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1. Introduction 
 
 

1.1. Democracy and electoral processes: 

Experts say that the exercise of democracy is not reduced to electoral practices. Nonetheless, 
modern democracy cannot be conceived without elections, in such a way that the 
fundamental indicator of the democratic societies is the conduction of free elections. In many 
countries they are, for the majority of the citizens, the privileged way to be in touch with 
politics. 

Lots of interests come into play at the time of determining the government successors, and 
numerous fraud cases have been detected in electoral processes: disappeared or found ballot 
boxes, manipulated counting machines, voter coercion, vote buying, ballot manipulation, etc. 
Since the elections are a critical process in a democratic society, the legitimacy of the results 
must be ensured. 

The fast technologic growth gives every time more tools to the society in order to enhance 
their quality of life and make easier the daily tasks, then it is natural for the electoral processes 
to evolve technologically too. 

There are several reasons to use e-Voting systems instead of conventional mechanisms, for 
example a more comfortable election management for especially complex processes, a faster 
ballot counting to obtain earlier results, or a cheaper election process. 

The use of remote media as mobile phones or Internet in order to vote has other advantages: 

One of the main objectives of using new technologies in the democratic processes is to avoid 
the low election turnout that characterizes an electoral process nowadays, especially among 
the youngest sectors. The use of remote applications can make the electoral process more 
appealing to the youngest voters that, after all, use the telecommunication systems in their 
daily life. 

Another advantage of remote voting is that it can make easier the electoral process to people 
with reduced mobility or with any disability. These persons can find a lot of impediments when 
they go to vote in an Electoral College, while if they can vote in a remote way they can find 
suitable places to do it, or use specific equipments they already have at their homes. 
Moreover, electronic voting can provide techniques to increase the system accessibility and 
usability. 

In the same way, the voters abroad can find in remote voting an opportunity to express their 
willing in a more comfortable, convenient and reliable way than with postal voting. 
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In order to achieve a security level in remote e-Voting at least as high as in a conventional 
election, or even higher, cryptographic applications must be used. 

 

1.2. Security in remote e-Voting 

Security is of paramount importance in any voting process. The introduction of e-Voting makes 
the process less transparent. Therefore, additional security requirements must be considered. 

Remote e-Voting makes use of cryptography in order to provide a secure service, as it is 
required in an electoral process. 

Voters must be able to verify that their voting intent has been properly recorded in the voting 
system (cast as intended) and counted in the vote tally (counted as cast) at the same time that 
coercion and vote buying must be prevented. These requirements create a trade-off between 
verifiability and vote secrecy that the electronic voting system has to solve in an efficient way. 

There are certain security requirements that an electoral process conducted electronically 
must comply with:  

- Voter authentication: it must be ensured that each vote is cast by an eligible voter and 
that just one vote per voter is tallied. 
 

- Voter privacy: while it must be ensured that a just the eligible voters can cast a ballot, 
it must be impossible to connect the voter identity with the content of his/her cast 
vote. 

 
- Accuracy of the Election Results:  it must be impossible for anyone to erase or modify 

votes submitted by eligible voters, or to add invalid votes on behalf of abstaining 
voters.  

 
- Intermediate result privacy: the election intermediate results must be secret until the 

election process has ended in order to not to influence the voters that have not yet 
participated in the voting process. 

 
- Vote verifiability: voters must be able to verify independently that their votes have 

been included in the final tally and counted properly. 
 

- No coercion: it must be impossible for a voter to demonstrate the content of his/her 
cast vote in order to prevent coercion or vote buying. 

 
One of the above properties that are more enforced in an e-Voting system and that is more 
present in conventional elections too is the voter privacy. In turn, it is a complex requirement 
since, while the voter privacy must be preserved, it is necessary to ensure that the voter who 
casts the vote is an eligible one. The design of a system that complies efficiently with these two 
requirements is a real challenge. An efficient way to solve it is using advanced cryptographic 
protocols.  
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1.3. Securing elections using basic cryptography 
 
In a basic implementation, the e-Voting systems use standard cryptographic techniques to 
ensure the voter privacy and the election reliability. The most common cryptographic tools to 
be used in e-Voting processes are the vote encryption and its digital signature. 
 

1.3.1. Vote encryption 
 
A vote can be encrypted using two types of cryptographic algorithms: 
 

- Public key algorithms (asymmetric): the election has two keys, a public one that is 
known by all the voters and a private one that is known by just one electoral entity 
(usually the Electoral Board). The voters use the election public key in order to encrypt 
their choices and, at the time of the tally, they are decrypted using the election private 
key. That way it is ensured that anybody but the electoral entity, that has the private 
key, can access the votes’ content. 

 
Being  the election private key,  the public one and  encryption and 

decryption operations, an electronic ballot  is encrypted by a voter as 
 

 

 
In the decryption process the encrypted electronic ballot is decrypted by the 
electoral entity as 
 

 

 
 

- Secret key algorithms (symmetric): in this case the voter and the electoral entity share 
a unique secret key used to both encrypt and decrypt the votes. In order to prevent a 
voter to be able to decrypt the other voters’ choices, a unique secret key is generated 
for each voter, while the electoral entity has access to all the keys. 

 
Being  the symmetric election key shared by a voter  and the election entity, 
an electronic ballot  is encrypted by a voter as 
 

 

 
In the decryption process the encrypted electronic ballot is decrypted by the 
electoral entity as 

 

 
 

Compared with asymmetric algorithms, the symmetric algorithms have scalability problems 
due to that a different key has to be stored for each voter in the voting system. In the other 
hand, the asymmetric algorithms are slower in the decryption process than the symmetric 
ones, especially for large messages.  
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In order to solve these problems it is usual to use hybrid systems that combine the advantages 
of symmetric and asymmetric algorithms.  
 
In a hybrid encryption algorithm the message is encrypted using a symmetric key generated by 
the voter at random at the time of encryption. Then, this symmetric key is encrypted using the 
election public key. This way just two keys are needed for the electoral process (public and 
private), due to that with the private key the electoral entity can access the symmetric keys 
used to encrypt the votes (faster than decrypting the entire ballot since the symmetric key is 
supposed to be shorter) and decrypt them faster than using an asymmetric cryptosystem. This 
encryption system is known as digital envelope. 
 

Being  the election private and public keys and  a random session key 

generated by the voter at the moment of the encryption, an electronic ballot  is 
encrypted as 

 

  

 
In the decryption process the encrypted electronic ballot is decrypted by the electoral 
entity as 

 

  

  

 
 

1.3.2. Digital signature 
 
A vote digital signature is performed using an asymmetric key algorithm. Usually the voter 
calculates a Hash operation over his/her encrypted vote and then “encrypts” the Hash result 
using his/her private key (instead of using the public key as in the encryption process). The 
voter public key is known by everybody; therefore anyone can verify the digital signature 
“decrypting” the result of the Hash function with the voter public key and comparing that the 
Hash of the signed encrypted vote matches the “decrypted” Hash. The digital signature is 
performed over the encrypted ballot. This prevents the correlation between the decrypted 
vote and the digital signature, since signatures are only connected to encrypted votes. 
 

Being  the voter  private and public keys and H a Hash function, an electronic 

encrypted ballot  is signed as 
 

  

 
The electoral entity verifies the signature on the encrypted ballot as 

 

  

 Verify that  

 
Digitally signing the encrypted votes allows the verification of the vote integrity once it is 
received in the voting server, due that if it is modified after the submission step the Hash 
function will not match the one encrypted with the voter private key. It also allows the 
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verification of the voter eligibility, due that the voter has a digital certificate that connects 
his/her identity with the public key. This method is similar to the one in postal voting where 
the voter sends the ballot inside of a signed envelope and the signature is checked at reception 
time. Once the ballot is extracted from the envelope it cannot be connected to the submitter 
identity. 
 
The scheme for this election model is the one in figure 1.1: 
 

 
Fig. 1 - 1 Electronic voting using basic cryptography 

 
Although this scheme seems secure enough to protect the vote secrecy, the voter privacy can 
be broken if someone tracks the order the signed and encrypted votes are received and the 
order they are decrypted, correlating the ballot content for an identified voter. Moreover, this 
system does not allow the verification that the ballots are not manipulated between the vote 
submission and the decryption steps. 
 
Therefore, we need more advanced cryptographic methods to comply with the security 
requirements. 
 
The main objective of this PFC is to analyze some advanced cryptographic methods and design 
a cryptosystem that could be used in e-Voting environments in order to encrypt the votes in an 
efficient way, making it suitable to be used with the advanced cryptographic methods that 
have been studied. 
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2. e-Voting protocols focused in the protection of the voter 
privacy  

There are various methods in electronic voting processes designed to protect the voter privacy 
implementing voter anonymization systems. These methods can be classified depending on 
the time at the voting process when they work:  

- Pre-election phase: it is the phase where the election configuration processes are 
done, as generating the voting ballots, closing the electoral rolls or assigning 
credentials to the voters (i.e. digital certificates). 

The methods that implement cryptographic processes in order to protect voter privacy 
in this phase apply cryptographic measures in the design of the voting ballots. 

- Voting phase: this phase covers the period when the voters can cast their votes. 
During this phase the voters access to the voting system, identifying themselves and 
submitting their votes.  

The protocols that work in this phase apply the cryptographic measures after the voter 
identification and before she submits her vote, achieving an anonymous channel for 
the voter whereby the vote is separated from her identity.  

- Counting phase: this phase starts when the voting period finishes. During this phase 
the digital ballot boxes are collected, and a vote tally is done in order to obtain the 
election result. 

The cryptographic protocols used to achieve the voter anonymity in the counting 
phase are focused on breaking the correlation between encrypted votes and decrypted 
contents. 

In the next sections these systems are described in detail. 

 

2.1. Protocols that implement anonymity in the pre-election phase 
 
As mentioned before, in these protocols the methods to achieve the voter privacy are 
implemented in the ballot design phase. 
 
These methods [1], [2], [52] are known generally as Pollsterless, since they do not need a 
device with enough computation capacity to encrypt the voter chosen options (since they are 
pre-encrypted). An advantage of these methods is that they can be used to vote by mobile 
phones using SMS text messages. 
 
In this design phase different codes for the voting options are generated for each ballot. Once 
they have the codified voting options, the ballots are assigned randomly to the voters, and the 
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parameters used to decode them are stored in a secure way in order to decrypt the votes 
during the tally. 
 
The ballot design mechanism is simple: 
 

- A random unique identifier is assigned to each ballot i: 
 

 , 
 
where n is the number of paper ballots. 

 
- For each party or candidate in the election, , a code  is generated based on the 

unique identifier of the ballot  and the secret parameter Kc. Usually a unidirectional 
function like a MAC is used to calculate the codes: 

 

 , 

  
where k is the number of candidates in the election. 

 
 

- For each candidate code  , a return code   is generated using the secret 

parameter Kr and a non-reversible operation: 
 

  

 
Thus, for each candidate and for each ballot a different code and its return code are 
generated. 
 

- Before starting the voting process, the ballots are sent by post in a random way to the 
voters. The paper ballots received by the voters are like this: 
 
 

 
 

Fig. 2 - 1 Example of paper ballot in Pollsterless 
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- Assuming the voter uses a web interface, once the voting process has started, the 
voter accesses a web application where she is requested to insert the codes  

belonging to the chosen candidates and the ballot identifier . Then, the voting 
server calculates the return codes  using the received candidate codes and the 

secret Kr 
 

  

 
and sends them to the voter, that can compare if their value is the same that those 
assigned to the candidates in her ballot. 
 

That way, the voter can verify that the vote received in the voting server contains the 
same options that she has chosen. An attacker is not able to know in advance the return 
code that must return in case of vote interception. 

 
Moreover, in case that someone intercepts the codes, it is infeasible to know for which 
candidates the voter has voted for without knowing the contents of the paper ballot, so 
the voter privacy is preserved. 
 
- Finally, the candidate codes are calculated again in the counting phase using the secret 

parameter Kc, in order to connect the received codes with the candidates: 
 

  

 
Due that the system security is mainly based in the paper ballots, there are several methods to 
prevent their contents to be intercepted or manipulated before they arrive to the voters, such 
as printing the candidate codes and the return codes separately, or dividing the ballots and 
sending their pieces using different channels.  

 
This system has several drawbacks:  
 

- Usability: the voter has to input large character chains that compose the ballot 
identifier and the candidate codes, and it can be easy to make mistakes. Moreover, 
once the voter has voted, she has to verify the received return codes comparing them 
to the ones in the paper ballot next to her choices, which can be specially difficult for 
old people. 

 
- Voter coercion or vote buying/selling could be possible in case that the received 

candidate codes were published and the voter showed the paper ballot with her codes 
to the coercer or the buyer, in order to verify that those connected to the desired 
candidates are published.  
 

- Privacy could be compromised: an attacker could know the vote intention of a voter if 
he/she had access to the codes in the ballot. 
 

- In case of interception an attacker could swap the codes in order to convince the voter 
that she has chosen a determinate candidate, while she is really choosing another. 
 

The voter anonymity is preserved since the submitted codes are not digitally signed. 
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2.2. Protocols that implement anonymity in the voting phase 
 

 
The aim of these methods is to achieve an anonymous channel for the voter, in such a way 
that the submitted vote is not connected to her identity. 
 
This protocol, first presented in [7] and then enhanced in [3], is usually called the two agencies 
model, due to that it is based on two different services: 
 

- The Validator Service identifies the voter, checks that she is in the electoral roll (her 
eligibility) and allows her to vote in an anonymous way. 

 
- The Vote Service receives anonymous votes that have been validated by the Validator 

Service. 
 

Usually, the blind signature protocol is used in these schemes. This protocol digitally signs an 
encrypted vote without having knowledge of its content. Thus, the privacy of the voter is 
preserved. The blind signature mechanism is based in the mathematical properties of an 
encryption system, such as the RSA: 
 
Supposing that the entity that signs the encrypted votes has a public RSA key (e, n) and a 
private one d, this protocol implements the following steps: 

 
1. The requestor (the voter) chooses a number r such that 

 
gcd(r, n)=1 

 
2. Then, she generates a blinding factor b as 

 
  
 

3. The message to be signed is multiplied by the blinding factor 
 

  
 

4. Finally, the requestor sends the blinded message m’ the signer entity, that returns the 
digital signature of  (s’) to the requestor, where 

 

  
 

5. The requestor multiplies the signed blinded message by the inverse of the blinding 
factor and obtains the original message m signed by the signer entity 

 

  
 
 
Thus, in this protocol, the Validator Service receives a blinded encrypted vote jointly with voter 
identity, it checks that she is an eligible voter and signs the blinded encrypted vote. Then, the 
voter unblinds the vote and sends the recovered encrypted and signed vote to the Voting 
Service, which stores only the encrypted votes signed by the Validator. 
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The voting phases are the following: 
 

- The voter creates a message that contains her chosen options, encrypts, blinds and 
sends it to the Validator Service. 

 
- The Validator Service receives the encrypted message, verifies that the voter is eligible 

and digitally signs the blinded message, sending it back to the voter. 
 

- The voter receives the blinded signed encrypted message and removes the blinding 
factor in order to obtain the original encrypted message, still signed by the Validator 
Service. Then, the voter sends it to the Voting Service. 
 

- The Voting Service verifies that the encrypted message has been signed by the 
Validator Service and stores it. 
 

A scheme of the communication process is shown in figure 2.2: 
 

 
 

 
Fig. 2 - 2 Communications in a two agencies model 

 
The voter anonymity is preserved since: 
 

- The vote is blinded and then signed by the Validator Service. 
 

- The voter has not to be authenticated to submit the vote to the Voting Service. 
 

- The voting options are encrypted before they are sent. 
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Although this type of protocol is very efficient in order to preserve the voter anonymity when 
casting the vote, they have some drawbacks that prevent their implantation in real election 
processes: 
 

- Since the Voting Service stores all the votes signed by the Validator Service, an 
attacker controlling the Validator Service could generate an unlimited set of non-valid 
votes that would be accepted by the Voting Service, modifying the election results. 
Just one entity compromised (Validator Service) results in a possible electoral fraud. 

 
- The communications between the voter, the Validator Service and the Voting Service 

could be traced in order to relate the vote content with the voter identity, i. e. tracking 
the IP directions or using cookies. 
 

- In case that the Validator Service and the Voting Service cooperated sharing 
information, they could correlate votes with voter identities. 

 
 

2.3. Protocols that implement anonymity in the counting phase 
 
These methods can be divided in two types: 
 

- Systems that calculate the final tally without decrypting the votes individually, in such 
a way that the cleartext vote is never recovered and therefore, it cannot be correlated 
to the voter. These are called homomorphic tally protocols. 
 

- Mixnets: these systems break the correlation between the reception order of the 
encrypted votes and the order in which the votes are decrypted.  

 
Both systems operate in an election characterized by: 
 

- Voters encrypt the vote before submitting it through the net. The encrypted vote 
contains the different options chosen by the voter. 

 
- Once the voter has encrypted the vote, she also digitally signs it in order to verify its 

integrity and the voter eligibility when it is received in the Voting Service. In order to 
sign the vote to be cast, the voters must have a key pair belonging to a public key 
cryptosystem (usually this involves management of digital certificates). 
 

- There is an entity, the Electoral Board, that is composed of people with different 
interests (i.e. a representative of each party) in order to prevent collusion. The 
Electoral Board has a key pair belonging to a public key cryptosystem: the public key is 
the one that the voters use to encrypt their votes, while the private key, only known 
by the Electoral Board members, is the one that can recover the content of the 
encrypted votes. 

 

2.3.1. Homomorphic tally protocols 
 
These protocols, introduced in [4], make use of the homomorphic properties of some 
cryptosystems whereby certain operations over the encrypted votes result in the encryption of 
the operation of the cleartext votes.  
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Being two votes v1 and v2, an encryption operation E and two algebraic operations Φ and Θ, 
the homomorphic property can be defined as 
 

E(v1) Φ E(v2) = E(v1 Θ v2) 
 
There are some types of homomorphism depending on the definition of the operation Θ: the 
additive homomorphism and the multiplicative one: 
 

- In a cryptosystem with additive homomorphic properties the multiplication of the 
encrypted votes results in the encryption of the addition of the cleartext votes. Thus, 
when this result is decrypted, the sum of the votes is obtained.  

 
- In a cryptosystem with multiplicative homomorphic properties the multiplication of 

the encrypted votes results in the encryption of the multiplication of the cleartext 
votes. When this result is decrypted, the product of the votes is obtained. 
 

Depending on the type of homomorphism that we want to use, we have to choose a 
cryptosystem with the appropriate homomorphic properties. 
 

2.3.1.1. Additive homomorphism 
 
When an additive homomorphic cryptosystem is used, the encrypted votes are usually formed 
by an array of parameters, each one corresponding to a certain candidate depending on the 
position in the array.  Each parameter is composed by a fixed number exponentiated to a 
coefficient a if the candidate that represents is chosen or a coefficient b if not. One possible 
configuration is that the coefficients a and b are equal to 1 and 0. 
 
A common configuration scheme is presented in figure 2.3: 
 

 
Fig. 2 - 3 Example of an additive homomorphic tally 

 



Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló 
 

22 
 

Since the multiplication of the encrypted votes results in the addition of the exponents in λ, 
when the result is decrypted the addition of votes for each candidate is obtained. 
 
Another possibility to encrypt the options is to have the parameters a and b equal to 1 and -1. 
Then, the result of the exponent addition is not equal to the votes for each candidate, but to 
the difference between positive and negative votes. Following the procedure described in [5], 
the results for each candidate can be obtained. 
 
Some cryptosystems with additive homomorphic properties are the exponential ElGamal or 
Paillier. 
 
For example, in exponential ElGamal a vote in an election where there are three candidates 
can be encrypted as 
 

 ,
, 

 
where  are public parameters,  are random integers, and  (details 
of ElGamal encryption can be found at Section 3). 
 
If a voter selects the second candidate (the modular operations are omitted from now) 
 

 ,  
 
The multiplication of n votes results in 
 

,  
 

After the decryption process we obtain  for each candidate and the discrete logarithm 
must be broken in order to obtain  for each one. The break of the DL is based on the 
fact that the exponent is small and in trapdoor functions (in Paillier). Therefore in a large 
election the votes can be tallied dividing them in groups. 
 

2.3.1.2. Multiplicative homomorphism 
 
When a cryptosystem with multiplicative homomorphic properties is used, it is usual for each 
voter just to encrypt the selected options. Then, to perform the homomorphic tally, the 
encrypted votes are multiplied. The result of the decryption is the multiplication of all the 
candidates selected by the voters. In order to extract the votes for each candidate from this 
result, it is usual to use prime numbers to identify each candidate and extract the selected 
options using a factorization algorithm. 
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A scheme of the system is shown in figure 2.4: 
 

 
Fig. 2 - 4 Example of a multiplicative homomorphic tally 

ElGamal, or RSA are cryptosystems with multiplicative homomorphic properties.  
 
For example, when the ElGamal cryptosystem is used in an election with three candidates 
where each vote can choose just one of them, an encrypted vote is 
 

  

 
where  are public parameters, is a random integer, and  is the code for the chosen 

candidate.  
 
The multiplication of n votes results in 
 

  
 

After the decryption process we obtain the product of all the candidates . Then, we can 
extract the results for each candidate, for example factorizing the result, and obtain 

, where  are the total number of votes for each candidate. 
 

2.3.1.3. Benefits and drawbacks 
 
The homomorphic tally has some advantages in front of other systems.  
 

- For example, due that the individual votes are never decrypted, it is impossible to 
break the voter privacy because the cleartext votes do never exist to be related to 
their authors.  
 

- Moreover, a unique decryption process (or few of them) after the operation of all the 
encrypted votes results in a fast counting system.  

