

MASTER THESIS

TITLE: Design and Implementation of a bidirectional, secure and real time
communication between Windows Phone 8 App and Windows Store App.

MASTER DEGREE: Master in Science in Telecommunication Engineering
& Management

AUTHOR: Guillem Carles Mayol Ramis

DIRECTOR: José Manuel Yufera Gomez

DATE: February 24th 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41812151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Title: Design and Implementation of a bidirectional, secure and real time
communication between Windows Phone 8 App and Windows Store App.

Author: Guillem Carles Mayol Ramis

Director: José Manuel Yufera Gomez

Date: February 24th 2014

Overview

Emerging multimedia applications require real-time information delivery over
computer networks. Traditionally, real-time communications have been using
specific transport protocols resting multi-platform support and hindering service
maintenance. But the latest transport protocols for real-time web applications
enable to create low-latency services without requiring native applications and
easily going through firewalls and proxies.

On the last years, several frameworks offering real-time web communication
have appeared. These frameworks implements different transport protocols as
fall-back measure to ensure that the connection will be established
independently of the technology available on client-side. As a first part of this
project, some of these frameworks have been reviewed and compared given
the devices targeted in this project: Windows Phone 8 and Windows 8.

The second part of this project consist in developing a real-time service using a
given real-time framework and applying the most recent tendencies on
Software architecture and code recycling.

Finally the solution has been tested and evaluated in two environments: on
local networks and on Internet using on cloud services.

ÍNDEX

TABLE OF FIGURES .. 6

CHAPTER 1. INTRODUCTION .. 7

1.1. Context ... 7

1.2. Scope of the project .. 8

CHAPTER 2. REAL-TIME COMMUNICATIONS ... 9

2.1. Real-time web services ... 9

2.2. Transport technologies for real-time web services ... 9
2.2.1. HTTP Polling... 10
2.2.2. Forever Frame .. 10
2.2.3. AJAX ... 10
2.2.4. Long-Polling .. 11
2.2.5. Server Events ... 11
2.2.6. WebSockets.. 12

2.3. Frameworks for real-time communications .. 13
2.3.1. Sockets.IO .. 14
2.3.2. Xsockets ... 14
2.3.3. SignalR ... 14

2.4. Taking decisions.. 15

CHAPTER 3. SIGNALR IN DEEP .. 16

3.1. Transport Technology ... 16

3.2. Architecture .. 17

3.3. Hubs API ... 18

3.4. Security ... 18

CHAPTER 4. SERVICE DESIGN AND IMPLEMENTATION 20

4.1. Functional Service Specifications ... 20

4.2. Development Service Scenario .. 22

4.3. Walking through client native applications .. 22

4.4. Software Architecture ... 27
4.4.1. Model-View-ViewModel (MVVM) .. 27
4.4.2. Portable Class Library (PCL) .. 29
4.4.3. Service Developed ... 30

4.5. Securing the service ... 35
4.5.1. Authentication and Authorization using cookies and ASP.NET Identity module .. 35
4.5.2. Encryption using Secure Socket Layer (SSL) .. 36

CHAPTER 5. MANAGING & TESTING THE SERVICE 39

5.1. Devices used to test the service .. 39

5.2. Source Code Management ... 39

5.3. Deploying the service on Windows Azure .. 39

5.4. Connectivity is the key for real-time experience .. 40

CHAPTER 6. CONCLUSIONS & FURTHER WORK 42

BIBLIOGRAPHY .. 44

RESOURCES CITED ... 45

ACRONYM LIST .. 46

Table of Figures

Figure 1 Forever frame technique. ... 10

Figure 2 Long-polling technique. .. 11

Figure 3 Server Events technology. ... 12

Figure 4 WebSocket handshake headers in HTTP. ... 12

Figure 5 WebSockets technology. .. 13

Figure 6 SignalR fall-back transport strategy. ... 16

Figure 7 Transport negotiation process in SignalR. .. 17

Figure 8 SignalR Architecture... 18

Figure 9 SignalR procedure for connection token. ... 19

Figure 10 Use cases for the service. .. 20

Figure 11 Flow chart for client applications. ... 21

Figure 12 Development service scenario. .. 22

Figure 13 Home (landing) pages on client applications. 23

Figure 14 Adding a new room on client applications. 23

Figure 15 Login in a secured room. .. 24

Figure 16 Paint page on client applications. ... 24

Figure 17 Colour pickers on client applications. ... 25

Figure 18 Sketching on client applications. .. 25

Figure 19 Chatting on client applications. ... 26

Figure 20 Sending motion information on client applications. 26

Figure 21 MVVM Software architecture. ... 28

Figure 22 Data binding example. .. 28

Figure 23 Classes location using PCL. ... 29

Figure 24 Two combinations of namespaces using PCL. 30

Figure 25 Server Code diagram. ... 32

Figure 26 Diagram for the main classes in .Net client applications. 34

Figure 27 Authentication procedure. .. 36

Figure 28 SSL handshake captured accessing to the service deployed on
Windows Azure. .. 36

Figure 29 Browser advices for certificates issued by none-trusted CAs. 37

Figure 30 Service scenario using Windows Azure. .. 40

Figure 31 Improved service using WebRTC. .. 43

Introduction 7

CHAPTER 1. INTRODUCTION

1.1. Context

Whether online gaming, online collaboration, streaming, sharing or just a chat:
The need for communication in the Internet grows as much as the number of
connected devices do; and with them the demand for safety, volume and speed.
Interactivity has become as important as information itself, and instead of
traditional transport protocols, a more convenient and standardized way of data
exchange is now needed; not only between client and server, but also between
the diversity of clients that nowadays are connected to Internet. Hence, the use
of real-time web technologies is almost inevitable, as them provide cross-
platform/browser connectivity and can go through proxies, firewalls and NATs
easily.

Despite in this project the clients are native applications, providing the service
as web service increases the flexibility and portability of it. Additionally, it is a
chance to test and evaluate if real-time applications are feasible on web
services.

In 2012, Microsoft presented Windows Phone 8, Windows 8 and Windows RT
(OS for tablets) making Windows available in all platforms (mobile and
desktop). Moreover, a new kind of Windows application with simplified user
interface and oriented to be controlled using touch gestures was released under
the name of “Windows Store Applications” (also known as Metro applications).
The attractive of these applications is that they run on any Windows 8, RT and
further versions (i.e. Windows 8.1) independently if it is a portable device or
desktop one.

In this project, the Windows 8 client has been developed as “Windows Store
Application” making possible to run the same client on any Windows platform
from Windows 8 onwards.

Finally, a real-time web service has been deployed to study and conclude if in
this scenario (devices, web service, frameworks and use-cases) a real-time
communication is feasible and the limitations of this.

8 Introduction

1.2. Scope of the project

The aim of the project is the study and deployment of one service with real-time
features between Windows 8 and Windows Phone 8 using a web service. The
project includes the next phases:

1) Study and comparison of technologies available for real-time web

communication given the client platforms to use.

2) Select a real–time web technology and design a service to try such
technology.

3) Develop pieces of software required for the real-time service.

4) Study and apply measures to secure the service.

5) Test and evaluate the service to determine if it is feasible for production.

Real-Time Communications 9

CHAPTER 2. REAL-TIME COMMUNICATIONS

Real-time communications are any mode of telecommunications in which the
user can exchange information instantly or with negligible latency. This can use
either Full or Half duplex transmission modes depending on whether the
communication is simultaneously bidirectional or not, respectively (Rouse,
2008).

