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“Making a computer see was something that leading experts in the field of Artifial

Intelligence thought to be at the level of difficulty of a summer student’s project

back in the 60’s. Forty years later the task is still unsolved and seems formidable”

Olivier Faugeras



Abstract

Along this thesis, a novel and robust approach for obtaining 3D models from video

sequences captured with hand-held cameras is adressed. This work defines a fully

automatic pipeline that is able to deal with different types of sequences and acquir-

ing devices. The designed and implemented system follows a divide and conquer

approach. An smart frame decimation process reduces the temporal redundancy

of the input video sequence an selects the best conditioned frames for the recon-

struction step. Next, the video is split into overlapped clips with a fixed and small

number of Key-frames. This allows to parallelize the Structure and Motion process

which translates into a dramatic reduction in the computational complexity. The

short length of the clips allows an intensive search for the best solution at each

step of the reconstruction, which improves the overall system performance. The

process of feature tracking is embedded within the reconstruction loop for each clip

as a difference with other approaches. The last contribution of this thesis is a final

registration step that merges all the processed clips to the same coordinate frame.

This last step consists on a set of linear algorithms that combine information of

the structure (3D points) and motion (cameras) shared by partial reconstructions

of the same static scene to more accurately estimate their registration to the same

coordinate system. The performance for the presented algorithm as well as for the

global system is demonstrated in experiments with real data.
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dido más de vosotros en este tiempo que entre carrera y máster. En especial, un
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Chapter 1

Introduction

In the recent years, three-dimensional reconstruction of non-controlled environ-

ments from user’s photos and videos has attracted major interest from the Com-

puter Vision community. During decades, research efforts in this field and, more

precisely, in Structure and Motion techniques (SaM), were mainly focused in pro-

viding solutions to particular problems related to 3D reconstruction: feature de-

tection, matching and tracking, structure and camera pose computation, densifi-

cation methods, etc. Nowadays, the objective is to develop robust and automatic

pipelines for three-dimensional reconstruction, by means of combining this set of

already mature algorithms [2–4].

Moreover, reconstruction of large scenarios from unordered photo collections, has

become one of the major topics of research in SaM [2, 3, 5]. Its tremendous po-

tential for touristic and social applications has attracted the attention of several

technological companies. As a consequence, the first commercial products have

been launched allowing users to create their own three-dimensional content and

interact with it. Microsoft Photosynth [6], based on the previous work of Wash-

ington University [2], is the most relevant contribution in this field. From sets of

images uploaded from users, the system is capable of reconstructing the 3D scene

and representing it as a cloud of points. The position and orientation from where

the photos were taken are also provided. In addition, it allows the user to interact

with the created 3D world.

Nevertheless, although the mentioned great efforts in 3D reconstruction from pho-

tographs, there is still an active research in SaM from video sequences. Some

examples of it are the recent development of real-time systems for several appli-

cations such as dense city modeling [7] or visual odometry applications [4]. Some

specific issues associated to SaM from video are still been tackled in recent papers

1



Chapter 1. Introduction 2

in literature: drift propagation through frames as the sequence length grows [8–

10], temporal redundancy [11] and the difficulty of providing the reconstruction

loop with an accurate set of tracked features through frames.

Along this work, a fully automatic and robust pipeline for 3D reconstruction from

video sequences is presented. Special interest was devoted to design a system

able to reconstruct different types of static sequences: objects, cars, buildings,

etc. Moreover, the reconstruction pipeline is intended to deal with low quality

acquiring devices, such as cell phones and cheap digital cameras.

1.1 State of the art

Although the achieved level of maturity in SaM, there are some issues that still

limit the capabilities of this kind of systems. Among them, reducing the large

computational complexity that these type of algorithms demand has shown to be

an attractive topic for the research community. Bad-scalability of Newton-like

optimization [12] represents the most restrictive bottleneck in terms of computa-

tional complexity for this discipline. Therefore, several approaches are found in

literature to face this problem [5, 13].

In the case of photo collections, an accepted practice consists of pre-analyzing

the set of snapshots and clustering them upon an affinity criterium. Clusters are

independently processed [5, 13, 14] and locally optimized. That is the well-known

out-of-core optimization. The equivalent when dealing with video sequences con-

sists on defining atomic structures (i.e. triplets [15, 16]) that, once reconstructed

and combined [17], represent the whole scene. This type of practice allows a par-

allelization of both the reconstruction process and the optimization step, which

dramatically reduces the amount of computational resources needed.

As seen, the basic idea of this type of approaches consists on decoupling the prob-

lem into small pieces that are independently processed and, therefore, optimized

demanding less computational resources. This independent processing requires

of an additional merging stage to combine and homogeneize the obtained partial

results. In fact, although partial reconstructions represent the same static scene,

they are usually referred to distinct coordinate systems (due to the nature of the

reconstruction algorithms used). Hence, points, cameras and all the geometric

entities representing a 3D scene need to be geometrically registered to the same

global coordinate frame. In the following, references to SaM systems following this
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divide-and-conquer strategy, as well as geometric data registration algorithm are

presented.

Geometric data registration has been a widely studied topic for several applica-

tions: SaM, geo-referentiation of SaM point clouds, fusion of active and passive

sensors, visual odometry, etc. Depending on the nature of retrieved 3D data,

registration algorithms may be classified as purely based in geometry or in data

correspondences.

Geometry-based algorithms do not process data information directly. Instead, they

use intermediate geometric primitives, which are matched by iteratively minimiz-

ing a geometric distance function. Iterative Closest Point (ICP) [18] between 3D

point clouds is the most representative technique. It is commonly used for refine-

ment and requires of a good initialization because of its tendency to be trapped in

local minima. Some examples using this type of registration technique are [19, 20].

On the other hand, correspondence-based algorithms for registration make use

of a priori known shared data. Correspondence can be achieved by exploiting

texture (i.e. SIFT-like descriptor matching [21]) or temporal redundancy (i.e.

overlapped cameras in video sequences), among others. This allows to compute

the registration directly from the data, without recourse to other primitives.

In SaM from video sequences, the problem of registering reconstructions can be

tackled as an iterative approach to avoid drift accumulation over frames. A hier-

archical method to align consecutive camera triplets into a global projective frame

is presented in [15]. Shared 3D points, retrieved from 2D correspondences, and

one or two overlapped cameras are exploited to obtain a projective transformation

between camera triplets and their associated structures. The process is followed

by a bundle adjustment (BA) step and iterated until the whole sequence has been

correctly registered. In [16], a generalization of [15] is proposed by selecting new

triplets to be merged in an adaptive manner according to sequence motion, frame

rate and amount of parallax.

Even for realtime reconstruction systems from video sequences, a sequential regis-

ter of partial reconstructions is used. In this case, the objective is to avoid the drift

propagation [4, 7, 22]. In [7], after an initial pose estimation, new cameras views

and 3D points are iteratively added into a local metric coordinate system. The

process is periodically refreshed (defined as a firewall introduction) and, therefore,

a similarity transformation needs to be estimated: relative rotation and transla-

tion are obtained from one camera overlap, while the relative scale is obtained

from 3D point correspondences.
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The aforementioned algorithms use 3D correspondences and overlapping projec-

tion matrices as geometric primitives for aligment. In [17], Viewpoint-Invariant

Patches (VIP) are defined as new primitives for obtaining a similarity transforma-

tion to register two independent metric reconstructions. VIP codifies the coordi-

nates and normal direction of a 3D point (which encodes the relative translation

and rotation), a SIFT descriptor and a patch scale. Hence, obtaining a similarity

transformation is possible with just a single VIP correspondence.

1.2 Motivation and contributions

This thesis has been carried out within the development of a video-to-3D product

(Video Surfing1). The objective of this project consists of implementing a system

that allows users to generate their own 3D scenarios from recorded static scenes.

Its workflow is as follows: the user records a touristic place, object, face, etc. and

uploads this video to the project server. Next, the uploaded sequence is processed

by means of a robust Structure and Motion pipeline that generates a dense 3D

model of the recorded scene as well as recovers the path followed by the camera.

Finally, the retrieved 3D information is used to feed an space-time player that

allows the user to interact with the video and the obtained 3D model.

The main contribution of this thesis consists on the definition of a divide and

conquer strategy for the reconstruction pipeline. As many other approaches in

literature, the scalability problem is faced by decoupling the full reconstruction

into smaller pieces that are independently processed and further combined. In

this particular case, the input video sequence is split into shorter subsequences. In

order to make this approach possible, a set of novel linear algorithms for registering

the partial reconstructions have been co-developed, implemented and analyzed.

Moreover, several strategies have been introduced in order to provide a robust

reconstruction for each one of the subsequences. A frame decimation step has

been defined with the aim of providing the reconstruction looop with a set of

well conditioned input Key-Frames. In addition, the process of pose estimation

for the first pair of views and upgrade of the SaM for each one of the clips have

been revisited in order to make them as robust an reliable as possible. Finally, a

novel approach regarding feature tracking is the last contribution of this thesis.

This process has been embedded within the reconstruction combining 2D an 3D

information.

1http://surfing.tidprojects.com/MWVC
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The remainder of the document is as follows. In Chapter 2, basic concepts of

Projective geometry and Computer Vision are presented in order to serve as a

quick reference for the rest of the chapters. Chapter 3 provides a global overview

of the full system, as well as the presentation of the mentioned contributions of this

thesis to the reconstruction loop: frame decimation and feature tracking. Chapter

4 is devoted to the mathematical formulation of both the linear algorithms for

registering partial reconstructions and their optimization strategies. In Chapter

5, results with real sequences are provided and, finally, Chapter 6 presents the

achieved conclussions and introduces some ideas for future research lines.





Chapter 2

Theoretical Background

The objective of this chapter is to present the associated mathematical concepts

and computer vision techniques used for obtaining 3D reconstructions from image

projections. The outline of the chapter is as follows. In section 2.1, the mathe-

matical tools described by Projective Geometry are presented. This set of tools is

on the basis of description of the image formation process. Section 2.2 is devoted

to the description of the pinhole camera, which refers to the simplest mathemati-

cal definition of an image acquiring device. Section 2.3 introduces the Projective

geometry between pairs of views and section 2.4 presents a set of techniques to

extend them to a larger number of views.

2.1 Projective geometry

We are all familiar with Euclidean geometry since it is the way we were taught

for describing our three-dimensional world. It fits very well in the processes of

measuring angles, longitudes or even describing shapes since they are all invariants

to this type of geometry. However, Euclidean geometry is not enough for describing

the process of image formation in Computer Vision. Lengths and angles are not

preserved, parallel lines meet at vanishing points, shapes look to be deformed

(i.e, circles may seem ellipses), etc. Therefore, a more complete geometry able to

describe this set of facts is used: Projective geometry.

In order to introduce the topic, let us focus in the property that, in the image

formation model, parallel lines may seem to intersect. In 2D Euclidean geometry,

two lines almost always meet in a plane point and if do not so, they are named

parallel or they are said to meet at infinity. Unfortunately, this last assertion

7
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crashes with the concept that infinity does not exist and it is only a convenient

mathematical tool.

Nevertheless, we may upgrade the Euclidean world by means of adding these points

at infinity (ideal points) where parallel lines meet. Thus, the Euclidean space is

converted to a new geometric object, the Projective space. We need to think the

Euclidean geometry as just a subset of a bigger one, the Projective geometry. The

latter presents additional properties and allows different suitable transformations

for describing the image formation model.

The conclusion that arises from the previous ideas is that a convenient way of

representing the real 3D world is by extending it to the four-dimensional Projective

space. In the following, we present the insights and mathematical formulation of

this type of geometry and its applications in the field of Computer Vision.

2.1.1 Homogeneous coordinates

In order to formalize the aforementioned upgrade of the Euclidean space to a

Projective one, we need to introduce some mathematical notation to allow us

identifying or describing points at infinity. This is achieved by using homogeneous

coordinates.

Let us represent a point in the Euclidean plane as the pair of numbers xe = [x y]T .

The conversion to homogeneous coordinates is performed just by adding an extra

dimension xp = [x y 1]T , that will define whether a point is located at infinity

or not. In order to generalize the conversion to homogeneous coordinates we will

define that [x y 1]T , [2x 2y 2]T , . . . [kx ky k]T , represent the same point for any

non-zero value of k. Let us consider that the general expression for a point in the

Projective plane is given [x y z]T .

It is straight forward to see that the inverse conversion of coordinates is achieved

by simply dividing per z the two first coordinates
[x
z

y

z

]T
and it is here where the

concept of infinity arises. If the third coordinate of an homogeneous point equals

zero, it is equivalent to say that it is located at infinity. An intuitive demonstration

of this concept is to apply the inverse conversion to non-homogeneous coordinates

of:

[x y 0]T 7→ [
x

0

y

0
]T ∼ [∞,∞]T

We have presented how to extend the 2 -dimensional Euclidean space R2 to the

Projective space P2 but it is direct to see that it can be extended to any conversion

from Rn to Pn. Nevertheless, it is important to keep track of what dimensions
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Euclidean Similarity Affine Projective
Transformations
Rotation

√ √ √ √
Translation

√ √ √ √
Isotropic scaling

√ √ √
Non-Isotropic scaling

√ √
Deformation

√ √
Homographies

√

Invariants
Length

√
Angle

√ √
Length ratio

√ √
Parallelism

√ √ √
Incidence

√ √ √ √
Cross ratio

√ √ √ √

Table 2.1: Summary of invariants and permitted transformations for each type
of geometry

represent in our problem. In P2, ideal points form the line at infinity and for

the 4-dimensional P3 they form the plane at infinity, which is a useful tool for

autocalibration.