 
- Since the decryption process is done once, it could be performed in a distributed way, 

using a secret sharing scheme where the private key to decrypt the votes is split, and 
each share is owned by one different party that partially decrypts the result, increasing 
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the system security (i.e. using multi-party computation techniques). If each vote had to 
be decrypted individually, this scheme would not be efficient. 
 

However, there are some drawbacks that difficult the implementation of these methods in 
common elections: 
 

- Since the votes are never decrypted individually, it is necessary to ensure that the 
encrypted votes are well-formed. Otherwise the results could be falsified (i.e. voting 
several times for a candidate in a single vote). The verification process needed to 
ensure that the votes are well-formed requires complex Zero Knowledge Proofs that 
imply high computation costs for the voter application that creates the proofs and for 
the voting system that verifies them. Some of these proofs are explained in Section 5. 

 
- The hybrid encryption algorithms, such as digital envelopes, cannot be used in these 

systems, due that the votes have to be encrypted using an homomorphic asymmetric 
cryptosystem. Then, the properties of the symmetric cryptosystems cannot be used 
and the encryption and decryption processes are slower than if we could use them. 
 

- The vote format must support the operations of the individual voting options and 
therefore, it is more restrictive than other schemes. For example, when additive 
homomorphic cryptosystems are used, the encrypted votes are formed by an array of 
parameters composed by a fixed number exponentiated with a certain number 
depending on the selections. Thus, all the possible voting options must be encrypted. If 
the election is complex and has a medium or large amount of candidates, this results 
in large and difficult to manage encrypted votes. When multiplicative homomorphic 
cryptosystems are used, suitable prime codes have to be selected to represent the 
candidates, and an efficient factorization algorithm has to be used. 
 

- Since all the possible voting options have to be prefixed, a voting system that uses 
homomorphic tally does not allow the use of open questions or texts written by the 
voters (commonly known as write-ins). 
 

As result of those drawbacks these systems are commonly used in small and simple elections. 
Otherwise the process complexity increases too much. 
 

2.3.1.4. Additive versus multiplicative homomorphism 
 
As part of the project, we compared both technologies. Although the additive homomorphic 
systems are more used (since they provide in a direct way the total number of votes for each 
candidate) in electronic voting that the multiplicative homomorphic ones, they are more 
inefficient for several reasons [6]: 
 

- If Paillier encryption is employed (additive homomorphism), the following drawbacks 
in efficiency exist: 
 

o Inefficient set-up: 
In voting schemes, the private key of the encryption algorithm is usually 
generated and shared by multiple trustees, so that there is no need to trust 
any single party to achieve vote privacy. As the private key is a factorization 
secret in Paillier encryption, distributed key generation is highly inefficient. In 
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comparison, distributed key generation in ElGamal (distributed generation of a 
secret logarithm as the private key) is more efficient. 
 

o Multiple encryption: 
Usually, a voter has to perform an encryption for each candidate and prove 
that each of her encryptions contains a valid message. 
 

o Inefficiency of multiplicative and exponentiation computations: 
In Paillier encryption, each multiplication is performed modulo n2, where n is 
the product of two large primes. In comparison, in original ElGamal encryption, 
each multiplication is performed modulo p, a large prime. If the same security 
strength is required, n and p should have the same length (i.e. 1024 bits). 
Paillier indicated that a multiplication in a Paillier encryption scheme is more 
than three times as costly as a multiplication in an Elgamal encryption scheme 
when n and p have the same length.  

 
- If the exponential ElGamal encryption (additive homomorphism) is employed, the 

following drawbacks in efficiency exist: 
 

o Multiple encryption: 
Usually, a voter has to perform an encryption for each candidate and prove 
each of her encryptions contains a valid message. 
 

o Inefficient Discrete Logarithm search: 
As stated before, a search for logarithm is needed in the decryption function. 
Even though the (currently known) most efficient solution for DL in a certain 
interval — Pollard’s Lambda Method — is employed, 0.5log2n exponentiations, 
O(n0.5) multiplications and O(0.5log2n) storage are needed where n is the 
number of voters. Since the number of voters is often large in voting 
applications, this is a high cost. To make the search more efficient, the votes 
may be divided into multiple groups to perform a separate tally in each group. 
However, this division increases the number of decryptions as a decryption is 
needed for every candidate in each group. 

 
 

2.3.2. Mixnets 
 
These systems [9] imitate the process done in conventional elections when, once the voting 
period is closed, the ballot boxes are shaken in order to shuffle the votes, preventing the 
correlation of their order with the order in which the voters voted. Once this correlation has 
been broken, the votes can be decrypted in a secure way in order to obtain the results. 
 
A mixnet is composed of a certain number of mix-nodes where each one receives the 
encrypted votes from the previous node and permutes them, keeping the permutation in 
secret so the path of the encrypted votes through the mixnet cannot be recovered. 
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Fig. 2 - 5 Mixnet 

 
This permutation would have no sense if the input and output encrypted votes at each node 
had the same values, due to that both sets could be compared and the path of each vote could 
be traced. Therefore, each node does a permutation and a transformation operation over the 
set of input encrypted votes. 
 
Since the transformation over the encrypted votes modifies their values, appropriate 
verification methods must be used to ensure the correct behaviour of each node. Otherwise, 
the nodes could change the contents of their input sets and falsify the election results. 
 
There are a lot of types of mixnets depending on the transformation they do over the 
encrypted votes and how this transformation is verified: 
 

2.3.2.1. Decryption mixnets 
 
In this type of mixnets the input votes are encrypted in several layers, in such a way that each 
mix-node has a secret key to remove one of the layers. Therefore, at the output of the last 
mixnet node the votes are decrypted. 
 
The first proposed mixnet was introduced by Chaum [7]. It was a decryption mixnet that used 
nested encryption layers, also known as RSA onions with random padding. Mixnets based on 
this concept of nested encryption and single-layer decryptions at each mix-node are 
sometimes called “Chaumian mixnets”. 
Each mix-node Mi has a public key pki and a corresponding secret key ski. Inputs to the mixnet 
are prepared as  
 

 , 

 
where j=1…k is the number of mix-nodes. 
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Each mix-node Mi decrypts the outer layer of this onion (if things are done correctly, the outer 
layer can be decrypted by the designated mix server), removes the random padding ri, and 
outputs the resulting set of diminished onions in lexicographic order. 
 
Chaum proposed a variant of this channel for voting protocols, in order to help voters check 
that their vote was properly forwarded along. The protocol requires two runs of the mixnet: in 
a first run, the voter sends a public key pkm for which she has the secret key skm  and she 
checks that her public key is present on the final decryption step. Then, in the second run of 
the mixnet, she sends  encrypted with the RSA onion, where  is her vote 

padded with a pre-determined number of 0’s. Everyone can perform the public-key based 
decryption of the vote in the final round, verifying that only 0-padded results emerge. 
 
This two-step mixing ensures that, in the first phase, a voter can complain if her public key is 
not present in the mixnet output. Then, in the second phase, only messages formed with the 
first-phase public keys are valid. No one but the sender (in possession of skm) can prepare a 
properly 0-padded plaintext. 
 
This mixnet was broken nine years after its presentation. A message-related attack can be 
performed in this mixnet, where the attacker can trace the path of a message sending one 
related to it and searching in the output for two plaintexts with the same relationship. The 
attack is based on weaknesses of the RSA cryptosystem. 
 
The main drawback of this type of mixnets is that the voter has to encrypt her vote as many 
times as nodes in the mixnet. That operation can be costly in time and storage resources. 
 

2.3.2.2. Re-encryption mixnets 
 
These mixnets rose from the idea of solving the problem of the onion encryption. 
 
In this type of mixnets encryption algorithms that allow re-encryption are used. Each mix-node 
re-randomizes the input ciphertexts with fresh randomization values that get algebraically 
combined with existing randomness, rather than concatenated, in such a way that just a 
decryption process is needed at the end. Thus, the voter does not need to encrypt the vote as 
many times as nodes in the mixnet, but once. The re-encryption process results in new values 
in the output of each node that cannot be related to the ones in the input. 
 
Being a message encrypted in the input of the mixnet 
 

 , 

 
At each mix-node the message is re-encrypted ( ) using the same public key (but using 
different randomization values 
 

  

 
Finally, in the last node, just one decryption process is done to recover the message 
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2.3.2.3. Re-encryption with partial decryption mixnets 
 
In this type of mixnets, each node performs a partial decryption of the encrypted vote and a 
re-encryption.  
 
The messages are encrypted using a public key, such that each mix-node has a share of the 
public and private key.  
 
In the input of the mixnet, the messages are encrypted as  
 

, 

 
where pk1 is the share of the public key for the first mix-node. 
 
Then, the mix-node decrypts the encrypted message with its share of the private key, in such a 
way that the result is the message encrypted with the share of the public key of the next mix-
node 
 

  

 
Finally, the mix-node re-encrypts the message using the public key of the next mix-node in 
order to avoid a leak of information from the partially decrypted message that could allow an 
attacker to guess any information to trace the messages in the mixnet 
 

  

 
The next mix-nodes perform the same operations, partially decrypting at first and then re-
encrypting, until the last node that decrypts and recovers the message. 
 
Several attacks were found in this system based on the semantic security and the malleability 
of the used cryptosystem. These attacks lead to the definition of ElGamal (the used 
cryptosystem) for semantic security. This definition is explained in Section 4. 
 
The main issue in the use of these techniques is the verification that the mixing has been 
performed correctly. Due that each node permutes and transforms the input values (by means 
of decryption or re-encryption), it is hard to verify that the mix-nodes do not cheat and change 
the input messages without revealing the permutation or the re-encryption/decryption factor. 
 
Several techniques have been created in order to efficiently verify this mixing process. Some of 
them are explained in the next section. 
 

2.3.2.4. Universaly verifiable mixnets 
 
Sako and Kilian Mixnet 
 
The first universally verifiable mixnet was introduced by Sako and Kilian [8]. Their mixnet was 
the first one to provide a proof of correct mixing that any observer can verify. 
 
Their proposal is based on a partial-decryption-and-re-encryption mixnet, where each mix-
node publishes the partial decryption results. Then, each node provides a proof of correct 
partial decryption and a proof of correct re-encryption and shuffling. 
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The partial decryption proof can be performed using ZK Proofs (Section 5), batched in order to 
provide a unique proof for all the partially decrypted messages. 
 
The proof of shuffling is a ZK Proof too, where the node first calculates a permutation and re-
encryption values to shuffle the messages (π, {rj}), and then provides alternative values (λ,{tj}) 
to perform a second re-encryption and shuffling according to these new parameters, 
generating “secondary shuffle outputs”. The verifier can then challenge the mix-node to reveal 
either (λ,{ti}), or the relationship between the first and second values: (λ π-1, {rj-tj}), which lets 
the verifier check how the primary shuffle outputs can be obtained by permuting and re-
encrypting the secondary shuffle outputs. With 50% soundness, this is an honest-verifier zero-
knowledge proof of correct shuffling. 
 
To increase the assurance of integrity, the mix-node is asked to produce some secondary 
shuffles. If the node succeeds at responding at t challenges, then the primary shuffle is correct 
with probability 1-2-t. 
 

 
Fig. 2 - 6 Secondary shuffles in the Sako and Kilian proposal for a verifiable mixnet 

 

 
The main drawback of this system is that a certain number of complex proofs have to be done 
at each node to verify the correct mixing. The verification cost depends on the number of 
nodes. 
 
A modification of this mixnet was proposed by Abe [12] where all the mix-nodes generated the 
secondary shuffles jointly. The mix-node proofs are chained so that the verifier needs only 
check the output of the last node. 
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Random Partial Checking 
 
Randomized Partial Checking or RPC in mixnets is a mechanism to check the correct behaviour 
of the mix nodes. It is based in the basic idea that, rather than providing a proof of completely 
correct operation, each node provides strong evidence of its correct operation by revealing a 
pseudo-randomly selected subset of its input/output relations.  
 
The RPC was at first formalized by Markus Jakobsson, Ari Juels and Ronald L.Rivest [10] in 2002 
and then enhanced by David Chaum [11]. Nowadays it is still used as a way to prove that a 
mixnet has mixed correctly its messages without using complex mathematical proofs. 
 
The RPC can be used with Chaumian mixnets where the messages are successively decrypted 
with each server key, and with mixnets based on a single public key with randomized re-
encryption at each layer. It provides voter privacy as a global property of the mixnet rather 
than as a property ensured by a single honest node. 
 
In an RPC mixnet, the inputs are mixed as usual by a sequence of nodes. The servers then 
produce strong evidence of their correct operation, revealing partially their input/output 
relation. For example, a node with n inputs can reveal n/2 inputs randomly without controlling 
which outputs are selected. This procedure allows for a probabilistic verification of the correct 
operation of each node. 
 
Privacy is a more delicate affair, since servers will reveal partial information about their 
input/output relationship. 
 
In a first version [10], paired servers reveal their information in such a way that the paths 
revealed in the first paired server are not the ones revealed in the second server as it is shown 
in figure 2.7. Therefore, after the servers reveal partial information, there is still no way to 
connect any input with a particular output, even if some servers are corrupt. 
 
 

 
Fig. 2 - 7 Partial disclosure of the node information in RPC 

 
If the first node in a pair reveals half of its input/output pairs, and the other node reveals the 
complementary half, an adversary that is given complete side information regarding all 
input/output correspondences for all nodes other than an honest pair can at best identify the 
corresponding output value with probability 2/n. 
 
In a second version [11], the mixnet nodes are grouped in sequences of four: in the first mixnet 
node, half of the input/output relationships are chosen to be discovered. In the second mix-
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node all those not pointed to by those opened in the first mix are discovered. In the third, half 
of those revealed in the second mixnet and half that not are revealed, and for the fourth node, 
those not pointed for the ones revealed in the third node are revealed, as it is shown in figure 
2.8: 

 
Fig. 2 - 8 Partial disclosure of the node information in Chaum’s RPC 

 
In the first version anyone could realise that, after a pair reveals their information, there are 
outputs for an input message for which the probability of being there is 0 and others for which 
the probability is 2/n. Otherwise, the probability of an input message of being in a concrete 
output if information is not revealed is 1/n. 
 
In the second version the problem is fixed because the uniform distribution over n is almost 
achieved: an input message has a 1/n probability of being in a specific output. 
  
During the checking phase each node reveals a fraction p>0 (usually p=1/2) of its input/output 
correspondences. A node reveals the triple (i, k, Rki), where k is the position in the output of 
the encrypted vote in the position i (in the input) for which it has been asked for, and Rki is the 
re-randomization factor of the re-encrypted vote in this position. 
 
The probability of an adversary to go undetected changing t ballots is at most 1/2t.  
 
Mixing in small batches 
 
In the late 1990s, the research in mixnets turned to the goal of achieving efficient proofs, 
where robustness and universal verifiability could be accomplished within practical running 
times. Rather than using ZK techniques, these new proofs made use of specific number 
theoretic assumptions of the underlying cryptosystem, usually ElGamal. In particular, where 
prior proposals required repeating the entire proof to achieve reasonable soundness1 , these 
new proposals provided overwhelming soundness in a single round.  
 
Permix [12] and Millimix [13] are an example of mixnets based on using permutation networks 
that provide better proof speeds for small to medium batches than the prior schemes. 
 
 
 
 

                                                            
1 Soundness reflects the probability of a cheater of not being detected. A sound protocol has a high 
probability of detecting a cheater. 
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Exponent dot-product Proof 
 
In 2001 Neff [14] introduced what remains to this day the fastest, fully-private, universally 
verifiable mixnet shuffle proof, requiring 8N exponentiations (where N is the number of votes). 
This proof is fairly complex. 
 
It is divided in three protocols, at first designed for a mixnet using ElGamal encryption. 
 

- The Equality of Exponent Products proof ensures that both parts of the ElGamal input 
and output ciphertexts in the mixnet or in a single node have the same random 
exponent. 
 

- The Known-Exponent Shuffle proof checks using the random exponents that a re-
randomization has been done. 
 

- The Proof of Shuffle uses a challenge to make the mix-node demonstrate that there 
has been a shuffle. 
 

Later, this system was generalized to be used with any homomorphic cryptosystem. 
 
Optimistic Mixing 
 
In 2002, Golle et al. [15] proposed a new type of universally verifiable mixnet they called 
“Optimistic Mixing”, with a significantly faster proof when all players behave honestly. 
Otherwise, this solution suggests to fallback to existing proofs like Neff’s when an error is 
detected. “Optimistic Mixing” uses ElGamal re-encryption, properly parameterized as per 
achieve semantic security. 
 
In order to verify integrity before the plaintexts are fully revealed in the last mix-node, two 
layers of encryption are used. 
First the message is encrypted in the usual manner: 
 

  
 
Then, c is hashed, and all components are encrypted in a second layer: 
 

  

 
The mix-nodes then re-encrypt and shuffle these triples of ciphertexts in the usual manner. In 
the last node, the first layer is decrypted, obtaining 
 

  

 
Then, everyone can verify that the third element is the hash of the other two. If this proof 
succeeds, the second encryption layer can be removed, recovering m. 
 
Another verification process is used combined with this integrity check. Based on the fact that 
the cryptosystem is homomorphic, the input and output messages at each mix-node are used 
to calculate input and output proofs that can be compared in order to verify the correct 
performance of the mixnet. 
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Concretely, a proof-of-product is performed to ensure that the plaintexts of the encrypted 
messages in the input and in the output of each mix-node are the same. 
 
This proof-of-product is the basis of the verification process we will use to evaluate several 
cryptosystems to be used, so we will explain it broadly in Sections 3 and 4. 
 
Wikström [16] presented several serious attacks against the Optimistic Mixing. These attacks 
were mainly based on the double envelope encryption process. 
 
In mixing protocols the voter privacy is obtained by means of encrypting the votes and using a 
shuffling process to decorrelate the encrypted and signed votes and the decrypted ones. 
Therefore the voter privacy depends on the honesty of the mixing process: if a node does not 
shuffle the encrypted votes or reveals the permutation and transformation parameters the 
plaintext ballots could be related to their authors.   
 
Therefore, the main drawback of the mixing techniques is that they are hard to verify in an 
efficient way. 
 
Another drawback of these systems compared to homomorphic tally protocols is that they are 
slower, since shuffling and transformation processes are done at each mix-node, and each vote 
has to be decrypted individually. 
 
Some benefits of these techniques are that they can use more flexible encryption schemes 
than the ones used in homomorphic tally protocols, they allow the use of write-ins and 
generally they can be used in more complex elections. 
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3. Building Blocks 
 
 

 
Fig. 3 - 1 Building blocks I 

 
 
In the previous sections we have explained some advanced cryptographic protocols used in e-
Voting environments. Since some of these protocols use cryptosystems with homomorphic 
properties or/and use ZK proofs to verify their processes, a public key cryptosystem is needed. 
The main drawback of public key cryptosystems is their inefficiency both in encryption time 
and in size, so one of the aims of this PFC is to design an efficient asymmetric cryptosystem to 
be used in e-Voting processes and in other security applications. In order to define the main 
characteristics of this cryptosystem we should choose a Vote anonymization system to protect 
voter privacy from the advanced cryptographic protocols explained before. 
 
Since we want this process to be universally verifiable, we want also to be able to calculate 
some Integrity Proofs from the messages in the Vote anonymization system. These Integrity 
Proofs are the basis of the verification process. 
 
In this section we are going to discuss, the building blocks we are going to use and the desired 
characteristics for them in order to define which protocol must be used or how will it be used. 
 
From the definition of these characteristics we will extract the information to elaborate the 
requirements for the cryptosystem to be designed. 
 
 

3.1. Definition of a Vote anonymization system 
 
From the benefits and drawbacks enumerated for the advanced protocols designed to protect 
voter privacy, we have decided that the best decision is to implement a protocol that 
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implements voter anonymity in the counting phase. Thus, we have to choose if we prefer to 
use an homomorphic tally protocol or a mixing protocol. 
 
We can resume the benefits and drawbacks of the homomorphic tally and mixing protocols in 
the following points: 
 

- Homomorphic tally protocols are usually faster in the counting phase than mixnets, 
since after the encrypted votes are operated just one decryption process has to be 
performed, instead to the several shuffling and re-encryption/decryption processes 
done in mixnets.  
 

- Since in an homomorphic tally protocol just one result has to be decrypted, partial 
decryption techniques using a secret key divided in shares can be applied. Otherwise, 
when a mixing protocol is used, each vote has to be decrypted individually. The partial 
decryption using each secret key share for all the votes could be too costly to obtain 
the results in a reasonable time. 
 

- In homomorphic tally protocols, since the votes are never decrypted individually, it is 
necessary to ensure that the encrypted votes are well-formed using complex zero 
knowledge proofs that can slow down the process for the voter and for the voting 
service. In mixing protocols the correct construction of a vote can be verified when it is 
decrypted. 

 
- Homomorphic tally protocols can only use homomorphic cryptosystems. Multiple 

types of cryptosystems can be used in mixnets. 
 

- A vote in an additive homomorphic tally protocol is formed by all the possible options, 
while in mixnets it just has to contain the selected ones, so the management of the 
encrypted votes is easier and more efficient. 
 

- The mixing protocols allow the attachment of write-ins in the vote, while the 
homomorphic tally protocols do not. 
 

- The mixing techniques are hard to verify in an efficient way. Otherwise, the 
homomorphic tally protocols are easily verifiable (once we have verified all the ZK 
Proofs). 
 

- The mixing protocols are more efficient for large and complex elections than the 
homomorphic tally protocols. 
 

We decided to define our vote anonymization system as a mixnet, so we can achieve the 
management of large elections. Moreover, we want it to be universally verifiable to be able to 
achieve a high trust level in a real election. Finally, we want this verification to be efficient. 
 
