

Software Languages Lab
 Faculty of Computer Science
 Vrije Universiteit Brussel (VUB)

Meta-level Engineering for
Debugging Asynchronous
Applications in JavaScript

A Thesis presented for the Master degree in
Computer Science

Felipe Caicedo Moreno

 Promotor: Prof. Dr. Elisa Gonzalez Boix
 Advisor: Dr. Carlos Noguera

 June 2014

2

Abstract

The emergence of AJAX introduced the asynchronous paradigm to web-based applications,
allowing developers to implement new solutions for interacting with the server in an
asynchronous way. However, the paradigm also introduced some problems given that JavaScript
has a concurrency model based on an event-loop [16]. In fact, web-based applications introduce
different communicating event loops that process different types of events. Such model allows
implementing non-blocking web pages, but divides the control flow in two parts: the request
process and the reception process, which makes the code difficult to understand and maintain.

Taking into account the importance of the debuggers because they help developers understand
the control flow of a program and identify and resolve discrepancies with the intended behaviour,
the problems noted above lead us to identify three challenges that a tool for debugging
asynchronous JavaScript programs must face: message-oriented, open debugging and
heterogeneity that the current debugging tools for JavaScript applications cannot overcome.

This thesis presents a reflective model that we call MIAJ – Meta-level Infrastructure for
Asynchronous JavaScript Applications. It is designed for giving support in debugging
asynchronous JavaScript programs, and overcoming the challenges of debugging applications
based on communicating event-loops. This infrastructure reifies the communication traces
capturing interactions (messages) exchanged between event loops. The model combines ideas
from classic channel-oriented reflective frameworks [1] with a transmitter-receptor model from
AmbientTalk’s/M language [3]. It supports, by default, web abstractions such as DOM,
distributed communication or MySQL. MIAJ allows developers to reify any type of event (e.g.
jQuery, promises, AJAX, etc.), and ends with the heterogeneity of web-based applications. It
furthermore provides support for establishing the causality flow between the events processed
by the communicating event loops. Based on our architecture, we propose a distributed
debugger for asynchronous JavaScript applications, the first one for online use, to the best of
our knowledge. This implements the traditional debugging features such as state inspection
(allowing us to pause the message processing), stepping (allowing us to process paused
messages), causal link browsing (allowing us to establish the happened-before relationship
between messages), and open debugging (allowing actors to disconnect and reconnect to the
debugging session and to keep control of the processed messages while disconnected).

3

Acknowledgments

I would like to give special thanks to my project supervisors Elisa Gonzalez and Carlos Noguera, in
the first place for allowing me to participate in this thesis, and in the second place for their
patience, support, guidance and on-going work during its elaboration.

Also thanks to the whole team of SOFT Lab for their help; providing feedback with presentations,
resources and suggestions. The quality of this thesis would not be the same without all the help
offered, especially by Elisa and Carlos.

Secondly, I would like to thank my family because they are my real support. To my mother, a
tireless campaigner and my personal advisor; to my father, a tireless motivator and inspiration,
and to my siblings, a key part in all I do.

And last but not least, many thanks to my dance partner for her support during the stressful
moments while I was working on this thesis.

4

Content table

1	
 Introduction ... 8	

1.1	
 Context .. 8	

1.2	
 Motivation .. 9	

1.2.1	
 Case Scenario: Library application .. 9	

1.2.2	
 Challenges of Debugging Distributed Asynchronous JavaScript 10	

1.3	
 Goals and Contributions .. 13	

1.3.1	
 Contributions ... 13	

2	
 Distributed Asynchronous Applications in JavaScript .. 14	

2.1	
 Introduction .. 14	

2.2	
 Concurrency in JavaScript .. 17	

2.3	
 Conclusions ... 19	

3	
 Related Work .. 20	

3.1	
 Existing Debugging Tools .. 20	

3.1.1	
 Debugging Asynchronous JavaScript Applications .. 20	

3.1.2	
 Debugging Asynchronous non-JavaScript Applications .. 22	

3.2	
 Meta-level Engineering .. 25	

3.2.1	
 Introduction ... 25	

3.2.2	
 Meta-level Engineering in JavaScript ... 25	

3.2.3	
 Meta-level Engineering Architectures for Distributed Computing 27	

3.3	
 Conclusions ... 30	

4	
 Meta-level Infrastructure for Asynchronous JavaScript Applications 32	

4.1	
 Introduction .. 32	

4.2	
 MIAJ .. 33	

4.2.1	
 Meta-channels ... 34	

4.2.2	
 Messages ... 34	

4.2.3	
 Channels Context .. 35	

4.2.4	
 Execution Runtime ... 35	

4.3	
 APIs ... 36	

4.3.1	
 MIAJ ... 36	

4.3.2	
 Channel .. 37	

4.3.3	
 Meta-channel ... 38	

4.3.4	
 Message .. 39	

4.4	
 Implementation ... 40	

4.4.1	
 Message Reification ... 40	

4.4.2	
 Channels .. 42	

4.4.3	
 Meta-channels ... 49	

4.5	
 Deployment ... 50	

5

4.5.1	
 Deploying MIAJ .. 50	

4.5.2	
 Deploying Channels on MIAJ .. 51	

4.6	
 Summary ... 51	

4.7	
 Case Study: Causeway on Top of MIAJ ... 53	

4.7.1	
 Causeway Meta-channel .. 53	

4.7.2	
 Applying Causeway to the Library Application .. 54	

4.8	
 Conclusions ... 55	

5	
 JAD: a JavaScript Asynchronous Debugger ... 56	

5.1	
 Architecture .. 56	

5.2	
 Features .. 57	

5.3	
 Debugging JavaScript Applications ... 60	

5.4	
 Implementation ... 61	

5.4.1	
 Debugger Meta-channel ... 61	

5.4.2	
 JAD from an User’s Perspective .. 67	

5.5	
 Employing JAD in the Library Application ... 71	

5.5.1	
 Scenario ... 71	

5.5.2	
 Debugging Process .. 71	

5.6	
 Conclusions ... 76	

6	
 Conclusion .. 77	

6.1	
 Summary ... 77	

6.2	
 Our Approach .. 77	

6.2.1	
 Meta-level Engineering in JavaScript ... 78	

6.2.2	
 An Online Message-oriented Debugger for JavaScript .. 78	

6.3	
 Limitations and Future work ... 79	

6.4	
 Contributions .. 80	

7	
 References .. 81	

8	
 Appendices ... 83	

8.1	
 Appendix A ... 83	

8.2	
 Appendix B .. 85	

6

List of figures

Figure 1: Borrowing a book process .. 10	

Figure 2: Communicating event loops ... 11	

Figure 3: AJAX interactions .. 14	

Figure 4: Non-blocking I/O VS blocking I/O .. 15	

Figure 5: Event-loops in client side ... 18	

Figure 6: FireDetective Architecture. Figure extracted from [32]. .. 21	

Figure 7: Causeway user interface. Extracted from [25]. .. 22	

Figure 8: REME-D architecture. Figure extracted from [4]. .. 24	

Figure 9: Meta-object VS Channel reification. Extracted from [1]. .. 28	

Figure 10: Channel reification model scheme. Extracted from [1] ... 28	

Figure 11: REME-D, far references architecture. Extracted from [3] ... 29	

Figure 12: Communicating event-loops .. 32	

Figure 13: MIAJ overview .. 33	

Figure 14: jQuery click events reification ... 40	

Figure 15: MySQL channel .. 48	

Figure 16: Using Causeway debugger, book_info_response .. 54	

Figure 17: JAD Architecture ... 57	

Figure 18: Link causality, one event-loop in the server .. 59	

Figure 19: Link causality, two event-loops in the server .. 59	

Figure 20: Establishing a turn for a message .. 62	

Figure 21: Pause process .. 64	

Figure 22: Debugger manager default client view .. 67	

Figure 23: Debugger manager default server view ... 68	

Figure 24: Debugger manager happened-before relationship between messages 69	

Figure 25: Debugger manager controls .. 70	

Figure 26: Debugger manager controls part II .. 71	

Figure 27: Library web application, bug detected .. 71	

Figure 28: JAD in action. Debugging a client message ... 73	

Figure 29: JAD in action. Debugging a client message part II ... 73	

Figure 30: JAD in action. Debugging a client message part III .. 73	

Figure 31: JAD in action. Debugging a server message .. 74	

Figure 32: JAD in action. Debugging a server message part II ... 74	

Figure 33: Library web application, bug found and fixed .. 75	

Figure 34: JAD in action. Detail view .. 76	

7

List of tables

Table 1: MIAJ API summary ... 36	

Table 2: Channel API summary .. 37	

Table 3: Meta-channel API overview ... 38	

Table 4: Message API overview ... 39	

Table 5: Debugger manager commands .. 69	

8

1 Introduction

1.1 Context

No more than 15 years ago, all web applications worked synchronously. One known example is
Gmail: every time a user wanted to check an incoming email, he or she could click on a button
called Refresh inbox. The action of that button was to reload the page. Indeed, any action or
request made by the user implied opening a new page or reloading the same one, thus blocking
the web browser from processing every request.

Nowadays, checking new emails does not require reloading a page, and indeed, does not require
any user action since servers can push information to clients. The asynchronous paradigm
introduced new solutions, but also introduced some problems because JavaScript has a
concurrency model based on an event loop [16]. This has the advantage of non-blocking pages,
but makes codes more difficult to understand and maintain.

Asynchronous models also introduced a type of function called callbacks, which are used for
evaluating the return value of asynchronous messages. Now imagine the following process in
asynchronous applications: obtaining, filtering and finally showing the information from a source.
As we can see, the processes are inter-dependent (e.g. we cannot filter the information before
obtaining it) and implemented with callbacks as follows:

getData(function(data){
 filterData(data,function(filteredData){
 showData(filteredData,function(){
 });
 });
});

As shown in the code snippet, the control flow of the application is now driven by the activation
of different callbacks. This leads to the phenomena called callback hell or pyramid of doom [11].
Such phenomena complicated both software development and maintenance, including debugging.

In view of the potential benefits of using asynchronous programming in JavaScript, the number
of these implementations has risen considerably in the past few years and with it, new patterns
for taming centralized and distributed asynchronous JavaScript. However, the variety of tools for
debugging these applications has not risen accordingly.

Debugger tools have an important role in the software development process; they provide
support for understanding the flow of a program (e.g. How should a developer interpret the tree

9

of asynchronous calls?) as in the previous example, and detect and resolve discrepancies with
the intended behaviour.

On the one hand, current debugging tools for JavaScript applications such as Chrome DevTools
[8], allows us to debug JavaScript applications only in the client browser, not allowing interaction
with the server, and limiting the debugging process. On the other hand, we can find tools such
FireDetective [32], which allows us to debug both sides of the communication, but always after
the application execution (we call these debuggers offline) and only for AJAX-oriented messages.

The goal of this thesis is to investigate debugging support for JavaScript applications, which
allows us to reify all communication between the different components of a web-application,
independently of the underlying technology being used.

1.2 Motivation

In order to have an overview of the challenges that suppose debugging asynchronous JavaScript
applications, we introduce the case scenario below. This will be used as a running example for the
rest of the thesis.

1.2.1 Case Scenario: Library application

Consider the case of a public library website, where the user can browse and borrow books. The
system has to check certain preconditions before allowing a user to borrow a book. First, the
system has to check whether the user is prohibited or blocked from borrowing books (e.g.
because the user returned a book one month late). Secondly, the system checks whether there
is enough copies of the book in stock. Finally, whether the user has not borrowed the allowed
maximum amount of books.

Implemented in a distributed asynchronous model, the process is as follows. When the user clicks
the button borrow book, the system launches the three asynchronous requests to check the
three aforementioned preconditions. These requests are received and processed by some
machine and returned to the client. Finally, each response received is collected and when the
three have arrived, the result is reported to the DOM as shown in Figure 1.

10

Figure 1: Borrowing a book process

 As shown, what applies here are instructions or statements executed in parallel, with no
apparent relationship between them. The three requests are sent at the same time, and appear
to have no relationship between them. Moreover, the control flow is divided into two parts, the
request process (e.g. user blocked) and the reception process (e.g. user_blocked_res).

1.2.2 Challenges of Debugging Distributed Asynchronous JavaScript

Debuggers are essential tools for developers; to begin with, they provide support for
understanding the control flow of a program, and detect and resolve discrepancies with the
intended behaviour. In sequential programs, all instructions or statements are executed in
sequence, building a stack of execution, which can be used, for example, for examining previous
states of the execution. Moreover, distributed programs involve different machines exchanging
messages between them through the use of communication channels. This implies that the stack
of execution now is distributed, which complicates the debugging process.

How to reproduce a bug if the application has different starting points and the whole application
is not executed in the same space of memory is a question that becomes even more difficult to
answer when the program is asynchronous.

11

JavaScript is based on the event-loop concurrency model [16], where all the requests/responses
or messages are processed one by one by a single thread called event loop. A web-based
distributed application like library involves the interaction of different event-loops.

Figure 1 shows three different threads of execution or event loops. One can consider that the
DOM runs in an event loop interacting with the main JavaScript event loop that runs the client
logical code, so, when a click occurs, a message is scheduled in the JavaScript event loop. In
other words, when a click is detected in the DOM and processed by the JavaScript event loop
(Message C In the image below), the callback associated to the event forward the three requests
to the server event loop.

Figure 2: Communicating event loops

Suppose that there is a bug that provides the false information that a book is always available. If
we want to find such a bug we should take into account different things:

• The debugging tool must go beyond the client browser, which means that the
debugging information is in different spaces of memory.
In this example, it is possible that the JavaScript logical code is reporting the
information incorrectly to the DOM, but it could also be possible that the information
received from the server is incorrect.

• All messages are treated as independent messages by each event loop, so,
supposing that the problem is in the server, how does the client know that a given
response was triggered by the request A (book_available)?

• Event loops never wait for responses locking the process, which sequentially means
no information between turns (a turn is the moment the event loop processes a
message and is atomic).

• The debugging tool needs to deal with disconnections and reconnections like MANET
applications for being able of analysing all the messages. If, while debugging a client,
debugging session disconnects, the debugging tool loses valuable information for
locating the bug.