2.1.2 Hierarchy of geometries

We have introduced the concept of Projective geometry as a superset of the well

known Euclidean geometry, but they are not the only ones. In fact, there exist

two other intermediate geometries between Euclidean and Projective: Similarity

and Affine. These four geometries may be compared and studied from the point of

view of the available invariants relying from the possible transformations in each

space.

In table 2.1 invariants and transformations for each type of geometry are presented.

Some benefits of projective transformations are that they preserve type (points

remain points and lines remain lines), incidence and cross ratio. In addition, the

number of permitted transformations (bijections between two projective basis) is

higher than for Euclidean. This extra transformations are on the basis of the good

description of image formation model that Projective geometry provides.
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2.1.3 The 2D projective plane

In this section we introduce the homogeneous representation of points and lines

in the Projective plane P2 and their intrinsic relationship. Recall that, given a

point xe = [x y]T in R2, its corresponding representation in P2 is formed just by

adding a third coordinate x = [x y 1]T . Also recall that the scaling factor is not

relevant since [x y 1]T = [kx ky k]T for any k different to zero. Point [0 0 0]T is

not allowed.

A line in the plane is represented by the equation ax+ by + c = 0 or equivalently

with the vector [a b c]T . Neither for lines the scale factor is relevant and it is

evident that [a b c]T = k[a, b c]T . In addition, if x = [x y 1]T and l = [a b c]T the

previous equation of the line can be obtained as the inner product:

xT l = ax+ by + c = 0 (2.1)

Equation (2.1) yields an important result: the point x lies on the line l if and only

if xT l = 0. This is the so-called incidence relation. We may introduce further re-

lationships between points and lines in order to introduce an important geometric

consequence in the Projective plane: The Duality Theorem.

Line intersection and line joining two points: Given two lines {l1, l2} and

two points {x1,x2} in the Projective plane, the point x where {l1, l2} intersect

and the line l joining {x1,x2} are respectively given by the cross products:

x = l1 × l2 (2.2)

l = x1 × x2 (2.3)

Ideal points: Let us consider two parallel lines l = [a b c]T and l′ = [a b c′]T .

Applying (2.2), it yields that the point x∞ is :

x∞ = (c′ − c)[b − a 0]T = [x y 0]T , (2.4)

and it represents the point at infinity where two parallel lines meet. This makes a

difference with Euclidean Geometry where no possible intersection exists for the

case of parallel lines.
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Points Lines

Coordinates x = [x y z]T Coordinates l = [a b c]T

Incidence xT l = 0 Incidence xT l = 0
Alignment det[x1x2x3] = 0 Concurrence det[l1l2l3] = 0
Line joining 2 points x = l1 × l2 2 lines intersection l = x1 × x2

Infinity point [x y 0]T Infinity line [0 0 c]T

Transformation rule x′ = Hx Transformation rule l′ = H−T l

Table 2.2: Summary of point and line relationships and properties in P2

Line at infinity: Let us consider two ideal points x = [x y 0]T and x′ = [x′ y′ 0]T .

Applying (2.3),the line l∞:

l∞ = [0 0 xy′ − x′y]T = [0 0 c]T (2.5)

Arrived to this point the reader should have noticed an implicit relationship be-

tween points and lines. This relationship is on the basis of the Duality Theorem:

To any theorem of 2-dimensional projective geometry there corresponds a dual the-

orem, which may be derived by interchanging the roles of points and lines in the

original theorem.

In table 2.2 a summary of the already explained and some extra relationships be-

tween points and lines are listed. For further details refer to [1].

A model of the Projective plane: It has been demonstrated that, when up-

grading the Euclidean to the Projective plane, a point in R2 transforms in to a set

of points in R3, or more precisely P2, related by a non-null scale factor. Therefore,

a point x = [x1 x2 x3]T could be interpreted as a line in a three-dimensional space

passing through the origin and intersecting in the R2 plane. On the other hand, a

line l = [a b c]T may be considered as plane intersecting the R2 plane. Moreover,

the line at infinity l∞ consists on the vertical plane x3 = 0 since it contains all

the points with third coordinate equal to zero (ideal points). In order to clear

concepts up, a graphical explanation is presented in figure 2.1.

Hierarchy of transformations Let us now introduce the formulation of the

already presented concept of Projective transformation. A Projective transfor-

mation is a linear mapping between two homogeneous 3-vectors represented by a
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π

l

x
O

x 1

x

x 3

2

ideal
point

Figure 2.1: Ray Space model for the Projective plane P2. Points and lines
are described as rays and planes respectively intersecting the Euclidean plane

R2.(Reprint from [1])

non-singular 3× 3 matrix H:
x′1

x′2

x′3

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33



x1

x2

x3

 , (2.6)

or more briefly x′ = Hx. It is important to note that an scale factor does not affect

H and therefore it is said to be an homogeneous matrix.

Moreover, it is interesting to describe the four important specializations for a

Projective transformation an their geometric properties. In Fig. 2.5 the 4 possible

transformations are illustrated from the reconstruction point of view. Invariants

for the four types of geometries from Table 2.1 are a consequence of the nature of

the following transformations:

1. Euclidean Transformation. An Euclidean transformation is defined as ap-

plying a rotation plus a translation to a given geometric primitive.

x′ =


cosθ −sinθ tx

sinθ cosθ ty

0 0 1

x =

[
R t

0T 1

]
x = Hex (2.7)

As seen it preserves lengths and distances since no scaling is applied. Because

of that, this type of transformation is usually referred as Isometry.
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2. Similarity Transformation. An Similarity transformation is defined as ap-

plying an isotropic scaling to an Euclidean transformation

x′ =

[
sR t

0T 1

]
x = Hsx (2.8)

When speaking about reconstruction, the term metric is usually employed

when no extra information to images is provided. Since no data about the

scale of the reconstruction, nor the orientation or the global position is pro-

vided, the metric reconstruction is said to be valid up to a similarity trans-

formation. A similarity transformation preserves ratios of distances, shape,

angles, etc. but not real distances.

3. Affine transformation. An affine transformation is formed by a singular

linear transformation followed by a translation:

x′ =


a11 a12 tx

a21 a22 ty

0 0 1

x =

[
A t

0T 1

]
x = Hax (2.9)

The non-isotropic scaling leads to not preserve shape, distance or angles.

Nevertheless parallel lines remain parallel after an affine transformation and

ratios of lengths or areas keep themselves unchanged.

4. Projective transformation. A projective transformation is a general non-

singular linear transformation of homogeneous coordinates as expressed in

(2.6). A projective transformation is the generalization of an affine transfor-

mation for non-homogeneous coordinates. The most relevant invariant for

this type of transformation is the cross-ratio [1].

2.1.4 The 3D projective space

Along this subsection we extend the already presented concepts of the P2 geometry

(points lines and transformations) to adapt them to the study of the projective

space P3. More precisely, the concepts of planes, 3D points and the intrinsic

relationships among them are introduced. As for the 2D Projective plane, the

most relevant consequence is the Point/Plane Duality Theorem.
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A point in P3 is represented by the homogeneous 4-vector X = [X1 X2 X3 X4]T

and it is related to its representation Xe in R2 as the de-homogenization:

Xe = [X Y Z]T =

[
X1

X4

X2

X4

X3

X4

]T
(2.10)

On the other hand, the general equation of a plane follows π1X+π2Y +π3Z+π4 =

0. From 2.10, it provides the incidence relationship: π1X1+π2X2+π3X3+π4X4 = 0

or more briefly:

πTX = XTπ = 0 (2.11)

Recall that, in the previous section, it was stated that points and lines were some-

how equivalent. In P3 this equivalency is given between points and planes. That

is the Duality Theorem for Points and Planes [1]. In the following, some of its

consequences are presented.

Three points define a plane: given 3 points in general position X1,X2 and X3,

the plane π which contains both three is the solution of the homogeneous system:
XT

1

XT
2

XT
3

π = Mxπ = 0, (2.12)

or, in other words, the null-space of the rank-3 matrix Mx.

Three planes join in a point: this relation is dual to the previous one. Given

3 planes in general position π1, π2 and π3, the point X where they uniquely meet

is obtained as the solution of: 
πT1

πT2

πT3

X = MπX = 0 (2.13)

Projective Transformation: given a 4 × 4 P3 transformation H, the rule for

transforming points and planes is:

X′ = HX (2.14)

π′ = H−Tπ (2.15)
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It is important to keep in mind this last result, since it will be the basis of the

registration of partial reconstructions algorithm in Chapter 4.

Line representation: representing lines in 3-space is something awkward to do

since it is a primitive with four degrees of freedom. Its natural representation

should be a 5-vector, which is not compatible with the formulation of points and

planes. Hence, several approaches have been proposed in literature. Plucker Ma-

trices/Vectors is the most accepted one.

Given two points X and Y, the line joining them is represented by the 4 × 4

skew-symmetric Plucker matrix:

L = XYT −YXT , (2.16)

whose elements are lij = XiYj − YiXj. Since L is skew-symmetric, it is usually

represented by the Plucker vector:

l = {l12, l13, l14, l23, l42, l34} (2.17)

Moreover, a dual Plucker representation L∗ is obtained for a line formed by the

intersection of two planes π and δ:

L∗ = πδT − δπT , (2.18)

L and L∗ are related through their elements by the rewrite rule:

l12 : l13 : l14 : l23 : l24 : l34 := l∗34 : l∗42 : l∗23 : l∗14 : l∗13 : l∗12

Finally, given a projective transformation H, the rule for transforming lines is:

L′ = HLHT (2.19)

Hierarchy of transformations. The concept of transformation for the 3D Pro-

jective space is analogous to that of the 2D Projective plane. A Projective trans-

formation H is now a 4 × 4 linear mapping between 4-vector primitives. The

expressions for the Euclidean, Similarity, Affine and Projective specializations are

exactly the same than for the 2D case. However, we need to take into account

that, for this cases, R, A and t refer to three-dimensional rotation, deformation

and translation respectively.
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Figure 2.2: Structure of a pinhole camera. It consists on a camera center C
and an image plane in front of it. The principal point is denoted as p.(Reprint

from [1])

This section has presented the basic mathematical formulation of points, planes

and lines in the Projective space. Moreover, the different transformations that

can be applied to this type of primitives have been introduced. In chapter 4, the

linear algorithms presented will rely on several concepts presented here. Now, let

this mathematical aspects serve to introduce the pinhole camera model.

2.2 The pinhole camera

The pinhole camera model is the simplest mathematical representation of per-

spective camera. It represents a good approximation to the behaviour for most

of real devices. A simple pinhole camera consists on a projection centre C and

a principal plane. Nevertheless, the model can be furtherly improved by taking

non-linear effects into account as, for instance, radial distorsion. In figure ?? the

basic structure for this type of camera is detailed.

From the mathematical point of view, a pinhole camera is modeled by its projection

matrix P. The general projection model transfers a 3D point X to an image point

x following the relation x = λPX. The parameter λ stands for an up to scale

umbiguity.

The projection matrix P is factorized as follows:

P = K [R|t] , (2.20)

where K and [R|t] are respectively the intrinsics and extrinsic parameters of the

camera. Nevertheless, in order to clear concepts up, (2.20) will be derived from

the 3 components relating a 3D point with its corresponding 2D point. In Fig. 2.3

a graphical summarization of the pinhole camera projection model is presented.
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x

X

Xc

Zc

Yc X
Z

Y

optical
axis

T

C

principal
point

OTR

f

Figure 13.1: Pinhole projection of a 3D point X onto a camera image plane. The
extrinsic parameters of the camera R, T represent the rigid body transformation
between the world XY Z coordinate system (origin O) and the camera XcYcZc

coordinate system (origin C). Note that the image plane is shown here in front
of the optical centre C. In a real camera, the image plane would be behind the
optical centre, and the image would be inverted.

and αu and αv are scale factors, s is skew, and u0 = [ u0 v0 ]! is the
principal point. These are camera intrinsic parameters. Usually, pixels
are assumed to be square in which case αu = αv = α and s = 0. Hence, α
can be considered to be the focal length of the lens expressed in units of the
pixel dimension. The principal point is where the optical axis intersects
that camera’s image plane.

Finally, it is convenient to combine equations 13.3, 13.5, and 13.6 into a single
linear equation. Using homogenous coordinates, a 3D point X̃ is related to its
pixel position ũ in a 2D image array by the following relationship:

ũ ∼ PX̃ (13.8)

where P ∼ K[R T ] is a 3 × 4 projection matrix.

13.2.3 Radial distortion

Lens distortion means that image points are displaced from the position pre-
dicted by the ideal pinhole projection model. The most common form of dis-
tortion is radial distortion, which is inherent in all single-element lenses. Under
radial distortion, image points are displaced in a radial direction from the centre

Figure 2.3: The projection matrix P describing the intrinsic and extrinsic
properties of a pinhole camera is composed of three steps: a rigid transformation
from world coordinates to camera coordinates, a perspective transformation and
a 2D homography relating points in the image plane to pixels x.(Reprint from

[1])

2.2.1 Camera rotation and translation

Rotation and translation are usually referred as the rigid-body transformation. It

consists on a change of linear projective basis from world coordinates to camera

centre coordinates. That is transforming point X = [X Y Z 1]T , in the reference

world frame, to Xc = [Xc Yc Zc 1]T . This relation can be compacted with the

following expression: 
Xc

Yc

Zc

1

 = λ

[
R t

0T 1

]
X

Y

Z

1

 (2.21)

where R is a 3 × 3 rotation matrix describing camera orientation and t refers to

the translation of the camera centre with respect to the world origin O. R and t

are denoted the extrinsic parameters of the camera.

