

EFFICIENT CRYPTOSYSTEM FOR
UNIVERSALLY VERIFIABLE MIXNETS

Sandra Guasch Castelló

Company Supervisor: Jordi Puiggalí Allepuz
Academic Supervisor: Miquel Soriano Ibáñez

Bachelor Degree of Telecomunication Engineering

Universitat Politècnica de Catalunya, ETSETB

Scytl Secure Electronic Voting
December 2009

1

This PFC has been done by means of a university-company collaboration program in Scytl
Secure Electronic Voting.

2

3

Agraïments

M’agradaria primer de tot agrair an es meus pares i an es meu germà es recolzament que
m’han donat aquests últims dies de projecte, tot i que no acabéssin d’entendre sa feina i
presió que comporta. Sobretot a sa meua mare, que m’ha fet correccions d’anglès a sa
introducció i a ses conclusions “perquè lo altre, que és més tècnic, ja ho sabràs tu millor”.

Després d’ells, es següent que és mereix es meu agraïment és en Ferran, que ha tengut (i té)
infinita paciència amb es meus histerismes, dubtes i queixes. Amb ell he compartit s’últim any
de sa carrera i es procés de realització des projecte, i poder comptar sempre amb una persona
que estava en sa mateixa situació que jo m’ha ajudat molt. Grasis!

També m’agradaria agrair as meus companys de classe de sa enginyeria superior es anys de
carrera, durs però entretenguts, i a ses meues amigues de sa tècnica i d’Eivissa poder-nos
ajuntar de quan en quan per fer uns cafès, contar-nos ses nostres experiències en es camins
diferents que hem près, i riure’ns un poc de tot.

No puc deixar d’anomenar aquí a la Paz Morillo, que ha estat sempre allí per a qualsevol dubte
que he tengut.

Finalment, m’agradaria agraïr al Miquel Soriano i al Jordi Puggalí sa oportunitat que m’han
donat de entrar a treballar a Scytl per fer allí es meu PFC, i an es meus companys de feina,
sobretot a en Miquel Comas i a en Jaume Poch, per fer de sa feina un lloc més agradable i
entretengut.

4

5

Index of Contents

1. Introduction .. 9

1.1. Democracy and electoral processes: ... 9

1.2. Security in remote e-Voting .. 10

1.3. Securing elections using basic cryptography .. 11

1.3.1. Vote encryption ... 11

1.3.2. Digital signature .. 12

2. e-Voting protocols focused in the protection of the voter privacy 15

2.1. Protocols that implement anonymity in the pre-election phase 15

2.2. Protocols that implement anonymity in the voting phase ... 18

2.3. Protocols that implement anonymity in the counting phase 20

2.3.1. Homomorphic tally protocols ... 20

2.3.2. Mixnets .. 25

3. Building Blocks .. 35

3.1. Definition of a Vote anonymization system .. 35

3.2. Definition of the Integrity Proofs and the Verification process 37

3.3. Cryptosystem Definition .. 38

3.3.1. RSA .. 39

3.3.2. ElGamal ... 42

3.3.3. Paillier .. 43

4. Design of a Cryptosystem for an Efficient and Universally Verifiable Mixnet 47

4.1. Initial Assumptions .. 47

4.2. Analysis Model .. 48

4.3. ElGamal Cryptosystem .. 49

4.3.1. Conventional ElGamal encryption ... 50

4.3.2. ElGamal homomorphisms ... 51

4.3.3. Definition of ElGamal for semantic security in voting applications 52

4.4. Proposals for a new cryptosystem based on ElGamal encryption 54

4.4.1. Proposal 0: ElGamal conventional cryptosystem .. 55

4.4.2. Proposal 1 .. 56

4.4.3. Proposal 2 .. 57

4.4.4. Proposal 3 (our first proposal) .. 59

4.4.5. The re-encryption process .. 64

4.4.6. Proposal 4 (our second proposal) ... 65

6

4.4.7. Problems found in the previous proposals ... 71

4.4.8. Proposal 5 (our third proposal) ... 75

4.4.9. Proposal 6 .. 90

4.4.10. Conclusions about the proposed cryptosystems .. 105

4.5. Elliptic Curve Cryptography: EC ElGamal Cryptosystem ... 107

4.5.1. Elliptic Curve Cryptography ... 107

4.5.2. EC Homomorphic Cryptosystems .. 112

4.5.3. Use of the EC ElGamal cryptosystem in homomorphic schemes. Proposal for a
mixing process ... 114

5. Zero Knowledge Proofs in ElGamal cryptosystems ... 121

5.1. Schnorr Identification Protocol ... 122

5.1.1. Protocol: .. 123

5.1.2. Schnorr Signature .. 123

5.2. Proof of Discrete-Log equality - Chaum-Pedersen Protocol 123

5.3. Proof of Plaintext Knowledge .. 125

5.4. Proof of Plaintext Equivalence .. 126

5.5. Proof of Subset Membership .. 128

5.6. Proof of Correct Decryption using Schnorr Identification Protocol 130

6. Case Study: use of the proposed encryption algorithm in a Universally Verifiable Mixnet
 133

6.1. Defining the cryptosystem .. 134

6.2. Voting Phase .. 135

6.2.1. Vote casting ... 135

6.2.2. Vote reception ... 135

6.3. Mixing Phase ... 136

6.4. Decryption and Counting Phase .. 141

7. Conclusions ... 145

8. References ... 147

7

Index of Figures

Fig. 1 - 1 Electronic voting using basic cryptography .. 13

Fig. 2 - 1 Example of paper ballot in Pollsterless ... 16
Fig. 2 - 2 Communications in a two agencies model ... 19
Fig. 2 - 3 Example of an additive homomorphic tally .. 21
Fig. 2 - 4 Example of a multiplicative homomorphic tally ... 23
Fig. 2 - 5 Mixnet ... 26
Fig. 2 - 6 Secondary shuffles in the Sako and Kilian proposal for a verifiable mixnet 29
Fig. 2 - 7 Partial disclosure of the node information in RPC .. 30
Fig. 2 - 8 Partial disclosure of the node information in Chaum’s RPC ... 31

Fig. 3 - 1 Building blocks I .. 35
Fig. 3 - 2 Verification based on Integrity Proofs .. 38
Fig. 3 - 3 Building blocks II ... 39

Fig. 4 - 1 Analysis model .. 49
Fig. 4 - 2 Integrity Proofs in Proposal 3 ... 60
Fig. 4 - 3 Encryption time .. 62
Fig. 4 - 4 Decryption time .. 62
Fig. 4 - 5 Encryption size .. 63
Fig. 4 - 6 Comparison of encryption sizes .. 64
Fig. 4 - 7 Integrity Proofs in Proposal 4 ... 68
Fig. 4 - 8 Encryption time .. 69
Fig. 4 - 9 Decryption time .. 69
Fig. 4 - 10 Encryption size .. 70
Fig. 4 - 11 Comparison of encryption sizes .. 71
Fig. 4 - 12 An attacker tracks back the re-encrypted messages .. 72
Fig. 4 - 13 Message encrypted using the Proposal 5 ... 78
Fig. 4 - 14 Message encryption. First shuffle and re-encryption process in the mixnet.
Calculation of Input and Intermediate Integrity Proofs .. 81
Fig. 4 - 15 Partial decryption and calculation of the Output Integrity Proof 82
Fig. 4 - 16 Integrity Proofs verification step .. 83
Fig. 4 - 17 Hash verification and final decryption .. 84
Fig. 4 - 18 Encryption time .. 85
Fig. 4 - 19 Re-encryption time ... 85
Fig. 4 - 20 Decryption time .. 86
Fig. 4 - 21 Encryption size .. 86
Fig. 4 - 22 Comparison of encryption sizes .. 88
Fig. 4 - 23 Attack based on the re-encryption process .. 89
Fig. 4 - 24 Encrypted message using the Proposal 6 ... 92
Fig. 4 - 25 Mixing process: shuffling and re-encryption. Calculation of the Input and
Intermediate Integrity Proofs .. 98
Fig. 4 - 26 Partial decryption and Output Integrity Proof calculation ... 99
Fig. 4 - 27 Integrity Proofs verification .. 100
Fig. 4 - 28 Hash verification and final decryption .. 101
Fig. 4 - 29 Encryption time .. 102

8

Fig. 4 - 30 Re-encryption time ... 102
Fig. 4 - 31 Decryption time .. 103
Fig. 4 - 32 Encryption size .. 103
Fig. 4 - 33 Encryption time .. 105
Fig. 4 - 34 Decryption time .. 106
Fig. 4 - 35 Encryption size .. 106
Fig. 4 - 36 Integrity Proof generation using an EC cryptosystem .. 114
Fig. 4 - 37 Arithmetic operations in Elliptic Curves ... 116

Fig. 5 - 1 Illustration of the cave with a magic door .. 121

Fig. 6 - 1 Entities in the case study .. 134
Fig. 6 - 2 Input and output groups relationship .. 137
Fig. 6 - 3 Mixing verification procedure .. 140
Fig. 6 - 4 Integrity Proofs calculation ... 140

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

9

1. Introduction

1.1. Democracy and electoral processes:

Experts say that the exercise of democracy is not reduced to electoral practices. Nonetheless,
modern democracy cannot be conceived without elections, in such a way that the
fundamental indicator of the democratic societies is the conduction of free elections. In many
countries they are, for the majority of the citizens, the privileged way to be in touch with
politics.

Lots of interests come into play at the time of determining the government successors, and
numerous fraud cases have been detected in electoral processes: disappeared or found ballot
boxes, manipulated counting machines, voter coercion, vote buying, ballot manipulation, etc.
Since the elections are a critical process in a democratic society, the legitimacy of the results
must be ensured.

The fast technologic growth gives every time more tools to the society in order to enhance
their quality of life and make easier the daily tasks, then it is natural for the electoral processes
to evolve technologically too.

There are several reasons to use e-Voting systems instead of conventional mechanisms, for
example a more comfortable election management for especially complex processes, a faster
ballot counting to obtain earlier results, or a cheaper election process.

The use of remote media as mobile phones or Internet in order to vote has other advantages:

One of the main objectives of using new technologies in the democratic processes is to avoid
the low election turnout that characterizes an electoral process nowadays, especially among
the youngest sectors. The use of remote applications can make the electoral process more
appealing to the youngest voters that, after all, use the telecommunication systems in their
daily life.

Another advantage of remote voting is that it can make easier the electoral process to people
with reduced mobility or with any disability. These persons can find a lot of impediments when
they go to vote in an Electoral College, while if they can vote in a remote way they can find
suitable places to do it, or use specific equipments they already have at their homes.
Moreover, electronic voting can provide techniques to increase the system accessibility and
usability.

In the same way, the voters abroad can find in remote voting an opportunity to express their
willing in a more comfortable, convenient and reliable way than with postal voting.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

10

In order to achieve a security level in remote e-Voting at least as high as in a conventional
election, or even higher, cryptographic applications must be used.

1.2. Security in remote e-Voting

Security is of paramount importance in any voting process. The introduction of e-Voting makes
the process less transparent. Therefore, additional security requirements must be considered.

Remote e-Voting makes use of cryptography in order to provide a secure service, as it is
required in an electoral process.

Voters must be able to verify that their voting intent has been properly recorded in the voting
system (cast as intended) and counted in the vote tally (counted as cast) at the same time that
coercion and vote buying must be prevented. These requirements create a trade-off between
verifiability and vote secrecy that the electronic voting system has to solve in an efficient way.

There are certain security requirements that an electoral process conducted electronically
must comply with:

- Voter authentication: it must be ensured that each vote is cast by an eligible voter and
that just one vote per voter is tallied.

- Voter privacy: while it must be ensured that a just the eligible voters can cast a ballot,
it must be impossible to connect the voter identity with the content of his/her cast
vote.

- Accuracy of the Election Results: it must be impossible for anyone to erase or modify

votes submitted by eligible voters, or to add invalid votes on behalf of abstaining
voters.

- Intermediate result privacy: the election intermediate results must be secret until the

election process has ended in order to not to influence the voters that have not yet
participated in the voting process.

- Vote verifiability: voters must be able to verify independently that their votes have

been included in the final tally and counted properly.

- No coercion: it must be impossible for a voter to demonstrate the content of his/her
cast vote in order to prevent coercion or vote buying.

One of the above properties that are more enforced in an e-Voting system and that is more
present in conventional elections too is the voter privacy. In turn, it is a complex requirement
since, while the voter privacy must be preserved, it is necessary to ensure that the voter who
casts the vote is an eligible one. The design of a system that complies efficiently with these two
requirements is a real challenge. An efficient way to solve it is using advanced cryptographic
protocols.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

11

1.3. Securing elections using basic cryptography

In a basic implementation, the e-Voting systems use standard cryptographic techniques to
ensure the voter privacy and the election reliability. The most common cryptographic tools to
be used in e-Voting processes are the vote encryption and its digital signature.

1.3.1. Vote encryption

A vote can be encrypted using two types of cryptographic algorithms:

- Public key algorithms (asymmetric): the election has two keys, a public one that is
known by all the voters and a private one that is known by just one electoral entity
(usually the Electoral Board). The voters use the election public key in order to encrypt
their choices and, at the time of the tally, they are decrypted using the election private
key. That way it is ensured that anybody but the electoral entity, that has the private
key, can access the votes’ content.

Being the election private key, the public one and encryption and

decryption operations, an electronic ballot is encrypted by a voter as

In the decryption process the encrypted electronic ballot is decrypted by the
electoral entity as

- Secret key algorithms (symmetric): in this case the voter and the electoral entity share
a unique secret key used to both encrypt and decrypt the votes. In order to prevent a
voter to be able to decrypt the other voters’ choices, a unique secret key is generated
for each voter, while the electoral entity has access to all the keys.

Being the symmetric election key shared by a voter and the election entity,
an electronic ballot is encrypted by a voter as

In the decryption process the encrypted electronic ballot is decrypted by the
electoral entity as

Compared with asymmetric algorithms, the symmetric algorithms have scalability problems
due to that a different key has to be stored for each voter in the voting system. In the other
hand, the asymmetric algorithms are slower in the decryption process than the symmetric
ones, especially for large messages.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

12

In order to solve these problems it is usual to use hybrid systems that combine the advantages
of symmetric and asymmetric algorithms.

In a hybrid encryption algorithm the message is encrypted using a symmetric key generated by
the voter at random at the time of encryption. Then, this symmetric key is encrypted using the
election public key. This way just two keys are needed for the electoral process (public and
private), due to that with the private key the electoral entity can access the symmetric keys
used to encrypt the votes (faster than decrypting the entire ballot since the symmetric key is
supposed to be shorter) and decrypt them faster than using an asymmetric cryptosystem. This
encryption system is known as digital envelope.

Being the election private and public keys and a random session key

generated by the voter at the moment of the encryption, an electronic ballot is
encrypted as

In the decryption process the encrypted electronic ballot is decrypted by the electoral
entity as

1.3.2. Digital signature

A vote digital signature is performed using an asymmetric key algorithm. Usually the voter
calculates a Hash operation over his/her encrypted vote and then “encrypts” the Hash result
using his/her private key (instead of using the public key as in the encryption process). The
voter public key is known by everybody; therefore anyone can verify the digital signature
“decrypting” the result of the Hash function with the voter public key and comparing that the
Hash of the signed encrypted vote matches the “decrypted” Hash. The digital signature is
performed over the encrypted ballot. This prevents the correlation between the decrypted
vote and the digital signature, since signatures are only connected to encrypted votes.

Being the voter private and public keys and H a Hash function, an electronic

encrypted ballot is signed as

The electoral entity verifies the signature on the encrypted ballot as

 Verify that

Digitally signing the encrypted votes allows the verification of the vote integrity once it is
received in the voting server, due that if it is modified after the submission step the Hash
function will not match the one encrypted with the voter private key. It also allows the

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

13

verification of the voter eligibility, due that the voter has a digital certificate that connects
his/her identity with the public key. This method is similar to the one in postal voting where
the voter sends the ballot inside of a signed envelope and the signature is checked at reception
time. Once the ballot is extracted from the envelope it cannot be connected to the submitter
identity.

The scheme for this election model is the one in figure 1.1:

Fig. 1 - 1 Electronic voting using basic cryptography

Although this scheme seems secure enough to protect the vote secrecy, the voter privacy can
be broken if someone tracks the order the signed and encrypted votes are received and the
order they are decrypted, correlating the ballot content for an identified voter. Moreover, this
system does not allow the verification that the ballots are not manipulated between the vote
submission and the decryption steps.

Therefore, we need more advanced cryptographic methods to comply with the security
requirements.

The main objective of this PFC is to analyze some advanced cryptographic methods and design
a cryptosystem that could be used in e-Voting environments in order to encrypt the votes in an
efficient way, making it suitable to be used with the advanced cryptographic methods that
have been studied.

Encrypted and
signed vote

Voter Voting
Server

Electronic
Ballot Box

Electoral Board

DecryptionTally
Election
Results

Signature
Verification

Signature
Verification

Encrypted
votes

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

14

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

15

2. e-Voting protocols focused in the protection of the voter
privacy

There are various methods in electronic voting processes designed to protect the voter privacy
implementing voter anonymization systems. These methods can be classified depending on
the time at the voting process when they work:

- Pre-election phase: it is the phase where the election configuration processes are
done, as generating the voting ballots, closing the electoral rolls or assigning
credentials to the voters (i.e. digital certificates).

The methods that implement cryptographic processes in order to protect voter privacy
in this phase apply cryptographic measures in the design of the voting ballots.

- Voting phase: this phase covers the period when the voters can cast their votes.
During this phase the voters access to the voting system, identifying themselves and
submitting their votes.

The protocols that work in this phase apply the cryptographic measures after the voter
identification and before she submits her vote, achieving an anonymous channel for
the voter whereby the vote is separated from her identity.

- Counting phase: this phase starts when the voting period finishes. During this phase
the digital ballot boxes are collected, and a vote tally is done in order to obtain the
election result.

The cryptographic protocols used to achieve the voter anonymity in the counting
phase are focused on breaking the correlation between encrypted votes and decrypted
contents.

In the next sections these systems are described in detail.

2.1. Protocols that implement anonymity in the pre-election phase

As mentioned before, in these protocols the methods to achieve the voter privacy are
implemented in the ballot design phase.

These methods [1], [2], [52] are known generally as Pollsterless, since they do not need a
device with enough computation capacity to encrypt the voter chosen options (since they are
pre-encrypted). An advantage of these methods is that they can be used to vote by mobile
phones using SMS text messages.

In this design phase different codes for the voting options are generated for each ballot. Once
they have the codified voting options, the ballots are assigned randomly to the voters, and the

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

16

parameters used to decode them are stored in a secure way in order to decrypt the votes
during the tally.

The ballot design mechanism is simple:

- A random unique identifier is assigned to each ballot i:

 ,

where n is the number of paper ballots.

- For each party or candidate in the election, , a code is generated based on the

unique identifier of the ballot and the secret parameter Kc. Usually a unidirectional
function like a MAC is used to calculate the codes:

 ,

where k is the number of candidates in the election.

- For each candidate code , a return code is generated using the secret

parameter Kr and a non-reversible operation:

Thus, for each candidate and for each ballot a different code and its return code are
generated.

- Before starting the voting process, the ballots are sent by post in a random way to the
voters. The paper ballots received by the voters are like this:

Fig. 2 - 1 Example of paper ballot in Pollsterless

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

17

- Assuming the voter uses a web interface, once the voting process has started, the
voter accesses a web application where she is requested to insert the codes

belonging to the chosen candidates and the ballot identifier . Then, the voting
server calculates the return codes using the received candidate codes and the

secret Kr

and sends them to the voter, that can compare if their value is the same that those
assigned to the candidates in her ballot.

That way, the voter can verify that the vote received in the voting server contains the
same options that she has chosen. An attacker is not able to know in advance the return
code that must return in case of vote interception.

Moreover, in case that someone intercepts the codes, it is infeasible to know for which
candidates the voter has voted for without knowing the contents of the paper ballot, so
the voter privacy is preserved.

- Finally, the candidate codes are calculated again in the counting phase using the secret

parameter Kc, in order to connect the received codes with the candidates:

Due that the system security is mainly based in the paper ballots, there are several methods to
prevent their contents to be intercepted or manipulated before they arrive to the voters, such
as printing the candidate codes and the return codes separately, or dividing the ballots and
sending their pieces using different channels.

This system has several drawbacks:

- Usability: the voter has to input large character chains that compose the ballot
identifier and the candidate codes, and it can be easy to make mistakes. Moreover,
once the voter has voted, she has to verify the received return codes comparing them
to the ones in the paper ballot next to her choices, which can be specially difficult for
old people.

- Voter coercion or vote buying/selling could be possible in case that the received

candidate codes were published and the voter showed the paper ballot with her codes
to the coercer or the buyer, in order to verify that those connected to the desired
candidates are published.

- Privacy could be compromised: an attacker could know the vote intention of a voter if
he/she had access to the codes in the ballot.

- In case of interception an attacker could swap the codes in order to convince the voter
that she has chosen a determinate candidate, while she is really choosing another.

The voter anonymity is preserved since the submitted codes are not digitally signed.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

18

2.2. Protocols that implement anonymity in the voting phase

The aim of these methods is to achieve an anonymous channel for the voter, in such a way
that the submitted vote is not connected to her identity.

This protocol, first presented in [7] and then enhanced in [3], is usually called the two agencies
model, due to that it is based on two different services:

- The Validator Service identifies the voter, checks that she is in the electoral roll (her
eligibility) and allows her to vote in an anonymous way.

- The Vote Service receives anonymous votes that have been validated by the Validator

Service.

Usually, the blind signature protocol is used in these schemes. This protocol digitally signs an
encrypted vote without having knowledge of its content. Thus, the privacy of the voter is
preserved. The blind signature mechanism is based in the mathematical properties of an
encryption system, such as the RSA:

Supposing that the entity that signs the encrypted votes has a public RSA key (e, n) and a
private one d, this protocol implements the following steps:

1. The requestor (the voter) chooses a number r such that

gcd(r, n)=1

2. Then, she generates a blinding factor b as

3. The message to be signed is multiplied by the blinding factor

4. Finally, the requestor sends the blinded message m’ the signer entity, that returns the
digital signature of (s’) to the requestor, where

5. The requestor multiplies the signed blinded message by the inverse of the blinding
factor and obtains the original message m signed by the signer entity

Thus, in this protocol, the Validator Service receives a blinded encrypted vote jointly with voter
identity, it checks that she is an eligible voter and signs the blinded encrypted vote. Then, the
voter unblinds the vote and sends the recovered encrypted and signed vote to the Voting
Service, which stores only the encrypted votes signed by the Validator.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

19

The voting phases are the following:

- The voter creates a message that contains her chosen options, encrypts, blinds and
sends it to the Validator Service.

