,,  find the minimum-degree polynomial v ,,, 21  that generates

tv SS 21 ,, from vSS ,,1  in a shift-register of v degree.

16

Fig 3.1 ELP from a shift-register view

From (3.7) and (3.8) we obtain the following set of equations:

,)()()(

)()()(

)()()(

22221

2

33231

3

22221

2

21

1

tjvtjtj

t

jvjj

jvjj

jvjj

S

S

S

S



























 (3.9)

where
jvjj  ,,, 21  are unknown. Any method for solving these equations is

a decoding algorithm for the BCH codes. Once we have found
jvjj  ,,, 21  ,

the powers vjjj ,,, 21  tell us the error locations in)(xe . In general, the

equations of (3.9) have many possible solutions(k2 of them). Each solution
yields a different error pattern. If the number of errors in the actual error pattern

)(xe is t or fewer (i.e., tv ), the solution that yields an error pattern with the

smallest number of errors is the right solution; that is, the error pattern
corresponding to this solution is the most probable error pattern)(xe caused by

channel noise. For large t, solving the equations of (3.9) directly is difficult and
ineffective. In the following, we describe an effective procedure for determining

jl for vl ,,2,1  from the syndrome components iS ’s. For convenience, let
jl

l   (3.10)

for vl 1 . We call these elements error location numbers, since they tell us

locations of errors.

Now we define the following polynomial:

.)(

)1()1)(1()(

2

210

21

v

v

v

XXXX

XXXX












 (3.11)

17

The roots of)(X are
11

2

1

1 ,,,


v  , which are the inverses of the error-

location numbers. For this reason)(X is called the error-location polynomial.

Note that)(X is an unknown polynomial whose coefficients must be

determined. The coefficients of)(X and the error-location numbers are

related by the following equations:

.

1

21

132212

211

0

vv

vv

v

























 (3.12)

The i ’s are known as elementary symmetric functions of l ’s. From (3.9) and

(3.12), we see that the i ’s are related to the syndrome components jS ’s. In

fact, they are related to the syndrome components by the following Newton’s
identities:









0

0

03

02

0

12111

1111

312213

2112

11















SSSS

vSSS

SSS

SS

S

vvvv

vvvv











 (3.13)

If it is possible to determine the elementary symmetric functions v ,,, 21 

from the equations of (3.13), the error-location numbers v ,,, 21  can be

found by determining the roots of the error-location polynomial).(X Again, the

equations of (3.13) may have many solutions: however, we want to find the
solution that yields a)(X of minimal degree. This)(X will produce an error

pattern with a minimum number of errors. If tv  , this)(X will give the actual

error pattern)(Xe .

3.1.2.1. Berlekamp-Massey Algorithm

Here we present Berlekamp’s iterative algorithm for finding the error-location
polynomial.

The first step of iteration is to find a minimum-degree polynomial)()1(X whose

coefficients satisfy the first Newton’s identity of (3.13). The next step is to test

whether the coefficients of)()1(X also satisfy the second Newton’s identity of

(3.13). If the coefficients of)()1(X do satisfy the second Newton’s identity of

(3.13), we set

18

).()()1()2(XX   (3.14)

If the coefficients of)()1(X do not satisfy the second Newton’s identity of

(3.13), we add a correction term to)()1(X to form)()2(X such that)()2(X

has a minimum degree and its coefficients satisfy the first two Newton’s
identities of (3.13). Therefore, at the end of the second step of iteration, we

obtain a minimum-degree polynomial)()2(X whose coefficients satisfy the first

two Newton’s identities of (3.13). The third step of iteration is to find a minimum-

degree polynomial)()3(X from)()2(X such that the coefficients of)()3(X

satisfy the first three Newton’s identities of (3.13). Again, we test whether the

coefficients of)()2(X satisfy the third Newton’s identity of (3.13). If they do, we

set)()3(X =)()2(X . If they not, we add a correction term to)()2(X to form

)()3(X . Iteration continues until we obtain)()2(Xt . Then)()2(Xt is taken to

be the error-location polynomial)(X , that is,

).()()2(XX t  (3.15)

This)(X will yield an error pattern)(Xe of minimum weight that satisfies the

equations of (3.9). If the number of errors in the received polynomial)(Xc is t

or less, then)(X produces the true error pattern.

Let





  l

l xxxX
)(2)(

2

)(

11)(  (3.16)

be the minimum-degree polynomial determined at the  th step of iteration

whose coefficients satisfy the first  Newton’s identities (3.14). To determine

)()1(X , we compute the following quantity:













  ll SSSSd   1

)(

1

)(

2

)(

11  (3.17)

This quantity d is called  th discrepancy. If 0d , the coefficients of

)()(X satisfy the)1( th Newton’s identity. In this event, we set

).()()()1(XX   
 (3.18)

If 0d , the coefficients of)()(X do not satisfy the)1( th Newton’s

identity, and we must add a correction term to)()(X to obtain)()1(X . To

make this correction, we go back to the steps prior to the  th step and

determine a polynomial)()(X such that the  th discrepancy 0d , and

 l [l is the degree of)()(Xp] has the largest value. Then,

19

),()()()()(1)()1(XXddXX 


    (3.19)

which is the minimum-degree polynomial whose coefficients satisfy the first

1 Newton’s identities.

The described iterative algorithm for finding)(X applies to both binary and

nonbinary BCH codes, in example Reed-Solomon codes; however, for binary
BCH codes, this algorithm can be simplified to t -steps for computing)(X .