We now further discuss the challenges that a debugger for distributed asynchronous JavaScript
application needs to face. Prior work has identified the following:

12

Message-oriented debugging. In sequential programs establishing the happened-before [12]
relationship between messages is relatively easy because the stack of the program reflects the
control flow of execution. However in asynchronous applications, establishing that relationship
requires other techniques because the call stack is always empty at the beginning and end of
processing a message (or turn). Notice that in Figure 1 the order of the requests and responses
is as follows:

• Click -> user_blocked -> book_available -> user_can_lend -> user_blocked_res ->
book_available_res -> user_can_lend_res

But if we want to create the happened-before relationship between these messages, it is not
enough to follow their order. The debugger must establish which request caused each one of the
three responses. The happened-before relationship of the messages from Figure 1 should
therefore be:

• Click
o User_blocked -> user_blocked_res
o Book_available -> book_available_res
o User_can_lend -> user_can_lend_res

Open debugging. Reproducing a bug is one of the hardest challenges while debugging an
application. Suppose that there is a bug in the borrow book request. Examining the causality
relationship between messages may be enough for finding it. But what happens when the
developer is trying to reproduce a bug, and the client disconnects from the debugging session
while processing the messages book_available and book_available_res?

The response to that question is that it would be impossible to locate the bug, because the bug
could come from these messages. Moreover, the happened-before relationship could not be
created because there are messages missing.

For this reason it is necessary to deal with disconnections and reconnections. If an actor is being
debugged and disconnects from the debugging session, the messages missing while
disconnected should be reported to the debugger when the actor reconnects.

Apart from these two challenges, web-based asynchronous applications present an additional
challenge that we call Heterogeneous debugging. The event loop of JavaScript not only
processes one kind of event since each event can be generated by different technologies (e.g.
DOM events are generated by jQuery, and the communication between client and server could by
means Sockets or AJAX), meaning that its structure can be different.

13

In Figure 1 we can observe three kinds of events: the click, the asynchronous request, and the
modification in the DOM for reporting the results. Now, suppose that a developer wants to pause
the execution of a program using a debugging tool. Pausing the execution in a program implies
that the actor must have a mailbox for saving the events that are going to be paused. But is it
necessary to have different kinds of events in a mailbox for each type of event? Thus allowing
the developer to pause the execution depending on the type of event?

A debugger for JavaScript applications should deal with and take into account this heterogeneity,
because in real applications there are more than three types of asynchronous events.

1.3 Goals and Contributions

A main problem to tackle is how to reify communication traces in order to capture interactions
(messages) exchanged between event loops; for this reason, our first goal is to explore a meta-
level architecture that allows us to reify communication traces, and based on this support, we
aim to develop the first prototype for debugging distributed asynchronous JavaScript
applications. To this end, we departure from the AmbientTalk debugger REME-D [3,26] and from
the classic oriented reflective framework [1].

1.3.1 Contributions

We now highlight the contributions of this work:

• Design of a meta-level architecture on top of web abstractions for asynchronous
JavaScript applications in order to reify communications traces. This is further
described in Chapter 4.

• Application of this meta-level architecture capturing communication interactions of
the following JavaScript technologies: Socket.io-Client [24], Socket.io-Server [24],
jQuery [10] on top of DOM (click events and HTML mutation), and MySQL for
Node.js [23].

• Design and implementation of a debugger based on Ambient oriented programming
principles.

14

2 Distributed Asynchronous Applications in JavaScript

This chapter discusses how web applications work and which elements are relevant to consider in
the definition of a meta-level infrastructure to reify communication traces.

2.1 Introduction

Establishing the causal relationship between synchronous computations is not that difficult
because, as mentioned before, the call stack reflects the order execution. Asynchronous
applications are completely different because computation is split in message processing and
return values captured by promises [5] or callbacks.

Moreover, JavaScript uses a concurrency model based on an event-loop [16] (which means that
all the computation is processed by its event loop), and processes different kind of events. This
fact makes it even more difficult to establish the causality between computation. This
heterogeneity of JavaScript led us to describe the events that could present problems while
constructing the causality flow between computations.

AJAX. Asynchronous JavaScript And XML [18] was the first technology supporting
asynchronous communication with the server. It is a programming technique for creating
interactive web applications. The requests or messages are sent using the API XMLHttpRequest
(or XHR) [17], and allows web applications to request and receive data from the server in the
background without having to reload the web browser.

Figure 3: AJAX interactions

15

The process of sending an asynchronous message using AJAX is as shown in Figure 3. First an
XHR object is created by some interactions from the DOM (for instance a click on the button
borrow book). One of the parameters at the time of creating that object is a callback, which will
gather the result of remote calls. Second, the object XHR requests a page from the server and
when the reply arrives, the callback is executed, modifying the DOM if needed. The actions in
points 3 and 4 represent remote communication and occur in the background for the client, as
such the web browser is not blocked and the user can still interact with the web page.

One disadvantage of using AJAX for messaging is that it does not provide support for
intercepting communications initiated from the server. AJAX techniques are normally used with
thread-based servers, which can process different requests at the same time by dedicating a
single thread for each request. And while a request is being processed the thread blocks
requests from processing in the same thread. However, this kind of server cannot initiate
communication. On the other hand, single-threaded servers such as Node.js [20] are never
blocked during the processing of a request, since it is an event-loop and can initiate
communication.

We can observe the difference between both types of servers in Figure 4. The result for every
request received by a single-thread server would be an OK, the real result (Res1) is returned
when processed (initiating the communication).

Figure 4: Non-blocking I/O VS blocking I/O

As is shown in the previous figure, all the responses of the requests in servers that use single-
threads are always OK with no data. Using this kind of server, AJAX would take this data as
correct, being actually incorrect. The response will be returned when the event-loop processes
the requests and AJAX does not provide mechanisms for catching that response.

16

In simple terms, an AJAX request is an asynchronous request sent to the server; while this
request is being processed, the server is blocked. It is only when the server is unblocked that the
response returns to the client (the server returns the response if, and only if, it is unblocked).
This is how AJAX captures the responses.

Push-based Communication is a model used for exchanging asynchronous messages between
two points. This model solves the problem detected in AJAX since, in this case, both clients and
server can initiate the communication.

This model is formed by two elements: subscribers and publishers. The subscribers, as the name
suggests, subscribes to messages sent by the publishers.

In the previous fragment of code, we can observe that the application is acting as subscriber and
publisher. On the one hand, the application subscribes to the event book_available_res; every
time it receives these messages the callback passed as a parameter is executed for evaluating
the return value. On the other hand, the application publishes a message called book_available
for getting the book information. Note that the communication is not blocking: the message is
pushed up to the server, and when it is ready the server will return the corresponding
information initiating communication.

On the other side of the communication, the server needs to subscribe to the event
book_available and publish the message book_available_res with the book information.

Unfortunately, the use of this model could lead us to the callback hell or pyramid of doom [11]
described in Chapter 1, because the return values are captured by callbacks.

Promises. To liberate the callback hell, JavaScript uses promises inspired by Argus’s Promises
[6]. These allow programmers to write asynchronous applications in a parallel way to
synchronous applications, because these serve as a proxy future value.

subscribe('book_available', function (book) {
 var res = getBook(book.id_book);
 publish('book_available_res', res);
});

subscribe('book_available_res', function (book) {
 //Show book info
});

publish('book_available', {id_book: 1});

17

A promise is a proxy of the returning value of an asynchronous request, in that way programmers
can use the return value without waiting for the result. Therefore, using promises for processing
a depending chain of asynchronous requests such as the example in Chapter 1 liberates the
problem of dealing with depending callbacks.

The example above uses the library Q [22] for JavaScript and represents the same example as
Chapter 1. We can observe that the problem of dealing with callbacks disappears in this example.
The first step getData returns a promise, but its result must also be a promise for filtering the
data. The process goes on and on until the last promise which shows the data.

With regards to the state of the promises, it is said that a promise is pending while it is waiting
for a value and resolved when it receives the corresponding value. A promise can be rejected as
well, for this reason a second callback is executed for handling the error. The example above
shows it.

2.2 Concurrency in JavaScript

As mentioned in section 1.2, JavaScript programs run inside a single-threaded event-loop [16],
this event-loop process all the events executed in the web browser independently of its type.

Q.fcall(getData)
.then(filterData)
.then(processData)
.then(function (data){
 //shows data
},function(error){
 //handle errors between step 1 and step 3
}).done();

18

Figure 5: Event-loops in client side

In Figure 5, we can observe that the events 1, 4, 7 and 8 are events from the DOM and for the
eyes of the programmer are processed by the DOM event-loop. However, what really happens is
that all the events are added to the main event-loop in order to be processed. For the DOM,
these events will be processed as if they were in an independent event-loop, but in a global
context, other types of events can be executed first.

The JavaScript event-loop may process events such as the following [31]:

• Page requests. Occurs when a web page is loaded. The first time that we access a
certain page, and every time we access another page through a link.

• Resources requests. In HTML, it is possible to include style files or JavaScript files
to offer a visual design of the web page. When this happens, every file included is a
resource request. All the files are loaded synchronously but not physically visible for
the user.

• Script invocation. It is possible to include JavaScript code directly within HTML,
not including the file that contains it.

• DOM events. Occurs every time the DOM changes or when an HTML element is
clicked. Includes all the mouse and keyboard events.

• Timeouts. In JavaScript, it is possible to execute a function in X milliseconds or
every X milliseconds.

This process is really important at the moment of establishing the relationship happened-before
because it guarantees correlativity between events.

Regarding the server-side, more than one independent event-loop can be possible, unlike the
client-side.

19

2.3 Conclusions

In this chapter, we presented the most important elements and characteristics of JavaScript
applications, and the abstractions and structure of the web applications that should be taken
into account in order to define a well-designed meta-level infrastructure.

20

3 Related Work

This chapter discusses the existing debugging tools, and their limitations for debugging
distributed asynchronous JavaScript applications. However, it is analysed which one of its
characteristics could be useful or should be taken into account in the design of the new tool.
On the other hand, others models of meta-level engineering relevant for this thesis are analysed
and discussed.

3.1 Existing Debugging Tools

We now discuss current debugging tools that can deal with distributed asynchronous JavaScript
programs and we also review relevant techniques for distributed asynchronous debugging
besides JavaScript. Therefore, we are going to separate these into two categories: debugging
asynchronous JavaScript applications and debugging non-JavaScript applications.

3.1.1 Debugging Asynchronous JavaScript Applications

Several debuggers are currently available for debugging JavaScript code; among others we can
find Firebug [21] Chrome DevTools[8] or Theseus [15]. They provide traditional debugging
support such as DOM inspection and modification, monitoring, breakpoints, variable inspection or
step-by-step execution among others.

These tools only allow client-side code debugging and DOM interaction. This means that for
debugging in the server-code, other tools should be used, meaning additional and independent
processes for debugging a distributed application.

Therefore, if a developer wants to debug a distributed application, he or she should use two or
more instances of different debugging tools in different spaces of memory, as well as the
likelihood of using different features. The related interaction between client and server is needed
to understand application behaviour, which in this case does not exist.

It is important to highlight that some of the tools do not directly deal with libraries as jQuery.
Firebug, for example, can use an extension called FireQuery [2] that supports code implemented
with that library. Note that there are a great number of libraries that do not have direct support
of these tools.

21

3.1.1.1 FireDetective
FireDetective [32] is an offline debugger that records the execution traces of a JavaScript
program executed both by the client and server. This tool uses the call level detail, recording the
names of the executed functions and methods, and the order in which they are called, enabling
the tool to reconstruct a call tree representation.

Figure 6 shows the overall architecture of FireDetective, which is divided into three components:

• A Firefox add-on for recording the JS traces and information about the abstractions,
which are specific to the web-domain.

• The server-tracer, installed in a Java Platform Enterprise Edition web server.
• The visualizer, both Firefox add-on and server-tracer, redirect the collected

information to it (using sockets) as shown in the figure below. The visualizer
processes and displays the given information in real-time.

Figure 6: FireDetective Architecture. Figure extracted from [32].

FireDetective provides support for determining the workflow causality. It allows tracing client-
server AJAX requests using only thread-based servers. However, there are some important
points to highlight:

• This implementation only supports Java EE Web servers. So, it is not possible to
apply distributed debugging using servers such as PHP.

• It is true that its model can be translated to other Web servers such as PHP or Ruby,
but cannot be applied to servers that use event loop concurrency (as explained in
section 2.1). So, to make this kind of web technologies extensible requires
redesigning from scratch.

• It is an offline debugger; as such, it cannot be used to manipulate the behaviour of
the program by means of traditional features such as pausing or breakpoints. The
debugging process can only be initiated when the application is finished.

22

• Only client-server interactions can be debugged. Interactions with the Databases or
file handling remain outside of the debugging process.

• Libraries such as Q for dealing with promises are not supported.

3.1.2 Debugging Asynchronous non-JavaScript Applications

3.1.2.1 Causeway
Causeway [25] is a message-oriented distributed debugger that provides an offline view from
trace files generated by the debugging process. It was created specifically for distributed
applications built as communicating event-loops, in particular E [16]. However, applicable to
JavaScript, it depends on generating the trace files with the corresponding code instrumentation.
The figure below shows the four different views for the communication traces: the process order
view, the message order tree, the stack frame view and the source code view.

Figure 7: Causeway user interface. Extracted from [25].

23

Process Order View. In this view we can observe the different process within the debugging
session (buyer, product and accounts in this case). Selecting the tab of the corresponding
process. We can observe a 2-level tree of the events in chronological order. All the parent items
are received events.

Message Order Tree. This view shows the happened-before relationship between events,
showing which events caused others.

Stack Explorer. The stack explorer shows the events that caused the event selected in the
message order view. It is also a 2-level tree and the parent node represents a sent event.

Source Code View. This view shows the source code that caused the message selected in the
message order tree.

In comparison to FireDetective, it is applicable to different web technologies. Developers can
generate the traces and use the views previously explained for debugging a given application.
However, since it is offline, it does not allow us to use the traditional debugging features such as
breakpoints or pausing.

3.1.2.2 REME-D
REME-D [4,26] –Reflective Epidemic Message-Oriented Debugger – is a distributed debugger that
supports the features of Ambient-Oriented programming [27] paradigms; non-blocking
communications, ad-hoc networks and frequent network disconnections. It is a debugger that
adapts the notions of sequential debugging, such as step-by-step execution or state
introspection for ambient-oriented debugging.

The tool moreover combines these features with message-oriented architecture based on event-
driven debuggers such as Causeway.