Now, we have to choose the type of mixnet we are going to use: 
 
If we use a decryption mixnet with nested RSA cipher as the one proposed by Chaum, the 
system is too costly in computation terms in the voter side if the number of nodes in the 
mixnet is medium or high, since the voter has to encrypt the vote as many times as nodes in 
the mixnet. Therefore, a decryption mixnet is discarded due to the high cost for the voter. 
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In our search for a universally verifiable mixnet, we could take the Sako and Killian model for a 
mixnet with re-encryption and partial decryption. This mixnet uses the specific properties of 
schemes as Paillier or ElGamal to publish intermediate results in the output of each node, and 
it is based on the verification of secondary shuffles. These verifications are usually very costly 
and, as in the case before, the process would be too slow for our purposes. 
 
In his proposal, Neff designs a mixnet with ElGamal encryption. It has been proved that this 
mixnet is the most secure and verifiable since now, but, although it is the faster one with the 
highest level of security and verifiability, it is still too slow to perform a mixing in a large-scale 
election in a reasonable time. 
 
Our aim is to create an efficient cryptosystem based on some ideas of how could be designed a 
new universally verifiable mixnet that solves the efficiency problems of the existent proposals, 
where the computation is fast and does not depend on the number of nodes. These ideas are 
inspired by the Optimistic Mixing proposal explained in Section 2. 
 
In order to achieve this objective we will use what we have called Integrity Proofs in a re-
encryption mixnet. These proofs are used to verify the correct performance of the mix-nodes 
in an efficient way. 
 
 

3.2. Definition of the Integrity Proofs and the Verification process 
 
Before looking at the possible implementations of the encryption scheme to be used in the 
mixnet we should take a look to the format, composition and performance of the Integrity 
Proofs. 
 
 Although these Integrity Proofs should be designed to be used in mixnets, they could be used 
in other environments in order to verify a transformation process done over a set of input 
messages, giving a set of output messages as result. 
 
The Integrity Proofs should have the scope to allow the comparison between the set of input 
messages in a process (mixnet) and the output ones to verify that there has not been any 
manipulation, comparing the contents of the input and output sets without revealing the 
content of each message on its own. 
 
To achieve these requirements, the homomorphic encryption schemes are very useful: 
 
In an homomorphic cryptosystem the operation upon one or some encrypted messages results 
in an encryption of the operation of the messages: E(mA)Θ E(mB)= E(mAΦ mB). 
 
Depending on the encryption algorithm, the homomorphism can be additive or multiplicative. 
That is, for example, E(mA)  E(mB)= E(mA+ mB), or E(mA)  E(mB)= E(mA  mB) respectively. 
 
Therefore, using an homomorphic encryption scheme we can generate Integrity Proofs that 
allow the comparison of the mixnet input set of encrypted messages and the set of output 
plaintexts: 
 

- An Input Integrity Proof is calculated operating the set of input encrypted messages. 
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- Once the messages have been decrypted an Output Integrity Proof is generated 
operating the set of decrypted messages. 
 

- The Input Integrity Proof is decrypted. 
 

- The decrypted Input Integrity Proof and the Output Integrity Proof are compared. 
 

- If both values match, that means that the mixing has not altered the overall integrity 
of the votes. 
 

 
The figure 3.2 shows the verification process based on these Integrity Proofs. 
 

 
Fig. 3 - 2 Verification based on Integrity Proofs 

 
 
 

3.3. Cryptosystem Definition 
 
In accordance with the basic requirements explained above, the cryptosystem to use in this 
environment should have homomorphic properties and be suitable to be used in a re-
encryption mixnet. 
 
 



 
Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló 
 

39 
 

The building blocks can now be defined more accurately as: 
 

 
Fig. 3 - 3 Building blocks II 

 
Finally, some cryptosystems with these properties are presented here. In the next section, one 
of these cryptosystems will be chosen to be the basis of a new encryption scheme. 
 

3.3.1. RSA 
 
The RSA cryptosystem, named after its inventors R. Rivest, A. Shamir, and L. Adlema, is the 
most widely used public-key cryptosystem. It may be used to provide both secrecy and digital 
signatures and its security is based on the intractability of the integer factorization problem for 
large numbers.  
 

3.3.1.1. Key generation 
 
Each entity creates an RSA public key and a corresponding private key. Each entity A should do 
the following: 
 

- Generate two large random and distinct primes p and q, each roughly the same size. 
 

- Compute n=pq and φ=(p-1)(q-1). 
 

- Select a random integer e, 1<e<φ, such that gcd(e, φ)=1. 
 

- Use the extended Euclidean algorithm [17] to compute the unique integer d, 1<d<φ, 
such that ed 1 mod φ. 

 
- A’s public key is (n, e); A’s private key is d. 

 
The recommended key size (size of n and d) is 2048 bits [18]. 
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3.3.1.2. RSA public key encryption 
 
B encrypts a message m for A, which A decrypts: 
 

- Encryption: B should do the following: 
 

o Obtain A’s public key (n, e). 
 

o Represent the message as an integer m in the interval [0, n-1]. 
 

o Compute . 
 

o Send the ciphertext c to A. 
 

- Decryption: to recover the plaintext m from c, A should do the following: 
 

o Use the private key d to recover . 
 
 
Proof that the decryption works: 
 
Since ed 1 mod φ, there is an integer k such that ed=1+kφ. Now, if gcd(m, p)=1 then by 
Fermat’s theorem, 
 

 . 
 
Raising both sides of this congruence to the power k(q-1) and then multiplying both sides by m 
yields 
 

 . 
 
On the other hand, if gcd(m ,p)=p, then this last congruence is again valid since each side is 
congruent to 0 modulo p. Hence, in all cases 
 

 . 
 

By the same argument, 
 

 . 
 
Finally, since p and q are distinct primes, it follows that  
 

 , 
 
and, hence, 
 

 . 
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Encryption and decryption exponents 
 
In order to improve the efficiency of encryption, it is desirable to select a small encryption 
exponent e. It may seem desirable to select a small decryption exponent d too in order to 
improve the efficiency of decryption. However, if d is small, there are efficient algorithms for 
computing d from the public information (n, e). To avoid this attack, the decryption exponent d 
should be roughly the same size as n. 
 
Homomorphic properties 
 
Let m1 and m2 be two plaintext messages, and let c1 and c2 be their respective RSA encryptions. 
Observe that 
 

 , 
 
so RSA has multiplicative homomorphic properties. 
 
Adaptive chosen-ciphertext attack 
 
The homomorphic properties of RSA lead to the Adaptive chosen-ciphertext attack: suppose 
that an active adversary wishes to decrypt a particular ciphertext  intended for 
A. Suppose also that A will decrypt arbitrary ciphertexts for the adversary, other than c itself. 
The adversary can conceal c by selecting a random integer x Є Zn* and computing 

. Upon presentation of c’, A will compute for the adversary . 
Since  
 

 , 
 
the adversary can then compute . 
 
This adaptive chosen-ciphertext attack should be circumvented in practice by imposing some 
structural constraints on plaintext messages.  
 
A usual practice is to add a random padding to the message to be encrypted. This increases the 
size of the message, which guarantees that the encrypted message is large enough that it will 
not be easy to use for an attack, and it adds pseudo-random information in a way that means 
that a given plaintext message could be encrypted to a wide range of different ciphertexts 
(probabilistic encryption), depending on the choices made during padding (since RSA is a 
deterministic cryptosystem the same message encrypted twice results in the same two 
ciphertexts). 
 
However, when RSA is used with a padding scheme the cryptosystem is not homomorphic any 
more. 
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3.3.2. ElGamal  
 
The public key ElGamal cryptosystem can be viewed as a Diffie-Hellman key agreement 
protocol in a key transfer mode. Its security is based on the intractability of the discrete 
logarithm problem and the Diffie-Hellman problem. 
 

3.3.2.1. ElGamal key generation 
 

- Generate a prime large random number p and a generator g of the module p integer 
multiplicative group Zp*. 
 

- Choose a random integer x where 2  x p-2 as the secret key. 
 

- Then calculate h=gx mod p. 
 

- Finally, the public key is (p, g, h), and the private key is x. 
 

3.3.2.2. ElGamal encryption 
 
B must do the following to encrypt a message for A: 
 

- Obtain A's public key (p, g, h). 
 

- Represent the message as an integer m in the range (0, 1, ..., p-1). 
 

Select a random integer r, where 1  r  p-2. 
 

-  Compute , and . 
 

-  Send the ciphertext c=( , ) to A. 
 
 
A must follow these steps to decrypt the message: 
 

- Use A's private key to compute . 
 

-  Recover m as  . 
  
The proof that the decryption works is: 
 

  
  
Since in a shared system all the parties use the same prime p and the generator g, p and g do 
not need to be published with the public key because they are already known. This contributes 
to the key size reduction. An additional advantage of having a fixed base g is that the 
exponentiations can be calculated in previous steps of the protocol. A disadvantage of these 
shared systems is that p has to be very large to preserve the cryptosystem security (nowadays 
1024 or 2048 bits is recommended).  
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Multiplicative homomorphism: 
 
The ElGamal encryption, as RSA has multiplicative homomorphic properties: 
 
Being two messages  and  encrypted as  
 
  
 
 ,  
 
the multiplication of both ciphertexts 
 

  
 
is equal to the encryption of the result of , so  

 
 . 

  
Additive homomorphism: 
 
A modification of ElGamal cryptosystem, called exponential ElGamal, is used when additive 
homomorphic properties are used. In this modification a new parameter λ is used to 
exponentiate the message.  
 
In exponential ElGamal a message is encrypted as 
 

 . 
 

Being two messages  and  encrypted as  
 
  
 
 ,  
 
the multiplication of both ciphertexts 
 

  
 
is equal to the encryption of the result of , so  

 
 . 

 
 
Since ElGamal is a probabilistic encryption scheme, padding schemes are not used in this 
cryptosystem. 
 

3.3.3. Paillier 
 
The Paillier cryptosystem, named after and invented by Pascal Paillier in 1999, is a probabilistic 
asymmetric algorithm for public key cryptography. The decisional composite residuosity 
assumption is the intractability hypothesis upon which this cryptosystem is based. 
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The decisional composite residuosity assumption states that, given a composite n and an 
integer z, it is hard to decide whether z is a n-residue modulo n2 or not, i.e., whether there 
exists y such that z=yn(mod n2). 
 

3.3.3.1.  Key generation 
 

- Choose two large prime numbers p and q randomly and independently of each other, 

such that . This property is assured if both primes are 

of equivalent length.  
 

- Compute  and . 
 

- Select a random integer g, where . 

 
- Ensure that n divides the order of g by checking the existence of the following modular 

multiplicative inverse: 
 

 ,  

 

 where   

 
- The public key is (n, g). 

 
- The private key is (λ, u). 

 
If using p and q of equivalent length, a simplified variant of the above key generation steps 
would be to set , , and  , where 

. 
 

3.3.3.2.  Encryption 
 
B must do the following to encrypt a message for A: 
 

- Let m be a message to be encrypted where . 
 

- Select random r where . 
 

- Compute the ciphertext as 
 

  
 

- Send the ciphertext c to A. 
 

A must follow these steps to decrypt the message: 
 

- Recover m as . 
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Homomorphic properties 
 
A notable feature of the Paillier cryptosystem is its homomorphic properties. Sinces the 
encryption function is additively homomorphic, the following identities can be described: 
 
Homomorphic addition of plaintexts: 
 
The decryption of the product of two ciphertexts returns the sum of their corresponding 
plaintexts: 
 

 . 
 

Homomorphic multiplication of plaintexts: 
 
The decryption of an encrypted plaintext exponentiated to another plaintext returns the 
product of the two plaintexts:  
 

  
 
  

 
More generally,  
 

  
 
However, given the Paillier encryptions of two messages there is no known way to compute an 
encryption of the product of these messages without knowing the private key. 
 
The original cryptosystem does provide semantic security against chosen-plaintext attacks. The 
key length in Paillier is the same as in ElGamal, being recommended for n to have at least 1024 
bits, better 2048. 
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4.  Design of a Cryptosystem for an Efficient and Universally 
Verifiable Mixnet 

 
 
The main objective of this PFC is to design an efficient cryptosystem that could be used in e-
Voting environments in order to encrypt the votes to be processed by a re-encryption mixnet 
that uses universal verification techniques to ensure the correct performance of the mixing 
process. 
 
Therefore, the cryptosystem is designed in order to be used in this context, although it can be 
used generally in other environments where a message needs to be encrypted at first and then 
verifiably decrypted.  
 
The model of a re-encryption mixnet where Integrity Proofs are used to achieve universal 
verifiability is used as a case study where the different proposals are evaluated. 
 

4.1. Initial Assumptions 
 
To design our cryptosystem we first enumerate a series of initial assumptions in order to clarify 
which are our main objectives, requirements, preferences and priorities: 
 

- We want to generate Integrity Proofs in order to verify the correct behaviour of a re-
encryption mixnet. These Integrity Proofs are generated from operations based on the 
message content. To compare the content of the messages in the input of the mixnet 
with the ones in the output using Integrity Proofs, a homomorphic encryption scheme 
is needed. The homomorphic property of a cryptosystem is explained in the sections 
Integrity Proofs (3.2) and ElGamal Homomorphisms (4.3.2). 
 

ElGamal, RSA, Paillier, or Elliptic Curve cryptosystems based on the Discrete 
Logarithm Problem usually have homomorphic properties.  

 
- Since the re-encryption mixnets are less costly for the voter than the decryption ones, 

we need to use cryptosystems with suitable properties for the performance of the first 
ones. In these cryptosystems the messages are encrypted in such a way that, when 
various re-encryption processess are done, it is just necessary one decryption step to 
get the plaintext messages. At each re-encryption step the ciphertexts are re-
randomized changing their values, so probabilistic encryption algorithms must be 
used. 
 

Cryptosystems like ElGamal, Paillier, or Elliptic Curve cryptosystems based on 
the Discrete Logarithm Problem are suitable to be used in this type of mixnets. 
RSA is a deterministic encryption algorithm, meaning that when a ciphertext is 
re-encrypted using the same public key, the value is the same than before the 
re-encryption (an undesired property in re-encryption mixnets). This problem 
can be solved using padding at each re-encryption step, but then the 
cryptosystem loses its homomorphic properties.  
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- Zero-Knowledge Proofs are usual in advanced cryptographic applications, i.e. to proof 

that a part of a protocol proceeds properly without revealing important or confidential 
information. In order to achieve the maximum verifiability level in the mixing process 
some of these ZK Proofs have to be used, so the cryptosystem must have the option of 
calculating them.  
 

In our research we have found that the Paillier encryption scheme does not 
have the ability to calculate this type of proofs (although there have been 
some advances in this direction, while ElGamal has a broad range of ZK Proofs 
that we can use.  

 
- In an e-Voting environment all the votes cast by the voters are encrypted using the 

same public key, so just a trustable entity can decrypt them. In order to enhance the 
system security, the secret key needed to decrypt the votes can be split and shared 
among several different parties, in such a way that just a majority of them can recover 
the secret key. The system security level is increased if, instead of splitting the secret 
key, it is generated in a distributed way among all the parties, so the shares are 
generated but the entire key is not.  
 

The ElGamal cryptosystem is more suitable to be used in Distributed Key 
Generation algorithms than Paillier. 

 
Taking account of the initial assumptions discussed above, the cryptosystems that are 
considered to fulfil them are ElGamal and EC-ElGamal in case of working with Elliptic Curve 
Cryptography.  
 

4.2. Analysis Model 
 
In order to design a new cryptosystem to be used in a verifiable mixnet, we need an analysis 
model where we can consider the possible protection steps that we think that are necessary in 
order to guarantee the system security.  
 
This scheme specifies the message processing steps and the possible entry points for an 
attacker. Then, when analyzing our proposals, we are going to considerate these steps in order 
to evaluate the scope of an attacker at each entry point and how to prevent or mitigate its 
effects. 
 
The analysis model is presented in the figure 4.1. 
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Fig. 4 - 1 Analysis model 

 
In the analysis model the voters cast their encrypted votes to the voting service that stores 
them. After the voting process is closed, the received votes arrive to the mixing service 
encrypted and signed. The purpose of the signature is to identify the elegibility of the voter 
that casts the vote, and to check the vote integrity. Once the verifications are done, these 
signatures are removed, so that the encrypted votes that enter in the mixnet are not 
connected to their issuers anymore. 
 
The mixnet has two nodes. It is a re-encryption mixnet where the first node shuffles and re-
encrypts the votes and the second one shuffles and decrypts them. An attacker could then 
have an entry point to manipulate the votes in each node, since their operations are kept 
secret in order to preserve the voter privacy and therefore their procedures are hard to verify. 
 
 

4.3. ElGamal Cryptosystem 
 
Based on the fact that: 
 

1. We need a homomorphic encryption scheme in order to calculate Integrity Proofs. 
 

2.  We want to use Zero Knowledge Proofs to verify the correct performance of the 
system, i.e. the correct decryption. 
 

3. We have to use a suitable cryptosystem for re-encryption mixnets. 
 

Our choice of a cryptosystem as a basis of the design of a new one suitable for our purposes is 
the ElGamal cryptosystem. 
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4.3.1. Conventional ElGamal encryption 
 

4.3.1.1. ElGamal key generation 
 

- Generate a prime large random number p and a generator g of the module p integer 
multiplicative group Zp*. 
 

- Choose a random integer x where 2  x p-2 as the secret key. 
 

- Then calculate h=gx mod p. 
 

- Finally, the public key is (p, g, h), and the private key is x. 
 

 

4.3.1.2. ElGamal encryption 
 
B must do the following to encrypt a message for A: 
 

- Obtain A's public key (p, g, h). 
 

- Represent the message as an integer m in the range (0, 1, ..., p-1). 
 

Select a random integer r, where 1  r  p-2. 
 

-  Compute γ=gr mod p, and Φ= m hk mod p. 
 

-  Send the ciphertext c=( γ, Φ) to A. 
 
 
A must follow these steps to decrypt the message: 
 

- Use A's private key to compute γ -x =g-xr. 
 

-  Recover m as m= Φ  γ -x. 
 
 
4.3.1.3. Key generation 
 
In the first step, a prime p is selected. It is recommended for p to be at least of 1024 bits length 
(this is the size of the currently used ElGamal keys), or preferably 2048. It is usual to choose p 
as a safe prime [19] [20] in order to protect the cipher against the Polling-Hellman algorithm to 
calculate discrete logarithms [Definition 4.85 in 17]. To calculate p as a safe prime, p=2q+1, 
where q is also prime [Algorithm 4.86 in 17]. 
 
 
4.3.1.4. Message encryption 
 
In order to encrypt a message, it is necessary to convert it in a number, for example using ANSI 
code. If the message is too large, it has to be divided in blocks, in a way that each block length 
is at most p-1. 
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4.3.1.5. Cryptosystem characteristics 
 

- Efficiency: the encryption process needs two modular exponentiations: gx mod p and 
gxr mod p. Is important to have an exponent large enough to avoid a search using the 
baby-step giant-step algorithm [21], so these exponentiation operations may be 
computationally costly. 
 
A disadvantage is that the encryption has an expansion factor of two (at least). An 
encrypted message length is the double of the plaintext one.  
 
A message with the same length as p-1 (the maximum length) doubles its size when it 
is encrypted, since the ciphertext has two components, gr and m hk, as large as p-1. In 
case that the message is smaller the expansion factor is higher. 
 

- Probabilistic encryption: the ElGamal cryptosystem uses randomization at the 
encryption process. The main idea behind these practices is to use the randomness to 
increase the cryptographic security of a cipher process through one or some of these 
methods: 
 

o Increasing the effective space size of the clear texts. 
 

o Decreasing the effectiveness of chosen-plaintext attacks by virtue of a one-to-
many mapping of plaintext to ciphertext. 

 
o Decreasing the effectiveness of statistical attacks by levelling the a priori 

probability distribution of inputs. 
 

- Security: the problem breaking the ElGamal cryptosystem is equivalent to solve the 
Diffie-Hellman problem. In fact, the ElGamal algorithm can be viewed as a message 
encryption multiplying it with the Diffie-Hellman [21] session key gxr.  

   
It is important to use different random exponents when a new message has to be 
encrypted, in order to prevent the break of an encryption based on the knowledge of 
one ciphertext and plaintext couple. 

 

4.3.2. ElGamal homomorphisms 
 
 
Multiplicative homomorphism 
 
The ElGamal cryptosystem is homomorphic. Therefore, as it has already been explained, the 
operation upon some encrypted messages results in the encryption of the operation of the 
messages: E(mA)Θ E(mB)= E(mAΦ mB). 
 
Depending on the encryption algorithm, the multiplication of the encrypted messages can be 
equal to an additive homomorphism E(mA)  E(mB)= E(mA+ mB) or a multiplicative one E(mA)  
E(mB)= E(mA  mB). 
 
The ElGamal cryptosystem has natively multiplicative homomorphic properties: 
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Being a message  encrypted as and a message  encrypted as 
, the multiplication of both ciphertexts 

 is equal to the encryption of the result of , so  
 
  

 
 
Additive homomorphism 
 
A variation of the ElGamal cryptosystem, usually named exponential ElGamal cryptosystem, 
provides additive homomorphic properties. In the exponential ElGamal cryptosystem another 
public parameter λ  is used to exponentiate the message. 
 
Being a message  encrypted as and a message  encrypted as 

, the multiplication of both ciphertexts 
 is equal to the encryption of the result of , so  

 
  

 
This latter option is usually used in voting systems, where the message m is represented as a 
one-bit choice that means a vote for a single option [22][14][5], where m=1 means an 
affirmative answer and m=0 is a negative one. Then, a homomorphic tally is performed, 
multiplying all the encrypted votes to get the result of their addition. The benefits and 
drawbacks of these techniques are explained in Section 2. 
 

4.3.3. Definition of ElGamal for semantic security in voting applications 

 
The semantic security for an encryption scheme can be defined based on indistinguishability. If 
it is infeasible for an adversarial algorithm to distinguish between the encryptions of any two 
messages, even if these messages are given, then the encryption should not reveal any 
information about the messages. In other words, given  and , 
where E() denotes an encryption operation, an attacker cannot succeed choosing which is the 
ciphertext corresponding to  with a probability higher than 0,5. 
 