2.1. Real-time web services

The first services with Real-time features were Chat platforms such as mIRC
(1995) and MSN Messenger (1999). But all these platforms were developed
using specific protocols for each service forcing the users to install one
application for each service as well. Additionally, some of these protocols face
network hazards such as proxies and firewalls that can preclude the access to
the service or degrade the quality of it.

Then, technologies such AJAX and HTML5 (Hypertext Markup Language v.5)
appeared and web applications started to be able to provide bidirectional
communication with low or reasonable latency between client and server,
making feasible a real-time web service.

The main advantages and drawbacks of real-time web applications are:

 Update and maintain web app without distributing and installing software
on all the clients.

 Cross-platform support (browser dependence).
 Faster development.
 None impact for proxies, NATs and firewalls.
 Adding additional payload.
 Using none specific transports for real-time (i.e. TCP or UDP instead

RTP).

2.2. Transport technologies for real-time web services

The web was built around the idea that a client’s job is to request data from a
server, and a server’s job is to fulfil those requests. It was conceived to be a
collection of Hypertext Markup Language (HTML) pages linked one to each
other to form a conceptual placeholder of information. Over time the static
resources increased in number and richer items, such images, which began to
be part of the web. Server technologies advanced allowing to create and update
content based on queries.

Trying to bring interactivity to Web and offer a richer experience, browser
scripting was introduced renaming HTML to DHTML (Dynamic HTML). But the
pages still needed to be refreshed frequently to get new information from the
server.

10 Real-Time Communications

As the browser scripting evolved, new techniques appeared to improve the user
interactivity. Cross Frame Communication is a technique used to load a frame
from the page with new information from the server without refreshing the entire
page. But what if the server has some new or additional information for the
user?

2.2.1. HTTP Polling

The first solution to this problem came from the client to poll the server at
regular intervals. This solution was, and still is, inefficient and leads to stale data
being displayed in web pages and applications.

2.2.2. Forever Frame

The forever-frame technique uses HTTP 1.1 chunked encoding feature to
establish a single, long-lived HTTP connection in a hidden Iframe. Data is
increasingly pushed from the server to the client over this connection, and
rendered incrementally by the web browser. This provides one-way real-time
connection from server to client. But, on the other way, an additional connection
is required and like standard HTTP request, this connection is established for
each piece of data that needs to be sent (see Figure 1).

Figure 1 Forever frame technique.

2.2.3. AJAX

Then, a new object XMLHttpRequest appeared introducing asynchronous
JavaScript and XML (AJAX). This is a group of interrelated web techniques
used on client-side allowing to send and receive data from the server
asynchronously (in the background) without interfering with the existing page.
JavaScript and the XMLHttpRequest object provide a method for exchanging
data asynchronously between browser and server to avoid full page reloads.
But it doesn’t change the paradigm of one response for each request.

Real-Time Communications 11

2.2.4. Long-Polling

Long-polling techniques are variations of the traditional polling technique. These
work by establishing a connection to the server which is held opened. When the
server has more data for the client it sends that data through and it closes the
connection. The client then re-establishes the connection and waits for any new
data and so on. The main problem with this technique is that during the
reconnection process the data on the page could be out of date. Moreover, this
technique doesn’t change the paradigm of one response for each request (see
Figure 2).

Figure 2 Long-polling technique.

2.2.5. Server Events

Server-sent events (SSE) is a technology that works in a similar way than long-
polling mechanism, except that it does not send only one message per
connection. The client sends a request and server holds a connection until a
new message is ready, then it sends the message back to the client while still
keeping the connection open so that it can be used for another message once it
becomes available. Once a new message is ready, it is sent back to the client
on the same initial connection. Client processes the messages sent back from
the server individually without closing the connection after processing each
message. So, SSE typically reuses one connection for more messages (called
events in the context of this technology, see Figure 3).

The main drawback of this technology is only unidirectional communication from
server to client. So, on the other way, an additional connection is required and
like standard HTTP request, this connection is established for each piece of
data that needs to be sent.

12 Real-Time Communications

Figure 3 Server Events technology.

2.2.6. WebSockets

The problem with all push technologies (previously announced) is that they
carry the overhead of HTTP. Every time you make an HTTP request a bunch of
headers and cookie data are transferred to the server. This can add up to a
reasonably large amount of data that needs to be transferred, which in turn
increases latency.

WebSocket technology is different from previous technologies as it provides a
real full duplex persistent connection that client and server can use to start
sending data at any time.

The client establishes a WebSocket connection through a process known as the
WebSocket handshake. This process starts with the client, who sends a regular
HTTP request to the server. An “upgrade” header included in this request
informs the server that the client wishes to establish a WebSocket connection. If
the server supports the WebSocket protocol, it agrees with the upgrade and
communicates this through an “upgrade” header in the response (see Figure 4).

Figure 4 WebSocket handshake headers in HTTP.

Now that the handshake is completed the initial HTTP connection is replaced by
a WebSocket connection that uses the same underlying TCP/IP connection and
ws (unsecure) or wss (secure) protocol on top. At this point either party can
start sending data (see Figure 6).

GET ws://websocket.example.com/
HTTP/1.1
Origin: http://example.com
Connection: Upgrade
Host: websocket.example.com
Upgrade: websocket

HTTP/1.1 101 WebSocket
Protocol Handshake
Date: Wed, 16 Oct 2013
10:07:34 GMT
Connection: Upgrade
Upgrade: WebSocket

Real-Time Communications 13

Figure 5 WebSockets technology.

2.3. Frameworks for real-time communications

Frameworks are bridges that help to develop applications faster and easier;
adding abstract layers that handle lower or complementary functionalities. The
aim of these is alleviate the overhead associated with common activities
performed in development, promoting code reuse. Like a technology, a
framework has advantages and downsides to consider before deciding to start
using one:

 Efficiency: Using pre-built functions or classes save hundreds of lines of
code and very often are more than tested and optimized.

 Cost: Almost all frameworks are open-source but some of them are
subject to licensing. For example Pusher (Pusher) and PubNub
(PubNub) charge for the number of messages sent per day and for
enhanced features like SSL protection (PubNub additionally charges for
the number of active devices).

 Support: It is important to use a framework with strong and wide

acceptance from developer community as the community forums are
usually the best documentation about it (especially open-source ones).

 Limitation: The framework’s code behaviour cannot be modified, meaning
that you are forced to respect its limits and work the way it is required.

 Public Code: As it is available to everyone, it is also available to people
who pretend to find and exploit the vulnerabilities of it.

Several frameworks have been considered for this project and below are listed
the ones which had the requirements to deploy a service using Windows Phone
8 and Windows 8 native clients using (C# .NET). The commercial candidates
have been discarded as almost all of them require using their hosting with a
cost associated.

14 Real-Time Communications

2.3.1. Sockets.IO

Sockets.IO is a JavaScript library for real-time web applications using
WebSockets as preferred transport protocol and with multiple others fall-back
transport technologies.

On server-side uses node.js that is a software platform written in JavaScript that
enables to run a web server without using external software such as Apache,
which gives more control of how the web server works.