As a debugger for ambient-oriented programming, built on an event-loop concurrency model, its
principles could be translated into other languages built on the same model, such as distributed
asynchronous JavaScript. For this reason, the two challenges that address enabling distributed
debugging in ambient-oriented programs are exactly the same for debugging distributed
asynchronous JavaScript applications. These challenges are message-oriented debugging and
open debugging.

24

Figure 8: REME-D architecture. Figure extracted from [4].

In the image above, we can observe the architecture of REME-D, which consists of an actor called
debugger device (which initiates the debugger session), infected devices joined to the debugging
session dynamically and devices that run the program, but do not form part of the debugging
session. A device can decide if wants to be debugged.

Each actor within the debugging session has a dedicated object (grey objects) called local
managers; these implement the main debugging features of REME-D such as state inspection or
stepping. Moreover, all the local managers maintain bidirectional communication with the
debugger manager.

This debugger is able to identify every distributed message and establish the relation happened-
before among them. Furthermore, it supports open debugging sessions.

So far, it is possible to translate all the features of REME-D to a debugger for asynchronous
distributed JavaScript programs. Those are: state inspection, stepping, causal link browsing and
epidemic debugging. However, the REME-D architecture is not directly applicable with web-based
applications due to two reasons:

• The model of communication in Ambient Talk applications is P2P while in web
applications it is client-server. Therefor, it would not be possible to use a client as a
debugger manager because within the client-server model, clients cannot acquire
communication between them. It is true that this communication could be
established using the server, but that could create a problem of dependency; if an
error occurs in the server, and the server is not able to process requests, the debug
messages will never arrive to the debugger manager.

25

• Ambient Talk has remote object references called far references. In the Web, the
concept of remote object references does not exist. In fact, there are more than one
kind of asynchronous message as mentioned in section 1.2.

3.2 Meta-level Engineering

In JavaScript, there are no reflexive facilities to deal with asynchronous operations. As a result,
the aim of this thesis is to review the meta-level engineering in JavaScript and in distributed
communication.

3.2.1 Introduction

Meta-programming consists of writing programs that manipulate other programs [9]. When it is
an object that describes, manipulates or implements other objects, it is called meta-object. The
base-object is the object that the meta-object is about.

One of the most known meta-programs is the debugger; this allows programmers to change the
behaviour of a certain program, whether executing it step-by-step or setting breakpoints in some
part of the code.

Reflection, therefore, allows meta-programmers to examine the structure of a program and its
data. Thus, when examining properties in JavaScript, the default behaviour is to include inherent
properties that can intervene in the correctness of new implementations because these inherent
properties must normally be ignored.

3.2.2 Meta-level Engineering in JavaScript

Reflection in JavaScript signifies intercepting method calls, proxying methods or adding news on
the fly. For instance, suppose you desire to intercept all the calls to the method console.log and
redirect the information to print to a remote visualizer. This is possible by proxying the method
console.log and changing its default behaviour as shown in the code below. We can observe that
the behaviour of the method is overridden, before printing the information in the console
(oldLog.apply), the information will be sent to a remote visualizer.

var oldLog = console.log;
console.log = function(){
 redirectInfo(arguments);
 oldLog.apply(this,arguments);
}

26

3.2.2.1 The proxy pattern
A simple definition of proxy is an interface used for representing an object or method, thereby
protecting direct access to it. The classical proxy pattern allows proxying both at the method
and object level. However if an object is proxied using this pattern, all the methods of the object
must be proxied individually using the same technique. Proxying an object with this pattern does
not imply that its methods are proxied as well.

The next piece of code shows a useful application of the pattern. In this case we are proxying a
method that belongs to a non-instantiable object such as window.

In the third line of code, the behaviour of the alert function is changed by adding the word
“Captured” at the beginning of the string received as a parameter. In the fourth line, the proxy
controls the access to the original function. Direct access to the original method alert does not
exist anymore for programmers.

3.2.2.2 Proxy API
Van Cutsem et al. [28,29] introduced a reflective API called Proxy for proxying both objects and
functions in the programming language JavaScript.

When an object is proxied using this API, the behaviour of the object is exactly the same as the
original object, intercepting all the messages sent to it. This implies that all the methods can be
intercepted. This solves the problem of proxying an object with the proxy pattern. In this way,
every method should be proxied individually.

The API introduces two types or proxies: generic wrappers, which are representations of objects
in the same address space and virtual objects, which emulate other objects without having to be
present in the same address space.

The Proxy API supports intercession; even though the proxied object has exactly the same
behaviour as the original object, the methods are intercepted, which means that their behaviour
can be changed or specialized [9] and also supports introspection, enabling developers to
examine the object properties and methods.

1 var protectedAl = window.alert; //original reference to the function
2 var proxy = function(){ //defining the proxy
3 arguments[0] = 'Captured: '+arguments[0]; //New behaviour
4 protectedAl.apply(this,arguments); //Calling the original reference
5 };
6 window.alert = proxy; //Overriding the original function with the proxy

27

In the code below we can see how to proxy an object using this API.

The constructor receives an object as a parameter and returns the new proxied object.
Afterward, every time an object uses an accessor method for receiving object property or a
modifier method for modifying an object property (as in the second fragment of code), the
information will be printed in the console.

However, when proxying an object, we have the two-body problem: the proxy has its own
identity and the programmers have access to both original and proxied objects. Every time that a
proxied object is needed, it is necessary to create a new instance invoking makeTracer.

3.2.3 Meta-level Engineering Architectures for Distributed Computing

Channel reification [1]. This model is an extension of the message reification model. It is a
reflective model for distributed computation consisting in reifying as objects the abstractions
that represent a channel (those that provide a service through a logical channel).

In the figure below, we can observe the main difference with the meta-object model; in the meta-
object model, the meta-object reifies one specific object (e.g. the meta-object MA, reifies the
object A), and in the channel reification model, the reification is between the communication of
two objects (e.g. the meta-object C reifies the communication between objects A and B).

function makeTracer(obj) {
var proxy = Proxy(obj, {
get: function(tgt, name, rcvr) {

console.log(tgt, 'get', name);
 return Reflect.get(tgt, name, rcvr);
},
set: function(tgt, name, val, rcvr) {

console.log(tgt,'set', name, val);
 return Reflect.set(tgt, name, val, rcvr);
}});
return proxy;
}

var obj = new Obj();
obj = makeTracer(obj);
obj.prop = ‘hello’;

28

Figure 9: Meta-object VS Channel reification. Extracted from [1].

We can observe in detail in the figure below that when a service request occurs, the model reifies
that communication into a channel, thus intercepting and controlling the sender and receiver
actions of it, moreover, different channels can handle different method calls, which gives a
reflective behaviour for each method.

Figure 10: Channel reification model scheme. Extracted from [1]

29

Meta-level architecture of AmbientTalk. [3], Gonzalez introduces the transmitter-receptor
model. The idea of this model is that both ends (C and S) reify the communication as a pair of
meta-objects encapsulating all aspects of interactions between senders and receivers. The
responsibility of dealing with network failures or sending and receiving messages belongs to the
meta-objects. In Figure 11 we can observe its architecture.

By manipulating these meta-objects (marked in grey in Figure 11), developers can intercept and
change the behaviour of the remote communication between both objects.
On the one hand, the transmitter reifies the communication channel at the client-side, thus
controlling how the client object sends the messages. This object can perform some actions
before sending the message.

On the other hand, the receptor reifies the service object for controlling the distributed
operations with the service object: message sending and message reception. Being a service
object, normally the requests received imply a response. This object can also perform some
actions before sending or receiving a message.

Figure 11: REME-D, far references architecture. Extracted from [3]

In this model we do not have the two-body problem such as the Proxy API, all interactions are
captured by the transmitter and receptor meta-objects.

Moreover, even though the model was designed for distributed object models the architecture
leads us to think of the meta-level infrastructure we want to design. On the one hand, remote
objects references such as in [27] do not exist in web applications and there are more than one
kind of remote reference as explained in section 1.2. However in a web context, this architecture
can be interpreted as client-server communication rather than remote objects peer-to-peer
communication. Thus, the client object could be replaced for a client machine, and the server
object for a server machine. Each side with a set of meta-objects (created in pairs) for reifying

30

the different types of asynchronous communication and encapsulating all the aspects related to
their behaviour.

3.3 Conclusions

This chapter discusses the existing debugging tools for JavaScript and their limitations for
debugging distributed asynchronous. On the one hand, some of them are only for the client or
for the server, thus, the debugging process must be done separately and independently. On the
other hand, the tools that can deal with distributed computing are based in specific technologies
such AJAX or thread-based servers, which makes it difficult for portability for servers based on
the event-loop concurrency model. Moreover, the latter are offline, which means that the classic
debugging features cannot be applied.

Alternatively, we analysed other debugging tools, which use the same model (non-blocking
event-loop concurrency), the meta-level architecture of the debugger REME-D and the classic
channel-oriented reflective framework, in order to know which characteristics can be profitable
for our design.

We identify that a debugger for distributed asynchronous JavaScript must meet the following
criteria:

• Online. Offline support providing reification of client-server interactions have been
explored in FireDetective [32]. Creating an online debugger enables developers to
use traditional debugging features such as pausing, breakpoints or stepping.

• Message-oriented. Creating the happened-before relationship between messages
is essential for the debugging process. While in synchronous programming, it is
enough to follow the order of execution, in asynchronous programs the messages
are processed by different event loops in an independent way, because there is no
information between turns, and the control flow is separated into two steps, the
message request and the evaluation of the result. The debugger should be able to
establish the happened-before relationship.

• Heterogeneity. Signifies supporting all the web abstractions (or asynchronous
messages) aforementioned in section 2.2, DOM interaction, timeouts, databases,
remote requests, etc. Web applications follow a logic that other kinds of applications
do not follow (different kinds of events).
Also, it must support servers built on the event-loop concurrency model and servers
that do not use that model.

• Open debugging. On the one hand, the debugger must support distribution; a
distributed application executes part of its code in the browser and part in some
remote node, however, while still being one single application. The debugger must

31

treat a distributed application transparently as a single one, taking into account the
layer that separates both parts of the application without addressing this as a
problem.
On the other hand, the debugger should deal with frequent disconnections and
reconnections to the network. The messages processed by the actors, while
remaining disconnected, should be taken into account for the debugger process in
order to provide accurate interpretations.

Analysing both cases of the meta-level engineering section, we can consider a first approximation
of how should the meta-level architecture for reifying the JavaScript asynchronous
communications be. Having on both sides of the communication a list of channels that can
specialize or modify the behaviour of the asynchronous events.

32

4 Meta-level Infrastructure for Asynchronous JavaScript
Applications

In this chapter will be described MIAJ –Meta-level Infrastructure for Asynchronous JavaScript
applications - the meta-level infrastructure for reifying asynchronous communications in
JavaScript programs.

4.1 Introduction

Recall from the previous chapter that in JavaScript, all communication is serialized in one event
loop and each page (or frame) runs in a JavaScript event loop, which receives different kinds of
events (e.g. DOM, network, timers, etc.). Some of those events actually correspond to
communication with other event loops, which are hidden from the programmer. For example,
consider a remote communication with server.

Remote communications normally have two operations for guarantying that an event will be
processed. We call these operations send and receive respectively.

Figure 12: Communicating event-loops

As shown in Figure 12, when the send operation is executed for sending the event e1, the
receive operation queues up the given event to the server event-loop in order to be processed
as well.

In this study, we propose a meta-level infrastructure, which reifies this underlying event loop
communication by means of a well-defined abstraction. Our architecture consists of three
components: channels (reifying different kinds of communication (e.g. implicit event loops)),
meta-channels (reifying both ends of communication) and messages (reifying the events sent
and received in the JS as first-class objects). The model combines ideas from classic channel-
oriented reflective frameworks [1] with transmitter-receptor model from AmbientTalk’s/M
language [3].

33

4.2 MIAJ

MIAJ has been designed to reify communication traces of JavaScript programs. As we can
observe in Figure 13, MIAJ consists of a set of channels, meta-channels and messages. Channels
are objects reifying the web abstractions or libraries that produce or require events (e.g. DOM or
Socket.io). Thereby, a channel has two operations: send for producing events and receive for
catching them. Note that a channel can be distributed, which means that two channels
implementing the two operations are needed, one for each side of the communication.
By default we support the following channels:

• jQueryDOM: reifying the DOM communication through the jQuery library. Clicks and
DOM mutations are supported.

• Socket.io: reifying the distributed Socket.io communication on both sides of the
communication.

• MySQL: reifying the asynchronous MySQL operations on the server side.

As can be noted, every channel produces and catches different kind of events; the same channel
can produce different kinds of events such as jQueryDOM. This produces click events and DOM
mutation. On the same lines Socket.io and MySQL produce events with different structure and
information.

Figure 13: MIAJ overview

34

4.2.1 Meta-channels

Each channel has a list of meta-channels reifying both parts of the communication (send and
receive); therefore, they intercept and modify the communication between event-loops.

By modifying them or creating news, developers can implement different and isolated behaviours
for the events. So, for example, in Figure 13, the meta-channel Tracer is installed in the channel
socket on both sides of the communication for tracing all the exchanged messages in the
channel.

By default, there exists one meta-channel per supported channel, which implements the
semantics of channels without the presence of MIAJ. For example, one of the default behaviours
of JQueryDOM receive operations of a meta-channel is opening a new page after clicking on an
element.

4.2.2 Messages

First-class objects called Messages reify communication between event loops.
When a channel intercepts or captures an event of a given abstraction or communication, the
event is reified as a Message and delegated to the channel’s meta-channels temporarily losing
the responsibility of behaviour. We can observe step 3 of Figure 13: when the channel Socket
intercepts the event e1, this is reified as the message m1 and delegated to the send operation
of the meta-channel Tracer.

In doing so, it guarantees:

• Reusing meta-channels in different channels. Developers could install the same meta-
channel Tracer into the channel DOM, using exactly the same implementation.
Otherwise a different meta-channel must be created for every channel and kind of
event.

• Same channels can produces different kind of events. Note that the DOM channel
intercepts different types of events (e.g. clicks or mutations). In this case, if the
event is not reified as a message, developers will need to implement two different
channels, one for reifying DOM mutations events and another for reifying links
events.