It is possible to prove that if the first, third, …, (2t-1)th Newton’s identities hold,
then the second, fourth, …, 2t th Newton’s identities also hold. This implies that

with the iterative algorithm for finding the ELP, the solution)()12(X at the

)12( th step of iteration is also the solution)()2(X at the 2 th step of

iteration; that is,

).()()12()2(XX    (3.20)

This suggests that the)12( th and the 2 th steps of iteration can be

combined. As a result, the foregoing iterative algorithm for finding)(X can be

reduced to t steps. Only the even steps are needed.

The Berlekamp-Massey algorithm builds the error locator polynomial iteratively.
Using the notation of Lin and Costello, a 2t line table may be used to handle

the bookkeeping details of the error correction procedure for binary BCH
decoding. It is described next.

First, make a table (using BCH(63,51,2) as our example):

)()(X d l  l2

2
1 1 1 0 -1

0 1
1S 0 0

1

t=2

Table 3.1 Berlekamp procedure for finding the error-location polynomial

The BCH decoding algorithm follows.

1. Initialize the table as above. Set 0 .

2. If 0d , then)()()()1(XX   
.

20

3. If 0d , then find a preceding row (row ) with the most positive  l2

 and 0d . Then).()()()()(21)()1(XXddXX 


    If 1 t ,

 terminate the algorithm.

4.)).(deg()1(

1 Xl 

  
 

5. .132

)1(

112

)1(

222

)1(

1321 











  











  ll SSSSd  i is the coefficient

of the i-th term in).(X

6. Increment  and repeat from step 2.

For a better understanding of the Berlekamp-Massey algorithm we proceed to
show an example. In this example a codeword contains 2 errors in the positions
55 and 12, since our BCH can correct up to two errors we must be able to find a
valid ELP.

Firstly we compute the syndromes of the codeword, these are:

15

4

5

3

39

2

51

1

















Sd

Sd

Sd

Sd

Using the algorithm, we fill the table.

)()(X d l  l2

2
1 1 1 0 -1

0 1
1S 0 0

1 151 X 27 1 1

t=2 15124  XX  - - -

Set 0 . We see that 0d , so we chose 21 , and

     .1111

)()()()()(

5151

)21()210(21

210

)0()()(21)()1(



 





XX

XXddXXXddXX



 




Then, .1)1deg())(deg(51)1(

1  

 XXl  


Finally,

    .2739515

2

)1(

13

132

)1(

112

)1(

222

)1(

1321



 















 













SS

SSSSd ll

Set 1 . We see that 0d , so we chose 0 , and

21

        .1)1(11

)()()()()(

5124245121515551

)0()01(21

01

)1()()(21)()1(









XXXXXX

XXddXXXddXX



 




The final error locator polynomial is .1)(5124)( XXX  

After deriving the Error Locator Polynomial (ELP) we have computed the
average number of iterations of the Berlekamp-Massey algorithm and its
deviation number. Next section plots if with further details.

3.1.2.2. Number of iterations and deviation for the Berlekamp-Massey

Algorithm

The expression the number of iterations is:

 .1
1

1

1

ˆ
, 































t
v

v

v

t

l
v

l

n

t

vl

vit (3.21)

In case of considering bit error probabilities, the number of iterations is:

  .1ˆ
1

,

ln

b

t

l

l

blitit PP
l

n
nn













 (3.22)

The expression for deviation in the number of iterations is:

.
2

))(1(

1

1
ˆ

,ˆ







v

vttv

v
vitn (3.23)

In case of considering bit error probabilities, the deviation in the number of
iterations is:

  .1ˆ
1

,ˆ

ln

b

t

l

l

blitnitn PP
l

n 











 (3.24)

22

Fig 3.2 Average number of iterations Berlekamp-Massey algorithm

Fig 3.3 Deviation in the number of iterations Berlekamp-Massey algorithm

When the number of errors in the codeword is higher than t, the number of
iterations of the Berlekamp-Massey algorithm is t, since it is not able to
determine a polynomial to find the erroneous positions.

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E
b
/N

o
 [dB]

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

E
b
/N

o
 [dB]

D
e
v
ia

ti
o
n
 i
n
 t

h
e
 n

u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

23

3.1.3. Chien’s search

The Chien search is an algorithm for determining roots of polynomials defined
over a finite field. The most typical use of the Chien search is in finding the roots
of error-locator polynomials encountered in decoding Reed-Solomon codes and
BCH codes.