Attack based on semantic security 
 
ElGamal used over all of Zp* is not semantically secure by default: by testing the respective 
subgroup memberships of and , one can infer information about the subgroup 
membership of m. Based on this idea, Birgit Pfitzmann [23] found a passive attack on the first 
re-encryption mixnet [24]. 
 
The idea of the attack is basically that the encryption scheme used does not hide all partial 
information, and thus one can restrict the number of participants who may have sent a 
particular message. More precisely, the group Zp* has subgroups. At least the group order p-1 
is even, and thus there is a subgroup  of order 2, generated by .  
 
Anybody can easily test if a group element a is in  by testing if: 
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Similarly, if p-1 has another prime factor f, there is a subgroup , and the criterion for 

membership in  is:  

 
 
The residue class of a message with respect to such a subgroup is not hidden. For example, in a 
mixnet with just one mix-node and two participants  and  with messages  and , 
where all three are honest, an outsider should not be able to trace which of the two 
participants sent which of the two messages (as we have defined semantic security based on 
indistinguishability). The two ciphertexts are: 
 

 
 

 
Note that it is publicly known that  was sent by   and   by . The mix node outputs  
and  shuffled. However, the attacker can test if  is in the subgroup . This is true in half 
the cases. If so, he knows that  is in this subgroup too, since  
 

 
 
So he knows that  and if only one of  and  is in the subgroup, the 
attacker knows which of them is ’s message. 
 
If there are more than two participants, the attacker can partition them into possible senders 
of certain messages. If there is more than one mix-node, the attacker can relate the initial  

and the final  in the same way.  

 
We can conclude that in a re-encryption-based mixnet, if the cryptosystem is not semantically 
secure, an attacker can detect input/output relationships.  
 
Countermeasure 
 
The countermeasure against the simple passive attack is to use a multiplicative group of prime 
order. Usually one does this by choosing two prime numbers: p as a safe prime and q so that 
q|p-1, and selecting g as a generator of a q-order subgroup of Zp*, . These numbers and 

group generator are selected in a way that makes given messages encoded into this subgroup 
easy to recover. On usual way is to use p=2q+1. 
 
Therefore, the messages to be encrypted are of order , and the random exponents to encrypt 
are in Zq. 
 
Zp* can be split in two main subgroups based on having integers that are quadratic residues 
modulo p or not. An integer a is a quadratic residue modulo p if there is a number c so that 

. In order to determine if a is a quadratic residue modulo p the Legendre symbol 

 is evaluated:  

 

-  = 1 if a is a quadratic residue modulo p, 

-  = -1 if a is a quadratic non-residue modulo p, 

-  = 0 if p|a. 
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The relevance of having messages that are quadratic residues in the encryption process is 
related to the behaviour of these integers when multiplied by the public key h or an 
exponentiation of it (i.e. the encryption factor hr). If hr is a quadratic residue and the message 
is also a quadratic residue, the result is always a quadratic residue. Otherwise, the result is 
always a non-quadratic residue. 
 
Since the quadratic residuosity of h and a ciphertext is easy to test, it is also easy to discern if 
the original encrypted message related to the ciphertext is quadratic residue modulo p or not. 
To prevent this issue from happening, it is recommended to choose all values representing any 
of the voting options (or all the messages to be used in the same system) from the quadratic 
residue group or the quadratic non-residue one to make the ciphertexts indistinguishable. 
 
In order to simplify the notation, from now, all the operations are defined in Zp, the messages 
are chosen from the group Gq (all quadratic residues or quadratic non-residues modulo p), and 
the random numbers in the exponents are chosen in Zq. 
 

4.4. Proposals for a new cryptosystem based on ElGamal encryption 
 
At first, a list of requirements has been done in order to evaluate which is the most suitable 
cryptosystem to use in an e-Voting environment using re-encryption mixnets. Once we have 
found that the ElGamal cryptosystem is the one that fits all our first requirements, we should 
think in some other characteristics that would be useful for our purposes, like size or speed 
characteristics. 
 
For example, in a conventional encryption scheme the length of a message has to be at most 
p-1. If the message is larger, it is divided in blocs that are encrypted individually. This is a non-
efficient solution, due to the fact that each encrypted message at least doubles its original size, 
since the ciphertext has two components, gr and m hk, as large as p-1.  
 
Therefore, one of the improvements that we want to achieve in our proposal for a new 
cryptosystem based on ElGamal encryption is that the long messages are encrypted more 
efficiently. 
 
Some characteristics desired for the encryption scheme are: 
 

- Since this cryptosystem is designed to be used in a re-encryption mixnet, it must be 
infeasible to reconstruct the encrypted message from the one decrypted after re-
encryption, so the content can not be related to the sender. 

 
- Neither of the parts of the ciphertext can remain constant through the re-encryption 

process, since then the output and input messages in the mixnet could be connected. 
 

- The verification of the decryption process does not compromise the voter privacy. 
 

- The cryptosystem must have homomorphic properties to calculate Integrity Proofs in 
order to detect message manipulation. 
 

- It must support large messages without prefixed content (as write-ins). 
 

- If a new multi-block message encryption scheme (for large messages) is designed, it 
has to accomplish that: 
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o It must allow re-encryption. 

 
o The homomorphic characteristics of ElGamal encryption has to be preserved in 

order to calculate Integrity Proofs. 
 

o If the content of one block of a message is disclosed, it must be infeasible to 
discover the content of other blocks of the same message. 

 

 Analysis of existent proposals and design of new ones 
 
In order to study and design new proposals, we will focus first on achieving a more efficient 
encryption for long messages. In e-Voting environments one could consider that there is no 
need of large contents management, because the choices to be encrypted are usually short 
texts (i.e. candidate names), but we could consider the different choices of a voter as blocks of 
the same message that has to be encrypted (i.e. when additive homomorphic cryptosystems 
are used to perform homomorphic tally). Then, an efficient way to encrypt these different 
choices would be useful. 
 
We have talked about the size problem when encrypting large messages, due that each block 
at least doubles its size when encrypted. But we have to talk about performance too. Talking 
about time cost, for each message block mi a new random ri must be generated and two 
exponentiations for hri and gri have to be done. The exponentiation is an operation that has a 
great computational cost in encryption contexts; therefore other methods have been studied 
to encrypt block-divided messages in a more optimistic way, both in performance and size.  
 
 
First, we are going to analyze some academic proposals that have been designed to enhance 
the ElGamal encryption performance for long messages. Then we are going to explain our 
proposals for an encryption system in order to meet our requirements. 
 
In order to compare the computational effectiveness of each proposal, we will consider in a 
first place the effort (in time) needed to encrypt or decrypt a message. Since the most costly 
computations in these cryptosystems are the random generation and the modular 
exponentiation, we will count how many of these operations are required in the 
encryption/decryption process: 
 

4.4.1.  Proposal 0: ElGamal conventional cryptosystem 
 
Encryption 
 

- One random number ri  Є {2, q-1} is generated for each message block. 
 

- The ciphertext corresponding to each message block  is calculated as  
 

 , where  
 

  ,  
 , 
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being   the public key of the destination and x the secret key. 
 

- The group  is sent. 
 
Decryption 
 
For each encrypted message block : 
 

- The receiver calculates  

- Then he extracts the message block . 
 
 
Critical operations needed: 
 

-  Encryption: one random generation, two modular exponentiations for each message 
block. 

o r, hr, gr 
 

- Decryption: one modular exponentiation for each message block. 
o (gr)x 

 

4.4.2. Proposal 1 
 
In [25] a first proposal is made in order to cipher a message divided in several blocks in a more 
efficient way and keeping the probabilistic properties of the encryption algorithm: 
 
Encryption 
 

- Two random numbers r1 and r2 Є {2, q-1} are generated. 
 

- The parameters ,  are calculated as 
 

 and , where g is the generator of the multiplicative group Gq. 
 

- The ciphertext corresponding to each message block is calculated as 
 

 ,  

 
where   is the public key of the destination, x is the secret key, and  denotes 
a XOR operation. 

 
- The group (  is sent. 

 
 
Decryption 
 

- The receiver calculates  and . 
 

-  Then the component  is calculated for each block. 
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- The receiver extracts the message block . 

 
Critical operations needed: 
 

- Encryption: two random number generation and four exponentiations at first. 
o r1, r2, b1, b2, ,  

 
A quadratic exponentiation is calculated for each message block: 

o  
 

- Decryption: two modular exponentiations are calculated at first. 
o  

 
One quadratic exponentiation is needed to decrypt each message block. 

o . 
 
 
The idea of performing a fixed number of operations before the block encryption and reducing 
the operations for each block can enhance the performance of the encryption for multi-block 
messages. Let's see some discussion of this proposal: 
 

4.4.2.1. Discussion of the Proposal 1 
 
In [26] a cryptanalysis of the proposal 1 is made, and some issues are pointed out. 
 
First of all, it is important to comment that, with the proposed syntax, there are some  and 

values for which the  operation generate values that would prevent the message from 
being recovered from the ciphertext (for example, those ones that make the ciphertext to be 
0). 
 
r1 and r2 should be generated carefully to ensure they do not produce one of these critical 
values, and therefore the randomness factor would be noticeably reduced.  
 
It is also demonstrated in [26] that with the solution presented in the proposal 1 the group of 
possible ciphertexts is smaller than the group in Gq since quadratic exponents are used, 
resulting in a weaker cryptosystem. In order to solve this problem a modification is proposed 
where  
 

 changes to  ,  

 
but no solution is proposed for the first problem. 
 

4.4.3. Proposal 2 
 
In [27] an improvement on the proposal 1 is presented. 
 
Encryption 
 

- Generate a random number r Є {2, q-1}. 
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- Each block mi is ciphered as: , where H is a hash function. 

 
-  The group  is sent. 

 
Decryption 
 

- Receive . 
 
- Calculate  with the private key x. 

 
- Knowing the index i of each block, reconstruct the hash function . 

 
- Decrypt the message block as . 

 
Note that the algorithm can fail if . This is verified in the encryption process, 
and, if it happens, a new r must be generated and the encryption starts from the beginning 
with this new value.   
 
Critical operations needed: 
 

-  Encryption: one random number generation and two exponentiations at first. 
o ,  

 
A Hash function is calculated for each message block. 

o  
 

- Decryption: one modular exponentiation is calculated at first. 
o  

 
One Hash function is needed to decrypt each message block. 

o  
 
This algorithm is more efficient that the previous one, since a random number r and the 
exponentiation hr have to be calculated once. Then, for each block to cipher, just a Hash 
function calculation is needed. Moreover, the quantity of information that has to be sent to 
the receiver is significantly reduced, because the size of the ciphertext is the size of the 
plaintext plus the factor , instead of doubling the plaintext size. 
 

4.4.3.1. Discussion of the Proposal 2 
 
From the threat analysis point of view, the security of the cryptosystem relies on the 
complexity of finding, for a known ciphertext  and a message block , the value of the 
parameter w that makes that  
 

 
 
 
It is also clear that the obtainment of one or more ciphertext-plaintext pairs of message blocks 
does not allow to an attacker to guess the ciphertext-plaintext values of the reminding blocks: 
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From the obtainment of the cryptograms  correspondent to the blocks of one 
message, and the obtainment of the plaintext blocks   (all but ), it 

is impossible to find the block  from its cryptogram , since an attacker can find the value 

of the encryption factor multiplied by the plaintext, ei, from the previous information  
 

 for i  j, 

 
but  can not be inferred from them. 

 
It seems that this proposal could be suitable for our purposes. The problem found in this last 
algorithm is that it loses the homomorphism characteristic of conventional ElGamal 
cryptosystems. That is to say that the operation of two different ciphered messages is not 
equal to the cipher of two operated messages (or message blocks), i.e. E(mA)Θ E(mB)= E(mAΦ 
mB). Without this property, the Integrity Proofs can not be calculated and used to detect any 
message manipulation. 
 

4.4.4. Proposal 3 (our first proposal) 
 
To solve the problem mentioned above a new proposal has been done in order to recover the 
homomorphic properties of ElGamal cryptosystem based on the proposal 2. 
  
Encryption 
 

- Generate a random number r Є {2, q-1}. 
 

-  Each block  is encrypted as:  
 

, where H is a hash function. 
 

- The group  is sent. 
 
Decryption 
 

-  The receiver receives  
 

-  Calculate  with the private key x. 
 

-  Knowing the index i of each block, reconstruct the hash function . 
 

-  Decrypt the message block as   
 
 
That way the homomorphism is preserved.  
 
Critical operations needed: 
 

-  Encryption: one random number generation and two exponentiations at first. 
o ,  

 
A Hash function is calculated for each message block. 
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o  
 

- Decryption: one modular exponentiation is calculated at first. 
o  

 
One Hash function is needed to decrypt each message block. 

o  
 
 
How could we use the Integrity Proofs? 
 
For example, a possible Input Integrity Proof based on the multiplication of n cryptograms  
belonging to the same message could be:  
 
 .  
 
Then, to decrypt the Integrity Proof, the product of all the hashes and the factor  could be 
calculated as 
 

   
  

 
and obtain , so we have multiplicative homomorphism.  

 
The Output Integrity Proof calculated from the decrypted message blocks would be: 
 

 , 
 
Then, both proofs could be compared. This operation could be formalised as the operation of 
the message blocks of all the input and output messages. 
 

 
Fig. 4 - 2 Integrity Proofs in Proposal 3 
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4.4.4.1. Discussion of the Proposal 3 
 
In this solution a hash function must be generated for each block message.  is maintained as 
a constant for the blocks belonging to the same message, and the hash function gives the 
needed randomness component. Each time a new message has to be encrypted, a new  
(new random r) is calculated to prevent the occasional repetition of the factor  in 
the encryptions. 
 
Like in the previous algorithm, the security of the cryptosystem relies on the difficulty of 
finding, for a known ciphertext and message block , the value of the parameter w such 
that 
 
   
 
In the same way, if an attacker has access to the cryptograms of the blocks of one message: 

, and to all the decrypted blocks minus one: , it is 

impossible to find the block  from its cryptogram , due to the fact that from the previous 

information an attacker can find the component  
 

   for i  j,  
 

but  can not be calculated from it. 
 
 
Therefore, this proposal provides a method to encrypt several blocks of one message in an 
efficient way without losing the homomorphic properties of the ElGamal cryptosystem. 
Comparing this proposal with the conventional method of independent message block 
codification, both efficiency in performance and size have increased.  
 
In the following figures all the cryptographic operations have been performed using keys of 
1024 bits. 
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4.4.4.1.2.  Performance of the Proposal 3 
 

 
 

Fig. 4 - 3 Encryption time 

 
 

 
Fig. 4 - 4 Decryption time 
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Fig. 4 - 5 Encryption size 

 
These graphics show the time needed to encrypt and decrypt a multi-block message, 
comparing the performance of the conventional ElGamal cryptosystem and the design of the 
Proposal 3. 
 
We can see that for short messages (few blocks) the performance of both cryptosystems is 
similar or even the Proposal 3 is worse, due that the fixed number of operations for each 
message is higher in the Proposal 3 than in the conventional cryptosystem.  
 
When the number of blocks of a message increases, the time needed to encrypt/decrypt in the 
Proposal 3 is almost constant, since the variable operations (the operations for each block) in 
this proposal are less computationally costly than in the conventional cryptosystem. 
 
A resume of the fixed and variable operations for each cryptosystem is presented in Table 1: 
 
 

 
Fixed (for each message) Variable (for each message block) 

Conventional Encryption   1 random generation 

    2 modular exponentiations 

Proposal 3 Encryption 1 random generation 1 hash calculation 

  2 modular exponentiations   

Conventional Decryption   1 modular exponentiation 

    1 inversion 

Proposal 3 Decryption 1 modular exponentiation 1 hash calculation 

   1 inversion 1 inversion 
Table 1 

 
Finally, we notice that the size of encrypted messages increases faster in the case of the 
conventional encryption than in the Proposal 3, since while in the conventional encryption 
each message block doubles its size when it is encrypted, in the Proposal 3 only the one block 
of each message doubles its size and the others maintain their size. In the figure 4.6 the sizes 
of the encrypted messages using both cryptosystems can be compared: 
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Fig. 4 - 6 Comparison of encryption sizes 

 
 
We have more requirements to be accomplished by the new designed cryptosystem, for 
example to be able to implement re-encryption support. Therefore, the search for a suitable 
design must continue. 
 

4.4.5. The re-encryption process 
 
In re-encryption mixnets the input messages are permuted and re-encrypted. Therefore, the 
encrypted messages are encrypted again with new randomization values. This creates new 
values in the output that can not be connected to the values in the input. Using the properties 
of some homomorphic probabilistic algorithms such as ElGamal or Pallier, the messages are re-
encrypted with the same public key h as in the first encryption step, but using different 
random numbers. Therefore, they can be decrypted in one step at the end of the mixing 
process with the private key x. 
 
The re-encryption can be expressed as an operation on the input encrypted message where: 
 

Being C the encryption of a message m 
 

  
 

 The re-encryption result is 
 

 . 
 
The re-encrypted message C' can be decrypted in one step since  
 
  and  
 
If we analize this method in Proposal 3, we conclude that it is impossible to implement a re-
encryption process on it, since the encryption of the message blocks is , where 

 contains the factor  into the hash function that codifies each 
message block. 
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Then, when the re-encryption process is done, the values and are updated with new 

randomization values to  and . Therefore, the factor  inside the Hash cannot 

be recovered from  to reconstruct this encryption component, thus the messages 
are not decrypted.  
 
We need another method that randomizes the encryption of each message block, is only 
recoverable by the receiver and that supports the re-encryption process. 
 

4.4.6. Proposal 4 (our second proposal) 
 
 In a first approach proposed we try encoding each message block as  
 
Encryption 
  

- Calculate a random integer r. 
 

- Encrypt each message block  as 
 
  

  
- The encrypted message is  

 
  

  
Thus, the hash component is different and random at each message block (since we want to 
prevent the encryption of two equal message blocks to result in two equal ciphertexts 
(probabilistic encryption)), and there are no problems reconstructing the hash function when a 
re-encryption process is done, since the hash does not contain any element that could change 
during the re-encryption process.  

 
Re-encryption 

 
- Calculate a random integer r’. 

 
- Re-encrypt the message  as 

 

  

 
Decryption 

 
- Calculate the factor . 

 
- Calculate a hash function for each block from the recovered previous message block: 

 
  

 
- Recover each message bloc  as 
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However, we found a problem when encrypting the first message block, since we do not have 
a previous message block to put inside the hash function. Since it has to be recoverable by the 
receiver, the alternatives are  
 
  , or 

   
 
In both cases, if an attacker obtains the pair , , the factor  can be calculated as 
 

 , 
 or . 

 
Using  the second block can be decrypted, then  could be used to decrypt the third 
block, and so on.  Therefore, the system is not secure enough since the encryption can be 
broken from the knowledge of one pair ciphertext-plaintext of the message blocks. 
 
 
We tried a second approach of this proposal that involves maintaining a hash structure as a 
randomization factor applied over a number that is constant for all the blocks of the same 
message and different for each new message, and that only the receiver may know. 
 
The constant is encrypted and sent with the other parameters as if it was a message block, in 
order to be recovered by the receiver. 

 
Encryption 
 

- Calculate two random integers r1, r2. 
 

- Encrypt each message block  as 
 

  
  

- The encrypted message is  
 

  
 
 
Decryption 
 

- Calculate  
 

-  can be recovered from the third tuple factor as . 
 

- Calculate  as .  
 

- Then compute the hash function  for each message block. 
 

- Recover each message block as: 
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As it is commented in the Proposal 2, if an attacker knows the ciphertext and the plaintext  

and  of a specific block j, the factor  can be discerned. Since the parameter  

can not be extracted from the hash function because it is a unidirectional function,  
for  cannot be calculated. Therefore, the knowledge of one block message and its 
ciphertext does not bring additional information that helps to break the other encryptions.  
 
Re-encryption 
 
The multiplication of  by  allows the re-encryption of the ciphertexts multiplying the 
third part of the tuple by new random values  at each node of the mixnet. 

 
- Thus, if we have a multi-block message encrypted as  

 
 ,  

 
where  

 
- the result of the re-encryption is 

 

 ,  

 
where . 

 
 
 Decryption (after re-encryption) 
 

- Calculate , and . 
 

- Compute  . 
 

- The factor  is calculated for each message block. 
 

- Finally, the message block  is recovered. 
 
 
Critical operations needed: 
 

- Encryption: two random number generation and four exponentiations are calculated 
at first. 

o  , , ,  
 

A Hash function is calculated for each message block. 
o   

 
- Decryption: two modular exponentiations are calculated. 

o   
o   

 
One Hash function is needed to decrypt each message block. 

o   
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How could we use the Integrity Proofs? 
 
For example, a possible Input Integrity Proof based on the multiplication of n cryptograms  
belonging to the same message could be:  
 
 .  
 
Then, to decrypt the Integrity Proof, the product of all the hashes and the factor  could be 
calculated as 
 

   
  
  

 
and obtain , so we have multiplicative homomorphism.  
 
The Output Integrity Proof calculated from the decrypted message blocks would be: 
 

  
 
Then, both proofs could be compared. This operation could be generalised as the operation of 
the message blocks of all the input and output messages. 
 

 
Fig. 4 - 7 Integrity Proofs in Proposal 4 
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4.4.6.1. Performance of the Proposal 4 
 
 

 
 

 
Fig. 4 - 8 Encryption time 

 
 

 
Fig. 4 - 9 Decryption time 
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Fig. 4 - 10 Encryption size 

 
These graphics show the time needed to encrypt and decrypt a multi-block message, 
comparing the performance of the conventional ElGamal cryptosystem, the designed 
cryptosystem of the Proposal 3, and the Proposal 4. 
 
