
1

Studying the Impact of Obfuscation on Source

Code Plagiarism Detection

Albert Cabré Juan

BSc Computer Engineering

January 2014

Under the supervision of Jens Krinke

Department of Computer Science

University College London

This report is submitted as part requirement for the BSc Degree in Computer

Engineering at UCL. It is substantially the result of my own work except where explicitly

indicated in the text.

The report may be freely copied and distributed provided the source is explicitly

acknowledged.

2

Acknowledgments

I would like to thank Prof. Jens Krinke, my supervisor, for his advice, collaboration,

patience and continuous guidance during the development of this project. He has

played a critical role in this project without which its completion would have been

impossible.

I also would like to thank the Department of Computer Science at University College

London for offering me the opportunity to finish my degree on it, which has been one of

the most fantastic experiences in my life.

3

Abstract

Software plagiarism detection tools have long existed and been evaluated. However,

the impact source code obfuscation has on their performance is a much less studied

subject. This project aims to study how different plagiarism detection tools are affected

by source code obfuscation and whether there is a way to improve it.

To carry this out, a sample of programs was selected, automatic source code

obfuscations were performed on them, and finally the plagiarism detection tools were

ran against the originals to evaluate their capacity to assess plagiarism.

As a result, we have detected that source code obfuscation does indeed impact

plagiarism detection tools performance, and we present a way to improve it.

4

Contents

1. Introduction ... 6

1.1 Motivation .. 6

1.2 Project development .. 6

1.3 Chapter overview ... 7

2. Context .. 8

2.1 Background ... 8

2.2 Test data set .. 8

2.3 Source code obfuscators ... 9

2.3.1 ARTIFICE .. 9

2.3.2 ProGuard... 9

2.4 Plagiarism detectors .. 10

2.4.1 Jplag ... 10

2.4.2 CCFinder ... 10

2.4.3 NICAD (Near-miss Intentional Clone Automatic Detection) 10

2.4.4 Plaggie .. 11

2.4.5 Sherlock .. 11

2.4.6 SIM .. 11

2.4.7 NCD (Normalized Compression Distance) .. 12

2.4.8 Cosine Similarity ... 12

2.4.9 Gestalt Pattern Matching (DiffLib) ... 12

2.4.10 Jaro Distance (jellyfish) ... 13

2.4.11 N-gram similarity (NGram) .. 13

2.4.12 Sort Unique ... 13

2.5 Compilers .. 13

2.5.1 Javac ... 13

2.6 Decompilers ... 14

2.6.1 Decompilation (Procyon) ... 14

2.6.2 Decompilation (Krakatau) .. 14

3. Design & Implementation .. 15

3.1 Test data preparation ... 15

3.2.1 0_orig: ... 16

3.2.2 1_artifice:... 17

3.2.3 test_0_orig_no_krakatau ... 17

5

3.2.4 test_0_orig_no_procyon .. 18

3.2.5 test_0_orig_pg_krakatau ... 19

3.2.6 test_0_orig_pg_procyon .. 20

3.2.7 test_0_artifice_no_krakatau .. 21

3.2.8 test_0_artifice_no_procyon ... 22

3.2.9 test_0_artifice_pg_krakatau ... 22

3.2.10 test_0_artifice_pg_procyon ... 23

3.3 Obfuscation results analysis .. 24

3.3.1 Artifice ... 24

3.3.2 ProGuard... 25

3.3.3 Procyon ... 25

3.3.4 Krakatau .. 26

3.4 Helping plagiarism detectors?.. 26

3.5 Experiment design ... 27

4. Experiment and Evaluation ... 29

4.1 Plagiarism detection tools parameters ... 29

4.2 Running the plagiarism detection tools .. 30

4.3 Results ... 32

4.4 Why preprocessing made the difference ... 33

5. Conclusion .. 36

6. Bibliography .. 37

6

1. Introduction

1.1 Motivation

Although there is some debate regarding the definition of what constitutes software

plagiarism, the following definition is considered to be widely accepted (Cosma and Joy,

2008, pp. 195--200): software plagiarism is defined as the act of copying someone

else’s source code with or without making alterations and submitting it without providing

any acknowledgements.

Software plagiarism has classically been a problem in academia environments, where

students are asked to work in the same problem within a common environment. This

has long been perceived as an increasing problem, with surveys showing that more

than half of the academic staff think software plagiarism is an increasing problem (Bull

and Collins et al., 2001).

However, recent events such as the Google vs Oracle case, shows that software

plagiarism might be a much more widespread problem than it was previously thought.

Even though the jury didn’t find Google guilty of infringing Oracle’s patents, it was clear

that Google had plagiarised Oracle’s source code, perhaps in a legal way (Fiducia and

Briskman, 2013).

Software plagiarism is usually prevented through the use of automatic tools that attempt

to detect it. However, a lot of the most popular tools weren’t originally developed with

this specific problem in mind, but to detect either software clones or non-software

plagiarism. In the case of software plagiarism, it is very common for plagiarists to try to

disguise their plagiarism through some kind of source code obfuscation, a scenario for

which most of this tools were never prepared.

Consequently, this project will aim to evaluate whether current software plagiarism

detection tools are effective or not in the presence of source code obfuscation. To

achieve this, a large scale evaluation will be done testing the most popular tools and

approaches against a wide range of obfuscation techniques and environments.

The main goal is to find what are the best tools and settings to detect software

plagiarism in the presence of source code obfuscation, and if no satisfying tools are

found, provide directions for the development of future tools.

1.2 Project development

7

This project was developed under an iterative approach, with weekly tutor meetings.

First, different tools were collected and tested manually, keeping the ones that were

providing encouraging results, and disregarding the ones that didn’t. Because we

planned to run these later in an automatic way, some custom scripts had to be written to

make some of the tools work the way we wanted to at this stage.

We also decided which test source code we were going to use. We chose a variety of

classic algorithmic problems that almost every computer science student has to

implement at some point in his degree. Some source codes contained pieces of code

that were problematic for a lot of tools (like inner-classes, which several obfuscators

can’t handle well), and so were disregarded later.

Later, we chose the obfuscation tools. We wanted to apply a variety of obfuscation

techniques to all the test data, and so we chose some of the cutting-edge source code

obfuscators that work directly on the bytecode coupled with a variety of decompilers.