It is well known that one of the most time-consuming stages of decoding
process of BCH and some other codes is finding roots of the error-locator
polynomial. The most widely known root finding algorithm is Chien search
method, which is a simple substation of all elements of the field GF(64) into the
polynomial, so it has very high time complexity for the case of large fields and
polynomials of high degree.

The number of iterations of Chien’s search is determined by the furthest
position of the k -th erroneous bits. If we consider that the furthest erroneous

position is in the bit of the codeword and that there are erroneous bits will be the

combinatorial number 












1

1

v

k
. If the total number of possibilities for having v

errors in n bits is the combinatorial number of 








v

n
 then the average number of

iterations of the Chien’s search when there are erroneous bits, denoted by vitn ,
ˆ ,

is

 .1
1

1

1

ˆ
, 































n
v

v

v

n

k
v

k

n

n

vk

vit (3.25)

Note that when the number of errors is zero, the number of iterations of Chien’s
search is also zero (there is no error in the codeword). On the contrary, if the
number of errors tends to the codeword length ()nv  , i.e. practically all the

bits of the codeword are incorrect, then the average number of errors tends to

the codeword length ().ˆ
, nn vit 

Given that the number errors are due to the channel impairments, the actual
number of iterations of the Chien’s search depends on the bit error probability

after the demodulation process, which is denoted by bP . Therefore, the number

of iterations of Chien’s method, itn , considering the effect of the demapping

process is

  .1ˆ
,,

ln

b

n

vl

l

bvitvit PP
l

n
nn













 (3.26)

24

The expression for deviation in the number of iterations is:

.
2

))(1(

1

1
ˆ

,ˆ







v

vnnv

v
vitn (3.27)

In case of considering bit error probabilities, the deviation in the number of
iterations is:

  .1ˆ
,ˆ

ln

b

n

vl

l

bvitnitn PP
l

n 











 (3.28)

3.1.3.1. Number of iterations and deviation for the Chien’s search

Fig 3.4 Average number of iterations for the Chien’s search

-5 0 5 10
0

10

20

30

40

50

60

E
b
/N

o
 [dB]

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

25

Fig 3.5 Deviation number of iterations for the Chien’s search

The minimum distance of a BCH code is 12min  td . This means that flipping

12 t bits or more may generate another codeword that belongs to the set of

possible codewords, therefore the decoder considers there are no errors.

The reason why the Chien’s search algorithm does not try all the 63 elements to
solve the ELP is because the noisy channel and the FEC of the decoder flip

12 t bits or more from the original codeword.

3.2. Proposed Low Energy BCH decoding

The decoding process of a channel coding algorithm represents one of the most
time consuming parts of the communication receivers. For that reason it is
necessary to introduce strategies for reducing its energy consumption.
Specially, when parallel techniques cannot be used and very strict energy
requirements have to be satisfied. That it is the case of medical applications,
which demands very high reliable communication. In particular this work
proposes to optimize BCH’s decoding stages by resorting to a priori knowledge.
This knowledge comes from:

1) The use of GF arithmetic.
2) Data frame information.
3) Cross-layer information and apply them to reduce of each stage.

The next sub-sections details the principles of each optimization.

-5 0 5 10
0

5

10

15

20

25

30

E
b
/N

o
 [dB]

D
e
v
ia

ti
o
n
 n

u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

26

3.2.1. Syndrome Computation

Binary GF has the nice property that the sum of two GF elements, denoted by

1x and
2x , raised to a power of two is equal to the raised power two of the sum

of the GF elements:

 ,)(2

21

2

2

2

1

ggg
xxxxy  (3.29)

being g2 the g-th power two, taking g an integer non-negative value. This
property is used for speeding up the computation of the syndromes, since it
means that it is not necessary to compute all Syndromes:

.)()()(

)()()(

)()()(

22221

2

33231

3

22221

2

21

1

tjvtjtj

t

jvjj

jvjj

jvjj

S

S

S

S



























 (3.30)

If it is applied (3.26) to (3.27), then the even Syndromes can be expressed in
terms of the odd ones as:

2

z
z

zS
S   (3.31)

where in (3.28) zS represents the GF value of the z-th even Syndrome and its

value is equal to the z shifts of the GF degree of the z/2 odd Syndrome. As a
result the even syndromes can be obtained from the odd ones by shifting [5].

3.2.2. Error Locator Polynomial Computation

It is not always necessary to apply the Berlekamp-Massey algorithm for
obtaining the ELP. When the number of errors in the codeword is lower than
four, it is possible to have closed-expressions of the Error Locator Polynomial of
amenable complexity (Table 3.2).

Num.
Errors

Error Locator Polynomial σ(x)

1 XX
S11)( 

2 20111)(XXX
ddS 

 

3 32 01201121)(1)(XXXX
dddddddS 

 

Table 3.2 Expressions of the Error Locator Polynomial σ(X).