2.2.2 Perspective transformation

The second component is related to the perspective transformation from 3D points

Xc = [Xc Yc Zc 1]T to 2D points u = λ[u v 1]T on the camera image plane. From
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the schematic representation of the camera in Fig. 2.3 and by using similar trian-

gles, we arrive to the expression:

u = f
Xc

Zc
v = f

Yc
Zc

(2.22)

The parameter f is the focal length. The consequence of varying its value is just

an scaling over the image plane. Therefore if we set f = 1 we may obtain the

expression for the perspective function defining the projectivity:


u

v

1

 = λ


1 0 0 0

0 1 0 0

0 0 1 0



Xc

Yc

Zc

1

 (2.23)

The point u is defined only up to scale since it is independent of the magnitude

of X as a consequence of the Ray Space model (see Fig. 2.1).

2.2.3 Intrinsic parameters

Finally, the matrix of intrinsic parameters K relates a point u in the image plane

to a pixel x = [x y 1]T according to the focal length and other parameters such as

skew or principal point:

x = λKu (2.24)

The intrinsics matrix K is an upper triangular camera that contains the parameters

related to camera calibration. K is defined as:

K =


fx s px

0 fy py

0 0 1

 (2.25)

In (2.25), fx and fy refer to the focal length for both the dimensions xc and yc, s

is the skew factor and p = [px py 1]T represents the principal point of the pinhole

camera. In the general case, pixels are assumed to be squared in which case

fx = fy = f , s = 0 and the principal point is located in the center of the image.

As a conclusion, when combining equations (2.21), (2.23) and (2.25) the expression

for the projection matrix in (2.20) is obtained:

x = λK[R|t]X = λPX (2.26)
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From the point of view of Projective geometry, we may summarize the derivation

of camera projection matrix as the concatenation of three factors: a 3D space

homography (extrinsics), a 3D to 2D perspective transformation and, finally, a 2D

space homography (intrinsics). Now, let us study the geometrical relationships

beween a pair of cameras, which is on the basis of any Structure and Motion

system.

2.3 Epipolar geometry

Epipolar Geometry is defined as the intrisic Projective geometry between two

views. It only depends on cameras internal parameters and its relative pose. Its

origins are from 1913 when Kruppa [23] demonstrated that, given 5 common 3D

points to two views, it is possible to obtain the relative rotation and translation

between the two cameras.

Let us assume a point X in the 3D space is imaged to two views P and P′ at the

points x and x′ as depicted in ??. The epipolar geometry between two cameras is

coded within the following three primitives:

- Epipoles: are the points e and e′ where the baseline (line joining C and

C′) intersect.

- Epipolar plane: is the plane π formed by the baseline an the 3D point X.

- Epipolar lines: are the lines l and l′ where the epipolar plane and the

image planes intersect. In addition they are the lines connecting the points

in the image plane x and x′ with their corresponding epipoles.

The most relevant consequence of epipolar geometry is that a given point x has

its correspondence in image P′ along the epipolar line l′. This is an important

result for applications such as stereo correspondence for depth estimation, outlier

discarding after feature matching, etc.

2.3.1 The fundamental matrix

The fundamental matrix F is defined as the algebraic representation of epipolar

geometry. There are several geometrical and algebraic derivations for F and the

reader is referred to [1] for a formal definition of them. Nevertheless, we may derive

an expression for the fundamental matrix from the correspondence condition.
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Figure 2.4: Epipolar geometry. Camera centres C and C′, the 3D point X
and its images x and x′ lie in the same plane(Reprint from [1])

As mentioned, given the epipolar geometry of a pair of cameras P and P′, a point in

the first image has its correspondence along the epipolar line in the second image.

Therefore, we could understand the fundamental matrix to be the mapping l′ = Fx.

From the incidence relation of 2.1 the point x′ belongs to the line l′ if and only if

x′T l′ = 0. Hence, we have derived the main condition for the Fundamental matrix:

x′TFx = 0, (2.27)

which is a 3× 3 rank-2 matrix with 7 degrees of freedom.

Given a sufficient number (at least 8) of matching points {xi,x′i} in two images,

it is possible to derive a linear algorithm for determining the exact expression of

F. For a single correspondence equation 2.27 can be expanded to:

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0 (2.28)

If we define the 9-vector f as the vector obtained from the entries of F in row-major

order, we can express 2.28 as vector inner product:

(x′x, x′y, x′, y′x, y′y, yx, y, 1)f = 0 (2.29)
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Finally for a set of n correspondences the fundamental matrix can be obtained by

solving the following problem:

Af =


x′1x1 x′1y1 x′1 y′1x1 y′1y1 y1x1 y1 1

x′2x2 x′2y2 x′2 y′2x2 y′2y2 y2x2 y2 1
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn ynxn yn 1

 f = 0 (2.30)

The least squares solution for f of the overdetermined system is the right null

vector of the measurement matrix A if 8 or more correspondences are available.

This is the well known 8-point algorithm. However, this is not enough for the

habitual case. Correspondences are noisy an generally affected by outliers and

therefore more robust strategies are required.

One solution consists on pre-conditioning the matrix A before solving the problem.

The idea is to apply a non-isotropic scaling to the set of corresponding points such

that the error is uniformly distributed among the three dimensions. That practice

is known as the Normalized 8-point algorithm. Furthermore the presented linear

algorithm may act as the kernel of a RANSAC [24] process in order to get rid of

outliers.

Finally, the problem may be formulated in a optimization framework. The Maxi-

mum Likelihood Solution for Af = 0 minimizes the distance from transerred points

to ther epipolar line. The sum of this set of distances form the Point to Epipolar

line cost function. This kind of solution is commonly known as the Gold Standard

Algorithm [1].

2.3.2 The Essential Matrix

The essential matrix E is a particularization of the fundamental matrix F for the

case of normalized coordinates. A normalized projection matrix P̂ is obtained

by the product P̂ = K−1[R|t] = [R|t]. That implies cancelling the effect of the

known intrinsic camera calibration. Assuming the projection model from 2.26 the

normalized coordinates for an image point are x̂ = K−1x.

The equation defining the essential matrix for a set of normalized correspondences

{x̂, x̂′} is:

x̂′TEx = 0 (2.31)
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(g) (h) (i) (j)

Figure 2.5: Illustration of the stratified approach for 3D reconstruction. (a-b)
Input images for the 3D reconstruction system. (c-d)Projective reconstruction.
(e-f) Affine reconstruction. (g-h) Metric reconstruction. (i-j) Photo-realistic

reconstruction by means of planar texture mapping. (Reprint from [1])

Moreover, it is straightforward to derive its intrinsic relation with F:

E = K′TFK (2.32)

As will be shown in the following point, the factorization of the Essential matrix

plays a fundamental role when defining the relative pose estimation between two

calibrated cameras.
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2.4 Structure And Motion

Structure And Motion refers to the set of techniques that allows obtaining a 3D

model of a recorded rigid scene, as well as the position of the camera(s) used for

recording it. Let us focus in the simplest situation where we are provided with

two snapshots of a single moving camera recording an static scenario. Let us also

assume that no constraints about the acquiring device or the scene are known.

If enough correspondences between images {xi,x′i} are provided, the reconstruc-

tion task consists on obtaining both the camera matrices {P, P′} and the 3D points

{Xi,X′i} that project to the 2D correspondences. Moreover, if the number of cor-

responding points is sufficient to compute a fundamental matrix F, the scene may

be reconstructed up to a projective ambiguity. The pipeline is the following:

1. Fundamental Matrix: Compute F from point correspondences.

2. First pair estimation: Compute P and P′ from F.

3. Triangulation: for each correspondence, obtain the associated 3D point Xi.

4. Resection: if more cameras are available, their projection matrix may be

retrieved from 2D/3D correspondences.

5. Bundle Adjustment: After each resection and its corresponding trian-

gulation, the retrieved position of 3D points and cameras is refined via a

non-linear global optimization [12].

However, if the retrieved SaM needs to feed, for instance, a visualization system,

this projective ambiguity needs to be removed. That is, the scene has to be

expressed in a metric or in an Euclidean coordinate system. If no constraints

are assumed, the classical technique for obtaining the structure and the pose of

cameras is the well known stratified approach. The scene is reconstructed in a

projective frame and is progressively upgraded to be affine and, finally, metric.

An schematic description is depicted in Fig. 2.5.

With this kind of approach, the ambiguity of the reconstructed scene is reduced

as long as the scene is progressively upgraded. If we denote the desired Euclidean

Reconstruction as ({Pe, P′e},Xi
e), the three steps of the stratified approach are the

following:



Chapter 2. Theoretical Background 24

- Projective reconstruction: the scene is defined up to a projective transfor-

mation H with 15 dof:

Pe = PH−1, P′e = P′H−1 and Xi
e = HXi

- Affine reconstruction: the scene is defined up to an affine transformation Ha

with 11 dof:

Pe = PaH
−1
a , P′e = P′aH

−1
a and Xi

e = HaX
i
a

- Metric reconstruction: the scene is defined up to a similarity transformation

Hs with 7 dof:

Pe = PmH
−T
s , P′e = P′mH

−T
s and Xi

e = HsX
i
m

The information required for upgrading the scene at each step of the stratified

approach, is gathered from constraints associated to both the cameras or the scene

or, in other words, the self calibration process. The step from projective to affine

reconstruction consists on determining the plane at infinity π and, next, mapping

it to its assumed position in an affine frame π∞ = (0, 0, 0, 1)T . Furthermore, the

step for upgrading to a metric consists on identifying the absolute conic Ω∞ which

is a planar conic located at the plane of infinity π∞. Further details may be found

in [1].

The internal parameters of the cameras are one of the aforementioned constraints

to be exploited in the stratified approach. If they are known the scene can be

upgraded to be metric since a metric reference is available K. From the mathemat-

ical point of view, the knowledge of the internal parameters of cameras are closely

related to ω, the image of the absolute conic (IAC) :

ω = K−TK−1 (2.33)

In the following, the mathematical formulation for all the steps mentioned is pre-

sented. Note that we will be assuming that cameras are calibrated beforehand

and, therefore, the scene may be directly reconstructed in a metric frame.

2.4.1 Feature point detectors

As presented along this chapter, the algorithms for obtaining the 3D reconstruc-

tion of a rigid scene are based on a set of sparse 2D feature points tracked through
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images. The extracted feature points are desired to have some special character-

istics in order to make them a reliable input data for the reconstruction system:

repeatability, invariance to rotation and scaling and independence to illumination

changes.

There are many approaches in literature based in different criteria to determine

which characteristics are exploited to obtain repeatable points from images. Among

them, Harris corners [25] and Scale-Space extrema detectors [21, 26, 27] are the

most popular techniques.

Harris detector, searches for corners in the image based on the matrix:

A =
∑
x,y

w(x, y)

(
L2
x Lxy

Lxy L2
y

)
(2.34)

w(x, y) refers to a circular Gaussian Kernel that weights the image samples by

giving more relevance to the central ones. Lij refer to the derivatives of the image

along the axes. matrix A is evaluated in order to define whether a corner was found

or not. With that objective the expression R = det(A)− αtr2(A), gives an idea of

how likely the processed point will be a corner or not.

On the other we have the Scale-Space extrema detectors [21, 26, 27] that have

become very popular in recent years due to its application to other fields like

image retrieval or augmented reality. The stages for this type of feature extractors

are the following:

1. Scale-Space Extrema Detection: Image is analyzed at different scales by

means of a convolution with gaussian kernels of different standard deviation.

For each scale, the points considered as local maxima both in space and scale

are selected as candidates.

2. Key Point Localization: an stability measure studying the local curvature

of the point candidates is applied in order to discard those points that are

unstable.

3. Orientation Assignment: orientation is assigned to each interest points

based on a local study of its gradient.

4. Key Point descriptor: a N -position vector is assigned to each Key Point.

The vector is constructed with the values obtained during orientation as-

signment and gradient study. Therefore, this forces the feature points to be

identified with invariance to rotation, translation, scale and illumination.
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Figure 2.6: The four possible solution for the initial pose estimation. Only
the solution that triangulates all the correspondences in front of both cameras

is accepted.(Reprint from [1])

2.4.2 Two view relationship

Two view relationship is the starting point for a wide set of SaM pipelines [2].

When relative orientation and translation between two cameras is retrieved, an

initial 3D point triangulation 2.4.3 can be performed. This serves as the anchor

point for adding new cameras to the initial pair 2.4.4 and subsequently adding

more points to the reconstruction. Therefore, the reader may notice that the

quality and reliability of this initial estimation will determine the final overall

system performance.

Given a set of correspondences {x,x′} for two calibrated views, it is possible to

determine their relative orientation up to an scale factor relative to the translation

vector between views and a four-fold ambiguity as depicted in Fig. 2.6. This goal

is achieved by means of factorizing the essential matrix E computed from the set

of correspondences.