We can see that the performance for encryption/decryption is very similar for Proposal 3 and 
Proposal 4, due to that they are based on the same idea of reducing the cost of the variable 
(per block operations). Therefore, the time for encryption/decryption in the conventional 
cryptosystem increases with the message number of blocks, while in the Proposal 3 and 4 is 
almost constant.    
 
The time for decryption increases from the Proposal 3 to the Proposal 4 since the decryption 
process is more complex in the second proposal. Even so, it is constant while in the 
conventional cryptosystem increases with the message size, so the performance of the 
Proposal 4 is still better.  
 
A resume of the fixed and variable operations for each cryptosystem is presented in Table 2: 
 
 

 
Fixed (for each message) Variable (for each message block) 

Conventional Encryption   1 random generation 

    2 modular exponentiations 

Proposal 4 Encryption 2 random generation 1 hash calculation 

  4 modular exponentiations   

Conventional Decryption   1 modular exponentiation 

    1 inversion 

Proposal 4 Decryption 2 modular exponentiations 1 hash calculation 

  1 inversion 1 inversion 
Table 2 
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Finally, the encryption size increases faster in the case of the conventional encryption than in 
the Proposal 4, due to that while in the conventional encryption each message block doubles 
its size when it is encrypted, only the first block of each message doubles its size, an additional 
block is added and the others maintain their size in the Proposal 4. Due to this additional block, 
the encryption size is slightly larger in the Proposal 4 than in the Proposal 3, but the difference 
is negligible when the message size increases. 
 
In the figure 4.11 there is a comparison of the size of the encrypted messages using the 
conventional cryptosystem and the Proposal 4 version 2. The comparison is done using 2-block 
and 3-block messages. 
 

 
Fig. 4 - 11 Comparison of encryption sizes 

  

4.4.7. Problems found in the previous proposals 
 
Once we thought we had our definitive proposal to achieve an efficient encryption scheme for 
multi-block messages based in the ElGamal cryptosystem, we found two more problems to 
face at: 
 

4.4.7.1. Message traceability through re-encryption processes 
 
The first problem is that there is a factor in the encrypted message that remains constant 
through the successive re-encryptions on each node.  
 
If we consider the encrypted message  
 

,  
 

where ,  
 
and the reencryption result is  
 

 ,  

 

where ,  
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we can see that the factor  is constant through the re-encryptions. 
 
This constant can help an attacker to guess the path of a message through the mix-nodes. 
 
As it is shown in the figure 4.12, an attacker could calculate at each node and for each 
encrypted message the result of dividing two of the pieces of the ciphertext: 
 

 
Fig. 4 - 12 An attacker tracks back the re-encrypted messages 

 
 
Node 1: 

 

 
Node 2: 

 

 
Since the result of the operation is constant in both nodes, the attacker could track back the 
message from the decryption step to the reception, where it is related to the sender, and 
break the voter privacy. 
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4.4.7.2. The 300 attack 
 
The second problem is an attack performed in [16] to a mixnet designed in [15] 
 
That mixnet used an ElGamal cryptosystem and Integrity Proofs based on similar concepts to 
ours. One aspect that Wikström pointed out of that mixnet was that it was not able to detect a 
specific attack to the messages with its Integrity Proofs. 
 
An example of calculation of the Integrity Proofs as the multiplication of the processed 
messages has been explained in the proposals 3 and 4.  
 
Malleability 
 
The ElGamal encryption scheme is malleable. That means that, if we multiply an integer by a 
ciphertext the result is the encryption of integer multiplied by the original encrypted message: 
 

  
 

    
 

  
 
Since this malleability is maintained in our proposals, we will explain how it can be a problem 
based on the second version of the Proposal 4, when the verification of the process is done 
through the comparison of the Integrity Proofs: 
 
Integrity Proofs 
 

- Assume two parties, A and B, that send two encrypted messages as: 
 

  
 

 , 
 
where  
 

  
 

 , 
 

where  
 
 

- The Input Integrity Proof is 
 

 

 
 

- The product of all the hashes and the factors  and  must be calculated to 
decrypt the Input Integrity Proof: 
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     for i=1…n. 

 
     for i=1…n. 
 

     
 
      
 
 

- Finally, we obtain  

 

 
- The Output Integrity Proof is calculated from the decrypted messages, so the result is    

 

 

 
The comparison of these two proofs can be used to detect the possible manipulation of the 
messages during the mixing process. 
 
Attack 
 
Due to the malleability property of the cryptosystem, if someone multiplies the ciphertext by a 
factor (i.e. an integer), the result of the decryption is the plaintext message multiplied by this 
factor: 
 

- If an attacker multiplies an integer by one ciphertext and its inverse by the other, for 
example: 
 

  
 

  
 

- The result of the Input Integrity Proof is  
 

 

 
- And the decrypted Input Integrity Proof is 
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- The result of the Output Integrity Proof is  

 

 

 
Therefore, the manipulation is not detected due to the fact that both proofs are equal (and 
equal to the ones without manipulation), although the decrypted messages do not match the 
original ones. 
 
This is a problem that we have called The 300 Attack, for the value of the factor used to 
multiply and manipulate the messages while we were thinking about a solution for it. Our new 
proposal is aimed to solve these two problems, preventing The 300 Attack and the message 
tracing in the mix-nodes.  
 

4.4.8. Proposal 5 (our third proposal) 
 
Our solution for the problems presented above requires some reasoning steps: 
 

4.4.8.1. Solution to message traceability through re-encryption processes 
 
Any relationship between the elements of the encrypted messages must be avoided in order 
to prevent an attacker from finding a value that remains constant through re-encryptions. 
 
For this purpose, a modification of the Proposal 4 has been done: 
 

- Instead of creating a public key h such as , where x is the private key, 
two public and private keys are created using the same public parameters p and g: 

 
  , and  
 

- While in the Proposal 4 a message was encrypted as 
 

 , where  
 

In the Proposal 5 the encryption is performed as 
 
 ,  
 
where  and y is a random number . 

 
Since we have a second public key , we can encrypt a random number y instead of  using 
it. Then, y can be used to obfuscate the message-block content within the hash .  
 
In the Proposal 4, since the factor  could be discovered during the decryption process, it 
was important to protect the obfuscating hash  putting inside a number that just 
could be calculated having the secret key ( ) in order to preserve the secrecy of 
the encrypted votes received before the mixing process. 
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Now, due that the two public keys are unrelated (from the point of view that it is very difficult 
to know of one of them exponentiated to a random value from the knowledge of the other 
exponentiated to the same value), we can use directly the random number y instead of , 
and then decrease the number of modular exponentiations required in the 
encryption/decryption process. 
 
If an attacker tries to find a factor that remains constant through the different re-encryption 

processes calculating   or  the result always depends on the factor , where r is 

the randomization factor in the encryption. Since the value of r changes at each re-encryption, 

the value of  changes too, and no constant factors can be found. 
 

4.4.8.2. Solution to undetected message manipulation 
 
Now that the first problem has been solved, we should find a method to detect if there has 
been any manipulation of the messages that has not been detected through the Integrity 
Proofs. 
 
Given that we are not able to detect some attacks, as for example The 300 Attack, using group 
verifications as the Integrity Proofs, we are forced to check one by one the integrity of all the 
messages in the decryption step. 
 
If the mixing verification process was enhanced, perhaps there would not be a need for these 
individual verifications, but we think it is still useful to be able to verify the integrity of each 
individual message if it is desired. 
 
In case a manipulation was detected, the mixing process could be repeated to ensure its 
correctness. Therefore, during this verification process both the correct and incorrect 
messages must not be discovered as plaintexts. Otherwise we could reveal too much 
information before repeating the mixing, uncovering the paths of the shuffled messages and 
breaking the voter privacy. 
 
The use of a double encryption could be a possible solution: in this scheme the upper layer 
encrypts the lower message encryption layer jointly with its hash function: 

 
E1(E2(m),H(E2(m))) 
 

When the first layer is decrypted, the message integrity can be verified before decrypting the 
second layer, checking the connection E2(m)  H(E2(m)). If this verification fails, the message 
manipulation has been detected without revealing any plaintext message. 
 
This procedure has been followed in [48] and in [15]. 
 
Although a similar system is required in the cryptosystem to be designed since Integrity Proofs 
do not detect all the possible manipulations, the double encryption is avoided in order to 
achieve a lower computational cost.  
 
Combining these two ideas we have designed a new proposal from the modification of the 
Proposal 4 in order to resolve the problems explained above. 
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Key Generation 
 

- Choose two random integers x1 and x2 where  as the secret keys. 
 

- Calculate two public keys  and . 
 
It is assumed that the entity in charge of vote decryption has both keys x1 and x2, although they 
could be given to different organizations in order to distribute the trust. 
 
Encryption 
 

- Generate two random numbers, r and y, such that . 
 

- Divide the message m in different message blocks mi such that [mi+sH] < q, where sH is 
the size of a hash function that will be attached to the message block (i.e. if SHA1 is 
used the length is 160 bits). 

 
- Encrypt the message m as 

 

 ,  
 

where  

 

- Send  
 
Re-encryption 
 

- Generate a random number, r’, such that . 
 

-  Thus, if we have a multi-block message encrypted as  
 

 ,  
 

 
- The re-encryption result is  

 

 , 

 

where . 

 
 
Partial Decryption 
 

- The receiver calculates . 
 

-  Then obtains 
 

  

 
for each message block. 
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Hash Verification 
 
Before keeping on with the decryption process, a verification process must be done at each 
individual message in order to detect attacks like the The 300 Attack using the component 
 

 , 

 
for each enrypted message or message block: 
 

- The verifier divides it in two pieces:  
 
  

  

  

 
- Then checks that H(s)=t.  

 
If the verification process succeeds, the process can continue. Otherwise it is stopped and an 
error is reported. 
 
Final Decryption 
 

- The receiver calculates , 
 

- Obtains  
 

- Then calculates the hash H(y|i) for each message block, 
 

-  And recovers each one as  . 
 
 
A message divided in two blocks and then encrypted looks like this:  
 

 
Fig. 4 - 13 Message encrypted using the Proposal 5 

 
 
Critical operations needed: 
 

- Encryption: two random number generation and three exponentiations at first. 

o  , , ,  
 

Two Hash functions are calculated for each message block. 

o  ,  

 
- Decryption: two modular exponentiations are calculated. 

o   
o   
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One Hash function is needed to decrypt each message block. 
o   

 
- Verification: a hash function is needed in order to verify the integrity of each message 

block. 

o   

 
 
How could we use the Integrity Proofs? 
 
One of the scopes of the new cryptosystem is to be able to calculate Integrity Proofs before 
and after a particular process (i.e. a mixing process that re-encrypts and decrypts the input 
messages) that can be compared in order to detect unauthorized modifications in the set of 
input messages. 
 
An example of how these Integrity Proofs can be calculated and compared in this Proposal 5 is 
presented here: 
  
Input Integrity Proof Generation 
 

- From a set of messages in the process (mixing) input, each one being encrypted as  
 

,  
 

where  

 
- An Input Integrity Proof is calculated as 

 

 

 
Where j=1...k, being k the number of input messages and i=1…n, being n the number of 
blocks of each input message.  
 

This proof is calculated based on all the blocks of the set of messages in the process (mixing) 
input (we assume that all the encrypted messages have the same size). 
 
Output Integrity Proof Generation 
 

- From the set of messages in the process (mixing) output, where each message block is 
partially decrypted as  
 

 

 
- The Output Integrity Proof can be calculated as  
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Where j=1...k, being k the number of output messages, and i=1…n, being n the number 
of blocks of each output message.  

 
This proof is calculated based on all the blocks of all the messages in the process (mixing) 
output. 
 
Input Integrity Proof Decryption 
 
In order to compare the Input IntegrityProof and the Output Integrity Proof in a process where 
the output messages are decrypted or partially decrypted, the Input Integrity Proof has to be 
decrypted too: 
 

- From the Input Integrity Proof  
 

 

 
the receiver calculates  

 

 

 
-  Then obtains the decryption of the Input Integrity Proof as 

 

 

 
 
Integrity Proofs Verification 
 
The Output Integrity Proof  and the Decrypted Input Integrity Proof  are compared. If the 
messages have been manipulated during the process (mixing), these two proofs do not match. 
In case of The 300 attack the manipulation is not detected until the Hash verification step. 
 
Procedure 
 
Using a case study where the encrypted messages are encrypted votes and the process that 
makes a transformation over the encrypted messages is a Mixnet which does a re-encryption 
process at each mix-node and a decryption one in the last node, the steps to follow in order to 
take profit of the main advantages of this encryption proposal are: 
 



 
Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló 
 

81 
 

1. Message Encryption 
2. Input Integrity Proof Generation 
3. Message Re-encryption 
4. Intermediate Integrity Proof Generation 
5. Partial Decryption 
6. Output Integrity Proof Generation 
7. Input and Intermediate Integrity Proof Decryption 
8. Integrity Proofs Verification 
9. Hash Verification 
10. Final Decryption 

 
 
In the figures 4.14, 4.15, 4.16 and 4.17 an example of the mixing procedure for two messages 
is described. 
 
 
 
 
 

 
Fig. 4 - 14 Message encryption. First shuffle and re-encryption process in the mixnet. Calculation of Input and 

Intermediate Integrity Proofs 
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Fig. 4 - 15 Partial decryption and calculation of the Output Integrity Proof 
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Fig. 4 - 16 Integrity Proofs verification step 
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Fig. 4 - 17 Hash verification and final decryption 
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4.4.8.3. Performance of the Proposal 5 
 
In order to check the performance of the Proposal 5 1024 bit-size keys and two input messages 
have been used. 
 
 

 
Fig. 4 - 18 Encryption time 

 
 

 

 
Fig. 4 - 19 Re-encryption time 

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2*127 2*248 2*504 2*1016 2*2016 2*4064

Conventional 
Encryption

Proposal 5 
Encryption

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2*127 2*248 2*504 2*1016 2*2016 2*4064

Conventional Re-
encryption

Proposal 5 Re-
encryption

Message Size (bytes) 

Time (ms) 

Time (ms) 

Message Size (bytes) 



Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló 
 

86 
 

 
 

 
Fig. 4 - 20 Decryption time 

 
 
 

 
Fig. 4 - 21 Encryption size 

 
These graphics show the time needed to encrypt, re-encrypt and decrypt two multi-block 
messages, comparing the performance of the conventional ElGamal cryptosystem and the one 
presented in the Proposal 5, including the calculation and verification of the Integrity Proofs 
and the individual Hash verification for each message block before the final decryption. 
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The performance of the Proposal 5 in the encryption/re-encryption/decryption processes is 
constant while the message size increases, in contraposition to the behaviour of the 
conventional ElGamal cryptosystem. This is due to the fact that the number of fixed operations 
(per message) in the Proposal 5 increases and the number of variable operations (per message 
block) decreases in comparison with the conventional cryptosystem, going on with the same 
philosophy that was the aim of the proposals 3 and 4. 
 
Therefore, for small messages the performance of the conventional cryptosystem is better. 
 
The decryption operation in the Proposal 5 is a little slower than in earlier proposals because 
the verification of the Integrity Proofs and the individual Hash checking for each message block 
are done in this process. Even so, the process is faster than when the conventional 
cryptosystem is used. 
 
A resume of the fixed and variable operations for each cryptosystem is presented in Table 3: 
 

 
Fixed (for each message) Variable (for each message block) 

Conventional Encryption   1 random generation 

    2 modular exponentiations 

Proposal 5 Encryption 2 random generation 2 hash calculations 

  3 modular exponentiations   

Conventional Re-encryption   1 random generation 

    2 modular exponentiations 

Proposal 5 Re-encryption 1 random generation    

  3 modular exponentiations   

Conventional Decryption   1 modular exponentiation 

    1 inversion 

Proposal 5 Decryption 2 modular exponentiations 1 hash calculation 

  2 inversion 1 inversion 
Table 3 

  
Although the encryption size still increases faster with the message size using the conventional 
encryption than using the Proposal 5, the fact of adding a Hash resume next to the block 
message to be encrypted results in more block messages for the same message size, since the 
block size limitation is [mi+sH] < q (where sH is the size of the Hash resume) in the Proposal 5 
instead of mi< q in the other proposals.  
 
Due that more block message encryptions are needed in the Proposal 5 than in the 
conventional cryptosystem for the same message size, the encryption size for small messages 
is higher in the new proposal, and, although it is smaller than the encryption size in the 
conventional cryptosystem when the message size increases, it is bigger than in the other 
proposals.  
 
In the figure 4.22 a comparison between the sizes of an encrypted message using the 
conventional cryptosystem and using the Proposal 5 is shown. The comparison is done 
encrypting a 2-block message (considering that the message blocks for the Proposal 5 are 
smaller than the ones in the conventional cryptosystem).  
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Fig. 4 - 22 Comparison of encryption sizes 

  

4.4.8.4. Problems found in the Proposal 5 
 
The problems found in the proposals 3 and 4 were solved in the Proposal 5, but another 
problem appears when this cryptosystem is used to encrypt messages that are processed in a 
mixnet in order to be de-correlated from their origin. 
 
Although the relationship between the different parts of the cryptosystem (a, b, d) change 
which each re-encryption process in order to achieve non-traceable secret paths for the 
messages in the mix-nodes, the block encryptions of a same message have a constant 
relationship through the re-encryption processes: 
 
Being each block message encrypted as 
 

 

 
The relationship between two encrypted block messages is  
 

 

 
After a re-encryption process, each block message is encrypted as 
 

 

 
And then, the relationship between two encrypted block messages is  
 

 

 
The relationship between two message blocks remains constant after the re-encryption. 
Therefore, the attacker could track the message through the different shuffling and re-
encryption processes searching for the same relationship values at the input and the output of 
each mix-node as it is shown in figure 4.23. 
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Fig. 4 - 23 Attack based on the re-encryption process 

 
Therefore, the relationship between two block messages should not be constant. We have to 

change the system where all the blocks are encrypted using the same random factor   

( ). 

 
If we use a different random number r for each message block  
 

,  

 
we lose the speediness that gives to us the fact of calculating just one exponentiation for all 
the message blocks, in front of what is needed in the conventional ElGamal cryptosystem. 
Thus, the efficiency goes down. 
 

An alternative to this solution is presented in Proposal 6, where a unique exponentiation ( ) 

for all the message blocks to be encrypted is combined with a new exponentiation ( ) for 
each one in the re-encryption process with a smaller exponent. 
 
While the encryption exponent r has the same magnitude of the public encryption factor p, 
that must be at least a 1024-bit size number (better 2048-bit) [18], the “dispersion” exponent 

 is the result of a hash function, that usually has a smaller size than the module of a 
cryptosystem based on the DLP (256, 512 bits…), so a modular exponentiation for each block 
using this type of exponents makes the Proposal 6 still faster than the conventional encryption.  
 

Thus, the cryptosystem security is preserved by multiplying the cleartexts by  while the 

untraceability of the messages through the mixnet is ensured by the component  
calculated for each message block.  
 
The encryption of the message information jointly with its hash that was designed in Proposal 
5 is maintained in this proposal; therefore, the verification of the encrypted message integrity 
block per block can be performed before it is finally decrypted. 
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4.4.9. Proposal 6 
 
Key Generation 
 

- Generate 3 secret keys x1, x2, x3 as random numbers in Zq. 
 

- The public keys are: 
  h1=gx1 
  h2=gx2 
  h3=gx3 
 
As in the Proposal 5, the secret keys can be given to different organizations in order to increase 
the system trust. 
 
Encryption 
 

- Each message m is split in blocks mi so that [mi+sH] < q, where sH is the size of a hash 
function that will be attached to the message block. 
 

- Two random parameters (different for each message, equal for all the blocks of a 
message) {r1, y} < q are calculated. 
 

- For each mi: 
 

o Calculate , where i is the message block index. 
 

o Calculate . 

 

o Construct . 

 
- The encrypted message is equal to:  

 

 . 
 
Re-encryption 
 

- Calculate two random parameters in Zq, r1’ and r2’. 
 

- Perform the re-encryption process as: 
 

o  . 
 

o  
 

o . 
 

o , 

 
where the operation  
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is performed for each block. 
 

- The re-encryption result is:  
 

 
 
where n is the number of message blocks. 
 

 
As in the Proposal 5, a partial decryption process is done before the complete decryption in 
order to verify the hash attached to each message block. 

 
Partial Decryption 
 

- Calculate in the reception:  in order to obtain 
. 

 

- Calculate  . 
 

- Calculate for i=1..n. 
 

-  Then obtain 
 

  

 
for each message block. 
 
 

Hash Verification 
 
If we have the component  
 

 , 

 
for each encrypted message or message block: 
 

- The verifier divides it in two pieces:  
 
  

  

  

 
- Then checks that H(s)=t.  

 
If the verification process succeeds, the process can continue. Otherwise it is stopped and an 
error is reported. 
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Decryption:  
 

- Calculate  in order to obtain  
 

- For each encrypted message block  obtain  as  
 

. 
 

 
An example of an encrypted message in the Proposal 6 is: 
 

 
Fig. 4 - 24 Encrypted message using the Proposal 6 

 

Critical operations needed: 
 

- Encryption: two random number generations and four exponentiations at first. 

o  , , , ,  
 

Two Hash functions are calculated for each message block. 

o  ,  

 
- Re-encryption: two random number generations and four exponentiations for each 

message. 

o  , , , ,  
 

One modular exponentiation with small exponent is needed to re-encrypt each 
message block. 

o   
 

- Decryption: three modular exponentiations are calculated for each message. 

o   

o   

o  
 
One Hash function and one modular exponentiation with small exponent are needed 
to decrypt each message block. 

o  ,  
 

- Verification: a hash function is needed in order to verify the integrity of each message 
block. 

o   

 
 
Traceability Prevention 
 
Using the dispersion method proposed in the re-encryption process we prevent the message 
traceability through the re-encryption nodes.  
 