- The Validator Service receives the encrypted message, verifies that the voter is eligible

and digitally signs the blinded message, sending it back to the voter.

- The voter receives the blinded signed encrypted message and removes the blinding
factor in order to obtain the original encrypted message, still signed by the Validator
Service. Then, the voter sends it to the Voting Service.

- The Voting Service verifies that the encrypted message has been signed by the
Validator Service and stores it.

A scheme of the communication process is shown in figure 2.2:

Fig. 2 - 2 Communications in a two agencies model

The voter anonymity is preserved since:

- The vote is blinded and then signed by the Validator Service.

- The voter has not to be authenticated to submit the vote to the Voting Service.

- The voting options are encrypted before they are sent.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

20

Although this type of protocol is very efficient in order to preserve the voter anonymity when
casting the vote, they have some drawbacks that prevent their implantation in real election
processes:

- Since the Voting Service stores all the votes signed by the Validator Service, an
attacker controlling the Validator Service could generate an unlimited set of non-valid
votes that would be accepted by the Voting Service, modifying the election results.
Just one entity compromised (Validator Service) results in a possible electoral fraud.

- The communications between the voter, the Validator Service and the Voting Service

could be traced in order to relate the vote content with the voter identity, i. e. tracking
the IP directions or using cookies.

- In case that the Validator Service and the Voting Service cooperated sharing
information, they could correlate votes with voter identities.

2.3. Protocols that implement anonymity in the counting phase

These methods can be divided in two types:

- Systems that calculate the final tally without decrypting the votes individually, in such
a way that the cleartext vote is never recovered and therefore, it cannot be correlated
to the voter. These are called homomorphic tally protocols.

- Mixnets: these systems break the correlation between the reception order of the
encrypted votes and the order in which the votes are decrypted.

Both systems operate in an election characterized by:

- Voters encrypt the vote before submitting it through the net. The encrypted vote
contains the different options chosen by the voter.

- Once the voter has encrypted the vote, she also digitally signs it in order to verify its

integrity and the voter eligibility when it is received in the Voting Service. In order to
sign the vote to be cast, the voters must have a key pair belonging to a public key
cryptosystem (usually this involves management of digital certificates).

- There is an entity, the Electoral Board, that is composed of people with different
interests (i.e. a representative of each party) in order to prevent collusion. The
Electoral Board has a key pair belonging to a public key cryptosystem: the public key is
the one that the voters use to encrypt their votes, while the private key, only known
by the Electoral Board members, is the one that can recover the content of the
encrypted votes.

2.3.1. Homomorphic tally protocols

These protocols, introduced in [4], make use of the homomorphic properties of some
cryptosystems whereby certain operations over the encrypted votes result in the encryption of
the operation of the cleartext votes.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

21

Being two votes v1 and v2, an encryption operation E and two algebraic operations Φ and Θ,
the homomorphic property can be defined as

E(v1) Φ E(v2) = E(v1 Θ v2)

There are some types of homomorphism depending on the definition of the operation Θ: the
additive homomorphism and the multiplicative one:

- In a cryptosystem with additive homomorphic properties the multiplication of the
encrypted votes results in the encryption of the addition of the cleartext votes. Thus,
when this result is decrypted, the sum of the votes is obtained.

- In a cryptosystem with multiplicative homomorphic properties the multiplication of

the encrypted votes results in the encryption of the multiplication of the cleartext
votes. When this result is decrypted, the product of the votes is obtained.

Depending on the type of homomorphism that we want to use, we have to choose a
cryptosystem with the appropriate homomorphic properties.

2.3.1.1. Additive homomorphism

When an additive homomorphic cryptosystem is used, the encrypted votes are usually formed
by an array of parameters, each one corresponding to a certain candidate depending on the
position in the array. Each parameter is composed by a fixed number exponentiated to a
coefficient a if the candidate that represents is chosen or a coefficient b if not. One possible
configuration is that the coefficients a and b are equal to 1 and 0.

A common configuration scheme is presented in figure 2.3:

Fig. 2 - 3 Example of an additive homomorphic tally

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

22

Since the multiplication of the encrypted votes results in the addition of the exponents in λ,
when the result is decrypted the addition of votes for each candidate is obtained.

Another possibility to encrypt the options is to have the parameters a and b equal to 1 and -1.
Then, the result of the exponent addition is not equal to the votes for each candidate, but to
the difference between positive and negative votes. Following the procedure described in [5],
the results for each candidate can be obtained.

Some cryptosystems with additive homomorphic properties are the exponential ElGamal or
Paillier.

For example, in exponential ElGamal a vote in an election where there are three candidates
can be encrypted as

 ,
,

where are public parameters, are random integers, and (details
of ElGamal encryption can be found at Section 3).

If a voter selects the second candidate (the modular operations are omitted from now)

 ,

The multiplication of n votes results in

,

After the decryption process we obtain for each candidate and the discrete logarithm
must be broken in order to obtain for each one. The break of the DL is based on the
fact that the exponent is small and in trapdoor functions (in Paillier). Therefore in a large
election the votes can be tallied dividing them in groups.

2.3.1.2. Multiplicative homomorphism

When a cryptosystem with multiplicative homomorphic properties is used, it is usual for each
voter just to encrypt the selected options. Then, to perform the homomorphic tally, the
encrypted votes are multiplied. The result of the decryption is the multiplication of all the
candidates selected by the voters. In order to extract the votes for each candidate from this
result, it is usual to use prime numbers to identify each candidate and extract the selected
options using a factorization algorithm.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

23

A scheme of the system is shown in figure 2.4:

Fig. 2 - 4 Example of a multiplicative homomorphic tally

ElGamal, or RSA are cryptosystems with multiplicative homomorphic properties.

For example, when the ElGamal cryptosystem is used in an election with three candidates
where each vote can choose just one of them, an encrypted vote is

where are public parameters, is a random integer, and is the code for the chosen

candidate.

The multiplication of n votes results in

After the decryption process we obtain the product of all the candidates . Then, we can
extract the results for each candidate, for example factorizing the result, and obtain

, where are the total number of votes for each candidate.

2.3.1.3. Benefits and drawbacks

The homomorphic tally has some advantages in front of other systems.

- For example, due that the individual votes are never decrypted, it is impossible to
break the voter privacy because the cleartext votes do never exist to be related to
their authors.

- Moreover, a unique decryption process (or few of them) after the operation of all the
encrypted votes results in a fast counting system.

- Since the decryption process is done once, it could be performed in a distributed way,

using a secret sharing scheme where the private key to decrypt the votes is split, and
each share is owned by one different party that partially decrypts the result, increasing

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

24

the system security (i.e. using multi-party computation techniques). If each vote had to
be decrypted individually, this scheme would not be efficient.

However, there are some drawbacks that difficult the implementation of these methods in
common elections:

- Since the votes are never decrypted individually, it is necessary to ensure that the
encrypted votes are well-formed. Otherwise the results could be falsified (i.e. voting
several times for a candidate in a single vote). The verification process needed to
ensure that the votes are well-formed requires complex Zero Knowledge Proofs that
imply high computation costs for the voter application that creates the proofs and for
the voting system that verifies them. Some of these proofs are explained in Section 5.

- The hybrid encryption algorithms, such as digital envelopes, cannot be used in these

systems, due that the votes have to be encrypted using an homomorphic asymmetric
cryptosystem. Then, the properties of the symmetric cryptosystems cannot be used
and the encryption and decryption processes are slower than if we could use them.

- The vote format must support the operations of the individual voting options and
therefore, it is more restrictive than other schemes. For example, when additive
homomorphic cryptosystems are used, the encrypted votes are formed by an array of
parameters composed by a fixed number exponentiated with a certain number
depending on the selections. Thus, all the possible voting options must be encrypted. If
the election is complex and has a medium or large amount of candidates, this results
in large and difficult to manage encrypted votes. When multiplicative homomorphic
cryptosystems are used, suitable prime codes have to be selected to represent the
candidates, and an efficient factorization algorithm has to be used.

- Since all the possible voting options have to be prefixed, a voting system that uses
homomorphic tally does not allow the use of open questions or texts written by the
voters (commonly known as write-ins).

As result of those drawbacks these systems are commonly used in small and simple elections.
Otherwise the process complexity increases too much.

2.3.1.4. Additive versus multiplicative homomorphism

As part of the project, we compared both technologies. Although the additive homomorphic
systems are more used (since they provide in a direct way the total number of votes for each
candidate) in electronic voting that the multiplicative homomorphic ones, they are more
inefficient for several reasons [6]:

- If Paillier encryption is employed (additive homomorphism), the following drawbacks
in efficiency exist:

o Inefficient set-up:
In voting schemes, the private key of the encryption algorithm is usually
generated and shared by multiple trustees, so that there is no need to trust
any single party to achieve vote privacy. As the private key is a factorization
secret in Paillier encryption, distributed key generation is highly inefficient. In

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

25

comparison, distributed key generation in ElGamal (distributed generation of a
secret logarithm as the private key) is more efficient.

o Multiple encryption:
Usually, a voter has to perform an encryption for each candidate and prove
that each of her encryptions contains a valid message.

o Inefficiency of multiplicative and exponentiation computations:
In Paillier encryption, each multiplication is performed modulo n2, where n is
the product of two large primes. In comparison, in original ElGamal encryption,
each multiplication is performed modulo p, a large prime. If the same security
strength is required, n and p should have the same length (i.e. 1024 bits).
Paillier indicated that a multiplication in a Paillier encryption scheme is more
than three times as costly as a multiplication in an Elgamal encryption scheme
when n and p have the same length.

- If the exponential ElGamal encryption (additive homomorphism) is employed, the

following drawbacks in efficiency exist:

o Multiple encryption:
Usually, a voter has to perform an encryption for each candidate and prove
each of her encryptions contains a valid message.

o Inefficient Discrete Logarithm search:
As stated before, a search for logarithm is needed in the decryption function.
Even though the (currently known) most efficient solution for DL in a certain
interval — Pollard’s Lambda Method — is employed, 0.5log2n exponentiations,
O(n0.5) multiplications and O(0.5log2n) storage are needed where n is the
number of voters. Since the number of voters is often large in voting
applications, this is a high cost. To make the search more efficient, the votes
may be divided into multiple groups to perform a separate tally in each group.
However, this division increases the number of decryptions as a decryption is
needed for every candidate in each group.

2.3.2. Mixnets

These systems [9] imitate the process done in conventional elections when, once the voting
period is closed, the ballot boxes are shaken in order to shuffle the votes, preventing the
correlation of their order with the order in which the voters voted. Once this correlation has
been broken, the votes can be decrypted in a secure way in order to obtain the results.

A mixnet is composed of a certain number of mix-nodes where each one receives the
encrypted votes from the previous node and permutes them, keeping the permutation in
secret so the path of the encrypted votes through the mixnet cannot be recovered.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

26

Fig. 2 - 5 Mixnet

This permutation would have no sense if the input and output encrypted votes at each node
had the same values, due to that both sets could be compared and the path of each vote could
be traced. Therefore, each node does a permutation and a transformation operation over the
set of input encrypted votes.

Since the transformation over the encrypted votes modifies their values, appropriate
verification methods must be used to ensure the correct behaviour of each node. Otherwise,
the nodes could change the contents of their input sets and falsify the election results.

There are a lot of types of mixnets depending on the transformation they do over the
encrypted votes and how this transformation is verified:

2.3.2.1. Decryption mixnets

In this type of mixnets the input votes are encrypted in several layers, in such a way that each
mix-node has a secret key to remove one of the layers. Therefore, at the output of the last
mixnet node the votes are decrypted.

The first proposed mixnet was introduced by Chaum [7]. It was a decryption mixnet that used
nested encryption layers, also known as RSA onions with random padding. Mixnets based on
this concept of nested encryption and single-layer decryptions at each mix-node are
sometimes called “Chaumian mixnets”.
Each mix-node Mi has a public key pki and a corresponding secret key ski. Inputs to the mixnet
are prepared as

 ,

where j=1…k is the number of mix-nodes.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

27

Each mix-node Mi decrypts the outer layer of this onion (if things are done correctly, the outer
layer can be decrypted by the designated mix server), removes the random padding ri, and
outputs the resulting set of diminished onions in lexicographic order.

Chaum proposed a variant of this channel for voting protocols, in order to help voters check
that their vote was properly forwarded along. The protocol requires two runs of the mixnet: in
a first run, the voter sends a public key pkm for which she has the secret key skm and she
checks that her public key is present on the final decryption step. Then, in the second run of
the mixnet, she sends encrypted with the RSA onion, where is her vote

padded with a pre-determined number of 0’s. Everyone can perform the public-key based
decryption of the vote in the final round, verifying that only 0-padded results emerge.

This two-step mixing ensures that, in the first phase, a voter can complain if her public key is
not present in the mixnet output. Then, in the second phase, only messages formed with the
first-phase public keys are valid. No one but the sender (in possession of skm) can prepare a
properly 0-padded plaintext.

This mixnet was broken nine years after its presentation. A message-related attack can be
performed in this mixnet, where the attacker can trace the path of a message sending one
related to it and searching in the output for two plaintexts with the same relationship. The
attack is based on weaknesses of the RSA cryptosystem.

The main drawback of this type of mixnets is that the voter has to encrypt her vote as many
times as nodes in the mixnet. That operation can be costly in time and storage resources.

2.3.2.2. Re-encryption mixnets

These mixnets rose from the idea of solving the problem of the onion encryption.

In this type of mixnets encryption algorithms that allow re-encryption are used. Each mix-node
re-randomizes the input ciphertexts with fresh randomization values that get algebraically
combined with existing randomness, rather than concatenated, in such a way that just a
decryption process is needed at the end. Thus, the voter does not need to encrypt the vote as
many times as nodes in the mixnet, but once. The re-encryption process results in new values
in the output of each node that cannot be related to the ones in the input.

Being a message encrypted in the input of the mixnet

 ,

At each mix-node the message is re-encrypted () using the same public key (but using
different randomization values

Finally, in the last node, just one decryption process is done to recover the message

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

28

2.3.2.3. Re-encryption with partial decryption mixnets

In this type of mixnets, each node performs a partial decryption of the encrypted vote and a
re-encryption.

The messages are encrypted using a public key, such that each mix-node has a share of the
public and private key.

In the input of the mixnet, the messages are encrypted as

,

where pk1 is the share of the public key for the first mix-node.

Then, the mix-node decrypts the encrypted message with its share of the private key, in such a
way that the result is the message encrypted with the share of the public key of the next mix-
node

Finally, the mix-node re-encrypts the message using the public key of the next mix-node in
order to avoid a leak of information from the partially decrypted message that could allow an
attacker to guess any information to trace the messages in the mixnet

The next mix-nodes perform the same operations, partially decrypting at first and then re-
encrypting, until the last node that decrypts and recovers the message.

Several attacks were found in this system based on the semantic security and the malleability
of the used cryptosystem. These attacks lead to the definition of ElGamal (the used
cryptosystem) for semantic security. This definition is explained in Section 4.

The main issue in the use of these techniques is the verification that the mixing has been
performed correctly. Due that each node permutes and transforms the input values (by means
of decryption or re-encryption), it is hard to verify that the mix-nodes do not cheat and change
the input messages without revealing the permutation or the re-encryption/decryption factor.

Several techniques have been created in order to efficiently verify this mixing process. Some of
them are explained in the next section.

2.3.2.4. Universaly verifiable mixnets

Sako and Kilian Mixnet

The first universally verifiable mixnet was introduced by Sako and Kilian [8]. Their mixnet was
the first one to provide a proof of correct mixing that any observer can verify.

Their proposal is based on a partial-decryption-and-re-encryption mixnet, where each mix-
node publishes the partial decryption results. Then, each node provides a proof of correct
partial decryption and a proof of correct re-encryption and shuffling.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

29

The partial decryption proof can be performed using ZK Proofs (Section 5), batched in order to
provide a unique proof for all the partially decrypted messages.

The proof of shuffling is a ZK Proof too, where the node first calculates a permutation and re-
encryption values to shuffle the messages (π, {rj}), and then provides alternative values (λ,{tj})
to perform a second re-encryption and shuffling according to these new parameters,
generating “secondary shuffle outputs”. The verifier can then challenge the mix-node to reveal
either (λ,{ti}), or the relationship between the first and second values: (λ π-1, {rj-tj}), which lets
the verifier check how the primary shuffle outputs can be obtained by permuting and re-
encrypting the secondary shuffle outputs. With 50% soundness, this is an honest-verifier zero-
knowledge proof of correct shuffling.

To increase the assurance of integrity, the mix-node is asked to produce some secondary
shuffles. If the node succeeds at responding at t challenges, then the primary shuffle is correct
with probability 1-2-t.

Fig. 2 - 6 Secondary shuffles in the Sako and Kilian proposal for a verifiable mixnet

The main drawback of this system is that a certain number of complex proofs have to be done
at each node to verify the correct mixing. The verification cost depends on the number of
nodes.

A modification of this mixnet was proposed by Abe [12] where all the mix-nodes generated the
secondary shuffles jointly. The mix-node proofs are chained so that the verifier needs only
check the output of the last node.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

30

Random Partial Checking

Randomized Partial Checking or RPC in mixnets is a mechanism to check the correct behaviour
of the mix nodes. It is based in the basic idea that, rather than providing a proof of completely
correct operation, each node provides strong evidence of its correct operation by revealing a
pseudo-randomly selected subset of its input/output relations.

The RPC was at first formalized by Markus Jakobsson, Ari Juels and Ronald L.Rivest [10] in 2002
and then enhanced by David Chaum [11]. Nowadays it is still used as a way to prove that a
mixnet has mixed correctly its messages without using complex mathematical proofs.

The RPC can be used with Chaumian mixnets where the messages are successively decrypted
with each server key, and with mixnets based on a single public key with randomized re-
encryption at each layer. It provides voter privacy as a global property of the mixnet rather
than as a property ensured by a single honest node.

In an RPC mixnet, the inputs are mixed as usual by a sequence of nodes. The servers then
produce strong evidence of their correct operation, revealing partially their input/output
relation. For example, a node with n inputs can reveal n/2 inputs randomly without controlling
which outputs are selected. This procedure allows for a probabilistic verification of the correct
operation of each node.

Privacy is a more delicate affair, since servers will reveal partial information about their
input/output relationship.

In a first version [10], paired servers reveal their information in such a way that the paths
revealed in the first paired server are not the ones revealed in the second server as it is shown
in figure 2.7. Therefore, after the servers reveal partial information, there is still no way to
connect any input with a particular output, even if some servers are corrupt.

Fig. 2 - 7 Partial disclosure of the node information in RPC

If the first node in a pair reveals half of its input/output pairs, and the other node reveals the
complementary half, an adversary that is given complete side information regarding all
input/output correspondences for all nodes other than an honest pair can at best identify the
corresponding output value with probability 2/n.

In a second version [11], the mixnet nodes are grouped in sequences of four: in the first mixnet
node, half of the input/output relationships are chosen to be discovered. In the second mix-

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

31

node all those not pointed to by those opened in the first mix are discovered. In the third, half
of those revealed in the second mixnet and half that not are revealed, and for the fourth node,
those not pointed for the ones revealed in the third node are revealed, as it is shown in figure
2.8:

Fig. 2 - 8 Partial disclosure of the node information in Chaum’s RPC

In the first version anyone could realise that, after a pair reveals their information, there are
outputs for an input message for which the probability of being there is 0 and others for which
the probability is 2/n. Otherwise, the probability of an input message of being in a concrete
output if information is not revealed is 1/n.

In the second version the problem is fixed because the uniform distribution over n is almost
achieved: an input message has a 1/n probability of being in a specific output.

During the checking phase each node reveals a fraction p>0 (usually p=1/2) of its input/output
correspondences. A node reveals the triple (i, k, Rki), where k is the position in the output of
the encrypted vote in the position i (in the input) for which it has been asked for, and Rki is the
re-randomization factor of the re-encrypted vote in this position.

The probability of an adversary to go undetected changing t ballots is at most 1/2t.

Mixing in small batches

In the late 1990s, the research in mixnets turned to the goal of achieving efficient proofs,
where robustness and universal verifiability could be accomplished within practical running
times. Rather than using ZK techniques, these new proofs made use of specific number
theoretic assumptions of the underlying cryptosystem, usually ElGamal. In particular, where
prior proposals required repeating the entire proof to achieve reasonable soundness1 , these
new proposals provided overwhelming soundness in a single round.

Permix [12] and Millimix [13] are an example of mixnets based on using permutation networks
that provide better proof speeds for small to medium batches than the prior schemes.

1 Soundness reflects the probability of a cheater of not being detected. A sound protocol has a high
probability of detecting a cheater.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

32

Exponent dot-product Proof

In 2001 Neff [14] introduced what remains to this day the fastest, fully-private, universally
verifiable mixnet shuffle proof, requiring 8N exponentiations (where N is the number of votes).
This proof is fairly complex.

It is divided in three protocols, at first designed for a mixnet using ElGamal encryption.

- The Equality of Exponent Products proof ensures that both parts of the ElGamal input
and output ciphertexts in the mixnet or in a single node have the same random
exponent.

- The Known-Exponent Shuffle proof checks using the random exponents that a re-
randomization has been done.

- The Proof of Shuffle uses a challenge to make the mix-node demonstrate that there
has been a shuffle.

Later, this system was generalized to be used with any homomorphic cryptosystem.

Optimistic Mixing

In 2002, Golle et al. [15] proposed a new type of universally verifiable mixnet they called
“Optimistic Mixing”, with a significantly faster proof when all players behave honestly.
Otherwise, this solution suggests to fallback to existing proofs like Neff’s when an error is
detected. “Optimistic Mixing” uses ElGamal re-encryption, properly parameterized as per
achieve semantic security.

In order to verify integrity before the plaintexts are fully revealed in the last mix-node, two
layers of encryption are used.
First the message is encrypted in the usual manner:

Then, c is hashed, and all components are encrypted in a second layer:

The mix-nodes then re-encrypt and shuffle these triples of ciphertexts in the usual manner. In
the last node, the first layer is decrypted, obtaining

Then, everyone can verify that the third element is the hash of the other two. If this proof
succeeds, the second encryption layer can be removed, recovering m.