This library is one of the most used for real-time web applications with an
extensive documentation and support from the developer community. The main
constrain evaluating this library was that it doesn’t have C# API itself, and it
relies on an independent project called SocketIO4NET client for such API.
Furthermore, the client doesn’t have a stable release yet (SocketIO4NET,
2013).

2.3.2. Xsockets

Xsockets is a real-time communication library built on Microsoft .NET
Technology and provides APIs for both server and client ends. The main
advantage of this platform is that it doesn’t have dependencies as the transport
protocols are implemented on library itself. Additionally this platform offers
WebRTC support enabling direct connection between clients.

As downsides of this platform, it is not open source project and it is not as
consolidated platform like SignalR.

2.3.3. SignalR

SignalR is a library written in Microsoft .NET technology that simplifies the real-
time communications for web services providing two APIs for the
communication layer: Persistent connection and Hub. The first one provides
access to the lower layer, which it is an abstract bidirectional and persistent
communication between client and server (enabling send raw data). The
second API provides access to a higher and more abstract layer, which
provides serialization and remote procedure calls in both directions built-in.

Remote procedure calls (or remote invocation or remote method) are inter-
process communications across a shared network allowing from a computer
program to cause a subroutine to execute in another computer or device without
the programmer explicitly coding the details for this remote interaction
(Wikipedia).

Moreover, SignalR provides APIs for .Net client and it is officially supported for
Microsoft and consequently easily portable to Microsoft cloud services such
Microsoft Azure.

Real-Time Communications 15

2.4. Taking decisions

The table below summarizes the main characteristics involved in the decision.

Features

Sockets.IO

XSockets

SignalR

Platforms APIs JavaScript C# / VB.NET/ JavaScript C# / VB.NET/ JavaScript

Transports 1. WebSockets
2. Adobe Flash

Socket
3. AJAX long

Polling
4. AJAX multipart

Streaming
5. Forever Iframe
6. JSONP Polling

1. WebSockets
(own
implementation)

2. Long-Polling

1. WebSockets
2. Server Sent

Events
3. Forever Frames
4. Long-Polling

WebRTC No Yes No

Remote
Procedures

Yes Yes (publish / subscribe) Yes

Grouping Yes using Rooms Yes (adding subjects to
controllers)

Yes using groups or
different Hubs

Hosting Node.js WebServer or Self-Hosted
(Windows and Linux)

WebServer or Self-
hosted
(Only Windows*)

JavaScript Proxy No No Auto generated using
Hub

Scaling Only Clustering Azure, Redis, sqlServer

SSL/TLS Yes Yes Yes

PCL support N/A No Yes

Documentation
&

Support

Good and free from
community (socket.io
wiki)
Official support not
available.

Good and free from
community.
Official support is
chargeable. (xsockets.net
support)

Very good and free
support from official
developers.
((ASP.NET SignalR
forum)

Table 1 Real-time frameworks comparison.

*Only SignalR 1.X server versions can use Mono (Mono Project) to use it on Unix.

Sockets.IO is the framework which provides more fall-back transports but the
fact that it does not provide a C# API makes very difficult to develop any native
application using it.

XSockets strength is the WebSockets support on all the clients that they
announce but it does not provide so many fall-back transports (only Long-
polling). Moreover, it does not have a PCL library so would be much more
difficult to reference it from PCL (see 4.4.2).

Finally, the main advantage of SignalR is that is fully supported by Microsoft
with an extended documentation and it is easily portable to Windows Azure (on
cloud services of Microsoft).

16 SignalR in Deep

CHAPTER 3. SIGNALR IN DEEP

3.1. Transport Technology

SignalR fully handles the connection management letting the developer to focus
on the service to develop. Clients can broadcast messages to certain groups or
just send a message to one receiver. But in both cases, only one packet
between client and server is sent, and the server forwards it accordingly.

SignalR exposes a bidirectional and persistent connection independently if the
real transport in use can really provide such kind of connection. The connection
starts with a negotiation process using simple HTTP requests (i.e. GET) and
then it is promoted to a WebSockets connection if it is available.

WebSockets is the ideal transport for real-time connections, since it makes a
more efficient use of server memory, has the lowest latency and provides full
duplex communications. But it also has the most stringent requirements,
especially in Windows (requires Windows Server 2012 or Windows 8 with .NET
4.5). If the requirements are not met, SignalR will fall-back to other transport
technologies to make its connections, such as Server Sent Events or Forever
Frame. See in Figure 6 fall-back strategy of SignalR.

Figure 6 SignalR fall-back transport strategy.

In a consecutive way, these are the transport protocols that will be used to
establish the connection:

1. WebSockets. It is the only transport providing a true persistent two-way
connection between client and server. However, it is still not widely
supported (i.e. .NET framework for Windows Phone 8 does not support
it).

2. Server Sent Events (SSE).

3. Forever Frame (for Internet Explorer only).

4. AJAX Long-Polling.

SignalR in Deep 17

The negotiation process takes a certain amount of time and resources in both
ends (client and server). If the client capabilities are known, then a transport can
be specified when the client connection is started. If not, a connection for each
transport mode will be tried following the list order above.

Figure 7 Transport negotiation process in SignalR.

See in Figure 7 an example of transport negotiation process, in which the client
(192.168.21.50) is initiating the connection indicating the version protocol is
using (1.3). Then, server (192.168.21.1) replies indicating the connection token
assigned to the client (see SignalR connection token in 3.4) and some
additional information about the connection. Notice that the server is
announcing WebSockets support but as the client doesn’t support it, client
initiates the connection using SSE. This example was made using Windows
Phone 8 as a client and self-hosted application running on a local machine as a
server.

3.2. Architecture

SignalR introduces two APIs for communication technologies: Persistent
connection and Hubs. The first one provides access to the lower level
communication protocol that SignalR exposes, allowing to send data between
client and server and vice versa (message-oriented communication). The
second one is a more high-level pipeline built upon the persistent connection
and enables client and server to invoke remote methods (instead of exchanging
mere data).

Architecture provided by SignalR is composed by a group of stacks from
transport technology layer to the application layer (.NET application /
JavaScript). See in Figure 8 SignalR server stack where there are four
transports technologies available for the transport layer. On top, there is the
persistent connection API handling all connection management and exposing a
bi-directional communication. One layer higher, there is Hub API providing
remote procedures, serialization, grouping and other enhanced features.
Finally, on top of all stack there is the application code where the programmer
just have to worry about the service and handling few events for connection
status.

18 SignalR in Deep

Figure 8 SignalR Architecture.

3.3. Hubs API

Hub is the highest API exposed by SignalR enabling call remote functions in
both ways. The communication from server-to-client is based on remotes
procedure calls that call JavaScript or C# functions in client-side (depending on
client application) from server-side. If WebSockets are not available, normal
HTTP request (GET, POST) are used from client to server.

The methods and parameters are serialized using JSON but others serialization
technologies can be used. If some remote procedure is not matched on the
other end-side (not defined in the code) the method is not called and the
procedure is discarded.

3.4. Security

SignalR does not provide authentication or cyphering methods for user data, but
it provides [Authorize] attribute to specify which users have access to a hub or
method. Actually, SignalR is relaying the authentication to ASP.NET Identity
module (known formally as Windows Identity Foundation). This is the security
module provided by .NET Framework 4.5 to unify all tasks related with
authentication and authorization.

SignalR needs to identify the connections to avoid commands be executed in
behalf of others by sending identification information of other users. For this
reason SignalR uses a connection token technique.