In the Proposal 5 we had each block message encrypted as 
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The relationship between two encrypted block messages was 
 

 

 
Due that after a re-encryption process, each block message was encrypted as 
 

 

 
The relationship between two encrypted blocs was the same than before the re-encryption 
process: 
 

 

 
 
In the Proposal 6 the relationship between two encrypted blocks before re-encryption is 
 

 

 
And after the re-encryption the relationship is 
 

 

 
If we re-encrypt again the message, the relationship between the two blocks is 
 

 

 
Thus, since the random numbers  and  are not known by an external attacker, the 
relationship between the encrypted blocks changes at each re-encryption step and the 
messages can not be traced. 
 
 
How could we use the Integrity Proofs? 
 
As in the previous proposals, here we will explain how can we calculate and compare Integrity 
Proofs in order to verify a mixing process using this new proposal.  Following the procedure 
followed in the Proposal 5, a scenario with multiple messages, each one with multiple blocks is 
presented:  
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Input Integrity Proof Generation 
 

- From a set of input messages in a process (mixing), each one being encrypted as  
 

, 
 

where  

 
- An Input Integrity Proof is calculated as 

 

 

 
Where j=1...k, being k the number of input messages and i=1…n, being n the number of 
blocks of each input message.  
 

This proof is calculated based on all the blocks of the set of messages in the process (mixing) 
input. 
 
Intermediate Integrity Proof Generation (calculated from the inputs or the outputs of an 
intermediate node) 
 

- Being each encrypted message in the mixing process re-encrypted as 
 

, 

 

where  

 
- An Intermediate Integrity Proof is calculated as 

 

 

 
Where j=1...k, being k the number of input messages and i=1…n, being n the number of 
blocks of each input message.  
 

This proof is calculated based on all the blocks of the set of messages in the process (mixing) 
input. 
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Output Integrity Proof Generation 
 

- From the set of messages in the process (mixing) output, where each message block is 
partially decrypted as  
 

 

 
- The Output Integrity Proof can be calculated as  

 

 

 
Where j=1...k, being k the number of output messages, i=1…n, being n the number of 
blocks of each output message.  

 
This proof is calculated based on all the blocks of all the messages in the process (mixing) 
output. 
 
Input Integrity Proof Decryption 
 
In order to compare the Input IntegrityProof and the Output Integrity Proof in a process where 
the output messages are decrypted or partially decrypted, the Input Integrity Proof has to be 
decrypted: 
 

- From the Input Integrity Proof  
 

 

 
the receiver calculates  

 

 

 
-  Then obtains the Input Integrity Proof  decrypted as 
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Intermediate Integrity Proof Decryption 
 
If we want to compare the Intermediate Integrity Proof with the Output Integrity Proof, we 
have to decrypt this proof too: 
 

- From the Intermediate Integrity Proof  
 

 

 
the verifier calculates  

 

 

 
 

 

 

 

 

 
 
 
 

-  Then obtains the Intermediate Integrity Proof  decrypted as 
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Integrity Proofs Verification 
 
The Output Integrity Proof  and the Decrypted Input and Intermediate Integrity Proofs  and 

 are compared. In case the messages were manipulated during the process (mixing), these 
three proofs would not match. If there are various mix-nodes and we calculate an Integrity 
Proof in the input and the output of each one, we can know which node or nodes have 
cheated comparing the decrypted proofs.  
 
 
Procedure 
 
Basically, the procedure to use this cryptosystem properly in a re-encryption mixnet is the 
same than in the Proposal 5, changing some details about the implementation: 
 

1. Message Encryption 
2. Input Integrity Proof Generation 
3. Message Re-encryption 
4. Intermediate Integrity Proof Generation 
5. Partial Decryption 
6. Output Integrity Proof Generation 
7. Input and Intermediate Integrity Proof Decryption 
8. Integrity Proofs Verification 
9. Hash Verification 
10. Final Decryption 

 
 
In the figures 4.25, 4.26, 4.27, 4.28 an example of the mixing procedure for two messages with 
two blocks each one is described.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló 
 

98 
 

 
 
 
 
 
 
 
 

 
Fig. 4 - 25 Mixing process: shuffling and re-encryption. Calculation of the Input and Intermediate Integrity Proofs 
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Fig. 4 - 26 Partial decryption and Output Integrity Proof calculation 
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Fig. 4 - 27 Integrity Proofs verification 
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Fig. 4 - 28 Hash verification and final decryption 
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4.4.9.1. Performance of the Proposal 6 
 

 
Fig. 4 - 29 Encryption time 

 
 

 
Fig. 4 - 30 Re-encryption time 

 
 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2*127 2*248 2*504 2*1016 2*2016 2*4064

Conventional 
Encryption

Proposal 6 
Encryption

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2*127 2*248 2*504 2*1016 2*2016 2*4064

Conventional 
Re-encryption

Proposal 6 Re-
encryption

Time (ms) 

Message Size (bytes) 

Time (ms) 

Message Size (bytes) 



 
Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló 
 

103 
 

 
Fig. 4 - 31 Decryption time 

 
 

 
Fig. 4 - 32 Encryption size 

 
 
The graphics show the time resources needed to encrypt, re-encrypt and decrypt two multi-
block messages in both conventional and Proposal 6 cryptosystems. Like in the Proposal 5, the 
simulation in these graphics includes the time of calculation and verification of the Integrity 
Proofs and the individual Hash verification of each message block. 
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Unlike in the previous proposals, the re-encryption and decryption times in this proposal are 
not constant while the message size increases. This is due to the fact that, in order to prevent 
message tracing through the mix-nodes, a small modular exponentiation is performed for each 
encrypted block instead of performing just an exponetiation for each message as in the 
previous proposals. Since the exponentiation to be performed in the re-encryption and 
decryption processes uses a small exponent, this cryptosystem is still faster than the 
conventional one. Finally, we can say that we have left the heavy computations to the mixing 
and decryption processes, since the process for encryption (which has to be done by the voter) 
is still constant in time while the message size increases. We think this is a good approach, 
since we can not suppose that the user (the one that encrypts the message at first) will have a 
device fast enough to do the encryption process in a little time, but the mixing and decryption 
servers can be designed to support these heavy computations.  
 
Like in the other cases, the performance of the conventional cryptosystem for small messages 
is better. 
 
A resume of the fixed and variable operations for each cryptosystem is presented in Table 4: 
 
 
 

 
Fixed (for each message) Variable (for each message block) 

Conventional Encryption   1 random generation 

    2 modular exponentiations 

Proposal 6 Encryption 2 random generation 2 hash calculations 

  4 modular exponentiations   

Conventional Re-encryption   1 random generation 

    2 modular exponentiations 

Proposal 6 Re-encryption 2 random generation 1 modular exponentiation (small exponent) 

  4 modular exponentiations   

Conventional Decryption   1 modular exponentiation 

    1 inversion 

Proposal 6 Decryption 3 modular exponentiations 1 hash calculation 

  3 inversions 2 inversions 

    1 modular exponentiation (small exponent) 
Table 4 

 
Since we have added another constant factor in the encryption (h3) in the Proposal 6, the 
ciphertext size is larger than in the Proposal 5, but it is still smaller than in the conventional 
encryption for large messages since most of the parameters are fixed for whichever is the size 
of the message to be encrypted.  
 
Like in the Proposal 5, the fact of adding a Hash resume next to the block message to be 
encrypted results in more block divisions for the same message size than in the conventional 
cryptosystem, since the block size limitation is [mi+sH] < q (where sH is the size of the Hash 
resume) instead of mi < q. This drawback makes the cryptosystem to divide each message to 
be encrypted into more and smaller blocks, increasing the computation time.  
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4.4.10. Conclusions about the proposed cryptosystems 
 
Finally we can evaluate the features achieved with each proposal in order to see the process 
evolution in Table 5:  
 
 
 

 
Proposal 3 Proposal 4 Proposal 5 Proposal 6 

PI Calculation YES YES YES YES 

Homomorphism YES YES YES YES 

Re-encryption NO YES YES YES 

Message Traceability Prevention NO NO NO YES 

Three-Hundred Attack Detection NO NO YES YES 
Table 5 

 
Neither the Proposal 1 nor 2 had the homomorphic properties we needed in order to calculate 
the Integrity Proofs. This issue was solved in the Proposal 3, so we could expose how the 
Integrity Proofs could be calculated in each proposal. 
 
The Proposal 3 did not be suitable to apply re-encryption processes over the encrypted 
messages. Therefore, this topic was solved in the Proposal 4. 
 
The 300 Attack detection was solved in the Proposal 5, and finally in the Proposal 6 we solved 
the problem of message traceability through the re-encryptions performed at each mix-node. 
 
Finally, a comparison of the performance of the presented proposals is shown in the next 
graphics: 
 

 
Fig. 4 - 33 Encryption time 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2*127 2*248 2*504 2*1016 2*2016 2*4064

Conventional 
Encryption

Proposal 3 
Encryption

Proposal 4 
Encryption

Proposal 5 
Encryption

Proposal 6 
Encryption

Time (ms) 

Message Size (bytes) 



Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló 
 

106 
 

 

 
Fig. 4 - 34 Decryption time 

 

 
Fig. 4 - 35 Encryption size 

 
 
The time needed in the encryption process is more or less the same for all the presented 
proposals, but in decryption time and encryption size the Proposal 6 is the worst of them, due 
to that we had to build a more complex scheme every time that a problem was detected in a 
proposal. Even so, the Proposal 6 is faster and requires less storage resources than the 
conventional cryptosystem. 
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4.5. Elliptic Curve Cryptography: EC ElGamal Cryptosystem 
 

4.5.1. Elliptic Curve Cryptography 
 
The mathematical theory of elliptic curves [28] [29][30][31] provides a class of finite groups 
that have proven quite suitable for cryptographic use. Koblitz and Miller proposed in 1985 the 
use of the group of points of an elliptic curve in public-key cryptography.  
 
The security in the Elliptic Curve Cryptography (ECC) depends on the difficulty of the Elliptic 
Curve Discrete Logarithm Problem: 
 

- Let P and Q be two points on an elliptic curve such that k P=Q, where k is a scalar. 
 

- Given P and Q, it is computationally infeasible to obtain k, if k is sufficiently large.  
 
k is called to be the discrete logarithm of Q to the base P. The name of ECDLP is due to its 
equivalence with the one found in cryptosystems as ElGamal, due that the additive operations 
in EC are similar to the exponentiations in ElGamal.  
 
If the chosen finite field is large, the discrete logarithm problem on elliptic curve abelian 
groups is believed to be more difficult than the corresponding problem in the underlying finite 
field's multiplicative group. Therefore, one main advantage of ECC is that the key size usually 
needed in cryptographic applications is smaller than the one needed using conventional finitie 
fields. For example, a 160-bit key in ECC is considered to be as secured as 1024-bit key in RSA. 
 

4.5.1.1. Mathematical background 
 
The mathematic operations in elliptic curves are defined over an elliptic curve characterised by 
a and b: 
 

 , 
 

where . 
 
 
Each value of a and b generates a different elliptic curve. All points which satisfy the above 
equation plus a point at infinity lie on the elliptic curve. This set of points on such a curve 
compose an abelian group, with the point at infinity as identity element. If the coordinates x 
and y are chosen from a finite field, the solutions compose a finite abelian group.  
 
The elliptic curve arithmetic is described in [28], [31] and in [30]. 
 
Use of finite fields 
 
The elliptic curve operations over the real numbers are slow and inaccurate due to round-off 
error. Cryptographic operations need to be faster and accurate. To make operations on elliptic 
curve accurate and more efficient, the curve cryptography is defined over two finite fields: 
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- Prime field  

 
- Binary field  

 
The field is chosen with finitely large number of points suited for cryptographic operations. 
 
EC on Prime field  

 
In finite fields  the EC definition and operations are defined under the p module, having then 

the basic equations as: 
 

  
 
 , 

 
where all the integers Є {0, p-1}. 
 
All the operations such as addition, substraction, division, multiplication involve integers 
between 0 and p-1. The primer number p is chosen such that there is finitely large number of 
points on the elliptic curve to make the cryptosystem secure. SECG [34] specifies curves with p 
ranging between 112-425 bits. 
 
EC on Binary field  
 
In binary field  , the elliptic curve equations are 
 

 ,  
 
where . 
 
The elements of the finite field are integers of length at most m bits. These numbers can be 
considered as a binary polynomial of degree m-1. All the operations are done with at most m-1 
grade polynomials. 
 
The m is chosen such that there is finitely large number of points on the elliptic curve to make 
the cryptosystem secure. SECG [34] specifies curves with m ranging between 113-571 bits. 
 
 
In  the elements are integers , which are combined using modular arithmetic. The 

case of  is slightly more complicated: one obtains different representations of the field 
elements as bitstrings for each choice of irreducible binary polynomial f(x) of degree m. 
 
In our implementation we are going to use elliptic curves over finite fields  defined for the p 

module.  
 

4.5.1.2. Domain parameters 
 
To use ECC all parties must agree on all the elements defining the elliptic curve, that is the 
domain parameters of the scheme: 
 

- The field is defined by p in the prime case and the pair of m and f in the binary case. 
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- The elliptic curve is defined by the constants a and b used in its defining equation.  

 
- Finally, the cyclic subgroup is defined by its generator or base point G. For 

cryptographic application, the order of G, that is the smallest non-negative number n 
such that , must be prime.  
 
Since n is the size of the subgroup of  it follows from the Lagrange's theorem that 

the number /n is integer, where  is the number of points of the 

elliptic curve.  
In cryptographic applications this number h, called cofactor, must be small ( ) 
and, preferably, h=1. If not, the curve would be vulnerable to the Pohlig-Hellman 
attack.  
 
The same can be applied for  

 
In the prime case the domain parameters are (p, a, b, G, n, h) and in the binary case they are 
(m, f, a, b, G, n, h). 
 
 
Finally, not all the elliptic curves are useful in cryptographic schemes since they are 
recommended not to be supersingular or anomalous. Supersingular curves are those that have 
a cardinal   equal to p+1. Then, a MOV [33] attack could be done, reducing the group 

where the discrete logarithm problem has to be solved to break the cryptosystem. The 
anomalous curves have a cardinal  equal to p. Although they are resistant to the MOV 

attack, a polynomial algorithm to solve the discrete logarithm problem over their field could be 
designed. 
 
Unless there is an assurance that domain parameters were generated by a trusted party, the 
domain parameters must be validated before use. 
 
The generation of domain parameters is not usually done by each participant since this 
involves counting the number of points on a curve , which is time-consuming and trouble 
some to implement. As a result several standard bodies published domain parameters of 
elliptic curves for several common field sizes, as the NIST in the document [35] and the SECG, 
[32]. The NIST recommended elliptic curves are chosen for optimal security and 
implementation efficiency. 
 
If one wants to build his own domain parameters he should select the underlying field and 
then use one of the following strategies to find a curve with appropriate (i.e. near prime) 
number of points using one of the following methods [36]: 
 

- Select a random curve and use a general point-counting algorithm, for example, 

Schoof’s algorithm or Schoof-Elkies-Atkin algorithm. 

 

- Select a random curve from a family which allows easy calculation of the number of 

points (eg Koblitz curves), or 

 

- Select the number of points and generate a curve with this number of points using 

complex multiplication technique. 
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4.5.1.3. Keys 
 
If we want to use the ECC in a public key cryptosystem, we need a public and a private key. 
Since by the ECDL problem it is infeasible calculate an integer k such that  knowing Q 
and P, k is used to be the secret key while Q is the public key and P is a generator point 
(commonly called G) such that the multiplication of any integer (in the n range) by this point G 
results in a point belonging to the specified EC. 
 

4.5.1.4. ECC algorithms 
 
The EC algorithms are specified in [37]. Most of the EC cryptographic schemes are related to 
the discrete logarithm schemes which were originally formulated for usual modular arithmetic: 
 

- The Elliptic Curve Diffie-Hellman key agreement scheme is based on the Difffie-
Hellman scheme. 
 

- The Elliptic Curve Digital Signature Algorithm is based on the Digital Signature 
Algorithm. 
 

- The ECMQV key agreement scheme is based on the MQV key agreement scheme. 
 
Not all the DLP schemes should be ported to the elliptic curve domain. For example, the well 
known ElGamal encryption scheme was never standardized by official bodies and should not 
be directly used over an elliptic curve (the standard encryption scheme for ECC is called Elliptic 
Curve Integrated Encryption Scheme). The main reason is that although it is straightforward to 
convert an arbitrary message to an integer modulo p, it is not that simple to convert a bitstring 
to a point of a curve. 
 
Due to the operation complexity, the most extended applications for the ECC are the digital 
signature ECDSA and the key exchange protocol ECDH. In these algorithms public key 
cryptography is used creating a private key as a random integer and a public key as a point of 
the curve that is the multiplication of the private key by a generator. Instead of operating with 
these keys, a subkey derived from the public key (a coordinate of a point) is used to avoid the 
elliptic curve point operation and the conversion of the message to a point. 
 
The main concept of these schemes is: 
 

- A generates a random number  that is his secret key. 
 

- A obtains his public key as . 
 

- B does the same for  and . 
 

- A can generate a new point that only A and B will know as  
 

- B can generate the same point . 
 

- Using this shared secret a message can be encrypted. 
 
The only standardised algorithms are the named above for key agreement and for digital 
signature. At the RSA Conference 2005, the NSA announced Suite B [38] which exclusively uses 
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ECC for these uses. The suite is intended to protect both classified and unclassified national 
security systems and information. 
 
In [28] these two standardised algorithms are detailed: 
 
ECDSA: Elliptic Curve Digital Signature Algorithm 
 
For signing a message m by sender A, using A’s private key : 
 

- Calculate , where H is a cryptographic hash function. 
 

- Select a random integer d from . 
 

- Calculate , where . If , go to step 2. 
 

- Calculate . If , go to step 2. 
 

- The signature is the pair . 
 
For B to authenticate A’s signature, B must know A’s public key : 
 

- Verify that r and s are integers in . If not, the signature is invalid. 
 

- Calculate . 
 

- Calculate . 
 

- Calculate  and . 
 

- Calculate  
 

- The signature is valid if , invalid otherwise. 
 
 
ECDH: Elliptic Curve Diffie Hellman 
 
ECDH is a key agreement protocol that allows two parties to establish a shared secret key that 
can be used for private key algoritms. 
 
Let  be the private key-public key pair of A and  B’s key pair. 
 

- A computes . 

 
- B computes . 

 
- Since , P=L  and hence . 

 
- The shared secret is . 
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4.5.2. EC Homomorphic Cryptosystems 
 

4.5.2.1. EC ElGamal Cryptosystem 
 
As it has been explained before, due that we want to use Integrity Proofs in order to verify the 
correct mixing process, we need an homomorphic cryptosystem. The use of an EC ElGamal 
cryptosystem for message/vote encryption has been studied from [28][31] and exposed here. 
 
The importance of considering the ElGamal cryptosystem over a group of points of an elliptic 
curve relies in that the algorithms that solve the PLD over E(Fp) are harder than in Fp *, so the 
key size can be much smaller (160 bits versus 1024). 
 
In order to configure such a cryptosystem the domain parameters (p, a, b, G, n, h) are 
specified, being k  {1, n-1} the receiver private key and Q=k G the public key, where G is the 
point generator of the elliptic curve. 
 
Then, the message that needs to be encrypted has to be converted into a point of the elliptic 
curve. The message is first converted to a natural number (0<m<p), and then is usually 
identified with the abscissa of a point M of the curve  defined as  

 
y2=x3+a x+b 

 
Then: 
 

y2=x3+a x+b  y2=m3+a m+b M=(m,y) 
 

If the result of m3+a m+b is not quadratic, we can try with m+1.  
 
The encryption and decryption processes are explained here: 
 
EC ElGamal encryption 
 

- The message to be encrypted is represented as a point of the curve M. 
 

- Choose a random integer r  {1, n-1}. 
 

- Calculate the elliptic curve points C1=r G and C2=M+r Q. 
 

- Send C1, C2. 
 
EC ElGamal decryption 
 

- Calculate the point k C1=k r G=r Q. 
 

- Calculate the point M= C2-r Q.  
 

- Obtain m from M. 
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4.5.2.2. EC Paillier-Galbraith cryptosystem 
 
Paillier designed an homomorphic cryptosystem over a ring Zn

2, n=p  q, based on the 
composite residuosity problem [39]. 
 
An Elliptic Curve approach was done by S. Galbraith in [40] considering an integer n=p  q, 
being p and q primes, and a curve E over the ring Zn

2 for the scheme configuration. 
 
One of the advantages of this scheme is that the message to encrypt m does not have to be 
converted to a point of the curve. 
 
The private key in this cryptosystem is  
 

k=lcm(#E(Fp), #E(Fq)) 
 
So, in order to calculate k we need to know the cardinals of the curve E over Fp and Fq.  
 
The public key is a point Q in #E(Zn

2) such that  
 
k  Q=[0, 1, 0].  

 
To calculate Q we choose a random point Q', being Q=n  Q'.  
 
 
EC Paillier-Galbraith encryption 
 

- A message m is represented as a point Pm=[m  n,1,0] of E(Zn
2). 

 
- A random integer r is chosen in Zn. 

 
- Calculate the point C=r  Q+Pm in E(Zn

2). 
 

- Send C. 
 
EC Paillier-Galbraith decryption 
 

- Calculate the point k  C=k (r  Q+Pm)=(0,1,0)+(k  m  n,1,0)=(k  m  n,1,0) in E(Zn
2). 

 
- Obtain the first coordinate x=k  m  n of the point k  C. 

 
- Calculate y=(x/n) in Z and the product m=y  d-1 in Zn. 

 
- Return m. 