Another verification process is used combined with this integrity check. Based on the fact that
the cryptosystem is homomorphic, the input and output messages at each mix-node are used
to calculate input and output proofs that can be compared in order to verify the correct
performance of the mixnet.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

33

Concretely, a proof-of-product is performed to ensure that the plaintexts of the encrypted
messages in the input and in the output of each mix-node are the same.

This proof-of-product is the basis of the verification process we will use to evaluate several
cryptosystems to be used, so we will explain it broadly in Sections 3 and 4.

Wikström [16] presented several serious attacks against the Optimistic Mixing. These attacks
were mainly based on the double envelope encryption process.

In mixing protocols the voter privacy is obtained by means of encrypting the votes and using a
shuffling process to decorrelate the encrypted and signed votes and the decrypted ones.
Therefore the voter privacy depends on the honesty of the mixing process: if a node does not
shuffle the encrypted votes or reveals the permutation and transformation parameters the
plaintext ballots could be related to their authors.

Therefore, the main drawback of the mixing techniques is that they are hard to verify in an
efficient way.

Another drawback of these systems compared to homomorphic tally protocols is that they are
slower, since shuffling and transformation processes are done at each mix-node, and each vote
has to be decrypted individually.

Some benefits of these techniques are that they can use more flexible encryption schemes
than the ones used in homomorphic tally protocols, they allow the use of write-ins and
generally they can be used in more complex elections.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

34

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

35

3. Building Blocks

Fig. 3 - 1 Building blocks I

In the previous sections we have explained some advanced cryptographic protocols used in e-
Voting environments. Since some of these protocols use cryptosystems with homomorphic
properties or/and use ZK proofs to verify their processes, a public key cryptosystem is needed.
The main drawback of public key cryptosystems is their inefficiency both in encryption time
and in size, so one of the aims of this PFC is to design an efficient asymmetric cryptosystem to
be used in e-Voting processes and in other security applications. In order to define the main
characteristics of this cryptosystem we should choose a Vote anonymization system to protect
voter privacy from the advanced cryptographic protocols explained before.

Since we want this process to be universally verifiable, we want also to be able to calculate
some Integrity Proofs from the messages in the Vote anonymization system. These Integrity
Proofs are the basis of the verification process.

In this section we are going to discuss, the building blocks we are going to use and the desired
characteristics for them in order to define which protocol must be used or how will it be used.

From the definition of these characteristics we will extract the information to elaborate the
requirements for the cryptosystem to be designed.

3.1. Definition of a Vote anonymization system

From the benefits and drawbacks enumerated for the advanced protocols designed to protect
voter privacy, we have decided that the best decision is to implement a protocol that

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

36

implements voter anonymity in the counting phase. Thus, we have to choose if we prefer to
use an homomorphic tally protocol or a mixing protocol.

We can resume the benefits and drawbacks of the homomorphic tally and mixing protocols in
the following points:

- Homomorphic tally protocols are usually faster in the counting phase than mixnets,
since after the encrypted votes are operated just one decryption process has to be
performed, instead to the several shuffling and re-encryption/decryption processes
done in mixnets.

- Since in an homomorphic tally protocol just one result has to be decrypted, partial
decryption techniques using a secret key divided in shares can be applied. Otherwise,
when a mixing protocol is used, each vote has to be decrypted individually. The partial
decryption using each secret key share for all the votes could be too costly to obtain
the results in a reasonable time.

- In homomorphic tally protocols, since the votes are never decrypted individually, it is
necessary to ensure that the encrypted votes are well-formed using complex zero
knowledge proofs that can slow down the process for the voter and for the voting
service. In mixing protocols the correct construction of a vote can be verified when it is
decrypted.

- Homomorphic tally protocols can only use homomorphic cryptosystems. Multiple

types of cryptosystems can be used in mixnets.

- A vote in an additive homomorphic tally protocol is formed by all the possible options,
while in mixnets it just has to contain the selected ones, so the management of the
encrypted votes is easier and more efficient.

- The mixing protocols allow the attachment of write-ins in the vote, while the
homomorphic tally protocols do not.

- The mixing techniques are hard to verify in an efficient way. Otherwise, the
homomorphic tally protocols are easily verifiable (once we have verified all the ZK
Proofs).

- The mixing protocols are more efficient for large and complex elections than the
homomorphic tally protocols.

We decided to define our vote anonymization system as a mixnet, so we can achieve the
management of large elections. Moreover, we want it to be universally verifiable to be able to
achieve a high trust level in a real election. Finally, we want this verification to be efficient.

Now, we have to choose the type of mixnet we are going to use:

If we use a decryption mixnet with nested RSA cipher as the one proposed by Chaum, the
system is too costly in computation terms in the voter side if the number of nodes in the
mixnet is medium or high, since the voter has to encrypt the vote as many times as nodes in
the mixnet. Therefore, a decryption mixnet is discarded due to the high cost for the voter.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

37

In our search for a universally verifiable mixnet, we could take the Sako and Killian model for a
mixnet with re-encryption and partial decryption. This mixnet uses the specific properties of
schemes as Paillier or ElGamal to publish intermediate results in the output of each node, and
it is based on the verification of secondary shuffles. These verifications are usually very costly
and, as in the case before, the process would be too slow for our purposes.

In his proposal, Neff designs a mixnet with ElGamal encryption. It has been proved that this
mixnet is the most secure and verifiable since now, but, although it is the faster one with the
highest level of security and verifiability, it is still too slow to perform a mixing in a large-scale
election in a reasonable time.

Our aim is to create an efficient cryptosystem based on some ideas of how could be designed a
new universally verifiable mixnet that solves the efficiency problems of the existent proposals,
where the computation is fast and does not depend on the number of nodes. These ideas are
inspired by the Optimistic Mixing proposal explained in Section 2.

In order to achieve this objective we will use what we have called Integrity Proofs in a re-
encryption mixnet. These proofs are used to verify the correct performance of the mix-nodes
in an efficient way.

3.2. Definition of the Integrity Proofs and the Verification process

Before looking at the possible implementations of the encryption scheme to be used in the
mixnet we should take a look to the format, composition and performance of the Integrity
Proofs.

 Although these Integrity Proofs should be designed to be used in mixnets, they could be used
in other environments in order to verify a transformation process done over a set of input
messages, giving a set of output messages as result.

The Integrity Proofs should have the scope to allow the comparison between the set of input
messages in a process (mixnet) and the output ones to verify that there has not been any
manipulation, comparing the contents of the input and output sets without revealing the
content of each message on its own.

To achieve these requirements, the homomorphic encryption schemes are very useful:

In an homomorphic cryptosystem the operation upon one or some encrypted messages results
in an encryption of the operation of the messages: E(mA)Θ E(mB)= E(mAΦ mB).

Depending on the encryption algorithm, the homomorphism can be additive or multiplicative.
That is, for example, E(mA) E(mB)= E(mA+ mB), or E(mA) E(mB)= E(mA mB) respectively.

Therefore, using an homomorphic encryption scheme we can generate Integrity Proofs that
allow the comparison of the mixnet input set of encrypted messages and the set of output
plaintexts:

- An Input Integrity Proof is calculated operating the set of input encrypted messages.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

38

- Once the messages have been decrypted an Output Integrity Proof is generated
operating the set of decrypted messages.

- The Input Integrity Proof is decrypted.

- The decrypted Input Integrity Proof and the Output Integrity Proof are compared.

- If both values match, that means that the mixing has not altered the overall integrity
of the votes.

The figure 3.2 shows the verification process based on these Integrity Proofs.

Fig. 3 - 2 Verification based on Integrity Proofs

3.3. Cryptosystem Definition

In accordance with the basic requirements explained above, the cryptosystem to use in this
environment should have homomorphic properties and be suitable to be used in a re-
encryption mixnet.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

39

The building blocks can now be defined more accurately as:

Fig. 3 - 3 Building blocks II

Finally, some cryptosystems with these properties are presented here. In the next section, one
of these cryptosystems will be chosen to be the basis of a new encryption scheme.

3.3.1. RSA

The RSA cryptosystem, named after its inventors R. Rivest, A. Shamir, and L. Adlema, is the
most widely used public-key cryptosystem. It may be used to provide both secrecy and digital
signatures and its security is based on the intractability of the integer factorization problem for
large numbers.

3.3.1.1. Key generation

Each entity creates an RSA public key and a corresponding private key. Each entity A should do
the following:

- Generate two large random and distinct primes p and q, each roughly the same size.

- Compute n=pq and φ=(p-1)(q-1).

- Select a random integer e, 1<e<φ, such that gcd(e, φ)=1.

- Use the extended Euclidean algorithm [17] to compute the unique integer d, 1<d<φ,
such that ed 1 mod φ.

- A’s public key is (n, e); A’s private key is d.

The recommended key size (size of n and d) is 2048 bits [18].

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

40

3.3.1.2. RSA public key encryption

B encrypts a message m for A, which A decrypts:

- Encryption: B should do the following:

o Obtain A’s public key (n, e).

o Represent the message as an integer m in the interval [0, n-1].

o Compute .

o Send the ciphertext c to A.

- Decryption: to recover the plaintext m from c, A should do the following:

o Use the private key d to recover .

Proof that the decryption works:

Since ed 1 mod φ, there is an integer k such that ed=1+kφ. Now, if gcd(m, p)=1 then by
Fermat’s theorem,

 .

Raising both sides of this congruence to the power k(q-1) and then multiplying both sides by m
yields

 .

On the other hand, if gcd(m ,p)=p, then this last congruence is again valid since each side is
congruent to 0 modulo p. Hence, in all cases

 .

By the same argument,

 .

Finally, since p and q are distinct primes, it follows that

 ,

and, hence,

 .

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

41

Encryption and decryption exponents

In order to improve the efficiency of encryption, it is desirable to select a small encryption
exponent e. It may seem desirable to select a small decryption exponent d too in order to
improve the efficiency of decryption. However, if d is small, there are efficient algorithms for
computing d from the public information (n, e). To avoid this attack, the decryption exponent d
should be roughly the same size as n.

Homomorphic properties

Let m1 and m2 be two plaintext messages, and let c1 and c2 be their respective RSA encryptions.
Observe that

 ,

so RSA has multiplicative homomorphic properties.

Adaptive chosen-ciphertext attack

The homomorphic properties of RSA lead to the Adaptive chosen-ciphertext attack: suppose
that an active adversary wishes to decrypt a particular ciphertext intended for
A. Suppose also that A will decrypt arbitrary ciphertexts for the adversary, other than c itself.
The adversary can conceal c by selecting a random integer x Є Zn* and computing

. Upon presentation of c’, A will compute for the adversary .
Since

 ,

the adversary can then compute .

This adaptive chosen-ciphertext attack should be circumvented in practice by imposing some
structural constraints on plaintext messages.

A usual practice is to add a random padding to the message to be encrypted. This increases the
size of the message, which guarantees that the encrypted message is large enough that it will
not be easy to use for an attack, and it adds pseudo-random information in a way that means
that a given plaintext message could be encrypted to a wide range of different ciphertexts
(probabilistic encryption), depending on the choices made during padding (since RSA is a
deterministic cryptosystem the same message encrypted twice results in the same two
ciphertexts).

However, when RSA is used with a padding scheme the cryptosystem is not homomorphic any
more.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

42

3.3.2. ElGamal

The public key ElGamal cryptosystem can be viewed as a Diffie-Hellman key agreement
protocol in a key transfer mode. Its security is based on the intractability of the discrete
logarithm problem and the Diffie-Hellman problem.

3.3.2.1. ElGamal key generation

- Generate a prime large random number p and a generator g of the module p integer
multiplicative group Zp*.

- Choose a random integer x where 2 x p-2 as the secret key.

- Then calculate h=gx mod p.

- Finally, the public key is (p, g, h), and the private key is x.

3.3.2.2. ElGamal encryption

B must do the following to encrypt a message for A:

- Obtain A's public key (p, g, h).

- Represent the message as an integer m in the range (0, 1, ..., p-1).

Select a random integer r, where 1 r p-2.

- Compute , and .

- Send the ciphertext c=(,) to A.

A must follow these steps to decrypt the message:

- Use A's private key to compute .

- Recover m as .

The proof that the decryption works is:

Since in a shared system all the parties use the same prime p and the generator g, p and g do
not need to be published with the public key because they are already known. This contributes
to the key size reduction. An additional advantage of having a fixed base g is that the
exponentiations can be calculated in previous steps of the protocol. A disadvantage of these
shared systems is that p has to be very large to preserve the cryptosystem security (nowadays
1024 or 2048 bits is recommended).

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

43

Multiplicative homomorphism:

The ElGamal encryption, as RSA has multiplicative homomorphic properties:

Being two messages and encrypted as

 ,

the multiplication of both ciphertexts

is equal to the encryption of the result of , so

 .

Additive homomorphism:

A modification of ElGamal cryptosystem, called exponential ElGamal, is used when additive
homomorphic properties are used. In this modification a new parameter λ is used to
exponentiate the message.

In exponential ElGamal a message is encrypted as

 .

Being two messages and encrypted as

 ,

the multiplication of both ciphertexts

is equal to the encryption of the result of , so

 .

Since ElGamal is a probabilistic encryption scheme, padding schemes are not used in this
cryptosystem.

3.3.3. Paillier

The Paillier cryptosystem, named after and invented by Pascal Paillier in 1999, is a probabilistic
asymmetric algorithm for public key cryptography. The decisional composite residuosity
assumption is the intractability hypothesis upon which this cryptosystem is based.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

44

The decisional composite residuosity assumption states that, given a composite n and an
integer z, it is hard to decide whether z is a n-residue modulo n2 or not, i.e., whether there
exists y such that z=yn(mod n2).

3.3.3.1. Key generation

- Choose two large prime numbers p and q randomly and independently of each other,

such that . This property is assured if both primes are

of equivalent length.

- Compute and .

- Select a random integer g, where .

- Ensure that n divides the order of g by checking the existence of the following modular

multiplicative inverse:

 ,

 where

- The public key is (n, g).

- The private key is (λ, u).

If using p and q of equivalent length, a simplified variant of the above key generation steps
would be to set , , and , where

.

3.3.3.2. Encryption

B must do the following to encrypt a message for A:

- Let m be a message to be encrypted where .

- Select random r where .

- Compute the ciphertext as

- Send the ciphertext c to A.

A must follow these steps to decrypt the message:

- Recover m as .

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

45

Homomorphic properties

A notable feature of the Paillier cryptosystem is its homomorphic properties. Sinces the
encryption function is additively homomorphic, the following identities can be described:

Homomorphic addition of plaintexts:

The decryption of the product of two ciphertexts returns the sum of their corresponding
plaintexts:

 .

Homomorphic multiplication of plaintexts:

The decryption of an encrypted plaintext exponentiated to another plaintext returns the
product of the two plaintexts:

More generally,

However, given the Paillier encryptions of two messages there is no known way to compute an
encryption of the product of these messages without knowing the private key.

The original cryptosystem does provide semantic security against chosen-plaintext attacks. The
key length in Paillier is the same as in ElGamal, being recommended for n to have at least 1024
bits, better 2048.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

46

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

47

4. Design of a Cryptosystem for an Efficient and Universally
Verifiable Mixnet

The main objective of this PFC is to design an efficient cryptosystem that could be used in e-
Voting environments in order to encrypt the votes to be processed by a re-encryption mixnet
that uses universal verification techniques to ensure the correct performance of the mixing
process.

Therefore, the cryptosystem is designed in order to be used in this context, although it can be
used generally in other environments where a message needs to be encrypted at first and then
verifiably decrypted.

The model of a re-encryption mixnet where Integrity Proofs are used to achieve universal
verifiability is used as a case study where the different proposals are evaluated.

4.1. Initial Assumptions

To design our cryptosystem we first enumerate a series of initial assumptions in order to clarify
which are our main objectives, requirements, preferences and priorities:

- We want to generate Integrity Proofs in order to verify the correct behaviour of a re-
encryption mixnet. These Integrity Proofs are generated from operations based on the
message content. To compare the content of the messages in the input of the mixnet
with the ones in the output using Integrity Proofs, a homomorphic encryption scheme
is needed. The homomorphic property of a cryptosystem is explained in the sections
Integrity Proofs (3.2) and ElGamal Homomorphisms (4.3.2).

ElGamal, RSA, Paillier, or Elliptic Curve cryptosystems based on the Discrete
Logarithm Problem usually have homomorphic properties.

- Since the re-encryption mixnets are less costly for the voter than the decryption ones,

we need to use cryptosystems with suitable properties for the performance of the first
ones. In these cryptosystems the messages are encrypted in such a way that, when
various re-encryption processess are done, it is just necessary one decryption step to
get the plaintext messages. At each re-encryption step the ciphertexts are re-
randomized changing their values, so probabilistic encryption algorithms must be
used.

Cryptosystems like ElGamal, Paillier, or Elliptic Curve cryptosystems based on
the Discrete Logarithm Problem are suitable to be used in this type of mixnets.
RSA is a deterministic encryption algorithm, meaning that when a ciphertext is
re-encrypted using the same public key, the value is the same than before the
re-encryption (an undesired property in re-encryption mixnets). This problem
can be solved using padding at each re-encryption step, but then the
cryptosystem loses its homomorphic properties.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

48

- Zero-Knowledge Proofs are usual in advanced cryptographic applications, i.e. to proof

that a part of a protocol proceeds properly without revealing important or confidential
information. In order to achieve the maximum verifiability level in the mixing process
some of these ZK Proofs have to be used, so the cryptosystem must have the option of
calculating them.

In our research we have found that the Paillier encryption scheme does not
have the ability to calculate this type of proofs (although there have been
some advances in this direction, while ElGamal has a broad range of ZK Proofs
that we can use.

- In an e-Voting environment all the votes cast by the voters are encrypted using the

same public key, so just a trustable entity can decrypt them. In order to enhance the
system security, the secret key needed to decrypt the votes can be split and shared
among several different parties, in such a way that just a majority of them can recover
the secret key. The system security level is increased if, instead of splitting the secret
key, it is generated in a distributed way among all the parties, so the shares are
generated but the entire key is not.

The ElGamal cryptosystem is more suitable to be used in Distributed Key
Generation algorithms than Paillier.

Taking account of the initial assumptions discussed above, the cryptosystems that are
considered to fulfil them are ElGamal and EC-ElGamal in case of working with Elliptic Curve
Cryptography.

4.2. Analysis Model

In order to design a new cryptosystem to be used in a verifiable mixnet, we need an analysis
model where we can consider the possible protection steps that we think that are necessary in
order to guarantee the system security.

This scheme specifies the message processing steps and the possible entry points for an
attacker. Then, when analyzing our proposals, we are going to considerate these steps in order
to evaluate the scope of an attacker at each entry point and how to prevent or mitigate its
effects.

The analysis model is presented in the figure 4.1.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

49

Fig. 4 - 1 Analysis model

In the analysis model the voters cast their encrypted votes to the voting service that stores
them. After the voting process is closed, the received votes arrive to the mixing service
encrypted and signed. The purpose of the signature is to identify the elegibility of the voter
that casts the vote, and to check the vote integrity. Once the verifications are done, these
signatures are removed, so that the encrypted votes that enter in the mixnet are not
connected to their issuers anymore.

The mixnet has two nodes. It is a re-encryption mixnet where the first node shuffles and re-
encrypts the votes and the second one shuffles and decrypts them. An attacker could then
have an entry point to manipulate the votes in each node, since their operations are kept
secret in order to preserve the voter privacy and therefore their procedures are hard to verify.

4.3. ElGamal Cryptosystem

Based on the fact that:

1. We need a homomorphic encryption scheme in order to calculate Integrity Proofs.

2. We want to use Zero Knowledge Proofs to verify the correct performance of the
system, i.e. the correct decryption.

3. We have to use a suitable cryptosystem for re-encryption mixnets.

Our choice of a cryptosystem as a basis of the design of a new one suitable for our purposes is
the ElGamal cryptosystem.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

50

4.3.1. Conventional ElGamal encryption

4.3.1.1. ElGamal key generation

- Generate a prime large random number p and a generator g of the module p integer
multiplicative group Zp*.

- Choose a random integer x where 2 x p-2 as the secret key.

- Then calculate h=gx mod p.

- Finally, the public key is (p, g, h), and the private key is x.

4.3.1.2. ElGamal encryption

B must do the following to encrypt a message for A:

- Obtain A's public key (p, g, h).

- Represent the message as an integer m in the range (0, 1, ..., p-1).

Select a random integer r, where 1 r p-2.

- Compute γ=gr mod p, and Φ= m hk mod p.

- Send the ciphertext c=(γ, Φ) to A.

A must follow these steps to decrypt the message:

- Use A's private key to compute γ -x =g-xr.

- Recover m as m= Φ γ -x.

4.3.1.3. Key generation

In the first step, a prime p is selected. It is recommended for p to be at least of 1024 bits length
(this is the size of the currently used ElGamal keys), or preferably 2048. It is usual to choose p
as a safe prime [19] [20] in order to protect the cipher against the Polling-Hellman algorithm to
calculate discrete logarithms [Definition 4.85 in 17]. To calculate p as a safe prime, p=2q+1,
where q is also prime [Algorithm 4.86 in 17].

4.3.1.4. Message encryption

In order to encrypt a message, it is necessary to convert it in a number, for example using ANSI
code. If the message is too large, it has to be divided in blocks, in a way that each block length
is at most p-1.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

51

4.3.1.5. Cryptosystem characteristics

- Efficiency: the encryption process needs two modular exponentiations: gx mod p and
gxr mod p. Is important to have an exponent large enough to avoid a search using the
baby-step giant-step algorithm [21], so these exponentiation operations may be
computationally costly.

A disadvantage is that the encryption has an expansion factor of two (at least). An
encrypted message length is the double of the plaintext one.

A message with the same length as p-1 (the maximum length) doubles its size when it
is encrypted, since the ciphertext has two components, gr and m hk, as large as p-1. In
case that the message is smaller the expansion factor is higher.

- Probabilistic encryption: the ElGamal cryptosystem uses randomization at the
encryption process. The main idea behind these practices is to use the randomness to
increase the cryptographic security of a cipher process through one or some of these
methods:

o Increasing the effective space size of the clear texts.

o Decreasing the effectiveness of chosen-plaintext attacks by virtue of a one-to-
many mapping of plaintext to ciphertext.

o Decreasing the effectiveness of statistical attacks by levelling the a priori

probability distribution of inputs.