We also used artifice, a tool that simulates the obfuscations plagiarists usually apply

manually directly on the source code (Schulze and Meyer, 2013, pp. 62 - 68).

Finally we wrote scripts that automatically applied the obfuscations, that decompiled the

obfuscated bytecode, and that finally ran the plagiarism detection tools on all the

generated sources. We also developed scripts that tried a wide range of parameters for

the plagiarism detection tools that allowed them, to find the best settings for each

detector.

1.3 Chapter overview

Chapter two gives information on the context of this project, that is, information

necessary to understand the project but that is not specific to this project. A short

explanation of previous existing related work is given, and also information on the tools

and programs that will be used.

Chapter three explains everything related to the work that was done before actually

running the plagiarism detection tools, that is mainly running the obfuscators on the test

programs and analysing the results.

Chapter four explains the process of running the plagiarism detection tools, presents the

results and analyses them. Finally, chapter five explains the conclusions of the project.

8

2. Context

2.1 Background

Several studies have been made regarding source code plagiarism detectors, but

almost none of them deal with source code obfuscation. Of special interest is another

study (Roy and Cordy et al., 2009, pp. 470--495), where a large scale comparison

between different plagiarism detectors tools and techniques is performed (but again,

without taking source code obfuscation into account). However, this study was very

useful in providing information regarding the different tools and techniques and

inspiration as to how to perform an evaluation of this kind.

Very recently, a study on plagiarism detection in presence of source code obfuscation

was performed (Schulze and Meyer, 2013, pp. 62 - 68) , this being the main resource

this project has been built upon. This paper was based on another student bachelor’s

thesis, in which he developed ARTIFICE, an Eclipse plugin that performs

transformations on Java source code that resemble the kind of transformations

plagiarists usually perform on source code. We used this tool as an obfuscator in our

study. Aside from the development of this tool, this thesis also performed a study on

plagiarism detection in the presence of source code obfuscation. However, this study

was limited to three plagiarism detectors and ARTIFICE as the only obfuscator. As a

consequence, this project started by replicating their results initially and then greatly

expanding it from there.

2.2 Test data set

Java was chosen as the target language for our study from the very beginning for

various reasons: it’s one of the most extended languages both in academia and in

enterprises, it’s object oriented (which encourages reuse of code), and a lot of both

obfuscation and plagiarism detection tools exist for it. We chose some well-known

algorithms implementations in Java:

● InfixConverter: This program takes an Infix notated arithmetic formula and

returns the postfix notated equivalent. This problem is common on data

structures courses, as it demonstrates the usages of a stack structure.

● SqrtAlgorithm: This program calculates the square root of an integer without

using the built-in sqrt() function. It is interesting because it has a high density of

9

flow control structures.

● Hanoi: This program solves the Towers of Hanoi problem in the minimum steps

possible with an arbitrary number of disks. It is a classic computer science

problem that is very commonly used to demonstrate recursion in advanced

programming courses.

● Queens: This program solves the 8 queens puzzle but with an arbitrary number

of queens using recursion. As with the Hanoi program, it’s a common problem for

advanced programming courses students.

● MagicSquare: This program finds all the correct Magic Squares of an arbitrary

size. It is a common problem used to demonstrate backtracking in programming

courses.

2.3 Source code obfuscators

Different obfuscators were applied to all the test data, producing its respective

obfuscated versions for later testing with the plagiarism detectors.

2.3.1 ARTIFICE

ARTIFICE performs transformations directly on the source code like renaming variables,

transforming loops structure (for loops are transformed into while loops and vice-versa),

expanding or contraction of variable definitions (the variable declaration and its value

assignment are separated into multiple lines or merged into a single one), and

conditional statements transformations (if/else statements are transformed into a ternary

operator statement and vice-versa).

2.3.2 ProGuard

ProGuard is a free Java class file shrinker, optimizer, obfuscator, and preverifier. It

detects and removes unused classes, fields, methods, and attributes. It optimizes

bytecode and removes unused instructions. It renames the remaining classes, fields,

and methods using short meaningless names” (Lafortune, 2013).

 ProGuard has been getting a lot of attention lately as it became part of the default

Android build system (AOSP, 2013). We decided to use ProGuard as it is the most used

Java obfuscator nowadays. However, since it works directly with the bytecode, we had

to compile and decompile too. This introduces more obfuscation, as explained below.

10

2.4 Plagiarism detectors

2.4.1 Jplag

Jplag is a token based plagiarism detector. It works by first creating a token string for

each program to be compared, then it compares the two token strings by trying to

recreate one of the strings with substrings of another token string. How much of the

string can be recreated is the similarity measure outputted. This algorithm is known as

Greedy String Tiling (Wise, 1993).

Jplag supports multiple languages, and the difference between running Jplag in the

different modes for different languages is in how the token strings are created. If running

in text mode, the tokens will be parts of the text itself, but when running in Java mode,

for instance, the tool will understand the internal structure of the code and transform the

code into tokens like “vardef” or “beginmethod” (Prechelt and Malpohl et al., 2002, p.

1016).

Although we are using Java, we will run Jplag both in Java and text mode, as the

comparison of the results produced by the two different methods of generating the token

string could yield interesting data. We will refer to these 2 by “Jplag-text” and “Jplag-

java”.

2.4.2 CCFinder

CCFinder works in a very similar way as JPlag, as it is token based too, with two main

differences. First, the algorithm to create the token strings understands the source code

internal structure in much greater detail. As a result, CCFinder produces a lot more

tokens for the same source code than JPlag (Meyer and Schulze, 2012). Secondly,

instead of the Greedy String Tiling algorithm, CCFinder uses a suffix tree matching

algorithm (Kamiya and Kusumoto et al., 2002, pp. 654--670). This two differences make

the two tools produce different results and because both of them are very popular, they

both have been included in this study.

2.4.3 NICAD (Near-miss Intentional Clone Automatic Detection)

NICAD is one of the newest tools. It first parses the code using TXL, a special

programming language for parsing other programming languages source code. This

allows NICAD to support any programming language source code as long as the TXL

grammar for that language is provided. Using TXL, NICAD extracts the fragments of a

11

given granularity, which can be set as a parameter, for instance functions. Once it has

all the functions they are normalised by removing whitespace and similar

transformations, and then each function in this case is compared line by line using a

longest common subsequence algorithm (Cordy and Roy, 2011, pp. 219--220). The

most interesting part is that unlike in other approaches, once the source code has been

parsed into fragments it’s treated as regular text for the comparison. This hybrid

approach is what makes NICAD a unique plagiarism detection tool.