It is known from the Berlekamp-Massey algorithm that the discrepancy is:

132

)1(

112

)1(

222

)1(

1321 











  











  ll SSSSd  (3.32)

27

Then,

34153

)2(

14

)2(

152

2132

)1(

131

10

01 SSSSSSSd

SSSSSd

Sd

dd








 (3.33)

Applying these equations instead of using the iterative Berlekamp-Massey
algorithm allows the decoder to obtain the ELP in a faster way.

But the Berlekamp-Massey algorithm also gives us information about the
number of errors in the codeword, since it is the degree of the polynomial. So if
we want to avoid the Berlekamp-Massey algorithm we need another way to
know the number of errors.

Actually there is a way to know if the number of errors is zero, one or more
through the Syndromes (Table 3.3):

- Zero errors: If the received codeword does not contain any error the
value of Syndromes is zero.

- One error: If there is one error in the codeword the Syndromes follow a
specific pattern:



1

4

4

1

3

3

1

2

2

1

4)(

3)(

2)(

SS

SS

SS

S

j

j

j

j

















 (3.34)

Being j the erroneous position of the codeword.

- Two or more errors: If the Syndromes do not satisfy any of the above

cases there are two or more errors in the codeword.

Num.
Errors

Condition

0 01 S 03 S

1 01 S 13 3SS 

2 01 S 13 3SS 

Table 3.2 Number of errors in the codeword based on the Syndrome.

Since we are working with a BCH (63, 51, t = 2) code the decoder does not

need the Berlekamp-Massey algorithm to compute the ELP, the expressions of
the ELP are enough.

28

3.2.3. Chien’s Search

In order to find out the erroneous positions in the word the decoder searches
the roots of the ELP using the Chien’s search method. It can take a long time to
find the zeroes of the polynomial because it is a brute-force method. This
project shows several ways to reduce the time of the Chien’s search:

1) Knowing the data frame structure is possible to avoid some iterations in the
Chien’s search.

2) Knowing the structure of the error-locator polynomial coefficients is possible
to update the polynomial every time that a solution is found. By doing so, the
degree of the polynomial decreases.

3) Avoid the Chien’s search in the case that there are only two errors in the
word.

3.2.3.1. Knowing Data Frame Structure to reduce the load of Chien’s

search

If the number of erroneous bits is higher than two, then Chien’s search has to
test, in a serial way, the GF elements of the BCH code into the Error Locator
Polynomial.

However, the information of the data frame can be used in order to:

1) Improve the error control process.
2) Speed-up the Chien’s search.

Note that if some fields or bits of the received codeword are known then it is
possible to pre-fix them before starting the classical BCH decoding process.
That assumption is reasonable since some fields of the frames are known due
to:

1) They are reserved.
2) Identify the type of frame.
3) They are forbidden.
4) Used for extending the code.

In this way the WER is reduced since the aided information increase the error
correction capacity of the code. In addition the number of iterations of the
Chien’s search is also reduced since there are some positions in the codeword
known at the receiver side.

As example case Fig 2.3 shows the frame structure for the IEEE 802.15.6
Physical Layer Convergence Procedure (PLCP). This frame is protected by
BCH(63,51,2) code and has a CRC of 4 bits allocated in the Header Control
Sequence (HCS). The message length of the PHY layer is 31k whereas the

codeword length is 63n .

29

This frame has 2 reserved bits and 32 bits that are zero due to the BCH code is
extended from the BCH(31,19,2). So, all these 34 bits correspond to GF
positions that are not necessary to test in the Chien’s search since they are
known at the receiver side. As a result, the introduction of aided information in
the BCH’s decoder permits to reduce its load if it is compared to the
conventional non-data aided BCH decoder. For instance the rate spans three
bits but some of its combinations are not used since there are less code rates
than possible combinations.

Fig 3.6 Average number of iterations for the Chien’s search

Fig 3.7 Deviation number of iterations for the Chien’s search

-5 0 5 10
0

10

20

30

40

50

60

E
b
/N

o
 [dB]

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

Classic.Chien

Reduced.Chien

-5 0 5 10
0

5

10

15

20

25

30

E
b
/N

o
 [dB]

D
e
v
ia

ti
o
n
 i
n
 t

h
e
 n

u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

Classic.Chien

Reduced.Chien

30

Due to the reduced Chien algorithm just tests 29 out of 63 elements, the
consumed energy in this stage is reduced to more than a half.

3.2.3.2. Structure of the Error Locator Polynomial Coefficients

The Error Locator Polynomial has the next structure when there are v

erroneous positions in the codeword.

  ..1 ,1,1 vgg
XXX vvv    (3.35)

Being X the GF field element to test, whereas vjg , is the j-th GF coefficient of

the ELP when there are v errors in the codeword. The coefficients of the Error

Locator Polynomial have a structure that depends on the positions of the v

roots. In particular, the general expression for the j-th coefficient of an ELP of
degree v is:

,
1

1

11 112

2

1

1, 








 


v

uu

p
v

uu

p
jv

u

pg

jj

juuuvj   (3.36)

being ujP the u-th erroneous position of the codeword.