- Security: the problem breaking the ElGamal cryptosystem is equivalent to solve the
Diffie-Hellman problem. In fact, the ElGamal algorithm can be viewed as a message
encryption multiplying it with the Diffie-Hellman [21] session key gxr.

It is important to use different random exponents when a new message has to be
encrypted, in order to prevent the break of an encryption based on the knowledge of
one ciphertext and plaintext couple.

4.3.2. ElGamal homomorphisms

Multiplicative homomorphism

The ElGamal cryptosystem is homomorphic. Therefore, as it has already been explained, the
operation upon some encrypted messages results in the encryption of the operation of the
messages: E(mA)Θ E(mB)= E(mAΦ mB).

Depending on the encryption algorithm, the multiplication of the encrypted messages can be
equal to an additive homomorphism E(mA) E(mB)= E(mA+ mB) or a multiplicative one E(mA)
E(mB)= E(mA mB).

The ElGamal cryptosystem has natively multiplicative homomorphic properties:

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

52

Being a message encrypted as and a message encrypted as
, the multiplication of both ciphertexts

 is equal to the encryption of the result of , so

Additive homomorphism

A variation of the ElGamal cryptosystem, usually named exponential ElGamal cryptosystem,
provides additive homomorphic properties. In the exponential ElGamal cryptosystem another
public parameter λ is used to exponentiate the message.

Being a message encrypted as and a message encrypted as

, the multiplication of both ciphertexts
 is equal to the encryption of the result of , so

This latter option is usually used in voting systems, where the message m is represented as a
one-bit choice that means a vote for a single option [22][14][5], where m=1 means an
affirmative answer and m=0 is a negative one. Then, a homomorphic tally is performed,
multiplying all the encrypted votes to get the result of their addition. The benefits and
drawbacks of these techniques are explained in Section 2.

4.3.3. Definition of ElGamal for semantic security in voting applications

The semantic security for an encryption scheme can be defined based on indistinguishability. If
it is infeasible for an adversarial algorithm to distinguish between the encryptions of any two
messages, even if these messages are given, then the encryption should not reveal any
information about the messages. In other words, given and ,
where E() denotes an encryption operation, an attacker cannot succeed choosing which is the
ciphertext corresponding to with a probability higher than 0,5.

Attack based on semantic security

ElGamal used over all of Zp* is not semantically secure by default: by testing the respective
subgroup memberships of and , one can infer information about the subgroup
membership of m. Based on this idea, Birgit Pfitzmann [23] found a passive attack on the first
re-encryption mixnet [24].

The idea of the attack is basically that the encryption scheme used does not hide all partial
information, and thus one can restrict the number of participants who may have sent a
particular message. More precisely, the group Zp* has subgroups. At least the group order p-1
is even, and thus there is a subgroup of order 2, generated by .

Anybody can easily test if a group element a is in by testing if:

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

53

Similarly, if p-1 has another prime factor f, there is a subgroup , and the criterion for

membership in is:

The residue class of a message with respect to such a subgroup is not hidden. For example, in a
mixnet with just one mix-node and two participants and with messages and ,
where all three are honest, an outsider should not be able to trace which of the two
participants sent which of the two messages (as we have defined semantic security based on
indistinguishability). The two ciphertexts are:

Note that it is publicly known that was sent by and by . The mix node outputs
and shuffled. However, the attacker can test if is in the subgroup . This is true in half
the cases. If so, he knows that is in this subgroup too, since

So he knows that and if only one of and is in the subgroup, the
attacker knows which of them is ’s message.

If there are more than two participants, the attacker can partition them into possible senders
of certain messages. If there is more than one mix-node, the attacker can relate the initial

and the final in the same way.

We can conclude that in a re-encryption-based mixnet, if the cryptosystem is not semantically
secure, an attacker can detect input/output relationships.

Countermeasure

The countermeasure against the simple passive attack is to use a multiplicative group of prime
order. Usually one does this by choosing two prime numbers: p as a safe prime and q so that
q|p-1, and selecting g as a generator of a q-order subgroup of Zp*, . These numbers and

group generator are selected in a way that makes given messages encoded into this subgroup
easy to recover. On usual way is to use p=2q+1.

Therefore, the messages to be encrypted are of order , and the random exponents to encrypt
are in Zq.

Zp* can be split in two main subgroups based on having integers that are quadratic residues
modulo p or not. An integer a is a quadratic residue modulo p if there is a number c so that

. In order to determine if a is a quadratic residue modulo p the Legendre symbol

 is evaluated:

- = 1 if a is a quadratic residue modulo p,

- = -1 if a is a quadratic non-residue modulo p,

- = 0 if p|a.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

54

The relevance of having messages that are quadratic residues in the encryption process is
related to the behaviour of these integers when multiplied by the public key h or an
exponentiation of it (i.e. the encryption factor hr). If hr is a quadratic residue and the message
is also a quadratic residue, the result is always a quadratic residue. Otherwise, the result is
always a non-quadratic residue.

Since the quadratic residuosity of h and a ciphertext is easy to test, it is also easy to discern if
the original encrypted message related to the ciphertext is quadratic residue modulo p or not.
To prevent this issue from happening, it is recommended to choose all values representing any
of the voting options (or all the messages to be used in the same system) from the quadratic
residue group or the quadratic non-residue one to make the ciphertexts indistinguishable.

In order to simplify the notation, from now, all the operations are defined in Zp, the messages
are chosen from the group Gq (all quadratic residues or quadratic non-residues modulo p), and
the random numbers in the exponents are chosen in Zq.

4.4. Proposals for a new cryptosystem based on ElGamal encryption

At first, a list of requirements has been done in order to evaluate which is the most suitable
cryptosystem to use in an e-Voting environment using re-encryption mixnets. Once we have
found that the ElGamal cryptosystem is the one that fits all our first requirements, we should
think in some other characteristics that would be useful for our purposes, like size or speed
characteristics.

For example, in a conventional encryption scheme the length of a message has to be at most
p-1. If the message is larger, it is divided in blocs that are encrypted individually. This is a non-
efficient solution, due to the fact that each encrypted message at least doubles its original size,
since the ciphertext has two components, gr and m hk, as large as p-1.

Therefore, one of the improvements that we want to achieve in our proposal for a new
cryptosystem based on ElGamal encryption is that the long messages are encrypted more
efficiently.

Some characteristics desired for the encryption scheme are:

- Since this cryptosystem is designed to be used in a re-encryption mixnet, it must be
infeasible to reconstruct the encrypted message from the one decrypted after re-
encryption, so the content can not be related to the sender.

- Neither of the parts of the ciphertext can remain constant through the re-encryption

process, since then the output and input messages in the mixnet could be connected.

- The verification of the decryption process does not compromise the voter privacy.

- The cryptosystem must have homomorphic properties to calculate Integrity Proofs in
order to detect message manipulation.

- It must support large messages without prefixed content (as write-ins).

- If a new multi-block message encryption scheme (for large messages) is designed, it
has to accomplish that:

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

55

o It must allow re-encryption.

o The homomorphic characteristics of ElGamal encryption has to be preserved in

order to calculate Integrity Proofs.

o If the content of one block of a message is disclosed, it must be infeasible to
discover the content of other blocks of the same message.

 Analysis of existent proposals and design of new ones

In order to study and design new proposals, we will focus first on achieving a more efficient
encryption for long messages. In e-Voting environments one could consider that there is no
need of large contents management, because the choices to be encrypted are usually short
texts (i.e. candidate names), but we could consider the different choices of a voter as blocks of
the same message that has to be encrypted (i.e. when additive homomorphic cryptosystems
are used to perform homomorphic tally). Then, an efficient way to encrypt these different
choices would be useful.

We have talked about the size problem when encrypting large messages, due that each block
at least doubles its size when encrypted. But we have to talk about performance too. Talking
about time cost, for each message block mi a new random ri must be generated and two
exponentiations for hri and gri have to be done. The exponentiation is an operation that has a
great computational cost in encryption contexts; therefore other methods have been studied
to encrypt block-divided messages in a more optimistic way, both in performance and size.

First, we are going to analyze some academic proposals that have been designed to enhance
the ElGamal encryption performance for long messages. Then we are going to explain our
proposals for an encryption system in order to meet our requirements.

In order to compare the computational effectiveness of each proposal, we will consider in a
first place the effort (in time) needed to encrypt or decrypt a message. Since the most costly
computations in these cryptosystems are the random generation and the modular
exponentiation, we will count how many of these operations are required in the
encryption/decryption process:

4.4.1. Proposal 0: ElGamal conventional cryptosystem

Encryption

- One random number ri Є {2, q-1} is generated for each message block.

- The ciphertext corresponding to each message block is calculated as

 , where

 ,
 ,

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

56

being the public key of the destination and x the secret key.

- The group is sent.

Decryption

For each encrypted message block :

- The receiver calculates

- Then he extracts the message block .

Critical operations needed:

- Encryption: one random generation, two modular exponentiations for each message
block.

o r, hr, gr

- Decryption: one modular exponentiation for each message block.
o (gr)x

4.4.2. Proposal 1

In [25] a first proposal is made in order to cipher a message divided in several blocks in a more
efficient way and keeping the probabilistic properties of the encryption algorithm:

Encryption

- Two random numbers r1 and r2 Є {2, q-1} are generated.

- The parameters , are calculated as

 and , where g is the generator of the multiplicative group Gq.

- The ciphertext corresponding to each message block is calculated as

 ,

where is the public key of the destination, x is the secret key, and denotes
a XOR operation.

- The group (is sent.

Decryption

- The receiver calculates and .

- Then the component is calculated for each block.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

57

- The receiver extracts the message block .

Critical operations needed:

- Encryption: two random number generation and four exponentiations at first.
o r1, r2, b1, b2, ,

A quadratic exponentiation is calculated for each message block:

o

- Decryption: two modular exponentiations are calculated at first.
o

One quadratic exponentiation is needed to decrypt each message block.

o .

The idea of performing a fixed number of operations before the block encryption and reducing
the operations for each block can enhance the performance of the encryption for multi-block
messages. Let's see some discussion of this proposal:

4.4.2.1. Discussion of the Proposal 1

In [26] a cryptanalysis of the proposal 1 is made, and some issues are pointed out.

First of all, it is important to comment that, with the proposed syntax, there are some and

values for which the operation generate values that would prevent the message from
being recovered from the ciphertext (for example, those ones that make the ciphertext to be
0).

r1 and r2 should be generated carefully to ensure they do not produce one of these critical
values, and therefore the randomness factor would be noticeably reduced.

It is also demonstrated in [26] that with the solution presented in the proposal 1 the group of
possible ciphertexts is smaller than the group in Gq since quadratic exponents are used,
resulting in a weaker cryptosystem. In order to solve this problem a modification is proposed
where

 changes to ,

but no solution is proposed for the first problem.

4.4.3. Proposal 2

In [27] an improvement on the proposal 1 is presented.

Encryption

- Generate a random number r Є {2, q-1}.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

58

- Each block mi is ciphered as: , where H is a hash function.

- The group is sent.

Decryption

- Receive .

- Calculate with the private key x.

- Knowing the index i of each block, reconstruct the hash function .

- Decrypt the message block as .

Note that the algorithm can fail if . This is verified in the encryption process,
and, if it happens, a new r must be generated and the encryption starts from the beginning
with this new value.

Critical operations needed:

- Encryption: one random number generation and two exponentiations at first.
o ,

A Hash function is calculated for each message block.

o

- Decryption: one modular exponentiation is calculated at first.
o

One Hash function is needed to decrypt each message block.

o

This algorithm is more efficient that the previous one, since a random number r and the
exponentiation hr have to be calculated once. Then, for each block to cipher, just a Hash
function calculation is needed. Moreover, the quantity of information that has to be sent to
the receiver is significantly reduced, because the size of the ciphertext is the size of the
plaintext plus the factor , instead of doubling the plaintext size.

4.4.3.1. Discussion of the Proposal 2

From the threat analysis point of view, the security of the cryptosystem relies on the
complexity of finding, for a known ciphertext and a message block , the value of the
parameter w that makes that

It is also clear that the obtainment of one or more ciphertext-plaintext pairs of message blocks
does not allow to an attacker to guess the ciphertext-plaintext values of the reminding blocks:

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

59

From the obtainment of the cryptograms correspondent to the blocks of one
message, and the obtainment of the plaintext blocks (all but), it

is impossible to find the block from its cryptogram , since an attacker can find the value

of the encryption factor multiplied by the plaintext, ei, from the previous information

 for i j,

but can not be inferred from them.

It seems that this proposal could be suitable for our purposes. The problem found in this last
algorithm is that it loses the homomorphism characteristic of conventional ElGamal
cryptosystems. That is to say that the operation of two different ciphered messages is not
equal to the cipher of two operated messages (or message blocks), i.e. E(mA)Θ E(mB)= E(mAΦ
mB). Without this property, the Integrity Proofs can not be calculated and used to detect any
message manipulation.

4.4.4. Proposal 3 (our first proposal)

To solve the problem mentioned above a new proposal has been done in order to recover the
homomorphic properties of ElGamal cryptosystem based on the proposal 2.

Encryption

- Generate a random number r Є {2, q-1}.

- Each block is encrypted as:

, where H is a hash function.

- The group is sent.

Decryption

- The receiver receives

- Calculate with the private key x.

- Knowing the index i of each block, reconstruct the hash function .

- Decrypt the message block as

That way the homomorphism is preserved.

Critical operations needed:

- Encryption: one random number generation and two exponentiations at first.
o ,

A Hash function is calculated for each message block.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

60

o

- Decryption: one modular exponentiation is calculated at first.
o

One Hash function is needed to decrypt each message block.

o

How could we use the Integrity Proofs?

For example, a possible Input Integrity Proof based on the multiplication of n cryptograms
belonging to the same message could be:

 .

Then, to decrypt the Integrity Proof, the product of all the hashes and the factor could be
calculated as

and obtain , so we have multiplicative homomorphism.

The Output Integrity Proof calculated from the decrypted message blocks would be:

 ,

Then, both proofs could be compared. This operation could be formalised as the operation of
the message blocks of all the input and output messages.

Fig. 4 - 2 Integrity Proofs in Proposal 3

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

61

4.4.4.1. Discussion of the Proposal 3

In this solution a hash function must be generated for each block message. is maintained as
a constant for the blocks belonging to the same message, and the hash function gives the
needed randomness component. Each time a new message has to be encrypted, a new
(new random r) is calculated to prevent the occasional repetition of the factor in
the encryptions.

Like in the previous algorithm, the security of the cryptosystem relies on the difficulty of
finding, for a known ciphertext and message block , the value of the parameter w such
that

In the same way, if an attacker has access to the cryptograms of the blocks of one message:

, and to all the decrypted blocks minus one: , it is

impossible to find the block from its cryptogram , due to the fact that from the previous

information an attacker can find the component

 for i j,

but can not be calculated from it.

Therefore, this proposal provides a method to encrypt several blocks of one message in an
efficient way without losing the homomorphic properties of the ElGamal cryptosystem.
Comparing this proposal with the conventional method of independent message block
codification, both efficiency in performance and size have increased.

In the following figures all the cryptographic operations have been performed using keys of
1024 bits.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

62

4.4.4.1.2. Performance of the Proposal 3

Fig. 4 - 3 Encryption time

Fig. 4 - 4 Decryption time

0

500

1000

1500

2000

2500

1 2 4 8 16 32

Conventional
Encryption

Proposal 3
Encryption

0

200

400

600

800

1000

1200

1 2 4 8 16 32

Conventional
Decryption

Proposal 3
Decryption

Message Blocks

Message Blocks

Time (ms)

Time (ms)

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

63

Fig. 4 - 5 Encryption size

These graphics show the time needed to encrypt and decrypt a multi-block message,
comparing the performance of the conventional ElGamal cryptosystem and the design of the
Proposal 3.

We can see that for short messages (few blocks) the performance of both cryptosystems is
similar or even the Proposal 3 is worse, due that the fixed number of operations for each
message is higher in the Proposal 3 than in the conventional cryptosystem.

When the number of blocks of a message increases, the time needed to encrypt/decrypt in the
Proposal 3 is almost constant, since the variable operations (the operations for each block) in
this proposal are less computationally costly than in the conventional cryptosystem.

A resume of the fixed and variable operations for each cryptosystem is presented in Table 1:

Fixed (for each message) Variable (for each message block)

Conventional Encryption 1 random generation

 2 modular exponentiations

Proposal 3 Encryption 1 random generation 1 hash calculation

 2 modular exponentiations

Conventional Decryption 1 modular exponentiation

 1 inversion

Proposal 3 Decryption 1 modular exponentiation 1 hash calculation

 1 inversion 1 inversion
Table 1

Finally, we notice that the size of encrypted messages increases faster in the case of the
conventional encryption than in the Proposal 3, since while in the conventional encryption
each message block doubles its size when it is encrypted, in the Proposal 3 only the one block
of each message doubles its size and the others maintain their size. In the figure 4.6 the sizes
of the encrypted messages using both cryptosystems can be compared:

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 4 8 16 32

Conventional
Encryption Size

Proposal 3
Encryption Size

Message Blocks

bytes

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

64

Fig. 4 - 6 Comparison of encryption sizes

We have more requirements to be accomplished by the new designed cryptosystem, for
example to be able to implement re-encryption support. Therefore, the search for a suitable
design must continue.

4.4.5. The re-encryption process

In re-encryption mixnets the input messages are permuted and re-encrypted. Therefore, the
encrypted messages are encrypted again with new randomization values. This creates new
values in the output that can not be connected to the values in the input. Using the properties
of some homomorphic probabilistic algorithms such as ElGamal or Pallier, the messages are re-
encrypted with the same public key h as in the first encryption step, but using different
random numbers. Therefore, they can be decrypted in one step at the end of the mixing
process with the private key x.

The re-encryption can be expressed as an operation on the input encrypted message where:

Being C the encryption of a message m

 The re-encryption result is

 .

The re-encrypted message C' can be decrypted in one step since

 and

If we analize this method in Proposal 3, we conclude that it is impossible to implement a re-
encryption process on it, since the encryption of the message blocks is , where

 contains the factor into the hash function that codifies each
message block.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

65

Then, when the re-encryption process is done, the values and are updated with new

randomization values to and . Therefore, the factor inside the Hash cannot

be recovered from to reconstruct this encryption component, thus the messages
are not decrypted.

We need another method that randomizes the encryption of each message block, is only
recoverable by the receiver and that supports the re-encryption process.

4.4.6. Proposal 4 (our second proposal)

 In a first approach proposed we try encoding each message block as

Encryption

- Calculate a random integer r.

- Encrypt each message block as

- The encrypted message is

Thus, the hash component is different and random at each message block (since we want to
prevent the encryption of two equal message blocks to result in two equal ciphertexts
(probabilistic encryption)), and there are no problems reconstructing the hash function when a
re-encryption process is done, since the hash does not contain any element that could change
during the re-encryption process.

Re-encryption

- Calculate a random integer r’.

- Re-encrypt the message as

Decryption

- Calculate the factor .

- Calculate a hash function for each block from the recovered previous message block:

- Recover each message bloc as

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

66

However, we found a problem when encrypting the first message block, since we do not have
a previous message block to put inside the hash function. Since it has to be recoverable by the
receiver, the alternatives are

 , or

In both cases, if an attacker obtains the pair , , the factor can be calculated as

 ,
 or .

Using the second block can be decrypted, then could be used to decrypt the third
block, and so on. Therefore, the system is not secure enough since the encryption can be
broken from the knowledge of one pair ciphertext-plaintext of the message blocks.

We tried a second approach of this proposal that involves maintaining a hash structure as a
randomization factor applied over a number that is constant for all the blocks of the same
message and different for each new message, and that only the receiver may know.

The constant is encrypted and sent with the other parameters as if it was a message block, in
order to be recovered by the receiver.

Encryption

- Calculate two random integers r1, r2.

- Encrypt each message block as

- The encrypted message is

Decryption

- Calculate

- can be recovered from the third tuple factor as .

- Calculate as .

- Then compute the hash function for each message block.

- Recover each message block as:

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

67

As it is commented in the Proposal 2, if an attacker knows the ciphertext and the plaintext

and of a specific block j, the factor can be discerned. Since the parameter

can not be extracted from the hash function because it is a unidirectional function,
for cannot be calculated. Therefore, the knowledge of one block message and its
ciphertext does not bring additional information that helps to break the other encryptions.

Re-encryption

The multiplication of by allows the re-encryption of the ciphertexts multiplying the
third part of the tuple by new random values at each node of the mixnet.

- Thus, if we have a multi-block message encrypted as

 ,

where

- the result of the re-encryption is

 ,

where .

 Decryption (after re-encryption)

- Calculate , and .

- Compute .

- The factor is calculated for each message block.

- Finally, the message block is recovered.

Critical operations needed:

- Encryption: two random number generation and four exponentiations are calculated
at first.

o , , ,

A Hash function is calculated for each message block.
o

- Decryption: two modular exponentiations are calculated.

o
o

One Hash function is needed to decrypt each message block.

o

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

68

How could we use the Integrity Proofs?

For example, a possible Input Integrity Proof based on the multiplication of n cryptograms
belonging to the same message could be:

 .

Then, to decrypt the Integrity Proof, the product of all the hashes and the factor could be
calculated as

and obtain , so we have multiplicative homomorphism.

The Output Integrity Proof calculated from the decrypted message blocks would be:

Then, both proofs could be compared. This operation could be generalised as the operation of
the message blocks of all the input and output messages.

Fig. 4 - 7 Integrity Proofs in Proposal 4

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

69

4.4.6.1. Performance of the Proposal 4

Fig. 4 - 8 Encryption time

Fig. 4 - 9 Decryption time

0

500

1000

1500

2000

2500

1 2 4 8 16 32

Conventional
Encryption

Proposal 4
Encryption

Proposal 3
Encryption

0

200

400

600

800

1000

1200

1 2 4 8 16 32

Conventional
Decryption

Proposal 4
Decryption

Proposal 3
Decryption

Message Blocks

Time (ms)

Time (ms)

Message Blocks

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

70

Fig. 4 - 10 Encryption size

These graphics show the time needed to encrypt and decrypt a multi-block message,
comparing the performance of the conventional ElGamal cryptosystem, the designed
cryptosystem of the Proposal 3, and the Proposal 4.