First of all, the normalized projection matrix for the first camera is fixed to be

P̂ = [I|0] and P̂′ = [R|t] for the second one. From the known calibration K of the

cameras, it is possible to compute essential matrix E from (2.31). Furthermore,

Essential matrix may be factorized as E = [t]xR = SR where S is a skew-symmetric

matrix. In [28] a method is presented for obtaining R and t from the SVD of E
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using the following matrices:

W =


0 −1 0

1 0 0

0 0 1

 and Z =


0 1 0

−1 0 0

0 0 0

,

Let us assume that the SVD of E is Udiag(1, 1, 0)VT . The aforementioned matrices

S and R are then S = UZUT and R = UWVT . Finally the four possible solutions for

matrix P̂′ = [R|t] are:

P̂′ = [UWVT |u3], P̂′ = [UWVT | − u3], P̂′ = [UWTVT |u3], P̂′ = [UWTVT | − u3], (2.35)

where u3 is the last column of U from SVD(E). The last step consists on selecting

which of the four solutions is the correct one. The selection criterium is to choose

the solution such that its triangulated points are all in front of both cameras. In

Fig. 2.6 is clear that only one of them will satisfy that condition. This is commonly

known as the cheirality constraint.

2.4.3 Structure computation

Structure computation deals with the process of obtaining the position of a 3D

point X given a its images {x}j along a set of views {P}j that is also provided. Let

us assume that the point X projects to a pair of images following the projection

model from (2.26):

x = λPX; x′ = λP′X;

The point X is common for both cameras P and P′ . Nevertheless, detected points

in images are contamined with noise and therefore it does not exist an exact

solution for X. Its most likely position needs to be estimated X̂. In Fig. 2.7 this

effect is ilustrated: the estimated 3D point X̂ backprojects to the pair of views

with some error. That is the well know reprojection error.

ε = d(x, x̂′) + d(x, x̂′) = d(x′, P̂X) + d(x′, P′X̂), (2.36)

where d(a,b) stands for the 2D Euclidean distance between two vectors. This

measure asses the quality of the triangulation and will be used in other algorithms

in the SaM pipeline.

As it was done for the Fundamental matrix 2.3.1, the objective is to express the

projection equations from (2.36) as a linear homogeneous system AX = 0. By
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removing the homogeneous scale factor, the projection of the first camera may be

expressed by means of the cross product x × PX. With this type of expression,

each 2D point and its correspondent camera matrix provide 3 linear equations in

the entries of X:

x(p3TX)− (p1TX) = 0,

y(p3TX)− (p2TX) = 0,

x(p2TX)− (p1TX) = 0,

where piT refers to the i−th row of projection matrix P. This set of linear equations

may be expressed on the form AX = 0, where the measurement matrix A follows:

A =


xp3T − p1T

yp3T − p2T

x′p′3T − p′1T

y′p′3T − p′2T

 (2.37)

As seen, each camera contributes with two linear independent equations. The

benefit is that the method for computing matrix A is valid for an unlimited num-

ber of projections, since it just consists on stacking the two equations that each

camera provides. Again, as for the Fundamental matrix case, the system (2.37)

may be solved by means of Least Squares. Moreover the problem may be casted

to the optimization framework. As any optimization problem, it consists on a

minimization of some cost function (i.e reprojection error from (2.36)) subject to

some constraint: the Fundamental matrix condition x′TFx = 0.

In section 4.5 in chapter 4, a deeper discussion about the different possible cost

functions to be minimized can be found.

2.4.4 Camera resectioning methods

Now the objective is, given a set of 3D points Xi and their 2D projections xi in one

view, obtain the projection matrix P of that camera. Once again, the objective

is to develop a linear algorithm such that the problem may be formulated as

Ap = 0 similar to the triangulation or fundamental matrix cases. A corresponds to

a measurement matrix computed from the provided 3D/2D correspondences and

p to a 12-vector containing the entries of the camera matrix P.
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Figure 2.7: Point triangulation. There not exist an exact solution on the po-
sition of X since its detected images are corrupted by noise. Therefore its value
is estimated X̂ and the quality of the estimation is given by the reprojection

error. (Reprint from [1])

Let us assume that xi = [xi yi zi]
T and that the projection equation may be

expressed as the cross product xi × PXi = 0 as it was done for the triangulation

case. Therefore, for each 3D/2D correspondence, we may derive the following

relationship: 
0T −ziXT

i yiX
T
i

ziX
T
i 0T −xiXT

i

−yiXT
i xiX

T
i 0T




p1

p2

p3

 = 0, (2.38)

that provides 3 linearly dependent equations. Therefore each correspondence pro-

vides two independent equations:

[
0T −ziXT

i yiX
T
i

ziX
T
i 0T −xiXT

i

]
p1

p2

p3

 = Aip = 0, (2.39)

where Ai represents the measurement matrix associated to a single correspondece.

pj is the column vector containing the entries of the j − th row from projection

matrix P. In order to derive a linear algorithm for P, one may stack the measure-

ment matrices Ai in order to obtain a 2n× 12 matrix A. Therefore the projection

matrix P is computed by solving the set of equations Ap = 0.

Again, the measurement matrix may be pre-conditioned by scaling the set of both

2D and 3D points in order to better conditionate the problem and the proposed

algorithm act as the kernel of a RANSAC process. Finally once RANSAC has

classified 2D/3D correspondences as inlier/outliers, the solution may be refined
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from an optimization framework.

Since both 3D and 2D points are noisy, the solution for P will not be exact.

Therefore the backprojection of X through the estimated camera P̂ will contain

some error as for the triangulation case. The accumulation of this error for all

2D/3D correspondences determines the cost function to be minimized during the

refinement step.

C(P) =
∑
i

d(xi, x̂i) =
∑
i

d(xi, P̂Xi) (2.40)

If the measurement errors are assumed to be Gaussian, the MLE for P will be:

PML = argmin
P

C(P) (2.41)

This non-linear minimization requires the use of iterative techniques, such as

Levenberg-Marquadt [12].

Up to this point, the basic background for both Projective geometry and Structure

And Motion has been presented. In the next chapters we will refer to several of

the concepts introduced here. More precisely, chapter 3 presents an overview of

the full reconstruction pipeline. Therefore concepts from section 2.4 such as first

pair estimation, triangulation, resection, etc. will be constantly referred. On the

other hand, the algorithms presented in chapter ??, take profit of the Point/Plane

Duality Theorem and, hence, they rely in several concepts of Projective geometry.



Chapter 3

Structure and Motion for Video

Sequences. System overview

The objective of this chapter is to present the adopted strategies for obtaining

3D models from recorded videos of static scenes as depicted in 3.1. We aim to

develop a system such that users can record a rigid scene and upload the video to

a server where, after some processing, a 3D reconstruction of the recorded scene

is returned.

In order to develop a robust system, a large set of algorithms needed to be devel-

oped in order to face the associated issues to this kind of systems as they were

mentioned in chapter 1. The result is a robust pipeline based in a divide an con-

quer approach that is able to deal with different types of sequences or qualities of

the acquiring device, while efficiently making use of computational resources.

In the following, the key-steps of the reconstruction pipeline are presented.

3.1 System Architecture

A global description of the proposed SaM pipeline is depicted in Fig. 3.2. The

first step consist on detecting SIFT-like features for all the input frames of the

video sequence. This process represents one of the main bottlenecks in all SaM

systems although the use of modern GPU’s may speed it up.

The next step consists on removing the temporal redundancy from the video

stream through an smart frame decimation process. Apart from discarding re-

dundant frames, the decimation scheme provides the SaM block with a set of

well-conditioned Key-Frames (KF’s) up to some criteria of relative motion and

number of correspondences between images.

31
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(a) Snapshots

(b) SaM (c) Densification

Figure 3.1: Example of workflow for our Structure and motion system. a)
Input data is a video sequence recording a rigid scene. b) The scene is recon-
structed as cloud of points. c) The cloud of points may be furtherly improved

through a process of densification.

After that, the input video sequence is splitted into subsequences in order to allow

a parallel processing that dramatically reduces the computational complexity of

the system. Each one of the video clips and their associated KF’s are the input to

a SaM and Feature tracking block. As it will be explained, the process of feature

tracking is embeddded in the reconstruction loop as a difference with other state

of the art approaches [2, 5].

Finally, a merge step registers all the partial 3D reconstructions obtained from

SaM loops into a common coordinate frame. This stage is mandatory since the

retrieved partial reconstructions are referenced to an arbitrary coordinate system

although they represent the same static scene. An additional stage may use the

retrieved pose of the cameras to provide a dense representation of the rigid scene

instead of a point cloud.

3.2 Selection of relevant frames

In this section we analyze the first stage of the SaM pipeline. Initially, the system

is fed with an input video sequence where a rigid scene was recorded. The objective

of this step is to select and isolate the relevant information from the video stream

for both the spatial and temporal dimensions. The large amount of pixels from

each image is reduced to a smaller set of detected SIFT-like points and a frame
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Video Input:

Registration of Partial Reconstructions

3D model & Camera Path:

Reconstruction
loop

Feature detection

Frame Decimation

Reconstruction
loop

Reconstruction
loop

Clip 1Clip 0 Clip N-1

 

Figure 3.2: Block diagram of the full SaM system. As seen a divide an conquer
approach is followed by means of a parallelization of the reconstruction loop

decimation step selects those frames that may be relevant for the reconstruction

loop.

3.2.1 Feature detection and matching

The system may work with three different feature point extractors: SIFT [21],

SURF [26] and DART [27]. All of them are classified as space-scale extrema de-

tectors and therefore they share some similar characteristics as, for instance, that

they all are rotation- and scale-invariant. In fact, the processes of detection and

matching may be isolated, since the matching implementation is common for the

three types of detectors although not compatible between them. This is possible

due to the fact that they all assign a N -position descriptor array to each detected

feature whose typical values for N are 64 or 128.

From the implementation point of view, our system defines a data type for the

detected features, with the following information:

- I(x, y): 2D coordinates in the image plane of the detected feature with

subpixel precision.
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- C(r, g, b, a): color coordinates of the feature.

- Track ID : label associated to the track that the feature belongs to.

- Frame ID : frame index of the image where the feature was detected.

- Descriptor : 64 or 128 positions vector describing the spatial neighborhood

of the feature.

A data structure of this type is mandatory since feature points neeed to identified

along the global scene for both SaM and Visualization processes.

The feature matching process follows the kd-tree-based approach from [21] for

retrieving the nearest neighbor of a SIFT-like descriptor. When comparing two

images the feature descriptors of one of them are hierarchly stored into a kd-tree.

The feature descriptors from the remaining image act as queries. The leaf whose

descriptor presents the lowest euclidean distance d0 is selected as the corresponding

feature if and only if, this distance is d0 < 0.6d1. d1 represents the Euclidean

distance with respect to the second NN. This condition is crucial since there will

always be a NN. Furthermore, it is important to note that the use of kd-trees

reduces the complexity of the matching from O(n2) to O(nlogn).

During the feature matching process some of the feature correspondences may

be uncorrectly matched. Therefore, raw feature correspondences obtained in an

initial feature matching are used to feed a RANSAC algorithm that computes a

fundamental matrix F between frames. This matrix is used to classify each putative

match as outlier/inlier [1]. The threshold is set to 1 pixel of point to epipolar line

cost.

3.2.2 Frame Decimation

When dealing with video sequences for SaM systems, the usefulness of a pre anal-

ysis or a frame decimation step raises due to two main reasons. First, it reduces

the temporal redundancy natural from video sequences by providing a reduced

frame set that should speed up the reconstruction process. Second, it feeds the

SaM system with a well conditioned set of Key Frames (KF’s) in order to make a

reliable reconstruction possible.

An straightforward frame decimation scheme could consist on simply reducing the

frame rate that the camera provides. However, this blind downsampling is not

adequate according to the desired features for the KF’s . Some of them are listed

in [11]
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- KF’s need to be sharp, that is not affected by motion blurring or auto-focus

artifacts.

- Baseline and parallax between frames has to be large enough to allow a good

conditioning of the two-frame epipolar geometry.

- A sufficient number of point correspondences {xi,x′i} between pairs of frames

has to be available.

Therefore, a blind and uniform downsampling does not take into account all these

desired features. If a high frame rate is selected, we are introducing redundancy

in the system and, therefore, compromising a large amount of computational re-

sources. Moreover, the baseline between frames is not ensured to be appropiate

and, hence, it could cause and ill-conditioning of the mathematical problem. On

the other hand, if the frame rate is selected to be low, the connectivity between

frames can not be guaranteed and thus lead to the introduction of cuts along the

sequence. Finally, the algorithm is desired to be idempotent.

We propose a new frame decimation algorithm inspired by [11] in order to fulfill all

the required and listed conditions for KF’s. For our case, the algorithm is feature-

based and therefore different conditions had to be defined in order to derive some

criteria for determining the redundancy of each single frame.

The algorithm pipeline is as follows: frames Ii from the input sequence In are

sorted into a list F in order of increasing number of detected feature points. The

set of feature points associated to frame Ii is denoted as Fi. Since the type of

detected features are scale-space extrema 2.4.1, we may assume that focused or

sharp frames are the ones with larger number of the features. It must be noted

that this assertion only makes sense when the number of feature points for a frame

is compared with respect to its neighbors in a small time interval.