The execution starts once a channel traps an event; this reifies the event as a message, and
delegates this to its first meta-channel. When every meta-channel executes its behaviour, it
delegates the message to the next meta-channel in the list of meta-channels; always depending
on the type of the event (send or receive), these are delegated to the corresponding send and
receive operations of every meta-channel.

35

The channel, thereby temporarily loses control of its events.

4.2.3 Channels Context

As referred to in Chapter 1, one of the challenges in asynchronous debugging is constructing the
causality flow between computing, because each event-loop processes every message as
independent (there is no information available between turns).

As we can observe in Figure 13, each channel is also independent (except the distributed
channels such as Socket); a message in the DOM channel has nothing to do with a message in
the Socket channel. However, in MIAJ, each channel has a reference to a sharing space that we
call Context; if the DOM channel receives a click event, the channel can report that behaviour to
the shared space, then, when the channel socket intercepts an asynchronous event, this latter
channel could know that DOM was the last channel executed and even the information of the
messages executed by it.

4.2.4 Execution Runtime

Let us explain the overall architecture with an example. Consider the case of a mouse click that
triggers a callback, sending an asynchronous request using Socket.io [24] to a server. Moreover,
that communication must be traced.

Every step is referenced in Figure 13 and is as follows:

1. The channel DOM intercepts the click event e0 (incoming event).
2. The same channel reifies the event e0 as the message m, and delegates this

message to the receive operation of its first meta-channel, in this case the default.
So, the callback is executed sending the corresponding asynchronous request
(emit(e1)).

3. The channel Socket in the client side intercepts the event e1.
4. The channel Socket reifies the event e1 as the message m1, and delegates this

message to the send operation of its first meta-channel, Tracer in this case. So, the
corresponding traces are generated for the message.

5. The meta-channel Tracer delegates the message to the send operation of the next
one (The Default). This latter executes the default behaviour, which is sending the
event to the server.

6. The channel Socket on the server side intercepts the event e1 sent by the client. In
distributed communication.

36

7. The channel Socket reifies the event as the message m1, and delegates the message
to the receive operation of its first meta-channel (Tracer), generating the traces for
the message m1.

8. The meta-channel Tracer delegates the message to the receive operation of the next
one (The Default). The latter executes the default behaviour, which is executing a
callback on the server-side.

4.3 APIs

4.3.1 MIAJ

The MIAJ API should enable developers to dynamically install channels in the infrastructure,
providing them with a context in which to share information. In doing so, MIAJ provides the
following four operations that we will detail individually below.

Table 1: MIAJ API summary

• Subscribe. This operation installs a channel on MIAJ, setting the context of a
channel for sharing information.

• Unsubscribe. This operation uninstalls a channel from MIAJ. Other channels will not
have information about the channel uninstalled. However, the channel continues to
reify the corresponding communication.
Note that MIAJ cannot control the channel’s behaviour; once a channel is
instantiated the communication is immediately reified.

• SetChannelTurn. JavaScript is based on the event loop concurrency model. This
means that two events cannot be processed at the same time as explained in
section 2.2. If two events cannot be processed at the same tame, two channels will
never be active at the same time. We say that a channel is active when the meta-
channel Default is being executed.
Setting a turn in MIAJ consists in saving the messages that are being processed by
an active channel in a given moment. Taking up again the example of section 4.2.4;
in step 2, DOM is the active channel executing the message m, in step 5, Socket is

Subscribe	
 (channel)	

Subscribes	
 a	
 channel	
 to	
 the	
 MIAJ	
 context.	
 The	
 channel	
 can	
 share	

information	
 with	
 other	
 channels.	

Unsubscribe	
 (channel)	

Unsubscribes	
 a	
 channel	
 from	
 the	
 context.	
 The	
 channel	
 loses	
 contact	
 with	

other	
 channels.	

setChannelTurn	

(channel,message)	

When	
 a	
 channel	
 executes	
 its	
 default	
 behaviour,	
 is	
 said	
 that	
 is	
 the	
 turn	
 of	

the	
 given	
 message.	

getLastTurn	
 ()	
 Gets	
 the	
 last	
 turn	
 of	
 the	
 last	
 active	
 channel	

37

the active channel processing the message m1, and in step 8, the active channel is
Socket processing the same message but on the server side.

• GetLastTurn. Note that before a channel is active (execution of the last meta-
channel), the other meta-channels could ask MIAJ for the last active channel. This
method returns the oldest message processed by the last active channel.
Keep in mind that a channel can be active by processing more than one message, for
this reason every time that getLastTurn is called, the message returned will be not
available anymore.

On the other hand, note that MIAJ should be installed on both sides of a distributed application.

4.3.2 Channel

The channels play the role of event emitters and event trappers. As such, they also implement
the methods that represent the send and receive operation of a given web abstraction (e.g. for
Socket.io are the emit and on methods respectively) for reifying the events and delegating the
messages to the meta-channel. Moreover, they provide two more methods that represent the
default behaviour of the channel. When the last meta-channel is executed, they seek the default
behaviour of the channel and this is one of these two methods.

Therefore, a channel must implement the following methods:

setMetaChannels(mchArray)	
 Sets	
 the	
 meta-­‐channels	
 of	
 the	
 channel	
 from	
 a	
 given	
 list	
 of	
 channels	

setContext	
 (context)	
 Sets	
 the	
 context	
 of	
 the	
 channel	

getContext	
 ()	
 Gets	
 the	
 context	
 of	
 the	
 channel	

send(message)	

Implementation	
 of	
 the	
 default	
 behaviour	
 of	
 the	
 channel	
 for	
 the	
 send	

operation	

reveive(message)	

Implementation	
 of	
 the	
 default	
 behaviour	
 of	
 the	
 channel	
 for	
 the	
 receive	

operation	

Table 2: Channel API summary

The implementation of a channel clearly depends on the complexity of the abstraction but the
structure normally consists of three parts:

1. Overriding the methods that represent send and receive, in order to trap the events
and reify them as messages. The overridden methods should delegate the message
to the corresponding send or receive of the first of its meta-channels.
Delegating a message consists of executing the corresponding send or receive
operation of a meta-channel, passing the list of meta-channels without the first
element (because this is the one that is being executed in that moment). By doing

38

so, it guarantees that every meta-channel will have control of the execution because
it has knowledge of the list of meta-channels.

2. Implementation of the send and receive operations that represent the default
behaviour of the channel will be used by the default meta-channel.

3. Implementation of three methods: setContext and getContext, for setting and
getting the context of a channel, and setMetaChannels, for setting the list of meta-
channels. This implementation is the same for all channels.

Take into account that in distributed communications such as Socket.io, the channels must be
created in pairs in order to guarantee the consistency. The events are reified as messages and
Socket.io does not understand messages.

4.3.3 Meta-channel

The meta-channels are the core of MIAJ because in a given moment they can control the
execution of an event. These reify both ends of a communication channel (send and receive),
and for this reason they must implement such operations. The implementation of both
operations clearly depends on the necessities of the developer.

In every execution of send or receive, the meta-channel receives as parameters: a message (the
reification of the event) for changing its behaviour or specializing it, receives the list of meta-
channels that have not processed the given message (recall that the meta-channel should
delegate the message to next meta-channel in the list), and a reference to the channel. Every
meta-channel must have access to that reference for enabling access to the context of MIAJ.
If the meta-channels do not have access to this context, they will act as independent channels,
and will not be able to share information.

A meta-channel, therefore typically consists of two operations:

send(message,mos,channel)	

Implements	
 the	
 behaviour	
 for	
 the	
 send	
 operation	
 of	
 the	
 meta-­‐
channel	

receive(message,mos,channel)	

Implements	
 the	
 behaviour	
 for	
 the	
 receive	
 operation	
 of	
 the	
 meta-­‐
channel	

Table 3: Meta-channel API overview

The implementation of the two operations, send and receive operations consists of two parts:
1. Implementing the custom behaviour of the meta-channel for the send and receive

operations.
2. Delegating the message to the next meta-channel in the list. Except the default

meta-channel because it is the last executed.

39

4.3.4 Message

Every channel produces different kinds of events with its own structure. In order to reuse the
meta-channels in distinct channels, it is necessary that all the events produced by all the
channels have the same structure.

All asynchronous events in JavaScript have one common property: name and data they
transport. We call this the name selector (e.g. book_available or borrow_book).
A message therefore has three properties:

• Selector. As mentioned before, is the name of the event.
• Data. Is the data that the event transports in JSON string format, an easy way of

transporting data in string format.
• Meta-data. Note that having only the selector of the event and the data it

transports is not enough for executing the default behaviour of the message.
One example is the DOM channel, which produces different types of events
(mutation or clicks), so, when the message arrives to the default meta-channel, the
behaviour is different depending on the kind of event. And the default meta-channel
cannot obtain this information from the selector or from the data.
This meta-data is stored in key-value format.

In order to deal with these properties the following methods are provided:

Message	
 (selector,data,isSer)	

Creates	
 a	
 message	
 from	
 the	
 selector,	
 data,	
 and	
 if	
 the	
 parameter	

isSer	
 is	
 true,	
 the	
 selector	
 is	
 deserialized	

addMetaData(keyValueList)	
 Saves	
 the	
 meta-­‐data	
 of	
 a	
 given	
 event	
 to	
 the	
 message	

getMetaData(key)	
 Returns	
 the	
 value	
 of	
 the	
 field	
 in	
 the	
 meta-­‐data	
 with	
 the	
 given	
 key	

serialize()	
 Serialize	
 a	
 message,	
 setting	
 the	
 meta-­‐data	
 in	
 the	
 selector	

deserialize(selector)	

Deserializes	
 a	
 selector,	
 setting	
 the	
 meta-­‐data	
 in	
 the	
 message	

structure	

Table 4: Message API overview

• AddMetaData. Adds meta-data to the message from a key-value array.
• GetMetaData. Returns the corresponding meta-data from a given key.
• Serial ize. We use the selector for transporting the meta-data in distributed

channels. Therefore we say that a message is serialized when the selector contains
the arguments in a certain format. We use the following format:
selector@key:val@key1:val1@keyn:valn.

• Deserial ize: When the data received is serialized, it must be deserialized and saved
into the message structure as meta-data.

• Constructor. Creates a message from a selector, and the data that transport the
event. Also receives an additional parameter for informing whether selector must be
deserialized.

40

4.4 Implementation

In this section we are going to show the implementation of the channels supported by default in
MIAJ and the meta-channel Tracer introduced in the previous sections. The implementation of
MIAJ and Message can be found in Appendix A.

4.4.1 Message Reification

Every channel produces different kinds of events; even the same channel can produce more than
one type of event such as DOM. In order to have the same structure for all the events no matter
the channels that produce it, the events must be reified into messages. Thus, allowing MIAJ to
reuse the implementation of the meta-channel debugger in all the channels.

In this section we are going to describe how these events are reified into messages.

4.4.1.1 JQueryChannel
We identified two sources of events: clicks on elements and DOM mutation, moreover these two
are incoming events (the DOM receives these events), hence, these should be delegated to the
receive operation of its first meta-channel.

Click on elements. The selector of the message is the name of the DOM event (click in this
case), and the data is the link information. If the link has a callback associated, the link
information is that callback as string, otherwise, if the link does not have a callback associated,
the link information is the target of the link (or href attribute). We can observe the two cases in
the figure below.

Figure 14: jQuery click events reification

Moreover, the default meta-channel will need additional information for each message in order to
execute its default behaviour. That information is passed as meta-data in the message and is as
follows:

41

• Event: type of event, only the channels have knowledge of this information. We
defined two, domin (for incoming DOM operations) and domout (four outgoing DOM
operations).

• IdCallback: identification of the callback for a concrete element, if the element has
one or more associated.

• LinkId: if it is different than -1, determines that the link has one or more callbacks
associated, when a programmer adds a callback to an element this is marked
creating a new attribute in it.

• Type: type of link. Link with callback or normal link. Note that when the message
arrives to the default meta-channel, it must not always do the same.

• Target: target of the link element: _blank, _self, _parent, etc.

DOM mutation. The selector of the message is the name of the method (html), and the data is
the html string used for modifying the DOM.

As for the needed meta-data:

• Event: type of event, domin in this case.
• Reference: context of the concrete execution of the method, necessary for

evaluating and executing the original wrapper in the default meta-channel.
• Arguments: arguments received in the method. Are necessary for evaluating the

original wrapper.
• Type: identifies this event as a mutation.

4.4.1.2 SocketIOChannel
The selector of the message is the event name, and the data, is the information transported by
the event.
This channel only has two sources of events because it is distributed, thereby, two types of
events are identified: incoming and outgoing. Both create an identical message changing the
value of its only entry in the meta-data:

• Event: emit for outgoing events and on for incoming events.

4.4.1.3 MySQLChannel
This channel has two sources of events that must be reified, the first, when a query is sent to
the MySQL event loop, and the second when the result of a query is received.

Queries sent. The message created receives as arguments the identifier query+idQuery
(selector), and the query string (data). The meta-data is:

• Event: type of event. We defined two: emit for the queries sent to the event-loop,
and on for the result of those queries.

42

• IdQuery: unique identifier for a query; is used for matching a response when ready
with the query that provokes it.

• Arguments: arguments of the method that sends a query to be processed. The
default meta-channel will need it.

• Reference: context of a concrete execution of the method that sends a query to be
processed. The default meta-channel will evaluate and execute the original wrapper
and needs the arguments and the context for it.

Query result. The message created receives as arguments the identifier
queryResponse+idQuery (selector) and the result of the query (data). The meta-data is:

• Event: type of event, this case is the type on because it is an incoming one.
• Lambda: when a query is sent to the MySQL event loop, a callback is passed for

capturing the return value. This is a callback. Note that the only the default meta-
channel should execute this callback.

• Arguments: arguments of the callback mentioned before are needed for its
evaluation and execution.

• Reference: context of the callback needed for its evaluation and execution.

4.4.2 Channels

For showing the implementation, we will follow the steps defined by the API: override the
methods that represent the send and receive operations, implement the two operations that
represent the default behaviour (send and receive), and implement the operations setContext,
getContext and setMetaChannels. The implementation in the third step is exactly the same for all
channels and will not be shown.

In some parts of the code we use some methods such as Array.next or Array.getPending. For
this reason, take into account that the method Arrat.prototype.next() returns the first element
of an array, and the method Array.prototype.getPending() returns the same array without the
first element.