2.4.4 Plaggie

Plaggie another token based detector that shares a lot with Jplag. They both first

tokenize the source code and use the Greedy String Tiling algorithm to compare the

tokens (Hage and Rademaker et al., 2010, p. 28). However, Jplag is closed source and

must be run online on their servers, whereas Plaggie is an open source implementation

that runs locally. Because the approach that Jplag uses is fairly popular amongst

plagiarism detectors, we thought it was sensible to include a popular alternative too.

2.4.5 Sherlock

Sherlock is yet another token based plagiarism detector. As such, it first converts the

source code into tokens (they call these digital signatures) which are later used for

comparison. Sherlock is open source and very lightweight, the whole code consisting of

only slightly over 300 lines of C code. Sherlock is the plagiarism detector used by BOSS

(Warwick, 2009), the platform University of Warwick uses to process all the student

submissions, and it has been so for over 10 years.

2.4.6 SIM

SIM has been around for 25 years now, and while it’s not developed nor maintained

anymore it’s still actively used to check students’ submissions at the VU University of

Amsterdam. It is a token based detector, and in fact, it was one of the firsts plagiarism

detection tools to use this approach. SIM then compares the two token strings and

reports their similarity as the percentage of the first token string that can be constructed

using substrings of the second token string of minimum length N, N being the main

parameter that has to be set for the comparison (Grune and Vakgroep, 1989). SIM

supports textual text or a variety of programming languages, the difference being how

the tokens translation is done. We will use both the textual text (simtext) and the java

(simjava) modes.

12

2.4.7 NCD (Normalized Compression Distance)

The Normalized Compression Distance between two objects is a metric that compares

the sizes of the compressed version between two objects with the size of the result of

compressing both objects together. Because compression algorithms take advantage of

repeated parts of the file to create an as small as possible compressed file that contains

all the entropy of the original file, compressing two plagiarised files together will produce

a smaller sized file than the sum of both compressed files. The larger this difference is,

the more similar the two files are. The NCD has been used to detect plagiarism before

(Cebrian and Alfonseca et al., 2009, pp. 477--485). Because the NCD is dependent on

which compression algorithm is used, three of the most popular compressors will be

used for this: Zlib, Gzip and bzip2.

2.4.8 Cosine Similarity

If we take a document, and create a multi-space vector, where each term in the

document is a different dimension, and its value is the frequency of the term in the

document, we obtain the term vector model of the document (Salton and Wong et al.,

1975, pp. 613--620). If we then calculate the cosine similarity between the vectors

obtained from two documents, we obtain a metric that is valuable in measuring how

similar the two documents are. This technique is used already in some plagiarism

detection tools (Si and Leong et al., 1997, pp. 70--77).

We have built a tool that using Apache’s Lucene, one of the most popular text analysis

libraries, obtains the term vectors for different documents and then outputs the cosine

similarity between them. For redundancy reasons, we will also compute this metric

using SkLearn, a machine learning library for python which allows to obtain the vector

model of the documents similarly.

2.4.9 Gestalt Pattern Matching (DiffLib)

The Gestalt Pattern Matching algorithm attempts to output a metric that represents the

similarity between two strings without using any kind of preprocessing or tokenization

(W. Ratcliff and E. Metzener, 1982, pp. 46--51). While it was originally not conceived as

a plagiarism detection algorithm, it has been applied to clone detection (Kontogiannis

and Demori et al., 1996, pp. 77--108), and so is interesting to us as well.

We’re using a python implementation based on this algorithm, DiffLib, although they

have tuned and improved the original algorithm.

13

2.4.10 Jaro Distance (jellyfish)

The Jaro Distance, and the latter improved version, the Jaro-Winkler Distance, also

analyse two strings directly to output a similarity metric. While they were conceived for

short string such as names (Cohen and Ravikumar et al., 2003, pp. 73--78), it has been

used to detect plagiarism (Rahman, and Puspitodjati, 2009).

We will use a python implementation of both versions of the algorithm, which we can

find under the jellyfish python library.

2.4.11 N-gram similarity (NGram)

The N-gram similarity technique consists of converting the documents to sets of n-

grams, and then comparing those sets to obtain the n-gram similarity (Kondrak, 2005,

pp. 115--126). This technique has been applied to plagiarism detection before (Barrón-

Cedeño and Rosso, 2009, pp. 696--700) and so is of interest to us.

We will use the python library NGram, which provides string similarity functionality.

2.4.12 Sort Unique

Sorting by unique lines is a primitive compression algorithm which actually only

removes duplicate lines. As with other compression related techniques, by comparing

the size of two individually compressed files with the size of the result of compressing

them both together we can obtain a metric of how much duplicated content was there in

the files.

2.5 Compilers

2.5.1 Javac

Because it’s the compiler used almost universally, it’s the only compiler we will use.

Simply compiling Java source code removes a lot of information (the compiler

introduces casts to deal with generics for instance). It is for this reason that the

compilation is considered an obfuscation transformation in itself. This need to be taken

into account when analyzing the results.

14

2.6 Decompilers

2.6.1 Decompilation (Procyon)

Procyon is one of the most popular open source Java decompilers and so we chose it

as our standard decompiler.

2.6.2 Decompilation (Krakatau)

Since decompilers have to do a lot of guessing work, the guessing strategies vary from

one decompiler to the other. It is for this reason that aside from the standard decompiler

we wanted to use something else too. Krakatau is a rather different decompiler.

“The Krakatau decompiler takes a different approach to most Java decompilers. It can

be thought of more as a compiler whose input language is Java bytecode and whose

target language happens to be Java source code. Krakatau takes in arbitrary bytecode,

and attempts to transform it to equivalent Java code. This makes it robust to minor

obfuscation, though it has the drawback of not reconstructing the "original" source,

leading to less readable output than a pattern matching decompiler would produce for

unobfuscated Java classes.” (Grosse, 2013).

The key concept here is that Krakatau uses a much more heuristic approach to the

decompilation, and as a result the transformation is supposed to be much stronger,

which is very interesting to us.