Next, frames Ii from F are sequentially processed in order to evaluate if they are

redundant or not and, if so, they are removed from the input sequence In. The

condition to determine if Ii is redundant, consists on evaluating the image affinity

between its two neighbors Ii−1 and Ii+1. Recall from the KF’s conditions that

enough baseline between frames is mandatory but also a sufficiently large number

of common features. This condition translates to a relative affinity between im-

ages bounded from above (frames need to be relevantly different) subject to some

constraints in the number of features and in the apparent 2D motion.
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Let us define the image affinity measure as the Jaccard index, which represents

the similarity between sample sets:

ai =
|Fi−1 ∩ Fi+1|
|Fi−1 ∪ Fi+1|

, (3.1)

where operator | • | denotes number of elements in a set. The aparent motion mi

is obtained as the median of 2D motion for each feature correspondence:

mi = median
j
||xi−1

j − Hxi+1
j ||, (3.2)

where H refers to an homography relating both frames. In our experiments, Ii

is considered to be redundant if its neighbors Ii−1 and Ii+1 fullfil the following

conditions:

Ii


ai > 0.25

mi < 10% of Im. Diag.

|Fi−1 ∩ Fi+1| ≥ 100

(3.3)

Frames are processed in the same order than they are stored in F and multiple

passes could be required. The algorithm stops when no frame is discarded after

a pass. With this scheme, non-sharp frames are the first to be removed since

they are the first to be evaluated. The frame decimation algorithm adapts to the

motion of the camera with respect to the scene and outputs a set of frames whose

relative motion is more isotropic (see results in chapter 5).

3.3 Robust Multi-View Structure and Motion

3.3.1 Feature tracking

A 3D point Xj may be visible to a certain set of cameras Pi and consequently

produce a set projections xij. A usual practice consists on grouping this set of

projections into tracks or, in other words, assigning the same tag to each one of

them.

One of the major issues in SaM is to feed the reconstruction loop with a good set

of features tracked along time. Traditionally, feature matching and tracking has

been carried out prior to the reconstruction loop and therefore using no available

3D information [2]. In our work, the process of asigning feature points to existing

or new tracks is interlaced within the SaM loop. This practice robustifies the

feature tracking process since it combines 2D and 3D information.
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Algorithm 1 Estimate the best conditioned pair for the initial pose estimation

1: ρoptH = 0; P0 = NULL; P1 = NULL;
2: for i = 0 to Number of KFs do
3: for j = i to Number of KFs do
4: ρH(i, j)=featureMatching(Ii, Ij);
5: if ρH(i, j) ≥ 0.5 then
6: (Pi, Pj)=estimateInitialPair(Fi, Fj);
7: T=triangulate3Dpoints(Pi, Pj);
8: D=discardNonConsistent3Dpoints(Pi, Pj,X);
9: if ρH(i, j) ≥ ρoptH and T −D > 100 then

10: ρoptH = ρH(i, j);
11: P0 = Pi;
12: P1 = Pj;
13: else
14: continue
15: end if
16: else
17: continue
18: end if
19: end for
20: end for

3.3.2 Initial-pair estimation

Selecting a good initial pair for starting the process of reconstruction is a crucial

choice that will determine the final overall performance. Thus this step needs to

be as robust as possible. Since the input for the SaM block is a small set of KF’s

selected from a short clip (20KFs), an exhaustive search may be carried out as

explained in Algorithm 1.

Nevertheless, there are some requirements for the initial pair that need to be

fulfilled:

- The epipolar geometry needs to be satisfied, that is well modelled by a

fundamental matrix F.

- The selected pair of frames can not configurate a degenerate case [1].

- There must be enough correspondences (at least 8 according to [1] but we

fixed it to be over 100).

With the listed requirements, a quality measure may be defined both for selecting

the best pair for the initial pose estimation and for pre-discarding bad conditioned

pairs, which speeds up the full search.
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For each tested pair (let us assume Ii and Ik), a feature matching is performed

and correspondences are used for robustly computing both F and H through a

RANSAC process. In our case, we measure the good conditioning of the initial

pair as the ratio of outliers ρH when trying to model the pair of images with an

homography H:

ρH(i, k) = 1− |Fi ∩ Fk|H|Fi ∩ Fk|
, (3.4)

where |Fi ∩ Fk|H refers for the total matches considered as inliers for the homog-

raphy H case. The threshold for classifying a correspondence as inlier/outlier to

an homography is of 1 pixel of 2D distance mj
ik = ||xij−Hxkj ||. Pairs with ρh < 0.5

are considered to be ill-conditioned and therefore not considered in further steps.

For the rest of the cases, the projection matrices of the pair are computed.

The algorithm for estimating the relative position between a pair of cameras is the

one that was explained in Section 2.4.2. It consists on fixing one of the cameras

to be placed at the origin Pi = K[I|0] and estimating the relative rotation and

translation of the other one Pk = K[R|t]. This is achieved by means of factorizing

the Essential matrix E = KTFK as in [1].

Once the projection matrices are retrieved, the process is followed by the linear

triangulation step in 2.4.3. Obtained structure from triangulation is further refined

by means of discarding those points with large uncertainity (angle less than 1◦

degree) and/or reprojection error above 1 pixel). The pair of cameras {Pi, Pk} with

the biggest score ρH(i, j) subject to a number of valid 3D points after triangulation

greater than 100, is selected as the initial pair.

After this purge step, the process of feature tracking starts. In this case feature

tracking is straightforward. Each pair of matched features are assigned into a

common track since 3D points have been triangulated for the very first time.

3.3.3 Updating Structure and Motion

After initial pair estimation, the system enters the loop of progressively adding

new cameras and triangulating more points. Candidate projection matrices for

cameras to be incorporated are estimated from 2D/3D correspondences inside a

RANSAC process and refined via a Gold Standard Resection algorithm [1]. For

the structure computation, the linear triangulation algorithm from 2.4.3 is used.

Camera resection. Once again, since the number of KF’s selected from each

video clip is small, we may exhaustively search which the best camera is to be
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added at each iteration in the update loop. In our system, resection for each

new camera is performed with respect to other already resected camera. That

implies estimating the projection matrix just by means of the common 2D/3D

points shared with another already resected view. According to our experience

this relative resection, robustifies the process of SaM, since the linear process of

determining the projection matrix is best conditioned.

Candidate cameras Pi to be resected are stored to a list LP in order of decreasing

shared 2D/3D points with respect to already resected cameras. Not all combina-

tions are stored since, at least, 3 2D/3D points may be visible for the candidate

view. Nevertheless we make the threshold more restrictive and candidate cameras

are not considered if they not share at least 20 2D/3D points with respect to al-

ready resected views. A new candidate is accepted if its reprojection error after

resection is below 5 pixel. Otherwise, the next element inside LP list is processed.

Structure computation As before, linear triangulation and recursive feature

tracking to already existing cameras follows resectioning. As mentioned in 3.3.2,

some constraints relating to reprojection error and 3D position uncertainity are

introduced to evaluate the consistency of triangulated 3D points. Those consid-

ered to be non consistent are discarded. The whole pipeline ends with an optional

Bundle Adjustment (BA) to improve the consistency of the SaM updating. The

implementation selected for this task was the one from [12]. It is a very effi-

cient implementation since it takes profit from the sparseness of the measurement

matrices involved in the optimization processes for SaM. That is the well-known

technique SBA (Sparse Bundle Adjustment).

At this step of the SaM pipeline, several possible situations need to be checked for

each pair of matched features in order to ensure a reliable feature tracking. Given

two matched features {xji ,xrk} their superindices j and r refer to the track they

are assigned to. Several situations are ro be considered:

- If their value is not assigned yet, a new track is created and then j = r.

- If j was assigned but not r, xrk is assigned to track j and the other way

round.

- Both features are matched but they belong to different tracks, j 6= r. In this

case, the possibility of merging tracks is studied and, if it is not possible,

both of them are deleted for the sake of safety.
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Figure 3.3: Graphical explanation of the registration of partial reconstructions
step. The triangles in red refer to overlapping cameras

The condition for merging both tracks is evaluated by checking if there exist a

resected view which contains a pair of features with the tracks j and r. If not

both tracks are considered to be same and, consequently, they are merged.

3.3.4 Registration of partial reconstructions

As presented in 2.4.2 the process of relative pose estimation for the first pair

is not constrained to be performed in a concrete coordinate system. Therefore,

each one of the metric reconstructions of clips will differ in rotation, translation

and an scale factor although they represent the same static scene. Hence, a step

registering all of them into the same metric coordinate system is necessary. An

intuitive explanation is depicted in Fig. ??.

Although the problem will be properly formulated in the Chapter 4, let us give

some ideas about it, in order to introduce the tecnical issues associated to the algo-

rithm. The key idea of the registration technique consists on, given to independent

reconstructions, exploit their 3D correspondences to derive a similarity transform

Hs that uniquely relates both of them. The correspondences are assumed to be

common 3D points and overlapped cameras.

In our implementation, the clips are selected in such a way that they share at least

10 Key Frames. Therefore, the overlapped cameras are known beforehand and no

process of camera matching is needed. For the case of points, the matching is a

little more tricky. As a difference with SIFT-like features, triangulated points are

not provided with a descriptor that uniquely identifies them. Hence, the matching

must be performed in the 2D space.
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An exhaustive matching is carried out between clips and all the cameras are pair

by pair matched in order to select those common 2D points that have a 3D point

associated. That is, they are grouped in some track. Once the point and camera

correspondences are selected, they feed the algorithm from chapter 4 whose output

is the desired similarity transformation HS.





Chapter 4

Registration of independent 3D

reconstructions

As described in the previous chapter, the presented 3D reconstruction system

follows a divide and conquer or sequential approach, where the input sequence is

split into shorter sub-sequences that are independently reconstructed. This makes

a difference with reference to purely differential approaches, where the whole video

is processed during a single thread of work.

SaM from video sequences was initially studied as a purely differential technique

[29]. After obtaining an initial pose estimation for two or three views (i.e, the

factorization of Essential matrix as in 2.4.2), new camera views are progressively

computed from feature correspondences, allowing new points to be triangulated

and included in the 3D scene structure. Although this approach is suitable for

short video sequences, some issues arise as it is applied to longer sequences, where

it is difficult to keep a stable tracking of correspondences: one can notice a drift

of the position of the features as the sequence progresses.

An efficient way to face drift propagation while keeping a stable tracking of features

consists of decoupling the problem by dividing the sequence into subsequences or

atomic subparts that are independently reconstructed and registered [15, 16]. An

accepted practice divides a sequence into overlapped triplets of images (for trifocal

tensor estimation) whose associated reconstructions are progressively merged into

a global coordinate system.

Another reason to support the division of a large sequence into smaller pieces that

are registered is to overcome the issues of increasing computational cost and bad

scalability of nonlinear Newton-like optimization algorithms used in SaM as the

complexity of the scene (number of cameras and 3D points) increases.

43
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During this chapter, novel registration algorithms for merging partial reconstruc-

tions from video sequences into a common coordinate frame are presented. Our

technique combines texture correspondence (shared 3D points between indepen-

dent reconstructions) and temporal redundancy (planes defining overlapped cam-

eras) into simple, linear and robust algorithms for the registration of 3D recon-

structions.

In addition, since the number of common 3D points and cameras that the the pro-

posed approach can handle is not bounded from above, longer subsequences than

triplets of images may be used. This allows the registration (a space homography)

to be estimated from the information of a larger region of the 3D space (i.e the

fields of view of common cameras and location of common 3D points), which leads

to improved registration accuracy.

4.1 Overview of the algorithm

Along this chapter, our approach to the problem of registering partial 3D recon-

structions to a common cordinate frame is addresed. The objective is to find

an optimal transformation Hs that uniquely relates two independent metric re-

constructions of the same rigid scene. The optimality of this transformation is

ensured by forcing it to minimize some error function suited to the problem. This

transformation is used to transfer geometric entities such as space points X, lines

l and planes π between coordinate frames of two partial reconstructions.

Two metric reconstructions are related by a similarity transform Hs with 7 degrees

of freedom, while two projective reconstructions by a general projective homog-

raphy H with 15 dof. In the former case, the two metric reconstructions differ in

orientation, translation and scale, although they represent the same rigid scene.

Nevertheless, instead of independently estimating the intrinsic parameters of Hs,

(R, t and σ), a stratified approach is followed. A projective transformation be-

tween reconstructions H is computed and furtherly is upgraded to Hs by projecting

it to the space of similarity transforms (for further details refer to[1]). This kind of

approach is interesting for two reasons: it allows our registration algorithm to work

in projective, affine or metric spaces and simplifies the process of independently

estimating the seven parameters of a similarity transform.

The basic idea of the proposed approach is the following: given a set of corre-

sponding 3D points or planes, it is possible to determine a unique transformation

H such that, the line joining a 3D point (or plane) in a coordinate system and the
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] cameras (Nc) ] 3D points (Np) ] Equations (Ne)

0 5 15
1 4 21
2 0 18

Table 4.1: Configurations for RANSAC’s Minimum Sample Set.

transferred 3D point (or plane) from another coordinate system is not defined. As

seen, we indistinctly refer to 3D points and planes, which is a direct consequence of

the point / plane duality theorem from Projective Geometry presented in Chapter

2.

If a pinhole camera model is assumed, the rows of the projection matrix P may

be interpreted as the homogeneous expression of three planes πi(4.1). The linear

algorithm handles camera overlapping as the correspondence between identical

planes in different coordinate systems.

P = K

(
R t

0T 1

)
=


πT1

πT2

πT3

 (4.1)

With the aim of robustifying the system and due to the noisy and prone to outliers

nature of reconstruction systems, two strategies will be followed. Regarding to

noise, registration algorithms are able to deal with N ≥ 5 correspondences as

it will detailed in section 4.3. Equality case represents the minimum sample to

obtain an estimation of H, since each correspondence provides 3 independent linear

equations. The ability of the system to process bigger N ′s may be interpreted as

an averaging of the noise present in the positions of the retrieved correspondences.