4.4.2.1 JQueryChannel
This channel is responsible for intercepting the click events and the DOM mutations.
Three kinds of behaviours can be identified: link clicks, callback clicks, and DOM mutations.

Link clicks. Occurs every time that a user clicks on a link, a new page is loaded. Its
implementation does not require JavaScript because it is a behaviour directly implemented by the
HTML code:

43

For intercepting this kind of event, it is enough to intercept every click event and check if the
element clicked is a link. We can observe in the fragment of code below that first, the default
behaviour is prevented (line 2), then, the event is reified as a new message with all the meta-
data described in 4.4.1, and finally, it is delegated to the first meta-channel.

Callback clicks. The click on a certain element has a callback associated, so, when a click
occurs, a callback is evaluated and executed. Performing this behaviour implies both JavaScript
and HTML implementation. The code below shows an example.

Intercepting this event requiers two additional steps; intercepting at the moment when a
programmer adds a callbak to an element, and intercepting when the programmer removes the
callback added. In the code below, we can observe how calls are intercepted with the method
jQuery.fn.click [10], which adds a callback to an element for the event click.

The method is proxied, changing in behaviour. A new attribute localId is added to the element
that will have a callback associated (line 2) ,and the callback is saved in a global list (line 4).

1 else if(isLink){ //A element
2 e.preventDefault();
3 var message = new Message(type,isLink);
4 message.addMetaData({'event':'domin','idcb':-1, 'lid':null, 't':'li',
'tg':target });
5 MOS.next().receive(message,MOS.getPending(),private);
6 }

1 jQuery.fn[info.method] = function(){//info.method = click
2 if(!this[0].localId) this[0].localId = uniqueId();
3 if(!private.callbackList[this[0].localId])
private.callbackList[this[0].localId] = new Array();
4 private.callbackList[this[0].localId].push({'ev':info.method,
'cb':arguments[0]}); //callback saved in a global list
5 }

$('#borrow_book').click(function(){ //adding a callback to the button
 sendRequests();
});

<button id="borrow_book">Borrow book</button>

Book list

44

After executing this, in clicking an element, if the element has the new attribute localId, it means
that it has a callback associated, and the value of the attribute is the ID of the callback in the
callback list.

Note that the element could have more than one callback associated (e.g. click, double click,
right click, etc.), for this reason it is necessary to seek the callback for the corresponding event
(lines 3,4,5,6 in the code below). If a callback is found, the message is created and delegated as
a callback link message.

DOM mutations. DOM mutations are executed from the JavaScript, implying a HTML
modification:

The html mutation is intercepted, reifying those jQuery methods that modify the DOM. The
method jQuery.fn.html [10] is an example. In this case, the method is proxied, changing its
behaviour.

The method jQuery.fn.html has two behaviours; modify the DOM of an element, and examine the
DOM element returning its HTML representation. We only want to reify the first type of event,
and for this reason in line 3 of the code below, the default behaviour is directly executed when
the second behaviour is detected.

So, if the behaviour is to modify the DOM of an element, a new message is created with the
information described in 4.4.1, and delegated to the first meta-channel.

1 var indexCallback = -1;
2 if(element.localId){
3 var callbacks = private.callbackList[element.localId];
4 for(ind in callbacks){
5 if(callbacks[ind].ev === type){ indexCallback = ind; break; }
6 }
7 }
8 if(indexCallback !== -1){
9 var idm = uniqueId();
10 var message = new
Message(type,private.callbackList[element.localId][indexCallback].cb.toString())
;
11 message.addMetaData({'event':'domin','idcb':indexCallback,
'lid':element.localId, 't':'cb' });
12 MOS.next().receive(message,MOS.getPending(),private);
13 }

$('#book_list').html(book_list_html);

45

The send and receive operations that represents the default behaviour of the channel, should
execute three different behaviours depending on the type of event, which can be DOM
mutations, links or callbacks.

For mutation events, the original wrapper is called with all the meta-data provided by the channel
at the moment of creating the message (line 7 of the code below). For the links event, a new
window is opened with the corresponding information (line 9), and finally for the links events
with a callback, the corresponding callback is evaluated and executed (lines 11 and 12).

1 var info = {method:'html',type:'receive',cb:false};
2 jQuery.fn[info.method] = function(){
3 if(!arguments.length) return
private.orWrappers[info.method].apply(this,arguments);
4 var message = new Message(info.method,arguments[0]);
5 var event = info.type === 'send' ? 'domout' : 'domin';
6 message.addMetaData({'event':event,'ref':this, 'args':arguments,
't':'mu'});
7 switch(info.type){
8 case 'send': MOS.next().send(message,MOS.getPending(),private);
break;
9 case 'receive':
MOS.next().receive(message,MOS.getPending(),private); break;
 default: break;
10 }
11 }

46

4.4.2.2 SocketIOChannel
This channel intercepts the events produced by Socket.io on both sides of the communication. In
doing so, it is enough to intercept using the emit and $emit (or on) methods of Socket.io [24].

1 this.send = function(message){
2 return this.orWrappers[message.selector].apply(message.metaData.ref,
message.metaData.args);
3 }
4
5 this.receive = function(message){
6 switch(message.metaData.t){
7 case 'mu':
 this.orWrappers[message.selector].apply(message.metaData.ref,
message.metaData.args);
8 break;
9 case 'li':
 window.open(message.data,message.metaData.tg ?
message.metaData.tg : '_self');
10 break;
11 case 'cb':
 var callback =
eval(this.callbackList[message.metaData.lid][message.metaData.idcb].cb);
12 callback();
13 break;
14 default: break;
15 }
16 }

47

First, all the references of the original socket object are saved because they are needed in the
moment of executing the original behaviour (lines 3,4 and 5 in the code above). Then the
methods emit and on are overridden. The method on for example, is overridden in line 18. The
message is created with the third parameter as true, because being a distributed communication
means that the selector could contain meta-data and must be decoded.

With regards to the default send and receive operations, we can see their implementation as
follows:

this.send = function(msg){
 this.emitOr.apply(this.socket,msg.serialize());
};
this.receive = function(msg){
 this.onOr.apply(this.socket,[msg.selector,msg.data]);
};

1 function SocketIOChannel(socket){
2
3 this.socket = socket;
4 this.emitOr = socket.emit;
5 this.onOr = socket.$emit;
6
7 this.context = null;
8
9 var private = this;
10 var MOS = [];
11
12 socket.emit = function(){
13 var msg = new Message(arguments[0],arguments[1]),;
14 msg.addMetaData({'event':'emit'});
15 MOS.next().send(msg,MOS.getPending(),private);
16 };
17
18 socket.$emit = function(){ //$emit -> on
19 var msg = new Message(arguments[0],arguments[1],true);
20 msg.addMetaData({'event':'on'});
21 MOS.next().receive(msg,MOS.getPending(),private);
22 }
23
24 this.emit = function(selector,data){
25 socket.emit(selector,data);
26 }
27 this.on = function(selector,data){
28 socket.on(selector,data);
29 }
30
31 ...
32 }

48

In this case, executing the default behaviour consists of calling the original handlers saved before
overriding the original behaviour. Note that the message is serialized before being sent in order
to set the meta-data in the selector (as explained in the prior section).

4.4.2.3 MySQLChannel
For executing a query with this library the method connection.query is used by receiving two
parameters, the query string and the callback for evaluating the return value.

As Figure 15 shows, the send events are detected when the method connection.query is called
the receive events, when the callback received as parameter is executed. Note that the callbacks
are provided by the programmers, and for this reason all of them must be proxied for
intercepting every processed query.

Figure 15: MySQL channel

On the one hand, when the event query occurs a new message is created with meta-information
that the default meta-channel will need. As mentioned in section 4.4.1, the parameter idq will be
used for identifying the response of the query. We can observe in the code above that the same
idq used for creating the identifier of the query (line 4) is the same one used for creating the
identifier of the response (line 11).

1 connection.query = function(){
2
3 var idq = uniqueId();
4 var message = new Message('query '+idq,arguments[0]);
5 message.addMetaData({'event': emit,idq,'idq':
idq,'args':arguments,'ref':this});
6 MOS.next().send(message,MOS.getPending(),private);
7
8 }
9
10 this.on = function(idq,args,ref,lambda){
11 var message = new Message('queryResponse '+idq,args[1]);
12 message.addMetaData({'event': on,'lambda':lambda, 'args':args,'ref':ref});
13 MOS.next().receive(message,MOS.getPending(),private);
14 }

49

On the other hand, when the method on is executed, it means that there is a query already
processed, the parameter idq added in the connection.query identifies the source query of the
response.

With regards to the methods send and receive that implement the default behaviour: the method
send modifies the callback in order to detect when a query has been processed (line 5 and 6 in
the code below) and executes the original handler of the method connection.query (line 9).
And the method receive executes the original callback received as a parameter in the moment of
executing the method connection.query.

4.4.3 Meta-channels

There are two types of meta-channels, those that implement behaviours for communication and
the default meta-channel, which executes the default behaviour of a channel.

Starting with the meta-channel used in the previous sections, the meta-channel Tracer, and
following the steps defined by the API:

1. Implementing the custom behaviour of the meta-channel for the send and receive
operations.

2. Delegating the message to the next meta-channel on the list. Except the default
meta-channel.

The resulting implementation is as follows:

1 function MySQLChannelDefaultMO(channel){
2 this.send = function(message){
3 if(typeof message.metaData.args[1] === 'function'){
4 var lambda = eval(message.metaData.args[1]);
5 message.metaData.args[1] = function(){
6 channel.on(message.metaData.idq,arguments,this,lambda);
7 }
8 }
9 channel.connectionQuery.apply(message.metaData.ref,message.metaData.args);
10 };
11
12 this.receive = function(msg){
13 msg.params.lambda.apply(msg.metaData.ref,msg.metaData.args);
14 }
15 }

50

We can observe in the code above that before delegating the message to the next meta-channel,
the selector of the message is printed in both operations.

With regards to the default meta-channel, the implementation is as follows and is used in the
same way for all channels. Note that each operation finally executes the send or receive
operation of the channel received as a parameter (lines 5 and 12). This meta-channel also sets
the given channel as active, using the API of MIAJ.

The same implementation is used for all the channels, this sets the channel turn because it is the
active channel when it arrives to this point.

4.5 Deployment

4.5.1 Deploying MIAJ

It is enough to instantiate MIAJ it, both on the client and server-side.

function Tracer (){
 this.send = function(message,mos,channel){
 console.log('send: '+message.selector); //behaviour
 mos.next().send(message,mos.getPending(),channel);
 }

 this.receive = function(message,mos,channel){
 console.log('receive: '+message.selector); //behaviour
 mos.next().receive(message,mos.getPending(),channel);
 }
}

1 function Default(){
2 this.send = function(msg,mos,channel){
3 if(channel.context)
4 channel.context.setChannelTurn(channel,msg);
5 channel.send(msg);
6
7 }
8
9 this.receive = function(msg,mos,channel){
10 if(channel.context)
11 channel.context.setChannelTurn(channel,msg);
12 channel.receive(msg);
13 }
14 }

51

4.5.2 Deploying Channels on MIAJ

Once the channel is implemented and instantiated, it must be installed in MIAJ. Recall that in
distributed communications such as this, the channels must be installed in pairs, one for the
client and another for the server.

Client

Server

On the other hand, creating meta-channels in pairs is not mandatory because they depend
directly on the behaviour of the meta-channel. For example, if the behaviour of this is tracing
only the communication of the client, we do not need to install the meta-channel on the server-
side.

4.6 Summary

The following tables show the API summary of MIAJ and the API of the elements involved in the
infrastructure. The first table defines the methods that MIAJ provides in order to deal with
channels and the methods for sharing information between them.

The second table shows the methods that a channel must implement, the two more complex are
send and receive because these execute the default behaviour of the channel. The others are
also important but their implementation is trivial and it is similar for all channels.

var miaj = new MIAJ();

var meta_channels = [new Tracer(),new Default()];
io.sockets.on('connection', function (socket) {
 socket = new SocketIOChannel(socket);
 socket.setMetachannels(meta_channels);
 miaj.subscribe(socket);
}

var meta_channels = [new Tracer(),new Default()];
var socket = new SocketIOChannel(io.connect('http://127.0.0.1:8124'));
socket.setMetachannels(meta_channels);
miaj.subscribe(socket);

52

The third table shows the two methods (send and receive) that a meta-channel must implement;
recall that the meta-channels are reifications of both ends of a communication and implement
isolated behaviours.

And finally, the fourth table shows the Message API, necessary to homogenize the events
produced by libraries or web-abstractions, because all of them can be different.

MIAJ

Channel

setMetaChannels(mchArray)	
 Sets	
 the	
 meta-­‐channels	
 of	
 the	
 channel	
 from	
 a	
 given	
 list	
 of	
 channels	

setContext	
 (context)	
 Sets	
 the	
 context	
 of	
 the	
 channel	

getContext	
 ()	
 Gets	
 the	
 context	
 of	
 the	
 channel	

send(message)	

Implementation	
 of	
 the	
 default	
 behaviour	
 of	
 the	
 channel	
 for	
 the	
 send	

operation	

reveive(message)	

Implementation	
 of	
 the	
 default	
 behaviour	
 of	
 the	
 channel	
 for	
 the	
 receive	

operation	

Meta-channel

send(message,mos,channel)	

Implements	
 the	
 behaviour	
 for	
 the	
 send	
 operation	
 of	
 the	
 meta-­‐
channel	

receive(message,mos,channel)	

Implements	
 the	
 behaviour	
 for	
 the	
 receive	
 operation	
 of	
 the	
 meta-­‐
channel	

Message

Message	
 (selector,data,isSer)	

Creates	
 a	
 message	
 from	
 the	
 selector,	
 data,	
 and	
 if	
 the	
 parameter	

isSer	
 is	
 true,	
 the	
 selector	
 is	
 deserialized	

addMetaData(keyValueList)	
 Saves	
 the	
 meta-­‐data	
 of	
 a	
 given	
 event	
 to	
 the	
 message	

getMetaData(key)	
 Returns	
 the	
 value	
 of	
 the	
 field	
 in	
 the	
 meta-­‐data	
 with	
 the	
 given	
 key	

serialize()	
 Serialize	
 a	
 message,	
 setting	
 the	
 meta-­‐data	
 in	
 the	
 selector	

deserialize(selector)	

Deserializes	
 a	
 selector,	
 setting	
 the	
 meta-­‐data	
 in	
 the	
 message	

structure	

Subscribe	
 (channel)	

Subscribes	
 a	
 channel	
 to	
 the	
 MIAJ	
 context.	
 The	
 channel	
 can	
 share	

information	
 with	
 other	
 channels.	