15

3. Design & Implementation

3.1 Test data preparation

As explained earlier in 2.1, we have a series of Java programs that we intend to use as

our test data. The first step towards analysing the effectiveness of plagiarism detection

tools is obviously to produce obfuscate the code. As mentioned before, we’ll be focusing

in two obfuscators: artifice and ProGuard, so the first step is to apply those to each of

our programs.

Artifice works directly with the source code, so we just applied it manually to each of the

programs. ProGuard, however, works at the bytecode level, and so we will have to first

compile our programs, apply ProGuard and then decompile them. Because the

decompilation phase might produce different results depending on the decompiler, we

already said we were going to use two different decompilers.

Also, because compiling and decompiling produces a source code that is functionally

equivalent to the original but where the code is different, we can consider this to be an

obfuscation in itself.

Last but not least, we cannot ignore the possibility of using more than one obfuscation

at the same time, so we want to also study combinations of all the listed above.

So, at this point, for each program (0_orig), we produce 9 versions of it:

● An artifice obfuscated version (1_artifice).

● A version that has been compiled and decompiled with Krakatau

(test_0_orig_no_krakatau).

● A version that has been compiled and decompiled with Procyon

(test_0_orig_no_procyon).

● A version that has been compiled, obfuscated with ProGuard, and decompiled

with Krakatau (test_0_orig_pg_krakatau).

● A version that has been compiled, obfuscated with ProGuard, and decompiled

with Procyon (test_0_orig_pg_procyon).

● A version that has been obfuscated with artifice, compiled, and decompiled with

Krakatau (test_1_artifice_no_krakatau).

● A version that has been obfuscated with artifice, compiled, and decompiled with

Procyon (test_1_artifice_no_procyon).

● A version that has been obfuscated with artifice, compiled, obfuscated with

16

ProGuard, and decompiled with Krakatau (test_1_artifice_pg_krakatau).

● A version that has been obfuscated with artifice, compiled, obfuscated with

ProGuard, and decompiled with Procyon (test_1_artifice_pg_procyon).

Everything except the artifice obfuscation (which works as an Eclipse plugin) is

automated for easy expandability.

3.2 The obfuscated test data

Following is an example from each of these versions, concretely, the main method of

the Hanoi Towers program.

3.2.1 0_orig:

 public static void main (String[] args) {
 try {
 while (true) {
 System.out.print ("\nEnter the number of discs (-1 to exit): ");
 int maxdisc = 0;
 String inpstring = "";
 InputStreamReader input = new InputStreamReader (System.in);
 BufferedReader reader = new BufferedReader (input);
 inpstring = reader.readLine();
 movecount = 0;
 maxdisc = Integer.parseInt (inpstring);
 if (maxdisc == -1) {
 System.out.println ("Good Bye!");
 return;
 }
 if (maxdisc <= 1 || maxdisc >= 10) {
 System.out.println ("Enter between 2 - 9");
 continue;
 }
 for (int i = maxdisc; i >= 1; i--) {
 A.push (i);
 }
 countA = A.size();
 countB = B.size();
 countC = C.size();
 PrintStacks();
 SolveTOH (maxdisc, A, B, C);
 System.out.println ("Total Moves = " + movecount);
 while (C.size() > 0) {
 C.pop();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

17

3.2.2 1_artifice:

 public static void main (String[] v11) {
 try {
 for (; true;) {
 System.out.print ("\nEnter the number of discs (-1 to exit): ");
 int v12;
 v12 = 0;
 String v13;
 v13 = "";
 InputStreamReader v14;
 v14 = new InputStreamReader (System.in);
 BufferedReader v15;
 v15 = new BufferedReader (v14);
 v13 = v15.readLine();
 f00 = 0;
 v12 = Integer.parseInt (v13);
 if (v12 == -1) {
 System.out.println ("Good Bye!");
 return;
 }
 if (v12 <= 1 || v12 >= 10) {
 System.out.println ("Enter between 2 - 9");
 continue;
 }
 int v16;
 v16 = v12;
 while (v16 >= 1) {
 f10.push (v16);
 v16 = v16 - 1;
 }
 f40 = f10.size();
 f50 = f20.size();
 f60 = f30.size();
 m20();
 m10 (v12, f10, f20, f30);
 System.out.println ("Total Moves = " + f00);
 for (; f30.size() > 0;) {
 f30.pop();
 }
 }
 } catch (Exception v17) {
 v17.printStackTrace();
 }
 }

3.2.3 test_0_orig_no_krakatau

18

public static void main (String[] a) {
 try {
 while (true) {
 System.out.print ("\nEnter the number of discs (-1 to exit): ");
 String s = new java.io.BufferedReader ((java.io.Reader) new java.io.InputStreamReader (

System.in)).readLine();
 movecount = 0;
 int i = Integer.parseInt (s);
 if (i != -1) {
 if (i > 1 && i < 10) {
 int i0 = i;
 while (i0 >= 1) {
 A.push ((Object) Integer.valueOf (i0));
 i0 = i0 + -1;
 }
 countA = A.size();
 countB = B.size();
 countC = C.size();
 Main.PrintStacks();
 Main.SolveTOH (i, A, B, C);
 System.out.println (new StringBuilder().append ("Total Moves = ").append (movecount

).toString());
 while (C.size() > 0) {
 C.pop();
 }
 continue;
 }
 System.out.println ("Enter between 2 - 9");
 } else {
 break;
 }
 }
 System.out.println ("Good Bye!");
 } catch (Exception a0) {
 a0.printStackTrace();
 return;
 }
 }

3.2.4 test_0_orig_no_procyon

 public static void main (final String[] array) {
 try {
 while (true) {
 System.out.print ("\nEnter the number of discs (-1 to exit): ");
 final String line = new BufferedReader (new InputStreamReader (System.in)).readLine();

19

 Main.movecount = 0;
 final int int1 = Integer.parseInt (line);
 if (int1 == -1) {
 break;
 }
 if (int1 <= 1 || int1 >= 10) {
 System.out.println ("Enter between 2 - 9");
 } else {
 for (int i = int1; i >= 1; --i) {
 Main.A.push (i);
 }
 Main.countA = Main.A.size();
 Main.countB = Main.B.size();
 Main.countC = Main.C.size();
 PrintStacks();
 SolveTOH (int1, Main.A, Main.B, Main.C);
 System.out.println ("Total Moves = " + Main.movecount);
 while (Main.C.size() > 0) {
 Main.C.pop();
 }
 }
 }
 System.out.println ("Good Bye!");
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