Basically, from (3.34) we observe that the j-th GF coefficient of the ELP is
formed by the sum of the erroneous positions taken in groups of j elements.

Next, if separate the term of an erroneous positions, for instance, the first one
1p

, the expression (3.34) results:

,
1

1

12

12

112

2

1

1

12

21,



























v

uu

p
v

uu

p
jv

u

p

v

uu

p
jv

u

ppg

jj

juuu

jj

juuvj









 (3.37)

However, if we compare (3.33) and (3.32), then we obtain that the two groups of
summatories correspond to the values of the j-1-th and j-th coefficients of an

ELP with v-1 erroneous positions, denoted as
vjg ,1 and

1,1  vjg
 respectively

,
1

1

12

12

112

2

1

11,

12

21,1

































v

uu

p
v

uu

p
jv

u

pg

v

uu

p
jv

u

pg

jj

juuuvj

jj

juuvj









 (3.38)

In this way if we plug (3.34) into (3.33) then, the recursive relationship of the
ELP’s GF coefficients is:

31

 vjvjvjvj ggpg
  1,1,1,11,  (3.39)

This relationship is quite useful in the Chien’s search since it permits to updates
the ELP polynomial once a root has been estimated. In this case, the value of

1p would represent the root that has been detected in the Chien’s search after

testing a GF element. In this way, it is matched the degree of the ELP with the
number of roots to search which reduces the load of the Chien’s search. In this
case there are two techniques for obtaining the immediate ELP polynomial of
lower degree. Starting from the lowest degree coefficient from the highest one
as follows:












vj

j
vjvjvj

vjvj

gpgg

gpg

2,

1,
1,11,1,

,11,




 (3.40)

Or starting by the highest degree coefficient and descending to the lowest one
as:










 

11,

,
1,11,1,

1,1,1

jv

vj
vjvjvj

jjjj

gpgg

pgg




 (3.41)

Both strategies of updating the ELP polynomial are quite similar since only differ
in the initial condition. However, if it is started from the highest GF degree is a
bit easier to get the GF degree of the ELP’s polynomial.

3.2.3.3. Solving the Error Locator Polynomial when there are two errors

The terms 2,1g
 and 2,2g

 represent the coefficients of first and second degree of

the ELP. In order to detect an erroneous position is necessary to evaluate the
GF value of the possible erroneous position into the ELP. If the value of ELP is
null, then the tested GF value corresponds to an erroneous position of the
codeword.

.01)(12,212,11 2


 pgpgp
X  (3.42)

Next, if it is multiplied (3.38) by 1p :

.2,112,21
gpgp  


 (3.43)

At that point, the strategy is to get the addition of two complementary GF
elements in the left side part of (3.39). In order to obtain it, is necessary to raise
to power two all the coefficients of (3.39) by taking advantage of GF properties.

In this way, after some posterior manipulations with 2,2g
 is obtained:

32

2,22,112,212,2 222 ggpgpg 

  (3.44)

However, from (3.13) the expression of 2,2g
 is equal to 212,2 ppg 

 , being
1

p

and
2

p the two erroneous positions of the codeword. Next, if the distance

between the two erroneous positions is r ,

 ,
12

rpp  (3.45)

and (3.39) is introduced into (3.38), the next expression results:

2,22,12 ggrr    (3.46)

This equation tells us that the key parameter for decoding two errors is the

distance between them not their respective positions. Although the terms 2,1g


and 2,2g
 depends on the erroneous positions of the codeword, if their relative

distance r is the same, the expression (3.40) produces identical value.
Consequently, it is possible to match the value of r with the magnitude

2,22,1
2 gg  to obtain r . This matching can be done in a Look-Up-Table (LUT) or

in logical gates. The number of entries of the LUT is reduced to 2/)1(n , since

it is possible to apply the symmetry of the two erroneous positions in the GF.
Recall that in GF a negative GF degree is converted to a positive one by adding

the GF order, xnx   .Note that if the value of
2,22,1

2 gg  belongs to a

forbidden combination, it is possible to conclude that a decoding failure has
happened. So, it is not necessary to compute any CRC or Syndrome which
speeds up the decoding process. Moreover, take into account that for the case
of two errors the use of (3.39) only requires the computation of 2 syndromes
instead of 2t ones required for solving the key-equation of BCH decoder ¡Error!
No se encuentra el origen de la referencia..