Unsubscribe	
 (channel)	

Unsubscribes	
 a	
 channel	
 from	
 the	
 context.	
 The	
 channel	
 loses	
 contact	
 with	

other	
 channels.	

setChannelTurn	

(channel,message)	

When	
 a	
 channel	
 executes	
 its	
 default	
 behaviour,	
 is	
 said	
 that	
 is	
 the	
 turn	
 of	

the	
 given	
 message.	

getLastTurn	
 ()	
 Gets	
 the	
 last	
 turn	
 of	
 the	
 last	
 active	
 channel	

53

4.7 Case Study: Causeway on Top of MIAJ

In order to show the details of MIAJ, we implemented Causeway for JS programs using our
framework. Recall that Causeway [25] is a message-oriented distributed debugger that provides
an offline view from trace files generated by the debugging process. Basically we employ meta-
channels in order to generate traces which can be visualized in the Causeway debugger.

The traces will be generated for all the events exchanged between a server and its clients using
the library Socket.io. The channel used for intercepting all those asynchronous events is
Socket.io implemented in section 4.4.2. We then implement a meta-channel that we call
CAUSEWAY for this channel for generating the traces.

4.7.1 Causeway Meta-channel

The behaviour of the meta-channel Causeway generates JSON traces for each message sent and
received by Socket.io channel. Implementing Socket.io-a distributed communication, the channel
should be deployed both on the client and server side.

For guarantying the consistency between the distributed messages, the debugger Causeway
uses an ID for identifying the same message in two different points (the message sent by a client
is the same as the message received by the server) [25]. So a message sent must be marked
with an ID, and messages at two different points with the same ID are thus the same message.

The code below shows the implementation of the meta-channel; following the steps defined by
the meta-channel API:

1. Implement the custom behaviour: for the send operation, the meta-data idc is added
to the message (line 8) and then, the corresponding trace is generated using the
method generateTrace (line 10). This method generates a JSON with the given
information.
As for the receive operation, the meta-data idc added in the send operation is used
for generating the receive trace of the same message (lines 15 and 16).

2. Delegating to the next meta-channel: once the message is processed, this should be
delegated to the next meta-channel on the list (lines 11 and 17).

54

4.7.2 Applying Causeway to the Library Application

The traces were generated for the page that shows the information of a given book. These can
be found in appendix B.

The following image shows the interpretation of the server messages:

Figure 16: Using Causeway debugger, book_info_response

1 function CAUSEWAY (debugMode){
2 ...
3 this.generateTrace = function(selector,idc,typeOp){
4 ...
5 }
6
7 this.send = function(message,mos,channel){
8 var metaData = {'idc':uniqueId()};
9 message.addMetaData(metaData);
10 this.generateTrace(message.selector,metaData.idc,'sent');
11 mos.next().send(message,mos.getPending(),channel);
12 }
13
14 this.receive = function(message,mos,channel){
15 var idc = message.metaData.idc ? message.metaData.idc :
uniqueId();
16 this.generateTrace(message.selector,idc,'got');
17 mos.next().receive(message,mos.getPending(),channel);
18 }
19 }

55

Selecting the message book_info_response in view 1 of the figure above, we can observe the
message order in view 2. The message book_info arrived first.

On the other hand we can also observe the stack information in view 3, which is the message
that triggered the selected message.

4.8 Conclusions

This chapter presented MIAJ, the meta-level infrastructure for asynchronous JavaScript
applications, which provides the appropriate basis for reifying communication traces in programs
in a simple and extensible way.

This infrastructure allows us to intercept and manipulate the distributed and non-distributed
events of all the abstractions that represent communication channels such as DOM or Socket.io.
By default, it supports three channels: jQueryDOM, Socket.io and MySQL for node.js applications,
and two meta-channels: Causeway and Debugger (this implements the debugging features
described in the next chapter).

MIAJ is important for the remainder of the thesis because apart from this element, it is possible
to build tools as a debugger. Having a well-designed meta-level infrastructure becomes easier to
build this kind of tool. In addition, it is an extensible framework that can deal with heterogenic
debugging.

56

5 JAD: a JavaScript Asynchronous Debugger

This chapter will be focused on designing JAD – online JavaScript Asynchronous Debugger – a
tool besides MIAJ for debugging asynchronous JavaScript applications. This tool is built around
one central idea: to adapt the features from REME-D because both are built on an event loop
concurrency model.

Despite the meta-level architecture being designed for intercepting any kind of asynchronous
communication and for working in any web server, the tool, as a first prototype, has been
implemented for Node.js servers. And for intercepting only three types of asynchronous events:
jQuery DOM events [10]; in particular DOM mutations and click events. Socket.io events; both on
the client and server side, and MySQL events.

5.1 Architecture

MIAJ provides, by default, implementation of four channels: the first for reifying the
communication in the DOM, the following two for reifying the socket.io communications on the
client and server side, and the last for reifying the MySQL asynchronous operations on the server
side. JAD uses these four channels as debugging targets (Note in Figure 17 that all the channels
are associated to a new meta-channel called Debugger).

JAD, therefore, is divided into two elements; two meta-channels implementing all the debugging
features on the client and on the server side, and the debugger manager, which manages the
debugging features of the participants within the debugging session by means of its user
interface.

As we can see in Figure 17 the communication between the meta-channels and the debugger
manager is bidirectional. On the one hand the actors send information to the debugger manager,
and on the other hand, the debugger manager sends commands to the actors. This
communication is by means of sockets.

 In this implementation, since Node.js is used as a web server and MIAJ allows us to reuse meta-
channels; the same implementation of the meta-channel debugger will be used on both sides of
the communication. Take into account that the debugging features are implemented for an
actor, and not for a specific channel, for this reason all channels must share the same meta-
channel debugger on each side of the communication, otherwise we could have for example, one
mailbox (messages paused in the actor) for each channel.

57

Accordingly, the manager is implemented as a JavaScript application. Note that the manager
could be implemented for example in Visual Basic or even as a mobile application.

Figure 17: JAD Architecture

5.2 Features

In Chapter 3 we discussed and analysed which features could be useful for a tool such as JAD
and which make sense or not in the context of JavaScript applications. The resulting features of
this analysis are: state introspection, stepping, causal link browsing and epidemic debugging. It is
known that the latter is a concept unique to ambient-oriented debuggers, but can be applied to
JavaScript applications as well, as explained in chapter 1.

State inspection

58

State inspection allows us to examine the actor’s mailbox while the execution is paused. The
actor’s mailboxes are the messages that have yet to be processed by them. In distributed web
applications, the client actors execute a part of the program while another part, by the server.
The communication between them is by asynchronous events as in ambient talk applications, but
in JavaScript there is more that one kind of asynchronous event. This does not appears to be a
problem because it is possible with MIAJ to use several channels.

Even though there is only one application, for this feature the clients and servers will be treated
separately because of the use different spaces of memory. Moreover, both client and server have
only one single mailbox although each side can run different event-loops (or kind of events).

Stepping
Stepping implies executing a turn of a message that has not been processed while the actor is
paused or suspended. In this implementation, it is possible to execute the messages one by one
(or step-by-step) in the same order of their arrival, or it is possible to select whichever and
process it no matter the order of their arrival. For instance, the client mailbox could contain four
suspended messages, the tool allows selecting one of those four messages and processing it. We
call this last feature step-to-message.

Causal l ink browsing
JAD is able to establish a happened-before relationship between all the events reified with
channels. An example of this feature is the case of two asynchronous requests that use MySQL
in the server. Those two requests are sent from a client to the server and processed one by one
by the server (event-loop model), but in the moment of performing the MySQL operations, this
sequencing disappears because MySQL calls are asynchronous.
In Figure 18 we can observe how it is possible to establish the relationship between events if the
MySQL operations are not asynchronous.

The two messages (A and B) are queued up to the server event-loop and then processed one by
one. In this instance, making the happened-before relationship would be easy because all the
existing events in the server between the send and receive of the client belong to the same
request (marked in grey in Figure 18).

59

Figure 18: Link causality, one event-loop in the server

Figure 19 shows how that strategy cannot be applied when the MySQL operations are
asynchronous, because of the moment the two events are queued up to the server event-loop,
then immediately queued up to the MySQL event-loop, consequently losing the sequentially of
the previous example. Using the same strategy, the event B marked in grey in Figure 19 would
not belong to the turn of request A.

Figure 19: Link causality, two event-loops in the server

60

JAD can deal with both types of implementations using the methods provided by MIAJ for
sharing information between channels.

Epidemic debugging
Epidemic debugging consists in allowing the clients to join the debugging session dynamically. In
Web applications the level of volatility of the clients is quite high. With JAD it is possible to
debug actors no matter if these have been disconnected several times during the debugging
session. Furthermore, no special setup is needed for joining the debugging session. All the clients
use the same web application.

5.3 Debugging JavaScript Applications

When debugging JavaScript applications, the communication between the actors that participate
in the debugging session and the debugger manager must be bidirectional because on the one
hand, the debugger manager sends commands to the actors, and on the other hand, the actors
send information to the debugger manager in order to be managed and visualized.
The server manager, as its name indicates, is just a manager because all the features are
implemented in the meta-channels. Thereby, the manager distributes the debug commands to
the clients or to the server.
Two cases can be concluded with an idea offered of what each implies:

Sending a debug command to a client
For instance, this action could come from an event triggered by a button in the client manager;
the corresponding command is generated and sent to all the actors in the debugging session
using sockets. The clients or the servers are responsible for filtering whether or not they are the
addressees of these commands. Thereby, every command is sent with the actor ID in order to be
filtered by them.

Sending information from an actor to the Debugger’s user interface
The meta-channel debugger sends the information to the debugger manager using sockets, and
the debugger manager uses that information conveniently for being visualised. For instance, for
showing the happened-before relationship between messages.

61

5.4 Implementation

MIAJ provides four channels by default, and JAD uses them as a target. We can find its
implementation in section 4.4.

This section shows the implementation of the meta-channel Debugger, which implements all the
debugging features, and finally the implementation of the debugger manager, which controls all
those features.

5.4.1 Debugger Meta-channel

This meta-channel implements all the debug features on the client and server side. The same
implementation is used in both sides of the communication.

The first characteristic of this debugger is the state. In JavaScript, every time a certain page is
reloaded, all the values of all the variables return to its initial state, so, any local change made in
variables disappears. This means that the debugger would not be able to maintain its state after
reloading a page.

For resolving this problem we use LocalStorage API [19], so, for instance if a client is suspended
and a certain page is reloaded, the client will remain suspended.

When a page is reloaded it is not necessary saving the mailbox of the actors because every page
load implies a new context (or new start). The mailbox contains the pending messages within a
context and if the page is reloaded the context changes, and the messages do not make any
sense in this other context.

This meta-channel adds meta-data to every message redirected to the client manager. The
information needed for knowing for example the message status, or for generating the
happened-before relationship between messages. This information is:

Client ID. Is used for filtering the client’s information in the client manager. The debugger user
interface separates all the clients connected to the debugging session in different tabs. The
client ID is unique for each client and server and never changes.

Sender. Is used for identifying who sent a request. For example when a client sends a request to
the server, the server can identify which client sent that request. Needed for separating the

62

different requests and responses within the server context. All the requests and responses
processed by the server event loop do not belong to the same client.

Message status. There are two possible statuses in this tool, suspended and not suspended. If
the actor is suspended, all the messages sent to the client manager must be differentiated
because they are the representation of the actor mailbox.

Timestamp. The timestamp is necessary for constructing the causality message relationship.
This is irrefutable because it shows the exact moment when a message is sent.

Message ID. Giving to each message a unique ID enables the debugger manager to identify
unequivocally a message in the mailbox. This is how the step-to-message feature is implemented;
the debugger manager sends a command with the ID of the message to be processed. Can be
useful as well for setting breakpoints in messages.

Previous ID. Unique ID used for marking all the messages that belong to a same request (or
turn). For example, a DOM click implies an asynchronous request using Socket.io that causes a
MySQL operation in the server. All these messages generated by all the channels, responses
included, must have the same Previous ID. The request A of Figure 20 illustrates the example.

Figure 20: Establishing a turn for a message

5.4.1.1 Operations send & receive
In this meta-channel, there are two differences between the send and receive operations; how
the turn is established and the delegation operation (send delegates to send of the next meta-
channel, and receive to the receive operation of the next meta-channel).

63

Therefore, in order to explain the implementation we are going to use the send operation as
example, and explain how the turn is established in the next section.

Starting from the bottom in the code above (line 26), if the state of the meta-channel is
suspended (or paused) the message is not delegated to the next meta-channel, but sent to the
debugger manager using the debugSocket (line 25). Moreover, it is added to the actor’s mailbox
along with the meta-channels that must process that specific message and the reference to the
channel that produced it.

Before adding a message to the mailbox, it is marked as not sent (line 18). In this way the
debugger manager can differentiate the messages status. Moreover, new meta-data called mbox
is added to the message for identifying the actors and a message from the mailbox before being
finally sent.

If a message arrives at line 16, and has the parameter mbox, the message should not be paused
in any way because that means that the debugger manager resumed it.

1 this.send = function(message,mos,channel){
2
3
4 var validSelector = this.notSuspend.indexOf(message.selector) === -1;
5 if(message.metaData.mstatus && (message.metaData.mstatus === 'p')){
6 message.metaData['mstatus'] = 's';
7 }
8 else{
9 var idm = uniqueId();
10 this.establishTurn(message,channel,idm,serverMode,'send');
11 message.addMetaData({'cid': getClientId(), 'mstatus':'s',
'idm':idm,'ts':Date.now(),'sender': getClientId()});
12 }
13
14 var paused = false;
15
16 if(!message.metaData.mbox && (this.getStatus() ===
this.statusName.pause) && validSelector){
17 mos.unshift(this);
18 message.metaData['mstatus'] = 'p';
19 message.addMetaData({'mbox':true});
20 var pendObj = {'msg': message, 'mos': mos,
'act':'send','ch':channel};
21 this.mailbox.push(pendObj);
22 paused = true;
23 }
24
25 this.debugSocket.emit(message.serialize()[0],message.serialize()[1]);
26 if(!paused){
27 mos.next().send(message,mos.getPending(),channel);
28 }
29 }

64

In the moment of adding a message to the mailbox, note that even though the meta-channel
debugger has already processed the message, the same meta-channel is added to the pending
list of meta-channels that must process the message (line 17 of the code). This is because the
debugger manager must know when a message is added to the mailbox and when it is processed
from the mailbox. In the figure below, we can observe the representation of this process.