 
Using this cryptosystem, the message m is encrypted in an easier way than in ElGamal 
cryptosystem, due to the fact that the message is inserted directly in the point coordinates and 
not converted into a point. However, this elliptic curve approach, although being efficient, is 
not semantically secure.  
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A cryptosystem is semantically secure if, given two plaintexts and the ciphertext of one of 
them, the attacker can not decide which message is the ciphertext from with a probability 
higher than 1/2. 
 
 In [41] a semantically secure cryptosystem has been developed from a generalization of the 
Paillier-Galbraith cryptosystem, but in this improvement the cryptosystem loses its 
homomorphic properties. 
  

4.5.3. Use of the EC ElGamal cryptosystem in homomorphic schemes. Proposal for a 
mixing process 

 
The main point of this cryptosystem for our purposes (achieve an homomorphic encryption 
that allows us to calculate the Integrity Proofs) relies in that we can use the additive 
homomorphic properties of this ElGamal scheme adaptation for elliptic curves in such a way 
that we can calculate the addition of the encrypted messages (Input Integrity Proof) and 
decrypt it obtaining the addition of the plaintexts. Then, if we calculate the Output Integrity 
Proof as the addition of the output plaintexts, we can compare the decrypted Input Integrity 
Proof with the Output one, following the original design for universal verifiability. The detailed 
procedure is represented in the figure 4.36: 
 

 
Fig. 4 - 36 Integrity Proof generation using an EC cryptosystem 
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- Suppose that we have two parties, A and B that send each one an encrypted message 
to a third party with a secret key k and a public key Q as: 

 
A  (C1a, C2a) = (ra G, Ma +ra  Q) 

 
B  (C1b, C2b) = (rb G, Mb +rb  Q) 

 
-  Then, if we add both ciphertexts to calculate the Input Integrity Proof 

 
(C1a, C2a) +(C1b, C2b) =( ra G + rb G, Ma + Mb + ra  Q + rb  Q)=(R, P) 

 
 

-  We can decrypt the addition result and obtain the addition of both messages as: 
 

Ma + Mb =P-k  R= Ma + Mb + ra  Q + rb  Q - k(ra G + rb G) =  
 

= Ma + Mb + ra  Q + rb  Q - (ra  Q + rb  Q) 
 

 
- If we had a mixnet with re-encryption where 

 
(C1a’, C2a’) = ((r1a + r2a) G, Ma +(r1a + r2a)  Q) 

 
(C1b’, C2b’) = ((r1b + r2b) G, Mb +(r1b + r2b)  Q) 

 
- We could calculate the Intermediate Integrity Proof, and decrypt it to recover the 

addition of the two messages too: 
 

(C1a’, C2a’) +(C1b’, C2b’) =((r1a + r2a) G+(r1b + r2b) G, Ma + Mb +(r1a + r2a)  Q+(r1b + r2b)  
Q)=(R’, P’ )  Ma + Mb =P’-k  R’ 
 

- The plaintexts in the output are operated to calculate the Output Integrity Proof  as: 
 

Ma + Mb 
 

- Finally, the Integrity Proofs can be compared to verify the correct behaviour of the 
mixnet. 

 
II'=III'=Io 

 

4.5.3.1. Message conversion into a point 
 
One issue when we use the EC ElGamal encryption scheme is how to convert a message m to a 
point M of an elliptic curve. 
 
A usual option [42] is, as it has been explained before, to insert the variable m (the message 
converted to an integer <p) in the elliptic curve equation as the x coordinate, being 

M=(m, )=(x, y). 
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The main problem is that, if we have part of the message content on both coordinates, once 
that two points are added Ma + Mb, it is infeasible to obtain the addition of the messages as 
integers. As we can see in the point addition section of [28]: 
 
Point addition: 
 

- Consider two distinct points J and K such that J=(xj, yj) and K=(xk, yk). 
 

- Let L=J+K where L=( xl, yl), then: 
  xl =s2+s+ xj + xk +a 
 yl =s(xj + xl)+ xl + yj 
 s=( yj + yk)/( xj + xk), s is the slope of the line through J and K. 
 

- If K=-J, i.e. K=( xj, xj + yj) then K+J=O, where O is the point at infinity. 
 

- If K=J then J+K=2  J, and point doubling equations are used. 
 
 

 
Fig. 4 - 37 Arithmetic operations in Elliptic Curves 

 
 
This is not a big deal if we just want to compare the Integrity Proofs in the input and the output 
of the mix-nodes, but if we would like to have the chance of performing an homomorphic tally 
this cryptosystem could not be used. Otherwise, the conversion of a message into a point of 
the curve can difficult the posterior information extraction when the decryption is done, so we 
should evaluate which is the best and most efficient method. 
 
Another option to convert a message into a point could be calculating M=m  G. The problem is 
that then we would have to face the discrete logarithm problem in order to obtain m from M. 
There is an example in [43] where the messages are converted into points following this 
procedure. After all the process the final system recovers them by brute force. The system can 
recover the messages due to the fact that they are small integers, and then the ECDLP is not so 
hard to solve, but it is not our case. 
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Finally, the option that has been considered when converting the message is to insert it in a 
point with the structure [m  n:1:0] in an elliptic curve E over the ring Zn, as we have observed 
in [36]. 
 

4.5.3.2. Use of projective coordinates 
 
The elliptic curves over rings Zn (En(a, b)), where n=p  q, being p and q primes, are used in 
factorization problem based cryptosystems. The addition operation with points of an elliptic 
curve over a finite field can be defined for points of a curve E over a ring Zn. However, due that 
there are elements in Zn that have not inverse, the point addition in E(Zn) is not always well 
defined by the conventional analytic expressions. 
 
In order to mitigate this problem, an elliptic curve defined over the projective plane P2(Zn) can 
be also considered, formed by the points (x: y: z) that satisfy the equation y2  z=x3+a  x z2+b  
z3 in Zn, which has semi-infinite points (x:y:z) such that lcm(z,n) is p or q, as well as an infinite 
point O=(0:1:0) and affine points (x:y:1). 
 
This definition can be extended to the ring Zn

2, the one used in the Paillier-Galbraith scheme. 
The natural map is En

2(a,b) En(a,b). 
 
En

2(a,b) can be seen as a group isomorphic to Ep
2(a,b)  Eq

2(a,b). 
 
Points in these curves can be classified in three types:  
 

- Points at infinity Ok=(k  n:1:0), k  Zn. 
 

- Affine points: (x,y)=(x:y:1)  En
2(a,b). 

 
- Semi-infinite points: (x:y:z)  En

2(a,b), with gcd(z,n)=p or q. 
 
Due that the semi-infinite points provide a factorization of n they are not recommended for 
cryptographic uses. 
 
The most important property for our purposes is that, given two messages ma and mb Zn, the 
addition operation of their equivalent points is: 

 
[ma  n:1:0] and [mb  n:1:0] is Pma+Pmb=[(ma+mb)  n:1:0]=Pma+mb. 

 

Instead of using a curve  as in this example, we are going to use a curve in  in 

order to use the ElGamal cryptosystem modulo to define the curve. 
 

4.5.3.3. Application of the projective coordinates to the EC-ElGamal encryption 
scheme 

 
Due to the properties of the affine and the infinite point addition [44] explained below, the 
messages should be represented by infinite points. 
 
Then, since we define the point addition operation as  
 
(m  p:1:0)+(m'  p:1:0)=((m+m')  p:1:0)  



Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló 
 

118 
 

 
we can obtain the addition of the messages from the result of this operation. 
 
The r  G and r  Q points used during the encryption process will be considered affine points. 
 
As it is described in [44], the point operation in elliptic curves over rings Zp

2 has the following 
properties: 
 

- The addition of two points in the infinite result in a point in the infinite. 
 

- The addition of two affine points can result in an affine point, an infinite point, or 
another type of point, depending on the point architecture. 

 
- The addition of an affine point with an infinite point results in an affine point. 

 
- If we multiply an affine point as (x:k  p:1) by an odd integer the result is a point in the 

infinite. Otherwise, the result is an affine point. 
 
In the ElGamal cryptosystem, we define the points r  G and r  Q as affine points at first.  
 
During the calculation of the Integrity Proofs or the re-encryption process these points are 
added to others. Therefore, these affine points can be converted in infinite points through all 
these operations.  
 
The question is: could an attacker extract any information of this? 
 
Let's see what happens when we add two encrypted messages (i.e. when we calculate the 
Integrity Proofs): 
 
Being the encrypted messages  
 

A  (C1a, C2a) = (ra G, Ma +ra  Q) 
 

B  (C1b, C2b) = (rb G, Mb +rb  Q) 
 
 
The attacker sees the result of the operation 
 

(C1a, C2a)+(C1b, C2b)=(ra  G+rb  G , Ma+Mb+ra  Q+rb  Q)=(R, P) 
 
And can extract some conclusions from the point operation properties presented above: 
 

- If the point P is at the infinite, it would mean that so does k  R=(ra  Q+rb  Q).  
 
Since  
 

P=Ma+Mb+ra  Q+rb  Q, 
  
 and Ma and Mb are both infinite points. 
 

- If the point R is an affine point, and k  R is an infinite one, k should be odd.  
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- Hence, if an attacker detects that P is an infinite point, he can just reduce the possible 
values of the secret key k to the half. In case of having a secret key k of 512 bits, the 
possible values would be reduced from 2512 to 2511. 

 

4.5.3.4.  How to solve the DLP using projective coordinates 
 
While we were working on how to apply the projective coordinates to the EC-ElGamal 
cryptosystem, we realised that the Discrete Logarithm Problem could be easily solved working 
in Zp

2. 
 
The number of rational points of a curve E(Zp) is #E(Zp). 
 
When we work in a projective plane and use the curve E(Zp

2), 
 
#E(Zp

2)=p  #E(Zp),  
 
where #E(Zp)=  and can be calculated using the Schoof algorithm [45]. So #E(Zp

2)=p  l.  
 
Being R a point belonging to E(Zp

2) where R mod p Є E(Zp), 
 

  a point in the infinite.  
 

In the section 4.5.3.3. a message m  is encrypted using a private key d and a public key 
, where G is the generator: 

 
  
 

If we calculate: 
 

-  
 

-  
 

- . 

 
We could recover the secret key d. 

 
Our conclusion is that the projective coordinates in  cannot be used in combination with 

cryptosystems like ElGamal, since the DLP is easy to solve here. 
 
Since we cannot use this system to insert a message into a point of an elliptic curve and the 
other systems we have found do not work for systems where we want to recover the content 
of both messages from their operation (due to that they have to be converted to points of the 
Elliptic Curve), we have decided to leave it for future work. 
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5. Zero Knowledge Proofs in ElGamal cryptosystems 
 
 
The Zero-Knowledge Proofs are advanced cryptographic mechanisms that are commonly used 
in e-Voting.  
 
There is a well-known story presenting some of the ideas of Zero-Knowledge Proofs, first 
published in [46]. Commonly, the two parties in a zero-knowledge protocol are named as 
Peggy (the prover of the statement) and Victor (the verifier of the statement). 
 
In this story, Peggy has uncovered the secret word used to open a magic door in a cave. The 
cave is shaped like a circle, with the entrance on one side and the magic door blocking the 
opposite side.  Victor says he’ll pay her for the secret, but not until he’s sure that she really 
knows it. Peggy says she’ll tell him the secret, but not until she receives the money. They 
devise a scheme by which Peggy can prove than she knows the word without telling it to 
Victor. 
 
First, Victor waits outside the cave as Peggy goes in. The left and right paths from the entrance 
are labelled as A and B. She randomly takes either path A or B. Then, Victor enters the cave 
and shouts the name of the path he wants her to use to return, either A or B, chosen at 
random. Providing she really does know the magic word, she opens de door, if necessary, and 
returns along the desired path. The process is depicted in figure 5.1. Note that Victor does not 
know which path she has gone down. 
 
However, suppose she did not know the word. Then, she would only be able to return by the 
named path if Victor were to give the name of the same path that she had entered by. Since 
Victor would choose A or B at random, she would have a 50% chance of guessing it correctly. If 
they were to repeat this trick many times, say 20 times in a row, her chance of successfully 
anticipating all of Victor’s requests would become vanishingly small. 
 
Thus, if Peggy reliably appears at the exit Victor names, he can conclude that she is very likely 
to know the secret word. 
 

 
Fig. 5 - 1 Illustration of the cave with a magic door 
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A Zero-Knowledge Proof must satisfy three properties: 
 

- Completeness: if the statement is true, the honest verifier (that is, one following the 
protocol properly) will be convinced of this fact by an honest prover. 
 

- Soundness: if the statement is false, no cheating prover can convince the honest 
verifier that it is true, except with some small probability. 

 
- Zero-Knowledge: if the statement is true, no cheating verifier learns anything other 

than this fact.  
 

Computational vs. perfect zero-knowledge: A protocol is computationally zero-
knowledge if an observer restricted to probabilistic polynomial-time tests cannot 
distinguish real from simulated transcripts. For perfect zero-knowledge, the probability 
distributions of the transcripts must be identical. 
 

 
ZKP are not proofs in the mathematical sense of the term because there is some small 
probability, the soundness error, that a cheating prover will be able to convince the verifier of a 
false statement. They are probabilistic rather than deterministic. However, there are 
techniques to decrease the soundness error to negligibly small values. 
 
Here we are going to explain some of the ZKP [13][47][48][49] that can be used in the ElGamal 
cryptosystem, and how these can be adapted to be used in the new designed proposal. 
 
At first each ZKP is explained to be used in an ElGamal encryption scheme defined in the group 
Zp, where q is a prime number, and p a safe prime p=2q+1. The cryptosystem uses a generator 
g of the q-order subgroup Gq of Zp*. There secret key x is generated as random number in Zq, 
and the public key is h=gxmod p. 
 
The new cryptosystem proposal is defined with the same parameters than the conventional 
ElGamal encryption system, and 3 secret (x1, x2, x3) and public keys are used: 
 

h1=gx1mod p 
 h2=gx2mod p 
 h3=gx3mod p 
 
All the modular operations are omitted from now. 
  

5.1. Schnorr Identification Protocol 
 
An Identification Protocol [17] is a technique designed to allow one party, the verifier, to gain 
assurances that the identity of another, the claimant, is as declared, thereby preventing 
impersonation.  
 
This is a Zero-Knowledge identification protocol, that is to say, a cheater verifier cannot learn 
anything from the proof that lets him impersonate the prover identity. 
 
The security of this protocol is based on the intractability of the discrete logarithm problem. 
The basic idea is that A proves knowledge of a secret x (without revealing it) in a time-variant 
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manner (depending on a challenge e), identifying A through the association of x with the public 
key h via A’s authenticated certificate. 
 

5.1.1. Protocol:  
 
A identifies itself to B as follows: 
 

- A chooses a random e (the commitment), , computes the witness 
, and sends that witness and its public certificate to B. 

 
- B authenticates A’s public key h by verifying the certificate, then sends to A a never 

previously used random c (the challenge), , where  is a pre-defined 
security level. 

 
- A checks that  and sends B the response s=xc+e. 

 
- B verifies that  

 

5.1.2. Schnorr Signature 
 
The Schnorr Signature is a non-interactive protocol. It is basically equal to the Schnorr 
Identification Protocol, but replacing the challenge by a hash on the prover commitment.  
 
Being a message m encrypted as , the signature over the encrypted 
message is performed as: 
 

- M=H(a|b|h|g) 
 

- Choose a random e (the commitment),  
 

- Compute the witness  
 

- Calculate c=H(M|w)  and s=(e-rc) 
 
The signature is (c,s) 
 
The signature can be verified as: 
 

- Compute  
 

- Compute c’=H(M|w’)   
 

- Verify that c’=c. 
 
 

5.2. Proof of Discrete-Log equality - Chaum-Pedersen Protocol 
 
In [51], a method is presented that permits a prover to prove in zero knowledge that, given a 
tuple (g,u,h,v), he knows a secret value x satisfying , also known as the 
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proof of discrete-log equality. This proof, initially interactive, can be made non-interactive 
using the procedure described in the Fiat-Shamir scheme [50].  
 
Being m the decryption of a ciphertext , the tuple  can be formed, 

where g and h are public parameters of the ElGamal cryptosystem,  and . 

 
Then, the prover can prove in zero knowledge that he knows the secret key x used to decrypt c 
as m: 
 

- The prover chooses a random e (the commitment),  and computes the 
witness . 

 
- Then, he computes d=H(h|g|a|b|u|v). 

 
- Finally, he calculates s=xd+e, and sends (a,b,s) to the verifier. 

 
- The verifier computes d=H(h|g|a|b|u|v), and checks that 

 

 
 

 
In the cryptosystem presented in the Proposal 6 several parameters are encrypted using a 
conventional ElGamal cryptosystem. Thus, being c the encryption of a message m divided in n 
blocks,  
 

 , 
(note that we consider that the message has been re-encrypted) 

 
where 

 

 , 
 
the parameter  is encrypted as 
 

 , 
 
and a Chaum-Pedersen proof can be done in order to proof the correct decryption of . 
 
For each block, the parameter  is encrypted as 
 

 , 
 
and again the correct decryption of  can be proved using a Chaum-Pedersen proof. 
 
The parameter  is encrypted as 
 

 , 
 
And another Chaum-Pedersen proof can be done to proof the correct decryption of . 
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Thus, proving the correct decryption of ,  and , the correct decryption of each message 
block  can be proved. 
 
The prover can prove in zero knowledge that he knows the secret key  used to decrypt each 
parameter: 
 

- First, the tuple  can be constructed, where g and h are public 

parameters of the ElGamal cryptosystem, , , for all the n 

blocks, , and . 

 
- The prover chooses a random e (the commitment),  and computes the 

witness . 
 

- Then, he computes d=H( | | |g|a|b|u| | | ). 
 

- Finally, he calculates , , , and sends (a, 
b, , , ) to the verifier. 
 

- The verifier computes d=H( | | |g|a|b|u| | | ), and checks that 
 

 
 

 

 
 

 

 
 

 
- Finally, with the verification of the parameters ,  and , the correct decryption of 

each message block  can be proved. 
 
 

5.3. Proof of Plaintext Knowledge 
 
Since ElGamal is a malleable cryptosystem, one can forge encrypted messages from one 
already encrypted without knowing its content. For example: 
 
  
  
 
If we are using a mixnet in order to protect voters’ privacy, this malleability can endanger the 
process. For example, if an attacker wants to know what a voter has voted, he could forge an 
encrypted vote multiplying the one cast by the voter by a known factor. Then, when the votes 
are decrypted, the attacker could search for the pair of votes that maintain the same algebraic 
relationship that the one cast by the voter and the one forged by the attacker and find how 
the voter has voted. This is called a message-related attack. 
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This is the reason why the encrypted messages cast by the voters should be non-malleable. 
Informally, non-malleability means that it is infeasible, given a ciphertext, to create a different 
ciphertext such that their plaintexts are related. The non-malleability under message-related 
attacks is achieved using non-malleable non-interactive zero knowledge proofs of knowledge 
of the plaintext. Non-malleability is an extension of semantic security since it considers 
security and self-protection of senders in the context of a network of users, and not simply 
between one sender and one receiver (in the case of a man-in-the-middle attack). 
 
This ZKP of plaintext knowledge is typically given by a digital signature. In [49], it is explained 
how a Schnorr signature is forged from the message encryption and attached to it (explained 
in Section 5.1.1) to let the receiver verify that the message was originally properly encrypted. 
 
When we use the cryptosystem presented in the Proposal 6, although it is non-malleable due 
to the hash inside the encryption, this can only be verified at the decryption time. If we want 
to detect a message-related attack before the decryption process (usually between the vote 
submission and the mixing steps) we have to perform a Schnorr signature over the encryption. 
 
Being c an encrypted message m divided in n blocks:  
 

 , 
 

where 
 
 , 
 
the signature over the encrypted message is performed following the next steps: 
 

- Calculate M=H( | | |g|a|b|d|e). 
 

- Choose a random z (the commitment),  
 

- Compute the witness  
 

- Calculate v=H(M|w)  and s=(z- v) 
 
The signature is (v,s) 
 
The signature can be verified as: 
 

- Compute  
 

- Compute v’=H(M|w’)   
 

- Verify that v’=v. 
 
 

5.4. Proof of Plaintext Equivalence 
 
This proof [13] can be constructed exploiting the homomorphism property of the ElGamal 
cipher.  It is based in the Schnorr Identification Protocol: used in a proper manner this proof 



 
Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló 
 

127 
 

can be used to prove that one entity knows the re-encryption factor used to re-encrypt an 
encrypted message without disclosing it. 
 
 Being an encrypted message 
  
 
 And its re-encryption 

  

 
The entity that executes the re-encryption process can proof that c and c’ have the same 
content by: 
 

- Calculating   

 

- Being , and , the prover can demonstrate that he knows the re-
encryption factor r’ as if it was the private key in an ElGamal cryptosystem, where 

using the Schnorr Identification Protocol: 
 

o The prover chooses a random e (the commitment), , and 
computes the witness . 
 

o The prover calculates a challenge (to make the protocol non-interactive) as 
d=H(w|h’|g’|h|g). 

 
o Finally, the prover calculates s=r’d+e, and sends [w,s] to the verifier. 

 
- The verifier calculates  and  from the messages c and c’, and calculates d. 

 

- Then, he verifies that  
 
 
When the cryptosystem presented in the Proposal 6 is used to encrypt a message m divided in 
n blocks, the result is 
 

  
 

where 
 

 , 

 
and the re-encryption is performed as 
 

 , 
 

where 
 

 ]  
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Since in the Proposal 6 the re-encryption process includes the multiplication of the parameters 

a and e of the tuple by random numbers ({ }, ), this proof does not work here at first. 
We could perform the proof between b and d, but not using a and e because, although they 
are multiplied by the same random number, this random number is exponentiated to a hash in 
a, so it seems that they cannot be related to do this proof. 
 