However, since it is not possible to discard outliers just with a linear solution,

a RANSAC [24] algorithm is used in order to carry out this selection of good

correspondences. In our approach, one or a combination of the two algorithms that

are proposed acts as the kernel of the RANSAC procedure. Moreover, since the

nature of our technique combines both points and planes as input data, RANSAC

will accept, as the Minimum Sample Set (MSS), all those different combinations

providing Ne ≥ 15 independent linear equations. Possible configurations for the

MSS and number of equations provided are listed in table 4.1.

Finally, the obtained transformation providing a reliable consensus during RANSAC,

will be used as the input to the refinement step. As will be described in 4.5, several

strategies are proposed to optimize the computed transformation.
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In the following sections, the problem of registering partial reconstructions will

be properly formulated and the algorithms for points and planes detailed. The

chapter ends by presenting different approaches for refining a primary solution

obtained whose performance will be discussed along the results chapter 5.

4.2 Problem Statement

Assume two 3D metric reconstruction of the same static scene, {Pi,Xj} and

{Pm,X′n}, are given in distinct coordinate systems. Both reconstructions were

obtained from a set of observed points in each one of them, {xij} and {x′nm}. Also

assume that correspondences between both reconstructions, 3D points {Xk,X
′
k}

and overlapped cameras {Pr, P′r} are available and they provide N ≥ 15 linearly

independent equations.

The goal is to find the 3D homography Hs (similarity transformation) that uniquely

relates both coordinate systems. Following the rule for points Xk = HsX
′
k and

Pr = P′rH−1
s for cameras we ensure that 2D projections are preserved. Therefore,

once the homography Hs is found, both partial reconstructions could be expressed

in the same coordinate system: {Pr ∪ P′rH−1
s ,Xk ∪ HsX′k}.

In practice, reconstructions are noisy and contamined from outliers. Therefore

the first step will consist on determining the set of correspondences that may be

considered as inliers. As mentioned, a RANSAC process is used for this aim. It

just remains to define a metric that determines wether a plane or a point corre-

spondence is cosidered to be a wrong match. The metric used is the Symmetric

Transfer Error 4.4 but it has to be specified for both types of primitive. For the

case of 3D point correspondences the error is expressed as:

ε2k =
∑
i

d2(xik, P
iHsX

′
k) +

∑
m

d2(xmk , P
′mH−1

s Xk) (4.2)

For a camera correspondes the expression is:

ζ2
k =

∑
j

d2(xrj , P
rHsX

′
j) +

∑
n

d2(xrn, P
′mH−1

s Xn) (4.3)

The threshold is fixed to 1 pixel of reprojection error for deciding points and

cameras to be considered in further steps.

Next, with the already retrieved inliers, the problem is reformulated into an opti-

mization framework. Now the objective is to obtain a similarity transformation Hs



Chapter 4. Registration of independent 3D reconstructions 47

that minimizes some cost function. Two cases will be considered for the optimiza-

tion: minimization of the Algebraic error and the minimization of Geometric error.

For the latter case, the cost function is a composition of the Symetric Transfer

error for each point or camera correspondence:

STR =
∑
k

ε2k +
∑
r

ζ2
r (4.4)

Newton-like optimization algorithms may be used to minimize (4.4) or other cost

functions from an initial estimate of Hs (see 4.5). In the following we present a set

of linear algorithms for estimating Hs both from motion and structure clues that

can be easily combined in order to provide a more robust algorithm for merging

partial reconstructions.

4.3 Linear Algorithm due to Structure

Given Np > 5 3D point correspondences {Xk,X
′
k}k=0,1,...,Np−1 is possible to find a

linear transformation H such that satisfies the following relation Xk ∼ HX′k. The

equality case is trivial since there always exists a valid solution for H. In fact,

for 5 correspondences, the problem can be tackled as a classic linear change of

base between two 4-dimensional vectorial spaces. However, as it was previously

stated, 3D reconstructions are noisy and an algorithm able to handle Np ≥ 5

correspondences is mandatory.

As described in section 4.1, the idea behind this linear algorithm is to find a valid H

that forces the line joining a 3D point Xk and its transferred correspondence HX′k

to be not defined. Let us assume that u and v respectively refer to the k-th corre-

spondence of 3D points {Xk,X
′
k} and v′ corresponds with the transferred version

of X′k, v′ = HX′k. The line joining u and v′ is defined by the skew-symmetric

Plucker matrix L(u,v′). Recall from 2.1.4 that a Plucker matrix defining a line in

a 3D projective space is obtained from the expression:

L(u,v′) = uv′
T − v′uT =


0 l12 l13 l14

−l12 0 l23 l24

−l13 l23 0 l34

−l14 −l24 −l34 0

 (4.5)
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Using a compact representation, (4.5) is equivalent to the 6-dimensional Plucker

vector l(u,v′) = (l12, l13, l14, l23, l24, l34), whose scalars lij are:

lij = uiv
′
j − v′iuj (4.6)

If the desired transformation H is expressed as a 4-vector matrix H = {hTi }i=1...4

and is combined with the aforementioned expression v′ = Hv, we may derive an

expression (4.6) depending only on the input data u, v and the desired transfor-

mation H:
lij = uiv

′
j − v′iuj

= uih
T
j v − ujhTi v

= (uiv
T )hj − (ujv

T )hi

(4.7)

Since we want the 3D line L(u,v) to be not defined, we force its elements to be

equal zero. Therefore it provides 6 different linear dependent equations in the

entries of H:
l12 = (u1v

T )h2 − (u2v
T )h1 = 0

l13 = (u1v
T )h3 − (u3v

T )h1 = 0

l14 = (u1v
T )h4 − (u4v

T )h1 = 0

l23 = (u2v
T )h3 − (u3v

T )h2 = 0

l24 = (u2v
T )h4 − (u4v

T )h2 = 0

l34 = (u3v
T )h3 − (u4v

T )h3 = 0

With the provided set of equations, we may express the problem as Akh = 0, where

Ak is the 6× 16 measurement matrix associated to a single correspondence, while

h = (hT1 ,h
T
2 ,h

T
3 ,h

T
4 )T is the column vector resulting from stacking vertically the

four planes hi conforming the transformation H. Let us define the 6× 4 matrix:

W (u) =



−u2 u1 0 0

−u3 0 u1 0

−u4 0 0 u1

0 −u3 u2 0

0 −u4 0 u2

0 0 −u4 u3


(4.8)

Therefore, the matrix Ak obtained from a single correspondence follows:

Ak = W (u)⊗ vT = W (Xk)⊗X′Tk , (4.9)
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where ⊗ stands for the Kronecker product. Hence, the problem for a single corre-

spondence is expanded as:

(
W (u)⊗ vT

)︸ ︷︷ ︸
Ak


h1

h2

h3

h4

 =



0

0
...
...
...

0


(4.10)

Each correspondence provides 6 linear equations, but only 3 of them are linearly

independent. Hence, at least 5 correspondences are necessary to estimate the

15 parameters of the projective transformation H. In order to incorporate new

correspondences to (4.10), let us define the 6Np×16 matrix A, obtained by stacking

Np measurement matrices Ak for each one of the correspondences. In presence of

noise, h may be found as the solution for the classical optimization problem:

min ||Ah|| subject to ||h|| = 1 (4.11)

The solution is obtained by means of solving a classical SVD problem, where h

is the right singular vector vector associated to σ16 = ||Ah||
||h|| , the smaller singular

value of A.

4.4 Linear Algorithm due to Motion

When aligning partial reconstructions from overlapped subsequences, it is possible

to exploit camera correspondences in order to obtain a projective transformation

between independent reconstructions. Let us assume that there exist Nc camera

correspondences {Pr, P′r}. In that case, the measurement matrix A from equation

(4.11) may be extended to allow camera correspondences and derive the matrix H

that satisfies Pr ∼ P′rH−1. Moreover, if Nc > 2 is it possible to obtain H without

any 3D point correspondence.

The rows of a projection matrix P are the homogeneous coordinates of three planes

{πi} intersecting in the camera camera centre (4.1). Recall from section 2.1.4 that,

given two corresponding planes{π, π′} in different coordinate systems, the transfor-

mation rule relating both primitives follows π = H−Tπ′. For simplicity purposes,

let us express the i-eth plane of camera Pr as πri = u and its correspondence
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in camera P′r as π′ri = v. In addition, the transformed version of the latter is

H−Tπ′ri = v′.

Note, that the inversion applied to the transposed of the transformation H, makes

it more difficult to derive a close-form solution the one for the 3D points algorithm.

With the aim of simplifying the mathematical derivation, we flip the structure of

the problem and, instead of estimating H from the 3D line l∗(u, H−Tv), the Plucker

vector used is l∗(HTu,v). In [30], it is demonstrated that if l∗(u,v′ = H−Tv) = 0,

that is equivalent to l∗(u′ = HTu,v) = 0.

The last remaining step consists on defining the Plucker components of the 3D

line l∗(u′,v). If we expressed HT as the 4-vector matrix HT = (h∗T1 ,h∗T2 ,h∗T3 ,h∗T4 ),

the components of the line follow:

l∗ij = u′ivj − viu′j = uTh∗i vj − viuTh∗j (4.12)

Proceeding in the same way that for the linear algorithm due to structure, the rest

of the process is straightforward. First of all, the set of six equations for each plane

correspondence are obtained by equaling to zero the components of the Plucker

Vector:
l12 = (v1u

T )h∗2 − (v2u
T )h∗1 = 0

l13 = (v1u
T )h∗3 − (v3u

T )h∗1 = 0

l14 = (v1u
T )h∗4 − (v4u

T )h∗1 = 0

l23 = (v2u
T )h∗3 − (v3u

T )h∗2 = 0

l24 = (v2u
T )h∗4 − (v4u

T )h∗2 = 0

l34 = (v3u
T )h∗3 − (v4u

T )h∗3 = 0

This set of equations lead to the problem Bkh
∗ = 0, where h∗ = (h∗T1 ,h∗T2 ,h∗T3 ,h∗T4 )T

and Bk, using the matrix W (v) from (4.8), follows:

(
W (v)⊗ uT

)︸ ︷︷ ︸
Bk


h1

h2

h3

h4

 =



0

0
...
...
...

0


(4.13)

From the previous expression, we may obtain the values of the 16-dimensional

vector h∗T and therefore, the desired transformation matrix H is found. However if

camera correspondences are desired to be used jointly with 3D points, an additional
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step is required. In order to make compatible the set of equations provided by a

point or a plane correspondence, we need to transform the matrix Bk to the matrix

Ak from (4.9) so that it can be stacked with the rest of measurement matrices from

point correspondences. That is done just by permuting the columns of Bk:

Ak = ColPerm(Bk) (4.14)

Now, it is clear that if Np common 3D points {Xk,X
′
k} and Nc cameras are

known between two partial reconstructions, the linear algorithm in (4.11) can be

used to estimate the transformation H from a combined measurement matrix A.

The dimensionality of this matrix is 6(Np + 18Nc)× 16 and is formed by stacking

measurement matrices Ak obtained both from point and plane correspondences.

To improve the numerical conditioning of (4.11), data normalization is essential.

This includes a normalization in the image plane, which affects the observed image

points, and a normalization in space, which affects the 3D points and projection

matrices.

4.5 Refinement of results

Each one of the presented algorithms solves the problem Ah = 0 where h contains

the elements of the desired transformation H and A is the measurement matrix

obtained from point and / or camera correspondences. In order to refine the

solution obtained, and initial solution is computed just using the correspondences

considered as inliers during the RANSAC step. Next, the obtained solution serves

as the input to an optimization framework that will derive an optimal solution.

Two approaches are proposed:

- Minimization of algebraic error (LIN): a linear cost function is used.

- Minimization of algebraic error (STR): the function to be minimized is the

non-linear Symmetric Transfer Error (4.4).

In Chapter 5, the performance of these two approaches will be evaluated for two

possible configurations: registration of partial reconstructions only from 3D point

correspondences (P) and both from points and overlapped cameras. Therefore

results will be provided for four possible schemes: (i) P-LIN, (ii) PC-LIN, (iii)

P-STR and (iv) PC-STR.
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4.5.1 Minimizing Algebraic error (LIN)

Algebraic error or distance is a linear cost function that makes no assumptions

about the nature of the problem or the solution to be found. Given the problem

of finding the optimal h for the over-determinated homogeneous system Ah = 0,

the algebraic error vector is defined as ε = Ah. Given two corresponding vectors

(ui,vi) related by an homography H, their associated algebraic distance is:

dialg(ui, Hvi) = ||εi||2 = ||Aih||2 = ||(W (ui)⊗ vTi )h||2, (4.15)

where W (ui) and Ai are the matrices defined in (4.8) and (4.10) respectively. The

global cost function used for finding the optimal h from the whole set of correspon-

dences is obtained as the sum of the algebraic costs for each single correspondence:

||ε||2 =
∑
i

||εi||2 =
∑
i

dialg(ui, Hvi) (4.16)

Finally the formulation of the problem reduces to the following minimization prob-

lem:

h = arg min(||ε||2 =
∑
i

(||ε||2) subject to ||h||2 = 1 (4.17)

Minimizing the algebraic error provides a linear (and therefore unique) and com-

putationally cheap solution. Nevertheless, since no assumption is done about the

nature of the problem, the quantity to be minimized is non geometrically or statis-

tically meaningful. This leads to find finer solutions in the non-linear minimization

framework.