SignalR in Deep 19

 SignalR connection token

SignalR mitigates the risk of executing malicious commands by validating the
identity of the sender. For each request, both client and server pass a
connection token which contains the connection id (and username for
authenticated users). The connection id uniquely identifies each connection
(none authenticated users) or connected client (authenticated users). This id is
randomly generated by the server for each connection request and it persists
for the duration of the connection (see Figure 9). The user name is provided by
the authentication mechanism (if applies). The connection token is protected
using encryption and digital signature.

Figure 9 SignalR procedure for connection token.

For each request, the server validates the contents of the token to ensure that
the request is coming from the specified user. If the user is authenticated,
username must correspond to the connection id. By validating both the
connection id and the username, SignalR prevents a malicious user from easily
impersonating another user. If the server cannot validate the connection token,
the request fails.

20 Service Design and Implementation

CHAPTER 4. SERVICE DESIGN AND IMPLEMENTATION

4.1. Functional Service Specifications

The purpose of developing a real-time web service is to evaluate the
capabilities and limitations of real-time communications on web servers using
SignalR. The service provides several functionalities with different requirements
to test different user cases (see Figure 10). An important fact is that the source
of information to transmit (and speed rate of it) is different for each functionality;
resulting in better conclusions as each one has its own requirements. The
following functionalities have been implemented on the service:

1) A collaborative painting tool. The data of this service is characterized for
small packets of information which are sent as the user touches the
screen (burst of packets in a short periods of time but in average the
bandwidth requirement is low).

2) A Chat room. The data sent on this case are small packets which are
sent at sporadic basis (punctual packets with minimum bandwidth
requirement).

3) Share motion sensors information (i.e. Accelerometer and Gyroscope). In

this case, the data is still using small packets but they are sent constantly
at the same rate (moderate and constant use of bandwidth as the
packets are sent at the same interval of time constantly). Note that the
interval between packets can be modified at compilation time as it is a
parameter in the code.

Figure 10 Use cases for the service.

Service Design and Implementation 21

To make more flexible the service and allow several users to be connected at
the same time, the concept of room has been implemented. Then, the first page
after opening the application is a landing page (referred as a Home page as
well) with several items where each one represents a room. Rooms can be
created per user request and the access to it can be restraint using a password,
which is set it up in the room creation procedure. Rooms are self-deleted on
timeout basis starting from the last user logged out of the room.

Once the user is in the room, another page (referred as Paint page, see Figure
11) is used to display the canvas, Chat messages and Motion sensor if it is
enabled. In function of the client, some features such as seeing Motion sensors
values are not available (i.e. in Windows Phone 8 only).

The canvas is the area where a user can draw and on real-time the others
users can see it. It is a broadcasted sharing as all the users in the room can
draw and erase whole canvas.

Another part of the service is the Chat that works broadcasting all messages to
all room participants.

Figure 11 Flow chart for client applications.

Additionally, it is possible to receive on real-time the motion sensors values of
the users that use a device with such sensors (i.e. Window Phone 8). To use
this feature, the user with a capable device needs to enable Motion Seed
function (client indicates to the server that wants to share motion sensors
information to the rest of the participants in a room) on his application. Then, the
rest of the participants in the room will start to receive this information and an
indication of which user is sending it will be displayed.

22 Service Design and Implementation

4.2. Development Service Scenario

The service is based on client-server paradigm: server provides a single point of
communication between clients which are directly connected to it. This scenario
has specific constrains as all the service relies on one entity and any
performance or bandwidth limitation of this directly impacts on the service. But
at the same time simplifies service deployment and maintenance.

Development scenario is composed of a laptop running a self-hosted instance
of the server and two clients: a Windows 8 on the same laptop and a Windows
Phone 8 client connected to the server using a wireless connection.

Figure 12 Development service scenario.

As seen in Figure 12, Windows Phone 8 device is accessing to the server using
wireless connection (WLAN 802.3n). Wireless connectivity is characterized by a
high number of collisions in the physical medium (which implies
retransmissions) deteriorating connectivity performance especially for TCP
connections. As the service is using HTTP, it highly depends on wireless
connection performance. To minimize medium collisions and avoid the service
being affected by the load on wireless access point (AP), a USB access point
directly connected to the laptop has been used. Additionally, a wireless
scanning was performed before setting up the development scenario to check
the best WLAN channel to avoid overlapping any present wireless signal.

4.3. Walking through client native applications

Two client applications have been developed: Windows Store App and
Windows Phone 8. In this example, Windows Store App is running on Windows
8 (as seen in Context Windows Store App can run on multiple devices).

Once client application is open and loaded, several icons representing rooms
are displayed on Home page (see Figure 13). Each room indicates how many
members are logged in and if there is some password to log in (lock icon).

Service Design and Implementation 23

Figure 13 Home (landing) pages on client applications.

Then, the user has two options: create a new room (‘+’ icon on Windows Phone
8) or join an already created one (double tap on the room on both applications).
Additionally, there is a button to refresh the list of rooms (rooms list is also
updated by the server when there is some new information).

When a new room is requested, a popup will prompt asking to assign a room
name and optionally a password to secure it (see Figure 14).

Figure 14 Adding a new room on client applications.

After filling both fields with valid values it is possible to see that the list has
instantly been updated (see rooms on the background in Figure 15). To join one
room is just necessary to double tap on top of the room icon and enter user
name and password if it is required for that room.

24 Service Design and Implementation

Figure 15 Login in a secured room.

If the log in is successful, the user will be redirected to the paint page which
represents such room.

Figure 16 Paint page on client applications.

Now, the user is ready to draw using any colour available on a colour picker
floating window (see Figure 16). This becomes visible using the brush icon on
Windows Phone 8 or the picker button on Windows 8 (see Figure 17). To erase
the whole canvas, the user can use trash icon button (any user in the room can
erase it in any moment).

Service Design and Implementation 25

Figure 17 Colour pickers on client applications.

On Windows Store App (in this case running on Windows 8), due to enough
size of screen (both tablets and laptops), the chat and motion panel are already
in the Paint page (see Figure 18). Otherwise, on Windows Phone 8 the user
needs to use one tap to access each functionality (i.e. dialog icon button
displays the chat screen).

Figure 18 Sketching on client applications.

When the messenger is displayed, another icon with a canvas appears allowing
the user come back to the canvas (see the canvas icon on Windows Phone 8
app in Figure 19).

26 Service Design and Implementation

Figure 19 Chatting on client applications.

When Windows Phone 8 client is equipped with Motion sensors (i.e. gyroscope
or accelerometer) an additional icon button will be available at the bottom of the
user interface (see the cycle icon on Windows Phone 8 in Figure 19). This
button enables Motion Seed function described on Functional Service
Specifications. To disable this function, the same button but now with a cross
icon must be tap.

Figure 20 Sending motion information on client applications.

Finally the user can go back to the Home page using the back arrow button
physically present on Windows Phone 8 (under the screen at left side) or the
black arrow on the top left side of the screen on Windows Store App. This
action implies to log out of the room.

Service Design and Implementation 27

4.4. Software Architecture

All the code developed on this project is written in C# using .NET framework
and some external references. See below some concepts that are required to
fully understand the next section:

 Windows Presentation Foundation (WPF) is the graphical system for
rendering user interfaces in Windows-based applications. WPF employs
XAML-based language to define and link various UI (User Interface)
elements (Wikipedia).