Figure 21: Pause process

Therefore, when a message arrives to this method, send (or receive) can come from two
sources: the channel, which is the original event emitter and trapper or from the same meta-
channel because the message was previously added to the mailbox and must be sent. If a
message arrives to this point and contains the data mstatus, the value p comes from the
mailbox. This data must be changed to the value s for informing the debugger manager that it
will not be paused.

On the other hand, this debugger should provide enough meta-information for creating the
happened-before relationship between messages in the debugger manager. All the messages on
both sides of the communication with the same value in the meta-data Previous ID belong to the
same turn. Along with the meta-data, Timestamp enables the debugger manager for establishing
the causality relationship. We are going describe how the ID of the turn is generated further on
(method establishTurn in line 10).

This meta-channel also needs to receive commands for changing its state and for performing
operations related to the mailbox. In the code below we can see the implementation of the pause
command and the step command.

65

The pause command only has to change the state of the meta-channel. Note that the same
meta-channel is responsible for determining if the debug command is directed to it. Every
command sent by the debugger manager contains the corresponding information.

The step command takes the first element from the mailbox and delegates the message to its
corresponding first meta-channel. Observing this code, it is easy to imagine how the proceed
operation is implemented; first, changing the state of the debugger to normal, then doing step
on all the messages in the mailbox.

5.4.1.2 Establishing the turn of a message
Basically consists of setting the meta-data Previous ID of the message with an ID. Messages from
the same turn must have the same Previous ID as shown in Figure 20. We use the API of MIAJ for
determining the last channel active and its processed turns.

Every time that the meta-channel reifies the communication, it asks MIAJ (by means of the
method getLastTurn) which was the last active channel, and the youngest turn processed by this
channel (recall that once a turn is returned, it will be not available anymore). By doing so, the
message that is being processed by the meta-channel can set the meta-data Previous ID with the
same Previous ID of the turn returned by MIAJ. We can observe this in lines 5, 16 and 22 for the
different cases in the code below.

Distributed received messages do not need to obtain the turn because a message sent is the
same message received in the other point of the communication. We can observe this case in line
27, the turn is asked, but not used for setting the Previous ID of the message.

this.debugSocket.on('debug@pause',function(info){
 if(info.client !== getClientId()) return;
 private.setStatus(private.statusName.pause);
});

this.debugSocket.on('debug@step,function(info){
 if((info.client !== getClientId()) || !private.mailbox.length ||
(private.getStatus() !== private.statusName.pause)) return;
 var pendObj = private.next()
 private.mailbox = private.mailbox.getPending();
 if(pendObj['act'] === 'send')
pendObj['mos'].next().send(pendObj['msg'],pendObj['mos'].getPending(),pendObj['ch
']);
 else
pendObj['mos'].next().receive(pendObj['msg'],pendObj['mos'].getPending(),pendObj[
'ch']);

});

66

As we can observe, the process is always the same depending on the case (i.e. if the message is
distributed or if there was no active channel before). In the code below, we can observe the full
implementation:

Send operation. On the server side, the send operation can be executed in the main event-
loop (e.g. Socket.io operations) or in the event-loop for processing I/O operations (e.g. MySQL
operations). For instance, at the moment of processing a query (second event-loop), the turn of
the last active channel must be examined (which asynchronous operation triggered that query)
for setting the turn of the query (must be the same). In this case the turn before comes from
the main event-loop, which used the receive operation of Socket.io. This behaviour is
implemented from line 3 to 10 of the code above.

1 this.establishTurn =
function(message,channel,initialIdm,server_mode,operation){
2 var prev = initialIdm;
3 if(operation === 'send'){
4 if(server_mode){
5 var tmp = channel.getContext().getLastTurn();
6 prev = tmp ? tmp.metaData.prev : initialIdm;
7 }
8 else channel.getContext().getLastTurn();
9 message.metaData['prev'] = prev;
10 }
11 else if(operation === 'receive'){
12 if(!message.metaData['prev']){
13 var prev = message.metaData['idm'];
14 if(server_mode){
15 if(message.metaData['sender'] === 'server'){
16 var tmp =
channel.getContext().getLastTurn();
17 prev = (tmp ? tmp.metaData.prev :
message.metaData['idm'])
18 }
19
20 }
21 else{
22 var tmp = channel.getContext().getLastTurn();
23 prev = (tmp ? tmp.metaData.prev :
message.metaData['idm'])
24 }
25 message.metaData['prev'] = prev;
26 }
27 else channel.getContext().getLastTurn();
28 }
29 }

67

Note that when a send operation does not detect a previous active channel from which to obtain
the turn, the Previous ID is created for the first time.

Receive operation. On the one hand if the message received already contains the parameter
Previous ID, it means that the message is distributed (it is not necessary to establish the turn of
the message). Otherwise, if the message arrives to the server, it could come from MySQL, and
the last turn must be examined (line 16). And if the message arrives to the client, it could come
from the Socket.io channel, the last turn must be examined as well (line 22).

5.4.2 JAD from a User’s Perspective

The debugger manager is divided into two elements: a controller, which sends all the commands
to the actors within the debugging session and the user interface, which has two views, one to
show all the actors within the debugging session and its corresponding messages, and the
second for viewing the happened-before relationship of the messages of a concrete actor in live.

5.4.2.1 Debugger User Interface
The first view shows all the clients connected and the server by means tabs. These tabs are
created dynamically when the clients join the debugging session. The messages can be observed
along with timestamp and by clicking on one of them; it is possible to observe its data. This is
possible because the meta-channel debugger sends the information described in section 5.4.1 in
every message. With this information the controller of the application has only to present these
messages in the user interface (no special computation is needed).

Figure 22: Debugger manager default client view

The first time that a client joins the debugging session, the name of the tab is an ID of 21 bytes-
not that easy to remember; for this reason the name of the tabs can be modified at any
moment.

68

Figure 23: Debugger manager default server view

In the server tab we can observe all messages from all the clients within the debugging session.

On the other hand, double clicking on any message, the second view will be shown creating the
happened-before relationship between messages for the actor selected.

In this view the messages from the client and server are not separated, and only the server
messages related with the client selected are shown. The timeline is from top to the bottom.

69

Figure 24: Debugger manager happened-before relationship between messages

5.4.2.2 Controller
The debugger manager is able to process four kinds of commands listed and described in the
table below:

Pause	

Sets	
 the	
 actor	
 state	
 as	
 suspended,	
 the	
 event	
 loop	
 will	
 not	
 process	
 any	
 message,	

queuing	
 it	
 to	
 the	
 mailbox.	

Proceed	

Sets	
 the	
 actor	
 state	
 as	
 normal,	
 the	
 event	
 loop	
 will	
 process	
 all	
 its	
 messages	

normally.	
 And	
 if	
 there	
 are	
 messages	
 in	
 the	
 mailbox,	
 these	
 are	
 also	
 processed.	

Step	
 Processes	
 the	
 older	
 message	
 in	
 the	
 mailbox	
 when	
 the	
 actor	
 is	
 suspended.	

Resend	

Processes	
 a	
 selected	
 message	
 of	
 the	
 mailbox	
 without	
 taking	
 into	
 account	
 the	

order	
 that	
 arrived.	

Table 5: Debugger manager commands

As we can observe in the implementation, all the features are implemented in the meta-channel.
The debugger manager only commands what the meta-channels have to do by means of the
debugging socket.

70

When the command pause is sent, this is notified in the panel of the actor (dark grey panel) and
all the messages are shown in orange colour for identifying the messages in the actor mailbox.

There are three ways for processing the messages in the actor mailbox, clicking on the button
resume, clicking on the button next (the first message in the mailbox will be processed) and
clicking on the button inside the message (then no matter its position in the mailbox, it will be
processed). Every time that a message from the mailbox is processed, the colour changes from
orange to green because those are not in the actor mailbox anymore.

Figure 25: Debugger manager controls

function pause (){
socket.emit('debug@pause',{'client': clientSelected});

 setPannelInfo(clientSelected);
}
function resume(){
 socket.emit('debug@proceed',{'client': clientSelected});
 setPannelInfo(clientSelected);
}

function next(){
 socket.emit('debug@next',{'client': clientSelected});
}

function resumeMessage(idm){

socket.emit('debug@resend',{'client': clientSelected, 'message':
cleanMessageId(clientSelected,idm)});

}

71

Figure 26: Debugger manager controls part II

Finally the red button with the text “Clean” cleans the messages of the selected tab.

5.5 Employing JAD in the Library Application

5.5.1 Scenario

A web for lending books is manifesting an error in the main page. The page shows a spinner at
the top and no JavaScript errors are reported. We can see a representation in the figure below.

Figure 27: Library web application, bug detected

We decide to use JAD for trying to locate and solve the detected bug.

5.5.2 Debugging Process

The first step for debugging the application is installing the meta-level infrastructure. For the
clients, it is necessary to add the next setup to all the pages that will be debugged:

72

The meta-channel Debugger receives a parameter for instantiating it. If the value of the
parameter is true, it means that it will be an instance used on the server side. There are some
details of implementation that are not alike in both sides, such as the local storage.

And for the servers:

With this installation, the server and every client connected will join the debugging session
dynamically. Now, in order to run the debugger manager that we implemented as a web
application, it is necessary to execute the following command in the folder where the debugger
manager application is located.

We decide to pause the execution of the application, and start the application again for
debugging the message getBooksToImage (this is the message that requests the information not
shown) in order to find the bug. The following image shows what we see in the debugger
manager default view.

> node debuggerManager.js

var miaj = new MIAJ();

var metaChannels = [new Debugger(true),new Default()];

var mysql = new MySQLChannel(connection);
mysql.metaChannels(metaChannels);
miaj.subscribe(mysql);

io.sockets.on('connection', function (socket) {
 socket = new SocketIOChannel(socket);
 socket.metaChannels(metaChannels);
 miaj.subscribe(socket);
 //now is possible to use socket
});

var miaj = new MIAJ();

var metaChannels = [new Debugger(false),new Default()];

var jquerych = new jQueryChannel();
jquerych.setMetaChannels(metaChannels);
miaj.subscribe(jquerych);

var socket = new SocketIOChannel(io.connect('http://127.0.0.1:8124'));
socket.setMetaChannels(metaChannels);
miaj.subscribe(socket);

73

Figure 28: JAD in action. Debugging a client message

Using the feature step-to-message we process first the getBooksToImage request, and the
response of the server was getBooksToListResponse (note that the responses can have any
name, so, it is possible that getBooksToListResponse is the corresponding response of the
request getBooksToImage).

Figure 29: JAD in action. Debugging a client message part II

 Processing this last response (shown in Figure 29) and examining the html that this generates
(shown in Figure 30), we realize that the html seems to be the body of a table.

Figure 30: JAD in action. Debugging a client message part III

We know, as programmers of the application that the not shown part of the page is not a table.
So far, the problem can come from the client who is generating the html incorrectly or from the
response received by the client, this being incorrect.

We decided to go beyond and debug on the server side. We change the state of the client to
normal and we pause the server for debugging the message getBooksToImage.

74

Figure 31: JAD in action. Debugging a server message

Doing once again step-to-message, we can observe that the message executes a query in the
server, but we realize, as programmers of the application that this is not the proper query,
actually when the message getBooksToList is processed the two queries are the same. Then,
processing all the messages in the mailbox we can observe as well, that the server generates the
same response twice (getBooksToListResponse).

Figure 32: JAD in action. Debugging a server message part II

So far, with the information provided by the debugger, we can conclude where is exactly the
bug. The bug is located in the server because this emits two responses similar to receiving two
different requests. More precisely, this is exactly located in the part of the code when the server
receives the request getBooksToImage, because it is the request that generates the wrong
response.
We check this part of code and indeed, when the server receives the request; it executes the
behaviour of the other message (updateIndexListBySocket), being the correct
updateIndexImageBySocket behaviour.

75

Finally, fixing the code in the server and executing the application again, we observe that the
page works perfectly.

Figure 33: Library web application, bug found and fixed

Note that directly using the detail view; we can arrive at the same conclusion, even without
pausing the application.

In the representation of the view shown in the figure below, we can observe that the two
requests have two identical responses, even in the HTML generated for modifying DOM.

socket.on('getBooksToList', function (data) {
 updateIndexListBySocket(socket,data,false);
});

socket.on('getBooksToImage', function (data) {
 updateIndexListBySocket(socket,data,false);
});

76

Figure 34: JAD in action. Detail view

5.6 Conclusions

This chapter presented the first prototype of the debugging tool implemented on top of MIAJ.
The tool meets all the criteria we discussed in chapter 1.

• It is an online debugger, allowing developers to debug when the application is running.
• Is message-oriented, allowing us to generate the happened-before relationship between

the messages.
• Supports distributed messaging.
• Is web-oriented.
• Works on servers based on the event-loop concurrency model.

This is the first implementation that meets all these criteria; it is a first step for creating a tool
even more versatile in ending the problem of debugging asynchronous applications in JavaScript
and its communicating event-loops.

77

6 Conclusion

6.1 Summary

The importance of debugging support in asynchronous JavaScript applications is self-evident.
With the emergence of AJAX, JavaScript applications based on the event-loop concurrency
model introduced at the same time new solutions for implementing web applications. Some
problems arose because the applications became more difficult to understand and maintain.
Moreover, web-based applications introduce different event loops processing different types of
events. By analysing these problems, we could determine the challenges of debugging this kind
of applications and we identified three: message-oriented, heterogeneity and open debugging.

Message-oriented. In asynchronous applications the control flow is divided into two parts, the
request process and the reception process. Establishing the happened-before relationship
between these two parts is not that easy as in sequential programming, because the stack of the
program is always empty when processing a message (or turn), which means that every message
is treated independently when processed in an event loop.