3.2.5 test_0_orig_pg_krakatau

 public static void main (String[] a0) {
 try {
 while (true) {
 System.out.print ("\nEnter the number of discs (-1 to exit): ");
 String s = new java.io.BufferedReader ((java.io.Reader) new java.io.InputStreamReader (

System.in)).readLine();
 a = 0;
 int i = Integer.parseInt (s);
 if (i != -1) {
 if (i > 1 && i < 10) {
 int i0 = i;
 while (i0 > 0) {
 b.push ((Object) Integer.valueOf (i0));
 i0 = i0 + -1;
 }
 e = b.size();
 f = c.size();

20

 g = d.size();
 Main.a();
 Main.a (i, b, c, d);
 System.out.println (new StringBuilder ("Total Moves = ").append (a).toString());
 while (d.size() > 0) {
 d.pop();
 }
 continue;
 }
 System.out.println ("Enter between 2 - 9");
 } else {
 break;
 }
 }
 System.out.println ("Good Bye!");
 } catch (Exception a1) {
 a1.printStackTrace();
 return;
 }
 }

3.2.6 test_0_orig_pg_procyon

 public static void main (final String[] array) {
 try {
 while (true) {
 System.out.print ("\nEnter the number of discs (-1 to exit): ");
 final String line = new BufferedReader (new InputStreamReader (System.in)).readLine();
 Main.a = 0;
 final int int1;
 if ((int1 = Integer.parseInt (line)) == -1) {
 break;
 }
 if (int1 <= 1 || int1 >= 10) {
 System.out.println ("Enter between 2 - 9");
 } else {
 for (int i = int1; i > 0; --i) {
 Main.b.push (i);
 }
 Main.e = Main.b.size();
 Main.f = Main.c.size();
 Main.g = Main.d.size();
 a();
 a (int1, Main.b, Main.c, Main.d);
 System.out.println ("Total Moves = " + Main.a);
 while (Main.d.size() > 0) {

21

 Main.d.pop();
 }
 }
 }
 System.out.println ("Good Bye!");
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

3.2.7 test_0_artifice_no_krakatau

 public static void main (String[] a) {
 try {
 while (true) {
 System.out.print ("\nEnter the number of discs (-1 to exit): ");
 String s = new java.io.BufferedReader ((java.io.Reader) new java.io.InputStreamReader (

System.in)).readLine();
 f00 = 0;
 int i = Integer.parseInt (s);
 if (i != -1) {
 if (i > 1 && i < 10) {
 int i0 = i;
 while (i0 >= 1) {
 f10.push ((Object) Integer.valueOf (i0));
 i0 = i0 - 1;
 }
 f40 = f10.size();
 f50 = f20.size();
 f60 = f30.size();
 Main.m20();
 Main.m10 (i, f10, f20, f30);
 System.out.println (new StringBuilder().append ("Total Moves = ").append (f00

).toString());
 while (f30.size() > 0) {
 f30.pop();
 }
 continue;
 }
 System.out.println ("Enter between 2 - 9");
 } else {
 break;
 }
 }
 System.out.println ("Good Bye!");
 } catch (Exception a0) {
 a0.printStackTrace();

22

 return;
 }
 }

3.2.8 test_0_artifice_no_procyon

 public static void main (final String[] array) {
 try {
 while (true) {
 System.out.print ("\nEnter the number of discs (-1 to exit): ");
 final String line = new BufferedReader (new InputStreamReader (System.in)).readLine();
 Main.f00 = 0;
 final int int1 = Integer.parseInt (line);
 if (int1 == -1) {
 break;
 }
 if (int1 <= 1 || int1 >= 10) {
 System.out.println ("Enter between 2 - 9");
 } else {
 for (int i = int1; i >= 1; --i) {
 Main.f10.push (i);
 }
 Main.f40 = Main.f10.size();
 Main.f50 = Main.f20.size();
 Main.f60 = Main.f30.size();
 m20();
 m10 (int1, Main.f10, Main.f20, Main.f30);
 System.out.println ("Total Moves = " + Main.f00);
 while (Main.f30.size() > 0) {
 Main.f30.pop();
 }
 }
 }
 System.out.println ("Good Bye!");
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

3.2.9 test_0_artifice_pg_krakatau

 public static void main (String[] a0) {
 try {
 while (true) {

23

 System.out.print ("\nEnter the number of discs (-1 to exit): ");
 String s = new java.io.BufferedReader ((java.io.Reader) new java.io.InputStreamReader (

System.in)).readLine();
 a = 0;
 int i = Integer.parseInt (s);
 if (i != -1) {
 if (i > 1 && i < 10) {
 int i0 = i;
 while (i0 > 0) {
 b.push ((Object) Integer.valueOf (i0));
 i0 = i0 + -1;
 }
 e = b.size();
 f = c.size();
 g = d.size();
 Main.a();
 Main.a (i, b, c, d);
 System.out.println (new StringBuilder ("Total Moves = ").append (a).toString());
 while (d.size() > 0) {
 d.pop();
 }
 continue;
 }
 System.out.println ("Enter between 2 - 9");
 } else {
 break;
 }
 }
 System.out.println ("Good Bye!");
 } catch (Exception a1) {
 a1.printStackTrace();
 return;
 }
 }

3.2.10 test_0_artifice_pg_procyon

 public static void main (final String[] array) {
 try {
 while (true) {
 System.out.print ("\nEnter the number of discs (-1 to exit): ");
 final String line = new BufferedReader (new InputStreamReader (System.in)).readLine();
 Main.a = 0;
 final int int1;
 if ((int1 = Integer.parseInt (line)) == -1) {
 break;

24

 }
 if (int1 <= 1 || int1 >= 10) {
 System.out.println ("Enter between 2 - 9");
 } else {
 for (int i = int1; i > 0; --i) {
 Main.b.push (i);
 }
 Main.e = Main.b.size();
 Main.f = Main.c.size();
 Main.g = Main.d.size();
 a();
 a (int1, Main.b, Main.c, Main.d);
 System.out.println ("Total Moves = " + Main.a);
 while (Main.d.size() > 0) {
 Main.d.pop();
 }
 }
 }
 System.out.println ("Good Bye!");
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

3.3 Obfuscation results analysis

Having obfuscated all the test data, we can inspect the results to see how each

obfuscation method performed. Most of the observations explained here can be

observed on the example main method show in 3.2.