After estimating the distance between the two erroneous positions, the

detection of the erroneous positions
1

p is carried out by means of the next

expression:

 ,
2

2,2

1

2 12,2
gr

prpg 
 

 (3.47)

which corresponds to a bit shifting of the distance of r from
2,2

g . So, it is not

necessary any division. After computing,
1

p and r the second erroneous positions

comes from (3.39). Note that the symmetry properties permit to apply (3.39) and
(3.41) with independence of knowing what root is the biggest one. In case that
having a number of errors higher than two, then it is applied Chien’s search with
updating the coefficients of the ELP once the roots of the ELP are detected.
Once, the degree of the ELP is equal to two is applied the reduced load strategy
for the two erroneous positions. This solution is even valid for ELP of higher
degree if they have the next pattern:

33


  ,1

2222,
222222,1 222 uuuuu

XXX
gg



 
 

(3.48)

Following the same example that we used to prove the Berlekamp-Massey
algorithm we proceed to prove the two errors algorithm. In example the received
codeword contains 2 errors in the positions 55 and 12 and its Error Locator

Polynomial is .1)(2451 XXX  

354512

2 2,22,1













rr

ggrr

Using the LUT we find out that .20r Then ,
2

2,2

1

2 12,2
gr

prpg 
 



.556388
2

420
1 


p Therefore .12637575205512  rpp

Finally, after obtaining Chien’s search, comes the correction of the received
codeword. Given that the studied BCH code is the binary one, the correction of
the received codeword consists on the bit flipping of the erroneous positions
obtained in the Chien’s search. Nevertheless, it does not mean that the
corrected codeword be the true one. There are several techniques to carry out
this process. The next section details them.


3.2.4. Checking the Validness of the Corrected Codeword

In order to assess the validness of the corrected codeword two strategies are
proposed:

1) Fast Computation of the Syndromes of the corrected codeword.

2) Resort to an additional Cyclic Redundancy Code (CRC) to check if the
corrected message codeword is the true one.

3.2.4.1. Fast syndrome update

After the Chien’s search, BCH’s decoder knows the number of erroneous bits in
the codeword, their positions and the syndromes of the received data.
Therefore, if it is not necessary to compute the Syndromes since its load
depends on the codeword length n. The proposed alternative consists on
updating the Syndromes of the received data by adding the GF elements of the
erroneous positions normalized by the number of Syndrome. Thus, their
updating law is:







v

q

pj

oldjnewj

qSS
1

,,
 (3.49)

Where
newj

S
, oldj

S
,

represent the j-th syndrome after and before the decoding

process, v is the number of erroneous bits and
q

p is the q-th position of the

received codeword with erroneous bit, whereas the symbol  expresses sum in

34

modulo two, i.e. or-exclusive. The syndromes that have to be recomputed are
only the odd ones, and if there were one syndrome that after the updating
process was different from zero, then the updating process would finish. In this
stage, the WER given by Syndrome strategy tends to be:

  qn

b

t

q

q

b
pp

q

n
WER













  11

0

 (3.50)

Which it is the BCH bound for hard decoding. The larger is the codeword length
the closer is the approximation[5].

3.2.4.2. CRC for determining the validness of the codeword

An additional degree of information comes from the use of a CRC code in the
frame structure. Its main its use pursues to determine if the message contained
in the codeword is correct. This strategy is still valid although the syndromes are
not zero after the decoding process. This strategy does not require carry out
any Galois Field operation but reduces the rate. However, this strategy has also
an error probability in determining the correct codeword [10]:

  ,1
1

qq dn

b

n

tq

d

bq ppAWER




  (3.51)

being
b

p the erroneous bit probability,
q

d is the q-th Hamming distance of the

code whereas
q

A represents the number of codewords with Hamming distance

equal to
q

d .

At that point it has been detailed how to design an efficient BCH decoder guided
by hard-decisions .The next step uses the additional information to obtain a soft
BCH decoder of reduced load. The following section details it.

3.2.5. Soft decoder

In information theory, a soft-decision decoder is a class of algorithm used to
decode data that has been encoded with an error correcting code. Whereas a
hard-decision decoder operates on data that take on a fixed set of possible
values (typically 0 or 1 in a binary code), the inputs to a soft-decision decoder
may take on a whole range of values in-between. This extra information
indicates the reliability of each input data point, and is used to form better
estimates of the original data. Therefore, a soft-decision decoder will typically
perform better in the presence of corrupted data than its hard-decision
counterpart.

35

Fig 3.8 Soft-Decision scheme.

Soft BCH decoders are designed in order to i) compute the Log-Likelihood
Ratios (LLRs) of the received codeword, ii) determine the p-lowest LLRs, iii)
modify the least p-reliable positions of the codeword until a maximum set of 2p
hard-decided codewords and iv) evaluate by each candidate to codeword the
BCH hard-decoder. Given that the soft-BCH decoder introduces an iterative
mechanism for selecting the candidate codewords, the elimination of the
iterations in the BCH-Hard decoder permits to obtain practical soft-BCH
decoders. This strategy is faster than the use of a hard BCH code with the
same codeword length and higher protection level. Faster in the sense that the
increase of the protection level of the soft-BCH does not imply the reduction in
the transmission rate of BCH hard with higher protection level and in the
number of iterations. If only consider the average number of iterations of
Chien’s search [8], the trade-off for selecting the number of errors that can
correct the soft-decoder will be:

   ,1
1

1
1

2 2

2

2
1

1

1 






 








 
n

t

t
n

t

t
en (3.52)

being
e

n the number of positions that the soft-decoder can consider as no

reliable, whereas 1n ,
1

t and
2n ,

2
t correspond to the codeword length and the

maximum error correction capabilities of the BCH code with soft-decisions and

hard ones. In our case,
1

t is equal to two and the BCH soft decoder follows the

Chase-3 Algorithm with
1

tn
e
 . [9] The expression (3.52) assumes the worst

case criterion for designing the soft-decoder since considers that it is necessary

to test all combinations of
e

n possible error patterns to successfully decode the

BCH’s codeword [9]. After presenting the hard and soft BCH decoders, next
section presents the results.