 XAML is a declarative makup language applied to .NET framework

programming user interfaces. UI classes are composed by two files, one
containing all UI elements (.XAML extension) and other one containing
all the run-time logic (.cs extension and known as code-behind)
(Microsoft Dev Network).

 Data binding is the process to connect (or bind) an element of the UI to
data object allowing data to be synchronized between two entities. Then,
the changes on the data object are automatically reflected on the UI
element. Data bindings can be configured in two way mode and changes
on the UI elements would modify the data object (Windows Dev centre).

 An assembly in .NET is the minimum unit of software deployment.

Usually corresponds to a single file but it doesn’t have to. Single-file
assemblies are usually DLLs or .exe files.

4.4.1. Model-View-ViewModel (MVVM)

MVVM architectural pattern was developed by Microsoft as a specialization of
the Model-View-Presenter (MVP) pattern. MVP was itself derived from Model-
View-Controller (MVC) pattern. MVVM was created to leverage the advanced
data binding features in WPF and Silverlight (and now Windows Store apps)
and facilitate a strict separation-of-concerns between the (XAML-defined) View
and the Model.

In Windows Store and Windows Phone MVVM-based apps:

 The Model encapsulates business/data logic.
 The View is defined using XAML.
 The ViewModel makes Model data available to the View and responds to

changes in the View.
 The strict separation-of-concerns in MVVM means that a View can call

the ViewModel, but not the Model. Similarly, the Model can't call the View
directly (see Figure 21).

28 Service Design and Implementation

Figure 21 MVVM Software architecture.

The goal of using MVVM pattern is to minimize the amount of "glue" code
needed to manage the flow of data between the View and ViewModel.
Interactions between the View and ViewModel are achieved through data
bindings specified in the View's XAML, and change notifications raised by the
ViewModel.

Figure 22 Data binding example.

In Figure 22 it is possible to see the data binding for the list of rooms in Home
page. On the left side, there is an user interface object GridView which is
bonded to Rooms data object. This code is in Home page XAML file of both
client implementations.

On the right side, there is the definition of Rooms class as inhering
ObservableCollection of BaseRoom. ObservableCollection implements
InotifyPropertyChanged that it is the requirement for a class to be biddable. This
code is placed in the Home ViewModel file.

Then, any change on the class Rooms like adding an additional room, it is
automatically propagated to the GridView and an additional item (representing a
room) is added on it.

 MVVM Light Toolkit

For an easier application of MVVM pattern, MVVM Light Toolkit has been used.
This provides several helper classes that accelerate the deployment and
promote the reuse of code. Among these, the most used in this project are:

// this is in Home.xaml
<GridView x:Name="RoomsGridView"
 ItemsSource="{Binding Rooms}"
>

// this is in HomeViewModel.cs
public class Rooms :
ObservableCollection<BaseRoom>;

Service Design and Implementation 29

 ViewModelBase class is the common base for all ViewModels as it
implements basic and common methods to apply MVVM pattern. For
example implements InotifyPropertyChanged.

 Messenger class, used to communicate within the application using
sender/subscribers pattern (receiver classes must register a listener
method for each kind of message).

 EventToCommand behavior, allows to bind any event of any UI element

to a Command (UI events are not biddable, only commands and some
properties of the UI elements are biddable).

4.4.2. Portable Class Library (PCL)

The Portable Class Library (PCL) provides cross-platform development for
applications using .NET Framework. PCL projects supports a subset of
assemblies from the .NET Framework, Silverlight, .NET for Windows Store
apps, Windows Phone, and Xbox 360, and generates a portable assembly that
can be shared across apps for all these platforms.

The aim of PCL is to reuse all the application logic code embedding it in a
portable assembly and at the same time, to reduce specific platform application
to the View. As this project uses MVVM pattern, Models and ViewModels can
be shared and located in PCL. Views classes and platform specific classes
must be coded in their respective platform applications (see Figure 23).

Figure 23 Classes location using PCL.

However, there are some limitations using portable class libraries:

 Only none XAML classes can be shared and in some cases part of these
could be shared as well.

30 Service Design and Implementation

 PCL references must be other PCL assemblies and in some cases these

packages are not available.

 The namespaces available are those ones that are common in all
targeted frameworks (see Figure 24). That means, as more frameworks
are targeted, smaller is the namespace available in PCL.

Figure 24 Two combinations of namespaces using PCL.

4.4.3. Service Developed

The service scenario is based on the client-server paradigm in which, both
entities are fundamental as both provide the functionalities that combined
enable the service.

 Server

For the service proposed, the server requires the set of features listed below:

1. Hosting for the web service.

OWIN is the definition of a standard interface between .NET web server
and web applications (this layer is known as middleware) and Katana is
the implementation of OWIN for Microsoft servers and frameworks. The
main advantage of using OWIN is that the web server and application are
completely decoupled. This means that the application can run on any
web server exposing OWIN interface.

The service has been developed using OWIN-Katana, allowing to deploy
the service on any web server or host supporting ASP.NET (main
dependency of SignalR) and implementing OWIN interface. For example,
Windows Azure, self-host as Windows application and so forth.

Service Design and Implementation 31

2. Connection management.

As the service is using the Hub API provided by SignalR, the connection
management is performed for lower layers and only three methods
triggered on connections events are exposed to the service code:
OnDisconnected(), OnConnected() and OnReconnected() (See SignalR
Hub class on Figure 25). Names of the methods are self-explanatory and
indicate when each method is called. Using these methods, the server
can be aware of which users are connected, in reconnecting state or
disconnected preforming the correspondent task in each case.

3. Rooms and users management.

As users can create rooms, log in and log out. Server needs to track
which users are logged in each room, room names (to avoid
duplications) and number of room participants (delete rooms). All this
management functionalities are provided by two classes:
RoomManager.cs and UserManager.cs. Below listed some features of
these classes:

 Add and delete users. Only user names not already present in the
server can be added (as the user name is the key to track them).

 Add and delete room. Only room names not already present in the
server can be added (as user name, the server name is the key).

 Connection ID and user name mapping. As each connection is
associated to a connection ID (see SignalR connection token), it is
not required to pass the user name as a parameter to identify the
sender. Then, this mapping allows the server to track the user
using the connection ID.

 Room name and user name mapping. Necessary to know which

users are logged in for each room. Additionally, it is used to
remove the rooms when during a certain amount of time, none
user has been logged in (self-destructed by timeout).

4. Providing authentication, authorization and encryption to the service.

The authentication process implemented uses cookies to know if the user
is log in or not and which account they are logged in with. A cookie is a
small piece of data sent from a website and stored in an user's web
browser or application while the user is accessing that website
(Wikipedia). Detailed explanation is in 4.5.1 Authentication and
Authorization using cookies and ASP.NET Identity module.

As seen before the authorization is built-in in SignalR (see 3.4) and the
encryption is provided using SSL (see 4.5.2 Encryption using Secure
Socket Layer (SSL)).

32 Service Design and Implementation

The diagram below shows the main classes on the server with their public
properties (top box) and methods (bottom box).

Figure 25 Server Code diagram.

In the Figure 25 is possible to see the main server classes already highlighted
and the dependencies and inherence between them.