An approach to the problem could be to calculate the proof between the elements (b, b’, d, 
d’), and then try to perform it between the elements (a, a’, b, b’, e, e’) as follows: 
 

- Calculate c’/c to obtain (a’/a,b’/b,d’/d,e’/e) : 
 

 
 

- Proof the knowledge of  using  and , and following the standard 
protocol. 
 

- Proof the knowledge of the re-encryption factor  equal to the one in the step before 

using  and , where  for each 
encrypted message block : 
 

o The prover sends the factors  and , for i=1…n. 
 

o The verifier checks that , for each block (i=1…n). 
 

o The prover and the verifier calculate   

 
o Finally, the proof of knowledge of  can be calculated using ’’=  and 

 for each block. 
 

 

5.5. Proof of Subset Membership 
 
Being  the encryption of a message m, this proof lets a prover (who knows m) 
convince a verifier that the ciphertext is an encryption of a value in the set . 
 
In electoral processes this can be useful to verify that a voter sends a ciphertext corresponding 
to a valid option. It is commonly used in schemes where homomorphic tally is used. For 
example, when exponential ElGamal encryption is used for this purpose, this kind of proof is 
done to ensure that the voters choose exponents equal to 0 or 1 in order to prevent one voter 
to modify the election result by voting more times than allowed for one candidate: 
 

In exponential ElGamal a message is encrypted as 
 

 , where ch={0,1}.  

 
If a voter chooses ch=100, the homomorphic tally could count 100 votes for the 

candidate for just one vote. So the candidate should proof that the encrypted ballot contains a 
message  in order to prevent this attack. 
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For a message  encrypted as , the prover proofs that  is a 
member of the set  following these steps: 
 

-  Calculate the pair 
 

  

  

 
 For each j=1..n, being , where  are random numbers in Zp. 

 
- Calculate the pair 

 
  
  
 

 For the encrypted message, where  is a random number in Zp. 
 

- Send to the verifier , for all the values j=1…n. 

 
- The verifier sends a challenge f in Zp to the prover (it could be substituted by a hash 

function, following the Fiat-Shamir procedure). 
 

- The prover calculates  
 

  

 , where r is the random encryption factor of the ciphertext. 
 

- Finally the prover sends to the verifier , for all the values j=1…n. 

 
- The verifier checks that   

 
 , and that 

 

  

  

 
For each j=1..n. 

 
Then, the verifier has verified that the ciphertext c encrypts a message  from the set 

}, without knowing which one. 
 
This proof can not be performed when the cryptosystem presented in Proposal 6 is used, due 
that the content of each encrypted block   is randomized and can not be pre-calculated 

( , where y is a random parameter).  

 
A solution should be found to solve this problem and remains for future work. Since this proof 
is basically used in homomorphic tally systems, the fact of not being able to do it using the 
designed cryptosystem does not prevent from its use in a mixing system, where the correct 
structure of a vote can be verified at the decryption time. 
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5.6. Proof of Correct Decryption using Schnorr Identification Protocol 
 
We use the Schnorr Identification Protocol again for this proof, in order to demonstrate that 
an entity that does a decryption process knows the secret key x: 
 
 Being a message m encrypted as 
 

 , 
 
the decryption result must be m. 

 
The prover can demonstrate that knows the secret key x used to decrypt the ciphertext c as 
the message m by: 
 

- Calculating   
 

- Being , and , the prover can demonstrate that he knows the private 
key x, where , using the Schnorr Identification Protocol: 
 

o The prover chooses a random e (the commitment), , and 
computes the witness . 
 

o The prover calculates a challenge (to make the protocol non-interactive) as 
d=H(w|h’|g’|h|g). 

 
o Finally, the prover calculates s=xd+e, and sends [w,s] to the verifier. 

 
- The verifier calculates  and  from the messages c and m, and calculates d. 

 

- Then, he verifies that  
 
 
Although the Chaum-Pedersen Protocol is commonly used in order to verify the correct 
decryption of an encrypted message, this proof is more efficient, due that it requires to 
interchange less information between prover and verifier and less verification operations. 
 
 
In the cryptosystem presented in the Proposal 6 several parameters are encrypted using a 
conventional ElGamal cryptosystem. Thus, being c an encrypted message m divided in n blocks,  
 

 , 
 

where 
 

 , 
 
the parameter  is encrypted as 
 

 . 
 
For each block, the parameter  is encrypted as 
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 , 
 
and the parameter  is encrypted as 
 

 . 
 
The Schnorr proof can be done in order to proof the correct decryption of ,  (for each 
block), and . Thus, proving the correct decryption of ,  and , the correct decryption of 
each message block  can be proved. 
 
The prover can prove in zero knowledge that he knows the secret key  used to decrypt each 
parameter: 
 

- Calculating   
 

- Being , ,  and , the prover can demonstrate 

that he knows the private key  , where  using the Schnorr Identification 
Protocol: 
 

o The prover chooses a random z (the commitment), , and 
computes the witness . 
 

o The prover calculates a challenge (to make the protocol non-interactive) as 

v=H(w| | | |g’| | | |g). 
 

o Finally, the prover calculates , , , 
and sends (w, , , ) to the verifier. 
 

- The verifier calculates , ,  and  from the 
encrypted message c and the decrypted parameters  and calculates 
v. 

 
- Then, he verifies that  

 
 
 
 

 
 

- Finally, with the verification of the parameters ,  and , the correct decryption of 
each message block  can be proved. 
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6. Case Study: use of the proposed encryption algorithm in a 
Universally Verifiable Mixnet 

 
 
In this chapter we are going to present how the designed cryptosystem could be used in a real 
voting system. 
 
The voting system is composed by the following entities: 
 

- Voters: 
 
When the electoral process starts and the voting stage is opened, the eligible voters 
(using a web interface) access to the election website, choose their voting options and 
submit them to the Voting Service. 

 
- Voting Client: 

 
The Voting Client is an application running in the voter PC that does all the 
cryptographic operations in order to send the encrypted ballot and ZK proofs to the 
Voting Service. 
 

- Electoral Board: 
 
The Electoral Board is formed by parties with different interests. They have the private 
key that can decrypt the received encrypted votes. This key is usually divided in shares 
using a secret sharing threshold scheme where a determined subset of members can 
recover the secret key from their shares. 
 

- Voting Service: 
 
The Voting Service receives the encrypted votes submitted by the voters, verifies their 
digital signatures (each eligible voter is assumed to have public credentials to perform 
a digital signature) with the electoral roll and the ZK proof of plaintext knowledge of 
each vote. 
 

- Mixing Service: 
 

The Mixing Service shuffles the votes to protect the voters’ privacy before the 
decryption process is done. 
 

- Counting Service 
 

The Counting Service receives the mixed and decrypted votes and calculates the 
results for each candidate. 

 



Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló 
 

134 
 

All the entities are assumed to have public and private RSA keys in order to digitally sign their 
output contents. The next entity in the chain will verify the integrity of these contents before 
processing them. 
 
In the figure 6.1 the relationship between these entities is presented. 

 

 
Fig. 6 - 1 Entities in the case study 

 

6.1. Defining the cryptosystem 
 
The votes are encrypted using the modification of the ElGamal cryptosystem defined in the 
Proposal 6. Here we introduce again the encryption parameters: 
 
Being q a prime number and p a safe prime such that p=2q+1, the modification of the ElGamal 
cryptosystem is defined in the group Zp using a generator g of the q-order subgroup Gq of Zp*. 
 
There are 3 secret keys, x1, x2, x3, generated as random numbers in Zq. 
 
The public keys are: 
 
 h1=gx1mod p 
 h2=gx2mod p 
 h3=gx3mod p 
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The three secret keys are only known by the Electoral Board members. The Electoral Board 
could be divided in three subgroups of members, where each subgroup could possess one of 
the secret keys. 
 
The three public keys are known by all the participants in the election process. 
 

6.2. Voting Phase 
 

6.2.1. Vote casting 
 
In the voting phase the voter selects her choices for the current election. These choices are 
sent to the Voting Client, which performs the cryptographic operations needed. 
 
Being the options selected by the voter, the Voting Client performs their 
encryption as 
 

 , 
 

where , and  is a random number in . 

 
Then, a proof of plaintext knowledge is calculated performing a Schnorr signature over the 
encrypted options. 
 
The Schnorr signature over the encrypted vote is performed as: 
 

- M=H( | | |g|a|b|d|e). 
 

- Choose a random z (the commitment),  
 

- Compute the witness  
 

- Calculate v=H(M|w)  and s=(z- v) 
 
The signature is (v,s) 
 
Finally, the encrypted vote and the ZK proof are digitally signed using the voter’s private key 
and sent to the Voting Service: 
 

  
 

6.2.2. Vote reception 
 
When the Voting Service receives an encrypted vote, it performs two verification steps before 
storing the vote: 
 

1. Verification of the digital signature: the Voting Service verifies that the public key used 
to verify the digital signature over the encrypted vote is from a voter in the Electoral 
Roll. 
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2. Verification of the proof of plaintext knowledge: 
 

The Schnorr signature [v,s] over the encrypted vote c can be verified following these 
steps: 
 

o Compute M=H( | | |g|a|b|d|e). 
 

 
o Compute  

 
o Compute v’=H(M|w’)   

 
o Verify that v’=v. 

 
Once these two proofs are verified, the encrypted vote is stored the Voting Service. 
 
 

6.3. Mixing Phase 
 
When the voting stage is closed, all the digital ballot boxes in the Voting Servers are collected. 
These digital ballot boxes are signed by the corresponding Voting Server in order to ensure 
their integrity during the collection stage. When these digital ballot boxes are received by the 
Mixer, it verifies their signatures before performing the mixing process. 
 
Once the digital ballot boxes are “opened”, the digital signature over each encrypted ballot is 
verified. After the verification, these credentials are removed, since it would have no sense to 
shuffle the encrypted ballots in order to decorrelate them from the voters when they have the 
voters’ digital signatures attached to them. 
 
The mixing process is performed by a re-encryption mixnet. The verification of the mixnet 
procedure is slightly more complex that the one we took as a basis for the design of the 
cryptosystem. The modification is done in order to offer more protection in front of the “300 
attack” explained in Section 4. 
 
The verification method is based on the idea of RPC (see Section 2), but using Integrity Proofs. 
We call it Random Group Full Checking. 
 
In Random Group Full Checking, the input encrypted votes of each node are divided in several 
groups. An Integrity Proof is calculated for each group of input encrypted votes and the ones 
belonging to this group in the output, so the process can be verified. 
 
 
 
 
 
 
 
 
 
 
 



 
Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló 
 

137 
 

The next figure shows how the input and output groups are related: 
 

 
Fig. 6 - 2 Input and output groups relationship 

 
 
The steps to implement the RGFC are the following: 
 

- The mix-nodes shuffle and re-encrypt the input votes using new randomization values.  
In order to re-encrypt the input votes, each node performs the following operations: 
 

o Choose two random parameters in Zq, r1’ and r2’. 
 

o Perform the re-encryption process as: 
 

  . 
 

  
 

 . 
 

 , 

 
where the operation  

 

  

 
is performed for each vote option. 
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- Once the mixing process has finished, the Electoral Board (the verifier) verifies its 

correct behaviour:  
 

o For the first node, the verifier divides at random the total of votes in groups of 
n votes. Then, it multiplies the votes contained in each group, obtaining an 
Input Integrity Proof: 
 

 

 
Where j=1...n, being n the number of votes in a group.  

 
 

o The verifier asks to the node, for each group, the destination in the outputs of 
its components, in order to calculate an Output Integrity Proof over the 
members: 

 

 
 

o Finally, the node is asked to calculate a ZK proof in order to demonstrate that 
the Output Integrity Proof of one group is the re-encryption of the Input 
Integrity Proof of the same group. 

 
The node can proof that  and  for a concrete group have the same 
content by: 

 
 Calculating   
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 Proving knowledge of the re-encryption factor   in {v, w} 

using the Schnorr Identification Protocol, being  and 

. 

 
 

 Proving the knowledge of the re-encryption factor  in {u, 

z} using  
 

 
 
and  
 

 

 
 
 where   

 

  
 
For the multiplication of the encrypted vote options : 

 

 The prover sends the factors  and 

, for i=1…k, to the verifier. 

 

 The verifier checks that , for each block (i=1…n). 
 

 The prover and the verifier calculate  
 

 

 
 

 Finally, the proof of knowledge of  can be calculated using g’ 
and  for each product of voting choices. 

 
 
The steps to follow to calculate the proof and verify it are explained in Section 
5.3. 

 
o For the next node, new groups are redefined in such a way that a new group is 

composed of a vote from each of the old groups. Since an individual vote from 
a group could belong to any older group, votes can not be traced through the 
mix-nodes, preserving voter privacy. These steps are repeated for each node. 
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Note that we have considered the generalization the calculation of the Integrity Proofs 
as if they were Intermediate Integrity Proofs since this operation is performed over 
intermediate nodes too.  

 
An example of this procedure is shown in the next figure: 
 

 
 

Fig. 6 - 3 Mixing verification procedure 

 
Finally, we should explain that, in order to calculate the proof of re-encryption with the 
cryptosystem presented in the Proposal 6, an Integrity Proof must be calculated for each group 
of encrypted votes and for each encrypted voting option, as it is shown in the figure 6.4. Batch 
proofs can be used to optimize the process. 
 

 
Fig. 6 - 4 Integrity Proofs calculation 
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In RGFC, instead of revealing individual traces between inputs and outputs (like in the RPC) the 
traces are revealed about groups. That way, the information about all the input messages can 
be asked (not just the half). At the same time provides a better anonymity than RPC, since the 
individual path of a vote is never disclosed. 
 
Due to the Integrity Proof calculation, a cheater should have to change a pair of votes in such a 
way that the multiplication of the two modified votes is equal to the multiplication of the 
original ones (“300 attack”). Moreover, due to vote grouping, both modified votes should be in 
the same group when the check process is done. The cheater does not know which votes will 
belong to which group until the mixing has finished, due that this group-division is performed 
by a challenge from the Electoral Board. 
 
In order to preserve voter privacy, the groups are configured in such a way that at the end of 
the mixing, although one could know to which group belongs in the last node a specific 
message, it could not be related to the group configuration in the first node. For this purpose, 

the group size is selected so that, being k the size of a group, , where t is the number of 
nodes (at least two) and n is the total number of votes. 
 
While in RPC just the half of the votes is verified at each node (having a probability of non-
detection of 2-n for n manipulated votes), using Random Group Full Checking we can divide the 
votes in more groups and audit the correct transformation of all of them. Then, the probability 
of non-detection is smaller. 
 
The formula for obtaining the probability of non-detection for two manipulated votes is: 
 

 

 
where m is the total number of votes, n is the number of votes for each group, and g is the 
number of groups. 
 
For example: in an election with 10.000 voters, where the votes are grouped in 100 groups in 
order to do the RGFC, the probability of non-detection of a manipulated couple is 0. 99%. 
 
In an election with 1.000.000 voters, where the votes are grouped in 10.000 groups in order to 
do the RGFC, the probability of non-detection of a manipulated couple is 0. 01%. 
 
 

6.4. Decryption and Counting Phase 
 
Once all the re-encryption and shuffling steps in the mixing are verified, the votes are 
decrypted in the last node using the private keys from the Electoral Board. Each decryption 
step is verified using Schnorr ZK Proofs. 
 
First, a partial decryption process is done before the votes are completely decrypted in order 
to verify the integrity of each message block using the hash attached to it. 
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Partial decryption 
 
The received (re-encrypted) vote is 
 

 ,  
 

where 
 

 , for each block. 
 
 

- Calculate:  in order to obtain . 
 

- Calculate  . 
 

- Calculate for i=1..n. 
 

-  Then obtain 
 

  

 
for each vote option. 

 
ZK Proof of partial decryption 
 
The Schnorr ZK Proof can be done in order to proof the correct partial decryption of  and 

: 
 

- Calculate   
 

 

 

- Being ,  and , the prover can demonstrate that he 

knows the private keys , where ,  using the Schnorr 
Identification Protocol: 
 

o The prover chooses a random z (the commitment), , and 
computes the witness . 
 

o The prover calculates a challenge (to make the protocol non-interactive) as 

v=H(w| | |g’| | | |g). 
 

o Finally, the prover calculates , , and sends (w, , 
) to the verifier. 

 

- The verifier calculates ,  and  from the 

encrypted vote c and the parameters  

and calculates v. 
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- Then, he verifies that  
 

  
  

 
 

Hash verification 
 
Using the component  
 

 , 

 
for each vote option: 
 

- The verifier divides it in two pieces:  
 
  

  

  

 
- Then checks that H(s)=t.  

 
If the verification process succeeds, the process can continue. Otherwise it is stopped and an 
error is reported. 
 
 
Final decryption 
 

- Calculate  in order to obtain  
 

- For each encrypted vote option  obtain  as  
 

. 
 
 
ZK Proof of final decryption 
 
The Schnorr ZK Proof can be done to proof the correct decryption of  and thus the final 
decryption: 
 

- Calculate   

 

- Being  and , the prover can demonstrate that he knows the 

private key  , where  using the Schnorr Identification Protocol: 
 

o The prover chooses another random z’ (the commitment), , and 
computes the witness . 
 

o The prover calculates a challenge (to make the protocol non-interactive) as 

v’=H(w’| |g’| | | |g). 
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o Finally, the prover calculates , and sends (w’,  to the 
verifier. 
 

- The verifier calculates  and  from the encrypted vote c and the 
parameters  and calculates v’. 

 
- Then, he verifies that  

 
  

 
 
Finally, once the decryption steps are verified for all the votes, the vote options  are 
counted and the results for each candidate are obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló 
 

145 
 

 
 

7. Conclusions 
 
 

The migration of elections from conventional environments to e-Voting requires the 
consideration of some security requirements, such as voter authentication, the preservation of 
voter privacy or the assurance of the legitimacy of the results.  

There are standard cryptographic techniques that can be used in order to achieve these 
security requirements, such as the encryption and digital signature of the votes when they are 
submitted by the voters. In this case, we have seen that the use of digital envelopes is the best 
solution to encrypt the votes, since they take advantage of the simple key management 
methods of asymmetric encryption algorithms while they have the efficiency of the symmetric 
encryption systems. However, these standard cryptographic techniques are not enough to 
ensure voter privacy, since the signed and encrypted votes could be correlated with the 
decrypted ones and then the voter intent of vote could be disclosed. Thus, advanced 
cryptographic techniques must be used to preserve the voter privacy. 

During the project, we analyzed some advanced cryptographic techniques that preserve the 
voter privacy by means of vote anonymization. From them, Pollsterless and two agencies 
models have some significant drawbacks concerning security and usability, so we discarded 
them in the beginning of the project. Therefore, we choose homomorphic tally and mixing 
systems as the best option to ensure the voter privacy during the election, according to our 
objectives. Evaluating both systems we finally decided that mixnets are the best system to use 
in our approach, since its combines high robustness with flexibility to work in different and 
complex election systems. Mixing systems, as well as any advanced cryptographic system, use 
verification methods to ensure their correct behaviour. These verification methods usually use 
advanced cryptographic techniques such as Zero Knowledge Proofs or other mathematical 
proofs based on the underlying cryptosystem, such as the Integrity Proofs. The requirement of 
using a cryptographic system supporting these advanced cryptographic techniques has been 
the main motivation of this project. 

When these advanced cryptographic techniques are used, symmetric cryptosystems (or any 
technique based on them such as digital envelopes) can not be used, since these 
cryptosystems do not support the implementation of these advanced techniques. Therefore, 
asymmetric encryption algorithms are needed, preferably with homomorphic properties, to 
directly encrypt the information (i.e., digital envelopes are excluded since the information is 
encrypted with a symmetric key). Since asymmetric encryption methods are less efficient than 
symmetric ones from the point of view of encryption size (e.g., the encryption block size is 
usually larger in an asymmetric algorithm compared with a symmetric one of the same 
strength), and of decryption speed (due to the use of large keys), we focused the effort of this 
project on designing an asymmetric encryption method more efficient than the existing ones. 

The first design requirement setup in the project was to improve the efficiency of the 
encryption/decryption process when the message exceeds the block size of the algorithm. 
However, during the process of designing this new asymmetric cryptosystem, some additional 
requirements arose, such as the need of supporting message re-encryption, homomorphic 
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properties, be able to verify the integrity of the decrypted message or perform Zero 
Knowledge Proofs based on the designed cryptosystem. Furthermore, some attacks 
concerning the traceability of the messages through the mix-nodes had to be prevented. All 
these requirements have been considered from both the academic and the practical (real 
implementation) point of view. 

The result is an efficient encryption/decryption cryptosystem that can be used in e-Voting 
environments or in other schemes that manages large messages and where the integrity of 
encrypted messages can be verified by means of advanced cryptographic techniques such as 
ZK Proofs. 

Since Zero Knowledge Proofs are commonly used in e-Voting environments to achieve the 
desired security requirements, we have considered that it was important to suggest how could 
be performed these ZK proofs using the new encryption algorithm. 

Finally, a case study is exposed to show how the designed cryptosystem could be used in a real 
e-Voting process verifying each election phase: voting, mixing, decrypting and counting. 

Now, I would like to express some thoughts that came to me while I was doing this PFC:  

Although the research field of cryptography in electronic voting environments has been active 
during many years and has produced lots of interesting protocols, there remains the question 
of if there is a system that accomplishes all the security requirements of an electoral process in 
a really efficient way. It is important to continue with this research and with the study of the 
newest protocols in order to achieve some day the fact of voting through the Internet being as 
common as buying a flight ticket, reaching a security level high enough to be able to fully trust 
in it . 

Finally, I would like to say that the success of this PFC is not only the content you have read 
here, but also the learning on how to do research and investigate through the papers 
published in academic environments or that just fell into my hands.  
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