36

4 Results

This section shows the results obtained in the decoder about the Word Error
Rate and the decoding time.

Firstly we show the WER obtained with the strategies submitted above. Then
we show the improvement of the WER when a soft decoder is implemented.

Next we show the results about the decoding time, we compare the time
obtained in each stage and the total decoding time between a classic BCH
decoder and a fast BCH decoder.

4.1. Word Error Rate

4.1.1. Hard decoder

Fig 3.9 WER comparison of BCH(63,51,2) assuming that receiver uses CRC and Syndrome

information for estimating the true WER.

This graph shows the WER obtained when we use Syndromes, CRC, and both
to check the validness of the codewords.

The Syndromes strategy has a WER away from the True WER because when
the decoder uses the FEC find other codewords that does not correspond with
the original one.

1.5 2 2.5 3 3.5 4
10

-3

10
-2

10
-1

10
0

E
b
/N

o
 [dB]

W
E

R

WER Hard True

WER Hard Synd

WER Hard CRC

WER Hard Synd+CRC

37

But the CRC in the message helps the decoder to decide if the final codeword
contains the same message than the original codeword.

Using both Syndromes and CRC the decoder is able to obtain a WER similar to
the true WER.

4.1.2. Soft decoder

Fig 3.10 WER comparison for Hard and Soft decoding of BCH(63,51,2) assuming that receiver

uses CRC and Syndrome information for estimating the true WER.

The soft decoder allows the decoder to improve the true WER, therefore if our
BCH code is capable to correct up to t errors, using a soft decoder most of the

times the decoder will be able to correct more than t errors.

The WER of the CRC is closer to the true WER than the syndromes WER, this
is because the syndromes is some cases consider that the corrected codeword
is the original codeword although it has erroneous positions compared to the
original. This can happen if the corrected codeword overcomes the minimum
distance of the code.

Moreover a soft decoder increases the probability of overcoming the minimum
distance of the code because it flips more bits than the hard decoder. So it is
easier to obtain a codeword of the code which is different from the original. That
is the reason why the WER of the syndromes when using a soft decoder is so
low, because sometimes it obtains the original codeword and sometimes
generates another one.

The next graph shows how the soft decoder performance depends on the rate
of the code.

1.5 2 2.5 3 3.5 4
10

-3

10
-2

10
-1

10
0

E
b
/N

o
 [dB]

W
E

R

WER Hard True

WER Soft True

WER Hard Synd.

WER Soft Synd.

WER Hard CRC

WER Soft CRC

WER Hard Synd.+CRC

WER Soft Synd.+CRC

38

Fig 3.11 WER comparison for Hard and Soft decoding for BCH(63,51,2), BCH(63,45,3) and

BCH(63,39,4).

The soft decoder performs better for high values of t , because it is harder to

overcome the minimum distance of a codeword.

4.2. Decoding time

4.2.1. Syndromes

Fig 3.12 Syndromes time comparison between the classic and the fast decoder.

1.5 2 2.5 3 3.5 4
10

-3

10
-2

10
-1

10
0

E
b
/N

o
 [dB]

W
E

R

WER Hard t=2

WER Soft t=2

WER Hard t=3

WER Soft t=3

WER Hard t=4

WER Soft t=4

0 1 2 3 4 5 6 7 8 9 10

10
0.4

10
0.5

10
0.6

E
b
/N

o
 [dB]

A
v
e

ra
g

e
 T

im
e

 [
m

s
]

Syndrome.Classic

Syndrome.Fast

39

The fast decoder is two times faster in this stage compared to the classic one
since only the half of the Syndromes are computed.

4.2.2. Error-Locator polynomial

Fig 3.13 ELP time comparison between the classic and the fast decoder.

The fast decoder computes the error-locator polynomial much faster than the
classic one because the iterative Berlekamp-Massey algorithm is not needed,
unlike the classic decoder.

4.2.3. Chien’s search

Fig 3.14 Chien’s search time comparison between the classic and the fast decode.

0 1 2 3 4 5 6 7 8 9 10
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

o
 [dB]

A
v
e

ra
g

e
 T

im
e

 [
m

s
]

ELP.Berlekamp

ELP.Fast

0 1 2 3 4 5 6 7 8 9 10
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

E
b
/N

o
 [dB]

A
v
e

ra
g

e
 T

im
e

 [
m

s
]

Chien.Classic

Chien.Fast

40

The fast decoder does not need to use the Chien’s search algorithm to find the
zeroes of the error-locator polynomial, the coefficients of the polynomial and a
Look-Up Table are enough to find the erroneous positions of the codeword.
While the classic decoder searches the roots of the ELP using the Chien’s
search method. It can take a long time to find the zeroes of the polynomial
because it is a brute-force method.