We can see that the performance for encryption/decryption is very similar for Proposal 3 and
Proposal 4, due to that they are based on the same idea of reducing the cost of the variable
(per block operations). Therefore, the time for encryption/decryption in the conventional
cryptosystem increases with the message number of blocks, while in the Proposal 3 and 4 is
almost constant.

The time for decryption increases from the Proposal 3 to the Proposal 4 since the decryption
process is more complex in the second proposal. Even so, it is constant while in the
conventional cryptosystem increases with the message size, so the performance of the
Proposal 4 is still better.

A resume of the fixed and variable operations for each cryptosystem is presented in Table 2:

Fixed (for each message) Variable (for each message block)

Conventional Encryption 1 random generation

 2 modular exponentiations

Proposal 4 Encryption 2 random generation 1 hash calculation

 4 modular exponentiations

Conventional Decryption 1 modular exponentiation

 1 inversion

Proposal 4 Decryption 2 modular exponentiations 1 hash calculation

 1 inversion 1 inversion
Table 2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 4 8 16 32

Conventional
encryption size

Proposal 4
Encryption Size

Proposal 3
Encryption Size

Message Blocks

bytes

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

71

Finally, the encryption size increases faster in the case of the conventional encryption than in
the Proposal 4, due to that while in the conventional encryption each message block doubles
its size when it is encrypted, only the first block of each message doubles its size, an additional
block is added and the others maintain their size in the Proposal 4. Due to this additional block,
the encryption size is slightly larger in the Proposal 4 than in the Proposal 3, but the difference
is negligible when the message size increases.

In the figure 4.11 there is a comparison of the size of the encrypted messages using the
conventional cryptosystem and the Proposal 4 version 2. The comparison is done using 2-block
and 3-block messages.

Fig. 4 - 11 Comparison of encryption sizes

4.4.7. Problems found in the previous proposals

Once we thought we had our definitive proposal to achieve an efficient encryption scheme for
multi-block messages based in the ElGamal cryptosystem, we found two more problems to
face at:

4.4.7.1. Message traceability through re-encryption processes

The first problem is that there is a factor in the encrypted message that remains constant
through the successive re-encryptions on each node.

If we consider the encrypted message

,

where ,

and the reencryption result is

 ,

where ,

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

72

we can see that the factor is constant through the re-encryptions.

This constant can help an attacker to guess the path of a message through the mix-nodes.

As it is shown in the figure 4.12, an attacker could calculate at each node and for each
encrypted message the result of dividing two of the pieces of the ciphertext:

Fig. 4 - 12 An attacker tracks back the re-encrypted messages

Node 1:

Node 2:

Since the result of the operation is constant in both nodes, the attacker could track back the
message from the decryption step to the reception, where it is related to the sender, and
break the voter privacy.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

73

4.4.7.2. The 300 attack

The second problem is an attack performed in [16] to a mixnet designed in [15]

That mixnet used an ElGamal cryptosystem and Integrity Proofs based on similar concepts to
ours. One aspect that Wikström pointed out of that mixnet was that it was not able to detect a
specific attack to the messages with its Integrity Proofs.

An example of calculation of the Integrity Proofs as the multiplication of the processed
messages has been explained in the proposals 3 and 4.

Malleability

The ElGamal encryption scheme is malleable. That means that, if we multiply an integer by a
ciphertext the result is the encryption of integer multiplied by the original encrypted message:

Since this malleability is maintained in our proposals, we will explain how it can be a problem
based on the second version of the Proposal 4, when the verification of the process is done
through the comparison of the Integrity Proofs:

Integrity Proofs

- Assume two parties, A and B, that send two encrypted messages as:

 ,

where

 ,

where

- The Input Integrity Proof is

- The product of all the hashes and the factors and must be calculated to
decrypt the Input Integrity Proof:

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

74

 for i=1…n.

 for i=1…n.

- Finally, we obtain

- The Output Integrity Proof is calculated from the decrypted messages, so the result is

The comparison of these two proofs can be used to detect the possible manipulation of the
messages during the mixing process.

Attack

Due to the malleability property of the cryptosystem, if someone multiplies the ciphertext by a
factor (i.e. an integer), the result of the decryption is the plaintext message multiplied by this
factor:

- If an attacker multiplies an integer by one ciphertext and its inverse by the other, for
example:

- The result of the Input Integrity Proof is

- And the decrypted Input Integrity Proof is

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

75

- The result of the Output Integrity Proof is

Therefore, the manipulation is not detected due to the fact that both proofs are equal (and
equal to the ones without manipulation), although the decrypted messages do not match the
original ones.

This is a problem that we have called The 300 Attack, for the value of the factor used to
multiply and manipulate the messages while we were thinking about a solution for it. Our new
proposal is aimed to solve these two problems, preventing The 300 Attack and the message
tracing in the mix-nodes.

4.4.8. Proposal 5 (our third proposal)

Our solution for the problems presented above requires some reasoning steps:

4.4.8.1. Solution to message traceability through re-encryption processes

Any relationship between the elements of the encrypted messages must be avoided in order
to prevent an attacker from finding a value that remains constant through re-encryptions.

For this purpose, a modification of the Proposal 4 has been done:

- Instead of creating a public key h such as , where x is the private key,
two public and private keys are created using the same public parameters p and g:

 , and

- While in the Proposal 4 a message was encrypted as

 , where

In the Proposal 5 the encryption is performed as

 ,

where and y is a random number .

Since we have a second public key , we can encrypt a random number y instead of using
it. Then, y can be used to obfuscate the message-block content within the hash .

In the Proposal 4, since the factor could be discovered during the decryption process, it
was important to protect the obfuscating hash putting inside a number that just
could be calculated having the secret key () in order to preserve the secrecy of
the encrypted votes received before the mixing process.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

76

Now, due that the two public keys are unrelated (from the point of view that it is very difficult
to know of one of them exponentiated to a random value from the knowledge of the other
exponentiated to the same value), we can use directly the random number y instead of ,
and then decrease the number of modular exponentiations required in the
encryption/decryption process.

If an attacker tries to find a factor that remains constant through the different re-encryption

processes calculating or the result always depends on the factor , where r is

the randomization factor in the encryption. Since the value of r changes at each re-encryption,

the value of changes too, and no constant factors can be found.

4.4.8.2. Solution to undetected message manipulation

Now that the first problem has been solved, we should find a method to detect if there has
been any manipulation of the messages that has not been detected through the Integrity
Proofs.

Given that we are not able to detect some attacks, as for example The 300 Attack, using group
verifications as the Integrity Proofs, we are forced to check one by one the integrity of all the
messages in the decryption step.

If the mixing verification process was enhanced, perhaps there would not be a need for these
individual verifications, but we think it is still useful to be able to verify the integrity of each
individual message if it is desired.

In case a manipulation was detected, the mixing process could be repeated to ensure its
correctness. Therefore, during this verification process both the correct and incorrect
messages must not be discovered as plaintexts. Otherwise we could reveal too much
information before repeating the mixing, uncovering the paths of the shuffled messages and
breaking the voter privacy.

The use of a double encryption could be a possible solution: in this scheme the upper layer
encrypts the lower message encryption layer jointly with its hash function:

E1(E2(m),H(E2(m)))

When the first layer is decrypted, the message integrity can be verified before decrypting the
second layer, checking the connection E2(m) H(E2(m)). If this verification fails, the message
manipulation has been detected without revealing any plaintext message.

This procedure has been followed in [48] and in [15].

Although a similar system is required in the cryptosystem to be designed since Integrity Proofs
do not detect all the possible manipulations, the double encryption is avoided in order to
achieve a lower computational cost.

Combining these two ideas we have designed a new proposal from the modification of the
Proposal 4 in order to resolve the problems explained above.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

77

Key Generation

- Choose two random integers x1 and x2 where as the secret keys.

- Calculate two public keys and .

It is assumed that the entity in charge of vote decryption has both keys x1 and x2, although they
could be given to different organizations in order to distribute the trust.

Encryption

- Generate two random numbers, r and y, such that .

- Divide the message m in different message blocks mi such that [mi+sH] < q, where sH is
the size of a hash function that will be attached to the message block (i.e. if SHA1 is
used the length is 160 bits).

- Encrypt the message m as

 ,

where

- Send

Re-encryption

- Generate a random number, r’, such that .

- Thus, if we have a multi-block message encrypted as

 ,

- The re-encryption result is

 ,

where .

Partial Decryption

- The receiver calculates .

- Then obtains

for each message block.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

78

Hash Verification

Before keeping on with the decryption process, a verification process must be done at each
individual message in order to detect attacks like the The 300 Attack using the component

 ,

for each enrypted message or message block:

- The verifier divides it in two pieces:

- Then checks that H(s)=t.

If the verification process succeeds, the process can continue. Otherwise it is stopped and an
error is reported.

Final Decryption

- The receiver calculates ,

- Obtains

- Then calculates the hash H(y|i) for each message block,

- And recovers each one as .

A message divided in two blocks and then encrypted looks like this:

Fig. 4 - 13 Message encrypted using the Proposal 5

Critical operations needed:

- Encryption: two random number generation and three exponentiations at first.

o , , ,

Two Hash functions are calculated for each message block.

o ,

- Decryption: two modular exponentiations are calculated.

o
o

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

79

One Hash function is needed to decrypt each message block.
o

- Verification: a hash function is needed in order to verify the integrity of each message

block.

o

How could we use the Integrity Proofs?

One of the scopes of the new cryptosystem is to be able to calculate Integrity Proofs before
and after a particular process (i.e. a mixing process that re-encrypts and decrypts the input
messages) that can be compared in order to detect unauthorized modifications in the set of
input messages.

An example of how these Integrity Proofs can be calculated and compared in this Proposal 5 is
presented here:

Input Integrity Proof Generation

- From a set of messages in the process (mixing) input, each one being encrypted as

,

where

- An Input Integrity Proof is calculated as

Where j=1...k, being k the number of input messages and i=1…n, being n the number of
blocks of each input message.

This proof is calculated based on all the blocks of the set of messages in the process (mixing)
input (we assume that all the encrypted messages have the same size).

Output Integrity Proof Generation

- From the set of messages in the process (mixing) output, where each message block is
partially decrypted as

- The Output Integrity Proof can be calculated as

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

80

Where j=1...k, being k the number of output messages, and i=1…n, being n the number
of blocks of each output message.

This proof is calculated based on all the blocks of all the messages in the process (mixing)
output.

Input Integrity Proof Decryption

In order to compare the Input IntegrityProof and the Output Integrity Proof in a process where
the output messages are decrypted or partially decrypted, the Input Integrity Proof has to be
decrypted too:

- From the Input Integrity Proof

the receiver calculates

- Then obtains the decryption of the Input Integrity Proof as

Integrity Proofs Verification

The Output Integrity Proof and the Decrypted Input Integrity Proof are compared. If the
messages have been manipulated during the process (mixing), these two proofs do not match.
In case of The 300 attack the manipulation is not detected until the Hash verification step.

Procedure

Using a case study where the encrypted messages are encrypted votes and the process that
makes a transformation over the encrypted messages is a Mixnet which does a re-encryption
process at each mix-node and a decryption one in the last node, the steps to follow in order to
take profit of the main advantages of this encryption proposal are:

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

81

1. Message Encryption
2. Input Integrity Proof Generation
3. Message Re-encryption
4. Intermediate Integrity Proof Generation
5. Partial Decryption
6. Output Integrity Proof Generation
7. Input and Intermediate Integrity Proof Decryption
8. Integrity Proofs Verification
9. Hash Verification
10. Final Decryption

In the figures 4.14, 4.15, 4.16 and 4.17 an example of the mixing procedure for two messages
is described.

Fig. 4 - 14 Message encryption. First shuffle and re-encryption process in the mixnet. Calculation of Input and

Intermediate Integrity Proofs

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

82

Fig. 4 - 15 Partial decryption and calculation of the Output Integrity Proof

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

83

Fig. 4 - 16 Integrity Proofs verification step

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

84

Fig. 4 - 17 Hash verification and final decryption

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

85

4.4.8.3. Performance of the Proposal 5

In order to check the performance of the Proposal 5 1024 bit-size keys and two input messages
have been used.

Fig. 4 - 18 Encryption time

Fig. 4 - 19 Re-encryption time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2*127 2*248 2*504 2*1016 2*2016 2*4064

Conventional
Encryption

Proposal 5
Encryption

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2*127 2*248 2*504 2*1016 2*2016 2*4064

Conventional Re-
encryption

Proposal 5 Re-
encryption

Message Size (bytes)

Time (ms)

Time (ms)

Message Size (bytes)

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

86

Fig. 4 - 20 Decryption time

Fig. 4 - 21 Encryption size

These graphics show the time needed to encrypt, re-encrypt and decrypt two multi-block
messages, comparing the performance of the conventional ElGamal cryptosystem and the one
presented in the Proposal 5, including the calculation and verification of the Integrity Proofs
and the individual Hash verification for each message block before the final decryption.

0

500

1000

1500

2000

2500

2*127 2*248 2*504 2*754 2*754 2*1016

Conventional
Decryption

Proposal 5
Decryption

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2*127 2*248 2*504 2*1016 2*2016 2*4064

Conventional
Encryption Size

Proposal 5
Encryption Size

Time (ms)

Message Size (bytes)

Time (ms)

Message Size (bytes)

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

87

The performance of the Proposal 5 in the encryption/re-encryption/decryption processes is
constant while the message size increases, in contraposition to the behaviour of the
conventional ElGamal cryptosystem. This is due to the fact that the number of fixed operations
(per message) in the Proposal 5 increases and the number of variable operations (per message
block) decreases in comparison with the conventional cryptosystem, going on with the same
philosophy that was the aim of the proposals 3 and 4.

Therefore, for small messages the performance of the conventional cryptosystem is better.

The decryption operation in the Proposal 5 is a little slower than in earlier proposals because
the verification of the Integrity Proofs and the individual Hash checking for each message block
are done in this process. Even so, the process is faster than when the conventional
cryptosystem is used.

A resume of the fixed and variable operations for each cryptosystem is presented in Table 3:

Fixed (for each message) Variable (for each message block)

Conventional Encryption 1 random generation

 2 modular exponentiations

Proposal 5 Encryption 2 random generation 2 hash calculations

 3 modular exponentiations

Conventional Re-encryption 1 random generation

 2 modular exponentiations

Proposal 5 Re-encryption 1 random generation

 3 modular exponentiations

Conventional Decryption 1 modular exponentiation

 1 inversion

Proposal 5 Decryption 2 modular exponentiations 1 hash calculation

 2 inversion 1 inversion
Table 3

Although the encryption size still increases faster with the message size using the conventional
encryption than using the Proposal 5, the fact of adding a Hash resume next to the block
message to be encrypted results in more block messages for the same message size, since the
block size limitation is [mi+sH] < q (where sH is the size of the Hash resume) in the Proposal 5
instead of mi< q in the other proposals.

Due that more block message encryptions are needed in the Proposal 5 than in the
conventional cryptosystem for the same message size, the encryption size for small messages
is higher in the new proposal, and, although it is smaller than the encryption size in the
conventional cryptosystem when the message size increases, it is bigger than in the other
proposals.

In the figure 4.22 a comparison between the sizes of an encrypted message using the
conventional cryptosystem and using the Proposal 5 is shown. The comparison is done
encrypting a 2-block message (considering that the message blocks for the Proposal 5 are
smaller than the ones in the conventional cryptosystem).

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

88

Fig. 4 - 22 Comparison of encryption sizes

4.4.8.4. Problems found in the Proposal 5

The problems found in the proposals 3 and 4 were solved in the Proposal 5, but another
problem appears when this cryptosystem is used to encrypt messages that are processed in a
mixnet in order to be de-correlated from their origin.

Although the relationship between the different parts of the cryptosystem (a, b, d) change
which each re-encryption process in order to achieve non-traceable secret paths for the
messages in the mix-nodes, the block encryptions of a same message have a constant
relationship through the re-encryption processes:

Being each block message encrypted as

The relationship between two encrypted block messages is

After a re-encryption process, each block message is encrypted as

And then, the relationship between two encrypted block messages is

The relationship between two message blocks remains constant after the re-encryption.
Therefore, the attacker could track the message through the different shuffling and re-
encryption processes searching for the same relationship values at the input and the output of
each mix-node as it is shown in figure 4.23.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

89

Fig. 4 - 23 Attack based on the re-encryption process

Therefore, the relationship between two block messages should not be constant. We have to

change the system where all the blocks are encrypted using the same random factor

().

If we use a different random number r for each message block

,

we lose the speediness that gives to us the fact of calculating just one exponentiation for all
the message blocks, in front of what is needed in the conventional ElGamal cryptosystem.
Thus, the efficiency goes down.

An alternative to this solution is presented in Proposal 6, where a unique exponentiation ()

for all the message blocks to be encrypted is combined with a new exponentiation () for
each one in the re-encryption process with a smaller exponent.

While the encryption exponent r has the same magnitude of the public encryption factor p,
that must be at least a 1024-bit size number (better 2048-bit) [18], the “dispersion” exponent

 is the result of a hash function, that usually has a smaller size than the module of a
cryptosystem based on the DLP (256, 512 bits…), so a modular exponentiation for each block
using this type of exponents makes the Proposal 6 still faster than the conventional encryption.

Thus, the cryptosystem security is preserved by multiplying the cleartexts by while the

untraceability of the messages through the mixnet is ensured by the component
calculated for each message block.

The encryption of the message information jointly with its hash that was designed in Proposal
5 is maintained in this proposal; therefore, the verification of the encrypted message integrity
block per block can be performed before it is finally decrypted.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

90

4.4.9. Proposal 6

Key Generation

- Generate 3 secret keys x1, x2, x3 as random numbers in Zq.

- The public keys are:
 h1=gx1
 h2=gx2
 h3=gx3

As in the Proposal 5, the secret keys can be given to different organizations in order to increase
the system trust.

Encryption

- Each message m is split in blocks mi so that [mi+sH] < q, where sH is the size of a hash
function that will be attached to the message block.

- Two random parameters (different for each message, equal for all the blocks of a
message) {r1, y} < q are calculated.

- For each mi:

o Calculate , where i is the message block index.

o Calculate .

o Construct .

- The encrypted message is equal to:

 .

Re-encryption

- Calculate two random parameters in Zq, r1’ and r2’.

- Perform the re-encryption process as:

o .

o

o .

o ,

where the operation

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

91

is performed for each block.

- The re-encryption result is:

where n is the number of message blocks.

As in the Proposal 5, a partial decryption process is done before the complete decryption in
order to verify the hash attached to each message block.

Partial Decryption

- Calculate in the reception: in order to obtain
.

- Calculate .

- Calculate for i=1..n.

- Then obtain

for each message block.

Hash Verification

If we have the component

 ,

for each encrypted message or message block:

- The verifier divides it in two pieces:

- Then checks that H(s)=t.

If the verification process succeeds, the process can continue. Otherwise it is stopped and an
error is reported.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

92

Decryption:

- Calculate in order to obtain

- For each encrypted message block obtain as

.

An example of an encrypted message in the Proposal 6 is:

Fig. 4 - 24 Encrypted message using the Proposal 6

Critical operations needed:

- Encryption: two random number generations and four exponentiations at first.

o , , , ,

Two Hash functions are calculated for each message block.

o ,

- Re-encryption: two random number generations and four exponentiations for each

message.

o , , , ,

One modular exponentiation with small exponent is needed to re-encrypt each
message block.

o

- Decryption: three modular exponentiations are calculated for each message.

o

o

o

One Hash function and one modular exponentiation with small exponent are needed
to decrypt each message block.

o ,

- Verification: a hash function is needed in order to verify the integrity of each message
block.

o

Traceability Prevention

Using the dispersion method proposed in the re-encryption process we prevent the message
traceability through the re-encryption nodes.

In the Proposal 5 we had each block message encrypted as

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

93

The relationship between two encrypted block messages was

Due that after a re-encryption process, each block message was encrypted as

The relationship between two encrypted blocs was the same than before the re-encryption
process:

In the Proposal 6 the relationship between two encrypted blocks before re-encryption is

And after the re-encryption the relationship is

If we re-encrypt again the message, the relationship between the two blocks is

Thus, since the random numbers and are not known by an external attacker, the
relationship between the encrypted blocks changes at each re-encryption step and the
messages can not be traced.

How could we use the Integrity Proofs?

As in the previous proposals, here we will explain how can we calculate and compare Integrity
Proofs in order to verify a mixing process using this new proposal. Following the procedure
followed in the Proposal 5, a scenario with multiple messages, each one with multiple blocks is
presented:

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

94

Input Integrity Proof Generation

- From a set of input messages in a process (mixing), each one being encrypted as

,

where

- An Input Integrity Proof is calculated as

Where j=1...k, being k the number of input messages and i=1…n, being n the number of
blocks of each input message.

This proof is calculated based on all the blocks of the set of messages in the process (mixing)
input.

Intermediate Integrity Proof Generation (calculated from the inputs or the outputs of an
intermediate node)

- Being each encrypted message in the mixing process re-encrypted as

,

where

- An Intermediate Integrity Proof is calculated as

Where j=1...k, being k the number of input messages and i=1…n, being n the number of
blocks of each input message.

This proof is calculated based on all the blocks of the set of messages in the process (mixing)
input.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

95

Output Integrity Proof Generation

- From the set of messages in the process (mixing) output, where each message block is
partially decrypted as

- The Output Integrity Proof can be calculated as

Where j=1...k, being k the number of output messages, i=1…n, being n the number of
blocks of each output message.

This proof is calculated based on all the blocks of all the messages in the process (mixing)
output.

Input Integrity Proof Decryption

In order to compare the Input IntegrityProof and the Output Integrity Proof in a process where
the output messages are decrypted or partially decrypted, the Input Integrity Proof has to be
decrypted:

- From the Input Integrity Proof

the receiver calculates

- Then obtains the Input Integrity Proof decrypted as

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

96

Intermediate Integrity Proof Decryption

If we want to compare the Intermediate Integrity Proof with the Output Integrity Proof, we
have to decrypt this proof too:

- From the Intermediate Integrity Proof

the verifier calculates

- Then obtains the Intermediate Integrity Proof decrypted as

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

97

Integrity Proofs Verification

The Output Integrity Proof and the Decrypted Input and Intermediate Integrity Proofs and

 are compared. In case the messages were manipulated during the process (mixing), these
three proofs would not match. If there are various mix-nodes and we calculate an Integrity
Proof in the input and the output of each one, we can know which node or nodes have
cheated comparing the decrypted proofs.