3.3.1 Artifice

Artifice acts in a very predictable way. All of the follow transformations are applied to the

source code:

● All loops are transformed. While loops are transformed into for loops, and for

loops are transformed into while loops.

● All variables are renamed following a numeric scheme: v1, v2, v3…

● The increment (++), decrement (--) and complex assignment operators (+=, -=,

=, /=) are eliminated but their logic is reconstructed (i++ becomes i = i+1, i=5

becomes i = i*5...)

● When the operators mentioned in the point above are missing but their logic

exists, the reverse process happens, where the statement is simplified

25

introducing those operators.

3.3.2 ProGuard

● The scope of variables and methods is changed to the minimum possible. That

is, all public methods or methods with default visibility are changed to private

when possible.

● Variable and function names are changed to letters (a, b, c…)

● Empty strings are injected in string building lines, such as “”+a+b instead of just a

+ b.

● Variable assignments on declaration are split in two lines: declaration and then

value assignment.

● Boolean expressions involving numeric comparisons against constants are

changed. For instance, i>=1 becomes i>0.

● Unused variables are removed.

3.3.3 Procyon

● Unused imports are removed.

● Modifiers order is standardized (public before final, etc.)

● Variable declarations are all moved to the top of the code

● Unary operators can get changed from a++ to ++a

● Variables whose value doesn’t change during the method are changed to final,

even the method parameters.

● Variable names is changed to what Procyon thinks is going to be more readable.

Integers get names like “n”, but variables of type Stack get names like stack1,

stack2…

● Similarly to artifice, unary operators are introduced when possible.

● Similarly to artifice, variable declarations are separated from their value

assignment. If these were static variables, their value assignment is done

separately in a static{} block.

● Variable scope is explicitly declared. A Class variable will get referenced as

Main.x, even if there’s no other x.

● If multiple lines can be merged into a single line, they might get merged even

when that implies removing some temporary variables that were being used to

pass values between the lines.

● Return statements on void methods get changed to breaks if all the code is in an

enclosing block.

● Lines that are only executed before a break/return statement are moved outside

26

the block.

3.3.4 Krakatau

Krakatau does most of the things Procyon does with some core differences:

● Unlike Procyon, unary operators are not preferred, and they get converted to

their normal equivalents.

● Imports are removed altogether, with explicit references each time something is

used: java.util.Stack().

● When an object is passed to a function that specifies a superclass of the object

as the parameter type, a redundant cast to the superclass is added.

● Complex redundant control flow aggregations can get changed. For instance, in

the example we can see how a loop that as an if/else block inside where the if

has a continue statement gets changed to a single if with the inverse condition

and the lines that were inside the if before are moved outside the conditional

block.

3.4 Helping plagiarism detectors?

One additional question is whether the performance of plagiarism detection tools in

presence of source code obfuscation can be enhanced in some way. Ideally, we would

want a deobfuscator, that is, a software that reverts the changes an obfuscator might

have introduced, however this is impossible since most of the times, this kind of

obfuscations are done manually.

We have observed how the process of compiling and decompiling with either Procyon

or Krakatau produces serious changes on the source code, and how some of those

changes are similar in nature to those used by obfuscators. In fact, some of them are

the exact opposite of what some obfuscators did, like converting all unary operators or

complex assignation operators.

For this reason, we will produce two additional data sets, each from running a

compilation and decompilation with Krakatau and Procyon respectively, on all the test

programs after they have been obfuscated by the means explained earlier. Then we will

run the exact same analysis on those, to see if this has helped the plagiarism detection

tools at all.

27

3.5 Experiment design

Once we have generated the 9 different obfuscated versions of each program, we are

ready to start running plagiarism detection tools on them. All the plagiarism detection

tools work by assigning a score (and for the ones that don’t, we have created a metric

that is calculated out of the output) of how similar two programs are, not by returning a

boolean answer on whether a program has been plagiarised from another program,

which is what we want to know ultimately.

It is for this reason that we need to find out what is the best threshold value. The

threshold value is the value for which scores under it are considered non-plagiarised

and scores equal or above it are considered plagiarised. For any threshold value we

can build its confusion matrix (Hamilton, 2012). Different threshold values produce more

or less false positives (FP), false negatives (FN), true positives (TP) and true negatives

(TN), so we have to choose what we want to maximize or minimize:

● Accuracy (AC): The accuracy is the proportion of detections that were correct,

and is defined as the sum of true positives and true negatives divided by the total

number of results:

 AC =
TP ×TN

TP + TN + FP + FN

● Sensitivity or True Positive Rate (TPR): The proportion of true plagiarism

instances that were correctly identified:

 TPR =
TP

TP + FN

● Fall-out or False Positive Rate (FPR): The proportion of non-plagiarism instances

that were misidentified as plagiarism:

 FPR =
FP

FP + TN

A low fall-out rate means the plagiarism detection tool almost never identifies something

as plagiarism if it’s not. This is very critical in scenarios where the amount of programs

to analyse is huge and human intervention is needed for every positive. If the fallout rate

is 1% and a million analysis are performed, where none is plagiarised, 10.000 instances

will still be identified as plagiarism!

On the other hand, a high sensitivity is critical in scenarios where the highest priority is

28

that the number of plagiarism instances that go undetected is minimal.

Ideally, we would like to have a 0% fall-out rate and a 100% sensitivity, which in turn,

means a 100% Accuracy. However, this almost never possible and a compromise has

to be made in between depending on the context. Because this project wants to cover

both scenarios, we will treat False Positives and False Negatives equally, so we will be

trying to maximise the Accuracy.

29

4. Experiment and Evaluation

Having all the test data prepared, the only thing that’s left is to run the plagiarism

detection tools on them and analyse the results.

4.1 Plagiarism detection tools parameters

A very important step to run the plagiarism detection tools is to select the parameters

we want to tweak so that we can run them with different values for those in order to

obtain the absolute best performance the tool can provide. Next is a short explanation

for the parameters that we are considering in each tool. The ranges in which the

parameters are tested is based on previous testing and on the default values for them,

which is usually the central value of the range.