4.2.4. Checking the validness of the corrected codeword

Fig 3.15 Decoding time comparison between the classic and the fast decode.

The classic decoder computes all the Syndromes of the corrected codeword
from zero to determine if it is valid, while the fast decoder updates the
Syndromes of the received codeword by adding the GF elements of the
erroneous positions normalized by the number of Syndrome.

5 Conclusions

BCH codes belong to the class of linear cyclic codes supported by an algebra
de Galois Field, GF. In particular, the decoding processes of BCH codes have
the following stages: i) Computation of the Syndromes; ii) Determination of the
Error Locator Polynomial; iii) Solving the roots of the ELP; and iv) Validating the
corrected codeword.

From all these stages, the Computation of the Syndromes and the Solving
process of the ELP are the most time consuming stages since they depend on
the codeword length. In order to speed up the Solving Process of the ELP this
project proposes to express the coefficients of the ELP in terms of the
erroneous positions of the codeword. In this way, it is possible to i) update the
ELP once a root has been detected; and ii) obtain decoding architectures of
reduced complexity.

0 1 2 3 4 5 6 7

10
1

E
b
/N

o
 [dB]

A
v
e

ra
g

e
 T

im
e

 [
m

s
]

Dec+Synd+CRC.Classic

Dec+Synd.Classic

Dec+CRC.Classic

Dec+Synd+CRC.Fast

Dec+Synd.Fast

Dec+CRC.Fast

41

In particular, it is shown that if there are two erroneous bits separated a power
of two then it is possible to obtain a low complexity solution for the two
erroneous positions. That solution can be implemented in reduced size LUT or
in a reduced number of logical gates.

In addition, for this case it is shown that only is required to compute the odd
syndromes which reduce the complexity of the Computation of the Syndromes’
stage to the half. Finally, in the validating process of the corrected codeword is
provided a fast updating strategy of the syndromes that avoids their
dependence from the codeword length.

6 Future lines of research

 Join design of the Berlekamp-Masey algorithm and the Chien’s search
algorithm.

 Extend the fast solution of two errors to three and more.

 Obtain the fast solution of two errors without using a Look-Up Table.

7 Bibliography

[1] D.Chase,”A class of algorithms for decoding block codes with channel

measurement information,” IEEE Trans. Inf. Theory, vol.IT-18,nº1,pp. 170-
182,Jan. 1972.

[2] R.Koetter and A.Vardy,”Algebraic soft-decision decoding of Reed Solomon
Codes,” IEEE Trans. Inf. Theory, vol. 49,nº 11,pp.2809-2825,Nov. 2003.

[3] S..Lin and D.J.Costello, Error Control Coding: Fundamentals and
Applications. Englewood Cliffs, NJ:Prentice-Hall, 2nd. Edition, 2004.

[4] Y.Lee,H.Yoo,I.Park,”Low-Complexity Parallel Chien Search Structure Using

Two-Dimensional Optimization”,In Proc. IEEE Trans. On Circuits and
Systems-II:Express Briefs,vol.58,nº8,August 2011,pp.522-526.

[5] N.Ahmadi,M.Hasan,A.Dipta,T.Adiono,”An Optimal Architecture of BCH
Decoder”, In Proc. Application of Information and Communication
Technologies (AICT), October 2010, pp.1-5, Tashkent, Uzbekistan.

[6] C.Chu,Y.Lin,C.Yang,H. Chang,”A Fully Parallel BCH Codec with Double
Error Correcting Capability for NOR Flash Applications”, In Proc. Of IEEE
Acoustics, Speech and Signal Processing (ICASSP) Conference,
2012,pp.1605-1608, Kyoto, Japan.

[7] J.Cho,W.Sung,”Strength-Reduced Parallel Chien Search Architecture for
Strong BCH Codes”, In Proc. IEEE Trans. On Circuits and Systems II-
Express Briefs, vol. 55,nº5,May 2008,pp.427-431.

42

[8] W.Xueqiang,P.Liyang,W.Dong,H. Chaohong,and Z. Runde,”A High-Speed

Two-Cell BCH Decoder for Error Correcting in MLC NOR Flash Memories”,
In Proc. IEEE Trans. On Circuits and Systems, II: Express Briefs, vol.
56,nº11,November 2009, pp. 865-869.

[9] H.Yoo,Y.Lee,I.Park,”Area Efficient Syndrome calculation for strong BCH
decoding”, In Proc. IEEE Electronic Letters, January 2011,
vol.47,nº2,pp.107-108.

[10] 802.15.1 IEEE standard for Information technology –Telecommunications
and information exchange between systems- Local and metropolitan area
networks- Specific requirements Part 15.1 : Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Wireless
Personal Area Networks (WPANs).