Notice that all the remote procedures take place between DataProvider class
and both Hubs classes. On one hand, RoomManagerHub handles all the logic
related to rooms at high level working with both manager classes. On the other
hand, PaintHub handles all the logic related to painting, chatting and motion
messages.

Models are required to de-serialize information received from the clients and
send responses to them.

 Clients

On the other part of the connection, clients require the next list of features:

1. Connection management.

As in the server, SignalR exposes exactly the same three methods for
connection management. In this case, these methods have been used to
notify to the user in case of disconnection or reconnection and control
life-cycle of the client application.

Service Design and Implementation 33

2. Navigation between pages.

A navigation class (NativationService) has been implemented for each
targeted client to handle platform specific navigation functionalities.

3. Capturing information from three different sources to send it to the server
and receiving information from server and present it to the user
interfaces.

This involves capturing from different sources: touch events, reading
from buffer (for chat service) and motion events. Then all this information
has to be modelled and serialized to be sent to the server. In the other
way back, information is de-serialized and notified to the user interface
which is refreshed with the new information. The classes involved in this
process are:

- Home.xml or Paint.xml. As explained before (see 4.1), client

applications have two pages; home to select and log in to one room,
and paint where main functionalities are available to the user
(painting, chat, motion events) and for each page there is one
ViewModel. View classes only handle the presentation of information
and exceptionally capturing motion events or touching events as
ViewModels are declared in PCL and none platform specific code can
be coded within (see PCL limitations 4.4.2).

- HomeViewModel.cs or PaintViewModel.cs. Both are the classes
containing all the logic of the page handling user interface commands
(click on a button or triggering some event such as close a popup).

- DataProvider.cs. It encapsulates all the client-side procedures and

functions calling to the server-side procedures (see Figure 25). This
exposes several functions to send information to the server. In the
opposite way (server to client), DataProvider uses an internal
messaging tool (only within classes of the application) provided by
MVVM Light toolkit (see 4.4.1) to notify the correspondent
ViewModels classes about the new information received from the
server.

Serialization and deserialization tasks are carried out by SignalR client
C# API.

Figure 26 contains the most important classes of the client’s applications and
indicates where such classes are coded. So it is possible to see that almost all
the classes are coded in the portable class library (PCL) recycling a lot of lines
of code. Moreover, it shows how the MVVM pattern has been applied across
the client applications. Notice that all classes’ names are really self-explanatory.

34 Service Design and Implementation

Figure 26 Diagram for the main classes in .Net client applications.

To resolve the conversion between Models classes and available platform
classes a set of converters classes are required. These classes are coded on
the platform specific assembly.

ViewModelLocator class is used to create and expose the ViewModels like
singletons (unique instance of one class) as these usually live during all one
application life-cycle. Moreover, ViewModelLocator uses SimpleIoc (enables
dependency resolution at runtime instead of doing it at compilation time) for
register and then retrieve the ViewModels (and other classes as well) and
resolve any dependencies (parameters in its constructor) by looking at the
interfaces that have been registered with it. The achievements using this are:

 Code Interface-drive. This means that in PCL it is possible to reference
interfaces rather than concrete classes. Later on, at compilation time the
platform specific class will be used.

 Code loosely coupled. The implementation of one interface can be
changed but classes depending on that interface are not affected as are
referencing to the interface.

 Resolve classes dependencies in an automatic way.

NativationService and Dispatcher are two examples of classes which need to
be resolved using ViewModelLocator as both classes are platform dependent
but they must be used on PCL. For that reason, both implements they own

Service Design and Implementation 35

interface on PCL assembly. The first class provides the navigation between
pages and the second one exposes a method to dispatch new threads.

Notice that some Models classes could be shared between PCL and server
code as they are the same classes (compare Figure 25 and Figure 26). But,
actually the classes are slightly different (different dependencies too) as the
server has some additional properties and methods that clients do not require
and vice versa. Then, for the small amount of code of these classes was
decided not to share them among server and PCL assemblies.

4.5. Securing the service

As seen in the previous section, the service implements Authentication using
cookies and Authorization provided by ASP.NET Identity. This section describes
how the authentication procedure works and how the service has been
ciphered.

4.5.1. Authentication and Authorization using cookies and
ASP.NET Identity module

As seen before, the authentication process has been implemented using
cookies which allow tracking the users during the connection session.

A cookie must be provided to the client application when the user has been
successfully authenticated. To generate and map the cookies with the users,
owin.security.cookies module has been used. This module is listening for a log
in request (http://site.com/Account/Login) and when such request arrives, the
module calls to an authentication method which checks if the credentials are
correct. If these are correct, the module returns a cookie to the client application
which will use it for all the next HTTP requests (to the server). Otherwise, a
HTTP 401 (unauthorized) error is returned to the client application (see Figure
27).

Consecutively, if the user has logged in, server adds a claim (class which
contains a piece of identity information such as a name or e-mail) in Identity
module only for such user. This enables the user to use Hub methods protected
with [Authorize] tag as SignalR relies authorization to ASP.NET Identity module
(see 3.4).

36 Service Design and Implementation

Figure 27 Authentication procedure.

Checking user credentials method only requires two steps. In first place, it
ensures that there is no other user with the same username. Secondly, matches
the password passed in the credentials with the one stored in memory for such
room. If both steps are successful, the method grants the access to the user.
Access is declined in the rest of the cases.

4.5.2. Encryption using Secure Socket Layer (SSL)

SignalR only encrypts the connection tokens and information on messages is
sent as plain text. Therefore, a SSL layer has been introduced to encrypt the
messages between client and server using self-signed certificates.

This has a double impact on the service performance as introduces a new layer
of the service: additional handshake, additional task process at both ends
(cyphering, un-cyphering) and more payload to the packets. Figure 28 shows
the SSL handshake from one client connecting to the server deployed on
Windows Azure services.

Figure 28 SSL handshake captured accessing to the service deployed on Windows
Azure.

Service Design and Implementation 37

But in practice, the user experience impact is almost negligible. Among the
reasons it is possible to highlight the small number of users concurrently
connected to the server (two or three), the small size of the SSL headers, or the
CPU resources available nowadays (multithreading and multi-core).

 Limitations using SSL with self-signed certificates

In typical Public Key Infrastructure (PKI), a particular public key certificate is
signed by a certificate authority (CA) attesting that certificate is valid. But this
has a considerable cost associated and the use of a self-signed certificate is a
good alternative for development stages of one service.

In this project a self-signed certificated has been used and some problems have
been faced in consequence.

The first issue is related to the domain name server (DNS) used to issue the
certificate. A first solution is to use the server’s hostname and then add it in
hosts (local domain name resolution file) with the correspondent IP. This can be
a solution for Windows 8 or any other device where hosts can be edited. But on
Windows Phone 8 that file cannot be edited and a own public domain name is
required (cost associated) if the service needs to be provided on line.

The second one is if the CA is not a trusted authority. Then, the application
does not trust within the self-signed certificate. Usually if the service is
accessed using a web browser, is possible to add an exception and trust with
the CA used to sign the certificate (see Figure 29). But for .NET clients targeting
Windows Phone 8 or Windows Store App, there is no such way to do it in the
code. Then, the only solution is to install manually the public certificate on the
device which rest a lot of the flexibility in the client application.

Figure 29 Browser advices for certificates issued by none-trusted CAs.

Then, in the development scenario (LAN) only Windows 8 client could get an
SSL connection with the server using a self-signed certificate issued with the
hostname of the local machine.