4.5.2 Minimizing geometric error (STR)

Minimization of the geometric error is a criterium that approaches to the concept

of statistical signal processing. We are provided with a set of measured variables

ui and a we try to fit a model H to obtain a set of estimated variables ûi = Hvi.

The parameters of H are the hidden variables that define a cost function that will

determine the goodness of the model. The cost function is designed according to

the nature of the problem and its minimization provides the optimal value of H.

For this case, the selected cost function is the Symmetric TRansfer error as it was

defined in (4.4). STR considers the forward H and the backward H−1 transformation

of geometric primitives an their sum of reprojection errors in the 2D space.
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The benefit of minimizing a non-linear cost function is that it provides a meaning-

ful and accurate solution. On the other hand, non-linear functions do not usually

present a single solution and therefore they require to be provided with a good ini-

tial guess. In addition the computational complexity grows exponentially with the

number of variables involved in the minimization. Nevertheless, in chapters 5, it

will be shown that the set of variables required to complete a reliable minimization

process can be dramatically reduced.





Chapter 5

Experimental setup

Along this chapter, experimental results for the main contributions of this thesis

are presented. The performance and reliability of the reconstruction system, has

been analyzed in three stages: partial reconstructions, registration performance

and visual results. In the first stage, the frame decimation step and the pipeline

for obtaining independent reconstructions are analyzed. Frame decimation (FD)

is evaluated upon a criterion of feature correspondence and smooth motion. In

the second step, several configurations for registering obtained partial reconstruc-

tions are studied, both from the type of data used and the minimization strategy

adopted. Finally, the obtained pose for the cameras for each one of the sequences

is used to feed a well-know patch-based densification to provide attractive visual

results and validate the retrieved position of cameras.

5.1 Types of sequences

One of the greatest challenges in SaM consists on dealing with the scale of the

scene to be reconstructed. More precisely, the aim of Computer Vision researchers

in that discipline is to derive strategies that are able handle different nature of

scenes: little objects, middle-scaled scenes (i.e statues, motorbikes, etc.) or large-

scale scenarios which is attracting a lot of interest in the recent times [2, 3, 5, 20].

Therefore, we want to prove the reliability and adaptability of our system by

providing results for different types of sequences according to the type of scenario

recorded.

It is important to note that the work for this thesis was developed within the con-

text of a real video-to-3D project. Since users will likely provided videos recorded

with cell-phones, the acquiring device will be an extra criterion to classify the

55
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(a) Frame 0 (b) Frame 50 (c) Frame 80 (d) Frame 120

(e) Frame 0 (f) Frame 121 (g) Frame 220 (h) Frame 280

(i) Frame 0 (j) Frame 150 (k) Frame 300 (l) Frame 450

(m) Frame 0 (n) Frame 200 (o) Frame 300 (p) Frame 600

Figure 5.1: Snapshots of the sequences considered along the results chap-
ter. (a-d) Cat Sequence. (e-h) Dragon Sequence. (i-l) Snake Sequence. (m-p)

Sagrada Familia Sequence.

sequences studied. Results will be provided for a High Definition Sony HDSR11

Handy cam and a iPhone-3GS cellphone. Intrinsics for both devices were cali-

brated before hand by means of a chessboard pattern calibration with the tech-

nique described in [31].

The four sequences Fig. 5.1 are considered along this chapter of results. In the Cat

sequence, a small figure of a cat over a pillow was recorded with an iPhone-3GS.

Dragon and Snake sequences refer to similar mid-scale statues from Parc Guell

in Barcelona. They were also recorded with an iPhone. The last one, Sagrada

Familia, corresponds to Gaudi’s temple recorded from a car with a HD camera.
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(a) Cat
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(b) Dragon
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(c) Snake
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(d) Sagrada Familia

Figure 5.2: Graphical analysis of the frame decimation step for the sequences

5.2 Partial Reconstructions

5.2.1 Frame decimation analysis

Let us start by analyzing the performance of the frame decimation step for the

four sequences provided. A good frame decimator should adapt to the dynamics

of the input video sequence in order to provide the reconstruction step with a set

of keyframes sharing enough features and with an isotropic spatial distribution.

Therefore, we may summarize these desired characteristics just by saying that the

frame decimator should adapt to the dynamics of the input video sequence.

Let us define the following signals in order to graphically represent the behaviour

of the frame decimation step:

1. Common Features: Number of shared features between adjacent frames.

It will help to analyze the evolution of availability of correspondences along
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the sequence:

CF [n] = |Fn ∩ Fn+1|, (5.1)

where Fi refers to the total number of detected features for the i− th frame.

2. Apparent motion: intuitive idea of the displacement between views. It is

computed as the median of the 2D euclidean distance between the position

of the detected features in one image and their transferred correspondences

by means of a computed homography:

M [n] = median
j
||xnj − Hxn+1

j ||, (5.2)

3. Key Framing: Binary signal KF [n] that indicates whether the current

frame is a KF or not.

The expected behaviour of the frame decimator is to introduce a larger concentra-

tion of KFs in the intervals where M [n] raises and the other way round. On the

other hand, if the evolution of CF [n] leads to a decrease in the number of features,

the frame decimator will also concentrate more KF’s in that time interval in order

to ensure the possibility of a reliable feature tracking.

Since the objective is to compare the concentration of KF’s with respect to the

evolution of CF [n] and M [n], let us simplify the expressions of the mentioned

signals in order to provide a clearer representation of them. First, CF [n],M [n]

are smoothed by means of a moving average with a L = 40 sample rectangular

window. The same smoothness is applied to the binary signal KF [n] in order to

obtain an intuitive description of the concentration of KF’s in the neighborhood

of each time interval:

CF ′[n] =
1

L

n+L
2∑

i=n−L
2

CF [i]

M ′[n] =
1

L

n+L
2∑

i=n−L
2

M [i]

KF ′[n] =
1

L

n+L
2∑

i=n−L
2

KF [i]

Finally, in order to represent them in the same figure, the three signals are nor-

malized with respect to their maximum values. Therefore, the dynamic range for
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them will be between 0 and 1.

ĈF
′
[n] =

CF ′[n]

max(CF ′[n])

M̂ ′[n] =
M ′[n]

max(M ′[n])

K̂F
′
[n] =

KF ′[n]

max(KF ′[n])

In Fig. 5.2, the smoothed and normalized versions of the apparent motion, evolu-

tion of common features between frames and concentration of KFs are presented

for the four sequences considered in this chapter of Results. As seen, the presented

frame decimation scheme adapts to the dynamics of the input video sequence as

it was desired.

If we focus in Fig. 5.2-a, it is evident that the concentration of KF’s directly

follows the evolution of the apparent motion and inversely the dynamic of the

common features. In the interval (400, 600) of the Sagrada Familia sequence, we

observe a sudden decrease of common features as well as a rushed acceleration in

the moving speed of the camera. For that time interval, it is noticed an increase

of the KF concentration in order to ensure the connectiviy KFs between during

the reconstruction process. Although not being so evident, the same behaviour

can be observed for the rest of sequences.

Hence, the conclusion that arises is that our frame decimation step smartly re-

duces the temporal redundancy of the video sequence. As a difference with other

approaches, for instance reducing the frame rate of the input video, our scheme is

fully automatic and it does not require from a special adjustment depending on

the recorded scene. This process helps on dealing with sequences of different sizes,

since no manual tuning is needed.

5.2.2 Comparison with other schemes

Now it is desired to analyze the joint performance of the two contributions pre-

sented in chapter 3, frame decimation and in-loop feature tracking, and compare

it to other approaches. Two possible configurations have been studied: (a) OL-

US, a naive approach where the input sequence is uniformly downsampled and

the feature tracking is done before reconstruction, and (b) IL-FD, with embedded

feature tracking within SaM step and the frame decimation scheme from 3.2.2,

which is one of the main contributions of this thesis.
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Scene Method Points Cams KFs/Fs Clips EpreBA/EpostBA TRec./TTotal

Cat
OL-US 7412 63 65/127 1 0.533/0.310 4.5s/5.0s
IL-FD 6159 51 51/127 3 0.263/0.259 5.0s/5.0s

Dragon
OL-US 10367 34 70/349 4 4.840/0.314 6.8s/13.9s
IL-FD 19850 54 56/349 5 0.264/0.227 13.8s/13.9s

Snake
OL-US 18239 116 116/577 8 1.581/0.323 23.1s/23.1s
IL-FD 19711 77 77/577 8 0.264/0.260 23.1s/23.1s

S. Fam.
OL-US 18603 147 170/848 6 0.369/0.218 29.3s/33.9s
IL-FD 16919 81 81/848 7 0.242/0.226 33.9s/33.9s

Table 5.1: Numerical evaluation of the reconstruction of the four sequences for
two different approaches. The quality measurements considered are the number
of triangulated points (Points) and correctly resected cameras (Cams), the num-
ber of KFs with respect the total numbe of frames, errors before (EpreBA) and
after (EpostNA) Bundle Adjustment and total reconstructed time (Trec). The
column Clips refers to the number of subsequences created from the original

input video.

In order to generate the results for OL-US setup, sequences were split into fixed-

length clips of 150 frames with 75 frames of overlap. Next a deterministic frame

decimation based on a uniform sampling was applied. The sampling rate selected

was of 1/5 for Dragon, Snake and Sagrada Familia and of 1/2 for Cat sequence.

Those were the configurations providing the best performance for sequences with

the OL-US setup.

Since both schemes provide different number of KFs, one of the quality parameters

listed in Table 5.1 is the reconstruction time TRec. This parameter expresses the

total time length defined by the connected KFs that were correctly resected. As

seen, IL-FD outperforms OL-US for almost all the sequences except for Snake

scene where TRec is the same. The IL-FD configuration provides a more isotropic

temporal distribution of KFs and a more stable feature tracking. Hence, isolated

frames are less frequent than for OL-US and, therefore, TRec is larger.

The number of triangulated 3D points is similar for both configurations although

total frames processed in IL-FD is lower than in OL-US. That indicates that

bounding the affinity factor in equation (3.1) during FD, allows to introduce larger

amounts of non-triangulated points at each iteration of the SaM update loop. In

other words, it acts as a renewal factor.

Furthermore, the global reprojection error between both approaches has been stud-

ied before and after a global Bundle Adjustment (BA). Post-BA error is similar

for any configuration or sequence. However the reprojection error before BA is

significantly lower for the IL-FD step for the first three sequences (captured with
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(a) Front view (b) Left view

(c) Zenital view (d) Right view

Figure 5.3: 3D model for Cat Sequence

cell-phone). That leads us to think that the reliability of the triangulated points

with the IL-FD scheme is enough to avoid the BA in some stages of the recon-

struction. That would significantly reduce the reconstruction time.

Finally, the obtained 3D models for each one of the sequences, are depicted in

figures 5.3, 5.4, 5.5 and 5.6.

5.3 Registration Performance

Along this section, the objective is to analyze the performance of the algorithms

described in chapter 4. Depending on the type of input data, two configurations

will be analyzed:

1. Only point correspondences (P)

2. Corresponding points and cameras (PC).

In addition, two minimization strategies are proposed:
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(a) Front view (b) Left view

(c) Zenital view (d) Right view

Figure 5.4: 3D model for Dragon Sequence

1. Minimizing a linear Algebraic error (LIN)

2. Minimization of a non linear Geometric error (STR).

As we have seen so far, there are four setups whose robustness and reliability

must be analyzed: P-LIN, PC-LIN, P-STR and PC-STR (see section 4.5 from

chapter 4 for further details). The results to be analyzed are the total number of

reconstructed points in the final reconstructions and the error obtained in the last

merge step both before and after an optimal non-linear BA.

Recall from the global description of the system in chapter 3, that some safety

constraints were introduced along the reconstruction process. Triangulated points

with larger triangulation angle than 1 degree or with mean reprojection error over 1

pixel were discarded. The same constraints are introduced after each registration

step. Therefore it is straightforward to see that the higher the quality of the

registration step, the larger the number of reconstructed 3D points.

In table 5.2, a summarization of the values obtained for each sequence for each

one of the four listed configurations is presented. The ”Before registration” col-

umn refers to the values of mean number of 3D points and error obtained per
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(a) Front view (b) Left view

(c) Zenital view (d) Right view

Figure 5.5: 3D model for Snake Sequence

reconstructed clip. This values show how accurate the reconstruction process was.

Therefore, possible errors after the merging step (”After registration” column)

could be only associated to the registration stage.

Following the pipeline from chapter 3, the four sequences used for results were

pre-decimated and split into subsequences with a fixed number of KFs (20 in our

experiments). Moreover, the clips were selected in such a way that they present

some overlapping (10 KFs in our experiments) in order to favour the algorithm to

be provided with camera correspondences. The reconstruction technique for each

one of the clips is IL-FD from 5.2 since is our best-performance configuration.

In table 5.1, numerical results are summarized for the four real sequences consid-

ered in our experiments. Due to the robustness and accuracy of the reconstruction

step, the four studied configurations yield outstanding registrations with respect

to the reprojection error. Nevertheless, some considerations must be done in order

to analyze the real performance of the registration algorithms.
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(a) Front view (b) Left view

(c) Zenital view (d) Right view

Figure 5.6: 3D model for Sagrada Familia Sequence

When comparing P and PC for both minimization strategies LIN and STR, the

robust algorithm using point and camera correspondences outperforms the one

using only points in the number of recovered 3D points. This clearly indicates

that, as it was expected, the combination of points and cameras into a single linear

algorithm robustifies the registration step. Since the quality of the registration is

higher, less 3D points are discarded according to error or angle constraints.