Procedure

Basically, the procedure to use this cryptosystem properly in a re-encryption mixnet is the
same than in the Proposal 5, changing some details about the implementation:

1. Message Encryption
2. Input Integrity Proof Generation
3. Message Re-encryption
4. Intermediate Integrity Proof Generation
5. Partial Decryption
6. Output Integrity Proof Generation
7. Input and Intermediate Integrity Proof Decryption
8. Integrity Proofs Verification
9. Hash Verification
10. Final Decryption

In the figures 4.25, 4.26, 4.27, 4.28 an example of the mixing procedure for two messages with
two blocks each one is described.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

98

Fig. 4 - 25 Mixing process: shuffling and re-encryption. Calculation of the Input and Intermediate Integrity Proofs

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

99

Fig. 4 - 26 Partial decryption and Output Integrity Proof calculation

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

100

Fig. 4 - 27 Integrity Proofs verification

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

101

Fig. 4 - 28 Hash verification and final decryption

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

102

4.4.9.1. Performance of the Proposal 6

Fig. 4 - 29 Encryption time

Fig. 4 - 30 Re-encryption time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2*127 2*248 2*504 2*1016 2*2016 2*4064

Conventional
Encryption

Proposal 6
Encryption

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2*127 2*248 2*504 2*1016 2*2016 2*4064

Conventional
Re-encryption

Proposal 6 Re-
encryption

Time (ms)

Message Size (bytes)

Time (ms)

Message Size (bytes)

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

103

Fig. 4 - 31 Decryption time

Fig. 4 - 32 Encryption size

The graphics show the time resources needed to encrypt, re-encrypt and decrypt two multi-
block messages in both conventional and Proposal 6 cryptosystems. Like in the Proposal 5, the
simulation in these graphics includes the time of calculation and verification of the Integrity
Proofs and the individual Hash verification of each message block.

0

500

1000

1500

2000

2500

2*127 2*248 2*504 2*1016 2*2016 2*4064

Conventional
Decryption

Proposal 6
Decryption

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2*127 2*248 2*504 2*1016 2*2016 2*4064

Conventional
Encryption Size

Proposal 6
Encryption Size

Time (ms)

Message Size (bytes)

bytes

Message Size (bytes)

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

104

Unlike in the previous proposals, the re-encryption and decryption times in this proposal are
not constant while the message size increases. This is due to the fact that, in order to prevent
message tracing through the mix-nodes, a small modular exponentiation is performed for each
encrypted block instead of performing just an exponetiation for each message as in the
previous proposals. Since the exponentiation to be performed in the re-encryption and
decryption processes uses a small exponent, this cryptosystem is still faster than the
conventional one. Finally, we can say that we have left the heavy computations to the mixing
and decryption processes, since the process for encryption (which has to be done by the voter)
is still constant in time while the message size increases. We think this is a good approach,
since we can not suppose that the user (the one that encrypts the message at first) will have a
device fast enough to do the encryption process in a little time, but the mixing and decryption
servers can be designed to support these heavy computations.

Like in the other cases, the performance of the conventional cryptosystem for small messages
is better.

A resume of the fixed and variable operations for each cryptosystem is presented in Table 4:

Fixed (for each message) Variable (for each message block)

Conventional Encryption 1 random generation

 2 modular exponentiations

Proposal 6 Encryption 2 random generation 2 hash calculations

 4 modular exponentiations

Conventional Re-encryption 1 random generation

 2 modular exponentiations

Proposal 6 Re-encryption 2 random generation 1 modular exponentiation (small exponent)

 4 modular exponentiations

Conventional Decryption 1 modular exponentiation

 1 inversion

Proposal 6 Decryption 3 modular exponentiations 1 hash calculation

 3 inversions 2 inversions

 1 modular exponentiation (small exponent)
Table 4

Since we have added another constant factor in the encryption (h3) in the Proposal 6, the
ciphertext size is larger than in the Proposal 5, but it is still smaller than in the conventional
encryption for large messages since most of the parameters are fixed for whichever is the size
of the message to be encrypted.

Like in the Proposal 5, the fact of adding a Hash resume next to the block message to be
encrypted results in more block divisions for the same message size than in the conventional
cryptosystem, since the block size limitation is [mi+sH] < q (where sH is the size of the Hash
resume) instead of mi < q. This drawback makes the cryptosystem to divide each message to
be encrypted into more and smaller blocks, increasing the computation time.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

105

4.4.10. Conclusions about the proposed cryptosystems

Finally we can evaluate the features achieved with each proposal in order to see the process
evolution in Table 5:

Proposal 3 Proposal 4 Proposal 5 Proposal 6

PI Calculation YES YES YES YES

Homomorphism YES YES YES YES

Re-encryption NO YES YES YES

Message Traceability Prevention NO NO NO YES

Three-Hundred Attack Detection NO NO YES YES
Table 5

Neither the Proposal 1 nor 2 had the homomorphic properties we needed in order to calculate
the Integrity Proofs. This issue was solved in the Proposal 3, so we could expose how the
Integrity Proofs could be calculated in each proposal.

The Proposal 3 did not be suitable to apply re-encryption processes over the encrypted
messages. Therefore, this topic was solved in the Proposal 4.

The 300 Attack detection was solved in the Proposal 5, and finally in the Proposal 6 we solved
the problem of message traceability through the re-encryptions performed at each mix-node.

Finally, a comparison of the performance of the presented proposals is shown in the next
graphics:

Fig. 4 - 33 Encryption time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2*127 2*248 2*504 2*1016 2*2016 2*4064

Conventional
Encryption

Proposal 3
Encryption

Proposal 4
Encryption

Proposal 5
Encryption

Proposal 6
Encryption

Time (ms)

Message Size (bytes)

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

106

Fig. 4 - 34 Decryption time

Fig. 4 - 35 Encryption size

The time needed in the encryption process is more or less the same for all the presented
proposals, but in decryption time and encryption size the Proposal 6 is the worst of them, due
to that we had to build a more complex scheme every time that a problem was detected in a
proposal. Even so, the Proposal 6 is faster and requires less storage resources than the
conventional cryptosystem.

0

500

1000

1500

2000

2500

2*127 2*248 2*504 2*1016 2*2016 2*4064

Conventional
Decryption

Proposal 3
Decryption

Proposal 4
Decryption

Proposal 5
Decryption

Proposal 6
Decryption

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2*127 2*248 2*504 2*1016 2*2016 2*4064

Conventional
encryption size

Proposal 3
Encryption Size

Proposal 4
Encryption Size

Proposal 5
Encryption Size

Proposal 6
Encryption Size

Time (ms)

Message Size (bytes)

Message Size (bytes)

Time (ms)

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

107

4.5. Elliptic Curve Cryptography: EC ElGamal Cryptosystem

4.5.1. Elliptic Curve Cryptography

The mathematical theory of elliptic curves [28] [29][30][31] provides a class of finite groups
that have proven quite suitable for cryptographic use. Koblitz and Miller proposed in 1985 the
use of the group of points of an elliptic curve in public-key cryptography.

The security in the Elliptic Curve Cryptography (ECC) depends on the difficulty of the Elliptic
Curve Discrete Logarithm Problem:

- Let P and Q be two points on an elliptic curve such that k P=Q, where k is a scalar.

- Given P and Q, it is computationally infeasible to obtain k, if k is sufficiently large.

k is called to be the discrete logarithm of Q to the base P. The name of ECDLP is due to its
equivalence with the one found in cryptosystems as ElGamal, due that the additive operations
in EC are similar to the exponentiations in ElGamal.

If the chosen finite field is large, the discrete logarithm problem on elliptic curve abelian
groups is believed to be more difficult than the corresponding problem in the underlying finite
field's multiplicative group. Therefore, one main advantage of ECC is that the key size usually
needed in cryptographic applications is smaller than the one needed using conventional finitie
fields. For example, a 160-bit key in ECC is considered to be as secured as 1024-bit key in RSA.

4.5.1.1. Mathematical background

The mathematic operations in elliptic curves are defined over an elliptic curve characterised by
a and b:

 ,

where .

Each value of a and b generates a different elliptic curve. All points which satisfy the above
equation plus a point at infinity lie on the elliptic curve. This set of points on such a curve
compose an abelian group, with the point at infinity as identity element. If the coordinates x
and y are chosen from a finite field, the solutions compose a finite abelian group.

The elliptic curve arithmetic is described in [28], [31] and in [30].

Use of finite fields

The elliptic curve operations over the real numbers are slow and inaccurate due to round-off
error. Cryptographic operations need to be faster and accurate. To make operations on elliptic
curve accurate and more efficient, the curve cryptography is defined over two finite fields:

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

108

- Prime field

- Binary field

The field is chosen with finitely large number of points suited for cryptographic operations.

EC on Prime field

In finite fields the EC definition and operations are defined under the p module, having then

the basic equations as:

 ,

where all the integers Є {0, p-1}.

All the operations such as addition, substraction, division, multiplication involve integers
between 0 and p-1. The primer number p is chosen such that there is finitely large number of
points on the elliptic curve to make the cryptosystem secure. SECG [34] specifies curves with p
ranging between 112-425 bits.

EC on Binary field

In binary field , the elliptic curve equations are

 ,

where .

The elements of the finite field are integers of length at most m bits. These numbers can be
considered as a binary polynomial of degree m-1. All the operations are done with at most m-1
grade polynomials.

The m is chosen such that there is finitely large number of points on the elliptic curve to make
the cryptosystem secure. SECG [34] specifies curves with m ranging between 113-571 bits.

In the elements are integers , which are combined using modular arithmetic. The

case of is slightly more complicated: one obtains different representations of the field
elements as bitstrings for each choice of irreducible binary polynomial f(x) of degree m.

In our implementation we are going to use elliptic curves over finite fields defined for the p

module.

4.5.1.2. Domain parameters

To use ECC all parties must agree on all the elements defining the elliptic curve, that is the
domain parameters of the scheme:

- The field is defined by p in the prime case and the pair of m and f in the binary case.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

109

- The elliptic curve is defined by the constants a and b used in its defining equation.

- Finally, the cyclic subgroup is defined by its generator or base point G. For

cryptographic application, the order of G, that is the smallest non-negative number n
such that , must be prime.

Since n is the size of the subgroup of it follows from the Lagrange's theorem that

the number /n is integer, where is the number of points of the

elliptic curve.
In cryptographic applications this number h, called cofactor, must be small ()
and, preferably, h=1. If not, the curve would be vulnerable to the Pohlig-Hellman
attack.

The same can be applied for

In the prime case the domain parameters are (p, a, b, G, n, h) and in the binary case they are
(m, f, a, b, G, n, h).

Finally, not all the elliptic curves are useful in cryptographic schemes since they are
recommended not to be supersingular or anomalous. Supersingular curves are those that have
a cardinal equal to p+1. Then, a MOV [33] attack could be done, reducing the group

where the discrete logarithm problem has to be solved to break the cryptosystem. The
anomalous curves have a cardinal equal to p. Although they are resistant to the MOV

attack, a polynomial algorithm to solve the discrete logarithm problem over their field could be
designed.

Unless there is an assurance that domain parameters were generated by a trusted party, the
domain parameters must be validated before use.

The generation of domain parameters is not usually done by each participant since this
involves counting the number of points on a curve , which is time-consuming and trouble
some to implement. As a result several standard bodies published domain parameters of
elliptic curves for several common field sizes, as the NIST in the document [35] and the SECG,
[32]. The NIST recommended elliptic curves are chosen for optimal security and
implementation efficiency.

If one wants to build his own domain parameters he should select the underlying field and
then use one of the following strategies to find a curve with appropriate (i.e. near prime)
number of points using one of the following methods [36]:

- Select a random curve and use a general point-counting algorithm, for example,

Schoof’s algorithm or Schoof-Elkies-Atkin algorithm.

- Select a random curve from a family which allows easy calculation of the number of

points (eg Koblitz curves), or

- Select the number of points and generate a curve with this number of points using

complex multiplication technique.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

110

4.5.1.3. Keys

If we want to use the ECC in a public key cryptosystem, we need a public and a private key.
Since by the ECDL problem it is infeasible calculate an integer k such that knowing Q
and P, k is used to be the secret key while Q is the public key and P is a generator point
(commonly called G) such that the multiplication of any integer (in the n range) by this point G
results in a point belonging to the specified EC.

4.5.1.4. ECC algorithms

The EC algorithms are specified in [37]. Most of the EC cryptographic schemes are related to
the discrete logarithm schemes which were originally formulated for usual modular arithmetic:

- The Elliptic Curve Diffie-Hellman key agreement scheme is based on the Difffie-
Hellman scheme.

- The Elliptic Curve Digital Signature Algorithm is based on the Digital Signature
Algorithm.

- The ECMQV key agreement scheme is based on the MQV key agreement scheme.

Not all the DLP schemes should be ported to the elliptic curve domain. For example, the well
known ElGamal encryption scheme was never standardized by official bodies and should not
be directly used over an elliptic curve (the standard encryption scheme for ECC is called Elliptic
Curve Integrated Encryption Scheme). The main reason is that although it is straightforward to
convert an arbitrary message to an integer modulo p, it is not that simple to convert a bitstring
to a point of a curve.

Due to the operation complexity, the most extended applications for the ECC are the digital
signature ECDSA and the key exchange protocol ECDH. In these algorithms public key
cryptography is used creating a private key as a random integer and a public key as a point of
the curve that is the multiplication of the private key by a generator. Instead of operating with
these keys, a subkey derived from the public key (a coordinate of a point) is used to avoid the
elliptic curve point operation and the conversion of the message to a point.

The main concept of these schemes is:

- A generates a random number that is his secret key.

- A obtains his public key as .

- B does the same for and .

- A can generate a new point that only A and B will know as

- B can generate the same point .

- Using this shared secret a message can be encrypted.

The only standardised algorithms are the named above for key agreement and for digital
signature. At the RSA Conference 2005, the NSA announced Suite B [38] which exclusively uses

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

111

ECC for these uses. The suite is intended to protect both classified and unclassified national
security systems and information.

In [28] these two standardised algorithms are detailed:

ECDSA: Elliptic Curve Digital Signature Algorithm

For signing a message m by sender A, using A’s private key :

- Calculate , where H is a cryptographic hash function.

- Select a random integer d from .

- Calculate , where . If , go to step 2.

- Calculate . If , go to step 2.

- The signature is the pair .

For B to authenticate A’s signature, B must know A’s public key :

- Verify that r and s are integers in . If not, the signature is invalid.

- Calculate .

- Calculate .

- Calculate and .

- Calculate

- The signature is valid if , invalid otherwise.

ECDH: Elliptic Curve Diffie Hellman

ECDH is a key agreement protocol that allows two parties to establish a shared secret key that
can be used for private key algoritms.

Let be the private key-public key pair of A and B’s key pair.

- A computes .

- B computes .

- Since , P=L and hence .

- The shared secret is .

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

112

4.5.2. EC Homomorphic Cryptosystems

4.5.2.1. EC ElGamal Cryptosystem

As it has been explained before, due that we want to use Integrity Proofs in order to verify the
correct mixing process, we need an homomorphic cryptosystem. The use of an EC ElGamal
cryptosystem for message/vote encryption has been studied from [28][31] and exposed here.

The importance of considering the ElGamal cryptosystem over a group of points of an elliptic
curve relies in that the algorithms that solve the PLD over E(Fp) are harder than in Fp *, so the
key size can be much smaller (160 bits versus 1024).

In order to configure such a cryptosystem the domain parameters (p, a, b, G, n, h) are
specified, being k {1, n-1} the receiver private key and Q=k G the public key, where G is the
point generator of the elliptic curve.

Then, the message that needs to be encrypted has to be converted into a point of the elliptic
curve. The message is first converted to a natural number (0<m<p), and then is usually
identified with the abscissa of a point M of the curve defined as

y2=x3+a x+b

Then:

y2=x3+a x+b y2=m3+a m+b M=(m,y)

If the result of m3+a m+b is not quadratic, we can try with m+1.

The encryption and decryption processes are explained here:

EC ElGamal encryption

- The message to be encrypted is represented as a point of the curve M.

- Choose a random integer r {1, n-1}.

- Calculate the elliptic curve points C1=r G and C2=M+r Q.

- Send C1, C2.

EC ElGamal decryption

- Calculate the point k C1=k r G=r Q.

- Calculate the point M= C2-r Q.

- Obtain m from M.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

113

4.5.2.2. EC Paillier-Galbraith cryptosystem

Paillier designed an homomorphic cryptosystem over a ring Zn

2, n=p q, based on the
composite residuosity problem [39].

An Elliptic Curve approach was done by S. Galbraith in [40] considering an integer n=p q,
being p and q primes, and a curve E over the ring Zn

2 for the scheme configuration.

One of the advantages of this scheme is that the message to encrypt m does not have to be
converted to a point of the curve.

The private key in this cryptosystem is

k=lcm(#E(Fp), #E(Fq))

So, in order to calculate k we need to know the cardinals of the curve E over Fp and Fq.

The public key is a point Q in #E(Zn

2) such that

k Q=[0, 1, 0].

To calculate Q we choose a random point Q', being Q=n Q'.

EC Paillier-Galbraith encryption

- A message m is represented as a point Pm=[m n,1,0] of E(Zn
2).

- A random integer r is chosen in Zn.

- Calculate the point C=r Q+Pm in E(Zn

2).

- Send C.

EC Paillier-Galbraith decryption

- Calculate the point k C=k (r Q+Pm)=(0,1,0)+(k m n,1,0)=(k m n,1,0) in E(Zn
2).

- Obtain the first coordinate x=k m n of the point k C.

- Calculate y=(x/n) in Z and the product m=y d-1 in Zn.

- Return m.

Using this cryptosystem, the message m is encrypted in an easier way than in ElGamal
cryptosystem, due to the fact that the message is inserted directly in the point coordinates and
not converted into a point. However, this elliptic curve approach, although being efficient, is
not semantically secure.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

114

A cryptosystem is semantically secure if, given two plaintexts and the ciphertext of one of
them, the attacker can not decide which message is the ciphertext from with a probability
higher than 1/2.

 In [41] a semantically secure cryptosystem has been developed from a generalization of the
Paillier-Galbraith cryptosystem, but in this improvement the cryptosystem loses its
homomorphic properties.

4.5.3. Use of the EC ElGamal cryptosystem in homomorphic schemes. Proposal for a
mixing process

The main point of this cryptosystem for our purposes (achieve an homomorphic encryption
that allows us to calculate the Integrity Proofs) relies in that we can use the additive
homomorphic properties of this ElGamal scheme adaptation for elliptic curves in such a way
that we can calculate the addition of the encrypted messages (Input Integrity Proof) and
decrypt it obtaining the addition of the plaintexts. Then, if we calculate the Output Integrity
Proof as the addition of the output plaintexts, we can compare the decrypted Input Integrity
Proof with the Output one, following the original design for universal verifiability. The detailed
procedure is represented in the figure 4.36:

Fig. 4 - 36 Integrity Proof generation using an EC cryptosystem

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

115

- Suppose that we have two parties, A and B that send each one an encrypted message
to a third party with a secret key k and a public key Q as:

A (C1a, C2a) = (ra G, Ma +ra Q)

B (C1b, C2b) = (rb G, Mb +rb Q)

- Then, if we add both ciphertexts to calculate the Input Integrity Proof

(C1a, C2a) +(C1b, C2b) =(ra G + rb G, Ma + Mb + ra Q + rb Q)=(R, P)

- We can decrypt the addition result and obtain the addition of both messages as:

Ma + Mb =P-k R= Ma + Mb + ra Q + rb Q - k(ra G + rb G) =

= Ma + Mb + ra Q + rb Q - (ra Q + rb Q)

- If we had a mixnet with re-encryption where

(C1a’, C2a’) = ((r1a + r2a) G, Ma +(r1a + r2a) Q)

(C1b’, C2b’) = ((r1b + r2b) G, Mb +(r1b + r2b) Q)

- We could calculate the Intermediate Integrity Proof, and decrypt it to recover the

addition of the two messages too:

(C1a’, C2a’) +(C1b’, C2b’) =((r1a + r2a) G+(r1b + r2b) G, Ma + Mb +(r1a + r2a) Q+(r1b + r2b)
Q)=(R’, P’) Ma + Mb =P’-k R’

- The plaintexts in the output are operated to calculate the Output Integrity Proof as:

Ma + Mb

- Finally, the Integrity Proofs can be compared to verify the correct behaviour of the
mixnet.

II'=III'=Io

4.5.3.1. Message conversion into a point

One issue when we use the EC ElGamal encryption scheme is how to convert a message m to a
point M of an elliptic curve.

A usual option [42] is, as it has been explained before, to insert the variable m (the message
converted to an integer <p) in the elliptic curve equation as the x coordinate, being

M=(m,)=(x, y).

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

116

The main problem is that, if we have part of the message content on both coordinates, once
that two points are added Ma + Mb, it is infeasible to obtain the addition of the messages as
integers. As we can see in the point addition section of [28]:

Point addition:

- Consider two distinct points J and K such that J=(xj, yj) and K=(xk, yk).

- Let L=J+K where L=(xl, yl), then:
 xl =s2+s+ xj + xk +a
 yl =s(xj + xl)+ xl + yj
 s=(yj + yk)/(xj + xk), s is the slope of the line through J and K.

- If K=-J, i.e. K=(xj, xj + yj) then K+J=O, where O is the point at infinity.

- If K=J then J+K=2 J, and point doubling equations are used.

Fig. 4 - 37 Arithmetic operations in Elliptic Curves

This is not a big deal if we just want to compare the Integrity Proofs in the input and the output
of the mix-nodes, but if we would like to have the chance of performing an homomorphic tally
this cryptosystem could not be used. Otherwise, the conversion of a message into a point of
the curve can difficult the posterior information extraction when the decryption is done, so we
should evaluate which is the best and most efficient method.

Another option to convert a message into a point could be calculating M=m G. The problem is
that then we would have to face the discrete logarithm problem in order to obtain m from M.
There is an example in [43] where the messages are converted into points following this
procedure. After all the process the final system recovers them by brute force. The system can
recover the messages due to the fact that they are small integers, and then the ECDLP is not so
hard to solve, but it is not our case.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

117

Finally, the option that has been considered when converting the message is to insert it in a
point with the structure [m n:1:0] in an elliptic curve E over the ring Zn, as we have observed
in [36].