38 Service Design and Implementation

 Using Windows Azure certificates

As the service has been deployed on Windows Azure and this cloud service
offers its own SSL certificate to all the subdomains in azurewebsites.net; It is
possible to connect to the service using SSL (paint.azurewebservices.net)
without any of the previously described problems (see Figure 28).

Managing and Testing the Service 39

CHAPTER 5. MANAGING & TESTING THE SERVICE

5.1. Devices used to test the service

The hardware used for developing and trying the service is the following:

a) A MacBook Pro 2.26 Dual Core 6 GB of ram running Windows 8
Professional using Parallels Desktop 8 (virtualization software).

b) A Nokia handset model 620 with Windows Phone 8 O.S.
c) An ALFA Network WLAN access point 802.11b/g/n USB adapter model

AWUS036NH.

To see the developing scenario and see how this hardware has been used refer
to Figure 12 Development service scenario.

5.2. Source Code Management

To properly develop software, some code management is required to track the
changes, updates and customs versions for special purposes (i.e. for testing).
For this specific purpose Git has been used. Git is one distributed version
control software (known as source or revision control as well) which provides a
code repository with control on the code changes.

For more convenient development, a code hosting (BitBucket) compatible with
Git has been used and additionally it is a backup of the code in case the
development laptop could be affected for some issue.

5.3. Deploying the service on Windows Azure

LAN environments are ideal for development and testing features but are too
ideal scenarios where there are a few hazards to take into account. To evaluate
the service in real conditions where the connection can go through different
networks, firewalls, proxies or NATs requires deploying it in some server with
Internet connectivity.

So, the service has been deployed on Windows Azure making the service
accessible on Internet. Windows Azure is a cloud computing platform for
deploying and managing applications and services through a global network
managed by Microsoft.

40 Managing and Testing the Service

Figure 30 Service scenario using Windows Azure.

This new scenario introduces additional factors that might impact on the service
performance:

 Physical location of the server and consequently the RTT (Round-Trip
Time) on the communication.

 Characteristics of the networks in which the communication goes
through, like MTU (Maximum Transmission Unit), routing or load
balancing policies and so on.

 And the status of these networks: congestion, losses and so forth.

 Hardware and OS resources allocated are unknown (because a free
Windows Azure account doesn’t specify the resources allocated for the
service).

5.4. Connectivity is the key for real-time experience

Both clients have been tested using different kinds of connections such as
WLAN or 3G and any problem has been detected accessing to the service
(getting connected) even using public WLAN behind firewall and NATs. But, it
has been observed that the real-time experience is affected by latency and
bandwidth of the connection.

Taking into account that it has been developed a real-time web application and
all the communications take place using HTTP/TCP, the service is highly
affected by (in order from more to less):

1. Losses in the connection forcing to a slow-start process by TCP
congestion control. This is a mechanism to avoid send more data than
the network is capable of transmitting and reduces the bandwidth

Managing and Testing the Service 41

available drastically to increase in slowly basis to find the optimum value
for it (Wikipedia). This mainly affects to Paint and Motion Events
functionalities as they require a reasonable amount of bandwidth.

2. Latency. In order for the delay between user action and program output
to be perceived as non-existent the latency must be low (ideally less than
30ms). Nowadays only cable and fibre connections can provide latencies
close to this value, however most widely used xDSL connections provide
50+ milliseconds.

3. Handshakes are negotiation processes presents in some transport
protocols at the beginning of the communication. HTTP, TCP and SSL
protocols has their own handshake process and in case of reconnection
due timeout all handshakes need to be redone.

4. IP fragmentation and load balancing techniques. If IP packets are

fragmented and/or load balancing techniques are applied, it is highly
possible receive the packet not in order. This implies a waiting time at
receiver-side to complete the IP payload introducing extra delay to the
latency and server processing time.

42 Conclusions & Further Work

CHAPTER 6. CONCLUSIONS & FURTHER WORK

In this project, several frameworks real-time for web services have been
evaluated. Among these, one has been used to develop a real-time service with
several functionalities covering a range of user cases with real-time
requirements.

During the development, recent techniques of code recycling and code
architecture have been applied reducing the size of the application significantly
and making it very flexible to build additional functionalities in. In percentage,
the code reused between both clients (PCL code) hits 60%. It has been a
challenging work to properly define the Models and Converters classes allowing
allocate mostly all the code in the PCL. The reason is the low number of classes
in common between both targeted clients because even a simple class like
Point is not part of this common namespace (see 4.4.2).

Additionally one version control software has been used creating a backup
repository and allowing to share the code with others developers or users.

Moreover, the service has been secured using three main requirements for
information security: Authentication, Authorization and Encryption.

Then, the service has been deployed on cloud services making it available on
Internet and testable everywhere.

Finally, some practical tests have been performed showing that the service
functionalities provide a good interactivity to the user when the server is hosted
in the same LAN. However, the response time increases notably affecting
seriously to the user experience when the server is deployed in Azure. Latency
and the other effects (described in 5.4) increase the response time until certain
point in which the user has to wait some seconds to get an output on the user
interface. These situations have been observed especially using Windows
Phone 8 client as only has WLAN connectivity (more delay and likely to have
losses).

 Improving the service keeping the high availability

The client-server paradigm is the best scenario for any kind of control
communication like signalling, but usually is the worst scenario for user
information if this is addressed to others users and there is no need to be
processed on server-side (very usual in real-time applications).

Additionally, some users can be physically located close by and it has no sense
establish a communication between them using a server physically located on
another part of the world. Consequently, quality of the service can be degraded
due to higher RTT or potential network hazards, as there are more networks
involved in the communication.

Conclusions & Further Work 43

Then, a better scenario where control and user communications follow different
paths (client-server for control plane and user-user for user plane) would
provide better performance and flexibility to the service. As a backwards, more
resources at the ends (more sockets and CPU) would be required and the
service development would get more complexity. Recent technologies are
providing this kind of scenario for web services offering an attractive chance to
be combined with SignalR and get the strengths of both technologies.

WebRTC is an open-source technology for Real Time Communications on web
services. It is mainly focused on media applications but can be used with any
kind of data. The main attractive is that is fully based on JavaScript enabling to
be used in any browser without installing plugins (can be used in native
application using C# API too).

Figure 31 Improved service using WebRTC.

The scenario would be similar that the one represented on Figure 31 in which
each client has a peer to peer data connection between them and an additional
control Data connection for control messages of the application. But this
scenario introduces a new challenge as peer to peer connections cannot go
through firewalls or NATs. So, one possible option to mitigate this risk would be
use SignalR technology as a fall-back in case the peer to peer connection could
not be established.