● Bzlib, Zlib, the Lucene based custom tool, the sort unique technique and all

python libraries take no parameters.

● Bzip2 allows the minimum compression block size to be set from 100kb to 900kb.

This is what ultimately makes it compress softer or harder. The problem is that

even the biggest of our programs source code is smaller in size than the

minimum block size, so even though all possible sizes were tried, they produced

no changes in the result.

● With Gzip we are setting the compression level from 1 to 9.

● With Ccfinder we are setting the minimum number of tokens that can constitute a

clone from 0 to 100, and the minimum of kinds of tokens that have to appear in a

sequence for it to be able to be considered a clone from 9 to 1.

● With Jplag we are setting the minimum number of tokens that can constitute a

clone from 1 to 12.

● With NiCad we are setting its internal threshold parameter (not to be confused

with the threshold used to build our confusion matrix) from 40 to a 100, which

specifies which percentage of a clone can be different than its original while still

being detected as a clone.

● With Plaggie, we are setting the minimum match length from 14 to 1, which is

again the minimum number of consecutive tokens that can constitute a clone.

● With Sherlock, we are setting the number of words that are used to form a digital

signature from 8 to 1. We are also setting the granularity of the comparison,

which can go from 0 (only exactly equal digital signatures are counted) to 8

(more room for differences is given).

● With SIM we’re setting the minimum run length from 28 to 19 when running in

30

java mode and from 12 to 4 when running in text mode.

4.2 Running the plagiarism detection tools

As explained earlier, we want to run each tool on all the test programs pairwise. For

this, we’ve created specific scripts for each tool that give us a standardized output. This

consists of a CSV file that contains a table with all the pairwise comparison results. Next

is a real example of one of these tables (concretely, the result of running plaggie with a

minimum match length of 6):

It is quite obvious from just quick looking at the table, that this plagiarism detector with

this particular parameters is somehow able to identify plagiarism. All the test programs

that belong to the same group (that is, all the obfuscated versions of the same program)

produce higher numbers between them than between them and programs in other

groups. Since programs in the same group appear consecutively in the table rows and

columns, square shaped patterns can be appreciated in the table, produced by higher

values with more digits.

The problem is that, as explained earlier, we need to define a number that cuts out what

we will consider as a positive and what is a negative, that is, the threshold value. To find

31

it, we’ve developed a script that identifies the program groups in the CSV, then iterates

all possible threshold values from 0 to 100 classifying all pairwise comparisons into

positives or negatives, and those into errors or mistakes, finally being able to build a

confusion matrix for each threshold. This is the confusion matrix produced for the table

above:

Additionally, all confusion matrixes are graphed for easy visual inspection. This is the

graph produced from the confusion matrix above:

32

Finally, the threshold that produces less mistakes is logged with the mistakes it

produced. In this case, the log reads:

“plaggie-6: Best threshold is 34 with a total number of 180 mistakes”

Using these logs we can build a graph that compares the best scenario performance for

all the tools.

4.3 Results

After applying the process described at 4.2 for all the plagiarism detection tools on all

the test programs we finally obtain the results we were looking for:

33

The first noticeable thing is that the attempt to help the plagiarism detection tools

described at 3.4 has been a success, especially on the tools that weren’t preprocessing

the files, but also the ones that do. Accuracy has improved a 5.35% when

preprocessing the files via compilation and decompilation with Procyon, and a 6.37%

when using Krakatau. What’s more, when using Krakatau as a decompiler for the

preprocessing, some tools (Ccfinder, Simjava, Jplag, Sherlock and Plaggie) performed

perfectly and didn’t make a single mistake when classifying the 2500 pairs as plagiarism

or non-plagiarism.

4.4 Why preprocessing made the difference

Most of the tools that scored high in accuracy without help implement some kind of

preprocessing of their own. However, no program understands the complexity and the

structure of a source code file as a compiler/decompiler does. All of the mistakes made

by tools that later performed flawlessly were false negatives produced by obfuscations

actually managing to fool them. However, by processing source code files in this way,

the number of false negatives got reduced to zero. Next is a example on how the

preprocessing helped normalize the code a lot, the constructor of the MagicSquare

class. On the top we have the comparison the tools had to do without help, and below

the one after preprocessing with Krakatau. On the left is the original file and on the right

the one compiled, obfuscated with artifice and ProGuard, and decompiled with Procyon.

34

public MagicSquare (int n) {
 square = new int[n][n];
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++) {
 square[i][j] = 0;
 }
 totalSqs = n * n;
 possible = new boolean[totalSqs];
 for (int i = 0; i < totalSqs; i++) {
 possible[i] = true;
 }
 sum = n * (n * n + 1) / 2;
 numsquares = 0;
 }

private MagicSquare (int i) {
 super();
 this.a = new int[3][3];
 for (i = 0; i < 3; ++i) {
 for (int j = 0; j < 3; ++j) {
 this.a[i][j] = 0;
 }
 }
 this.c = 9;
 this.b = new boolean[this.c];
 for (int k = 0; k < this.c; ++k) {
 this.b[k] = true;
 }
 this.d = 15;
 this.e = 0;
 }

 public MagicSquare (int i) {
 super();
 this.square = new int[i][i];
 int i0 = 0;
 while (i0 < i) {
 int i1 = 0;
 while (i1 < i) {
 this.square[i0][i1] = 0;
 i1 = i1 + 1;
 }
 i0 = i0 + 1;
 }
 this.totalSqs = i * i;
 this.possible = new
boolean[this.totalSqs];
 int i2 = 0;
 while (i2 < this.totalSqs) {
 this.possible[i2] = true;
 i2 = i2 + 1;
 }
 this.sum = i * (i * i + 1) / 2;
 this.numsquares = 0;
 }

 private MagicSquare (int i) {
 super();
 this.a = new int[3][3];
 int i0 = 0;
 while (i0 < 3) {
 int i1 = 0;
 while (i1 < 3) {
 this.a[i0][i1] = 0;
 i1 = i1 + 1;
 }
 i0 = i0 + 1;
 }
 this.c = 9;
 this.b = new boolean[this.c];
 int i2 = 0;
 while (i2 < this.c) {
 this.b[i2] = true;
 i2 = i2 + 1;
 }
 this.d = 15;
 this.e = 0;
 }

It is quite obvious that aside from the fact that the obfuscators got rid of the variable

35

names and applied some inlining with constant values, the structure of the code is

almost identical when preprocessing with this method.