4.5.3.2. Use of projective coordinates

The elliptic curves over rings Zn (En(a, b)), where n=p q, being p and q primes, are used in
factorization problem based cryptosystems. The addition operation with points of an elliptic
curve over a finite field can be defined for points of a curve E over a ring Zn. However, due that
there are elements in Zn that have not inverse, the point addition in E(Zn) is not always well
defined by the conventional analytic expressions.

In order to mitigate this problem, an elliptic curve defined over the projective plane P2(Zn) can
be also considered, formed by the points (x: y: z) that satisfy the equation y2 z=x3+a x z2+b
z3 in Zn, which has semi-infinite points (x:y:z) such that lcm(z,n) is p or q, as well as an infinite
point O=(0:1:0) and affine points (x:y:1).

This definition can be extended to the ring Zn

2, the one used in the Paillier-Galbraith scheme.
The natural map is En

2(a,b) En(a,b).

En

2(a,b) can be seen as a group isomorphic to Ep
2(a,b) Eq

2(a,b).

Points in these curves can be classified in three types:

- Points at infinity Ok=(k n:1:0), k Zn.

- Affine points: (x,y)=(x:y:1) En
2(a,b).

- Semi-infinite points: (x:y:z) En

2(a,b), with gcd(z,n)=p or q.

Due that the semi-infinite points provide a factorization of n they are not recommended for
cryptographic uses.

The most important property for our purposes is that, given two messages ma and mb Zn, the
addition operation of their equivalent points is:

[ma n:1:0] and [mb n:1:0] is Pma+Pmb=[(ma+mb) n:1:0]=Pma+mb.

Instead of using a curve as in this example, we are going to use a curve in in

order to use the ElGamal cryptosystem modulo to define the curve.

4.5.3.3. Application of the projective coordinates to the EC-ElGamal encryption
scheme

Due to the properties of the affine and the infinite point addition [44] explained below, the
messages should be represented by infinite points.

Then, since we define the point addition operation as

(m p:1:0)+(m' p:1:0)=((m+m') p:1:0)

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

118

we can obtain the addition of the messages from the result of this operation.

The r G and r Q points used during the encryption process will be considered affine points.

As it is described in [44], the point operation in elliptic curves over rings Zp

2 has the following
properties:

- The addition of two points in the infinite result in a point in the infinite.

- The addition of two affine points can result in an affine point, an infinite point, or
another type of point, depending on the point architecture.

- The addition of an affine point with an infinite point results in an affine point.

- If we multiply an affine point as (x:k p:1) by an odd integer the result is a point in the

infinite. Otherwise, the result is an affine point.

In the ElGamal cryptosystem, we define the points r G and r Q as affine points at first.

During the calculation of the Integrity Proofs or the re-encryption process these points are
added to others. Therefore, these affine points can be converted in infinite points through all
these operations.

The question is: could an attacker extract any information of this?

Let's see what happens when we add two encrypted messages (i.e. when we calculate the
Integrity Proofs):

Being the encrypted messages

A (C1a, C2a) = (ra G, Ma +ra Q)

B (C1b, C2b) = (rb G, Mb +rb Q)

The attacker sees the result of the operation

(C1a, C2a)+(C1b, C2b)=(ra G+rb G , Ma+Mb+ra Q+rb Q)=(R, P)

And can extract some conclusions from the point operation properties presented above:

- If the point P is at the infinite, it would mean that so does k R=(ra Q+rb Q).

Since

P=Ma+Mb+ra Q+rb Q,

 and Ma and Mb are both infinite points.

- If the point R is an affine point, and k R is an infinite one, k should be odd.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

119

- Hence, if an attacker detects that P is an infinite point, he can just reduce the possible
values of the secret key k to the half. In case of having a secret key k of 512 bits, the
possible values would be reduced from 2512 to 2511.

4.5.3.4. How to solve the DLP using projective coordinates

While we were working on how to apply the projective coordinates to the EC-ElGamal
cryptosystem, we realised that the Discrete Logarithm Problem could be easily solved working
in Zp

2.

The number of rational points of a curve E(Zp) is #E(Zp).

When we work in a projective plane and use the curve E(Zp

2),

#E(Zp

2)=p #E(Zp),

where #E(Zp)= and can be calculated using the Schoof algorithm [45]. So #E(Zp

2)=p l.

Being R a point belonging to E(Zp

2) where R mod p Є E(Zp),

 a point in the infinite.

In the section 4.5.3.3. a message m is encrypted using a private key d and a public key
, where G is the generator:

If we calculate:

-

-

- .

We could recover the secret key d.

Our conclusion is that the projective coordinates in cannot be used in combination with

cryptosystems like ElGamal, since the DLP is easy to solve here.

Since we cannot use this system to insert a message into a point of an elliptic curve and the
other systems we have found do not work for systems where we want to recover the content
of both messages from their operation (due to that they have to be converted to points of the
Elliptic Curve), we have decided to leave it for future work.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

120

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

121

5. Zero Knowledge Proofs in ElGamal cryptosystems

The Zero-Knowledge Proofs are advanced cryptographic mechanisms that are commonly used
in e-Voting.

There is a well-known story presenting some of the ideas of Zero-Knowledge Proofs, first
published in [46]. Commonly, the two parties in a zero-knowledge protocol are named as
Peggy (the prover of the statement) and Victor (the verifier of the statement).

In this story, Peggy has uncovered the secret word used to open a magic door in a cave. The
cave is shaped like a circle, with the entrance on one side and the magic door blocking the
opposite side. Victor says he’ll pay her for the secret, but not until he’s sure that she really
knows it. Peggy says she’ll tell him the secret, but not until she receives the money. They
devise a scheme by which Peggy can prove than she knows the word without telling it to
Victor.

First, Victor waits outside the cave as Peggy goes in. The left and right paths from the entrance
are labelled as A and B. She randomly takes either path A or B. Then, Victor enters the cave
and shouts the name of the path he wants her to use to return, either A or B, chosen at
random. Providing she really does know the magic word, she opens de door, if necessary, and
returns along the desired path. The process is depicted in figure 5.1. Note that Victor does not
know which path she has gone down.

However, suppose she did not know the word. Then, she would only be able to return by the
named path if Victor were to give the name of the same path that she had entered by. Since
Victor would choose A or B at random, she would have a 50% chance of guessing it correctly. If
they were to repeat this trick many times, say 20 times in a row, her chance of successfully
anticipating all of Victor’s requests would become vanishingly small.

Thus, if Peggy reliably appears at the exit Victor names, he can conclude that she is very likely
to know the secret word.

Fig. 5 - 1 Illustration of the cave with a magic door

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

122

A Zero-Knowledge Proof must satisfy three properties:

- Completeness: if the statement is true, the honest verifier (that is, one following the
protocol properly) will be convinced of this fact by an honest prover.

- Soundness: if the statement is false, no cheating prover can convince the honest
verifier that it is true, except with some small probability.

- Zero-Knowledge: if the statement is true, no cheating verifier learns anything other

than this fact.

Computational vs. perfect zero-knowledge: A protocol is computationally zero-
knowledge if an observer restricted to probabilistic polynomial-time tests cannot
distinguish real from simulated transcripts. For perfect zero-knowledge, the probability
distributions of the transcripts must be identical.

ZKP are not proofs in the mathematical sense of the term because there is some small
probability, the soundness error, that a cheating prover will be able to convince the verifier of a
false statement. They are probabilistic rather than deterministic. However, there are
techniques to decrease the soundness error to negligibly small values.

Here we are going to explain some of the ZKP [13][47][48][49] that can be used in the ElGamal
cryptosystem, and how these can be adapted to be used in the new designed proposal.

At first each ZKP is explained to be used in an ElGamal encryption scheme defined in the group
Zp, where q is a prime number, and p a safe prime p=2q+1. The cryptosystem uses a generator
g of the q-order subgroup Gq of Zp*. There secret key x is generated as random number in Zq,
and the public key is h=gxmod p.

The new cryptosystem proposal is defined with the same parameters than the conventional
ElGamal encryption system, and 3 secret (x1, x2, x3) and public keys are used:

h1=gx1mod p
 h2=gx2mod p
 h3=gx3mod p

All the modular operations are omitted from now.

5.1. Schnorr Identification Protocol

An Identification Protocol [17] is a technique designed to allow one party, the verifier, to gain
assurances that the identity of another, the claimant, is as declared, thereby preventing
impersonation.

This is a Zero-Knowledge identification protocol, that is to say, a cheater verifier cannot learn
anything from the proof that lets him impersonate the prover identity.

The security of this protocol is based on the intractability of the discrete logarithm problem.
The basic idea is that A proves knowledge of a secret x (without revealing it) in a time-variant

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

123

manner (depending on a challenge e), identifying A through the association of x with the public
key h via A’s authenticated certificate.

5.1.1. Protocol:

A identifies itself to B as follows:

- A chooses a random e (the commitment), , computes the witness
, and sends that witness and its public certificate to B.

- B authenticates A’s public key h by verifying the certificate, then sends to A a never

previously used random c (the challenge), , where is a pre-defined
security level.

- A checks that and sends B the response s=xc+e.

- B verifies that

5.1.2. Schnorr Signature

The Schnorr Signature is a non-interactive protocol. It is basically equal to the Schnorr
Identification Protocol, but replacing the challenge by a hash on the prover commitment.

Being a message m encrypted as , the signature over the encrypted
message is performed as:

- M=H(a|b|h|g)

- Choose a random e (the commitment),

- Compute the witness

- Calculate c=H(M|w) and s=(e-rc)

The signature is (c,s)

The signature can be verified as:

- Compute

- Compute c’=H(M|w’)

- Verify that c’=c.

5.2. Proof of Discrete-Log equality - Chaum-Pedersen Protocol

In [51], a method is presented that permits a prover to prove in zero knowledge that, given a
tuple (g,u,h,v), he knows a secret value x satisfying , also known as the

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

124

proof of discrete-log equality. This proof, initially interactive, can be made non-interactive
using the procedure described in the Fiat-Shamir scheme [50].

Being m the decryption of a ciphertext , the tuple can be formed,

where g and h are public parameters of the ElGamal cryptosystem, and .

Then, the prover can prove in zero knowledge that he knows the secret key x used to decrypt c
as m:

- The prover chooses a random e (the commitment), and computes the
witness .

- Then, he computes d=H(h|g|a|b|u|v).

- Finally, he calculates s=xd+e, and sends (a,b,s) to the verifier.

- The verifier computes d=H(h|g|a|b|u|v), and checks that

In the cryptosystem presented in the Proposal 6 several parameters are encrypted using a
conventional ElGamal cryptosystem. Thus, being c the encryption of a message m divided in n
blocks,

 ,
(note that we consider that the message has been re-encrypted)

where

 ,

the parameter is encrypted as

 ,

and a Chaum-Pedersen proof can be done in order to proof the correct decryption of .

For each block, the parameter is encrypted as

 ,

and again the correct decryption of can be proved using a Chaum-Pedersen proof.

The parameter is encrypted as

 ,

And another Chaum-Pedersen proof can be done to proof the correct decryption of .

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

125

Thus, proving the correct decryption of , and , the correct decryption of each message
block can be proved.

The prover can prove in zero knowledge that he knows the secret key used to decrypt each
parameter:

- First, the tuple can be constructed, where g and h are public

parameters of the ElGamal cryptosystem, , , for all the n

blocks, , and .

- The prover chooses a random e (the commitment), and computes the

witness .

- Then, he computes d=H(| | |g|a|b|u| | |).

- Finally, he calculates , , , and sends (a,
b, , ,) to the verifier.

- The verifier computes d=H(| | |g|a|b|u| | |), and checks that

- Finally, with the verification of the parameters , and , the correct decryption of

each message block can be proved.

5.3. Proof of Plaintext Knowledge

Since ElGamal is a malleable cryptosystem, one can forge encrypted messages from one
already encrypted without knowing its content. For example:

If we are using a mixnet in order to protect voters’ privacy, this malleability can endanger the
process. For example, if an attacker wants to know what a voter has voted, he could forge an
encrypted vote multiplying the one cast by the voter by a known factor. Then, when the votes
are decrypted, the attacker could search for the pair of votes that maintain the same algebraic
relationship that the one cast by the voter and the one forged by the attacker and find how
the voter has voted. This is called a message-related attack.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

126

This is the reason why the encrypted messages cast by the voters should be non-malleable.
Informally, non-malleability means that it is infeasible, given a ciphertext, to create a different
ciphertext such that their plaintexts are related. The non-malleability under message-related
attacks is achieved using non-malleable non-interactive zero knowledge proofs of knowledge
of the plaintext. Non-malleability is an extension of semantic security since it considers
security and self-protection of senders in the context of a network of users, and not simply
between one sender and one receiver (in the case of a man-in-the-middle attack).

This ZKP of plaintext knowledge is typically given by a digital signature. In [49], it is explained
how a Schnorr signature is forged from the message encryption and attached to it (explained
in Section 5.1.1) to let the receiver verify that the message was originally properly encrypted.

When we use the cryptosystem presented in the Proposal 6, although it is non-malleable due
to the hash inside the encryption, this can only be verified at the decryption time. If we want
to detect a message-related attack before the decryption process (usually between the vote
submission and the mixing steps) we have to perform a Schnorr signature over the encryption.

Being c an encrypted message m divided in n blocks:

 ,

where

 ,

the signature over the encrypted message is performed following the next steps:

- Calculate M=H(| | |g|a|b|d|e).

- Choose a random z (the commitment),

- Compute the witness

- Calculate v=H(M|w) and s=(z- v)

The signature is (v,s)

The signature can be verified as:

- Compute

- Compute v’=H(M|w’)

- Verify that v’=v.

5.4. Proof of Plaintext Equivalence

This proof [13] can be constructed exploiting the homomorphism property of the ElGamal
cipher. It is based in the Schnorr Identification Protocol: used in a proper manner this proof

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

127

can be used to prove that one entity knows the re-encryption factor used to re-encrypt an
encrypted message without disclosing it.

 Being an encrypted message

 And its re-encryption

The entity that executes the re-encryption process can proof that c and c’ have the same
content by:

- Calculating

- Being , and , the prover can demonstrate that he knows the re-
encryption factor r’ as if it was the private key in an ElGamal cryptosystem, where

using the Schnorr Identification Protocol:

o The prover chooses a random e (the commitment), , and
computes the witness .

o The prover calculates a challenge (to make the protocol non-interactive) as
d=H(w|h’|g’|h|g).

o Finally, the prover calculates s=r’d+e, and sends [w,s] to the verifier.

- The verifier calculates and from the messages c and c’, and calculates d.

- Then, he verifies that

When the cryptosystem presented in the Proposal 6 is used to encrypt a message m divided in
n blocks, the result is

where

 ,

and the re-encryption is performed as

 ,

where

]

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

128

Since in the Proposal 6 the re-encryption process includes the multiplication of the parameters

a and e of the tuple by random numbers ({ },), this proof does not work here at first.
We could perform the proof between b and d, but not using a and e because, although they
are multiplied by the same random number, this random number is exponentiated to a hash in
a, so it seems that they cannot be related to do this proof.

An approach to the problem could be to calculate the proof between the elements (b, b’, d,
d’), and then try to perform it between the elements (a, a’, b, b’, e, e’) as follows:

- Calculate c’/c to obtain (a’/a,b’/b,d’/d,e’/e) :

- Proof the knowledge of using and , and following the standard
protocol.

- Proof the knowledge of the re-encryption factor equal to the one in the step before

using and , where for each
encrypted message block :

o The prover sends the factors and , for i=1…n.

o The verifier checks that , for each block (i=1…n).

o The prover and the verifier calculate

o Finally, the proof of knowledge of can be calculated using ’’= and

 for each block.

5.5. Proof of Subset Membership

Being the encryption of a message m, this proof lets a prover (who knows m)
convince a verifier that the ciphertext is an encryption of a value in the set .

In electoral processes this can be useful to verify that a voter sends a ciphertext corresponding
to a valid option. It is commonly used in schemes where homomorphic tally is used. For
example, when exponential ElGamal encryption is used for this purpose, this kind of proof is
done to ensure that the voters choose exponents equal to 0 or 1 in order to prevent one voter
to modify the election result by voting more times than allowed for one candidate:

In exponential ElGamal a message is encrypted as

 , where ch={0,1}.

If a voter chooses ch=100, the homomorphic tally could count 100 votes for the

candidate for just one vote. So the candidate should proof that the encrypted ballot contains a
message in order to prevent this attack.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

129

For a message encrypted as , the prover proofs that is a
member of the set following these steps:

- Calculate the pair

 For each j=1..n, being , where are random numbers in Zp.

- Calculate the pair

 For the encrypted message, where is a random number in Zp.

- Send to the verifier , for all the values j=1…n.

- The verifier sends a challenge f in Zp to the prover (it could be substituted by a hash

function, following the Fiat-Shamir procedure).

- The prover calculates

 , where r is the random encryption factor of the ciphertext.

- Finally the prover sends to the verifier , for all the values j=1…n.

- The verifier checks that

 , and that

For each j=1..n.

Then, the verifier has verified that the ciphertext c encrypts a message from the set

}, without knowing which one.

This proof can not be performed when the cryptosystem presented in Proposal 6 is used, due
that the content of each encrypted block is randomized and can not be pre-calculated

(, where y is a random parameter).

A solution should be found to solve this problem and remains for future work. Since this proof
is basically used in homomorphic tally systems, the fact of not being able to do it using the
designed cryptosystem does not prevent from its use in a mixing system, where the correct
structure of a vote can be verified at the decryption time.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

130

5.6. Proof of Correct Decryption using Schnorr Identification Protocol

We use the Schnorr Identification Protocol again for this proof, in order to demonstrate that
an entity that does a decryption process knows the secret key x:

 Being a message m encrypted as

 ,

the decryption result must be m.

The prover can demonstrate that knows the secret key x used to decrypt the ciphertext c as
the message m by:

- Calculating

- Being , and , the prover can demonstrate that he knows the private
key x, where , using the Schnorr Identification Protocol:

o The prover chooses a random e (the commitment), , and
computes the witness .

o The prover calculates a challenge (to make the protocol non-interactive) as
d=H(w|h’|g’|h|g).

o Finally, the prover calculates s=xd+e, and sends [w,s] to the verifier.

- The verifier calculates and from the messages c and m, and calculates d.

- Then, he verifies that

Although the Chaum-Pedersen Protocol is commonly used in order to verify the correct
decryption of an encrypted message, this proof is more efficient, due that it requires to
interchange less information between prover and verifier and less verification operations.

In the cryptosystem presented in the Proposal 6 several parameters are encrypted using a
conventional ElGamal cryptosystem. Thus, being c an encrypted message m divided in n blocks,

 ,

where

 ,

the parameter is encrypted as

 .

For each block, the parameter is encrypted as

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

131

 ,

and the parameter is encrypted as

 .

The Schnorr proof can be done in order to proof the correct decryption of , (for each
block), and . Thus, proving the correct decryption of , and , the correct decryption of
each message block can be proved.

The prover can prove in zero knowledge that he knows the secret key used to decrypt each
parameter:

- Calculating

- Being , , and , the prover can demonstrate

that he knows the private key , where using the Schnorr Identification
Protocol:

o The prover chooses a random z (the commitment), , and
computes the witness .

o The prover calculates a challenge (to make the protocol non-interactive) as

v=H(w| | | |g’| | | |g).

o Finally, the prover calculates , , ,
and sends (w, , ,) to the verifier.

- The verifier calculates , , and from the
encrypted message c and the decrypted parameters and calculates
v.

- Then, he verifies that

- Finally, with the verification of the parameters , and , the correct decryption of
each message block can be proved.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

132

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

133

6. Case Study: use of the proposed encryption algorithm in a
Universally Verifiable Mixnet

In this chapter we are going to present how the designed cryptosystem could be used in a real
voting system.

The voting system is composed by the following entities:

- Voters:

When the electoral process starts and the voting stage is opened, the eligible voters
(using a web interface) access to the election website, choose their voting options and
submit them to the Voting Service.

- Voting Client:

The Voting Client is an application running in the voter PC that does all the
cryptographic operations in order to send the encrypted ballot and ZK proofs to the
Voting Service.

- Electoral Board:

The Electoral Board is formed by parties with different interests. They have the private
key that can decrypt the received encrypted votes. This key is usually divided in shares
using a secret sharing threshold scheme where a determined subset of members can
recover the secret key from their shares.

- Voting Service:

The Voting Service receives the encrypted votes submitted by the voters, verifies their
digital signatures (each eligible voter is assumed to have public credentials to perform
a digital signature) with the electoral roll and the ZK proof of plaintext knowledge of
each vote.

- Mixing Service:

The Mixing Service shuffles the votes to protect the voters’ privacy before the
decryption process is done.

- Counting Service

The Counting Service receives the mixed and decrypted votes and calculates the
results for each candidate.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

134

All the entities are assumed to have public and private RSA keys in order to digitally sign their
output contents. The next entity in the chain will verify the integrity of these contents before
processing them.

In the figure 6.1 the relationship between these entities is presented.

Fig. 6 - 1 Entities in the case study

6.1. Defining the cryptosystem

The votes are encrypted using the modification of the ElGamal cryptosystem defined in the
Proposal 6. Here we introduce again the encryption parameters:

Being q a prime number and p a safe prime such that p=2q+1, the modification of the ElGamal
cryptosystem is defined in the group Zp using a generator g of the q-order subgroup Gq of Zp*.

There are 3 secret keys, x1, x2, x3, generated as random numbers in Zq.

The public keys are:

 h1=gx1mod p
 h2=gx2mod p
 h3=gx3mod p

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

135

The three secret keys are only known by the Electoral Board members. The Electoral Board
could be divided in three subgroups of members, where each subgroup could possess one of
the secret keys.

The three public keys are known by all the participants in the election process.

6.2. Voting Phase

6.2.1. Vote casting

In the voting phase the voter selects her choices for the current election. These choices are
sent to the Voting Client, which performs the cryptographic operations needed.

Being the options selected by the voter, the Voting Client performs their
encryption as

 ,

where , and is a random number in .

Then, a proof of plaintext knowledge is calculated performing a Schnorr signature over the
encrypted options.

The Schnorr signature over the encrypted vote is performed as:

- M=H(| | |g|a|b|d|e).