Heterogeneity. Web-based applications use different types of events generated by different
technologies such as DOM events (e.g. clicks, DOM modification) or asynchronous remote events,
all of them being processed by the JavaScript event-loop. Having different types of events
makes the debugging process difficult because each one has a different structure

Open Debugging. The frequent disconnections of web applications can complicate the
debugging process because it could cause a loss of messages. In such cases, the debugger must
be able to keep control of all the messages processed by an actor while disconnected from the
debugging session.

We also analysed the current tools for debugging JavaScript and none of them overcome such
challenges. Tools that only allow debugging in the client side, such as Firebug or FireDetective,
which allows us debugging on both sides of the communication are only for AJAX-based
communication and always after the program execution.

6.2 Our Approach

With the aim of overcoming the aforementioned challenges, we present two levels of solutions, a
reflective model that we call MIAJ, and JAD, a debugger for distributed asynchronous JavaScript.

78

6.2.1 Meta-level Engineering in JavaScript

Based on the ideas of the classic channel-oriented reflective frameworks [1] and transmitter-
receptor model from AmbientTalk’s/M language [3], we present MIAJ, a Meta-level Infrastructure
for Asynchronous JavaScript.

This infrastructure reifies the asynchronous communications based on communicating event-
loops present in JavaScript applications. This infrastructure deals with the heterogeneity of JS
applications, reifying all types of events as first-class objects called Messages, and reifying the
extremes of the communications (send and receive) by means of the use of meta-objects called
meta-channels. By manipulating these meta-channels or creating news, developers can modify
and specialize the behaviour of the events.

MIAJ also provides support for establishing the happened-before relationship between messages,
by means of sharing information between the channels. For example, a given channel could know
which was the last active channel, and the different turns processed.

By default MIAJ supports the following channels: DOM communication based on jQuery,
distributed asynchronous communication based on Socket.io, and distributed communication
based on MySQL.

6.2.2 An Online Message-oriented Debugger for JavaScript

JAD. Is a debugger built on top of MIAJ that adapts the features of the REME-D debugger
because both are built on an event loop concurrency model. This implements the traditional
debugging features such as state inspection, stepping, and causality link browsing and open
debugging.

• State inspection. Enables developers to pause the execution of a program, and allows
examining the actor’s mailboxes, which are the messages that are paused. For this
feature the clients and server use different mailboxes because they remain in different
spaces of memory. Moreover each actor has only one mailbox although the application
processes different kind of events.

• Stepping. This tool provides two features for processing a message from the mailbox,
step-by-step (processes the older message in the mailbox), and step-to-message
(processes a message selected).

• Open debugging. Can deal dynamically with disconnections and reconnections of the
actors to the debugging session.

• Causality l ink browsing. The debugger allows us to establish the happened-before
relationship between all the events reified as messages.

79

The implementation of the debugger consists in a meta-channel implementing all the debugging
features previously described, and a debugger manager for controlling and visualizing these
features.

6.3 Limitations and Future work

This thesis introduces MIAJ, a reflective architecture for dealing with asynchronous JavaScript
applications. This architecture provides, by default, support for three channels, jQuery DOM (only
clicks and HTML modification), Socket.io (for both sides of the communication), and Node.js for
MySQL. However, on the one hand, the idea is to extend the functionalities of the Channel jQuery
DOM for reifying a part of the click events and DOM mutations, and other kinds of events such as
double click, mouse over, keyboard interactions, append, prepend, etc. [10].

And on the other hand, designing and implementing more channels for reifying web abstractions
and libraries such as:

• Page load and reload
• Timers
• Asynchronous messaging: AJAX, Promises, etc.
• Script invocations
• Resources load

The pretention is reifying as much abstractions and libraries as possible in order to provide a
complete debugging support.

With regards to the debugger, which is a meta-channel on top of MIAJ, the next step is designing
and implementing three more features:

• Setting breakpoints in the messages. While examining the mailbox of a client, should
be possible in selecting a message and setting a breakpoint in it, thus, when the
execution will be resumed, the execution will stop in the message that contains the
breakpoint.

• Modifying messages of the mailbox at run time. Being able to modify the data of a
message in the mailbox, for example, to modify the query before executing it with
MySQL, whether it is for checking the SQL syntax or for changing the results.

• Modifying messages processed at runtime. The idea is to modify the client DOM by
resending messages already processed. For example, to modify the data of a DOM
mutation message already processed, and consequently modifying the DOM in the
client by resending the given message.

80

The debugger manager also needs some improvements in the user interface, however, this being
a prototype for validating the debugging features, it is not clear how it will finally be
implemented. As a Firefox extension? As a plugin for a JavaScript editor such as Eclipse? The
response to this question requires a great analysis for validating it such as in [32] or [13].

Finally, the implementation of MIAJ can only be installed in JavaScript applications using Node.js
in the server side. One step beyond would be to implement MIAJ for other server-side runtimes.

6.4 Contributions

The key contribution of this thesis is the definition of a Meta-level architecture (MIAJ) on top of
the web abstractions for asynchronous JavaScript applications, for reifying the communication
traces. This model provides support for dealing with the heterogeneity problem of the web
applications (where the asynchronous messages can be of different types), and provides support
for establishing the causality relationship between messages (or communication channels).

By combining the ideas of the channel reification model [1] and the transmitter/receptor model
from AmbientTalk’s/M language [3], MIAJ defines three components channels (reifying different
kinds of communication (e.g. implicit event loops)), meta-channels (reifying both ends of
communication) and messages (reifying the events sent and received in the JS as first-class
objects). By modifying the meta-channels or creating new ones, developers can modify or
specialize the behaviour of an event.

This first contribution lead us to the second one, which is an application of this model for
capturing the interactions of some JavaScript technologies such as Socket.io (for remote
communications in both extremes), jQuery DOM (for interactions with the DOM using jQuery),
and MySQL for Node.js. These technologies are reified as Channels.

For applying this model, two meta-channels were also created, the first for generating the file
communication traces used by the debugger Causeway. And the second implementing debugging
features such as state inspection, stepping and link causality. This latter comes along with
another application called debugger manager that controls the debugging features in the actors
by means of a user interface.

We call JAD the combination of the debugger manager and the meta-channel that implements
the debugging features. To the best of our knowledge, JAD becomes the first online debugger
for distributed asynchronous JavaScript applications.

81

7 References

[1] Ancona, M., Cazzola, W., Dodero, G., & Gianuzzi, V. (1998). Channel reification: A reflective model for
distributed computation.

[2] FireQuery. https://www.binaryage.com [Online; accessed June-2014].

[3] Boix, E. G. (2012). Handling partial failures in mobile ad hoc network applications: From programming
language design to tool support., 55-105.

[4] Gonzalez Boix, E., Noguera, C., & De Meuter, W. (2014). Distributed debugging for mobile networks.
J.Syst.Softw., 90, 76-90.

[5] B. Liskov and L. Shrira. Promises: linguistic support for efficient asyn- chronous procedure calls in
distributed systems. In Proceedings of the ACM SIGPLAN 1988 conference on Programming Language design
and Implementation, pages 260–267. ACM Press, 1988.

[6] B. Liskov, “Distributed programming in Argus,” Communications Of The ACM, vol. 31, no. 3, pp. 300–
312, 1988.

[7] Chalk, S., & Donat, M. (2003). Debugging in an asynchronous world.

[8] Chrome DevTools. https://developer.chrome.com/devtools/index [Online; accessed June-2014].

[9] G. Kiczales, J. D. Rivieres, and D. G. Bobrow. The Art of the Metaobject Protocol. MIT Press, Cambridge,
MA, USA, 1991.

[10] Jquery. http://jquery.com [Online; accessed June-2014].

[11] K. Zyp. http/::wiki.commonjs.org:wiki:Promises:A, 2009. [Online; accessed June-2014].

[12] Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system. Commun.ACM,
21(7), 558-565.

[13] Layman, L., Nagppan, M., Singer, J., & DeLine, R. Debugging revisited.

[14] Lerner, B. S., Carroll, M. J., Kimmel, D. P., La Vallee, H. Q., & Krishnamurthi, S. (2012). Modeling and
reasoning about DOM events. Proceedings of the 3rd USENIX Conference on Web Application Development,
Boston, MA. pp. 1-1.

[15] Lieber, T. (2013). Theseus: Understanding asynchronous code. CHI '13 Extended Abstracts on Human
Factors in Computing Systems, Paris, France. pp. 2731-2736.

[16] M. Miller, E. D. Tribble, and J. Shapiro. Concurrency among strangers: Programming in E as plan
coordination. In Symposium on Trustworthy Global Computing, volume 3705 of LNCS, pages 195–229.
Springer, April 2005.

[17] Xmlhttprequest. https://developer.mozilla.org/es/docs/XMLHttpRequest [Online; accessed June-2014].

82

[18] Ajax. https://developer.mozilla.org/es/docs/AJAX [Online; accessed May-2014].

[19] Storage. https://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/Storage [Online; accessed
April-2014].

[20] Node.js. http://nodejs.org [Online; accessed February-2014].

[21] Firebug. https://getfirebug.com [Online; accessed May-2014].

[22] Q. http://documentup.com/kriskowal/q [Online; accessed June-2014].

[23] MySQL for node.js. https://github.com/felixge/node-mysql [Online; accessed February-2014].

[24] Socket.io. http://socket.io [Online; accessed February-2014].

[25] Stanley, T., Close, T., & Miller, M. S. (2009). Causeway: A message-oriented distributed debugger
(Technical No. 78). HP Laboratories:

[26] Boix, E. G., Noguera, C., Van Cutsem, T., De Meuter, W., & D'Hondt, T. (2011). REME-D: A reflective
epidemic message-oriented debugger for ambient-oriented applications. Proceedings of the 2011 ACM
Symposium on Applied Computing, TaiChung, Taiwan. pp. 1275-1281

[27] Cutsem, T. V., Mostinckx, S., Boix, E. G., Dedecker, J., & Meuter, W. D. (2007). AmbientTalk: Object-
oriented event-driven programming in mobile ad hoc networks. Proceedings of the XXVI International
Conference of the Chilean Society of Computer Science, pp. 3-12.

[28] Van Cutsem, T., & Miller, M. S. (2013). Trustworthy proxies: Virtualizing objects with invariants.
Proceedings of the 27th European Conference on Object-Oriented Programming, Montpellier, France. pp.
154-178.

[29] Van Cutsem, T., & Miller, M. S. (2010). Proxies: Design principles for robust object-oriented intercession
APIs. SIGPLAN Not., 45(12), 59-72.

[30] Waldo, J., Waldo, J., Wyant, G., Wyant, G., Wollrath, A., Wollrath, A., et al. (1994). A note on
distributed computingIEEE Micro.

[31] Wang, H. J., Fan, X., Howell, J., & Jackson, C. (2007). Protection and communication abstractions for
web browsers in MashupOS. SIGOPS Oper.Syst.Rev., 41(6), 1-16.

[32] Zaidman, A., Matthijssen, N., Storey, M., & Van deursen A. (2012). FireDetective: Understanding ajax
Client/Server interactions (Technical No. 4). Delf University of Technology: Software Enginnering Research
Group.

83

Appendices

7.1 Appendix A

A.1. MIAJ Implementation

function MIAJ(){
 var activeChannel = new AssociativeArray();

 this.subscribe = function(channel){
 channel.setContext(this);
 activeChannel[channel.constructor.name] = {'ac':0, m:new Array()};
 }

 this.unsubscribe = function(channel){
 channel.setContext(null);
 }

 this.setChannelTurn = function(ch,msg){
 if(activeChannel[ch.constructor.name].ac === 1){
 activeChannel[ch.constructor.name].m.push(msg);
 }
 else{
 for(i in activeChannel){
 if(activeChannel.hasOwnProperty(i)) {
 activeChannel[i].ac = 0;
 activeChannel[i].m = new Array();
 }
 }
 activeChannel[ch.constructor.name].ac = 1;
 activeChannel[ch.constructor.name].m = [msg];
 }

 }

 this.getLastTurn = function(){
 for(i in activeChannel){
 if(activeChannel.hasOwnProperty(i) && activeChannel[i].ac
=== 1){
 var res = activeChannel[i].m.next();
 activeChannel[i].m =
activeChannel[i].m.getPending();
 return res;
 }
 }
 return null;
 }
}

84

A.2. Message Implementation

function Message(selector,data,rec){
 this.selector = selector;
 this.data = data;
 this.metaData = {};

 this.metaDataSeparator = '@';
 this.keyValueSeparator = ':';
 this.allowedDistributedMetaData = ['string','number','boolean'];

 if(rec && selector) this.deserialize(selector);
}

Message.prototype.addMetaData = function(p){
 for(i in p){
 this.metaData[i] = p[i];
 }
}

Message.prototype.getMetaData = function(key){
 return this.metaData.hasOwnProperty(key) ? this.metaData[key] : null;
}

Message.prototype.serialize = function(){
 var newArgs = [this.selector,this.data];
 for (var k in this.metaData){
 if (this.metaData.hasOwnProperty(k)) {
 var tParam = typeof this.metaData[k];
 if (this.allowedDistributedMetaData.indexOf(tParam) !== -
1){
 newArgs[0] +=
this.metaDataSeparator+k+this.keyValueSeparator+this.metaData[k];
 }
 }
 }
 return newArgs;
}

Message.prototype.deserialize = function(selector){

 var parts = selector.split(this.metaDataSeparator);
 this.selector = parts[0];
 for(var i = 0; i < parts.length; i++){
 if(i === 0) continue;
 var keyValue = parts[i].split(this.keyValueSeparator);
 if(keyValue.length > 1){
 this.metaData[keyValue[0]] = keyValue[1];
 }
 }
}

85

7.2 Appendix B

B.1. Traces Causeway meta-channel

[
 {
 "class":[
 "org.ref_send.log.Got",
 "org.ref_send.log.Event"
],
 "anchor":{
 "number":1,
 "turn":{
 "loop":"server.js",
 "number":0
 }
 },
 "message":"AM7CXPB11402050838179",
 "trace":{
 "calls":[
 {
 "name":"book_info",
 "source":"server"
 }
]
 }
 },
 {
 "class":[
 "org.ref_send.log.Sent",
 "org.ref_send.log.Event"
],
 "anchor":{
 "number":0,
 "turn":{
 "loop":"server.js",
 "number":0
 }
 },
 "message":"MV5YURS11402050838537",
 "trace":{
 "calls":[
 {
 "name":"book_info_response",
 "source":"server"
 }
]
 }
 }

]