44 Resources Cited

Bibliography

[1] Dylan Schiemann, “The forever-frame technique”, Comet Daily,
http://cometdaily.com/2007/11/05/the-forever-frame-technique/ , (2007)

[2] “Ajax (programming)”, Wikipedia,
http://en.wikipedia.org/wiki/Ajax_%28programming%29

[3] “What are Server-Sent Events”, Jersey 2.6 User Guide,
https://jersey.java.net/documentation/latest/sse.html

[4] “About HTML5 WebSockets”, WebSocket.org
http://www.websocket.org/aboutwebsocket.html

[5] Matt West ,“An Introduction to WebSockets”, treehouse blog
http://blog.teamtreehouse.com/an-introduction-to-websockets

[6] Carsten Siemens,“SignalR”, TechNet Microsoft US
https://social.technet.microsoft.com/wiki/contents/articles/16984.signalr.a
spx

[7] Brock Allen,“A primer on OWIN cookie authentication middleware for
ASP.NET developer”, brockallen
http://brockallen.com/2013/10/24/a-primer-on-owin-cookie-
authentication-middleware-for-the-asp-net-developer/

[8] Laurent Bugnion,“MVVM Light Toolkit”, GalaSoft
http://www.galasoft.ch/mvvm/

[9] “Share functionality using Portable Class Libraries”, Windows Phone -
Dev Center
http://msdn.microsoft.com/en-
us/library/windowsphone/develop/jj714086%28v=vs.105%29.aspx
 (2013)

[10] “Introduction to ASP.NET Identity”, Microsoft ASP.NET

http://www.asp.net/identity/overview/getting-started/introduction-to-
aspnet-identity, (2013)

[11] Laurent Bugnion, “IOC Containers and MVVM”, MSDN Magazine,
http://msdn.microsoft.com/en-us/magazine/jj991965.aspx

http://cometdaily.com/2007/11/05/the-forever-frame-technique/
http://en.wikipedia.org/wiki/Ajax_%28programming%29
http://www.websocket.org/aboutwebsocket.html
http://blog.teamtreehouse.com/an-introduction-to-websockets
http://brockallen.com/2013/10/24/a-primer-on-owin-cookie-authentication-middleware-for-the-asp-net-developer/
http://brockallen.com/2013/10/24/a-primer-on-owin-cookie-authentication-middleware-for-the-asp-net-developer/
http://brockallen.com/2013/10/24/a-primer-on-owin-cookie-authentication-middleware-for-the-asp-net-developer/
http://brockallen.com/2013/10/24/a-primer-on-owin-cookie-authentication-middleware-for-the-asp-net-developer/
http://brockallen.com/2013/10/24/a-primer-on-owin-cookie-authentication-middleware-for-the-asp-net-developer/
http://brockallen.com/2013/10/24/a-primer-on-owin-cookie-authentication-middleware-for-the-asp-net-developer/
http://brockallen.com/2013/10/24/a-primer-on-owin-cookie-authentication-middleware-for-the-asp-net-developer/
http://www.galasoft.ch/mvvm/
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj714086%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj714086%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj714086%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj714086%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj714086%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj714086%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj714086%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj714086%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj714086%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj714086%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj714086%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj714086%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj714086%28v=vs.105%29.aspx
http://www.asp.net/identity/overview/getting-started/introduction-to-aspnet-identity
http://www.asp.net/identity/overview/getting-started/introduction-to-aspnet-identity
http://msdn.microsoft.com/en-us/magazine/jj991965.aspx

Acronym List 45

Resources Cited

 ASP.NET SignalR forum. (sense data). Recollit de

http://forums.asp.net/1254.aspx

 Bitbucket. (sense data). Recollit de https://bitbucket.org

 Microsoft Dev Network. (sense data). Recollit de XAML Overview:

http://msdn.microsoft.com/en-

us/library/ms752059%28v=vs.110%29.aspx

 Mono Project. (sense data). Recollit de http://www.mono-

project.com/Compatibility

 PubNub. (sense data). Recollit de http://www.pubnub.com/

 Pusher. (sense data). Recollit de http://pusher.com/

 Rouse, M. (March / 2008). Search Unified Communications. Recollit de

http://searchunifiedcommunications.techtarget.com/definition/real-time-

communications

 Socket.io. (sense data). Recollit de Wiki:

https://github.com/learnboost/socket.io/wiki

 SocketIO4NET. (2 / Nov / 2013). Recollit de

http://socketio4net.codeplex.com/

 Wikipedia. (sense data). Recollit de Windows_Presentation_Foundation:

http://en.wikipedia.org/wiki/Windows_Presentation_Foundation

 Wikipedia. (n.d.). Retrieved from HTTP_cookie:

http://en.wikipedia.org/wiki/HTTP_cookie

 Wikipedia. (sense data). Recollit de Remote_procedure_call:

http://en.wikipedia.org/wiki/Remote_procedure_call

 Windows Dev centre. (sense data). Recollit de Data binding overview:

http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx

 Xsockets.net . (sense data). Recollit de Support:

http://xsockets.net/services/support

46 Resources Cited

Acronym List

AJAX (Asynchronous JavaScript And XML), 9
API (Application Programming Interface), 14
CA (Certificate Authority), 37
DHTML (Dynamic Hypertext Markup Language), 9
DNS (Domain Name Server), 37
HTML5 (HyperText Markup Language, version 5), 9
JSON (JavaScript Object Notation), 18
LAN (Local Area Network), 39
mIRC (Internet Relay Chat), 9
MTU (Maximum Transmission Unit), 40
MVP (Model-View-Presente), 27
MVVM (Model-View-ViewModel), 27
NAT (Network Address Translation), 7
OS (Operating System), 40
OWIN (Open Web Interface for .NET), 30
PCL (Portable Class Library), 29
PKI (Public Key Infractructure), 37
RTP (Real Time Protocol), 9
RTT (Round-Trip Time), 40
SimpleIoc (Simple Inversion of Control), 34
SSE (Server sent Events), 11
WebRTC (Web Real-Time Communications), 14
WLAN (Wireless Local Area Network), 22
WPF (Windows Presentation Fundation), 27
XAML (Extensible Application Markup Language), 27

Acronym List 47

	Table of Figures
	CHAPTER 1. INTRODUCTION
	1.1. Context
	1.2. Scope of the project

	�CHAPTER 2. REAL-TIME COMMUNICATIONS
	2.1. Real-time web services
	2.2. Transport technologies for real-time web services
	2.2.1. HTTP Polling
	2.2.2. Forever Frame
	2.2.3. AJAX
	2.2.4. Long-Polling
	2.2.5. Server Events
	2.2.6. WebSockets

	2.3. Frameworks for real-time communications
	2.3.1. Sockets.IO
	2.3.2. Xsockets
	2.3.3. SignalR

	2.4. Taking decisions

	CHAPTER 3. SIGNALR IN DEEP
	1. Transport Technology
	3.2. Architecture
	3.3. Hubs API
	3.4. Security
	 SignalR connection token

	CHAPTER 4. SERVICE DESIGN AND IMPLEMENTATION
	4. Functional Service Specifications
	4.2. Development Service Scenario
	4.3. Walking through client native applications
	4.4. Software Architecture
	4.4.1. Model-View-ViewModel (MVVM)
	 MVVM Light Toolkit

	4.4.2. Portable Class Library (PCL)
	4.4.3. Service Developed
	 Server
	 Clients

	4.5. Securing the service
	4.5.1. Authentication and Authorization using cookies and ASP.NET Identity module
	4.5.2. Encryption using Secure Socket Layer (SSL)
	 Limitations using SSL with self-signed certificates
	 Using Windows Azure certificates

	CHAPTER 5. MANAGING & TESTING THE SERVICE
	5. Devices used to test the service
	5.2. Source Code Management
	5.3. Deploying the service on Windows Azure
	5.4. Connectivity is the key for real-time experience

	CHAPTER 6. CONCLUSIONS & FURTHER WORK
	 Improving the service keeping the high availability

	Resources Cited
	Acronym List