- Choose a random z (the commitment),

- Compute the witness

- Calculate v=H(M|w) and s=(z- v)

The signature is (v,s)

Finally, the encrypted vote and the ZK proof are digitally signed using the voter’s private key
and sent to the Voting Service:

6.2.2. Vote reception

When the Voting Service receives an encrypted vote, it performs two verification steps before
storing the vote:

1. Verification of the digital signature: the Voting Service verifies that the public key used
to verify the digital signature over the encrypted vote is from a voter in the Electoral
Roll.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

136

2. Verification of the proof of plaintext knowledge:

The Schnorr signature [v,s] over the encrypted vote c can be verified following these
steps:

o Compute M=H(| | |g|a|b|d|e).

o Compute

o Compute v’=H(M|w’)

o Verify that v’=v.

Once these two proofs are verified, the encrypted vote is stored the Voting Service.

6.3. Mixing Phase

When the voting stage is closed, all the digital ballot boxes in the Voting Servers are collected.
These digital ballot boxes are signed by the corresponding Voting Server in order to ensure
their integrity during the collection stage. When these digital ballot boxes are received by the
Mixer, it verifies their signatures before performing the mixing process.

Once the digital ballot boxes are “opened”, the digital signature over each encrypted ballot is
verified. After the verification, these credentials are removed, since it would have no sense to
shuffle the encrypted ballots in order to decorrelate them from the voters when they have the
voters’ digital signatures attached to them.

The mixing process is performed by a re-encryption mixnet. The verification of the mixnet
procedure is slightly more complex that the one we took as a basis for the design of the
cryptosystem. The modification is done in order to offer more protection in front of the “300
attack” explained in Section 4.

The verification method is based on the idea of RPC (see Section 2), but using Integrity Proofs.
We call it Random Group Full Checking.

In Random Group Full Checking, the input encrypted votes of each node are divided in several
groups. An Integrity Proof is calculated for each group of input encrypted votes and the ones
belonging to this group in the output, so the process can be verified.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

137

The next figure shows how the input and output groups are related:

Fig. 6 - 2 Input and output groups relationship

The steps to implement the RGFC are the following:

- The mix-nodes shuffle and re-encrypt the input votes using new randomization values.
In order to re-encrypt the input votes, each node performs the following operations:

o Choose two random parameters in Zq, r1’ and r2’.

o Perform the re-encryption process as:

 .

 .

 ,

where the operation

is performed for each vote option.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

138

- Once the mixing process has finished, the Electoral Board (the verifier) verifies its

correct behaviour:

o For the first node, the verifier divides at random the total of votes in groups of
n votes. Then, it multiplies the votes contained in each group, obtaining an
Input Integrity Proof:

Where j=1...n, being n the number of votes in a group.

o The verifier asks to the node, for each group, the destination in the outputs of
its components, in order to calculate an Output Integrity Proof over the
members:

o Finally, the node is asked to calculate a ZK proof in order to demonstrate that
the Output Integrity Proof of one group is the re-encryption of the Input
Integrity Proof of the same group.

The node can proof that and for a concrete group have the same
content by:

 Calculating

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

139

 Proving knowledge of the re-encryption factor in {v, w}

using the Schnorr Identification Protocol, being and

.

 Proving the knowledge of the re-encryption factor in {u,

z} using

and

 where

For the multiplication of the encrypted vote options :

 The prover sends the factors and

, for i=1…k, to the verifier.

 The verifier checks that , for each block (i=1…n).

 The prover and the verifier calculate

 Finally, the proof of knowledge of can be calculated using g’
and for each product of voting choices.

The steps to follow to calculate the proof and verify it are explained in Section
5.3.

o For the next node, new groups are redefined in such a way that a new group is

composed of a vote from each of the old groups. Since an individual vote from
a group could belong to any older group, votes can not be traced through the
mix-nodes, preserving voter privacy. These steps are repeated for each node.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

140

Note that we have considered the generalization the calculation of the Integrity Proofs
as if they were Intermediate Integrity Proofs since this operation is performed over
intermediate nodes too.

An example of this procedure is shown in the next figure:

Fig. 6 - 3 Mixing verification procedure

Finally, we should explain that, in order to calculate the proof of re-encryption with the
cryptosystem presented in the Proposal 6, an Integrity Proof must be calculated for each group
of encrypted votes and for each encrypted voting option, as it is shown in the figure 6.4. Batch
proofs can be used to optimize the process.

Fig. 6 - 4 Integrity Proofs calculation

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

141

In RGFC, instead of revealing individual traces between inputs and outputs (like in the RPC) the
traces are revealed about groups. That way, the information about all the input messages can
be asked (not just the half). At the same time provides a better anonymity than RPC, since the
individual path of a vote is never disclosed.

Due to the Integrity Proof calculation, a cheater should have to change a pair of votes in such a
way that the multiplication of the two modified votes is equal to the multiplication of the
original ones (“300 attack”). Moreover, due to vote grouping, both modified votes should be in
the same group when the check process is done. The cheater does not know which votes will
belong to which group until the mixing has finished, due that this group-division is performed
by a challenge from the Electoral Board.

In order to preserve voter privacy, the groups are configured in such a way that at the end of
the mixing, although one could know to which group belongs in the last node a specific
message, it could not be related to the group configuration in the first node. For this purpose,

the group size is selected so that, being k the size of a group, , where t is the number of
nodes (at least two) and n is the total number of votes.

While in RPC just the half of the votes is verified at each node (having a probability of non-
detection of 2-n for n manipulated votes), using Random Group Full Checking we can divide the
votes in more groups and audit the correct transformation of all of them. Then, the probability
of non-detection is smaller.

The formula for obtaining the probability of non-detection for two manipulated votes is:

where m is the total number of votes, n is the number of votes for each group, and g is the
number of groups.

For example: in an election with 10.000 voters, where the votes are grouped in 100 groups in
order to do the RGFC, the probability of non-detection of a manipulated couple is 0. 99%.

In an election with 1.000.000 voters, where the votes are grouped in 10.000 groups in order to
do the RGFC, the probability of non-detection of a manipulated couple is 0. 01%.

6.4. Decryption and Counting Phase

Once all the re-encryption and shuffling steps in the mixing are verified, the votes are
decrypted in the last node using the private keys from the Electoral Board. Each decryption
step is verified using Schnorr ZK Proofs.

First, a partial decryption process is done before the votes are completely decrypted in order
to verify the integrity of each message block using the hash attached to it.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

142

Partial decryption

The received (re-encrypted) vote is

 ,

where

 , for each block.

- Calculate: in order to obtain .

- Calculate .

- Calculate for i=1..n.

- Then obtain

for each vote option.

ZK Proof of partial decryption

The Schnorr ZK Proof can be done in order to proof the correct partial decryption of and

:

- Calculate

- Being , and , the prover can demonstrate that he

knows the private keys , where , using the Schnorr
Identification Protocol:

o The prover chooses a random z (the commitment), , and
computes the witness .

o The prover calculates a challenge (to make the protocol non-interactive) as

v=H(w| | |g’| | | |g).

o Finally, the prover calculates , , and sends (w, ,
) to the verifier.

- The verifier calculates , and from the

encrypted vote c and the parameters

and calculates v.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

143

- Then, he verifies that

Hash verification

Using the component

 ,

for each vote option:

- The verifier divides it in two pieces:

- Then checks that H(s)=t.

If the verification process succeeds, the process can continue. Otherwise it is stopped and an
error is reported.

Final decryption

- Calculate in order to obtain

- For each encrypted vote option obtain as

.

ZK Proof of final decryption

The Schnorr ZK Proof can be done to proof the correct decryption of and thus the final
decryption:

- Calculate

- Being and , the prover can demonstrate that he knows the

private key , where using the Schnorr Identification Protocol:

o The prover chooses another random z’ (the commitment), , and
computes the witness .

o The prover calculates a challenge (to make the protocol non-interactive) as

v’=H(w’| |g’| | | |g).

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

144

o Finally, the prover calculates , and sends (w’, to the
verifier.

- The verifier calculates and from the encrypted vote c and the
parameters and calculates v’.

- Then, he verifies that

Finally, once the decryption steps are verified for all the votes, the vote options are
counted and the results for each candidate are obtained.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

145

7. Conclusions

The migration of elections from conventional environments to e-Voting requires the
consideration of some security requirements, such as voter authentication, the preservation of
voter privacy or the assurance of the legitimacy of the results.

There are standard cryptographic techniques that can be used in order to achieve these
security requirements, such as the encryption and digital signature of the votes when they are
submitted by the voters. In this case, we have seen that the use of digital envelopes is the best
solution to encrypt the votes, since they take advantage of the simple key management
methods of asymmetric encryption algorithms while they have the efficiency of the symmetric
encryption systems. However, these standard cryptographic techniques are not enough to
ensure voter privacy, since the signed and encrypted votes could be correlated with the
decrypted ones and then the voter intent of vote could be disclosed. Thus, advanced
cryptographic techniques must be used to preserve the voter privacy.

During the project, we analyzed some advanced cryptographic techniques that preserve the
voter privacy by means of vote anonymization. From them, Pollsterless and two agencies
models have some significant drawbacks concerning security and usability, so we discarded
them in the beginning of the project. Therefore, we choose homomorphic tally and mixing
systems as the best option to ensure the voter privacy during the election, according to our
objectives. Evaluating both systems we finally decided that mixnets are the best system to use
in our approach, since its combines high robustness with flexibility to work in different and
complex election systems. Mixing systems, as well as any advanced cryptographic system, use
verification methods to ensure their correct behaviour. These verification methods usually use
advanced cryptographic techniques such as Zero Knowledge Proofs or other mathematical
proofs based on the underlying cryptosystem, such as the Integrity Proofs. The requirement of
using a cryptographic system supporting these advanced cryptographic techniques has been
the main motivation of this project.

When these advanced cryptographic techniques are used, symmetric cryptosystems (or any
technique based on them such as digital envelopes) can not be used, since these
cryptosystems do not support the implementation of these advanced techniques. Therefore,
asymmetric encryption algorithms are needed, preferably with homomorphic properties, to
directly encrypt the information (i.e., digital envelopes are excluded since the information is
encrypted with a symmetric key). Since asymmetric encryption methods are less efficient than
symmetric ones from the point of view of encryption size (e.g., the encryption block size is
usually larger in an asymmetric algorithm compared with a symmetric one of the same
strength), and of decryption speed (due to the use of large keys), we focused the effort of this
project on designing an asymmetric encryption method more efficient than the existing ones.

The first design requirement setup in the project was to improve the efficiency of the
encryption/decryption process when the message exceeds the block size of the algorithm.
However, during the process of designing this new asymmetric cryptosystem, some additional
requirements arose, such as the need of supporting message re-encryption, homomorphic

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

146

properties, be able to verify the integrity of the decrypted message or perform Zero
Knowledge Proofs based on the designed cryptosystem. Furthermore, some attacks
concerning the traceability of the messages through the mix-nodes had to be prevented. All
these requirements have been considered from both the academic and the practical (real
implementation) point of view.

The result is an efficient encryption/decryption cryptosystem that can be used in e-Voting
environments or in other schemes that manages large messages and where the integrity of
encrypted messages can be verified by means of advanced cryptographic techniques such as
ZK Proofs.

Since Zero Knowledge Proofs are commonly used in e-Voting environments to achieve the
desired security requirements, we have considered that it was important to suggest how could
be performed these ZK proofs using the new encryption algorithm.

Finally, a case study is exposed to show how the designed cryptosystem could be used in a real
e-Voting process verifying each election phase: voting, mixing, decrypting and counting.

Now, I would like to express some thoughts that came to me while I was doing this PFC:

Although the research field of cryptography in electronic voting environments has been active
during many years and has produced lots of interesting protocols, there remains the question
of if there is a system that accomplishes all the security requirements of an electoral process in
a really efficient way. It is important to continue with this research and with the study of the
newest protocols in order to achieve some day the fact of voting through the Internet being as
common as buying a flight ticket, reaching a security level high enough to be able to fully trust
in it .

Finally, I would like to say that the success of this PFC is not only the content you have read
here, but also the learning on how to do research and investigate through the papers
published in academic environments or that just fell into my hands.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

147

8. References

[1] Chaum, D. (2001). Surevote technical overview (slides).

http://www.vote.caltech.edu/wote01/pdfs/surevote.pdf

[2] Malkhi, D., Margo, O. and Pavlov, E. 2002. E-Voting Without 'Cryptography'. In: LNCS,

2357. pp. 1-15.

[3] Atsushi Fujioka, Tatsuaki Okamoto, and Kazui Ohta (1993). A practical secret voting

scheme for large scale elections. In Advances in Cyptology - AUSCRYPT '92, volume 718
of Lecture Notes in Computer Science, pages 244--251, Berlin, 1993. Springer-Verlag.

[4] Benaloh, J. C. and Yung, M. 1986. Distributing the power of a government to enhance
the privacy of voters. In Proceedings of the Fifth Annual ACM Symposium on Principles
of Distributed Computing (Calgary, Alberta, Canada, August 11 - 13, 1986). PODC '86.
ACM, New York, NY, 52-62

[5] R. Cramer, R. Gennaro and B. Schoenmakers. A Secure and Optimally Efficient Multi-

Authority Election Scheme. In: Proceedings of EUROCRYPT '97, Konstanz, Germany,
Springer Verlag LNCS, vol. 1233, pp. 103--118, May 1997.

[6] Peng, K; Aditya, R; Boyd, C, et al. Multiplicative homomorphic E-voting.

Conference Information: 5th International Conference on Cryptology in India, Date:
DEC 20-22, 2004 Chennai INDIA. Source: PROGRESS IN CRYPTOLOGY - INDOCRYPT
2004, PROCEEDINGS Volume: 3348 Pages: 61-72 Published: 2004

[7] Chaum, D. L. 1981. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24, 2 (Feb. 1981), 84-90.

[8] K. Sako, J. Kilian. Receipt-free mix-type voting scheme - A practical solution to the

implementation of a voting booth, Advances in Cryptology -EUROCRYPT '95, Lecture
Notes in Computer Science, Springer-Verlag, 1995.

[9] Ben Adida. Advances in Cryptographic Voting Systems. Thesis, 2006.

[10] Jakobsson, M., Juels, A., and Rivest, R. L. 2002. Making Mix Nets Robust for Electronic

Voting by Randomized Partial Checking. In Proceedings of the 11th USENIX Security
Symposium (August 05 - 09, 2002). D. Boneh, Ed. USENIX Security Symposium. USENIX
Association, Berkeley, CA, 339-353.

[11] D. Chaum. Secret-Ballot Receipts and Transparent Integrity. Better and Less-costly

Electronic Voting at Polling Places. http://www.vreceipt.com/article.pdf

[12] Abe, M. 1999. Mix-Networks on Permutation Networks. Lecture Notes In Computer

Science, vol. 1716. Springer-Verlag, London, 258-273.

http://sauwok.fecyt.es/apps/full_record.do?product=UA&search_mode=GeneralSearch&qid=2&SID=W2nNGHhiO1OP9oEm7H6&page=1&doc=1&colname=WOS

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

148

[13] Markus, J. and Ari, J. 1999 Millimix: Mixing in Small Batches. Technical Report. UMI
Order Number: 99-33., Certer for Discrete Mathematics & Theoretical Computer
Science.

[14] Neff, C. A. 2001. A verifiable secret shuffle and its application to e-voting. In

Proceedings of the 8th ACM Conference on Computer and Communications Security
(Philadelphia, PA, USA, November 05 - 08, 2001). P. Samarati, Ed. CCS '01. ACM, New
York, NY, 116-125.

[15] Golle, P., Zhong, S., Boneh, D., Jakobsson, M., and Juels, A. 2002. Optimistic Mixing for

Exit-Polls. In Proceedings of the 8th international Conference on the theory and
Application of Cryptology and information Security: Advances in Cryptology (December
01 - 05, 2002). Y. Zheng, Ed. Lecture Notes In Computer Science, vol. 2501. Springer-
Verlag, London, 451-465.

[16] Wikstrom Douglas. Five practical attacks for optmistic mixing for exit-polls. In:

Proceedings of SAC 2003, 2003. p. 160-75.

[17] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone. Handbook of Applied

Cryptography. CRC Press. ISBN: 0-8493-8523-7. October 1996, 816 pages

[18] www.keylength.com

[19] Adida, B. 2008. Helios: web-based open-audit voting. In Proceedings of the 17th

Conference on Security Symposium (San Jose, CA, July 28 - August 01, 2008). USENIX
Association, Berkeley, CA, 335-348.

[20] http://www.bouncycastle.org/java.html

[21] Schneier, Bruce. Applied Cryptography, John Wiley & Sons, 1994. ISBN 0-471-59756-2

[22] Sandler, D., Derr, K., and Wallach, D. S. 2008. VoteBox: a tamper-evident, verifiable

electronic voting system. In Proceedings of the 17th Conference on Security
Symposium (San Jose, CA, July 28 - August 01, 2008). USENIX Association, Berkeley, CA,
349-364.

[23] B. Pfitzmann. Breaking efficient anonymous channel. In A. D. Santis, editor, Advances in

Cryptology (Eurocrypt '94), volume 950 of LNCS, pages 332--340, Perugia, Italy, 9-12
May 1994. Springer-Verlag.

[24] Park, C., Itoh, K., and Kurosawa, K. 1994. Efficient anonymous channel and all/nothing

election scheme. In Workshop on the theory and Application of Cryptographic
Techniques on Advances in Cryptology (Lofthus, Norway). T. Helleseth, Ed. Springer-
Verlag New York, Secaucus, NJ, 248-259.

[25] Hwang, M. S., Chang, C. C., and Hwang, K. F. 2002. An ElGamal-Like Cryptosystem for

Enciphering Large Messages. IEEE Trans. on Knowl. and Data Eng. 14, 2 (Mar. 2002),
445-446.

[26] Wang, M., Yen, S., Wu, C., and Lin, C. 2006. Cryptanalysis on an Elgamal-like

cryptosystem for encrypting large messages. In Proceedings of the 6th WSEAS

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

149

international Conference on Applied informatics and Communications (Elounda,
Greece, August 18 - 20, 2006).

[27] Zhong, S. 2006. An Efficient and Secure Cryptosystem for Encrypting Long Messages.

Fundam. Inf. 71, 4 (Mar. 2006), 493-497.

[28] Tata Elxsi. Elliptic Curve Cryptography – An Implementation Tutorial, India, January 5,

2007.

[29] http://en.wikipedia.org/wiki/Elliptic_curve_cryptography

[30] D. Hankerson, A. Menezes, and S.A. Vanstone, Guide to Elliptic Curve Cryptography,

Springer-Verlag, 2004.

[31] N. Koblitz, Elliptic curve cryptosystems, in Mathematics of Computation 48, 1987, pp.

203–209

[32] http://www.secg.org/download/aid-386/sec2_final.pdf

[33] A. Menezes, T. Okamoto, and S.A. Vanstone, Reducing elliptic curve logarithms to

logarithms in a finite field, IEEE Transactions on Information Theory, Volume 39, 1993.

[34] http://www.secg.org/

[35] http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

[36] Josep María Miret Biosca. Criptografía con Curvas Elípticas. Universidad de Lleida
(España). Enero de 2005. Primer Congreso Conjunto de Matemáticas RSME-SCM-

SEIO-SEMA mat.es 2005.

[37] www.secg.org/collateral/sec1_final.pdf

[38] http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml

[39] P Paillier. Public key cryptosystems based on composite degree residuosity classes. In
Proc.of Eurocrypt '99, volume 1592 of LNCS, pages 223 -238. IACR,Springer-Verlag,
1999.

[40] S. Galbraith, Elliptic curve paillier schemes, Journal of Cryptology , vol. 15, no. 2, pp.

129-138, 2002.

[41] D. Galindo, S. Martin, P. Morillo and J.L. Villar. An efficient semantically secure elliptic

curve cryptosystem based on KMOV scheme. International Workshop on Coding and
Cryptography WCC 2003. Versailles, France.

[42] C. Munuera, J. Tena : Codificacion de la Informacion, U. de Valladolid, 1997.

[43] O. Ugus, A. Hessler and D. Westhoff, Performance of Additive Homomorphic EC-

ElGamal Encryption for TinyPEDS, RWTHAachen, 2007.

Efficient Cryptosystem for Universally Verifiable Mixnets Sandra Guasch Castelló

150

[44] Sebastià Martín Molleví. Curvas elípticas módulo N y aplicaciones criptográficas. Tesis
Doctoral. Universidad Politécnica de Cataluña (España), 1998.

[45] R. Schoof: Counting Points on Elliptic Curves over Finite Fields. J. Theor. Nombres
Bordeaux 7:219-254, 1995. Available at http://www.mat.uniroma2.it/~schoof/ctg.pdf

[46] Jean-Jacques Quisquater, Louis C. Guillou, Thomas A. Berson. How to Explain Zero-
Knowledge Protocols to Your Children. Advances in Cryptology - CRYPTO '89:
Proceedings, v.435, p.628-631, 1990

[47] Golle, P. 2005. Dealing Cards in Poker Games. In Proceedings of the international

Conference on information Technology: Coding and Computing (Itcc'05) - Volume I -
Volume 01 (April 04 - 06, 2005). ITCC. IEEE Computer Society, Washington, DC, 506-
511.

[48] Francesc Sebé, Josep M. Miret, Jordi Pujolàs, Jordi Puiggalí. Simple and Efficient Hash-

based Verifiable Mixing for Remote Electronic Voting. Computer Communications (17
November 2009)

[49] M. Jakobsson. A practical mix. In K. Nyberg, editor, EUROCRYPT '98, pages 448-461.

Springer-Verlag, 1998. LNCS No. 1403.

[50] Fiat, A. and Shamir, A. 1987. How to prove yourself: practical solutions to identification

and signature problems. In Proceedings on Advances in cryptology---CRYPTO '86 (Santa
Barbara, California, United States). A. M. Odlyzko, Ed. Springer-Verlag, London, 186-
194.

[51] Chaum, D. and Pedersen, T. P. 1993. Wallet Databases with Observers. In Proceedings

of the 12th Annual international Cryptology Conference on Advances in Cryptology
(August 16 - 20, 1992). E. F. Brickell, Ed. Lecture Notes In Computer Science, vol. 740.
Springer-Verlag, London, 89-105.

[52] Storer, Timothy W. Practical Pollsterless Remote Electronic Voting. Thesis, 2007.