36

5. Conclusion

While source code obfuscation isn’t a magic solution to bypass plagiarism detectors,

they definitely impact their performance. It is worth nothing that the obfuscations used to

perform this project were entirely automated and therefore probably of a lower grade

than a real plagiarist would or could accomplish. Moreover a perfect tuning of the

parameters was assumed, which is surely not the case in reality.

Having a 95% accuracy in a best possible case scenario is not acceptable in a lot of

contexts, and thus there is a real need for the development and research of new tools

to detect plagiarism regardless of source code obfuscation.

The results of this project suggest that source obfuscation robustness has a very strong

correlation with the preprocessing that is applied to the source code before comparing.

The tools that have some kind of preprocessing clearly performed better than those that

don’t, and upon applying a very strong preprocessing technique all the tools

experimented a very significant boost in their performance, with some of them not

making a single mistake.

The final conclusion then, is that while current plagiarism detection algorithms are

suitable for today’s environment, the preprocessing techniques are not. In this project a

compilation/decompilation process is suggested and implemented as a preprocessing

technique with good results, and therefore the authors hope to see this implemented in

a plagiarism detection tool in the future.

37

6. Bibliography

Cosma, G. and Joy, M. (2008) 'Towards a definition of source-code plagiarism'

Education, IEEE Transactions on, 51 (2), pp. 195--200.

Bull, J., Collins, C., Coughlin, E., Sharp, D. and Square, P. (2001) 'Technical review of

plagiarism detection software report' University of Luton. JISC publication.

Fiducia, N. and Briskman, S. (2013) 'When Two Worlds Collide: The Oracle And Google

Dispute' Mondaq.com. [online] Available at:

http://www.mondaq.com/unitedstates/x/271942/ [Accessed: 13 Feb 2014].

Roy, C. K., Cordy, J. R. and Koschke, R. (2009) 'Comparison and evaluation of code

clone detection techniques and tools: A qualitative approach' Science of Computer

Programming, 74 (7), pp. 470--495.

Schulze, S. and Meyer, D. (2013) 'On the robustness of clone detection to code

obfuscation' IWSC 2013, pp. 62 - 68.

Meyer, D. and Schulze, S. (2012) 'Analyzing the Robustness of Clone Detection Tools

Regarding Code Obfuscation'.

Lafortune, E. (2013) 'ProGuard' Proguard.sourceforge.net. [online] Available at:

http://proguard.sourceforge.net/ [Accessed: 13 Feb 2014].

AOSP. (2013) 'ProGuard | Android Developers' developer.android.com. [online]

Available at: https://developer.android.com/tools/help/proguard.html [Accessed: 13 Feb

2014].

Grosse, R. (2013) 'Krakatau Bytecode Tools' Krakatau Bytecode Tools. [online]

Available at: https://raw.github.com/Storyyeller/Krakatau/master/README.TXT

[Accessed: 13 Feb 2014].

Wise, M. J. (1993) 'String similarity via greedy string tiling and running Karp-Rabin

matching' Online Preprint, Dec, 119.

Prechelt, L., Malpohl, G. and Philippsen, M. (2002) 'Finding plagiarisms among a set of

programs with JPlag' J. UCS, 8 (11), p. 1016.

38

Kamiya, T., Kusumoto, S. and Inoue, K. (2002) 'CCFinder: a multilinguistic token-based

code clone detection system for large scale source code' Software Engineering, IEEE

Transactions on, 28 (7), pp. 654--670.

Cordy, J. R. and Roy, C. K. (2011) 'The NiCad clone detector' pp. 219--220.

Hage, J., Rademaker, P. and Vugt, N. (2010) 'A comparison of plagiarism detection

tools' Utrecht University. Utrecht, The Netherlands, p. 28.

Warwick. (2009) 'BOSS Online Submission System' dcs.warwick.ac.uk. [online]

Available at: http://www.dcs.warwick.ac.uk/boss/history.php [Accessed: 13 Feb 2014].

Grune, D. and Vakgroep, M. (1989) 'Detecting copied submissions in computer science

workshops' Informatica Faculteit Wiskunde \& Informatica, Vrije Universiteit, 9.

Cebrian, M., Alfonseca, M. and Ortega, A. (2009) 'Towards the validation of plagiarism

detection tools by means of grammar evolution' Evolutionary Computation, IEEE

Transactions on, 13 (3), pp. 477--485.

Salton, G., Wong, A. and Yang, C. (1975) 'A vector space model for automatic indexing'

Communications of the ACM, 18 (11), pp. 613--620.

Si, A., Leong, H. V. and Lau, R. W. (1997) 'CHECK: a document plagiarism detection

system' pp. 70--77.

W. Ratcliff, J. and E. Metzener, D. (1982) 'Pattern Matching: The Gestalt Approach' Dr.

Dobbs Journal, pp. 46--51.

Kontogiannis, K. A., Demori, R., Merlo, E., Galler, M. and Bernstein, M. (1996) 'Pattern

matching for clone and concept detection' Springer, pp. 77--108.

Cohen, W. W., Ravikumar, P. and Fienberg, S. E. (2003) "A Comparison of String

Distance Metrics for Name-Matching Tasks.", pp. 73--78.

Rahman,, S. and Puspitodjati, S. (2009) 'SIMILARITY COMPARISON APPLICATIONS

BETWEEN DOCUMENT USING JARO Winkler DISTANCE algorithm TO DETECT

SCIENTIFIC WRITING PLAGIARISM IN GUNADARMA UNIVERSITY'.

Kondrak, G. (2005) 'N-gram similarity and distance' SPIRE'05, pp. 115--126.

39

Barrón-Cedeño, A. and Rosso, P. (2009) 'On automatic plagiarism detection based on

n-grams comparison' ECIR '09, pp. 696--700.

Hamilton, H. (2012) 'Confusion Matrix' www2.cs.uregina.ca. [online] Available at:

http://www2.cs.uregina.ca/~dbd/cs831/notes/confusion_matrix/confusion_matrix.html

[Accessed: 13 Feb 2014].