When comparing the two minimization approaches LIN and STR, the difference

in the results obtained are much more relevant. Recall that LIN strategy solves in

a first step a linear minimization by means of SVD decomposition. Therefore, it is

not assuming anything about the nature of the problem and, hence, the solution

is not expected to be as precise as desired. That is why it is usually followed by
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Before registration After registration
Scene Setup (mean values per clip) (merged reconstruction)

3D points Rep. error 3D points Epre−BA Epost−BA

Cat

P-LIN

2482 0.269

5196 52.2 0.291
PC-LIN 5334 16.6 0.257
P-STR 6157 0.264 0.259
PC-STR 6159 0.263 0.259

Dragon

P-LIN

8236 0.271

19322 10.1 0.259
PC-LIN 19601 11.0 0.2607
P-STR 19824 0.263 0.227
PC-STR 19850 0.264 0.227

Snake

P-LIN

4707 0.268

4830 79.8 0.223
PC-LIN 16321 59.7 0.230
P-STR 19474 0.280 0.260
PC-STR 19711 0.264 0.260

S. Fam

P-LIN

3962 0.258

14047 69.1 0.221
PC-LIN 14057 38.2 0.221
P-STR 16781 0.241 0.224
PC-STR 16919 0.242 0.226

Table 5.2: Numerical evaluation of four different registration schemes on the
given datasets.

a non-linear global minimization step (Bundle Adjustment):

EpostBA = min
Pr,Xi

Nc−1∑
r=0

NX−1∑
i=0

d(PrX
i,xri )

2 (5.3)

On the other hand STR minimizes a geometric cost function, the Symmetric

TRansfer error (4.4), which is adapted to the nature of the problem. However, the

big difference is that, for STR, the variables involved in the minimization process

are only those that are shared between pairs of reconstruction (connecting vari-

ables in [13]). On the contrary, in LIN non-linear refinement all the variables from

the reconstructed scene are involved. Here is where it comes the big deal: LIN

refinement is global and STR refinement is local.

When comparing results from table 5.2, it is straightforward to see that the non-

linear minimization step for LIN is mandatory since the difference between pre-

BA and post-BA is about of 2 or 3 orders of magnitude. As opposed to LIN, the

difference between the reprojection errors EpreBA and EpostBA is barely perceptive.

Therefore, the conclusion that arises is that, in our registration technique, it is

equivalent to minimize a global cost function than a local one. Nevertheless the
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(a) Global view (b) Extension of the 2D world

(c) Left view (d) Zenital view

Figure 5.7: Dense 3D models for Cat and Dragon sequences

advantage is that the amount of computational resources needed is significantly

less than for the global Bundle Adjustment.

Finally, let us note that it is not only a matter of a reduction on computational

complexity. If we focus on the P-LIN result for Snake sequence, there is a great

difference between the number of 3D points with respect to the rest of registering

techniques. Bundle Adjustment requires from a good initialization to achieve its

best performance and as seen for large error values in the LIN configuration is able

to dramatically reduce them. However, if a good starting point is not provided, the

solution may fall to a local minimum of the merging process. For this particular

case, the aforementioned situation occurred in the fifth iteration. The consequence

was that about 14.000 points were deleted due to a large reprojection error or a

small triangulation angle.
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(a) Global left view (b) Global right view

(c) Frontal view (d) Right view

Figure 5.8: Dense 3D models for Snake and Sagrada Familia Sequences

5.4 Qualitative Results

Up to this point, the reliability and accuracy of the proposed algorithms have

been numerically proven. Now we want to validate the full reconstruction pipeline

described along this work from a visual appearance point of view.

As seen in figures 5.3, 5.4, 5.5 and 5.6, the retrieved cloud of points barely allows to

identify the sequence that we have reconstructed. Hence, one may use a densifica-

tion algorithm to provide a better visual results by using the obtained information

during the SaM stage. In our case, we use the retrieved pose of the cameras marked

as KF, as the input for Furukawa’s patch-based densification algorithm [32].

The basic idea behind this dense algorithm is the following: given a set of cal-

ibrated cameras, define a dense set of points obtained by applying a grid over

an image and track them along the rest of views with an optical-flow approach.
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Next robustly triangulate the features, and track them according to some photo-

consistency measurement. The key idea is that the set of points from this approach

is denser than for SIFT-like features since they are pre-defined, not detected. The

final step consists on analyzing the neighborhood of each one of the triangulated

points, and obtain and approximation for its orientation. This orientation serves

to correctly place an small patch approximating the surface where the point was

triangulated. Furthermore, photo-realistic effects may be achieved by projecting

the texture in images to the defined 3D patch.

The presented algorithm requires from a very accurate set of cameras’ pose. There-

fore, this is also a way to validate the correctness of the obtained the cameras with

our SaM pipeline. In Fig’s. 5.7 and 5.8, visual results for Furukawa’s dense algo-

rithm using our camera calibrations are presented. As seen, we have obtain very

attractive results for the four sequences studied. For instance, Fig. 5.7-b repre-

sents the 3D world captured from the camera center in a certain time index. As

seen, the obtained dense 3D world, perfectly extends the 2D image plane. This is

a consequence of the accuracy of the retrieved camera pose. Photo-realistic results

were also obtained for the other considered sequences.
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Conclusions and future work

Along this Thesis, a full Structure And Motion pipeline has been designed and

implemented. The presented algorithms were designed with the aim of tackling

the two main problems for these types of systems: scalability and robustness.

A novel frame decimation scheme has been proposed in order to provide the recon-

struction step with a small set of relevant and well conditioned KFs. Moreover,

the frame decimation stage has allowed defining a criterion for spliting the input

video sequence into smaller parts of a fixed number of KFs. That has allowed the

parallel reconstruction strategy detailed in chapter 3. Also with regards to the

reconstruction loop, the feature tracking process has been embedded within the

structure computation and camera pose estimation stages as a difference with the

majority of approaches.

Results have validated our reconstruction algorithms and have shown them to

outperform other strategies. More precisely, the frame decimation step has proved

to accurately adapt to the dynamics of the input video sequence in order to provide

a set of meaningful selected frames. Its combination with the proposed feature

tracking technique, has provided a reliable and robust reconstruction strategy

capable to handle different types of sequences, captured with devices of different

quality.

With respect to the divide and conquer approach proposed, a set novel linear

algorithms, that is able to combine point and camera correspondences, has been

defined to permit the registration of independent partial reconstructions of the

same static scene. Furthermore, the optimization strategy when registering partial

reconstructions has been designed and analyzed.

Provided results for real sequences have demonstrated that, given a set of opti-

mized 2D reconstructions and a set of connecting variables (common points and

69
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cameras between reconstruction), is it possible to perform a local instead of an ex-

pensive global optimization with comparable performance results. This strategy

has reduced the total amount of computational resources needed for the recon-

struction process.

Finally, results for the whole pipeline have been used to feed a densification al-

gorithm in order to prove the overall performance of the system. Photorealistic

effects were achieved using our retrieved 3D information, validating this way our

reconstruction system.

In the future, there are some points that we would like to tackle. First of all,

we have proposed a technique for reducing the computational complexity of the

full reconstruction system. Therefore, it would be interesting to accurately study

the amount of computational save that our approach is achieving with respect to

other strategies.

Next, the possibility of extending the system to allow collaborative reconstructions

between users is something that we are very interested in implementing. Our

current registration system based on point correspondeces may allow the common

registration of the same static scene acquired from different users. Nevertheless, in

order to obtain a fully authomatic system, some efforts need to be devoted in the

fields of scene recognition or image retrieval. The system is intended to be able to

identify whether the sequences uploaded by different users refer to the same static

scene and, hence, merge their reconstructions.

Finally, the visually appealing results obtained with Furukawa’s dense algorithm,

have motivated us to develop our own densification algorithm which will adapt to

the specific requirements of our project. Several strategies will be studied including

meshes, patches or dense stereo.



Bibliography

[1] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, 2000. ISBN 0521623049.

[2] N. Snavely, S.M. Seitz, and R.S. Szeliski. Modeling the world from internet

photo collections. IJCV, 80(2), November 2008.

[3] R. Gherardi A. M. Faranzaena, A. Fusiello. Structure-and-motion pipeline on

a hierarchical cluster tree. In Proceedings of the IEEE International Workshop

on 3-D Digital Imaging and Modeling, October 2009.

[4] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd. Generic

and real-time structure from motion using local bundle adjustment. Image

Vision Comput., 27(8):1178–1193, 2009.

[5] Xiaowei Li, Changchang Wu, Christopher Zach, Svetlana Lazebnik, and Jan-

Michael Frahm. Modeling and recognition of landmark image collections us-

ing iconic scene graphs. In ECCV, pages 427–440, Berlin, Heidelberg, 2008.

Springer-Verlag.

[6] Microsoft Photosynth. URL http://www.phosynth.net.

[7] M. Pollefeys, D. Nistér, J. M. Frahm, A. Akbarzadeh, P. Mordohai, B. Clipp,

C. Engels, D. Gallup, S. J. Kim, P. Merrell, C. Salmi, S. Sinha, B. Talton,

L. Wang, Q. Yang, H. Stewénius, R. Yang, G. Welch, and H. Towles. Detailed

real-time urban 3d reconstruction from video. IJCV, 78(2-3):143–167, 2008.

[8] Andrew W. Fitzgibbon and Andrew Zisserman. Automatic camera recovery

for closed or open image sequences. ECCV, pages 311–326, 1998.

[9] Changchang Wu, Brian Clipp, Xiaowei Li, Jan-Michael Frahm, and Marc

Pollefeys. 3d model matching with viewpoint-invariant patches (vip). CVPR,

0:1–8, 2008.

71

http://www.phosynth.net


Bibliography 72

[10] David Nistér. Reconstruction from uncalibrated sequences with a hierarchy

of trifocal tensors. ECCV, pages 649–663, 2000.

[11] David Nistér. Frame decimation for structure and motion. In SMILE ’00:

Revised Papers from Second European Workshop on 3D Structure from Mul-

tiple Images of Large-Scale Environments, pages 17–34, London, UK, 2001.

Springer-Verlag. ISBN 3-540-41845-8.

[12] M.I.A. Lourakis and A.A. Argyros. The Design and Implementation of a

Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-

Marquardt Algorithm. Technical Report 340, Institute of Computer Science -

FORTH, Heraklion, Crete, Greece, Aug. 2004.

[13] Kai Ni, Drew Steedly, and Frank Dellaert. Out-of-core bundle adjustment for

large-scale 3D reconstruction. ICCV, 2007. URL http://frank.dellaert.

com/pubs/Ni07iccv.pdf.

[14] S. Agarwal, N. Snavely, I. Simon, S.M. Seitz, and R.S. Szeliski. Building rome

in a day. ICCV, 2009.

[15] Andrew W. Fitzgibbon and Andrew Zisserman. Automatic camera recovery

for closed or open image sequences. ECCV, pages 311–326, 1998.

[16] David Nistér. Reconstruction from uncalibrated sequences with a hierarchy

of trifocal tensors. ECCV, pages 649–663, 2000.

[17] Changchang Wu, Brian Clipp, Xiaowei Li, Jan-Michael Frahm, and Marc

Pollefeys. 3d model matching with viewpoint-invariant patches (vip). CVPR,

0:1–8, 2008.

[18] Zhengyou Zhang. Iterative point matching for registration of free-form curves

and surfaces. IJCV, 13(2):119–152, 1994.

[19] W. Zhao, D. Nistér, and S. Hsu. Alignment of continuous video onto 3d point

clouds. CVPR, 2:964–971, 2004.

[20] R.S. Kaminsky, N. Snavely, S.M. Seitz, and R. Szeliski. Alignment of 3d point

clouds to overhead images. CVPR Workshop, 0:63–70, 2009.

[21] D.G. Lowe. Distinctive image features from scale-invariant keypoints. 60(2):

91–110, November 2004.

http://frank.dellaert.com/pubs/Ni07iccv.pdf
http://frank.dellaert.com/pubs/Ni07iccv.pdf


Bibliography 73

[22] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry for

ground vehicle applications. Journal of Field Robotics, 23, 2006.

[23] E. Kruppa. Zur ermittlung eines objektes aus zwei perspektiven mit innerer

orientierung. Sitz.-Ber. Akad. Wiss., Wien, Math. Naturw., 1913.

[24] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a

paradigm for model fitting with applications to image analysis and automated

cartography. Commun. ACM, 24(6):381–395, 1981. ISSN 0001-0782.

[25] Chris Harris and Mike Stephens. A combined corner and edge detector. In

The Fourth Alvey Vision Conference, pages 147–151, 1988.

[26] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust

features. In In ECCV, pages 404–417, 2006.

[27] T. Adamek D. Marimon, A. Bonnin and R. Gimeno. DART: Efficient scale-

space extraction of DAISY keypoints. Submitted to CVPR, 2010.

[28] Richard I. Hartley. Estimation of relative camera positions for uncalibrated

cameras. pages 579–587. Springer-Verlag, 1992.

[29] Marc Pollefeys, Luc J. Van Gool, Maarten Vergauwen, Frank Verbiest, Kurt

Cornelis, Jan Tops, and Reinhard Koch. Visual modeling with a hand-held

camera. International Journal of Computer Vision, 59(3):207–232, 2004.
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